
ETH Library

Eclipse-based front-end for OMSjp

Master Thesis

Author(s):
Aeppli, Barbara

Publication date:
2005

Permanent link:
https://doi.org/10.3929/ethz-a-004916874

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004916874
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Eclipse-Based Front-End
for OMS jp

Diploma Thesis

Barbara Aeppli
<barbara@computerscience.ch>

Prof. Moira C. Norrie
Michael Grossniklaus

Global Information Systems Group
Department of Computer Science

ETH Zurich

February 17th 2005



Copyright © 2004 Global Information Systems Group.



Abstract

OMSjp is a Java interface which makes access to heterogenous OMS platforms possible in a
uniform manner. To enhance software development based onOMSjp , the aim of this diploma
thesis was to build a graphical user interface on top ofOMSjp for modelling and adminis-
trating OMS databases. The resulting front-end has the advantage that it is applicable to all
OMS platforms supported byOMSjp . To facilitate the implementation process, the front-
end has been implemented as a plug-in for the widely-used Eclipse Platform. Eclipse offers
an extensible architecture and supporting functionality common to front-end applications.
Furthermore, the popularity of Eclipse leads to a reduced learning effort for the new OMS
front-end since it adopts well-known Eclipse paradigms and conventions.

iii



iv



Contents

1 Introduction 1
1.1 OMS Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation for Using Eclipse . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Evaluation of the OMS Pro Graphical User Interface 5
2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 OMS Pro Concepts and Terminology . . . . . . . . . . . . . . . . . . . 5
2.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Strengths of the OMS Pro GUI . . . . . . . . . . . . . . . . . . 7
2.3.2 Weaknesses of the OMS Pro GUI . . . . . . . . . . . . . . . . 9

2.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Eclipse Platform 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Platform Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Eclipse Plug-In Architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Plug-In Description . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Plug-In Deployment and Activation . . . . . . . . . . . . . . . . 19
3.3.3 Extension Mechanism . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Eclipse User Interface and its Paradigms . . . . . . . . . . . . . . . . . 21

4 OMS Front-End Design 23
4.1 Design Issues and Proposals . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Layout and Object Arrangement . . . . . . . . . . . . . . . . . 24
4.1.2 Adding Links between Objects . . . . . . . . . . . . . . . . . . 27
4.1.3 Schema Editors . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 OMS Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Database Explorer . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Collection Editor . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Object Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.5 AQL Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.6 Console Window . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.7 Match Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



vi CONTENTS

5 OMS Front-End Implementation 37
5.1 Plug-In XML Manifest . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Package OMSBROWSER . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Package MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Package MODEL.EVENT . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Package PERSPECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Package VIEWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6.1 Database Explorer View . . . . . . . . . . . . . . . . . . . . . . 44
5.6.2 AQL View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6.3 Match View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6.4 Console View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Package EDITORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.8 Package EDITORS.OBJECT . . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Package EDITORS.COLLECTION . . . . . . . . . . . . . . . . . . . . 50
5.10 Package ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.11 Package WIZARDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.12 Package PREFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.13 Package UTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 55
6.1 Achievement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Intended Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Plugin XML Manifest 61

B User Manual 67
B.1 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.3 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.4 Browsing and Updating the Database . . . . . . . . . . . . . . . . . . 70
B.5 Querying the Database . . . . . . . . . . . . . . . . . . . . . . . . . . 79



1
Introduction

During the last couple of years the Global Information Systems Group of the ETH Zurich
has developed an object-oriented database management tool suite, called OMS [8]. OMS
consists of a series of tools and technologies designed to support database development. At
the moment most of the tools that belong to the OMS suite offer their own graphical user
interface (GUI) or so called front-end. With the introduction ofOMSjp [9], a Java library
providing access to OMS databases, it becomes possible to develop a single front-end that
can be used uniformly for all OMS platforms.

1.1 OMS Suite

The OMS suite is based on its own object model, OM [6]. OM is a generic object data model
which specifies constructs and operations for the management of interrelated collections of
data objects. It is designed to support database development from conceptual design through
to implementation independent of a particular programming language environment.
Up to the present the OMS suite comprises a number of platforms which implement the OM
model using different programming environments such as Prolog, Java, Oberon or Python.
The platform implemented in SICStus Prolog [10] is called OMS Pro [7]. OMS Pro supports
rapid prototyping, but it can be used for the implementation phase as well. OMS Pro provides
a TCL/Tk [12] graphical user interface for browsing, querying and manipulating database
objects. The user interface is rather advanced but it still has some deficits. Another platform
that belongs to the OMS family is eOMS. eOMS is based on PostgreSQL and implemented
in Python. It offers a concurrency control mechanism to allow multi-user access.
These different OMS platforms are very heterogenous and do not provide a common Ap-
plication Programming Interface (API). OMS Pro offers a collection of Prolog predicates as
API and hence no interface that can be accessed directly from Java. This is not very conve-
nient for application developers who want to access OMS databases from a Java application.

1



2 1.2. MOTIVATION FOR USING ECLIPSE

ThereforeOMSjp was developed and became the latest member of the OMS suite.
OMSjp is a uniform Java library that allows transparent access to heterogenous OMS plat-
forms as back ends.OMSjp maps the OM model of the database into concepts that can be
used in a Java application. An application built usingOMSjp can run with various OMS
platforms such as OMS Pro and eOMS if an adequate driver for the underlying platform is
available (see [4]). At the moment this is only the case for OMS Pro, but support for eOMS
is planned. Figure1.1shows an overview of theOMSjp architecture.

Figure 1.1: Architecture Overview

The fact that database supported applications usingOMSjp are flexible to freely exchange
their underlying OMS platform inspired the idea of implementing a single OMS front-end
based onOMSjp . Such a front-end is applicable to all OMS platforms supported byOMSjp .
This implies that only one graphical user interface has to be implemented and maintained for
several platforms which leads to a reduced development effort.
SinceOMSjp is a Java interface it was not under consideration that a front-end on top of
OMSjp should be implemented using a different programming language than Java. Otherwise
there were no further constraints what technique to use. A stand-alone Java Swing application
would have been possible, but it was decided to integrate the front-end into the Eclipse [2]
environment.

1.2 Motivation for Using Eclipse

Eclipse is an Integrated Development Environment (IDE) that can be used for developing
applications in various programming languages. Most commonly it is used for developing
Java applications and during the last few years the number of developers that are using Eclipse
increased considerably. One of the reasons for this trend might be that the user is able to



CHAPTER 1. INTRODUCTION 3

customise his development environment suitable to his needs.
Eclipse is an open source project offering an extensible architecture. This fact enables de-
velopers to integrate their own specialised tools seamlessly into the Eclipse environment.
In addition to the extensibility, Eclipse offers a lot of functionality and powerful tools that
simplify the implementation of graphical user interfaces. This is very convenient from a de-
veloper’s point of view and a valuable basis for the integrating of an OMS front-end into
Eclipse.
The mechanism of integrating one’s own tools into Eclipse gives the users the possibility of
composing a development environment from a set of highly specialised tools. Users are able
to choose which tools they would like to use and can therefore only install the tools they need
to perform their tasks. This fact helps to keep Eclipse manageable and reduces the risk of
having a completely overloaded user interface.
When it comes to developing Java applications that are built on top of an OMS database, a
further advantage of having an OMS front-end tool directly available within Eclipse emerges.
The developer can use one single tool for the implementation process of the Java application
as well as for the modeling and administration of the underlying OMS database. This elim-
inates the switching between applications and makes working more comfortable. Beginners
that implement a Java project coupled to an OMS database for the first time only need to get
acquainted with one development environment. Or even better, if they already know how to
work with the Java development tools provided by Eclipse, it is only a small step to learn
how to work with OMS databases since the OMS front-end integrates into the Eclipse user
interface and adopts its paradigms and conventions.

1.3 Document Structure

After getting acquainted with the Eclipse environment the first task of the diploma thesis was
to evaluate the existing OMS Pro graphical user interface. The goal of the evaluation was
to find requirements for the new front-end. The findings of this evaluation and the derived
requirements are presented in chapter2. Chapter3 gives a short overview of Eclipse. The
main concepts concerning the extensible architecture of Eclipse and its user interface para-
digms and conventions are introduced. The next step was to work out some design proposals
which were then discussed to decide on a final design for the OMS front-end. The difficulties
were to find suitable solutions that improve the weaknesses of the existing OMS Pro GUI
and respect the conventions of Eclipse at the same time. The results of this design phase are
covered in chapter4. The design phase was followed by the actual implementation phase.
Chapter5 presents technical details about the implementation whereas chapter6 summarises
the main conclusions.



4 1.3. DOCUMENT STRUCTURE



2
Evaluation of the OMS Pro

Graphical User Interface

An evaluation of the existing OMS Pro graphical user interface (GUI) served as a starting
point for the design of the OMS Eclipse plug-in. The goal of the evaluation was to explore the
strengths and the weaknesses of the existing OMS Pro GUI. Concepts that were considered as
especially useful should be adopted for the new Eclipse plug-in whereas weaknesses should
be enhanced in order to improve the usability of the application considerably.
This chapter provides the main findings of the evaluation and it summarises the requirements
for the eclipse-based front-end that were derived from the findings.

2.1 Methodology

The evaluation of the OMS Pro GUI as it was carried out for this diploma thesis was not
a scientific study in the sense that a lot of different persons were interviewed according to
predefined questionnaires which were then analysed and interpreted. But the evaluation is
based on personal experiences we made while working with OMS Pro during the last couple
of years and on discussions we had with other people that are using the system as well.

2.2 OMS Pro Concepts and Terminology

The OMS Pro GUI is implemented using TCL/Tk and consists of a main application win-
dow and a few additional windows that can be opened from the main window through user
interaction.
The main application window is shown initially. It can be seen in figure2.1. The following
list describes the most important elements of the main application window.

5



6 2.2. OMS PRO CONCEPTS AND TERMINOLOGY

Figure 2.1: OMS Pro Main Application Window

• Menu Bar
The main functionality can be found in the menu bar. Context menus using the right
mouse button are not available in the OMS Pro main window.

• Tool Bar
Some important actions as for example commit and rollback actions are represented by
a short cut button in the tool bar.

• Collection Panel
User as well as system collections are placed in a panel that is visible all the time. It is
also possible to open collections using the ‘Collection’ menu in the menu bar, but the
panel allows to have these objects clearly arranged and accessible with fewer mouse
clicks.

• Macro Panel
The same concept as for collections exists for macros. The panel displays all user and
system macros, the latter as an optionally expandable tree node.

• Main Panel / Object Area
All objects that the user opens are displayed somewhere within the main panel or object
area of the application. Each object is represented as a rectangular object window and
additionally with a tab in the tab bar. The tab bar is at the top of the main panel.



CHAPTER 2. EVALUATION OF THE OMS PRO GRAPHICAL USER INTERFACE 7

• Console
The console window provides system and error messages to the user.

Graphical schema editors can be opened via the menu or tool bar in the main window, but
they are displayed in separate windows. The system offers a base type and an object type
editor (see figure2.2) to add, edit and remove new types and a classification editor (see figure
2.3) to add, edit and remove collections, associations and constraints. These schema editors
offer context menus in addition to the tool and menu bar.

Figure 2.2: OMS Pro Object Type Editor

2.3 Evaluation Results

The following two sections provide an enumeration of the most important strengths and weak-
nesses of the OMS Pro GUI.

2.3.1 Strengths of the OMS Pro GUI

Storing Paradigm OMS Pro applies a commit/rollback paradigm as storing paradigm
which is very convenient for the user. All changes on open database objects affect the state of
the database immediately. This allows the user to work efficiently without having to perform
‘Save’ operations every time a change has been made. Between two ‘Commit’ operations the
database can be in an inconsistent state without getting any error messages. The ‘Rollback’
operation allows to discard all changes since the database was last committed.



8 2.3. EVALUATION RESULTS

Figure 2.3: OMS Pro Classification Editor

Context Information In OMS Pro every object that is displayed in the object area pro-
vides a menu bar. Depending on the kind of object, the menu bar offers different menu items
that deliver information about the object to the user. The menu item ‘Links’ shows all objects
that are associated to this object. This is a very useful concept since the user can immediately
understand the context of an object. The ‘Collections’ menu shows to which collections the
object belongs and to which collections it could be added. All possible types that an object
can have are listed in the ‘Evolve’ menu.

Collection and Macro Panel The collection and the macro panels are convenient for the
user since they allow the user to gain an overview of the database and fast access to frequently
used objects.

Graphical Schema Editors The graphical schema editors are helpful tools since they
visualise relations between collection and type objects. In the base and object type editor
super- and subtype relations are shown whereas in the classification editor super- and subcol-
lection relations, constraints and associations between collections are represented graphically.
Having such a graphical representation gives the user a valuable overview over the database.
Further it facilitates schema changes and the browsing of these objects since they can be
opened directly from the schema editor by double-clicking.



CHAPTER 2. EVALUATION OF THE OMS PRO GRAPHICAL USER INTERFACE 9

2.3.2 Weaknesses of the OMS Pro GUI

The weaknesses that were found are categorised into three major categories: graphical, model
and usability problems.

Graphical Problems

This category comprises problems that arise due to a poor graphical representation of com-
ponents or due to an inaccurate implementation. A more careful implementation or an imple-
mentation using a different graphic library might solve these problems.

Window Focus Dialog windows as for example the preference window or the graphical
schema editor windows tend to loose their focus unprovoked. They often disappear in the
background behind the main application window despite the fact that they were still active.
The user either thinks that the window was closed and chooses the corresponding menu entry
again to reopen the window or he has to minimise the main application window to be able to
reset the focus manually.

Object Window Size Database objects are opened in the main panel of the main appli-
cation window. They are displayed as small object windows. The size of these windows is in
many cases unadapted. Buttons that are at the bottom of the window to cancel or execute an
action are not visible at once. The user first has to resize the object window in order to make
these buttons accessible. If the object window contains child components as for example a
scrollable list, these components do not resize if the window is resized. If such a list contains
more entries than it can display, the user still has to scroll in the list even though the window
may be big enough to show all list entries. Furthermore the maximisation function of objects
windows in not useful at all. The maximised object windows become so big that the user is
forced to scroll in order to make the ‘close’ button visible again.

Arrangement of Object Windows The arrangement of the object windows in not sat-
isfactory. Depending on the number and positioning of already open object windows in the
main panel, it can happen that a new object is opened in a way that only a part of the object
is actually visible. The user first of all has to scroll the main panel or to displace the object in
order to centre the object in the main panel and actually look at the whole object content.

Model Problems

Model problems are problems where the result of a function or action does not correspond to
the mental model of the user. A mental model is a set of beliefs that a user holds about how
things or in this case software features work. Such a mental model is often established based
on former experiences with tasks that are similar to the one that should be currently solved. If
a user is solving a task and the result of an action is different from his expectations, the user
is confused and the learning process is slowed down. The user cannot revert to something
known and even worse he has to react differently than in another known case.



10 2.3. EVALUATION RESULTS

File Browsers The file browsers offered in OMS Pro are not intuitive to use. They do
not correspond to the expectations users have from working with Windows or Linux. The
file structure is not displayed as a tree but as a list. To navigate between hierarchy levels the
user can either go up or down one hierarchy level at a time or he can type the target directory
manually in the selection field. If the nesting of directories is very deep, the navigation in
the file system is rather tedious. Typing the target directory manually assumes that the user
knows the exact path by heart and is able to spell it correctly.
In addition to the exhausting navigation, the hierarchy levels are not strictly separated. If
the file browser shows drive letters, the selection of a drive results in a list of drive letters
followed by the directories of the chosen drive. For the user it is not obvious to which drive
the listed directories belong.
The file browsers do not provide a state memory. They are not able to store the location in
the file system the user accessed last.

Tab Bar Every object that is opened in the object area of the main application window is
represented by a tab in the tab bar. The tab bar is displayed at the top of the object area. The
problem with the tab bar is that the ordering of the tabs does not correspond to the opening
order of the objects. This is rather irritating for the user and makes it difficult to retrieve
already open objects. The user expects to find the tab of the last opened object at the very
right of all open tabs. Furthermore humans rely on a visual orientation and learn which object
corresponds to which tab without actually reading the tab label. OMS Pro does not follow
these principles. It does first of all a grouping of tabs according to the object type and within
objects of the same type the tabs are ordered alphabetically. One consequence is that every
time an object is opened the tab ordering changes and the user has to repeat reading tab labels
carefully to retrieve an object.

Adding Associations The process of adding an association between two objects is rather
circumstantial. The user has different possibilities to establish a link between objects.
The most natural approach is to add a link starting from the source object and then indicating
the target object. OMS Pro does support this approach offering the ‘Links’ menu that can
be found in the menu bar of every object window. The ‘Links’ menu provides a list of all
possible associations the object could be part of and all existing links to other objects. The
user can then add a new link using the menu entry ‘New’ in the ‘Links’ menu. The source
object of the new link is already clear, but OMS Pro displays a dialog window where the user
has to specify the source as well as the target object. The value fields are preselected but the
preselection does not correspond to the object that should be linked. To set the value fields
the user can directly enter the object id which he has to look up or to know by heart. An auto
complete function is available but it does only work when the preselection is cleared. Another
way to set the value field is to use ‘object fishing’ which means that the user has to click on
the object to fill in. This requires that the object to click on is opened in the object area. If
the user finally sets the two objects that should be linked, the user can choose between the
operations ‘Insert’, ‘Replace’ or ‘Remove’. This is not consistent with the fact that the dialog
window appeared after clicking on a menu entry called ‘New’ which has nothing to do with
replacing or removing links.



CHAPTER 2. EVALUATION OF THE OMS PRO GRAPHICAL USER INTERFACE 11

Another approach to add an association is to open the binary collection that is based on this
association and to add a new entry to this collection using the same dialog window as in the
previous approach.

Usability Problems

Usability problems reduce the usability of the system and make it rather tedious to work with
the system. Solving these problems should lead to a more user-friendly system.

Overlapping Windows in Object Area OMS Pro allows to open numerous object win-
dows in the object area of the application window. These object windows overlap and with an
increasing number of open objects the object area tends to become more and more crowded.
It gets difficult to work with these objects since there exists no clear arrangement and the
growing number of open objects produces a rather disturbing impression on the screen.

Application State Memory OMS Pro does not provide an application state memory.
Such a memory mechanism is responsible for saving and restoring the state of a dialog, an
object or of the application. If the OMS Pro application is closed, all open objects are closed
as well. If the user restarts the application he has to reopen all objects on his own. If some
objects are used quite frequently or if the user was in the process of modifying an object (for
example writing a macro) it might be helpful if the system could remember which objects
were open.
Furthermore the collection and macro panel do not have a state memory. If the user expands
the system collections in the collection panel and then adds a new collection to the system,
the system collections collapse and have to be expanded again.

Window Switches Editing a database in OMS Pro requires many window switches be-
tween the main application window and the graphical schema editor windows since some
tasks are easier to accomplish in one or the other window. An example is the task of adding
a new association between two collections. The process of adding the association is easy to
do in the schema editor by connecting the two corresponding collections with a line. But if
the user wants to edit the cardinalities of the association he has to switch back to the main
window and edit the cardinalities in the association object. These switches make it difficult
to keep an overview, especially since the graphical schema editor windows are independent
windows which are not integrated in the main application window.

Data Separation The user and system data are not clearly enough separated. It might
be the case that the user would like to have a list with all methods he added to the database.
Methods are not listed in the associated type but a possibility to get a list is to user the ‘Match’
functionality in the ‘Objects’ menu. The result of this is a list with user and system internal
methods. This makes it rather difficult to find all user defined methods. Having access to the
system data is an advantage but in the user interface a clear distinction of user and system
data is preferred.



12 2.4. REQUIREMENTS

Hidden Functionality The creation of a new object assumes an already defined object
type. The functionality to create an object is visible at first sight in the menu bar whereas the
functionality to create a type is hidden and not obvious. The creation of types can be done
in the graphical object type editor or using DDL. The same is true for adding associations,
collections or methods.

Object IDs Most of the time the user has to work with object ids which is not very natural
for humans. Object ids are excellent for the system to manage objects but they are quite
abstract for the user. For the user it is a lot easier to remember a name than an object id. OMS
Pro makes some attempts to use attribute values together with object ids to facilitate working
with objects. Examples are the tab bar or when opening a collection through the collection
panel. This technique should be introduced consistently throughout the whole application.

2.4 Requirements

The aim of the evaluation was to establish requirements for the OMS Eclipse plug-in. The
evaluation resulted in a number of positive and negative aspects described in section2.3which
form a valuable basis to derive requirements. The idea was to adopt the strengths of OMS
Pro as far as possible and to improve the weaknesses at the same time.
The following list summarises the main requirements for the OMS Eclipse plug-in.

• Keep Storing Paradigm
The commit / rollback paradigm that OMS Pro uses is very convenient for the user
since the user does not have to care about numerous save operations and no changes
are lost due to a forgotten save operation. Therefore the OMS Eclipse plug-in should
adopt the storing paradigm if possible.

• Offer Context Information
One of the strengths of OMS Pro is the context information that is provided for a
database object. The user is able to understand quite quickly how an object is related
to other objects and how it is integrated in the database. A requirement for the OMS
Eclipse plug-in is thus to make context information easily accessible.

• Offer Graphical Schema Editors
The graphical schema editors are an essential element of the OMS Pro graphical user
interface since they help the user to obtain an overview of the database really fast.
Such graphical schema editors should also be part of the OMS Eclipse plug-in. But it
is also important that all tasks can also be executed without graphical schema editors
to reduce the window switching on the one hand. On the other hand functionality
that is only available in the graphical schema editors is not obvious to find and should
therefore also be accessible directly in the main window.

• Extend Object Panels
OMS Pro offers collection and macro panels. They are extremely helpful to gain an
overview over the existing database objects and to access them quickly. Therefore the



CHAPTER 2. EVALUATION OF THE OMS PRO GRAPHICAL USER INTERFACE 13

OMS Eclipse plug-in should offer such panels as well and in addition to collection and
macro panels, similar panels for other database objects such as types or methods should
be considered.

• Redesign Object Arrangement
The object arrangement in the object area is not optimal. If a number of objects are
open it gets quite hard to work with these objects since the object area tends to become
very crowded and objects can only be found through the tab bar. Attempts should be
made to propose a different approach for the object area.

• Provide Intuitive Tab Ordering
Having an intuitive tab bar is important since tab bars are commonly used. The OMS
Eclipse plug-in should thus introduce a tab bar that allows to retrieve objects efficiently.

• Reduce Use of Object IDs
Since object ids are not a natural way of working with objects for humans, they should
be extended or replaced through meaningful attribute values.

• Enhance Process of Adding Associations
The process of adding associations between two objects is rather circumstantial. This
process should be simplified by offering more intuitive ways of introducing links.

• Introduce Application State Memory
An application state memory is useful since it saves time while working with a system.
If a user opens a file in a certain directory the chances are high that the next file that is
accessed is located in the same directory or nearby. Keeping track of user preferences
and choices is convenient for the user.
Another case where it makes sense to store the state is when closing and reopening the
system. Often the user resumes his work where he finished and it is helpful for the
user if the system has exactly the same state as before the application was closed. The
introduction of an application state memory is therefore a requirement for the OMS
Eclipse plug-in.



14 2.4. REQUIREMENTS



3
Eclipse Platform

3.1 Introduction

Eclipse is a universal platform for integrating development tools into the Eclipse workbench.
The Eclipse Platform is implemented in Java and it is simply a framework and a set of services
for building a development environment from plug-in components. Eclipse has no specific
knowledge about any domain, and is not limited to Java language applications. However, the
Eclipse SDK includes the Eclipse Platform and a set of plug-ins including the Java Develop-
ment Tools (JDT) and the Plug-in Development Environment (PDE). The Eclipse Platform,
the JDT and PDE plug-in form together the Eclipse project as it is shown in figure3.1.
Eclipse is an open source project and together with its extensible architecture, it allows soft-
ware developers to extend Eclipse and to build tools that integrate seamlessly with the Eclipse
environment. Since Eclipse 3.0 the developer can also choose to build stand-alone rich client
applications that are simply using the platform runtime and its plug-in mechanism. With
this Rich Client Platform (RCP) approach the spectrum of possible applications grows enor-
mously since the user interface and the underlying model of the application do not have to
integrate into the Eclipse workbench and workspace anymore. This fact enables the developer
to implement almost freely designed applications.
Section3.2 explains the components of the Eclipse Platform. In section3.3 a survey of the
Eclipse plug-in architecture can be found and finally section3.4 provides information about
the Eclipse graphical user interface and its conventions.

3.2 Platform Overview

Eclipse Platform is the name for the core framework and services upon which plug-in exten-
sions are created. It provides the runtime in which plug-ins are loaded and run. The Eclipse

15



16 3.2. PLATFORM OVERVIEW

Figure 3.1: Eclipse Project Overview

Platform itself is not really a true product that would ship by itself. Its direct consumers are
tool builders since they add the value to the Eclipse Platform that makes it useful to end-
users. The Eclipse Platform is basically just the nucleus around which tool builders build tool
plug-ins.
The Eclipse Platform is divided up into the core part and the user interface (UI) part. Anything
classified as user interface needs a window system, whereas components that belong to the
core can run without window system. The user interface part of the Eclipse Platform is known
as the Workbench. The core part is simply called the Platform Core.
Figure3.2shows the major components of the Eclipse Platform.

Platform Runtime The platform runtime is a micro-kernel that is responsible for discov-
ering, integrating, and running plug-ins. At start-up the runtime environment discovers what
plug-ins are installed and creates a registry of information about them. To reduce start-up
time and resource usage, it does not load and activate any plug-in until the plug-in is actually
needed. This mechanism is called lazy loading and it is used consistently throughout Eclipse.
Except for this runtime kernel, all functionality in Eclipse is implemented as a plug-in.

Workspace The workspace is the plug-in that is responsible for managing the user’s re-
sources. Resource is the collective term for projects, folders and files. The workspace consists
of one or more top-level projects whereas each project maps to a corresponding user-specified
directory in the file system. Each project contains folders and files that are created and ma-
nipulated by the user. All folders and files in the workspace are directly accessible to the



CHAPTER 3. ECLIPSE PLATFORM 17

Figure 3.2: Eclipse Platform

standard programs and tools of the underlying operating system. Tools integrated in the plat-
form are provided with an API for dealing with workspace resources. The workspace is also
responsible for notifying other interested plug-ins about resource changes, such as files that
are created, deleted or changed.
In earlier versions of Eclipse tools were based on files and folders and therefore tightly cou-
pled with workspace resources. Recently the Eclipse developers got rid of this coupling and
made the workspace and resources an optional part of the platform. It is now possible to have
configurations of the platform that will not have a workspace. This allows tools to work with
other data sources such as database objects or data streams.

Workbench The workbench provides Eclipse with an extensible user interface. The work-
bench API and its implementation are built form two tool kits:

• SWT - Standard Widget Toolkit
The Standard Widget Toolkit is a graphical user interface toolkit for the Java program-
ming language. It was created by the developers of the Eclipse project to provide access
to the native user interface facilities of the operating systems that host Eclipse. The
SWT graphics library offers a common OS-independent API for widgets and graph-
ics, but it is more closely mapped to the native graphics capabilities of the underlying
operating system than Swing or AWT. This fact not only makes SWT faster, but also
allows Java programs to have a look and feel more like native applications. The Eclipse
Platform and most of the tools that plug in to it use SWT for presenting information to
the user.



18 3.3. ECLIPSE PLUG-IN ARCHITECTURE

• JFace - a UI toolkit built on top of SWT
JFace is a higher level user interface construction toolkit that is designed to be used
in conjunction with SWT. JFace provides classes for handling and simplifying com-
mon GUI programming tasks and its API as well as the implementation are window-
system-independent. It includes standard GUI toolkit components such as dialogs,
wizard frameworks and progress reporting for long running operations. Two additional
features that are useful are actions and viewers.

Team The team component is responsible for providing support for version control and
configuration management. It adds views to allow the user to interact with whatever version
control system.

Help In the same way that plug-ins add functionality to Eclipse, the help component of
the Eclipse platform offers a navigation structure that allows tools to define and contribute
its own documentation. Raw content is added as HTML files whereas the arranging of the
raw content into online guides with a suitable navigation structure is expressed separately in
XML files.

Debug The debug component offers a generic debug mechanism that cannot only be used
for the Java language. It includes launch configurations to specify how to run a program, a
generic debug model offering breakpoints, standard debug events and actions and a generic
debug user interface with its own perspective.

3.3 Eclipse Plug-In Architecture

As described in section3.2 the Eclipse platform consists of the platform runtime which is a
small kernel and a varying set of plug-ins.

3.3.1 Plug-In Description

A plug-in is the smallest unit of an Eclipse function that can be developed and delivered
separately. Small tools as for example an action to create zip files are usually written as a
single plug-in whereas complex tools such as an HTML editor may span several plug-ins.
These plug-ins are then grouped into installable pieces, so called features.
Eclipse plug-ins are actually components that provide a certain type of service within
the Eclipse environment. A plug-in is represented by an instance of a plug-in run-
time class or plug-in class for short. The plug-in class provides methods that are called
for the activation or deactivation process of the plug-in. All plug-in classes extend the
org.eclipse.core.runtime.Pluginclass which is an abstract class providing generic function-
ality for managing and configuring plug-ins.
In addition to the plug-in class every plug-in is described by an XML plug-in manifest file.
This manifest file contains information about the plug-in and it tells the Eclipse runtime how
the plug-in can be activated. Listing3.1shows a minimal plug-in manifest file.



CHAPTER 3. ECLIPSE PLATFORM 19

<?xml version ="1.0" encoding ="UTF-8"?>
<plugin >

name = "HTML Editor"
id = "ch.ethz.globis.test.htmleditor"
version = "1.0.2"
provider = "ETH Zurich"
<runtime >

<library name = "htmleditor.jar">
<export name = " * "/>

</ library >
</ runtime >

</ plugin >
</ xml >

Listing 3.1: Minimal Plug-In Manifest File

Every plug-in has a unique identifier (XML attribute id) which is used to refer to the plug-
in within the manifest files of other related plug-ins. Other attributes like name, version or
provider just contain information about the plug-in itself. The library name attribute specifies
the name of the jar library that is generated when the plug-in is deployed.

3.3.2 Plug-In Deployment and Activation

To deploy a plug-in all resources that belong to this plug-in are copied into an individual
folder residing in the ‘plugins’ directory of the Eclipse installation directory. These resources
comprise first of all the plug-in manifest file which is essential for the activation process, then
all jar files containing the compiled class files and other resources such as for example an
icons folder with icons used in the plug-in.
After restarting the Eclipse workbench the installation and deployment process is completed
and the plug-in can be activated and used.
The activation of a plug-in involves loading the plug-in resources into memory, instantiating
the plug-in runtime class and initialising its instance. Since an Eclipse environment can have
an unlimited number of installed plug-ins, the available memory and a reasonable start-up
time make it impossible to activate all plug-ins at system startup. Therefore Eclipse follows
the principle of lazy loading which means that a plug-in is only loaded into memory if Eclipse
is required to perform some function of the plug-in.
To be able to load required plug-ins, the Eclipse runtime must know all plug-ins that are
currently installed. Eclipse gathers this knowledge using a discovery mechanism at system
startup. This mechanism involves the parsing of all plug-in XML manifest files and these
parsed plug-in specifications are then cached in an in-memory repository called the plug-in
registry. If a plug-in is activated the Eclipse runtime queries the plug-in registry to obtain the
plug-in runtime class to instantiate and to know what resources to load into memory. Each
plug-in gets its own Java class loader.
Most of the plug-ins provide buttons or additional menu entries to the Eclipse workbench.
The graphical appearance of these workbench components is also specified in the plug-in



20 3.3. ECLIPSE PLUG-IN ARCHITECTURE

XML manifest which allows the workbench to display these buttons and menu entries with-
out actually loading the plug-in. Only when the user performs these actions, the plug-in is
activated and the corresponding action class is called.
Plug-ins may be dependent on functions of other plug-ins. A dependency of another plug-in
can be indicated in the XML manifest using the ‘requires’ tag. If a plug-in which depends
on other non-active plug-ins is activated these plug-ins are loaded transitively in order to
guarantee an error-free execution of the requested plug-in.

3.3.3 Extension Mechanism

As described in section3.3.2plug-ins can depend on other plug-ins if they use the function-
ality offered by the plug-in. A second kind of relationship between plug-ins are extensions.
The extension mechanism is the essential mechanism used to allow plug-ins to extend the
functionality of other plug-ins. For example if a plug-in which implements an HTLM editor
is added to the workbench, the plug-in has to extend the general Eclipse editor plug-in in
order to allow an integration of the HTML editor into the Eclipse user interface. Figure3.3
shows schematically how the extension mechanism works.

Figure 3.3: Eclipse Extension Mechanism

Any plug-in may allow any number of other plug-ins to extend it by adding processing ele-
ments which causes the plug-in to modify its behavior. In order to control these extensions
made by other plug-ins, every plug-in defines precisely specified extension points. Extension
points are specified using an XML configuration element and they are some kind of slots that
extensions can plug into. For example the Eclipse workbench offers an extension point which
allows other plug-ins to add menus to the main menu bar at a specific location.



CHAPTER 3. ECLIPSE PLATFORM 21

Every plug-in can define multiple extension points and every plug-in can extend multiple
extension points offered by other plug-ins.

3.4 Eclipse User Interface and its Paradigms

The workbench plug-in supplies structures in which tools interact with the user and it is
therefore synonymous with the Eclipse Platform graphical user interface and with the main
window the user sees when the platform is running. The Eclipse user interface has its own
paradigm and follows certain conventions. Developers that contribute to the Eclipse work-
bench are asked to stick to the available guidelines [3].
The Eclipse platform user interface paradigm is centred around editors, views and perspec-
tives. The user can choose which perspective to display and the chosen perspective then
determines the actual appearance of the workbench. Figure3.4 exhibits the most important
workbench concepts and terminology.

Figure 3.4: Eclipse Workbench, Java Perspective

Perspective A workbench window can have several perspectives but only one of them is
visible at a time. The user chooses which perspective to display and he can quickly switch



22 3.4. ECLIPSE USER INTERFACE AND ITS PARADIGMS

between different perspectives if needed.
A perspective is an arrangement of editors and views and every perspective contributes special
actions to the menu and tool bar. Each perspective is designed to perform a specific task, such
as writing or debugging a Java program, and each of the views in the perspective is chosen
to allow the user to deal with different aspects of that task. A perspective always contains a
single editor area which can be hidden or not. Additionally, the perspective controls the initial
view visibility, the layout how the editor area and the views are arranged and which actions
are visible. The concept of perspectives helps to filter information and as a result of this, the
Eclipse system scales to a large number of installed tools without having an overcrowded user
interface.
Once a perspective is open, the user is free to customize it to suit his needs. The user can
close views, add views from other perspectives or change the layout. As long as a perspective
stays open, the customization is preserved, also across multiple sessions. More information
about perspectives can be found in [1], chapter 10 or [11].

Editors Editors are opened in the single editor area of a perspective. If more than one
editor is open at a given moment then these editors are stacked using tabs. Editors allow the
user to open, edit and save objects. Usually these objects are files, but editors can also be
opened on other data sources such as for example a database object or some kind of input
stream. Editors follow the classic open-modify-save paradigm much like file system based
tools. When an editor is active it can add actions to the menu and the tool bar.
The editor area is designed to be the focal point of the workbench where the actual tasks
are executed. The editor area is the same in every perspective. This means that if the user
switches between different perspectives the currently open editors stay open and are visible
in every perspective.

Views A perspective can have many views arranged around the outside of the editor area.
A view provides information about an object the user is currently working with in the work-
bench. Views usually augment editors by reflecting some aspects of the currently active editor
input or they augment other views by displaying information of an object selected in another
view. Views have a simpler life cycle than editors: any action performed in a view should
immediately be saved and affect the state of the workspace and underlying resources.



4
OMS Front-End Design

The process of finding a reasonable design for the new OMS front-end was influenced by two
main goals.
One goal was to include the evaluation results presented in chapter2. The OMS front-end
that was developed during this diploma thesis provides a graphical user interface that can be
uniformly applied to all OMS platforms supported byOMSjp . OMS Pro which is one of
these platforms already offers its own user interface implemented in TCL/Tk. This interface
was evaluated to identify strengths and weaknesses that led to a set of requirements listed in
section2.4. The new front-end was designed in order to maximise the number of satisfied
requirements.
The second goal was to find a design that integrates as seamless as possible into the existing
Eclipse framework. As covered in section3.4, Eclipse has its own user interface paradigms.
The aim was to respect these paradigms as far as possible in order to finally get a front-end
that fits well into the Eclipse platform. This second goal was not always compatible with
the first one. Therefore the Eclipse conventions were broken in some cases in order to meet
the established requirements or in order not to lose beneficial functionality the new front-end
should adopt from the OMS Pro GUI.
Section4.1 describes issues that had to be solved in the design process and some proposals
that were not realised in the final version because of the time available. The final design is
presented in section4.2.

4.1 Design Issues and Proposals

At first view the main window of the OMS Pro user interface and the Eclipse workbench
look quite alike. The Eclipse workbench window though, can have several perspectives and
the user is allowed to change the layout of these perspectives. The main Eclipse window can
therefore adopt many different appearances. However, by comparing a predefined perspective

23



24 4.1. DESIGN ISSUES AND PROPOSALS

layout as presented in figure3.4to the main application window of OMS Pro (see figure2.1)
it is apparent that their structure is very similar in design. Both windows have a menu bar
and a tool bar at the top. The right side of the window is used to display the project structure
or the database structure respectively. At the bottom a console window can be found in both
cases and the main area is used to open objects displayed in the right window component.
Considering these facts it was obvious to reason that a new Eclipse-based front-end could
easily be fitted into an own perspective of the Eclipse workbench.
However, at closer inspection not everything was as clear as it seemed and we had to take
some major decisions concerning the object arrangement and the layout of the OMS front-
end. These decisions also influenced the process of adding links between objects as described
in section4.1.2.

4.1.1 Layout and Object Arrangement

One component that we were sure about right from the start was a database explorer view
that displays the contents of the databases present in the workspace similar to the Eclipse
resource navigator. Besides this database explorer component it needed some consideration
until we got to the final design. One of the main difficulties was to find a solution how to
map the main application area of OMS Pro to the editor-view-paradigm in Eclipse. OMS Pro
offers an area where the user can open multiple objects which can be viewed side by side
or as overlapping windows. On the one hand this can be an advantage since the user can
for example view a collection and a member of this collection at the same time. On the other
hand the problem of this object area is that it tends to become overcrowded and quite complex
with an increasing number of open objects. Therefore we intended not to adopt the concept
of overlapping windows.
Eclipse offers an editor area which is designed to display a single editor at a time representing
a file or in our case a database object. For every new editor window that is opened a new tab
is added to the tab bar. If the user wants to have more than one editor window displayed on
the screen he can tile the editor area arbitrarily by dragging editor windows with the mouse
to a new location. Unfortunately this mechanism cannot be accessed programmatically using
an API. The only way to use it would involve manipulations of internal Eclipse classes which
is rather unreliable and which the Eclipse developers strongly advise against it. Thus we had
to accept that the editor area normally displays only one object at a time.
We discussed several approaches to get around this problem by incorporating the views that
can be arranged around the editor area. The following paragraphs describe the main choices
that were discussed.

View to Display Objects An early idea was to use a view to display database objects such
as collection members, type objects, methods and macros. Only collection objects should be
opened in the editor area. A schematic perspective layout is provided in figure4.1.
The advantage of this approach is that collections and objects are visible at the same time.
The user can open several collections in the editor area. Each of the collections is represented
as an editor and is accessible through a tab in the tab bar.
As described in section3.4 views usually reflect aspects of the currently active editor or of



CHAPTER 4. OMS FRONT-END DESIGN 25

Figure 4.1: Schematic Perspective Layout using a View for Objects

objects selected in another view. As a consequence of this, a view can always display one
object that is selected somewhere else in the workbench. If the user wants to open an object,
he either has to select the object in the database explorer or he has to open the collection
where the object is member. This means that switching between two objects belonging to
two different collections also involves switching between these collections. This is rather
circumstantial and we can assume that the user would like to have more than one object open
at a time. Another disadvantage is the focus. An Eclipse convention says that the editor area
should be the focal point of the workbench. Therefore views are typically placed marginally.
Browsing and editing objects is a very frequent task while modeling and administrating a
database. Having a view displaying these objects would force the user to focus on the margin
instead of the centered editor area to a rather large extent of the working time.

View to Display Collections Another proposed solution was to invert the arrangement.
Since collections are less often edited than objects, the idea was to display collections in a
view while objects are opened in the main editor area. Figure4.2shows the possible layout.
Using this solution the perspective would still profit from the fact that both collections and
objects are visible at the same time. Moreover the user can open several objects in the editor
area and easily switch between them. But there is again the disadvantage that a view can
only display one object and therefore only one collection. This is neither what we had in
mind since we did not want to restrict the browsing functionality by only allowing to view
one collection at a time. A further disadvantage is that the presentation of a collection uses
more space than a view normally does since some collections are binary or even ternary. The
consequence is that the console window or for example an AQL window to query the database
need to share the space with the collection view. This does not make much sense since the
console should always be visible to display information and error messages.



26 4.1. DESIGN ISSUES AND PROPOSALS

Figure 4.2: Schematic Perspective Layout using a View for Collections

Editor Area for all Objects A third discussed approach was to abandon the idea of
using views and to display all objects in the editor area instead, regardless if it is a collection
or another object. The space at the bottom of the window can be used for the console as
shown in figure4.3.

Figure 4.3: Schematic Perspective Layout using the Editor Area for Objects and Collections

The advantage of this solution is that the user can open as many objects and collections as he
wants. The editor area becomes quite large if only a small console view is placed at the bottom
of the window. If a collection is displayed it is useful to have enough space available since
the user can access more collection members without scrolling. If an object is opened in the
editor area, the space is not completely filled since only some attribute values are presented.
But the object can be augmented by displaying context information in the remaining space.



CHAPTER 4. OMS FRONT-END DESIGN 27

The aim of context information is that the user can gain access to associated objects and
collections directly by following links in the object editor. Displaying all objects in the editor
area implicates that the user is not able to see more than one object at a time, but we assume
that it is not so important since associated objects are directly accessible using the provided
links.
After having discussed the advantages and disadvantages of these three approaches, we de-
cided to take the third one since it seemed to be the most promising and also the most flexible
approach concerning the layout of the perspective. If all objects are opened in the editor area
the user is free to add whatever views around it and there are no constraints on the arrange-
ment of the views.

4.1.2 Adding Links between Objects

The process of adding links between objects is one of the weaknesses of OMS Pro as de-
scribed in section2.3.2. Hence the aim was to improve the way of introducing links.
One idea was to display source and target collections, select an object from both collections
and drag these objects into a binary collection. Since the editor area can only display one
collection at a time we had to abandon this idea.
However, another PhD student of the group provided us with results from one of her former
studies. She found that if a user intends to link two objects, it is more natural to establish
a link starting from one object instead of taking two objects and connect them. Therefore
we decided that the OMS front-end should adopt this technique. The idea is that the user
can add a link starting either from the source or the target object. To establish the link the
user only has to choose the second object and the object pair is automatically added to the
binary collection. This technique avoids that the user has to open both objects and the binary
collection as it is necessary using object fishing of OMS Pro.

4.1.3 Schema Editors

One of the established requirements was to offer graphical schema editors. They were
planned to be part of the final user interface, but in the end they were not implemented
due to time constraints and therefore not part of the final design. Nevertheless the follow-
ing paragraph describes some design ideas how to integrate the schema editors into the OMS
front-end since they are an important component to round out the user interface. All modeling
functionality is provided in the OMS front-end version without the schema editors but they
would support the modeling process by visualising the relationships between collections.
The three different schemas as described in section2.2 could be integrated in a multi-page
editor that opens in the editor area. Figure4.4shows how such an editor could look like.
The advantage of a multi-page editor is that the user does not have worry about choosing the
right schema editor, but he can open the multi-page schema editor and easily switch between
the pages until the appropriate schema editor is found. Further it is often the case that the
user needs more than one schema editor to perform a task. For example the process of adding
a new collection in the classification editor often involves the creation of a new object type in
the type editor. Therefore it is convenient for the user to have all three schema editors bundled
in one editor window.



28 4.2. FINAL DESIGN

Figure 4.4: Proposal for a possible Schema Editor

To simplify the actual editing process, the schema editor could offer a design palette con-
taining the graphical elements that can be added to the schema. The schema editor would be
linked with other views as for example the database explorer.
The Eclipse Graphical Editing Framework (GEF) which is a powerful framework for visually
creating and editing models could be a helpful tool to implement such a graphical schema
editor. Basic information can be found in [5] and [14].

4.2 Final Design

Discussions of the design issues mentioned in section4.1.1 led to a final design which is
described and visualised in this section. The OMS front-end consists of an own perspective
that is added to the Eclipse workbench. The perspective initially comprises three views, a
database explorer presented in section4.2.2, an AQL window described in section4.2.5and a
console window (see section4.2.6). A fourth view is opened every time a match operation is
executed. A description of this view can be found in section4.2.7. The editor area forms the
focal point of the workbench and as stated earlier all objects that are opened are shown in this
area using a corresponding editor (see section4.2.3and4.2.4). Since the editor area is quite
large, the empty space is used to present context information. The user can view associated
information at first sight and navigate by following the provided links. Browsing the database
becomes similar to surfing the internet since links to objects that might be relevant for the user
are directly shown in the editor. Every time a link is opened a new editor window is added
to the editor area including a new tab in the tab bar. This induced us to name this browsing
technique ‘Tabbed Browsing’. The aim of this technique is that the user can work mainly
task-driven. This means that the user can perform his work having in mind a high-level
task that he wishes to accomplish. Since the system offers context information and links to
associated objects, the user does not have to interrupt the task in order to find a certain object,



CHAPTER 4. OMS FRONT-END DESIGN 29

but he is able to use the guidance of the system and follow straightforward links to associated
objects.

4.2.1 OMS Perspective

The core piece of the OMS front-end is an own perspective that is added to the Eclipse
workbench. A screenshot of the OMS perspective is provided in figure4.5.

Figure 4.5: Eclipse Workbench, OMS Perspective

Springgay [11] advises to only add a perspective to Eclipse if it is really necessary. He fears
that if every Eclipse plug-in uses its own perspective, the user would soon be overwhelmed
by perspective choices. However, he considers that it is justified to add a perspective if
there is a certain group of related tasks which would benefit from a predefined configuration
of actions and views. For the OMS front-end this is the case. The process of modeling and
administrating a database is completely unrelated to developing Java projects or Eclipse plug-
ins and it therefore makes sense to integrate the numerous database tasks into one perspective.
Furthermore working with OMS databases needs its own views such as the database explorer
or the AQL window and by creating an own perspective these views can initially be added to
the perspective layout in order to make all necessary tools available.
The user can open the OMS perspective using the ‘Window’ menu in the Eclipse menu bar or
using the provided shortcuts in the ‘Resource’ and in the ‘Java’ perspective. When switching
between perspectives the currently open editor windows stay open. Thus, if the user has
several Java classes open and switches from the Java to the OMS perspective and vice versa,
these editors are not closed. It may appear confusing to have Java files among database



30 4.2. FINAL DESIGN

objects, but it conforms to the Eclipse conventions and it allows to work with different sources
without actually having to switch between perspectives. For a developer it might be useful
to have a Java source file next to a database object if the Java application accesses an OMS
database.

4.2.2 Database Explorer

The most important view of the OMS perspective is the ‘Database Explorer’. It is the ana-
logue of the ‘Navigator’ in the ‘Resource’ perspective or of the ‘Package Explorer’ in the
‘Java’ perspective. Considering OMS Pro, the database explorer combines the ‘Collection’
and the ‘Macro’ panel and enhances them by adding object types, collection members and
methods. Figure4.6shows the database explorer.

Figure 4.6: Database Explorer View

The database explorer shows all database instances that were either imported from the local
file system or created directly within Eclipse. If a connection to one of the database instances
is established, the content of this database can be browsed. Due to SICStus Prolog, the
implementation language of OMS Pro, only one database connection can be open at a time.
The explorer strictly separates user and system data which helps the user to keep track of
the data. User as well as system data are categorised analogue into collections, types and
macros. Types list their associated methods and collections provide access to their members.
At the beginning of the design phase we were not quite sure if the database explorer tree
should make the collection members available or not. Collections can have a large number of
members and by expanding such collections in the tree, it can be rather difficult to overview



CHAPTER 4. OMS FRONT-END DESIGN 31

the database workspace and it uses quite a lot of scrolling activity. Nevertheless we decided to
list the collection members since the editor area only shows one object at a time. Collection
members and collections cannot be visible side by side in the editor area and therefore it
makes sense to display the collection members in the database explorer tree to allow drag and
drop operations and to complete the information in the database explorer.
Collection members are represented as strings comprising the type, the object id and an at-
tribute value. By default the first attribute value of an object is taken, but the user has the
possibility to choose a different attribute value for every collection. Displaying an attribute
value for every collection member contributes to an improved usability by reducing the use
of object ids. The user is able to choose a key attribute in order to find objects without having
to know objects ids by heart or opening all objects until the desired one is found.
Every type of object introduces its own icon in the database tree which is used throughout the
whole OMS perspective. Consistently used icons support the user to identify objects visually.
The user can execute various actions in the database explorer that are gathered in a context
menu. The context menu adapts according to the user selection in the tree. An important
menu entry is the ‘New’ menu which enables the user to create new databases and new data-
base objects. In most of the cases choosing a ‘New’ action launches a wizard. As an example,
the wizard to create new OMS databases is shown in figure4.7.

Figure 4.7: Wizard to Create a New OMS Database

The wizards are necessary since the user has to indicate preliminary information in order to
enable a precise object creation. The entry fields in these wizards are pre-filled depending
on the selection in the database explorer. This helps the user to efficiently create new objects
without having to fill in large forms. For example to create a new association between two
collections, it is possible to select two collections in the database explorer and launch the
wizard. The user only has to indicate which of the collections should be the source collection
and the association can be created. If the user wants to create database objects which do
not need any preliminary information as for example a new macro, wizards are omitted to
simplify the process of creating new objects.



32 4.2. FINAL DESIGN

4.2.3 Collection Editor

If the user double clicks on a collection in the database explorer, an editor window as shown
in figure4.8 is opened in the editor area. The collection editor is a multi-page editor which
means that it can contain various pages accessible by means of a tab bar at the bottom of the
window.

Figure 4.8: Collection Editor

The final version of the collection editor only contains a single page, but we still chose to
use a multi-page editor to make the editor easily extensible. Additional pages could contain
more context information or associated DDL (Data Definition Language of OMS) statements.
In the final version the single page displays the collection extent as a table where the user
can add and remove members. The right hand side of the editor page shows all super- and
subcollections. Below the title a link to the member type of the collection is provided.
The style of the collection editor is based on a new Eclipse 3.0 feature called ‘Eclipse Forms’.
Eclipse Forms is a plug-in that offers a set of custom widgets and other supporting classes
that were before used as internal Eclipse classes. These classes form a toolkit to create ‘Web-
like’ user interfaces by extending SWT in order to get the desired behavior. SWT controls
can typically appear either in traditional dialogs (message boxes, dialogs, wizards, preference
pages) or in content areas used for views and editors. If the controls are added to dialogs they
use colors and fonts as provided by the operation system and the goal is to fill a rather small
dialog area. Controls in views and editors are supposed to fill the entire content area, they
should scroll their content and the colors and fonts should be those provided by the system for
use in the content area. Eclipse Forms are designed to meet these requirements by offering
a toolkit that manages among other things colors and a factory which creates basic SWT
controls in order to fit into the form context. The result looks very much like forms in HTML
browsers. Therefore the form toolkit comprises some additional custom controls used to add
hyperlinks, image hyperlinks and expandable sections to the form. More information about



CHAPTER 4. OMS FRONT-END DESIGN 33

Eclipse Forms can found in [13], a draft of a programming guide that will eventually move to
the official Eclipse help.

4.2.4 Object Editor

Concerning the means of design the object editor is very similar to the collection editor. It is
also a multi-page editor using Eclipse Forms. The object editor is used to represent all kind
of database objects apart from collections. The screenshot provided in figure4.9 shows the
representation of a collection member. The title of the page as well as the tab label display
an attribute value of the represented object in addition to the object id. This helps the user to
easily get back to an already open editor without having to remember the object id.

Figure 4.9: Object Editor

Depending on the kind of object the editor offers different information sections. The ‘At-
tributes’ section is common to all kinds of objects whereas the ‘Links’ section is special
for this type of object. For collection members the ‘Links’ section offers valuable context
information that helps the user to immediately understand the context of an object.
By convention editors in Eclipse usually follow a classical open-modify-save paradigm. In
chapter2 we stated that the commit/rollback paradigm is one of the strengths of OMS Pro and
should thus be adopted in the OMS front-end. We therefore decided to break the conventions.
The collection editor as well as the object editor do not need any save operations. Any
changes made to database objects are immediately reflected in the database.



34 4.2. FINAL DESIGN

4.2.5 AQL Window

In addition to the database explorer view the OMS front-end offers an AQL view which can
be used to query databases using the own query language of OMS, called AQL. In the initial
perspective layout the AQL view is placed in the console area behind the console window.
Figure4.10shows how the AQL window looks like.

Figure 4.10: AQL View

On the left hand side of the window the user can enter the query. After the execution of the
query the result is displayed in the table on the right side. If the result comprises objects,
double clicking them will open the object in the editor area. A history functionality enables
the user to revert to previous executed queries.

4.2.6 Console Window

The Eclipse workbench provides a console view which can display several consoles. The
OMS front-end uses its own OMS console which is added to the Eclipse console view when
the OMS perspective is activated. The OMS console displays error messages in red and
information messages in blue as it is presented in figure4.11.

Figure 4.11: OMS Console



CHAPTER 4. OMS FRONT-END DESIGN 35

4.2.7 Match Window

The OMS front-end offers a fourth view, the ‘Match’ view. The view can be compared to
the ‘Search’ view in the ‘Java’ perspective of Eclipse. The view is not initially shown in the
OMS perspective, but the perspective contains a placeholder which defines where to open the
view if it is needed. The match view is opened every time the user wants to retrieve database
objects that match a certain object type using the ‘Match’ operation in the context menu of
the database explorer.
The retrieved objects are listed in the result table of the match view. Figure4.12shows two
match view windows. The window on the left hand side displays all structured types that are
part of the database whereas the right match window shows all existing triggers. All objects
can be opened and edited with a double click.

Figure 4.12: Two Match Windows



36 4.2. FINAL DESIGN



5
OMS Front-End Implementation

The OMS front-end is implemented as an Eclipse plug-in using the Eclipse plug-in mecha-
nism as described in section3.3. The front-end plug-in contributes to the Eclipse workbench
which is the user interface of Eclipse by extending various extension points offered by the
workbench.
If the OMS front-end is installed, Eclipse adds a plug-in directory to the Eclipse installation
directory. The directory name isch.ethz.globis.omsjp.omsbrowserwhich is the global iden-
tifier of the OMS plug-in. The structure of the plug-in directory is similar to those of all other
plug-ins and contains the following files and folders:

• Plug-In XML File
The plugin.xml file is a file in XML format that describes the OMS plug-in and how it
integrates into Eclipse.

• Icons Folder
The plug-in directory contains typically an ‘icons’ or ‘images’ subdirectory to place
image files that ship as part of the plug-in. In the OMS plug-in the subdirectory is
called ‘icons’ and it contains various image files that are used for the graphical design
of the plug-in. The ‘icons’ folder is referenced by the plugin.xml file and by various
plug-in classes.

• Library Folder
The OMS plug-in accesses OMS databases by means of theOMSjp library. The
OMSjp library consists of a JAR file called omsjp.jar. To work with OMS Pro,OMSjp

needs an appropriate driver which is stored in a JAR file called omspro.jar and a Prolog
library called jasper.jar. The plug-in directory contains therefore a library folder called
‘lib’ where these three JAR files are placed.

37



38 5.1. PLUG-IN XML MANIFEST

• OMS Jar File
The actual code of the plug-in is stored in a JAR file as well. Typically the JAR file
is named for the last segment in the plug-in’s identifier, but it could basically have any
name, as long as the name is declared in the plug-in manifest file. For the OMS plug-in
the JAR file is called OMSBrowser.jar which in fact corresponds to the last segment of
the plug-in identifier.

The plug-in code is divided into twelve Java packages containing a varying number of Java
classes. All package names are prefixed by the stringch.ethz.globis.omsjp.omsbrowser. In
the UML diagrams appearing in this chapter classes and interfaces in grey are provided by
the Eclipse platform whereas those in red are own classes and interfaces. Sections5.2 until
5.13explain all packages in more details whereas section5.1provides information about the
plug-in manifest file.

5.1 Plug-In XML Manifest

As stated in chapter3 every plug-in has exactly one plug-in manifest file. The manifest de-
fines various high-level aspects so that the plug-in does not have to load until some function-
ality is required. It contains four major parts which are described in the following paragraphs
providing some XML snippets. The whole plug-in manifest file can be found in the appendix
A.

Plug-In Declaration Section The declaration contains the plug-in identifier which is
designed to uniquely identify the plug-in. Usually the same naming convention as for Java
packages is applied. Therefore the identifier of the OMS front-end corresponds to the package
prefix. Further the declaration specifies the name, the plug-in provider and the version. These
values are human-readable text and are not required to be unique. The last attribute in the
declaration indicates the plug-in class which is described in section5.2. Listing 5.1 shows
the plug-in declaration of the OMS plug-in.

<plugin
id = "ch.ethz.globis.omsjp.omsbrowser"
name = "OMSBrowser Plug-in"
version = "1.0.0"
provider - name = "ETH Zurich, Global Information Systems Group"
class = "ch.ethz.globis.omsjp.omsbrowser.OMSBrowserPlugin">

Listing 5.1: OMS Plug-In Declaration

Runtime Section The ‘runtime’ section of the plug-in enumerates the libraries that con-
tain the plug-in code. For each library the export attribute specifies which classes are acces-
sible to other plug-ins. This is necessary since Eclipse imposes more restrictions on plug-in



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 39

interaction than in a typical Java application. Each plug-in has its own class loader, restrict-
ing the visibility to code specified in the plug-in manifest. This means that a class X in one
plug-in which is in the same package a another class Y in a required plug-in cannot access
the ‘public’ method in class Y. The compilation process finishes without errors, but if the
code is executed in the Eclipse framework, the class loader will restrict the access and throw
an exception. Since the OMS front-end should be extensible to add future components, all
libraries are exported to allow another plug-in to access them.

Dependencies Section The ‘requires’ section of the plug-in manifest indicates all plug-
ins that the OMS plug-in is dependent on. This information is needed since the plug-in class
loader must know which plug-ins will be visible to the OMS plug-in during execution. It is
also possible to require a designated version of a plug-in. If the OMS front-end is activated,
all required plug-ins are activated transitively if they have not been loaded before.

Extensions Section The OMS front-end declares various extensions offered by the
Eclipse workbench to contribute own components to the user interface. Listing5.2 shows
the view extension that is used to define the database explorer view. The extension specifies
among other things the name and the icon of the view, the category the view belongs to and
the main class which implements the view.

<extension
point ="org.eclipse.ui.views">
<category

name="OMS"
id ="ch.ethz.globis.omsjp.omsbrowser">

</ category >
<view

name="Database Explorer"
icon ="icons/database_explorer.gif"
category ="ch.ethz.globis.omsjp.omsbrowser"
class ="ch.ethz.globis.omsjp.omsbrowser.views.DBExplorerView"
id ="ch.ethz.globis.omsjp.omsbrowser.views.DBExplorerView">

</ view >
</ extension >

Listing 5.2: OMS Plug-In Database Explorer View Extension

Similar extension declarations exist for all views and editors, the perspective as well as for
wizards and the preference page.

5.2 Package OMSBROWSER

The omsbrowserpackage contains a single class calledOMSBrowserPlugin which is the
plug-in class specified in the plugin.xml declaration section. The class offers methods for the
startup and the shutdown of the plug-in which are called by the Eclipse runtime environment.



40 5.2. PACKAGE OMSBROWSER

Once plug-ins are loaded into the memory, they are never unloaded until the Eclipse work-
bench is closed. Therefore the shutdown method is only called when the user choose to leave
Eclipse. To preserve the state of the OMS perspective across multiple platform sessions, the
plug-in class contains methods to save and restore objects displayed in the database explorer
based on a memento mechanism. Mementos are designed to save and restore objects in a
form that they can be stored persistently in the file system. They are able to skip objects
in the restoring process if an appropriate class is not available anymore or to restore objects
from the provided data even though the class for the object is different from the one that was
originally saved. Mementos map arbitrary string keys to primitive values and they allow to
have other mementos as children. TheOMSBrowserPlugin class uses a memento based on
XML as external storage format. If the user closes the Eclipse workbench, the state of the
database explorer is saved to a file called ‘oms.xml’. The file is placed in the Eclipse run-
time workspace located in the local file system. Listing5.3 shows a sample ‘oms.xml’ file
which represents two database instances in the workspace. The ‘Contacts’ database was con-
nected when Eclipse was closed and therefore the connection will be reopened when Eclipse
is started again.

<?xml version ="1.0" encoding ="UTF-8" ?>
<oms>

<database
connected = "false"
name = "Phonebook"
path = "C:/Program Files/omspro2.1/demo/phonebook.oms" />

<database
connected = "true"
name = "Contacts"
path = "C:/Program Files/omspro2.1/demo/contacts.oms">

<collection attr ="friends" id ="o1261" />
<collection attr ="name" id ="o1389" />
<collection attr ="name" id ="o592" />
<collection attr ="street" id ="o596" />
<collection attr ="phone" id ="o600" />
<collection attr ="characteristics" id ="o242" />

</ database >
</ oms>

Listing 5.3: Sample OMS.XML File

Another functionality of theOMSBrowserPlugin class is the initialisation of the OMS pref-
erence page to configure theOMSjp driver. The implementation of the preference page is
described in section5.12.
Furthermore, the OMSBrowserPlugin class maintains an instance of the class
java.util.HashMap as image cache and it offers a public method to retrieve images used
in the user interface of the OMS front-end.



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 41

5.3 Package MODEL

The database explorer (see section4.2.2) is designed to display a hierarchical list of OMS
database objects in a parent-child relationship. From a conceptual point of view it is quite
similar to the ‘Navigator’ in the ‘Resource’ perspective or the ‘Package Explorer’ in the ‘Java’
Perspective. Both the navigator and the package explorer use the EclipseIResourceclass and
its subtypes as internal model. TheIResourceclass is the generic class for files and folders
which form per se a hierarchical structure. In order to map the OMS database objects into the
database explorer tree structure, it was necessary to build a custom internal model based on
a parent-child relationship. The final model is shown in figure5.1presenting classes and the
most important public methods.

Figure 5.1: Model Classes

The DBElement class comprises all objects that can be displayed in the database explorer
tree offering methods to set and get the parent element. Using thesetKind method, tree ob-
jects are classified into system and user data objects. TheDBElement class is abstract and
does not have a physical manifestation in the tree. However, it has five subclasses repre-
senting different tree objects. Instances of theDatabaseclass build the top-level elements
in the tree standing for OMS databases stored in the local file system. TheDatabaseclass
has a reference to theDBCacheclass. The cache enables the database to save and retrieve
created tree objects in a rather efficient way since theDBCacheuses instances of the class
java.util.Hashtable class to manage the tree objects.



42 5.3. PACKAGE MODEL

On the next hierarchy level the tree displays folder objects to reasonably structure the database
contents. These folders are represented by the classDBElementFolder which internally
stores its child objects.
TheDBInstanceand theDBObject class comprise all database object that corresponds one-
to-one to an OMS object in the OMS database system. Therefore these two abstract classes
implement theIDBObject interface offering methods common to all OMS objects. The
classes wrapOMSjp objects, namely instances ofOMSInstance andOMSObject respec-
tively.
TheDBObject class provides three concrete subclasses for collection members, macros and
methods:DBCollMember, DBMacro andDBMethod. These classes offer in addition to the
common database object methods, specific methods applicable only for this kind of object.
TheDBInstanceclass comprises types and collections objects. InOMSjp collections, types
and associations are subtypes of theOMSInstanceclass which represents an instance of the
underlyingOMSObject. TheDBInstanceclass holds therefore a reference to theOMSIn-
stanceclass. Collections are classified into unary and binary collections which are mapped
to the classDBCollection and its subclassDBBinaryCollection. TheDBType class com-
prises all possible types available in OMS whereas theDBObjectType class is a specialised
class for object types offering additional methods. Since the user should be able to open
all these OMS objects in the Eclipse editor area, theIDBObject interface inherits from the
IEditorInput interface enabling these objects to be opened by an editor.
The last subclass ofDBElement is theDBObjectBulk class which stands for binary or multi-
valued collection members. These objects do not correspond to any OMS object and therefore
this class does not implement theIDBObject interface, but subclasses theDBElement class
directly. Internally it holds references to the underlying instances ofIDBObject .
Having this class hierarchy allows us to map the OMS database objects into a hierarchical
tree structure so that every object knows its parent object and all child objects. Apart from
theDatabaseclass, three classes in the model can act as parent objects. All other classes are
tree leaves. The classes that are possible parent objects implement theIDBParentElement
interface offering methods to add, remove and delete child objects. TheDatabaseclass
does not need to provide these methods since its only children are instances of the class
DBElementFolderwhich cannot be deleted or removed.
Providing a hierarchical class structure for the tree viewer in the database explorer is one
thing, but all these objects and the whole OMS front-end need access to the underlying OMS
databases usingOMSjp . The connection handling is done by theDatabaseManagerclass
which is one of the central classes in the OMS plug-in. TheDatabaseManagerclass uses a
Singleton pattern which means that only one instance of the class is available throughout the
running time of the OMS plug-in. The database manager holds instances of all databases in
the workspace and is therefore the parent object of theDatabaseclass. Further it initialises
the OMS driver and the OMS workspace when the user starts working with database objects
and it is responsible for presenting the OMS console when the OMS perspective is activated.
The database manager class offers methods to import, create, open, close, delete, commit
and rollback OMS databases and it verifies that at most one database connection is open at
a time. Moreover, the class is responsible for managing listener classes implementing the
IDBElementListener interface and notifies them if aDBElementobject changes.



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 43

5.4 Package MODEL.EVENT

Themodel.eventpackage offers a listener interface, calledIDBElementListener. It contains
methods which are called if an object of typeDBElement is added, removed or changed
or if the user chooses a different display attribute for a collection. Classes implementing
the interface should register itself using theaddDBElementListenermethod offered in the
DatabaseManagerclass to make sure that it receives all notifications.
Event notifications concerning changes ofDBElementobjects use an own event object class
calledDBElementEvent. DBElementEvent inherits from thejava.util.EventObject class
and takes aDBElementas source event object in the constructor.

5.5 Package PERSPECTIVE

The Eclipse user interface defines the extension pointorg.eclipse.ui.perspectivesto add a
new perspective to the Eclipse workbench. The OMS perspective contributes to this exten-
sion point by providing an XML declaration in the plug-in manifest. The declaration con-
tains the identifier of the perspective, its name and icon and the perspective class which has
to implement theIPerspectiveFactory interface. The factory class is calledOMSPerspec-
tiveFactory and implements the single method defined in theIPerspectiveFactoryinterface,
createInitialLayout . This method specifies the initial page layout for the perspective, namely
where to put which view, how to place the editor area and what shortcuts to add in the various
menus and tool bars. The factory class is only used to define the initial layout of the perspec-
tive when the perspective is opened. After that the class is discarded and the perspective is
restored exactly the way as it was when Eclipse was closed.
OMSPerspectiveListeneris the second class in this package, implementing theIPerspec-
tiveListener interface. Its methodperspectiveActivatedis called whenever the user opens a
new perspective or switches to an already open perspective. TheOMSPerspectiveListener
class checks if the OMS perspective was activated and if so, it reactivates the OMS console
in the console view.

5.6 Package VIEWS

Views are part of the Eclipse workbench. From a developer’s point of view it is necessary to
specify the workbench more precisely and clarify some Eclipse terminology.
The term used to represent the entire Eclipse user interface is workbench. The workbench
itself has no physical manifestation but it is displayed in one or more workbench windows.
These basic top-level windows make up an Eclipse application having a menu and tool bar
on the top and the status line at the bottom of the window. The main body of a workbench
window between the tool bar and the status line is represented by the workbench page, which
in turn is made up of workbench parts. Workbench parts come in two varieties, namely views
and editors. The initial size and orientation of the parts in the page are determined by the
perspective. Parts interact with the rest of the window via their site. The site is not a visible
entity but simply an API mechanism to separate the methods that operate on the view from
the methods that operate on controls and services outside the view.



44 5.6. PACKAGE VIEWS

5.6.1 Database Explorer View

The database explorer view is one of the three views that belongs to the OMS perspective.
Similarly as the perspective extension point, a view extension point (org.eclipse.ui.views)
is offered by the Eclipse workbench. The database explorer extends this point to register
itself as an Eclipse view. Views must implement theorg.eclipse.ui.IViewPart interface.
Typically, views subclass theorg.eclipse.ui.part.ViewPartclass and are thus indirectly sub-
classes oforg.eclipse.ui.part.WorkbenchPart, inheriting much of the behavior needed to
implement theIViewPart interface. TheDBExplorerView class is the main class of the
database explorer and subclassesViewPart. ThecreatePartControl method overrides the
method specified in the superclass. It is a callback method creating all controls comprised in
the view. Figure5.2shows how the database explorer view integrates into the existing Eclipse
framework. Classes and interfaces in grey are provided by the Eclipse platform.

Figure 5.2: View Part Integration into the Eclipse Workbench

Views are part of a view site (IViewSite), which is part of a workbench page
(IWorkbenchPage). In order to enable lazy instantiation, theIWorkbenchPart holds on
to instances ofIViewReferencesrather than to theIViewPart itself. This permits that views
can be referenced without actually loading the plug-in defining the view.
The database explorer uses the JFace UI toolkit (see section3.2). The object tree in the
database explorer is a JFaceTreeViewer which wraps an instance of the SWTTree widget.
A tree viewer displays a hierarchical list of objects in a parent-child relationship.TreeViewer



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 45

is a subclass ofStructuredViewer which represents an abstract base implementation for
structure-oriented viewers like tree, list and table viewers. In general viewers are model-
based adapters on a SWT widget which accesses its model by means of a content provider
and a label provider. The classes used to implement the database explorer view are presented
in figure5.3.

Figure 5.3: Database Explorer View Classes

The database explorer displays database objects and thus uses the model described in section
5.3. To access the model, the tree viewer uses theDBExplorerViewContentProvider which
is responsible for extracting the appropriate objects from an input object, in our case the
DatabaseManagerwhich is the parent object of all databases in the workspace. Having the
raw objects, theDBExplorerViewLabelProvider is called to determine the image and the
label that is actually displayed in the tree. Optionally the tree viewer in the database explorer
makes use of theDBExplorerViewSorter which sorts the tree objects according to defined
sort criteria before they are displayed.
If the content of the database manager or any database object change, methods specified
in the IDBElementListener interface are called. TheDBExplorerViewContentProvider
implements this interface and is thus responsible for reacting to any changes and updating the
tree viewer.

5.6.2 AQL View

The AQL view integrates into the Eclipse platform in the same way as the database explorer.
Its implementation comprises one class calledAQLView which subclasses theViewPart
class in the Eclipse framework. Calling thecreatePartControl method creates the main panel
for the AQL view consisting of a SWTText entry, some instances of the SWTButton class



46 5.7. PACKAGE EDITORS

and a JFaceTableViewer which is a subclass of theStructuredViewer. The table viewer is
used to display query results by means of a content and a label provider. TheAQLView class
has an inner class calledResultContentProvider which implements theIStructuredCon-
tentProvider interface. This interface consists of a single methodgetElementsto extract
the table elements from an input object. In theAQLView the input object is an instance of
the classOMSValue representing the query result. As label provider a base implementation
of the ILabelProvider interface provided by the Eclipse framework is used. TheAQLView
class holds a private instance of theArrayList class to store query strings that were executed
in the past.

5.6.3 Match View

The match view is a third view that is implemented analogue to the other views. Its main
classMatchView subclassesViewPart and contains an inner class as content provider for the
table that displays the found database objects. If the match action is executed and the view is
currently closed, then theMatchAction class located in theaction package makes sure that
an instance of the match view is opened. The OMS perspective contains a placeholder for the
match view behind the AQL view which defines the location of the view when it is opened.

5.6.4 Console View

The console view differs from the other views since the view itself is implemented and of-
fered by the Eclipse framework. The OMS console is thus an extension of the existing console
view. The implementation of the OMS console view comprises a single classOMSConsole-
Manager which is responsible for adding an OMS console page to the existing console using
theaddConsolemethod of the EclipseConsolePlugin. The OMS console is based on an in-
stance of typeMessageConsoleand offers methods to write information and error messages
to the screen.

5.7 Package EDITORS

The Eclipse platform offers some basic editors such as a standard text editor as well as highly
specialised multi-page editors such as the plug-in manifest editor. The OMS front-end cannot
profit from the available editors since a text editor is not sufficient to represent database
objects and the plug-in manifest editor is too specialised. Therefore the OMS plug-in provides
its own editors to view database objects.
Editors integrate into the Eclipse workbench in a similar way as views. Figure5.4 is thus
analogical structured as the view part classes presented in figure5.2. The difference is that an
editor class has to implement theIEditorPart interface instead of theIViewPart interface as
views do and editors are contained in anIEditorSite . TheIWorkbenchPageclass holds on to
instances of theIEditorReference class rather that the editor itself to allow lazy initialisation.
The methods presented in the workbench classes are those used in connection with editors.
As apparent from figure5.4 the OMS front-end uses two editors which are multi-page form
editors. The object editor is described in more details in section5.8 whereas more to the



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 47

Figure 5.4: Editor Part Integration into the Eclipse Workbench



48 5.7. PACKAGE EDITORS

collection editor can be found in section5.9. To construct these editors the OMS plug-in
provides some kind of framework offering different components that can be reused in the
collection and object editors as well as in dialog windows to add new values. Figure5.5
provides an overview of the graphical components that are used to construct an editor page.

Figure 5.5: Building Blocks of an OMS Editor Page

An editor page can have various sections whereas each section groups information that be-
longs together. The Eclipse platform offers a base implementation of a section, calledSec-
tionPart . TheSectionPart class as well as theIFormPart interface it implements are lo-
cated in theorg.eclipse.ui.formspackage. A section has a title and can be in an expanded
or collapse state. The OMS plug-in offers aDBEditorSection and an even more specialised
DBEditorTableSection. TheDBEditorTableSection is preset having a JFace table viewer
as main component of the section with the possibility to add buttons to the right side of the
table. The classes that belong to the framework are presented in figure5.6
If a section is more complex than just displaying a table viewer with buttons to the left, the
DBEditorSection can be used by adding the desired ‘form entries’ manually. Form entries
are reusable components of the OMS plug-in editor framework that can be added to form
editors. An entry can either be a text entry (classDBTextEntry ) or a table entry (class
DBTableEntry ), both subclassing the abstractDBFormEntry class. An instance of theDB-
TextEntry class consists horizontally from left to right of an optional label, a SWT text field
and an optional button. TheDBTableEntry is similar, offering a JFace table viewer instead
of a text field and more than one button to the right.
In order to add actions to the buttons or a hyperlink instead of a label, the framework pro-
vides theIEditorFormEntryListener interface. Classes implementing this listener interface
can be associated with the entries to react to certain kinds of events. TheEditorFormEn-
tryAdapter class serves as a base implementation of theIEditorFormEntryListener inter-
face.



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 49

Figure 5.6: Reusable Form Editor Components

5.8 Package EDITORS.OBJECT

The OMS plug-in offers two different editors. The collection editor is used to display collec-
tion objects, all other database objects are shown in the object editor. The object editor (class
ObjectEditor ) is a form editor and therefore extends the EclipseFormEditor class. It is a
multi-page editor containing a single page, namely theObjectAttributePage. As described
in section5.7 the OMS plug-in offers generic section components that can be added to the
editor pages. The object editor is constructed of different sections, depending on the kind of
database object it represents. Figure5.7provides an overview of all object editor classes.
TheObjectAttributeSection displaying the attributes of a database object is common to all
database objects shown in the object editor. Type objects offer additionally theObjectMeth-
odSectionand theSubTypeSectionandSuperTypeSectionto present sub- or supertypes
respectively. Collection members offer theObjectCollectionSectionpresenting all member-
ship collections, theObjectMethodsSectionand theObjectLinksSection to show related
objects. All sections implement theIDBElementListener interface to be able to react to any
events.
TheObjectMethodSection, theSuperTypeSection, theSubTypeSectionas well as theOb-
jectCollectionSectiondisplay simple tables and extend therefore theDBEditorTableSection
class. TheObjectLinksSectionuses severalDBTableEntry instances to display several link
tables whereas theObjectAttributeSection is the most complex one. It displays the different
attribute values and depending on the attribute type. For each attribute type the form entry has
to adopt a different shape. Therefore theDBValueEntry class exists which is a helper class



50 5.9. PACKAGE EDITORS.COLLECTION

knowing how each attribute depending on its type has to be displayed. Some dialog classes
as for example theAddValueDialog class reuse theDBValueEntry class to offer appropriate
forms to allow the user to add attribute values.

Figure 5.7: Object Editor Classes

5.9 Package EDITORS.COLLECTION

The collection editor is used to display collection objects. Its structure is analogue to the
object editor. TheCollectionEditor class is the main editor class extending theFormEditor
class. It has a single page associated with it, namely theCollectionListPagewhich consists
of three sections. The main section is theCollectionListSection presenting the collection
extent in a JFace table viewer. TheSubCollectionListSectionand theSuperCollectionList-
Sectionoffer sub- and supercollections respectively. The sections implement theIDBEle-
mentListener interface to manage refresh operations due to events.



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 51

5.10 Package ACTIONS

Theactionspackage contains a couple of action classes. Each of these classes represents an
action that is placed in one of the various context menus or associated with a button in the
user interface. All action classes subclass the JFaceAction class which in turn implements
theIAction interface. TheIAction interface offers methods to set the action label, the image
associated with the action if it is used in a context menu and most importantly therun method
which actually executes the action. The JFaceAction class is a base implementation of the
IAction interface. Subclasses usually override therun method.

5.11 Package WIZARDS

Wizards are special dialogs used when a modal operation requires a particular sequence for its
information collection. Wizards have a title area along the top, a content area in the middle
showing the various wizard pages and a button container at the bottom providing ‘Next’,
‘Back, ‘Finish’ and ‘Cancel’ buttons.
In the OMS front-end wizards are introduced to create the following OMS objects:

• Database using theNewDatabaseWizardclass

• Object Type using theNewTypeWizard class

• Collection using theNewCollectionWizard class

• Association using theNewAssociationWizardclass

• Method using theNewMethodWizard class

An additional wizard is used to import already existing OMS databases into the Eclipse
workspace.
All wizard classes subclass theWizard class which implements theIWizard interface and
provides much of theIWizard behaviour. TheIWizard interface contains methods to add
the wizard pages and to get the current, the previous and the next page in the wizard. The
task of the wizard classes in the OMS front-end is to create and initialise the pages it contains
and execute the operation when the ‘Finish’ button is pressed.
In addition to subclassing theWizard class, all wizards in the OMS front-end that create new
objects and that are intended to be placed in the ‘New’ menu of the Eclipse workbench menu,
are forced to implement theINewWizard interface. Moreover they are required to contribute
to theorg.eclipse.ui.newWizardsextension point in the plug-in manifest. Implementing this
extension point provokes Eclipse to automatically provide an action delegate for the wizard
class and display it in the ‘New’ menu in the tool bar of the Eclipse workbench window. Fur-
ther the OMS perspective adds shortcuts for these wizards in order to make them easily and
fast accessible in the ‘New’ menu of the OMS perspective. The import wizard (classImport-
DatabaseWizard) is added to the ‘Import’ menu of the Eclipse workbench and is therefore
forced to implement theIImportWizard interface and theorg.eclipse.ui.importWizards
extension point. Figure5.8shows how the OMS front-end wizards integrate into the Eclipse
wizard framework using the wizard to create a new OMS database as an example.



52 5.12. PACKAGE PREFERENCES

Figure 5.8: New OMS Database Wizard Classes

The actual wizard pages displaying the entries to fill in the requested data, extend theWiz-
ardPageclass which implements theIWizardPage interface. The task of a wizard page is
to present a page of information to the user, validate any information filled in by the user and
provide accessors for the wizard class to gather the entered information.

5.12 Package PREFERENCES

The Eclipse platform offers a ‘preference framework’ which provides a mechanism for dis-
playing options to the user and saving changed options across multiple Eclipse sessions. The
OMS front-end uses this mechanism to add a specific OMS preference page to the Eclipse
‘Preferences’ dialog allowing the user to indicate the storage location of the OMS database
system and an appropriate driver value.
The OMS preference page is hooked into the system by contributing an XML declaration
to theorg.eclipse.ui.preferencePagesextension point. The actual logic to set up the page
can be found in theDBPreferencePageclass in thepreferencespackage. The preference
page is initialised with default values which are stored in the main plug-in class of the OMS
front-end, namely theOMSBrowserPlugin class. If values are changed they are added to the
preference store (interfaceIPreferenceStore) associated with theOMSBrowserPlugin class
as well.



CHAPTER 5. OMS FRONT-END IMPLEMENTATION 53

5.13 Package UTIL

Theutil package contains a conglomeration of classes which are used in the OMS plug-in.
The DBObjectTransfer and the DBObjectDropTargetAdapter are required in con-
nection with drag and drop actions. TheDBObjectTransfer class inherits from the
java.io.ByteArrayTransferClass and is responsible for transferring database objects. A
database object is identified by its object id and the parent object. Therefore, theDBOb-
jectTransfer class writes these two values into ajava.io.DataOutputStream and reads it
again to restore the transferred object. TheDBObjectDropTargetAdapter is a base imple-
mentation of the EclipseDropTargetListener interface and is used to perform the actual
drop operation.
Another group of Java classes in theutil package are base implementations of content and la-
bel providers. TheDefaultContentProvider implements theIStructuredContentProvider
interface which can be used for all JFace table viewers. TheListLabelProvider and the
TableLabelProvider are implemented to serve as basic label providers for JFace list viewers
and table viewers respectively.
The CollectionListDialog, theObjectListDialog and theTypeListDialog class are dialog
classes allowing the user to choose from a list of possible collections, types or other objects.
They all subclass theSelectionDialogclass offered in theorg.eclipse.ui.dialogspackage.



54 5.13. PACKAGE UTIL



6
Conclusions

6.1 Achievement

The goal of this diploma thesis was to design and implement a graphical user interface for
OMS which is built on top ofOMSjp . OMSjp is a Java interface that allows to access different
OMS platforms in a uniform manner. The resulting OMS front-end is implemented as an
Eclipse plug-in and enables the user to access OMS databases directly through the Eclipse
environment.

6.1.1 Intended Goals

In the early stages of this diploma thesis the existing OMS Pro graphical user interface was
evaluated. The aim was to derive requirements for the OMS front-end for Eclipse. The
following list summarises briefly the requirements that were established in section2.4.

• Keep the commit / rollback storing paradigm

• Offer context information

• Offer graphical schema editors

• Extend the object panels used by OMS Pro

• Redesign the object arrangement in the object area

• Provide an intuitive tab ordering

55



56 6.1. ACHIEVEMENT

• Reduce the use of objects ids to make the working with objects easier

• Enhance the process of adding associations

• Introduce an application state memory

6.1.2 Discussion

The first requirement was to keep the storing paradigm of OMS Pro. The OMS front-end
adopts the commit / rollback paradigm suggested by the existing OMS Pro GUI. This is
against the Eclipse conventions but in the case of editing database objects instead of text files
it makes sense to immediately take over any changes made. The user does not have to perform
a lot of save operations and unintentional modifications can be discarded using the rollback
functionality.
Context information is important to keep track of data in a system. Therefore the OMS
front-end offers context information as required. The information is displayed directly in the
corresponding editor windows which makes the information fast accessible and manageable.
Any information section that the user does not want to see can be collapsed in order to con-
centrate on the essential parts of the editor window. For collection members a section with
links to related objects is displayed. This section helps to simplify the process of adding
links between two objects. If the user has one object open in the editor area, he just has to
choose an appropriate object from a list dialog which can then be linked. The list does not
only display object identifiers but it offers an attribute value in addition to the type and the id
of the object. This fact enables the user to find the intended object without having to open it
beforehand. This is a major improvement compared to the present OMS Pro GUI.
Another enhancement is the introduction of the database explorer which replaces the collec-
tion and macro panel of the OMS Pro user interface. These panels are a good approach to
start with but they offer only a limited portion of information. However, the database ex-
plorer displays the most frequently used database objects in a clear tree structure. The user
is able to expand only those tree nodes he requires in order to focus on the current task. The
database explorer moreover offers a context menu with common actions to choose from. It is
possible to create any kind of object displayed in the tree using the context menu. In most of
the cases the new objects are created with the help of wizards. Wizards may be considered as
circumstantial but the wizards used in the OMS front-end initialise the entry fields according
to the user’s selection when the wizard is called and accelerate thus the creation process. For
example if the user wants to create a new association he can select two collections in the tree,
call the wizard and he is able to finish the process only by typing the name of the association.
A further requirement was to reduce to use of object ids and to make working with objects
easier. The OMS front-end uses different approaches to fulfil this task. One approach is to
display collection members always together with an attribute value regardless if the object
is shown as tree object or as tab bar label. Initially the first attribute value is taken but if
this value does not help to identify objects quickly, the user can choose a different display
attribute for every collection. If the user chooses a different attribute value for a collection,
affected members of this collection are notified throughout the whole Eclipse user interface
to change their display attribute value correspondingly. This gives the user a powerful tool



CHAPTER 6. CONCLUSIONS 57

to identify objects without having to open them. Another approach to make working with
objects less challenging is the introduction of icons. Every type of database objects has its
own icon which is consistently used in the workbench. The user is able to visually recognise
different object types. This helps to distinguish different kinds of objects and the user benefits
if he wants to get back to an object which is already open in the editor area.
The possibilities for redesigning the object arrangement and the layout of the object area
were rather limited by the Eclipse platform and its conventions. Having overlapping windows
would have been possible, but it was neither what we aimed for nor would the concept have
fitted into the workbench. Therefore the object area was designed to display complete object
windows and only one at a time. More detailed thoughts about the available options are
presented in section4.1.1. The result is satisfying since the user is able to focus on the
currently active object without being disturbed by other object windows in his field of vision.
Furthermore the editor windows present important context information which reduces the
need to have multiple objects open at the same time. The problem of the inefficient tab bar
ordering was solved implicitly since the Eclipse framework already offers a mechanism for
managing the tab bar.
As required, the OMS front-end offers an application state memory in different application
parts. If the workbench is shut down, the application checks if a database was still connected
and the next time the user chooses to restart Eclipse, the connection is restored. Moreover, the
display attributes that the user can choose for every collection in order to determine how the
collection members are presented are preserved across multiple sessions. File system dialogs
memorise which directory was last accessed and the dialog directly selects this directory the
next time it is launched.
The one requirement that was not satisfied is the introduction of a schema editor as described
in section4.1.3. Only the basic updating and browsing functionality was implemented. The
main reason for this was that the process of really getting to know the whole Eclipse frame-
work took longer than expected. Most of the books and material that are available treat quite
simple plug-in examples which are all file-based. The OMS plug-in moves away from this
file-based paradigm and it uses newly introduced Eclipse features which needed a lot of effort
to get things working. Fortunately Eclipse has a large open source community which is very
useful to exchange experiences and programming solutions and which advances the whole
Eclipse project. Another reason that the schema editor implementation had to be skipped was
due to the fact that the underlyingOMSjp library was still incomplete and erroneous. This
slowed the implementation process down. It was time-consuming to find out if a problem was
caused by the OMS plug-in or by the underlying library and what kind of problem it was.
Apart from the missing schema editor the OMS front-end meets all requirements and it allows
to reason that we achieve the intended results. In our opinion the OMS front-end is a valuable
alternative to the existing OMS Pro GUI making the modelling process of OMS databases
easier and more intuitive. The benefits will become even more noticeable ifOMSjp offers
drivers for other OMS platforms than OMS Pro since it will enable the users to manage
different OMS databases without having to get acquainted with a new graphical user interface.
Furthermore the OMS front-end integrates well into the Eclipse workbench since the editor
windows use the same graphical components as the plug-in manifest editor and most of the
conventions were respected.



58 6.2. FUTURE WORK

6.2 Future Work

The OMS front-end already provides a lot of basic functionality and useful features to support
the OMS modelling process. However, there is still an ample scope to apply improvements.
The following list presents the possible enhancements.

• Schema Editor
The OMS front-end improves the process of adding relations between objects. But
the most intuitive way to add an association between two collections for instance is
still the way of drawing the association in a graphical schema editor. Therefore the
introduction of such an editor is a useful extension. Since Eclipse offers an elaborate
plug-in architecture it is even possible to design an independent plug-in for the schema
editor which extends the OMS plug-in.

• Drag and Drop
Drag and drop is a useful tool to easily make connections between objects. The OMS
front-end offers a basic drag and drop mechanism allowing the user to add collections
members to a collection by dragging objects from the database explorer tree into the
collection editor. The OMS front-end could be enhanced by offering more drag and
drop operations that simplify other modelling tasks. For example to establish links
between objects, it would be helpful if the user could drop an appropriate object directly
on the link table in the ‘Links’ section. Another idea is to allow the user to drop an
object on any other object to link these two objects if possible. If it is clear which
association suits, the link would be added automatically, otherwise the system could
show a dialog window to let the user choose from possible associations between these
two objects.

• Icon View
In the final front-end version the collection editor shows a list of collection members
with one of their attribute values. At the beginning of this thesis one idea was to let the
user choose how he would like to have the collection members displayed. The choices
would be analogue to the Windows explorer where files can be viewed as detailed list
or as large icons for example. Therefore the OMS plug-in could offer a second page
in the collection editor showing all collection members as thumbnails providing more
attribute values at first sight. It is even conceivable to display an image file as thumbnail
if the object contains one.

• DDL Pages
DDL, the Data Definition Language, is a language especially defined for OMS to spec-
ify an OMS schema definition. The DDL language can be used to refine a graphically
developed data model or to define a data model from scratch. Expert users often know
these definition languages very well and they would be much faster without the graphi-
cal support. Therefore an idea would be to add a page to all editor windows displaying
the DDL sources of the according object. The user could then choose to modify an
object directly by modifying the DDL source or using the graphical support.



CHAPTER 6. CONCLUSIONS 59

• Complete Functionality
The OMS front-end does not offer the whole range of functionality that OMS Pro does.
For example it is not possible to check databases for consistency. If a database is in-
consistent, there is no way to find out which constraints are violated. The missing
functionality should be added to the front-end in order to support the complete mod-
elling process.



60 6.2. FUTURE WORK



A
Plugin XML Manifest

<?xml version ="1.0" encoding ="UTF-8"?>
<?eclipse version ="3.0"?>

<plugin
id ="ch.ethz.globis.omsjp.omsbrowser"
name="OMSBrowser Plug-in"
version ="1.0.0"
provider - name="ETH Zurich, Global Information Systems Group"
class ="ch.ethz.globis.omsjp.omsbrowser.OMSBrowserPlugin">

<runtime >
<library name ="lib/jasper.jar">

<export name =" * "/>
</ library >
<library name ="lib/omspro.jar">

<export name =" * "/>
</ library >
<library name ="lib/omsjp.jar">

<export name =" * "/>
</ library >
<library name ="OMSBrowser.jar">

<export name =" * "/>
</ library >

</ runtime >

<requires >
<import plugin ="org.eclipse.ui"/>
<import plugin ="org.eclipse.core.runtime"/>
<import plugin ="org.eclipse.jface.text"/>

61



62

<import plugin ="org.eclipse.core.resources"/>
<import plugin ="org.eclipse.ui.editors"/>
<import plugin ="org.eclipse.ui.ide"/>
<import plugin ="org.eclipse.jdt.core"/>
<import plugin ="org.eclipse.ui.forms"/>
<import plugin ="org.eclipse.ui.console"/>

</ requires >

<extension
point ="org.eclipse.ui.editors">

<editor
class ="ch.ethz.globis.omsjp.omsbrowser.editors.

collection.CollectionEditor"
icon ="icons/unary_collection.gif"
default ="false"
name="Collection Editor"
id ="ch.ethz.globis.omsjp.omsbrowser.editors.collection.

CollectionEditor"/>
<editor

class ="ch.ethz.globis.omsjp.omsbrowser.editors.object.
ObjectEditor"

icon ="icons/single_object.gif"
default ="false"
name="Object Editor"
id ="ch.ethz.globis.omsjp.omsbrowser.editors.object.

ObjectEditor"/>
</ extension >

<extension
point ="org.eclipse.ui.newWizards">

<category
name="OMS"
id ="ch.ethz.globis.omsjp.omsbrowser"/>

<wizard
finalPerspective ="ch.ethz.globis.omsjp.omsbrowser.

perspective.OMSPerspective"
class ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewDatabaseWizard"
icon ="icons/database_connected_new.gif"
category ="ch.ethz.globis.omsjp.omsbrowser"
name="OMS Database"
id ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewDatabase"/>
<wizard

icon ="icons/object_type_new.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewTypeWizard"
category ="ch.ethz.globis.omsjp.omsbrowser"
name="OMS Object Type"
id ="ch.ethz.globis.omsjp.omsbrowser.wizards.



APPENDIX A. PLUGIN XML MANIFEST 63

NewType"/>
<wizard

icon ="icons/unary_collection_new.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewCollectionWizard"
category ="ch.ethz.globis.omsjp.omsbrowser"
name="OMS Collection"
id ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewCollection"/>
<wizard

icon ="icons/binary_collection_new.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewAssociationWizard"
category ="ch.ethz.globis.omsjp.omsbrowser"
name="OMS Association"
id ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewAssociation"/>
<wizard

icon ="icons/method_new.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewMethodWizard"
category ="ch.ethz.globis.omsjp.omsbrowser"
name="OMS Method"
id ="ch.ethz.globis.omsjp.omsbrowser.wizards.

NewMethod"/>
</ extension >

<extension
point ="org.eclipse.ui.perspectiveExtensions">

<perspectiveExtension
targetID ="org.eclipse.ui.resourcePerspective">

<perspectiveShortcut
id ="ch.ethz.globis.omsjp.omsbrowser.perspective.

OMSPerspective">
</ perspectiveShortcut >

</ perspectiveExtension >
<perspectiveExtension targetID ="org.eclipse.jdt.ui.

JavaPerspective">
<perspectiveShortcut id ="ch.ethz.globis.omsjp.omsbrowser.
perspective.OMSPerspective"/>

</ perspectiveExtension >
</ extension >

<extension
point ="org.eclipse.ui.views">

<category
name="OMS"
id ="ch.ethz.globis.omsjp.omsbrowser">

</ category >
<view



64

name="Database Explorer"
icon ="icons/database_explorer.gif"
category ="ch.ethz.globis.omsjp.omsbrowser"
class ="ch.ethz.globis.omsjp.omsbrowser.views.

DBExplorerView"
id ="ch.ethz.globis.omsjp.omsbrowser.views.

DBExplorerView">
</ view >
<view

icon ="icons/sample.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.views.AQLView"
category ="ch.ethz.globis.omsjp.omsbrowser"
name="AQL"
id ="ch.ethz.globis.omsjp.omsbrowser.views.AQLView"/>

<view
icon ="icons/match_view.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.views.MatchView"
category ="ch.ethz.globis.omsjp.omsbrowser"
name="Match"
id ="ch.ethz.globis.omsjp.omsbrowser.views.MatchView"/>

</ extension >

<extension
point ="org.eclipse.ui.perspectives">

<perspective
icon ="icons/oms_logo.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.perspective.

OMSPerspectiveFactory"
name="OMS"
id ="ch.ethz.globis.omsjp.omsbrowser.perspective.

OMSPerspective"/>
</ extension >

<extension
point ="org.eclipse.ui.importWizards">

<wizard
icon ="icons/database_connected_new.gif"
class ="ch.ethz.globis.omsjp.omsbrowser.wizards.

ImportDatabaseWizard"
name="OMS Database"
id ="ch.ethz.globis.omsjp.omsbrowser.wizards.

ImportDatabase"/>
</ extension >

<extension
point ="org.eclipse.ui.preferencePages">

<page
class ="ch.ethz.globis.omsjp.omsbrowser.preferences.

DBPreferencePage"
name="OMS"



APPENDIX A. PLUGIN XML MANIFEST 65

id ="ch.ethz.globis.omsjp.omsbrowser.preferences.
DBPreferencePage"/>

<page
class ="ch.ethz.globis.omsjp.omsbrowser.preferences.

AQLViewPreferencePage"
category ="ch.ethz.globis.omsjp.omsbrowser.preferences.

DBPreferencePage"
name="AQL View"
id ="ch.ethz.globis.omsjp.omsbrowser.preferences.

AQLPreferencePage"/>
</ extension >

</ plugin >



66



B
User Manual

B.1 System Requirements

In order to use the OMS front-end, the following system components need to be installed on
the computer:

• Windows operating system

• OMS Pro 3.0

• Eclipse 3.0

B.2 Installation

The OMS front-end can either be installed manually or with the help of the Update Manager
provided by Eclipse.
To install the OMS front-end manually, please follow the instructions below:

1. Download the ‘OMSBrowser.zip’ file.

2. Unzip the contents of the ‘OMSBrowser.zip’ file into the ECLIPSE_HOME
directory which is the main directory of the Eclipse installation (for exam-
ple C:\Program Files\eclipse). The ECLIPSE_HOME\plugins directory should
now contain two directories called ‘ch.ethz.globis.omsjp.omsbrowser_1.0.0’ and
‘ch.ethz.globis.omsjp.omsbrowser.help_1.0.0’.

3. If Eclipse was running during the unzip process, restart the Eclipse workbench.

For an installation with the help of the Update Manager, the following steps need to be ac-
complished:

67



68 B.3. GETTING STARTED

1. Select the ‘Help→ Software Updates→ Find and Install’ menu entry to open the
‘Install/Update’ dialog.

2. Choose the option ‘Search for new features to install’ and advance to the next dialog
window.

3. In order to download the OMS front-end a new ‘Remote Site’ has to be added with the
URL of the OMS front-end update site. Mark the check box of the added update site to
include it in the search process.

4. The search result presents the ‘OMS Browser Feature’ which can be selected. If the
terms in the license agreement are accepted, the OMS plug-in is installed. Eclipse has
to be restarted.

B.3 Getting Started

Setting OMS Properties

Before the OMS front-end can be used, it is necessary to set the general OMS properties
comprising the OMS home directory and theOMSjp driver. In order to set these properties,
open the OMS preference page (menu ‘Window→ Preferences’) shown in figureB.1.

Figure B.1: OMS Preference Page

The form contains two fields to fill in. The first one is the home or installation directory of
OMS Pro. The second entry contains the currently usedOMSjp driver. The default value
is ‘omsjp:omspro:user/null@localhost’ which represents the OMS Pro driver if OMS Pro is
locally installed on the machine. If these values do not correspond to the user’s environment,
the appropriate ones should be entered.

Opening the OMS Perspective

Having set the OMS properties, the OMS front-end is ready to use. To model OMS databases
it is recommended to switch to the OMS perspective. To open the OMS perspective, choose



APPENDIX B. USER MANUAL 69

the ‘OMS’ perspective from the menu ‘Window→ Open Perspective’. Initially the OMS
perspective shows the database explorer view at the left and the console view at the bottom
of the workbench window. The AQL view is hidden behind the console view.

Creating a New OMS Database

If the user wants to create a new OMS database, he can open the ‘New Database’ wizard
shown in figureB.2. The wizard can be opened either by selecting the menu ‘File→ New
→ OMS Database’ or by right clicking in the database explorer and choosing ‘New→ OMS
Database’.

Figure B.2: New Database Wizard

To create a new database enter a name and a storage location if the database should not be
stored in the default directory. By clicking ‘Finish’ the database is created and added to the
database explorer. Since a database connection must be established for the creation process,
the newly created database is already open in the database explorer and ready for browsing.

Importing an Existing OMS Database

The OMS front-end allows importing an already existing OMS database which is stored in
the local file system. In order to import a database, open the ‘Import Database’ wizard. This
can be done either by selecting the menu ‘File→ Import’ and then choosing ‘OMS database’
or by right clicking in the database explorer and choosing ‘Import Database’. The wizard
presented in figureB.3 is shown.
To import a database, fill in the location where the database is stored in the local file system
and click ‘Finish’. The database is added to the database explorer.

Opening or Closing a Database

To open a database choose the ‘Open Database’ entry from the context menu in the database
explorer. Please note that if another database is connected, the connection is closed since only



70 B.4. BROWSING AND UPDATING THE DATABASE

Figure B.3: Import Database Wizard

one active connection can be open at a time. To close an open database choose the ‘Close
Database’ entry from the context menu.

B.4 Browsing and Updating the Database

The database explorer provides access to frequently used OMS database objects such as col-
lections, types and macros. The system data is listed separately in the ‘System’ folder. Figure
B.4 shows the database explorer and its context menu.

Figure B.4: Database Explorer



APPENDIX B. USER MANUAL 71

Browsing Collections

The ‘Collections’ folder contains first the unary collections followed by the binary collec-
tions. Expanding the collection nodes makes the collection extent visible.

Choosing a Display Value for a Collection

All collection members that belong to the collection extent of a unary collection are displayed
by providing the type, the object id and one of their attribute values. Initially the first attribute
value is taken for every collections. But the user can choose a different attribute if he likes. To
do this access the context menu in the database explorer by right clicking on the appropriate
collection and select the ‘Choose Attribute’ action. A dialog is opened where the user can
choose the name of the attribute value that should be displayed for this collection. As a
consequence of this, all members of this collection show the new attribute value throughout
the whole Eclipse user interface.

Choosing the Sort Criteria in the Database Explorer

In the database explorer collections provide access to their members by displaying the object
id and a single attribute value. The database explorer allows to determine the sort criteria
using the local pull down menu of the database explorer as shown in figureB.5. The collection
members can either be sorted by the object id or alphabetically according to the attribute
value.

Figure B.5: Change Sort Criteria

Opening a Collection in the Editor Area

To open a collection in the editor area, double click on the corresponding collection in the
database explorer. A collection editor window as shown in figureB.6 is opened in the editor
area.
The editor window shows the collection extent as a table. The collection members in the table
can be opened with a double click. If it is a binary collection either the source or the target
object of a collection member can be opened depending on the table cell that is doubleclicked.

Creating a Unary Collection

A new unary collection can be created using the ‘Collection’ wizard. If the wizard is called
using the ‘File→ New’ menu then the wizard page is blank. If the context menu of the



72 B.4. BROWSING AND UPDATING THE DATABASE

Figure B.6: Collection Editor

database explorer is used and launched by clicking on the ‘location’ type object, the collection
type is already initialised accordingly as shown in figureB.7.

Figure B.7: Collection Wizard

The newly created collection is added to the database explorer and opened in the editor area.

Creating a Sub / Supercollection

In order to create a new sub- or supercollection, either the sub- and supercollection section in
the collection editor or open the context menu on a collection in the database explorer can be
used.

Creating a Binary Collection (Association)

Since no graphical schema editor is available, binary collections which are based on an asso-
ciation have to be created using a wizard as well. The fastest way to create an association is
to mark the source and the target collection in the database explorer and call the ‘Association’
wizard as presented in figureB.8.



APPENDIX B. USER MANUAL 73

Figure B.8: Create a New Association

As a result the association wizard shown in figureB.9 is opened. The source and the target
collection are initialised according to the selection in the database explorer. The ‘Inverse’
button can be used to swap the source and the target collection. The newly created association
is added to the database explorer and opened in the editor area.

Figure B.9: Association Wizard

Browsing a Collection Member

Collection members are shown in the database explorer if the collection node is expanded.
Members of unary collection can be opened in the editor area with a double click. The
members are presented in object editor windows as shown in figureB.10.
The object editor has different areas and sections. The title area displays the attribute value



74 B.4. BROWSING AND UPDATING THE DATABASE

Figure B.10: Object Editor

chosen for the parent collection. Below a hyperlink to the type of the object is provided. The
‘Attributes’ section shows all attribute values of the object whereas all collections where this
object is member, are listed in the ‘Collections’ section. The ‘Links’ section shows how this
object is related to other database objects and the ‘Methods’ section presents all methods that
can be executed on this object.

Creating a Collection Member

In order to create a new collection member either the ‘New’ button in the collection extent
section of the collection editor can be pushed or the ’New→ OMS Collection Member’ on a
collection in the database explorer can be selected. This action does not need a wizard. The
object is directly created and added to the collection where it was created. The newly created
object is opened in the editor area.

Editing Attribute Values

The ‘Attributes’ section in the object editor allows editing of all attribute values of an object.
Depending on the type of the attribute, the section offers a different form entry for displaying
and editing the attribute value. If it is not clear what kind of type an attribute has, the user can
move the mouse over the attribute label and a tool tip appears indicating the attribute type.
Simple text values such as for example string, integer or real values are displayed in a com-
mon text field which can be directly edited. Attributes of type ‘date’ offer an additional
calendar to pick a date. If no time is indicated, the time value is set to ‘12:00 AM’ by default.
Attributes of type ‘uri’ offer a button to browse the local file system. If the attribute represents
a database object, the user can choose an appropriate object from a list dialog.
Structured attributes and bulk attribute values provide a context menu for the editing process
by clicking the right mouse button on the attribute field. An additional dialog is opened to
change or add new attribute values.



APPENDIX B. USER MANUAL 75

Accessing URIs

Attributes of type ‘uri’ can be accessed by clicking on the attribute label which is in this case
a link . For ‘http’ entries the system’s standard browser is opened whereas for ‘mailto’ entries
the standard mail program is activated. Image files are shown in an appropriate application if
the file path is absolute.

Adding an Object to another Collection

There are two possibilities to add an object to another collection. The first possibility is to
open the collection to which the object should be added in the collection editor and then
click the ‘Add’ button. A list dialog presents all objects that have the same type as the target
collection and that are not yet member of the collection. The dialog is shown in figureB.11.
The objects that are selected are subsequently added to the collection.

Figure B.11: Adding Objects to a Collection

The second possibility is to use drag and drop by dragging objects from the database explorer
into the collection extent table in the collection editor. In this case it is also possible to add
members of a sub- or supertype of the collection membertype. The drag and drop process is
shown in figureB.12.

Adding a Link between Two Objects

The easiest way to establish a link between two objects is to open one of these objects in the
object editor and to make use of the ‘Links’ section. Every link table in the ‘Links’ section
offers a context menu which allows to add a new link. A list dialog provides all objects of the
target collection to choose from.
Another possibility is to use drag and drop. If a binary collection is open in the collection
editor, one object that is member of the source collection and one object that is member of
the target collection can be selected in the database explorer. Dropping these objects on the
collection extent of the binary collection, adds a new binary collection member. If the source



76 B.4. BROWSING AND UPDATING THE DATABASE

Figure B.12: Adding Objects to a Collection using Drag&Drop

and the target collection are identical, a dialog appears to let the user decide which object to
take as source object. FigureB.13visualises the process.

Figure B.13: Adding Objects to a Binary Collection using Drag&Drop

Removing Collection Members

Collection members can be removed from a collection either using the corresponding action
in the context menu of the collection editor or in the database explorer. It is possible to remove
more than one object at the same time using the collection editor.

Browsing Types

The database explorer provides access to user and system types. To open a type object it can
be double clicked and an object editor window shows up in the editor area. The editor window
provides the common ‘Attributes’ section, a ‘Supertype’ and a ‘Subtype’ section to view, add
or remove sub- and supertypes and a ‘Method’ section to add and remove new methods.

Creating Types

New object types are created using a the ‘Type’ Wizard shown in figureB.14.



APPENDIX B. USER MANUAL 77

Figure B.14: Object Type Wizard

To create instances of base types or structured types, no special wizard is available. The user
has to use the ‘New→OMS Object’ action in the database explorer on the ‘btype’ and ‘stype’
object respectively.

Browsing and Creating Macros

All user and system macros are listed in the database explorer. They can be opened in an
object editor window providing the ‘Attributes’ section. In order to execute macros, the
‘Attributes’ section offers a ‘Run’ button. Unfortunately the OMS front-end is not able to
show any side effects of the macro. It only indicates if the execution was successful or not.
To create a new macro the user can choose the ‘New→ OMS Macro’ action in the database
explorer. The newly created macro is directly opened in the editor area.

Browsing and Creating Methods

Methods are associated with object types, therefore they are listed in the database explorer
as child objects of the type object they belong to. New methods are created with the method
wizard presented in figureB.15.

Creating Objects

For the most frequently used database objects, special wizards are provided to create new
instances of these objects. All other kinds of objects can be created by using the ‘New→
OMS Object’ action which is provided in the context menu of the database explorer. The
action is enabled if it is called on an object type in the resource tree. As a result an object
based on the selected object type is created and opened in the editor area.

Retrieving Objects

Objects which are not listed in the database explorer tree can be retrieved by using the match
functionality possibly known from OMS Pro. On every object type a ‘Match’ operation can



78 B.4. BROWSING AND UPDATING THE DATABASE

Figure B.15: Method Wizard

be executed. All objects that are based on this object type are displayed in a view especially
opened for such a request. The view can be compared to the ‘Search’ view in the ‘Java’
perspective of Eclipse. Two different match result windows are presented in figureB.16.
By double clicking the objects listed in the match view table, they are opened in the editor
area and it is possible to edit their attributes. Depending on the kind of object, attribute
editing operations need to be executed carefully since the database might not be consistent
anymore after the editing process. For example if the user changes the source collection of
an association, the members of the associated binary collection might have the wrong format
and in this case it is no longer possible to open these objects.

Figure B.16: Two Match Result Windows

Deleting Objects

Any kind of database objects can be deleted using the context menu in the database explorer
or in some of the editor windows. If the user executes the ‘Delete’ action, the selected object
is deleted in the OMS database and it is removed everywhere in the OMS perspective.
To delete a database, a dialog is displayed which allows the user to choose if he just wants
to remove the database from the Eclipse environment or if the database should be deleted
entirely from the file system. For members of unary collections the user can choose between
the ‘Delete’ and the ‘Remove From Collection’ action. Choosing ‘Delete’ provokes the dele-
tion of the database object and additionally the database object is removed from all unary
collections it has been member. References to the object in binary collections or attribute



APPENDIX B. USER MANUAL 79

values need to be removed manually. The ‘Remove From Collection’ action only removes
the selected object from the corresponding collection without deleting it. Members of binary
collections cannot be deleted, but only removed from the collection.
If the user executes a ‘Match’ operation, all matching objects are listed in the ‘Match’ view.
The table in the match view offers a ‘Delete’ action as well, to allow the user to delete any
kind of database objects. If this delete action is used, the database object is deleted, but there
are no further delete operations to restore the database consistency and the OMS perspective
is not notified. Refresh operations have to be done manually.

Committing a Database

The context menu of the database explorer offers a menu entry to commit the currently open
database. The OMS console informs the user if the commit operation was executed success-
fully or not. If it failed, there is no possibility to find out why it failed.

Undoing Updates by Rollback

Any modifications since the last commit can be undone by choosing the ‘Rollback Database’
functionality in the context menu of the database explorer.

B.5 Querying the Database

The OMS front-end offers an AQL view which allows to query the database. In the OMS
perspective the AQL view is by default placed behind the console window. It can be activated
using the tab in the tab bar or if it is closed by choosing the ‘Window→ Show View→ AQL’
menu entry. The AQL window is shown in figureB.17.

Figure B.17: AQL View

Executing a Query

To execute a query the query text has to be entered in the text field on the left side of the
window. If more information is needed about how to write queries, please consult the OMS
Introductory Tutorial [7]. The ‘Run’ button executes the query and the result is displayed in
the table on the right side or the system informs the user that the execution of the query failed.
If the result consists of database objects, they can be opened with a double click.



80 B.5. QUERYING THE DATABASE

Setting the History Preference

The AQL view provides a history functionality which means that executed queries are stored.
These query statements can be retrieved using the arrow buttons to go back and forth in the
query list.
The AQL view has its own preference page (‘Window→ Preferences→ OMS→ AQL’)
which allows indicating how many queries should be available in the history list.



Acknowledgements

First of all, I would like to thank my supervisor Michael Grossniklaus for his valuable feed-
back, for reviewing my report and for the great effort he put intoOMSjp to make my front-end
work. Furthermore, I want to thank Prof. Moira C. Norrie for giving me the opportunity to
accomplish my diploma thesis in her group. I also would like to thank Ljiljana Vukelja for
her constructive comments on the user interface design and Olivier Jeger for helping me with
the design of the icons. Thanks to Rolf Bruderer, Olivier Jeger and especially Jean-Daniel
Merkli for kindly supporting me during this thesis. Finally, I am grateful to my parents for
their support in every respect.

81





Bibliography

[1] E. Clayberg and D. Rubel.Eclipse: Building Commercial-Quality Plug-ins. Addison-
Wesley, 2004.

[2] Eclipse.
http://www.eclipse.org .

[3] N. Edgar, K. Haaland, J. Li, and K. Peter. Eclipse User Interface Guidelines. February
2004.
http://www.eclipse.org/articles/Article-UI-Guidelines/
Contents.html .

[4] M. Grossniklaus. OMSjp: A Uniform Java Interface to Heterogenous OMS Platforms.
Technical White Paper, April 2004. Version 1.0.

[5] B. Majewski. A Shape Diagram Editor. December 2004.
http://www.eclipse.org/articles/Article-GEF-diagram-editor/
shape.html .

[6] M.C. Norrie. An Extended Entity-Relationship Approach to Data Management in
Object-Oriented Systems. InProc. 12th Int. Conf. on Entity-Relationship Approach.
Springer-Verlag LNCS 823, 1993.

[7] M.C. Norrie, A. Würgler, K. von Gunten A. Palinginis, and M. Grossniklaus. OMS Pro
2.0: Introductory Tutorial. Technical Report, March 2003.

[8] OMS - Object Model System.
http://www.oms.ethz.ch .

[9] OMSjp.
http://www.oms.ethz.ch/omsjp .

[10] SICStus Prolog.
http://www.sics.se/sicstus/ .

[11] D. Springgay. Using Perspectives in the Eclipse UI.IBM OTI Labs, August 2001.
http://www.eclipse.org/articles/using-perspectives/
PerspectiveArticle.html .

[12] TCL - Tool Command Language / Tk - User Interface Toolkit.
http://www.tcl.tk/software/tcltk/ .

83

http://www.eclipse.org
http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html
http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.oms.ethz.ch
http://www.oms.ethz.ch/omsjp
http://www.sics.se/sicstus/
http://www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html
http://www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html
http://www.tcl.tk/software/tcltk/


84 BIBLIOGRAPHY

[13] S. Tilkov. Eclipse Forms Programming Guide. February 2004.

[14] P. Zoio. Building a Database Schema Diagram Editor with GEF. September 2004.
http://www.eclipse.org/articles/Article-GEF-editor/
gef-schema-editor.html .

http://www.eclipse.org/articles/Article-GEF-editor/gef-schema-editor.html
http://www.eclipse.org/articles/Article-GEF-editor/gef-schema-editor.html

