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Abstract

In the first part of this thesis short fibre reinforced polymer composites have
been studied as examples for composites containing particulate inclusions. The
3D fibre orientation state was measured and computer models representing the
real microstructure of the material were generated. It was demonstrated that
with the finite element method (FEM) used very accurate predictions of the
effective elastic properties of these composites are possible.

The widely used in industry micromechanical models of Halpin-Tsai and
Tandon-Weng for unidirectional composites were compared to accurate direct
numerical predictions. It was shown that the Tandon-Weng approach gives rel-
atively better predictions. However, the accuracy of both models was demon-
strated to be not sufficient.

It was shown that the effect of arbitrary fibre orientation states, which can
be described by a series of orientation tensors, can be taken into account by
orientation averaging of results obtained by direct numerical predictions for
unidirectional composites. Comparison with direct numerical predictions for
the arbitrary fibre orientation state demonstrated the relatively good accuracy
of the orientationally averaged predictions.

In the second part of this work, two different composite materials with com-
plex interpenetrating microstructures have been studied: a melt processed com-
posite of 50 vol.-% low density polyethylene with 50 vol.-% phosphate glass
and a porous graphite infiltrated with approximately 15 vol.-% of an aluminium
alloy.

The microstructure of both materials has been measured with X-ray micro-
tomography. The resulting images were segmented to discriminate the different
phases of the composite. The three-dimensional tomography information has
been used to directly build 3-D finite element models. Linear brick elements
have been used. Effective materials properties have been calculated by a finite
element method (FEM).

The effective electrical conductivity of the low density polyethy-
lene/phosphate glass composites has been calculated as a test for the continuity
of the two phases. It was found that both phases are continuous.

Numerically calculated elastic properties are within the rigorous Hashin-
Shtrikman variational bounds. However, the experimentally measured stiffness
is much smaller. By studying local stresses that develop inside the structure
during cooling from production temperature to room temperature in a small
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Abstract

but significant number of elements relatively high tensile stresses were found.
This effect probably introduces damage in the stiff glass phase which results in
a lower than expected stiffness of the composite and in its high brittleness.

In the graphite/aluminium composites it was found that the representative
volume element for the electrical conductivity is very large. However, by calcu-
lating an ensemble average over a number of subvolumes accurate predictions
for the overall electrical conductivity could be made. By doing this, relatively
small models (100 × 100 × 100 voxels) were sufficient to get accurate results.
Therefore computing time could be kept relatively short.

An experimentally observed decrease in the electrical conductivity after a
cyclic thermal treatment could be reproduced in the simulation to some extent.
By filling the pores in the model of the thermally treated sample it was shown
that pores inside the conducting aluminium channels are responsible for the
drop in the electrical conductivity.

The numerically predicted Young’s modulus was smaller than the measured
values. A series of model calculations showed that the numerical results are
reasonable. It remains unclear why the measured stiffness is this high, as a
matter of fact far above the Hashin-Shtrikman variational bound. Possibly, the
materials parameters that were used for the calculations could not be determined
accurately enough.

Thermal conductivity and thermal expansion coefficient of the
graphite/aluminium composite have also been calculated. They were in
relatively good accordance with the experimental results.
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Zusammenfassung

Im ersten Teil dieser Arbeit wurden Kurzfaser-verstärkte Polymer Komposite
als ein Beispiel für Verbundwerkstoffe mit partikelförmigen Einschlüssen unter-
sucht. Der dreidimensionale Orientierungszustand der Fasern wurde gemessen
und Computer-Modelle erzeugt, die repräsentativ für die reale Mikrostruktur
des Materials sind. Es wurde gezeigt, dass mit der benutzten Finite Element
Methode (FEM) sehr präzise Voraussagen über die effektive elastischen Eigen-
schaften des Verbunds gemacht werden können.

Die beiden in der Industrie oft verwendeten mikromechanischen Modelle
von Halpin-Tsai und Tandon-Weng für unidirektionale Komposite wurden mit
präzisen direkten, numerischen Voraussagen verglichen. Es wurde gezeigt, dass
der Tandon-Weng Ansatz relativ bessere Voraussagen macht. Allerdings wurde
auch gezeigt, dass beide Modelle nicht ausreichend genaue Ergebnisse liefern.

Es wurde gezeigt, dass der Einfluss von beliebigen Faserorien-
tierungszuständen, wie sie durch eine Reihe von Orientierungstensoren
beschrieben werden können, mit Hilfe einer Orientierungsmittelung
berücksichtigt werden können, indem die Ergebnisse der direkten numerischen
Voraussagen für unidirektionale Komposite über die Orientierung gemittelt
werden. Der Vergleich mit direkten numerischen Voraussagen für die Strukturen
mit einem beliebigen Orientierungszustand hat die relaiv gute Genauigkeit der
mittels Orientierungsmittelung erhaltenen Voraussagen gezeigt.

Im zweiten Teil dieser Arbeit wurden zwei verschiedene Verbundwerkstoffe
mit komplexer interpenetrierender Mikrostruktur untersucht: ein aus der
Schmelze verarbeiteter Verbund von 50 vol.-% Polyethylen (LDPE) mit 50 vol.-
% Phosphatglas und ein poröser Graphit, der mit ungefähr 15 vol.-% einer
Aluminium-Legierung infiltriert ist.

Die Mikrostruktur der beiden Materialien wurde mittels Röntgen-
Mikrotomographie abgebildet. Die erhaltenen Schnittbilder wurden segmen-
tiert, um die verschiedenen Phasen des Verbunds zu trennen. Die dreidimen-
sionale tomographische Information wurde dann dazu verwendet, direkt 3-D
Computer Modelle zu erzeugen. Die effektiven Eigenschaften der Komposite
wurden mit einer Finite Element Methode (FEM) berechnet.

Die effektive elektrische Leitfähigkeit des Polyethylen/Phosphatglas Verbun-
des wurde berechnet, um die Kontinuität der beiden Phasen zu testen. Es hat
sich gezeigt, dass beide Phasen kontinuierlich sind.

Die numerisch berechneten elastischen Eigenschaften liegen innerhalb der
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Zusammenfassung

strengen Hashin-Shtrikman Grenzen. Die experimentell gemessene Steifigkeit
hingegen ist deutlich kleiner. Die Berechnung der lokalen thermischen Span-
nungen, die beim Abkühlen von der Herstell- zu Zimmertemperatur auf gebaut
werden, zeigte dass in einer kleinen aber signifikanten Zahl von Elementen rel-
ativ hohe Spannungen auftreten. Wahrscheinlich führen diese zu Schädigungen
in der steiferen Glas-Phase, was zu einer Komposit-Steifigkeit, die kleiner als
erwartet ist, und zu einer grossen Sprödigkeit führt.

Für die Graphit/Aluminium Komposite wurde festgestellt, dass das
repräsentative Volumenenlement für die elektrische Leitfähigkeit sehr gross ist.
Andererseits konnten durch die Berechnung von Ensemble-Mittelwerten von
einer Anzahl Subvolumen zutreffende Voraussagen für die effektive elektrische
Leitfähigkeit gemacht werden. Es war daher ausreichend, Berechnung mit rela-
tiv kleinen Modellen (100×100×100 Voxel) zu machen, um korrekte Ergebnisse
zu erhalten. Die benötigte Rechenzeit konnte daher relativ kurz gehalten wer-
den.

Die experimentell beobachtete Abnahme der elektrischen Leitfähigkeit nach
einer zyklischen Wärmebehandlung konnte in der Simulation bis zu einem
gewissen Grad reproduziert werden. Durch das Auffüllen der Poren in der
wärmebehandelten Probe konnte gezeigt werden, dass Poren in den leiten-
den Aluminiumkanälen für die Abnahme der elektrischen Leitfähigkeit verant-
wortlich sind.

Der numerisch vorausgesagte Elastizitäts-Modul war deutlich kleiner als die
gemessenen Werte. Eine Reihe von Modellrechnungen hat gezeigt, dass die
numerischen Ergebnisse vernünftig sind. Es bleibt unklar, warum die gemessene
Steifigkeit so gross ist, nämlich sogar deutlich grösser als die obere Hashin-
Shtrikman Grenze. Möglicherweise konnten die Materialparameter, die für die
Berechnung verwendet wurden, nicht genügend genau bestimmt werden.

Die Wärmeleitfähigkeit und der Wärmeausdehnungskoeffizient der
Graphit/Aluminium-Komposite wurde berechnet. Sie stimmten gut mit
den experimentell gemessenen Werten überein.
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1 Introduction

Numerical prediction of the effective properties of composite materials has be-
come increasingly popular and has found more and more widespread application
during recent years. For particulate composites with inclusions such as spheres,
fibres, or platelets a finite element method (FEM) to predict their properties
has been developed in recent years. [1–3] The method uses a biased Monte
Carlo method to generate 3D computer models of particulate composites (i.e.
containing inclusions in the form of spheres, fibres, platelets, etc.). Efficient
meshing algorithms are used to generate morphology adaptive quality meshes
under periodic boundary conditions.

The accuracy and applicability of this method is studied here by applying it
to short fibre reinforced polymer composites (Ch. 3). The study was performed
in collaboration with Dr. Peter J. Hine, University of Leeds, UK and Dr. Hans
Rudolf Lusti, ETH Zürich. A special image analysis technique developed at
Leeds allows to determine the 3D fibre orientation state in real fibre reinforced
polymer samples. [4] Our finite element method is then used to generate com-
puter models that represent the measured fibre orientation distribution and to
compare the predicted thermoelastic properties to experimental values. [5–7]

Having validated the accuracy of our direct numerical prediction against ex-
perimental data, in a subsequent step the accuracy of some widely used mi-
cromechanical models such as the Halpin-Tsai and the Tandon-Weng model are
investigated. [8]

The orientation state of misaligned (i.e. not unidirectional fibres) is concisely
described by orientation tensors. We study whether orietational averaging of
the thermoelastic properties leads to accurate predictions by comparing the
orientational averaged predictions to direct numerical predictions. [9]

The described finite element method has also been successfully applied to a
number of other problems found in particulate composites. [1, 2, 10–18]

Considering more complex microstructures that do not consist of particulate
inclusions but are for example of a interpenetrating network type of structure we
found that the above-mentioned method of microstructure generation reaches
its limits. The biased Monte Carlo procedure cannot be applied to realise such
microstructures. Therefore it is essential to find another approach to generate
computer models of the microstructure of such composite materials. A possible
approach is to use modeling methods such as self consistent field theory (SCFT)
[19]. Another approach, which is followed in Ch. 7 and Ch. 8 is to image the real
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1 Introduction

3-D microstructure of a composite material either by serial sectioning [20] or by
3D X-ray microtomography [21,22]. This method allows to get microstructural
information of a composite material with micrometer resolution. From this
information it is possible to directly realize 3D microstructural models of the
composite.

Two examples of composite materials with complex microstructure have been
studied in the present thesis. They cover a wide range of materials classes from
polymers to metals. The first example is a composite of low density polyethlyene
(LDPE) with a phosphate glass (Pglass) with low glass transition temperature.
In this thesis this material is called LDPE/Pglass hybrid. The two phases are
in a 1:1 volume fraction. This material was studied in collaboration with Prof.
Joshua Otaigbe and co-workers of the University of Southern Mississippi, USA.
Results on this material can be found in Ch. 7.

The second example was studied in collaboration with Thomas Etter and
Prof. Petter Uggowitzer of the Laboratory for Metal Physics and Technology
of ETH Zürich. Porous graphite was infiltrated with a melt of an aluminium
alloy. The metal volume fraction is 15 %. Details are discussed in Ch. 8.

X-ray microtomography data was used to build 3-D computer models of the
composites. Effective materials properties such as electrical conductivity and
Young’s modulus are predicted by a finite element method.

2



2 The Finite Element Method

2.1 Types of Meshes

Meshes for Finite Element Models can be constructed in two principally different
ways. So-called unstructured meshes do not have a regular structure but they
are usually adapted to the microstructure investigated. Grids, which one could
call “structured meshes” as opposed to unstructured meshes, constitute of a
regular arrangement of cubic (or cuboid) elements irrespective of the specific
microstructure studied.

2.1.1 Unstructured Meshes

In the past, because of restricted computer memory available, but also for lim-
iting computational time regarding the limited processor speed of those days,
it was an important issue in the field of finite elements to optimize the num-
ber of elements used for calculations. Much effort was therefore put in writing
effective meshing algorithms that generate FE meshes that allow to make accu-
rate predictions of effective properties based on a minimal number of elements
thus saving computational resources. A method has been developed that uses
morphology adaptive tetragonal meshes to predict the effective mechanical and
physical properties of particulate composites, i.e. composites comprised of e.g.
spheres, spheroids, short fibres, or platelets in a matrix material. [1, 2, 10]. The
method has been verified and successfully applied to a large number of different
systems [5–9,12, 14, 15, 18]. It has also been made commercially available [23].

The use of unstructured morphology adaptive meshes has, however, a big
drawback. The meshing algorithms used are sophisticated and optimized to
achieve good results for a specific type of inclusion. In principle, it is possible
to write such a meshing algorithm for every specific type of microstructure one
would like to investigate. However, since this is a time consuming task, it may
not be advisable to do so. It would be useful to have a generally applicable
method.

2.1.2 Grids

More complex microstructures, as compared to particulate ones, are of great
scientific and technological interest. Such microstructures are for example block

3



2 The Finite Element Method

copolymers, interpenetrating networks (IPN), or foams. They possess interest-
ing mechanical and / or physical properties. It is advantageous to predict their
material properties numerically in order to guide the material development.
However, the generation of unstructured meshes for such microstructures is ei-
ther inefficient or even impossible with the existing meshing algorithms. One
would therefore be forced to adapt or newly develop the meshing algorithm for
each type of microstructure.

A straight-forward way to circumvent the aforementioned problem is to use
grids, i.e. regular cubic meshes. It is obvious that in order to reproduce arbitrary
microstructures accurately one should use a high grid resolution. This in turn
results in a high number of elements for the calculations.

3-D models of complex microstructures can be acquired either through mod-
eling (e.g. Self Consistent Field Theory SCFT [19]) or experimentally by 3-D
imaging methods such as X-ray microtomography. These methods generically
produce model data in a grid format. Hence, the microstructural information
can directly be used to build a grid-based FE model.

Clearly with this approach we save resources on the model building side, but
we need more computing resources for the property calculations because the
number of elements in the model is much larger than with unstructured meshes.

The FE model was implemented on a cubic grid of serendipity family linear
brick elements (Fig. 2.1) [3, 24].

Figure 2.1: Eight-noded linear brick element of the serendipity family of elements.
From Ref. [24]

4



2.2 Effective Materials Properties

2.2 Effective Materials Properties

After creating the FE model, be it with an unstructured mesh or be it on a
grid, materials properties corresponding to the respective phase of the element
are assigned to each element. Within one element the properties are uniform.

The overall effective properties of a composite material are determined by
applying a certain perturbation to the model and then calculating the mate-
rial’s response to that perturbation numerically by a variational formulation FE
method.

For calculating the effective electrical conductivity of a composite, for exam-
ple, an external electrical field is applied. Then the Laplace equation

divσ(r)gradφ = 0 (2.1)

for the unknown nodal potentials is solved by minimizing the total electri-
cal energy of the system in the presence of the field by a conjugate gradient
method. [25] At the energy minimum the nodal potentials are uniquely defined
and the local current within each element can be calculated. The effective con-
ductivity of the composite is then extracted from the linear response relation
between the overall current and the applied electric field. The complete electri-
cal conductivity tensor can be retrieved by successively applying the field in the
x-, y-, and z-direction, respectively [2].

With the same method other properties that are governed by the Laplace
equation (eq. 2.1) can be calculated, e.g. the overall effective heat conductivity,
the effective dielectric constant, or the effective gas permeability [2, 12].

The overall effective thermo-elastic properties (elastic constants and coef-
ficient of thermal expansion) are calculated with a displacement-based linear
elastostatic solver. Again a perturbation is applied, which, in this case, is a
constant effective mechanical backstrain εkl. The solver finds a set of nodal
displacement that minimizes the system’s total strain energy in the presence
of the backstrain. For the minimization a conjugate gradient method is used
again. [25]

With the nodal displacements of the minimal strain energy conformation also
the local strains in each element are known. From this the local stresses can be
calculated by using the local elastic constants of the elements.

The overall effective elastic constants Cijkl of the composite are calculated
from the linear response relation

σij = Cijklεkl (2.2)

In order to determine the 21 independent components of the effective stiffness
tensor Cijkl six different strain states are applied and the elastic energy min-
imized for them (tensile strains in the three main axes directions and shear
strains in the three main plains).

5



2 The Finite Element Method

For calculating the overall effective thermal expansion coefficient a pertur-
bation corresponding to a temperature change of 1 K is applied. At the same
time an effective volume change is constrained such that the effective mechani-
cal strain is zero (εkl = 0). The strain energy is minimized as before and from
the minimum strain energy state the effective thermal stress σT

ij is calculated.
By using the effective stiffness tensor Cijkl calculated above or its inverse the

effective compliance tensor Sijkl = C−1
ijkl and the relation

αij = C−1
ijklσ

T
kl = Sijklσ

T
kl (2.3)

the six independent components of the overall effective thermal expansion coef-
ficient αij can be determined. [26]

6



3 Short Fibre Composites

3.1 Introduction

Fibre reinforcement is a well-known method of improving the mechanical prop-
erties of polymeric materials. The traditional continuous fibre reinforcement
requires elaborate, labour-intensive, and time-consuming winding or laminating
techniques. Hence, the manufacturing process is expensive and only applicable
for small part numbers. The use of short fibre reinforced polymers, however,
allows to manufacture large numbers of parts with complex geometries. Exist-
ing processing equipment for thermoplastic materials can be used to injection
mould, compression mould, or extrude such composites. Injection moulding is
a fast and highly automatized way of producing parts with complex geometries.
Fig. 3.1 shows the example of a clutch pedal produced by injection moulding of
a short glass fibre reinforced nylon6.

It is therefore suitable for producing large numbers of parts in a cost-efficient
way. As reinforcing fibres mainly glass fibres are used but the use of carbon
fibres is also increasing. Typical injection moulded short glass fibres are 10µm
in diameter and 100 − 400µm in length. Thus the fibre aspect ratio (ratio of
length to diameter) is 10 − 40. Usual fibre contents are 5 − 15 vol.%.

The properties of short fibre reinforced composites can vary widely from
isotropic (for a 3D random arrangement of fibres) to highly anisotropic (for
fully aligned fibres). It is therefore essential to account for the fibre orientation
in the design process of short fibre reinforced parts.

Commercial mould filling simulation softwares (e.g. Moldflow or Sigma-

Figure 3.1: Injection moulded clutch pedal made of short fibre reinforced nylon6. [27]

7



3 Short Fibre Composites

soft/Magmasoft) are used to design the moulds and determine the processing
parameters for injection moulding. They can simultaneously predict the local
fibre orientation state in the finished part after cooling (Fig. 3.2). [27–30] The
resulting predictions are in remarkable agreement with experimentally measured
fibre orientation states. [27]

Based on the fibre orientation it is possible to calculate the local thermoelastic
properties. This can then be used as input for the structural finite element
analysis (using software such as Ansys or Abaqus) to determine the mechanical
properties (stiffness, deformation, etc.) of the complete injection moulded part.

All presently available mould filling simulation softwares use a two-step ap-
proach for predicting the local thermoelastic properties. First, the properties
of a uniaxially aligned composite are calculated based on one of the microme-
chanical models (e.g. Halpin-Tsai or Tandon-Weng). Second, the properties of
the composite with fully aligned fibres are used to predict the properties of the
composite with an arbitrary fibre orientation state by orientation averaging. [31]

The finite element method of Gusev [1, 2] allows to make direct numerical
predictions of the thermoelastic properties of composites with a defined arbitrary
fibre orientation state. It is therefore ideally suited to check the accuracy of the
two-step procedure described above.

Overall this means that by designing the mould form and filling parameters
one controls the local fibre orientation states. And this again is responsible for
the macroscopic properties of the finished part. Because injection moulds are

Figure 3.2: Example output of mould filling simulation with predicted local fibre
orientations. [30]

8



3.1 Introduction

very expensive it is cost saving to apply a rational computer assisted design
process rather than a experience-based trial and error approach.

In this chapter the application of the finite element method of Ch. 2 to short
fibre reinforced composites is studied. First, arrangements of fully aligned fibres
are used to investigate the influence of the fibre length distribution. Then, the
effect of fibre misalignment is taken into consideration. Numerical predictions
are compared with experimental results and with results calculated by some
widely applied micromechanical models. Finally, a two step procedure is pro-
posed that gives accurate predictions for arbitrarily oriented short fibres. The
first step is to numerically predict the properties of composites with fully aligned
fibres by using the finite element method. These results are then used in a sec-
ond step to calculate the orientation average for composites with an arbitrary
fibre orientation.

Figure 3.3: Computer assisted design process for short fibre reinforced polymer
parts.

9



3 Short Fibre Composites

3.2 Validation

It has been shown that the spatial distribution of fibres in a unidirectionally
aligned fibre composite has a significant influence on the elastic properties. Es-
pecially, the transverse packing of fibres needs to be considered in order to make
accurate predictions of the transverse elastic constants. The numerical method
of Ch. 2 was found to make the best predictions compared with experimental
data. [11]

Here, the application of the FEM of Ch. 2 to short fibre reinforced composites
is studied. Considering short fibre composites some additional parameters need
to be considered, e.g. fibre length distribution (FLD) and fibre orientation
(distribution).

3.2.1 Fibre Length distribution

Tucker and Liang reviewed the predictive capability of some commonly used
micromechanical models. [32] The aim was to predict the properties of the com-
posite unit, that is a representative volume element that can subsequently be
averaged to reflect fibre length and orientation distributions of a real material.
The fibre length aspect is usually addressed by replacing the FLD with some
sort of mean length. A number of proposals for this ”mean length” have been
published for special fibre orientation states. Takao and Taya [33] and Halpin
et al. [34] concluded that the number average length

LN =

∑
Ni · Li∑
Ni

(3.1)

of a distribution was an appropriate value. Eduljee and McCullough [35] sug-
gested a different value, namely

LS =

∑
Ni∑ Ni

Li

(3.2)

to take into account the skewed nature of real FLDs, in particular to give a
heavier weighting to shorter fibres. The RMS (Root Mean Square) number
average

LRMS =

√∑
Ni · L2

i∑
Ni

(3.3)

has also been suggested as a possible descriptor of the FLD. The weight average

LW =

∑
Wi · Li∑
Wi

(3.4)
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3.2 Validation

was also included in the study for reasons of completeness. It would seem,
therefore, that there is merit in being able to model an assembly of fibres with a
’real’ FLD, in order to establish whether the distribution can be replaced by one
of the above mean values in order to establish what McCullough [35] describes as
’the appropriate statistical parameters to represent the microstructural features
of the composite’.

The aim of the current work, was therefore, to assess the numerical proce-
dure of Ch. 2 in order to establish whether it has any merit over the current
physical and phenomenological models. The advantages of the new approach
are expected to be due to determining the properties of an assembly of fibres,
giving the opportunity to incorporate fibre length and orientation distributions,
the chance to have isotropic or anisotropic phases (most other models can only
deal with isotropic phases); the possibility of combining different reinforcement
shapes (cylinders, particles, plates etc) and even the possibility of studying lay-
ered structures.

The approach taken here was to start with simple microstructures and in-
crease the complexity up to that seen in a real material. Unfortunately the
simplest systems (i.e. aligned monodispersed length fibres) are the most diffi-
cult to manufacture. Simulations were carried out to look at the effect of fibre
length distribution. Image analysis measurements of a typical FLD from an in-
jection moulded plate were used to seed the Monte Carlo procedure, producing
simulations with an equivalent FLD. Results from these runs were compared to
runs carried out using assemblies of monodispersed length composites to assess
whether the length distribution could be replaced by a single length. For the
simulations presented in this paper, both phases were chosen to be isotropic,
with short glass fibres in a typical isotropic thermoplastic.

Numerical

Direct finite-element calculations of three-dimensional multi-inclusion models
were done under periodic boundary conditions in an orthorhombic periodic box.
All computer models comprised fibres perfectly aligned along the x-axis of the
periodic box and placed on random positions using a Monte-Carlo(MC) algo-
rithm [1]: a typical example is shown in Fig. 3.4. For monodispersed fibres
the aspect ratio of the box, a/b, was set to 7.5 where a is the box dimension
in the x-direction of the coordinate system and b in the two lateral directions
y and z (Fig. 3.4). The computer models comprising fibres with a distribu-
tion of lengths had to be generated in a more elongated periodic box of aspect
ratio 25 due to the fact that fibres must not be longer than the box because
this would imply self-overlaps under periodic boundary conditions. Previously,
it was checked with monodispersed fibres that numerical predictions are not
influenced by changing the box aspect ratio from 7.5 to 25.

11



3 Short Fibre Composites

In order to generate computer models that behave homogeneously and de-
liver accurate overall composite properties the minimum representative volume
element (RVE) was investigated. [1, 36] Computer models with 5 different sizes
of the periodic box all comprising a random dispersion of 1, 8, 27, 64 and 125
aligned fibres with aspect ratio 30 and volume fraction 0.15 were created. For
each box size three MC-runs were performed and delivered three different fibre
arrangements. The elastic properties of each set of three computer models with
a particular size were calculated numerically and from the results the arithmetic
mean and the 95% confidence interval were determined. Fig. 3.5 shows that for
the Young’s modulus E11 with 30 fibres one can already get predictions deviating
only a few percent from the true value provided that one averages the results of
three individual calculations (the 1 direction here is the direction of fibre align-
ment, the x-axis of Fig. 3.4: the 2 axis is perpendicular to this and corresponds
to the y and z axes in Fig. 3.4). In the case of larger computer models com-
prising 125 fibres the individual predictions for the different MC-configurations
show hardly any scatter. Consequently, it was decided to generate computer
models comprising 100 fibres and to obtain the effective elastic properties for
composites with a monodispersed fibre length from one single MC-configuration.

However, in the case of polydispersed fibres the distribution of fibre length was
sampled in three MC-runs in order to approximate the measured distribution
reasonably well. First, the measured distribution of fibre length was transformed
into the cumulative probability density function. This function allowed to sam-
ple the distribution of lengths by generating 100 random numbers in the interval
[0,1] and to determine the corresponding fibre lengths before the 100 fibres were
put into the periodic box on random positions without overlaps (see Fig. 3.4).

Figure 3.4: Orthorhombbic periodic box containing 100 perfectly aligned fibres with
different fibre lengths received by sampling a measured distribution in a Monte Carlo
run.
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3.2 Validation

Figure 3.5: Predictions for the longitudinal Young’s modulus E11 depending on the
size of the computer models (number of fibres). The black circles indicate the arith-
metic mean of three individual estimates and the error bars show the 95% confidence
interval.
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3 Short Fibre Composites

In each of the three MC-runs this procedure was repeated using a different seed
for the random number generator and consequently MC-configurations with dif-
ferent FLDs resulted. Averaging the distributions of three individual MC-runs
approximated the experimentally measured FLD reasonably well (see Fig. 3.6).

Results and Discussion

The distribution of fibre lengths that are normally present in a real material
is an aspect of short fibre composites which can be difficult to address analyt-
ically. The most popular approach is to replace the FLD with a single length,
normally the number average length. The numerical simulation offers the chance
to establish if this approach is valid.

As a first step, additional simulations were run using monodispersed distri-
butions up to an aspect ratio of 50. The results are shown in Fig. 3.7, with
the diamonds representing individual runs at that aspect ratio, and the solid
line the best fit through all the data. The random nature of the generated
microstructures is reflected by the scatter of the points around the best fit line.

The next stage was to carry out numerical runs using a distribution of fibre
lengths. In order to be representative, a real data set, measured using the im-
age facilities developed at the University of Leeds, was used as the basis of the
simulations. [37] The measured data for 27’500 fibres, collected by Bubb from
an injection moulded short glass fibre filled plate, [38] is shown in Fig. 3.8. For

Figure 3.6: Probability density distribution of fibre lengths after 3 MC-runs shown
as a bar plot. The black line indicates the measured length distribution.
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this non-symmetrical distribution the number average length was determined
as 388µm and the weight average length as 454µm. Using a fibre diameter
of 10µm gives aspect ratios of 38.8 and 45.4 for the length and weight aver-
ages respectively. As described earlier, the measured FLD was used to seed the
Monte Carlo runs, and as shown in Fig. 3.6, the agreement between the gen-
erated length distribution and the measured one was excellent. The generated
microstructures, with the polydispersed length distribution, were then used to
determine the longitudinal modulus, E11.

The question to be answered is what is the length of a monodispersed distribu-
tion, which would have the same longitudinal modulus as the ’real’ distribution?
Fig. 3.9 shows a comparison of the values from the monodispersed and poly-
dispersed distributions. The horizontal lines show the band of predictions from
three polydispersed MC runs, in this case 10.9±0.1 GPa. The diamonds in Fig.
3.9 show the predictions from the monodispersed distributions at each particular
aspect ratio. Where the best line fit through the diamonds crosses the horizontal
lines, gives the aspect ratio which would fit the real distribution, which for this
set of data was 36.6± 2.5. The first column of Table 3.1 shows a comparison of
this aspect ratio with various measures of the distribution, namely the number
and weight average aspect ratios, the RMS number average aspect ratio, and the
skewed number average aspect ratio proposed by Eduljee and McCullough. [35]
It is seen that the number average gives the closest agreement, although the
value lies between the number average and skewed number average.

Figure 3.7: E11 vs. aspcect ratio for a volume fraction of 15%: simulations used a
single aspect ratio. The solid line is a best fit through all data.
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3 Short Fibre Composites

Figure 3.8: Experimentally measured fibre length distribution (FLD) from Bubb
[38].

Figure 3.9: A comparision of predictions of E11 for a distribution of fibre lenghts
and single length predictions – fibre diameter = 10µm.
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To explore different regions of the modulus vs. aspect ratio curve shown in
Fig. 3.7, other aspect ratio distributions were generated by using the length
data in Fig. 3.8 but with different fibre diameters of 15, 20 and 25µm. Fig.
3.10 shows the aspect ratio distributions for fibre diameters of 10µm (as used
so far) 15 and 20µm: as the fibre diameter is increased the distribution is
pushed to lower aspect ratios. As above, the single length needed to match the
modulus of the ’real’ distribution was determined for each distribution. The
results, in comparison with the same measures as before with a fibre diameter
of 10µm, are shown in Table 3.1 and Fig. 3.11. While one single measure of the
shape of the distribution does not fit exactly with the value derived from the
numerical procedure, the number average aspect ratio appears to be the best
choice to cover the whole range of likely aspect ratios. This result explains why
this measure of the shape of the length distribution has proved so successful,
although until this point there has been little justification for its use.

3.2.2 Effects of Fibre Misalignment

After having studied composites with fully aligned fibres and the effect of fibre
length distribution, the second topic to be addressed is fibre misalignment. In
a real short fibre composite the fibres are never perfectly aligned. It is therefore
important to test whether the numerical approach can well handle the effect of
misaligned fibres.

Figure 3.10: Fibre aspect ratio distributions for a diameter of 10, 15 and 20µm.
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Table 3.1: A comparison of the single aspect ratio which matches the modulus of
the real distribution with various parameters to describe the real distribution, for
different fibre diameters.

Fibre diameter [µm] 10 15 20 25
Single aspect ratio
to match the
distribution modulus 36.6 ± 2.5 24.3 ± 1.4 20.7 ± 0.5 15.8 ± 0.5

Number average
aspect ratio 38.8 25.9 19.4 15.6
Weight average
aspect ratio 45.4 30.2 22.7 18.1
RMS number average
aspect ratio 41.9 28.0 21.0 16.8
Skewed number average
aspect ratio
after McCullough [35] 33.2 22.1 16.6 13.3

Figure 3.11: A comparison of the monodispersed aspect ratio which best fits the
polydispersed distribution (diamonds) and the various distribution averages.
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Table 3.2: Elastic and thermoelastic properties of polypropylene and glass fibres that
were used to calculate the overall properties of short glass fibre reinforced composites
both numerically and by the use of micromechanical models.

Polypropylene Glass fibres
E [GPa] 1.57 72.5
ν 0.335 0.2
α [10−6K−1] 108.3 4.9

Experimental

Dumbbells of 80 mm length with a gauge length of 25 mm and gauge diameter
of 5 mm were injection moulded by conventional and shear controlled orien-
tation injection moulding (SCORIM) using a mould gated at both ends. [39]
The first set of samples was produced by conventional injection moulding where
the polymer/glassfibre melt was injected into the mould through one gate of
the mould before the sample was cooled down. For the second set of samples
the shear controlled orientation moulding process (SCORIM) developed at the
University of Brunel was used. Again the polymer/glassfibre melt was injected
through one gate but during cooling of the sample, the polymer melt contain-
ing the glass fibres was forced back and forth through the mould cavity using
both gates of the mould. Due to the additional shear forces experienced by the
melt during the SCORIM process, the fibres are more highly aligned along the
dumbbell axis than in conventional injection moulding.

The material used was a glass-fibre-polypropylene granulate from Hoechst,
Grade G2U02, containing 20 wt.% of short fibres. The polypropylene was an
easy flowing injection moulding grade with a melt flow index (MFI) of 55. Spec-
ifications of the elastic and thermoelastic properties of the polypropylene matrix
and the glass fibres are listed in Table 3.2. The degree of fibre orientation in each
of the types of injection moulded sample was measured on a two-dimensional
longitudinal cut through the axis of the central gauge length section, using an
image analysis system developed at the University of Leeds. [40] The orientation
in both samples was found to be non-uniform with a well aligned shell region
around a central, less well aligned, core. This pattern of fibre orientation was
found to be symmetric about the centre line of the section and consistent along
the gauge length.

Typical image frames (∼ 400 × 700µm) taken from the shell region of each
sample type are shown in Fig. 3.12: the injection, or 1 axis, is horizontal. It
is clear that in the SCORIM sample (Fig. 3.12 B) the fibres are more highly
aligned along the 1 axis compared to the conventionally moulded sample, which
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itself has a high preferential alignment. To compare with mechanical measure-
ments, the fibre orientation distributions for each gauge length cross section was
required. To produce this distribution, the 2D image analysis data was divided
into 10 strips across the sample diameter and then normalised in terms of the
appropriate angular area. As the distributions were found to be transversely
isotropic, for averaging purposes they can be described by only two orienta-
tion averages, 〈cos2θ〉 and 〈cos4θ〉. The measured values of these two averages
were 0.872 and 0.769 for the conventional moulding and 0.967 and 0.936 for the
SCORIM moulding, for the second and fourth orders, respectively.

In order to measure the fibre length distribution of the two samples the
polypropylene matrix was first burnt off at a temperature of 450℃ in a fur-
nace. The remaining glass fibres were spread onto a glass dish and their length
distribution was determined by image analysis. The burn off technique was also
used to confirm that the weight fraction of the fibres was 20%, giving a volume
fraction of 8% from a knowledge of the constituent phase densities.

The Young’s modulus E11, of the glass fibre reinforced samples was measured
in a tensile test at a constant strain rate of 10−3s−1. The sample strain was mea-
sured using a Messphysik video extensometer and 10 samples were measured for
each sample type. To determine the properties of the matrix phase, compression
moulded plates were made from pellets of the unreinforced polymer. The matrix
Young’s modulus was measured using the same technique as above, while the
Poisson’s ratio was determined using an ultrasonic immersion method.

Thermal expansion was measured for both composite samples and unrein-
forced polypropylene using a dilatometer by measuring the length change of the
samples for a temperature change from +10 to +30℃ both in the longitudinal
and the transverse direction of the dumbbells.

Figure 3.12: Typical image frames (700 × 530µm) from the shell region of the
samples’ gauge section. A and B show longitudinal cuts through the gauge section of
a conventionally (A) and a SCORIM (B) injection moulded dumbbell, respectively.
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Numerical

The computer models comprised 150 misaligned fibres of equal aspect ratio
randomly positioned in a cubic box at a volume fraction of 8%. For both the
conventional and the SCORIM moulded sample the length distribution of the
fibres was measured and the number average was assigned to all fibres in the
respective computer model. In the previous section (Sec. 3.2.1) it was shown
that the number average is the best choice to substitute a length distribution
by a single fibre length. For the conventionally moulded sample the average
length was 448µm whereas for the SCORIM sample it was slightly smaller with
427µm. The diameter of the glass fibres was measured as well and found to be
12µm in both samples. The specification of the number of fibres, their length
and diameter determines the total fibre volume in the computer model and
as it is known that the fibre volume fraction is 8% the length of the periodic
cubic box is fixed. The orientation of each fibre was determined individually
by sampling the fibre orientation distribution (see Fig. 3.13) with a Monte-
Carlo algorithm giving one of two angles necessary to define the orientation of
a fibre. For this purpose, the measured frequency distribution of the angle θ
was transformed into the cumulative probability density function so that to any
number in the interval [0,1] a unique angle θ is asigned. During a Monte-Carlo
run the cumulative probability density function was sampled with 150 random
numbers in the interval [0,1] and each fibre was assigned a value for the angle
θ. Assuming that the angle φ is homogeneously distributed in the intervall
[0◦, 360◦] which means that the gauge section of the dumbbell is transversely
isotropic another 150 random numbers were necessary to randomly determine
the second angle φ.

After having specified length, diameter and orientation of all 150 fibres they
were successively positioned in the periodic box. Again by using random num-
bers the fibres were inserted at random positions into the periodic box and a
subroutine checked for overlaps with already positioned fibres. If overlaps oc-
cured the position was rejected and the algorithm repeated the procedure until
the fibre could be placed without overlaps and until all fibres were placed in the
periodic box. Because the fibres were misoriented it was impossible to randomly
place the fibres without overlaps even at the relatively small volume fraction of
8%. This problem was overcome by increasing the box size and inserting the
fibres at a dilute volume fraction of 0.1 vol.%. The box was then compressed
step-by-step during a variable-shape Monte-Carlo run to the desired volume
fraction of 8% keeping the fibre orientations constant while repeatedly displac-
ing each fibre in the box. In Fig. 3.14 examples of the computer models are
shown together with cuts through the finite element meshes. In order to ob-
tain information about the scatter of the numerical predictions three computer
models were generated for both the conventional and the SCORIM composite by
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sampling the measured θ-distribution with different seeds for the random num-
ber generator. By averaging the individual orientation distributions of the three
computer models the measured distribution was approximated more accurately
(see Fig. 3.13).

The 6 computer models (3 for the conventional and 3 for the SCORIM dis-
tribution) were meshed into unstructured, morphology-adaptive finite-element
meshes with the consistent use of periodic boundary conditions. [1, 2, 41] The
effective elastic properties are numerically calculated from the response to an
applied perturbation in the form of a constant strain. The task to solve is to find
a set of nodal degrees of freedom that minimize the strain energy. An iterative
conjugate-gradient solver with a diagonal preconditioner was used for the finite
element analysis. [1,25,41] The end criterion was the first residual norm to be re-
duced by a factor of 104 relative to its initial value. At the energy minimum the
local strains are known and allow to assemble the effective stress. The effective
elastic constants can then be calculated from the linear-elastic response equa-
tion. Six independent minimization runs with 6 different effective strains are
necessary to determine all 21 independent components of the stiffness matrix.

To obtain the effective thermal expansion coefficient local non-mechanical
strains corresponding to a temperature change of one degree are applied and
the strain energy is minimized as already described in the previous paragraph.
Calculating the effective thermal stress at the energy minimum and using the

Figure 3.13: The average θ-distribution of the fibres in three computer models
that were generated by sampling the measured θ-distribution (black line) during a
Monte-Carlo run shown for the conventionally moulded composite (left) and for the
SCORIM moulded composite (right). The angle θ characterizes the fibres’ misalign-
ments and the depicted measured distributions were obtained by averaging numerous
measurements that were done across longitudinal sections of the dumbbells’ gauge
length.
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Figure 3.14: On the left side snapshots of the 3D multi-fibre computer models are
shown for both the conventionally (top) and the SCORIM (bottom) composite. On
the right side longitudinal cuts through the finite element mesh of both computer
models are shown.
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effective elastic constants one can determine the 6 independent components of
the effective thermal expansion tensor. [2, 41]

The finite element meshes of all 6 computer models consisted of about 2.4×106

nodes and 15 × 106 tetrahedra. Calculations were done on a HP Visualize
J6700 Workstation with two PA-RISC 8700 processors and took between 20 and
30 h for 7 minimizations (6 minimizations to determine the elastic properties
and 1 minimization to determine the thermo expansion coefficients) on a single
processor.

Results and Discussion

In this section both experimental and numerical results for glass fibre rein-
forced polypropylene are presented and discussed by including different mi-
cromechanical models for comparison. Both experimental and numerical re-
sults of the Young’s modulus E11 in the longitudinal direction of the glass-
fibre/polypropylene dumbbell are listed in Table 3.3. The numerically calculated
Young’s modulus E11 is nominally higher than the measured value for both the
conventional and the SCORIM sample but the difference is less than 1% and
is well inside the error range of the measurements. Both the experimental and
the numerical values lie much closer to the upper bound predictions of the mi-
cromechanical models, confirming the well held belief that a state of constant
strain is the most appropriate for well aligned glass fibre reinforced polymers.
The Tandon and Weng model combined with the Ward approach for determin-
ing the aggregate properties gives an upper and a lower bound. The upper
bound is closest to the measured values slightly underestimating them by 1.5%
for both the conventionally and the SCORIM moulded samples, while the lower
bound is significantly lower. The upper bound of the McCullough model which
takes a combined approach for both the elastic and the thermoelastic proper-
ties gives quite accurate predictions, too. For the SCORIM sample, which has
the highest degree of fibre alignement, the upper bound of the McCullough ap-
proach differs by 1.7% from the measured value for the Young’s modulus E11

whereas for the conventional sample it is somewhat lower with a difference of
4.4%. It appears that this model looses accuracy the less well aligned the fi-
bres are, although the differences are small. The predictions of the combined
Cox-Wilczynski/aggregate approach shows larger deviations of around 8% from
the experimental values. Therefore this approach is less appropriate to accu-
rately predict the Young’s modulus E11 of composites with misaligned short
glass fibres.

Table 3.4 lists the results for the longitudinal thermal expansion coefficients α1

of the two glass-fibre/polypropylene composites. While the difference between
the measured values is somewhat larger than between the numerically calculated
ones, both measurements and simulations show the same trend, that is the con-
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Table 3.3: The Young’s modulus E11 in the longitudinal direction of both conven-
tionally and SCORIM injection moulded glassfibre/polypropylene dumbbell samples.

Young’s modulus E11 [GPa]
conventional SCORIM

Measured 5.09 ± 0.25 5.99 ± 0.31
Numerical 5.14 ± 0.10 6.04 ± 0.02
Tandon-Weng/Aggregate
Upper bound 5.01 5.90
Lower bound 3.78 5.48
McCullough
Upper bound 4.87 5.89
Cox-Wilczynski/Aggregate
Upper bound 4.70 5.44

ventional moulded sample has a larger thermal expansion coefficient α1 than the
SCORIM sample. Comparing our results for the longitudinal thermal expansion
coefficient α1 with micromechanical models first the Tandon and Weng/Takao
and Taya approach is considered. This model calculates the thermal expansion
coefficients of the perfectly aligned unit, so some form of orientation averaging
is required to calculate the properties of the aggregate. From the literature it
appears that there are two choices for determining the aggregate properties;
either carry out a simple second order average of the longitudinal and trans-
verse thermal expansion coefficients (i.e. αcomposite

1 = α1〈cos2 θ〉 + α2〈sin2 θ〉),
which ignores any elastic constraints, or try to include the elastic constraints
by using a modified laminate model (e.g. [34, 42]). The laminate approaches
assume that the composite material behaves as a biased laminate fabricated
from layers with the appropriate unit properties. The effects of misorientation
are then handled by placing the biased plies at the average orientation angle.
The results in Table 3.4 show, as might be expected, that ignoring the elastic
constraints (second order average only) leads to an overprediction of the thermal
expansion while the laminate approach tends to underpredict the thermal ex-
pansion by overemphasising the elastic constraints. When the fibres are highly
aligned, i.e. in the SCORIM sample, the two approaches converge and the
Tandon-Weng/Takao-Taya/laminate model gives quite an accurate prediction.
The McCullough model, which predicts values for the aggregate directly, delivers
values close to both measured and numerical values but like the Tandon-Weng/
Takao-Taya/laminate model it predicts a lower value of α1 for the conventional
than for the SCORIM sample which was not confirmed by either measurements
or by numerical simulations. The laminate theory also predicts a decrease of
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Table 3.4: Longitudinal and transverse thermal expansion coefficients of both con-
ventionally and SCORIM injection moulded glassfibre/polypropylene dumbbell sam-
ples.

Longitudinal thermal expansion
α1 [10−6K−1]
conventional SCORIM

Measured 32.9 ± 1.5 27.7 ± 1.7
Numerical 30.6 ± 1.0 29.3 ± 0.1
Tandon-Weng/Takao-Taya/aggergate 42.3 32.0
Tandon-Weng/Takao-Taya/laminate 26.3 29.4
McCullough 29.2 31.4

Transverse thermal expansion
α2 [10−6K−1]
conventional SCORIM

Measured 121 ± 2 121 ± 1
Numerical 115 ± 1 119 ± 0.1
Tandon-Weng/Takao-Taya/aggergate 115 120
Tandon-Weng/Takao-Taya/laminate 109 119
McCullough 118 121

the thermoexpansion coefficient α1 as the degree of fibre misalignment increases.
This effect is explained by the rapid increase of the in-plane shear modulus (G12)
with increasing degree of fibre misalignment [42]. Depending on the level of fibre
anisotropy and volume fraction, a minimum for the thermal expansion coeffi-
cient α1 might occur at a particular value of average fibre misalignment. Both
the measured and the numerically calculated thermal expansion coefficient α1

show the opposite behaviour, that is the conventionally moulded thermal expan-
sion is higher than the SCORIM sample, which is perhaps an indication that the
laminate and McCullough models overpredict the effects of elastic constraint.

For both sample types the same transverse thermal expansion coefficient
α2 = 121 · 106K−1 was measured. Numerical calculations delivered a lower
transverse thermal expansion coefficient α2 for the conventional compared to
the SCORIM sample, which is in harmony with all the micromechanical mod-
els. All micromechanical models in particular the Takao-Taya/aggregate model,
agree well with both the measured and the numerical values.

To summarise the results for both elastic and thermoelastic properties, it was
found that agreement between measurements and numerical simulations is excel-
lent, when the numerical simulations are based on the correct microstructure,
thus validating the numerical approach and demonstrating that it accurately
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predicts all elastic constants not only for idealized morphologies of aligned fi-
bres but also for morphologies containing imperfections like fibre misalignments.
Comparison with micromechanical models showed that the Tandon-Weng model
together with the upper bound from the aggregate approach is very accurate
in predicting the Young’s modulus E11, confirming the current published liter-
ature. For the transverse thermoexpansion coefficient α2, the measured as well
as the numerically calculated values agreed well with several micromechanical
models, whereas for the longitudinal thermoexpansion coefficient α1 none of
the micromechanical models showed the correct relationship between the two
orientation states, as was correctly predicted by the numercial simulation.

3.3 Stiffness and Thermal Expansion of Short
Fibre Composites with Fully Aligned Fibres

Predicting the overall, effective properties of short fibre composites with fully
aligned fibres from the properties of the individual phases and the composite’s
morphology has attracted a great deal of attention during the last decades,
and a variety of micromechanics-based and empirical models have been pro-
posed. [32, 43–50] It has however been difficult to objectively assess the predic-
tive capability of the models, as it is rather hard in practice to fabricate well-
controlled samples of composites with fully aligned short fibres. Accordingly, it
has also been difficult to validate the adequacy of the underlying assumptions
made upon formulation of micromechanics-based models, as well as to decide
on the significance of parameters obtained by fitting a plausible empirical form
against a particular set of experimental data. In this work, the focus is on
the overall elastic constants and the use of the finite element method of Ch.
2 [1, 2] to assess the adequacy of two of the most widely used models, namely
that of the micromechanics-based model of Tandon and Weng [44–47, 49] and
the semi-empirical model of Halpin-Tsai [48, 50]i. In Sec. 3.2.2 a comparison
with measurements on well-characterized laboratory samples, showed that the
finite element method gave excellent predictions for injection moulded short fi-
bre composites. [6, 11] Therefore, the approach taken here is to use accurate in
principle numerical predictions in place of measured values.

iThe Halpin-Tsai equations were initially proposed for continuous fibre composites and then
generalized for those with aligned short fibres. [48] While the final implementation is
empirical in nature, the functional forms are conformable with the self-consistent ideas of
Hill. [50]
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3.3.1 Numerical

Periodic computer models comprised of a polymer matrix reinforced by 100
fully-aligned randomly-positioned non-overlapping identical fibres were studied
(Fig. 3.15).

Using both glass and carbon fibres, calculations with three different polymer
matrices typical of industrial short fibre composites were done (Table 3.5). Per-
fect adhesion was imposed at the fibre-matrix interfaces. A total of nine different
combinations of fibre aspect ratio, a = 10, 20, and 30, and fibre volume fraction,
f = 10%, 20% and 30%, were studied. This parameter range is representative
of most industrial injection moulded short fibre reinforced composites.

Computer models were meshed into periodic unstructured morphology-
adaptive tetrahedra based quality meshes (Fig. 3.16). [2,41] The external strain
was applied by changing the size and shape of the simulation box. A precondi-
tioned conjugate-gradient solver was employed for minimizing the total strain
energy as a function of the nodal displacements. [1, 2] The overall elastic con-
stants Cik were obtained on the basis of a linear response relation between the
average volume stress and the strain applied. ii

3.3.2 Results and Discussion

Fig. 3.17 presents results on the predictive capability of the Tandon-Weng model
for the overall longitudinal elastic constant, C11, of short glass fibre composites
with a semi-crystalline polymer matrix. One can see that the Tandon- Weng

iiMinimization runs were conducted on the mainframe stardust.ethz.ch cluster of PA8600
(550 MHz) processors at ETH Zürich. Typically, it took several single processor CPU
hours to calculate the Cik of a particular computer model.

Figure 3.15: Periodic computer model comprised of 100 fully aligned randomly
placed non-overlapping identical fibres of aspect ratio a = 20. The volume fraction is
f = 20%. Orthorhombic periodic boundary conditions are imposed.
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3.3 Fully Aligned Fibres

Table 3.5: Matrix and fibre elastic properties. E denotes the Young’s modulus and
ν the Poisson’s ratio. The elastic parameters of matrix M3 are typical of a glassy
polymer, M1 of a solid semi-crystalline polymer at room temperature, and M01 is
representative of a semi-crystalline polymer at elevated temperature. For glass fibres
the elastic parameters of E-glass were taken while for carbon fibres those of highly
anisotropic fibre-symmetry Courtaulds H370 fibres were used. The index numbering
system for carbon fibres follows Fig. 3.15. For example, G12 denotes the shear modulus
in the 12-plane.

E [GPa] ν
M3 3 0.35
M1 1 0.40
M01 0.1 0.45
Glass fibres 70 0.20
Carbon fibres E11 = 370 ν21 = 0.35

E22 = 12 ν23 = 0.48
G12 = 17.5

Figure 3.16: 2D cut through the periodic computer model shown in Fig. 3.15 (left).
One can notice that the fibre sections sketched as spreading outside the simulation
box in Fig. 3.15 are now entering the simulation box from the opposite side. Both
visualization modes are equally consistent under periodic boundary conditions, as in
the first case one performs visualization based on the fibre center-of-mass positions
while in the second case on the tetrahedra center-of-gravity coordinates. 2D cut
through the periodic tetrahedra-based mesh employed for predicting the overall elastic
constants Cik numerically (right). The same fragment as shown in the left image. The
meshes typically consisted of a million nodes and several million tetrahedra.
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model is very accurate for the cases of high fibre aspect ratios and low fibre
loadings. This observation is consistent with the model’s underlying assump-
tions, as the model was derived under a dilute condition and it was shown that
it delivered the proper asymptotic predictions for the limiting case of infinitely
long fibres. [43,46] The model’s predictions become, however, progressively less
reliable for composites comprised of shorter fibres dispersed at higher loadings.

Fig. 3.18 shows further results on the predictive capability of the Tandon-
Weng model, for a variety of glass fibre reinforced composites. It is seen that
the model gives quite accurate predictions for the C12 and C23 elastic constants,
satisfactory predictions for the transverse C22 elastic constant, but delivers less
reliable predictions for the longitudinal C11 and shear C44 elastic constants,
especially with increasing difference between the fibre and matrix stiffness.

Table 3.6 provides an overview of the predictive capability of the Tandon-
Weng (the Qiu-Weng version for anisotropic carbon fibres) and Halpin-Tsai
models. The standard matrix norm error is calculated to compare the pre-
dictions.iii One can see that for glass fibre composites with a glassy polymer

iiiThe standard matrix norm is defined as ‖C‖ =
√∑

Cik · Cik with the summation carried
out over indices i and k running from 1 to 6. As the standard matrix norm tends to smooth
all extreme deviations in the individual Cik components, a low error is a necessary rather

Figure 3.17: Comparison between numerical and Tandon-Weng predictions for the
overall longitudinal elastic constant C11 of glass fibre composites with matrix M1. In
the figure, a denotes the fibre aspect ratio and f the fibre volume fraction. The relative
error is defined as (Cnum

11 −CTW
11 )/Cnum

11 . The elastic parameters of matrix M1 and the
range of a and f studied are typical of most widely used in industry short glass fibre
composites with commodity polymer matrices (polypropylene, polyethylene, etc.).
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Figure 3.18: Comparison between numerical and Tandon-Weng predictions for the
overall elastic constants of glass fibre composites. Each bar is an average over nine
individual error estimates obtained with a particular matrix reinforced by fibres with
aspect ratios a = 10, 20, and 30 dispersed at volume fractions f = 10%, 20% and
30%. For example, the bar with labels M1 and C11 is an average over the nine error
estimates shown in Fig. 3.17.

Table 3.6: Accuracy assessment for the Tandon-Weng and Halpin-Tsai predictions.
The standard matrix norm errors, ‖∆C‖/‖C‖, between numerical and model predic-
tions are analyzed. All error estimates are given in percent relative to the numerical
results. Each individual error estimate is an average of those obtained with nine
combinations of fibre aspect ratios a and volume fractions f studied in this chap-
ter (Fig. 3.17). In the parentheses, the maximal error among these nine individual
standard matrix norm error estimates is also shown. For the adjustable parameters
of the Halpin-Tsai equations, literature recommended values were used. [5, 32] The
Halpin-Tsai predictions are obviously unsatisfactory, mostly due to poor predictions
for the transverse Poisson’s ratio ν23. [11]

Tandon-Weng Qiu-Weng Halpin-Tsai
glass carbon glass carbon

M3 4 (7) 13 (21) 40 (103) 28 (35)
M1 11 (17) 26 (33) 45 (127) 45 (57)
M01 32 (46) 40 (61) 50 (89) 60 (76)
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matrix (M3) the Tandon-Weng model delivers reliable results, with an accuracy
appropriate for engineering design purposes. However, the model predictions
become less accurate for the most widely industrially used glass fibre compos-
ites with semi-crystalline matrices (M1 and M01). For carbon fibre composites,
the Qiu-Weng predictions are considerably less accurate than the corresponding
Tandon-Weng ones for glass fibre composites. One can also see that the predic-
tions of the semi-empirical Halpin-Tsai model are systematically less accurate
than those of the Tandon-Weng model.

Regarding the relation to ’real’ materials, as neither of the two models con-
sidered nor the numerical finite element method include the interfacial layers,
one can express concern for the adequacy of both of the routes for the stiffness
predictions. To this important point, the results of the validation program in
Sec. 3.2 and in [11] have indicated that for all ’real’ continuous fibre and short
fibre composites studied at the University of Leeds the finite element method
gave excellent stiffness predictions, without any explicit account for the pres-
ence of interface layers. A further issue to be addressed is whether there is any
molecular orientation in the matrix phase, as a consequence of the processing
route particularly when injection moulding is used. Detailed experimental stud-
ies of injection moulded glass-fibre polypropylene-matrix samples, conducted in
Leeds by using Wide Angle X-Ray Diffraction (WAXS), [51] showed that while
molecular orientation was seen for some unfilled polypropylene samples, this
was never prevalent in glass filled samples, under the same industrially em-
ployed processing conditions. The validation study in Sec. 3.2 showed excellent
agreement between experimental measurements and numerical predictions as-
suming an isotropic matrix. [6] The effect of the fibre length distribution was
also considered , [5] and it was demonstrated that one can obtain accurate stiff-
ness and thermal expansion predictions by replacing the ’real’, measured fibre
length distribution with a monodispersed, number average fibre length LN .

3.4 Fibre Orientation State

In short fibre composites the material properties such as stiffness and thermal
expansion depend strongly on the local fibre orientation state. The full informa-
tion about the orientation of all the fibres in the composite is contained in the
orientation distribution function (3.4.1). An alternative and much more concise
description can be given with orientation tensors (3.4.2). Orientation tensors
can be used to calculate the orientation averaged properties from the properties
of fully aligned composites (3.4.3).

than a sufficient condition for the all round adequacy.
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3.4 Fibre Orientation State

3.4.1 Orientation distribution function

The orientation of a single fibre can be described by the two angles θ and φ as
defined in Fig. 3.19. The angles θ and φ can be measured experimentally by
analyzing the elliptical form of cut fibres in polished cross-sections of a composite
material. [4, 27, 37, 52, 53]

Figure 3.19: The orientation of a single fibre is defined by the two angles θ and φ.
Alternatively, the unit vector p with components p1, p2 and p3 can be used.

The orientation state of an ensemble of fibres at a certain point in space
can then be described by a probability distribution function, ψ(θ, φ), which is
defined in such a way that the probability of finding a fibre with orientation
angles between θ1 and (θ1 + dθ), and φ1 and (φ1 + dφ) is given by [54]

P (θ1 ≤ θ ≤ θ1 + dθ, φ1 ≤ φ ≤ φ1 + dφ) = ψ(θ1, φ1) sin θ1dθdφ (3.5)

Instead of using the two angles θ and φ an equivalent description of the orien-
tation of a single fibre is a unit vector p which is parallel to the fibre axis. The
distribution function can therefore also be written as ψ(p), where the compo-
nents of p are related to the angles θ and φ as follows,

p1 = sin θ cosφ (3.6)

p2 = sin θ sinφ (3.7)

p3 = cos θ (3.8)

Since p is a unit vector (i.e. its length is one) the three components of p are
inter-related by pipi = 1.iv The set of all possible directions of p corresponds

ivThe Einstein summation convention is used throughout this section, i.e. summation over
repeated indices is implied
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to the unit sphere. The integral over the surface of the unit sphere (or over all
possible directions of p) is written as

∮
dp =

∫ 2π

φ=0

∫ π

θ=0

sin θdθdφ (3.9)

The probability distribution function must satisfy two physical conditions.
First, the fibres do not possess an identified direction, i.e. a fibre with orientation
angles (θ, φ) is not distinguishable from one with (π − θ, φ+ π), and therefore

ψ(p) = ψ(−p) (3.10)

Second, the probability distribution function ψ must be normalized. That is∮
ψ(p)dp = 1 (3.11)

The orientation distribution function, ψ is a complete description of the ori-
entation state of a collection of fibres. However, it has the disadvantage that
it is quite cumbersome to handle, especially if one wants to implement it in
a numerical method. It would therefore be preferential to use a more concise
description of the orientation state.

3.4.2 Orientation Tensors

Such a concise description does indeed exist in the form of orientation tensors.
[52, 54] An infinite set of orientation tensors exists. Here, the discussion is
restricted to the second and fourth order orientation tensors. It should be noted
that the odd-order orientation tensors are zero because the distribution function
is even (eq. 3.10). The second order orientation tensor is determined by forming
dyadic products with all possible orientation unit vectors p and integrating the
product of the resulting tensors with the distribution function ψ(p) over all
possible directions of p. [54] The second and fourth order orientation tensors
are:

aij = 〈pipj〉 =

∮
pipjψ(p)dp (3.12)

aijkl = 〈pipjpkpl〉 =

∮
pipjpkplψ(p)dp (3.13)

The indices i, j, k, l run from 1 to 3. From the definition (eq. 3.12, eq. 3.13) it
is immediately clear that the orientation tensors are symmetric, for example

aij = aji (3.14)
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3.4 Fibre Orientation State

and from the fact that p is a unit vector, it follows that

aii = 1 (3.15)

Moreover, higher order tensors contain complete information about lower orders,
for example

aijkk = aij (3.16)

The second and fourth order orientation tensors consist of 6 and 15 inde-
pendent components, respectively. If the principle axis of the tensor coincide
with the axis of the coordinate system, all off-diagonal elements of the tensor
become zero and therefore the number of non-zero elements reduces to 3 and
6, respectively. The number of independent components is reduced to 2 for the
second order tensor because of eq. 3.15.

3.4.3 The Orientation Averaging Scheme

Orientation tensors play an important role in orientation averaging. Consider
any tensor property T(p) of a unidirectional microstructure aligned in the di-
rection of p. T must be transversely isotropic with p as its axis of symmetry.
〈T〉 is the orientation average of T and is defined as

〈T〉 =

∮
T(p)ψ(p)dp (3.17)

Now, as an example, consider a second order tensor, Tij(p). In order to be
transversely isotropic this tensor must be of the form

Tij(p) = A1pipj + A2δij (3.18)

where the Ai are scalar constants and δij denotes the Kronecker tensor. The
orientation average of Tij(p) is

〈T 〉ij = A1〈pipj〉 + A2〈δij〉 (3.19)

= A1aij + A2δij (3.20)

This demonstrates that the orientation average of a material property that is
described by a second order tensor, e.g. the dielectric constant, is completely
defined by the second order orientation tensor, and by the underlying unidirec-
tional property tensor. [54]

A similar relation exists for fourth order tensors. Consider a tensor with the
symmetry of the elasticity tensor (e.g. elastic stiffness, elastic compliance, or
viscosity), i.e.

Tijkl = Tjikl = Tijlk = Tklij (3.21)
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To be transversely isotropic with symmetry axis p, the tensor must have the
form

Tijkl(p) = B1(pipjpkpl)

+B2(pipjδkl + pkplδij)

+B3(pipkδjl + piplδjk + pjplδik + pjpkδil)

+B4(δijδkl) +B5(δikδjl + δilδjk)

(3.22)

The Bi are five scalar constants that are related to the five independent com-
ponents of a transversely isotropic tensor. The orientation average of Tijkl(p) is
then [54]

〈T 〉ijkl = B1(aijkl)

+B2(aijδkl + aklδij)

+B3(aikδjl + ailδjk + ajlδik + ajkδil)

+B4(δijδkl) +B5(δikδjl + δilδjk)

(3.23)

For the case of the elastic stiffness tensor Cijkl the five constants B1, ..., B5 are
related to the components of the Cijkl of a composite with fully aligned fibres.
In the contracted notation they are [31]

B1 = C11 + C22 − 2C12 − 4C66

B2 = C12 − C23

B3 = C66 + 1/2(C23 − C22)

B4 = C23

B5 = 1/2(C22 − C23)

(3.24)

Although the thermal expansion is characterized by a second order tensor,
αij , it is directly connected to the elastic properties of a material. Thus the
orientation averaging of the thermal expansion tensor requires the fourth order
orientation tensor. The orientation averaged thermal expansion is given by

〈αij〉 = 〈Cijklαkl〉〈Cijkl〉−1

= 〈Cijklαkl〉〈Sijkl〉
= (D1aij +D2δij)〈Sijkl〉 (3.25)

where D1 and D2 are two invariants that depend on the elastic and thermal
expansion tensors of the unidirectional composite [31]v

D1 = A1(B1 +B2 + 4B3 + 2B5) + A2(B1 + 3B2 + 4B3)

D2 = A1(B2 +B4) + A2(B2 + 3B4 + 2B5)
(3.26)

vOne should double the B5 term in all expressions for the thermal expansion coefficients.
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where B1, ..., B5 are defined in eq. 3.24 and

A1 = α1 − α2

A2 = α2

(3.27)

3.5 Prediction of Stiffness and Thermal Expansion
by the Orientation Averageing Scheme

It is fairly common in practice that during injection moulding, the mould filling
process results in non-uniform fibre orientation distributions in the final injection
moulded short fibre reinforced composite part. [52] Consequently, one needs to
be able to deal with spatially non-uniform elastic constants in order to describe
the structural performance of the part. This is, in principle, no problem for the
finite element methods of structural analysis [24,55], provided that all the elas-
tic constants for all the mesh elements across the part are known. Advani and
Tucker [54] proposed an extension of the laminate analogy of Halpin-Pagano [56],
such that the elastic constants of a short fibre composite with any given fibre
orientation distribution can be obtained by averaging the elastic constants of a
composite with fully aligned fibres, weighted by the fibre orientation distribu-
tion. It would be very attractive to employ this orientation averaging scheme to
form predictions for the design of short fibre reinforced composite parts, should
this scheme be accurate enough. Here, our finite element method [1,2] is applied
to directly predict the stiffness and thermal expansion of several hundred multi-
fibre computer models with a variety of different predefined fibre orientation
states. The direct predictions are compared with those obtained by using the
orientation averaging scheme and demonstrate that the orientation averaging
scheme delivers reliable, engineering accuracy predictions.

Orientation averaging of the elastic properties described in eq. 3.23] involves
fast arithmetic operations and allows for a quick evaluation of 〈Cijkl〉 for all the
mesh elements during the finite element assembly stage. [24, 54]

3.5.1 Numerical

Periodic computer models comprising 150 non-overlapping fibres with predefined
second order orientation tensors aij were studied (Fig. 3.20). In each model
the fibre orientation state was adjusted to a specific second order orientation
tensor aij of diagonal form following a regular grid with a spacing of ∆a =
0.1. Since a1 + a2 + a3 = 1 and all ai ≥ 0, only 13 grid points are in fact
symmetry independent. To generate a model with a given tensor aij , a MC-run
was conducted with a set of 150 isolated fibres, by changing the Euler angles
of the fibres and accepting new configurations whenever they progressed the
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system towards the desired orientation state. Then, the fibres were placed with
the so-assigned Euler angles inside a large periodic box, and during a variable
box-size MC-run the fibres were displaced and the box size steadily decreased
towards the desired fibre volume fraction. At this stage, fibre orientations were
kept constant and all configurations with fibre overlaps were rejected.

Computer models were then meshed into periodic tetrahedra-based
morphology-adaptive quality meshes (Fig. 3.21). [2,41] Assuming typical elastic
properties for the fibres and the matrix, (Table 3.5), the elastic constants of a

Figure 3.20: Four different orientation states of short fibre composites. Periodic
computer models with 150 non-overlapping identical fibres of aspect ratio a = 20 are
shown. The fibre volume fraction is f = 15%. In the coordinate frame shown, the
models have diagonal second order orientation tensors aij defined by three eigenvalues
{a1, a2, a3}. The model with fully aligned fibres has eigenvalues {0, 0, 1}, the 2D-
random model {0, 0.5, 0.5}, the 3D-random model {0.33, 0.33, 0.33}, and the arbitrary
model {0.6, 0.3, 0.1}.
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large number of computer models were predicted. [1, 2, 5]

Figure 3.21: A: 2D cut through a computer model with a fibre orientation state
described by the second order orientation tensor aij with eigenvalues {0.6, 0.3, 0.1}
(cf. Fig. 3.20). In the cutting plane, circular fibres appear as ellipses, with the two
semi-axes defined by the fibres’ orientation relative to the cutting plane. This sort
of information is typically used for experimental characterization of fibre orientation
states, based on digitized image frames obtained from polished sections of laboratory
short fibre composite samples. [37] B: Magnified fragment of the 2D cut through the
three dimensional morphology-adaptive tetrahedra-based mesh used for predicting the
properties of this computer model numerically. The fragment is marked accordingly in
part A. Periodic meshes typically consisted of a few million nodes and several million
tetrahedra.

3.5.2 Results and Discussion

Direct numerical predictions were compared with the obtained by using the
orientation averaging scheme of eq. 3.23. The needed invariants B1, ..., B5 of eq.
3.23 were calculated from the 〈Cijkl〉 of the computer models with fully aligned
fibres using eq. 3.24.

Fig. 3.22 presents results for glass fibre composites with a typical commodity
polymer matrix (M1). One can see that the orientation averaging predictions
agree remarkably well with direct numerical results, with a largest error of about
3% seen for a 2D-random planar orientation state. Table 3.7 provides a summary
of the error assessment, over all the orientation states studied. One can see that
the orientation averaging is highly suitable for predicting the 〈Cijkl〉 of short
glass fibre composites. Although short glass fibre reinforced composites are the
most widely used in industry today, short carbon fibre reinforcement is also
used. Similar orientation averaging predictions have been produced for carbon
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Figure 3.22: Relative standard matrix norm error between direct and orientation
averaging predictions. Results for a composite with glass fibres of aspect ratio a = 20
dispersed in matrix M1 at a volume fraction of f = 15% are shown. The error
assessment is carried out based on computer models with predefined second order
orientation tensors. Diagonal form tensors are considered and a regular grid with a
spacing of ∆a = 0.1 is used. Only 13 grid points are in fact symmetry independent.
All of them are shown in the figure, together with 7 additional symmetry equivalent
points included for visual expediency.
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Table 3.7: Accuracy assessment for the orientation averaging predictions. The stan-
dard matrix norm errors, ‖∆C‖/‖C‖ and ‖∆α‖/‖α‖, between direct and orientation
averaging predictions for the elastic constants and thermal expansion coefficients are
shown. Here results for composites with fibres of aspect ratio a = 20 dispersed at
a volume fraction of f = 15% are listed. Each error estimate shown in this table is
an average over the estimates obtained with computer models of all the predefined
second order orientation tensors studied, see Figure 20. All error estimates are given
in percent relative to the direct numerical predictions. The accuracy assessment for
composites with a = 30 and f = 10% and a = 10 and f = 30% has shown results
which are very similar to those presented in this table.

Glass fibres Carbon fibres
Matrix M3 M1 M01 M3 M1 M01
‖∆C‖/‖C‖ 1.1 1.9 3.3 6.1 8.4 5.6
‖∆α‖/‖α‖ 3.4 2.5 1.2 5.4 7.6 8.7

fibre composites. The results are also shown in Table 3.7, and although less
accurate than the glass fibre predictions, they still suggest that the orientation
averaging scheme is satisfactory for most practical purposes.

As an alternative, one can predict the elastic constants by the inversion of the
elastic compliances 〈Sijkl〉 obtained by averaging the Sijkl of a composite with
fully aligned fibres. The same eq. 3.23 can readily be used for this purpose, with
the scalar constants B1, ..., B5 calculated from the Sijkl components. [43] This
calculation was checked and it was found that this alternative averaging scheme
resulted in very poor predictions, typically with 20-60% standard matrix norm
errors, depending on the particular orientation state and fibre fraction.

For glass fibres, one commonly assumes isotropic elastic behavior. As a result,
any glass fibre composite with a uniform matrix can be viewed as a two phase
composite and one can therefore use the explicit formula of Levin

αi = (α
(1)
k − α

(2)
k )(S

(1)
kl − S

(2)
kl )−1(Sli − S

(2)
li ) + α

(2)
i (3.28)

to predict the overall thermal expansion coefficients αij. [43,57] The superscripts
(1) and (2) stand for the fibre and matrix phase, respectively. The situation is,
however, different for carbon fibre composites, as carbon fibres are anisotropic
and differently oriented fibres have generally different laboratory-frame elastic
constants. As thermal expansion of three and more phase composites is no
longer uniquely determined by the overall elastic constants, [43, 57] the accu-
racy of orientation averaging predictions was assessed. [31] For this purpose,
directly predicted tensors αij were compared with those obtained by using the
orientation averaging scheme for the thermal expansion described by eq. 3.4.3.
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Table 3.7 provides a summary of the relative standard matrix norm error for all
fibre and matrix types. For completeness, predictions for glass fibre composites
are also given. Overall, the results for the thermal expansion are in concert
with those seen for the elastic constants: the orientation averaging gives excel-
lent predictions for glass fibre composites and relatively less accurate but still
satisfactory results for carbon fibre composites.

3.6 Conclusions

In this chapter the application of different micromechanical models and of the
finite element method of Ch. 2 to predict the thermoelastic properties of short
fibre reinforced composites was studied. Numerical predictions for computer
models with parallel fibres with a fibre length distribution were compared to
single aspect ratio predictions. It was found that best predictions are achieved
by replacing the fibre length distribution with the number average length.

Injection moulded samples usually show some degree of fibre misalignment.
The measured orientation distribution was sampled by a Monte Carlo proce-
dure to create computer models that match the real distribution. Numerically
predicted properties of these composites were in excellent agreement with ex-
perimental data. Of the micromechanical models investigated the best result
could be achieved by using the model of Tandon and Weng in conjunction with
the laminate theory.

A set of microstructures of aligned short fibres was generated at three differ-
ent volume fractions and three different fibre aspect ratios. The thermoelastic
properties for three typical polymeric matrices with glass and carbon fibres
respectively, were calculated numerically as well as with the models of Tandon-
Weng and Halpin-Tsai. Tandon-Weng resulted in the best estimates but in
some cases the error was still very large, especially for matrices with a lower
stiffness and a higher Poisson’s ratio, such as semi crystalline thermoplasts at
elevated temperature. So one should not rely on micromechanical models to
predict the properties of fully aligned composites. This is especially important
if these predictions are used as basis for an orientation averaging.

The thermoelastic properties of composites with arbitrarily defined fibre ori-
entations have been directly calculated by the finite element procedure. Alter-
natively, these properties were predicted by orientation averaging of the results
with fully aligned composites. It was seen that the orientation averaging gives
results with an accuracy that is sufficient for most practical applications pro-
vided the properties of the fully aligned composite are accurately predicted. As
mentioned above, this is best done by direct numerical calculations.

Summarizing, the accuracy of the finite element method was validated against
experimental results. It was demonstrated that the properties of short fibre
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composites with arbitrary fibre orientation can be calculated by orientation
averaging of numerical predictions for fully aligned composites, which consists of
fast arithmetic operations. It can therefore implemented in the process displayed
in Fig. 3.3 to allow for accurate and efficient design of short fibre reinforced
composite parts.
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4 Comparison of Grid-based Finite
Element Method with
Unstructured Mesh Finite
Element Method

4.1 Introduction

The finite element method described in Ch. 2 [1,2] uses a Monte Carlo method
to create models of (random) microstructures of multiphase composite mate-
rials. Morphology adaptive tetrahedra-based periodic meshes are built on the
microstructure. [10] The solution is found numerically with an iterative precon-
ditioned conjugate gradient solver. [25] The versatility of this method has been
shown on a number of different examples. [5–9,11–14,17,18,58,59] Its accuracy
has been validated against a wide range of experimental data. [6, 11, 58]

Recently, a modified version of his method has been developed (see Ch. 2). [3,
22] Instead of using unstructured morphology adaptive meshes it uses a regular
grid of cubic elements. [24] Intuitively, one would expect that the accuracy
of the results depends on the grid resolution. It needs to be fine enough to
resolve the essential features of the microstructure. So one should generally
expect to use a larger number of elements as compared to morphology adaptive
meshes because the fine grid resolution needs to be applied over the whole
microstructure. However, the grid based method has the advantage that it is
possible to directly use microstructural data that is acquired in a grid format,
such as e.g. microtomography data (see Ch. 5, Ch. 7 & Ch. 8). Moreover it
is possible to use mixed formulation finite element solvers which are necessary
when incompressible materials (rubber) are studied. [60]

In this chapter, the goal is to establish the accuracy of the predictions made
by the grid-based method by comparing whether they are in accordance with the
results from the unstructured mesh method, whose accuracy has been demon-
strated before. [6, 11, 58]

To this end, random microstructures consisting of spheres, platelets, and sphe-
rocylinders, respectively were built at different volume fractions. Their thermoe-
lastic properties were calculated with both the unstructured mesh and the grid
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based version of the finite element method, and the results were compared.

4.2 Numerical

Random microstructures consisting of 64 identical non-overlapping spheres,
platelets, and spherocylinders, respectively, were generated with a Monte Carlo
procedure in a cubic unit cell. [23] For spherical inclusions two different mi-
crostructures for each of the three volume fractions f = 10, 20 and 30 vol.%
were generated while for spherocylinders and platelets one microstructure per
volume fraction was studied. The aspect ratio of the platelets was a = 5 and
the one of the spherocylinders was also a = 5.

The models were meshed with morphology-adaptive quality meshes and their
stiffness tensor and thermal expansion tensor was calculated. [23] Calculations
were considered as converged when the initial gradient had been reduced by
a factor of 10−4. For the matrix the properties of a typical semi-crystalline
polymer were assumed and the inclusions were assumed to be typical for E-
glass(Table 4.1). A total number of nine different microstructure was studied.

Table 4.1: Elastic properties of matrix and inclusions used for the comparison be-
tween unstructured mesh based and grid based calculations. The matrix is a typical
semi-crystalline polymer at room temperature, the inclusions are E-glass.

Matrix Glass inclusions
E [GPa] 3 70
ν 0.35 0.2
α [10−6K−1] 1 · 10−4 1 · 10−5

The same nine microstructures as above were then remeshed with cubic grids
of different resolutions. Grids of 503, 1003, and 2003 voxels were created. [26]

The same material properties as above were used (Table 4.1). Again the solu-
tions were considered as converged when the initial gradient had been reduced
by a factor of 10−4.

In addition some short fibre composites comparable to the ones of Ch. 3 were
studied. Microstructures of 100 spherocylinders with an aspect ratio of a = 20
at a volume fraction of f = 10% were generated with the following predefined
second order orientation tensors (for details see Sec. 3.4 and Sec. 3.5.1):

aij =

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ (4.1)
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4.3 Results and Discussion

aij =

⎛
⎝ 1/3 0 0

0 1/3 0
0 0 1/3

⎞
⎠ (4.2)

and

aij =

⎛
⎝ 1/2 0 0

0 1/2 0
0 0 0

⎞
⎠ (4.3)

These microstructures were also meshed with both unstructured meshes and
grids with a resolution of 1003 = 1.0 · 106.Glass fibres as well as high modulus
carbon fibres were studied. Phase properties according to Table 4.2 were used.

Table 4.2: Matrix and fibre elastic properties. E denotes the Young’s modulus and
ν the Poisson’s ratio. The elastic parameters of matrix M1 are typical of a solid semi-
crystalline polymer at room temperature. For glass fibres the elastic parameters of
E-glass were taken while for carbon fibres those of highly anisotropic fibre-symmetry
Courtaulds H370 fibres were used. The index numbering system for carbon fibres
follows Fig. 3.15. For example, G12 denotes the shear modulus in the 12-plane.

E [GPa] ν
M1 1 0.40
Glass fibres 70 0.20
Carbon fibres E11 = 370 ν21 = 0.35

E22 = 12 ν23 = 0.48
G12 = 17.5

4.3 Results and Discussion

Unstructured meshes with spherical inclusions had about 1.5 · 104 to 5 · 104

nodes (about 9 · 104 to 3 · 105 elements). To realize good quality meshes with
the anisometric inclusion types (platelets and spherocylinders) a higher number
of nodes was necessary, i.e. about 1 · 105 to 3 · 105 nodes corresponding to about
7 · 105 to 2 · 106 elements.

With the cubic grids the number of nodes is equal to the number of elements.
It was for a resolution of 503, 1003, and 2003 1.25·105, 1·106, and 8·106 nodes (or
elements), respectively. It can be observed that for the anisometric inclusions
at the volume fractions studied here the number of elements for a good quality
unstructured mesh is of the same order as the one of a grid with a resolution of
1003 to 2003.
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4 Grid-based vs. Unstructured Mesh Finite Elements

Figure 4.1: Example of a microstructure containing 64 identical non-overlapping
spheres. The inclusion volume fraction is f = 0.2.

Figure 4.2: 2D cut through the morphology adaptive unstructured finite element
mesh (same microstructure as in Fig. 4.1). The mesh is built of tetrahedra.
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4.3 Results and Discussion

Figure 4.3: Detail of the mesh in Fig. 4.2.

Figure 4.4: 2D cut through the grid based representation of the micostructure in
Fig. 4.1. The grid resolution here is 50 × 50 × 50.
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4 Grid-based vs. Unstructured Mesh Finite Elements

Figure 4.5: By going to a grid resolution of 200 × 200 × 200 the reproduction of
features is much better as compared to Fig. 4.4.

Figure 4.6: Microstructure with an isotropic fibre orientation state. The second
order orientation tensor corresponds to eq. 4.2. 100 fibres with an aspect ratio of
a = 20 at a volume fraction of f = 0.1.
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4.3 Results and Discussion

Figure 4.7: Cut through the morphology adaptive unstructured mesh for the mi-
crostructure in Fig. 4.6.

Figure 4.8: Detail of the mesh in Fig. 4.7.
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4 Grid-based vs. Unstructured Mesh Finite Elements

Figure 4.9: Cut through the grid representation of the microstructure in Fig. 4.6.
Grid resolution 100 × 100 × 100.

Figure 4.10: A finer grid resolution (200× 200× 200) again gives a better represen-
tation, especially of curved features.
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4.3 Results and Discussion

Table 4.3: Comparison between stiffness tensors, Cik, predicted by grid-based
method and unstructured mesh method. 64 identical glass spheres randomly dis-
persed in a semi-crystalline polymer matrix. The inclusion volume fraction is f = 10,
20 and 30%, respectively. Grid resolutions studied are 503, 1003, and 2003. Error
estimates are indicated as percent deviation relative to the prediction with unstruc-
tured meshes (‖∆C‖/‖C‖ [%]). Results for two different microstructures per volume
fraction are shown.

Grid resolution
f 503 1003 2003

10 1.0 / 1.5 2.0 / 2.5 2.6 / 3.1
20 1.6 / 1.9 2.3 / 3.4 3.3 / 4.4
30 3.3 / 2.4 2.0 / 2.7 3.4 / 4.1

Table 4.4: Comparison between thermal expansion tensors, αij . Error estimates are
indicated as percent deviation relative to the prediction with unstructured meshes
(‖∆α‖/‖α‖ [%]). Corresponding results for Cik are the numbers after the slash in
Table 4.3.

Grid resolution
f 503 1003 2003

10 0.1 0.8 1.2
20 0.9 0.6 1.3
30 2.4 0.3 0.9

The results were assessed by comparing the stiffness tensors, Cik, and for the
spherical inclusions also the tensor of thermal expansion, αij. The standard
matrix norm errors, ‖∆C‖/‖C‖ and ‖∆α‖/‖Cα‖, between the grid-based pre-
dictions and the unstructured mesh prediction have been calculated. The error
estimates are given in percent relative to the unstructured mesh prediction,
which is considered to give accurate results [5, 6].

The results show that already at a relatively coarse grid resolution of 503

approximate predictions are possible within about 5% standard matrix norm
error at the volume fractions studied (Table 4.3, Table 4.5, and Table 4.6).
Larger errors are only observed with platelets and spherocylinders at a inclusion
volume fraction of f = 0.3 (error about 10%) As one would intuitively expect
the accuracy is improved with increasing the grid resolution to 1003 or 2003 in
the microstructures consisting of spherocylinders or platelets (Table 4.5, Table
4.6). Surprisingly however, this trend is not observed with spherical inclusions
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4 Grid-based vs. Unstructured Mesh Finite Elements

Table 4.5: Comparison between stiffness tensors, Cik, predicted by grid-based
method and unstructured mesh method. 64 identical glass spherocylinders randomly
dispersed in a semi-crystalline polymer matrix. The inclusion volume fraction is
f = 10, 20 and 30%, respectively. Grid resolutions studied are 503, 1003, and 2003.
Error estimates are indicated as percent deviation relative to the prediction with
unstructured meshes (‖∆C‖/‖C‖ [%]).

Grid resolution
f 503 1003 2003

10 2.6 0.9 0.3
20 5.1 1.8 0.6
30 9.3 3.3 1.1

Table 4.6: Comparison between stiffness tensors, Cik, predicted by grid-based
method and unstructured mesh method. 64 identical glass platelets randomly dis-
persed in a semi-crystalline polymer matrix. The inclusion volume fraction is f = 10,
20 and 30%, respectively. Grid resolutions studied are 503, 1003, and 2003. Error esti-
mates are indicated as percent deviation relative to the prediction with unstructured
meshes (‖∆C‖/‖C‖ [%]).

Grid resolution
f 503 1003 2003

10 2.9 1.2 0.4
20 5.7 2.2 0.7
30 10.3 3.8 1.2
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4.3 Results and Discussion

(Table 4.3).
The errors increase with increasing volume fractions of spherocylinders and

platelets (Table 4.5, Table 4.6). Again this is not observed with spherical in-
clusions (Table 4.3). The increasing error is probably due to the fact that
interparticle distances are decreased with increasing volume fraction. Therefore
the probability grows that inclusion particles are joined together because the
matrix between the particles cannot be resolved by the grid. Morphology adap-
tive meshes are an advantage in such cases since the mesh is refined specifically
in such regions of the microstructure.

For spherocylinders and paltelets at a grid resolution of 2003 the standard
matrix norm error is about 1% or less even at a volume fraction of 30%, which
can be considered a very good accuracy.

The results for spherical inclusions do not show such trends as the ones for
spherocylinders and platelets. The errors vary erratically beteween about 1 and
4%. It seems that this is the accuracy level that can be achieved whereas the
variations are random and depend on the specific microstructure and meshing.
It seems that the accuracy here is not necessarily improved by refining the grid
resolution.

For the microstructures consisting of spherical inclusions the thermal expan-
sion tensors have been predicted in addition to the stiffness tensor. The error
of the grid based prediction as compared to the unstructured mesh prediction
is shown in (Table 4.4). The error is smaller than for the stiffness tensor pre-
diction – typically below 1%. There are no clear trends with volume fraction
or grid resolution. This behaviour is similar to the one of the stiffness tensor
predictions for composites with spherical inclusions. This is probably due to the
fact that the stiffness tensor goes in the calculation of the thermal expansion
tensor.

Table 4.7: Comparison between stiffness tensors, Cik, and thermal expansion tensor,
αik, predicted by grid-based method and unstructured mesh method. Microstructures
comprise 100 identical glass fibres (a = 20, f = 0.1) in a semi-crystalline polymer
matrix. The grid resolution is 100 × 100 × 100. Error estimates are indicated as
percent deviation relative to the prediction with unstructured meshes (‖∆C‖/‖C‖
[%] and ‖∆α‖/‖α‖ [%], respectively).

orientation tensor error
a11 a22 a33 ‖∆C‖/‖C‖ [%] ‖∆α‖/‖α‖ [%]
1 0 0 0.9 0.7

1/3 1/3 1/3 0.8 0.7
1/2 1/2 1/2 1.0 2.2
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4 Grid-based vs. Unstructured Mesh Finite Elements

Table 4.8: Comparison between stiffness tensors, Cik, and thermal expansion tensor,
αik, predicted by grid-based method and unstructured mesh method. Microstructures
comprise 100 identical carbon fibres (a = 20, f = 0.1) in a semi-crystalline polymer
matrix. The grid resolution is 100 × 100 × 100. Error estimates are indicated as
percent deviation relative to the prediction with unstructured meshes (‖∆C‖/‖C‖
[%] and ‖∆α‖/‖α‖ [%], respectively).

orientation tensor
a11 a22 a33 ‖∆C‖/‖C‖ [%] ‖∆α‖/‖α‖ [%]
1 0 0 3.1 0.6

1/3 1/3 1/3 0.4 0.3
1/2 1/2 1/2 0.9 1.4

The calculations with short fibres of an aspect ratio of a = 20 show that
the standard matrix norm error for both the stiffness tensor and the thermal
expansion tensor does not exceed 3%. In fact, in most cases it is around 1%.

When discussing the differences between the two types of predictions one
should note that the inclusion volume fraction is systematically underestimated
by the unstructured mesh. This is the case because the nodes are placed on
the surface of the inclusion and connected by planar surfaces. For all convex
inclusion shapes necessarily the effective volume fraction is slightly below the
nominal volume fraction. In turn, considering inclusions that are stiffer than
the matrix this will result in some underestimation of the effective stiffness of
the composite.

With the grids, this effect does not occur since the mismatch between the
element and the real shape of the inclusion object can either deliver a positive
or a negative contribution to the inclusion volume fraction. In the end the
effective volume fraction observed was in all cases very close to the nominal
one. Thus confirming the above statement.

It should therefore be expected that the stiffness predictions with the grids are
closer to the correct value. However, the following fact should also be considered:
morphology adaptive meshes can follow curved surfaces more smoothly than the
grid which necessarily always results in stepped inclusion object surfaces. The
stepped nature of interfaces may also influence the predicted properties. It
is, however, not obvious what kind of effect this will have on the predicted
properties of the composite.
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4.4 Conclusions

4.4 Conclusions

It has been demonstrated that the accuracy of the grid-based method is compa-
rable to the one of the unstructured mesh method. Generally speaking higher
volume fractions will lead to larger errors because of the reduced interparticle
distances which can become difficult to resolve by the grid. With spherocylin-
ders and platelets a clear trend towards higher accuracy with increasing grid
resolution is observed. With the unstructured meshes the inclusion volume
fraction and therefore also the effective stiffness of the composites is system-
atically slightly underestimated. All in all, the predictions of the grid-based
method are within about 4% or less of the predictions of the unstructured mesh
method for the microstructures studied. It is therefore justified and appealing
to use the grid-based method instead of the unstructured mesh method where
appropriate.
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5 Microtomography

Computer tomography (CT) is a powerful method which allows to determine the
three dimensional (3-D) structure of objects. In principle, the method relies on
measuring X-ray transmission data of the measured objects under many different
angles which allows to reconstruct a cross-sectional image of the object based
on mathematical reconstruction methods. 3-D microstructural information can
be retrieved by applying a virtual slicing procedure to the object and putting
together the independent reconstructed slices.

The mathematical foundations of CT were laid already in the early twentieth
century by Radon [61]. But it required the advent of fast computers in the 1970s
to apply the technique in practice when the first X-ray tomographic scanner was
invented [62].

CT is popularly known mainly from medical applications where it is a very
efficient tool for producing 3-D images of the human body. The spatial resolution
of medical CT is rather limited due to the dose limitations of the living tissues
being scanned. For non-living samples, however, these limitations do not apply
and it is possible to use special equipment allowing for better spatial resolution.
This is exploited in the so-called microtomography (µCT) (also known as X-
ray Tomographic Microscopy (XTM)) [63]. It is a very powerful method for
acquiring 3D information of structures or materials. Its field of application
covers biomedical science, materials science, geophysics, archeology, industrial
applications, and others [21, 64–71].

There follow some remarks about the interaction of X-rays with matter (Sec.
5.1) which are necessary to understand the principle of tomography as explained
in Sec. 5.2. The advantages of synchrotron based CT are discussed in Sec. 5.3
before the instrumental setup used to measure the data for the present thesis
are shortly described (Sec. 5.4).

5.1 Interaction of X-rays with Matter

X-ray photons can interact with matter in a number of different ways:

• photoelectric absorption

• coherent or Rayleigh scattering
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5 Microtomography

• incoherent or Compton scattering

• electron-positron pair production.

The latter can be neglected here because it appears only above 1 MeV whereas
typical X-ray energies in µCT are in the range 5-100 keV.

The total interaction of X-rays with matter is described by the linear attenu-
ation coefficient µ. It depends on i) the photon energy E, ii) the density ρ, and
iii) the atomic number Z of the investigated material.

Adding the different contributions of X-rays interacting with matter, i.e. the
atomic photoelectric cross-section σpe, the coherent (Rayleigh) scattering cross-
section σcoh, and the incoherent (Compton) scattering cross-section σincoh, the
total attenuation coefficient µ can be written in the form:

µ =
NA

A
ρ(σpe + σcoh + σincoh) (5.1)

where NA is Avogadro’s constant, A is the atomic weight, and ρ is the density.
In the photoelectric domain the dependance of the attenuation coefficient is
often described by [72]

µ = Kρ
Z4

E3
(5.2)

where K is a constant.
Let us consider an X-ray beam of fixed energy E passing through a homo-

geneous medium with a total attenuation coefficient µ and let N(x,E) be the
number of photons (Fig. 5.1). The number of photons interacting with the
medium on a distance dx is proportional to the number of incident photons
N(x,E). The relation is described by the so-called Beer-Lambert law:

dN = −µ(E)N(x,E)dx ⇒ N(x,E) = N0e
−µ(E)x (5.3)

For a heterogeneous medium where µ is a function of the position inside the
medium, µ(x,E), we get

N(x,E) = N0 exp

(
−
∫ x

0

µ(x′, E)dx′
)

(5.4)

for the number of transmitted photons.

5.2 Principle of Tomography

Once we understand how X-rays interact with matter the question arises how
we can reconstruct a cross-sectional image of a sample from transmission mea-
surements. To answer this question we introduce two coordinate systems, i.e.
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5.2 Principle of Tomography

Figure 5.1: Attenuation of an X-ray beam crossing a medium with attenuation
coefficient µ.

Figure 5.2: Coordinate systems used in the discussion of the principle of tomography.
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5 Microtomography

a fixed laboratory system (x, y) and a second system (s, t) that moves with the
sample while it is rotated (Fig. 5.2).

Let µ(x, y) be the local total attenuation coefficient of the sample which need
not be homogeneous. The number of photons passing through the sample at a
given angle θ at a fixed position t is then given by

Nθ(t) = N0 exp

(
−
∫

Lθ,t

µ(x, y)ds

)
(5.5)

where Lθ,t is a straight line at a fixed angle θ and a fixed position t. From
this one can define a projection Pθ(t) as

Pθ(t) := ln

(
N0

N(t)

)
=

∫
Lθ,t

µ(x, y)ds (5.6)

The basic idea of computer tomography is to invert eq. 5.6 for many parallel
projections taken over a range of different projection angles θ in order to get the
two-dimensional distribution of the attenuation coefficient µ(x, y) (Fig. 5.3).

The relation between the two coordinate systems in Fig. 5.2 is given by a
simple rotation about the angle θ.

(
t
s

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
(5.7)

In the (t, s)-coordinate system, the projection Pθ(t) of an arbitrary object func-
tion f(x, y) is:

Pθ(t) =

∫ ∞

−∞
f(t, s)ds (5.8)

Then its Fourier transform is:

Sθ(ω) =

∫ ∞

−∞
Pθ(t)e

−2πiωtdt (5.9)

Substituting eq. 5.8 into eq. 5.9 we get:

Sθ(ω) =

∫ ∞

−∞

∫ ∞

−∞
f(t, s)e−2πiωtdsdt (5.10)

Using the coordinate transformation eq. 5.7, this can be transformed into the
(x, y)-system:

Sθ(ω) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πiω(x cos θ+y sin θ)dxdy (5.11)
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Figure 5.3: Parallel projections are taken by measuring a set of parallel rays for a
number of different angles (From Ref. [73])
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The right hand side of eq. 5.11 can be interpreted as the two-dimensional
Fourier transform of f(x, y) at a spatial frequency of (u = ω cos θ, v = ω sin θ)
or

Sθ(ω) = F (ω, θ) = F (x cos θ, y sin θ) (5.12)

This equation (eq. 5.12) is the essence of straight ray CT and it proves the
so-called Fourier slice theorem [73]:

The Fourier transform of a parallel projection of an image f(x, y)
taken at angle θ gives a slice of the two-dimensional transform
F (u, v) subtending an angle θ with the u-axis. In other words, the
Fourier transform of Pθ(t) gives the values of F (u, v) along line BB
in Fig. 5.4.

From eq. 5.12 and Fig. 5.4 we can see that by taking projections of an object
function f(x, y) at angles θ1, θ2, . . . θn and Fourier transforming each of this, we
can determine the values of F (u, v) on radial lines. Knowing F (u, v), the object
function f(x, y), or µ(x, y) in our specific case, can be recovered by calculating
the inverse Fourier transform:

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e2πi(ux+vy)dudv (5.13)

However, since in practice we can only measure a finite number n of projec-
tions, we will only get information on n radial lines in the frequency domain.

Figure 5.4: The Fourier slice theorem relates the Fourier transforms of a projection
to the Fourier transform of the object along a radial line. From Ref. [73]
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5.2 Principle of Tomography

Interpolation procedures have to be applied to obtain the points on an Euclidean
grid because the data obtained lie on a polar grid.

Filtered Backprojection

If we go to polar coordinates by substituting u = ω cos θ and v = ω sin θ in eq.
5.13, we get

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (ω, θ)e2πiω(x cos θ+y sin θ)ωdωdθ (5.14)

and, since F (ω, θ + π) = F (−ω, θ), we can write

f(x, y) =

∫ π

0

∫ ∞

−∞
F (ω, θ)e2πiω(x cos θ+y sin θ)|ω|dωdθ (5.15)

Applying the Fourier slice theorem on this, i.e. substituting F (ω, θ) by Sθ(ω),
we get

f(x, y) =

∫ π

0

∫ ∞

−∞
Sθ(ω)e2πiω(x cos θ+y sin θ)|ω|dωdθ

=

∫ π

0

∫ ∞

−∞
Pθ(t)h(x cos θ + y sin θ − t)dtdθ (5.16)

where the reconstruction filter h(t) has been defined by

h(t) ≡
∫ ωmax

−ωmax

|ω|e−2πiωtdω

=
1

π
ω2

max

sin tωmax

tωmax

− 1

2π
ω2

max

(
sin tωmax

tωmax

)2

(5.17)

with 2ωmax being the bandwith of the image. And finally we can write eq. 5.16
in the form of

f(x, y) =

∫ π

0

Qθ(t)dθ (5.18)

Qθ(t) =

∫ ∞

−∞
Pθ(t

′)h(t− t′)dt′ (5.19)

The application of the reconstruction method described here is limited to a
parallel beam geometry, as it exists at a synchrotron, for example. Modern
laboratory instruments use a fan-beam or cone-beam geometry, which requires
more sophisticated reconstruction methods (e.g. [74]).
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5.3 X-ray Sources

The spatial resolution in X-ray tomography experiments is mainly governed by
the X-ray photon flux. [21] This flux varies over several orders depending on
the instrumentation used. The quality of an X-ray source is determined by a
number of properties, i.e. source size, divergence, monochromaticity and flux. A
single number which allows to compare different X-ray sources is the brilliance
η. It is defined as [75]

η(x, y, θ, ψ, ω, t) expressed in
photons/s

mrad2 · mm2 · (0.1%BW)
(5.20)

In medical X-ray tomographs (CT) the allowable radiation dose is limited and
therefore the spatial resolution is 300-500 µm. Laboratory microtomographs
(µCT) that are used for the investigation of non-living samples can use much
higher X-ray intensities, mainly limited by the photon flux available from the
X-ray tube. On such instruments a resolution of 10 - 20 µm can be achieved.
The X-ray photon flux produced by a third generation synchrotron source such
as the Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI), Villigen,
Switzerland is even orders of magnitude higher than the one available from X-
ray tubes. The spatial resolution can thus be improved to about 1 µm with
a standard detector or even to the submicrometer range with the use of some
newly developed special detectors [75–77].

In the laboratory X-rays are commonly generated in an X-ray tube where
electrons that are emitted from a cathode are accelerated in a high voltage field
towards a water-cooled metal anode (e.g. copper). The X-rays are emitted in
a continuous spectrum of Bremsstrahlung plus additional radiation peaks at
characteristic energies.

For tomography experiments usually microfocus X-ray tubes are used. Be-
cause of the low brilliance it is anavoidable to use a polychromatic spectrum to
get enough intensity for measurements. This can lead to artifacts due to the
so-called beam hardening effect. A further disadvantage is that a high photon
intensity is only delivered at some discrete energies, thus preventing an optimal
tuning of the energy.

Synchrotron radiation is emitted when highly relativistic electrons in a stor-
age ring are accelerated in a magnetic field, which can be achieved by bending
magnets, wigglers, or undulators. The resulting radiation has a very high inten-
sity, which is about 10 orders of magnitude higher than that of the Cu Kα line
of a rotating copper anode. Furthermore the X-ray beam has a very small di-
vergence and can be considered to be nearly parallel. It is hence possible to use
parallel beam reconstruction methods as described in 5.2. Thanks to the very
high intensity of the synchrotron X-ray beam it is possible to use a monochro-
mator and still achieving a high photon flux. Because of the X-ray spectrum
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being continuous, it is possible to tune the energy to the optimum for the specific
measurement. Since achievable photon energies are usually not so high usually
only relatively small samples can be investigated with such instruments [75,78].

5.4 Instrumentation

Microtomography measurements for this thesis were performed on two different
instruments. For C/Al-composites measurements were made on a synchrotron
based instrument at the Swiss Light Source (SLS) at the Paul Scherrer Institut
(PSI), Villigen, Switzerland. The LDPE/Pglass-hybrids were measured on a
laboratory instrument at EMPA, Dübendorf, Switzerland. All measurements
and raw data processing were done by Peter Wyss of EMPA.

The microtomography instrument at the SLS is located on the Materials sci-
ence beamline (MS or 4S). This is a multipurpose beamline hosting also a powder
diffraction and an in-situ surface diffraction instrument. The microtomography
instrument is equipped with a double crystal monochromator with a energy
resolution of 0.014%. At 10 keV, a typical energy for microtomography mea-
surements the flux of photons is about 1014 photons/s on a spot size of 1 mm2.

The transmitted photons are converted to visible light by a scintillator and
then projected on a CCD camera by a visible light optical setup.

The C/Al samples were measured SLS using a monochromatic beam energy
of 10 keV. This corresponds to a wavelength of the X-rays of about 1.2 Å. The
field of view (FOV) was 1.4 mm, and 1001 projections over an angle of 180
degrees were measured. The individual 2-D tomograms were reconstructed by
a filtered back-projection procedure. The resulting effective size of the digital
volume element (voxel) was 0.7 × 0.7 × 0.7 µm3 [22].

Polymer/Pglass hybrid samples were measured at EMPA in Dübendorf on a
laboratory tomograph. The X-ray source was a micro focus tube Feinfoucus
FXE 200.5 with a spot size of about 10µm and an accelaration energy of 90
keV. A Hamamatsu C7942CA-02 detector with a brass filter and a pixel size of
100µm was used and a 2 × 2 binning of the data was applied. 600 projections
with a frame size of 1024 × 1024 and 8 Bit (256 grey levels) image depth were
recorded. The set-up resulted in a effective voxel size of 2.5µm.

The same samples were also measured on microtomograph of the type V-
Tomex (Phoenix X-ray, Wunstorf, Germany). With an acceleration energy of
180 keV the spot size was 7µm. A Perkin-Elmer detector without binning was
used. 600 projections with a frame size of 500 × 500 pixels were recorded. The
image depth was 16 Bit (65535 grey levels). The resulting voxel size was 5.9µm.
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5 Microtomography

Figure 5.5: Beamlines at the SLS. Tomography measurements were made at beam-
line MS. From Ref. [79]
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Figure 5.6: The experimental setup at the SLS. The synchrotron beam comes from
the right (Photo: Th. Etter).
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6 Effective Materials Properties
Based on Tomography Data

This chapter describes the path that was followed and the procedures that have
been applied on the way from the reconstructed tomographic images to effective
materials properties.

6.1 Image Segmentation

Image segmentation stands for a transformation of a gray scale image with a
(quasi-) continuous spectrum of grey values to an image with distinct regions
that belong to one of a usually small number of different phases. In practice, this
means that one applies certain threshold values that separate the grey values
that are assigned to the same phase.

With the data used here this procedure was not straight-forward, neither
for the LDPE/Pglass-hybrids nor for the C/Al-composites. The segmentation
of the images was complicated by the fact that there was no clear distinction
between the grey values belonging to the different phases (except for pores).
This is illustrated by the histogram of the grey values (Fig. 6.1). An automatic
segmentation procedure could therefore not be applied.

The human eye, however, shows a remarkable ability to distinguish between

Figure 6.1: Example of a tomogram and corresponding histogram of grey levels.

71



6 Effective Materials Properties Based on Tomography Data

the different phases. A first estimate for the threshold value that has to be
applied for the segmentation was therefore made by visual judgement applying
the thresholding option of ImageJ [80].

The phase volume fractions were already known before the image analysis.
For the LDPE/Pglass-hybrids the nominal composition from the synthesis of the
material was 50 / 50 vol.-%. The open porosity of the graphite preforms was
measured by mercury infiltration as 14.5 vol.-%, which means that the sum of
aluminium and pore volume fractions has to sum up to this value. The resulting
phase volume fractions were checked against these known volume fractions of the
phases and the threshold value was varied to match the phase volume fractions
in the model to the known values.

6.2 Image Processing

From the complete stack of TIFF images first the region of interest for the
specific model was cut out. For example for a 100 x 100 x 100 voxel model
the 100 image layers that are of interest were loaded in ImageJ. From these an
area of 100 x 100 pixels was cut out. The “Crop” function of ImageJ allows to
process the whole stack of e.g. 100 images simultaneously.

The files were than saved in a 16 bit integer format (“Save stack as Text
image...””). This means that the image may contain 216 different grey levels
which are represented by an integer number between 0 and 216 − 1 = 65536.
The thresholding of these integer images was implemented in a C-program. This
program also merged the layers into a single file that served as microstructural
input for the FE solver.

For the example of the LDPE/Pglass hybrids the dependance of the phase
volume fractions in the model on the threshold value used for the image seg-
mentation is presented here (Fig. 6.2). A volume of 275 × 200 × 400 voxels
has been cut out from the complete tomography dataset. This was the largest
cuboid volume that could be extracted from the dataset which lies completely
inside the sample. 25 slices from the beginning and 25 slices from the end of the
stack have been excluded from the analysis because there were artifacts caused
by the cone-beam measurement geometry.

From the visual analysis of the images it has been determined that the thresh-
old value should be around 25000. Additionally, the information that the Pglass
volume fraction is fPglass = 0.50 was used to exactly specify the segmentation
threshold. For a series of different threshold values the images have been seg-
mented and the resulting volume fractions of the two phases calculated. Fig. 6.2
shows the strong dependance of the phase volume fractions (fPglass and fLDPE)
on the threshold value.
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6.3 Phase Properties

6.3 Phase Properties

The FE calculations need the mechanical and / or physical properties of the
individual phases as input to determine the effective properties of the composite.
The phase properties were either measured or taken from the literature, or in the
case where this was not possible they were determined numerically (for details
see Ch. 7 and Ch. 8).

6.4 Solver

An in-house solver implementing the method described in chapter 2 was used to
calculate the effective properties of the composites. Calculations were performed
on a HP Superdome computer maintained by the central computing facilities of
ETH (Informatikdienste). In the beginning the Superdome was equipped with
PA 8600 processores with a clock rate of 550 MHz. Later it has been upgraded
to Itanium-2 processors (clock rate 1.5 GHz). Typical CPU times for calculating
the properties of one computer model ranged from a few minutes up to about
one week depending on the size of the model, processor speed, and property to
be calculated (For physical properties like the electrical conductivity only one

Figure 6.2: Dependance of phase volume fractions (fPglass and fLDPE) in the model
on the threshold value used for image segmentation.
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minimization is needed while for the elastic properties six minimizations are
needed plus one for the thermal expansion coefficien. Therefore increasing the
CPU time approximately by a factor of seven.)
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7 LDPE/Pglass-Hybrids

Some specific compositions of phosphate glasses (Pglass) possess the remarkable
property of a very low glass transition temperature (Tg) , i.e. not much above
100℃. Their glass transition temperature is hence in the same range as the
melting point of some polymers e.g. low density polyethylene (LDPE). Never-
theless in the glassy state they show reasonably high stiffness in comparison to
most common polymers.

A composite of such a Pglass with a polymer such as LDPE will potentially
result in a material showing very interesting elastic properties as compared to
most pure polymers.

Due to the Tg of the Pglass being of the same order as the melting temperature
(Tm) of LDPE it is possible to melt process composites of the two from a common
melt of Pglass and LDPE. This would allow for relatively easy and cost efficient
production of large numbers of parts.

Such a process would be economically interesting since well established poly-
mer processing equipment could be used. Examples of possible processing meth-
ods are extrusion or injection moulding.

This numerical study was done to first investigate the continuity of the two
phases (Sec. 7.2.3). Subsequently the mechanical properties of the hybrid were
predicted by finite elements (Sec. 7.3). This results were largely different from
experimental data. Therefore local stresses in the hybrid were analyzed in order
to understand the observed discrepancy (Sec. 7.4).

7.1 Material Processing

LDPE/Pglass hybrids have been synthesized by Kevin Urman and Prof. Joshua
Otaigbe at the University of Southern Mississippi, USA. They have provided
the samples for mechanical and tomography measurements. For this reason the
synthesis of these hybrids is presented here only shortly.

The Pglass was prepared from stochiometrically calculated amounts of am-
monium dihydrogen phosphate (NH4H2PO4), tin oxide (SnO), and tin fluoride
(SnF2) to produce a molar composition of 0.50 SnF2 + 0.20 SnO + 0.30 P2O5

[81, 82]. The resulting glass has a density of ρ = 3.75 g/cm3 and a remarkably
low glass transition temperature of Tg = 116 − 126℃.
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7 LDPE/Pglass-Hybrids

As polymer component a molding grade low density polyethylene (LDPE) of
Huntsman Corp. (PE 1023) with a density of ρ = 0.92 g/cm3 and a melting
point of Tm = 125 ℃ was used. The two components, Pglass and LDPE, were
melt blended in a Brabender torque mixer with twin roller-type rotors. The
mixer was preheated to 140 ℃and a fixed shear rate of 30 rpm was set. The
polymer was first added and kept in the mixer for about 5 minutes until a ho-
mogeneous melt was achieved. Then the glass was added and the mixture was
melt mixed for about 20 minutes. For this project a hybrid with a glass content
of 50 vol.-%, corresponding to 80 w.-%, was prepared [83, 84].
Samples for the dynamic mechanical tests were compression moulded and
DMTA samples were cut from the compression molded sheets. For tomogra-
phy measurements strands of the hybrid were extruded.

7.2 Morphology of Hybrids

7.2.1 SEM Results

Otaigbe et al. published a scanning electron microscopy image of a cross sec-
tion through a 50/50vol.-% LDPE/Pglass hybrid that shows an interesting
microstructure (Fig. 7.1). They suggest that the presented microstructure is
formed by a co-continuous network of LDPE and Pglass [83].

Since interpenetrating networks (IPN) may have unconventional properties
a novel material which potentially has such a microstructure is interesting to
investigate. However, it is difficult, if not impossible, to decide whether a given
microstructure is really co-continuous solely based on SEM images because this
information is generically 2-D. It is very cumbersome and not really reliable to
conclude from 2-D images to the three-dimensional microstructure of a mate-
rial. The LDPE/Pglass hybrids were therefore studied with the help of X-ray
microtomography.

New samples have been prepared for this purpose by Urman. A SEM mi-
crograph of one of these samples (Fig. 7.2) is not of such a good image quality
which makes a comparison with the aforementioned image (Fig. 7.1) difficult.
However, one could get the impression that here we see globular inclusions in a
matrix, which would contradict the existence of a co-continuous microstructure.

7.2.2 X-ray Tomography

As can be seen from the SEM images, the microstructural features in the 50/50
LDPE/Pglass hybrids have a minimal size of about 10µm or larger. It is there-
fore sufficient to use a laboratory microtomograph in order to resolve the mi-
crostructure of this material. This has the advantage that access to such a
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7.2 Morphology of Hybrids

system is much easier than to a synchrotron-based instrument.
Because of the high tin content of the Pglass a reasonable contrast between

the polymer and the Pglass phase could be expected.
Microtomography measurements on the hybrids were made by Peter Wyss of

the Centre for Non-Destructive Testing of EMPA in Dübendorf, Switzerland.
Fig. 7.3 presents a typical tomogram slice from on of the measured sample. A
magnified region (100 × 100 pixels) of this slice is shown in Fig. 7.4.

Reconstructed tomograms were processed as described in Ch. 6 From the
stack of reconstructed slices a three-dimensional representation of the mi-
crostructure was created (Fig. 7.5). It represents a reconstructed volume of
400 × 275 × 200 voxels, where one voxel is 5 × 5 × 5µm3.

7.2.3 Continuity of the Phases

Obviously, it is impossible to determine whether the individual phases are con-
tinuous from a 3-D representation such as Fig. 7.5. Because the volume fraction
of both phases is 50% each, the network constituting either one phase is rather
dense. We can, however, use our numerical tools to decide whether either phase
is continuous or not. With the finite element method described in Ch. 2 we
determine separately for the two phases whether whether they are continuous,

Figure 7.1: SEM micrograph of 50/50 vol.% LDPE/Pglass hybrid. Indicating a
possibly co-continuous microstructure. From Ref. [83]
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Figure 7.2: SEM micrograph of 50/50 vol.% LDPE/Pglass hybrid. New sample
prepared for microtomography measurements (SEM image by Kevin Urman, USM).
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Figure 7.3: Representative tomogram of 50/50 vol.% LDPE/Pglass hybrid sample.
Image size is 500 × 500 pixels.
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Figure 7.4: Magnified region of Fig. 7.3 (50/50 vol.% LDPE/Pglass hybrid sample).
Image size is 100 × 100 pixels.
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Figure 7.5: Three-dimensional representation of the microstructure as measured by
X-ray microtomography. The volume is 400 x 275 x 200 voxels, where one voxel is 5
x 5 x 5µm3.

81
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Table 7.1: Dependance of the effective conductivity of the hybrid (σLDPE
eff and

σPglass
eff ) on the conductivity of the conducting phase σ. σeff values are normalized

by σ in order to facilitate comparison.

σ 1 10 100
σLDPE

eff /σ 0.3198 0.3182 0.3134

σPglass
eff /σ 0.2195 0.2184 0.2149

or not.

The conductivity is a property that is sensitive to the continuity of a phase.
Providing that phase B is non-conducting, phase A can only conduct an electric
current through the sample if there are continuous conducting paths of phase A
that connect the opposite sides of the sample.

In this study we test the continuity of the two phases by two separate calcu-
lations: in the first one the LDPE phase is assigned an arbitrary conductivity of
unity (σLDPE = 1) while the Pglass is assigned zero conductivity (σPglass = 0).
Therefore the effective conductivity of the hybrid depends only on the LDPE
and an non zero conductivity can only be realized in the case where the LDPE
phase is continuous. In a subsequent calculation the Pglass is taken to be the
conducting phase (σPglass = 1, σLDPE = 0). With these parameters the conti-
nuity of the Pglass phase is tested.

Numerical Results
It was tested whether the arbitrary choice of a conductivity value for the con-
ducting phase would influence the result in an unacceptable way. To this end the
effective conductivity was predicted with different values for the conductivity of
the conducting phase for a test volume of 100 x 100 x 100 voxels. As the results
in Table 7.1 show the differences in the result are negligible when determining
phase continuity.

The procedure described above is performed on 16 arbitrarily chosen subvol-
umes of a size of 100 × 100 × 100 voxels. It can be expected that the effective
conductivity depends on the volume fraction of the conducting phase in the
specific subvolume. The phase contents in the 16 individual subvolumes are
presented in Fig. 7.6. The average volume content of LDPE in the 16 subvol-
umes is fLDPE = 0.507±0.071 and all 16 individual values lie within an interval
of two standard deviations. The numerically predicted conductivity values are
σLDPE

eff = 0.277 ± 0.080 (LDPE conducting phase), and σPglass
eff = 0.283 ± 0.076

(Pglass conducting phase), respectively (Fig. 7.7,Fig. 7.8).

It can be seen from these results that either of the two phases shows con-
tinuous conductivity for itself. From this we conclude that both phases are
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Figure 7.6: Volume contents of the two phases (fPglass and fLDPE) in the 16 sub-
volumes of 100×100×100 voxels. The solid line represents the average LDPE volume
content fLDPE = 0.507, while the dashed and dotted lines show a deviation of one
and two standard deviations.
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Figure 7.7: Numerically predictions for the effective conductivity of subvolumes
of 100 × 100 × 100 voxels with LDPE as conducting phase. σx, σy, and σz are the
predicted conductivity values in the respective directions, wheras σeff is the average
of σx, σy, and σz. Conductivity values are plotted in dependance of the volume
fraction of the LDPE phase.
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Figure 7.8: Numerically predictions for the effective conductivity of subvolumes
of 100 × 100 × 100 voxels with Pglass as conducting phase. σx, σy, and σz are the
predicted conductivity values in the respective directions, wheras σeff is the average
of σx, σy, and σz. Conductivity values are plotted in dependance of the volume
fraction of the LDPE phase.
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continuous, and thus a co-continuous microstructure is present as it was sug-
gested by Otaigbe [83].

7.3 Mechanical Properties

Whereas the electrical conductivity calculations have been made in order to de-
termine the continuity of the phases, the mechanical properties of LDPE/Pglass
hybrids are of real interest in practice. It is a priori unclear what mechani-
cal properties will result from the co-continuous microstructure of the hybrids.
When manipulating the samples it is noticed that they are very brittle.

7.3.1 DMTA Measurements

To get a quantitative picture oft the elastic properties of the hybrids their mod-
ulus has been measured by dynamic mechanical thermal analysis (DMTA). This
method seemed to be most appropriate because of the brittleness of the material
and the small sample sizes available.

A Polymer Laboratories Mk II Dynamic Mechanical Thermal Analyser
(DMTA) was used. The measurements were made in the single cantilever bend-
ing mode, i.e. one end of the sample was fixed and the dynamic load was
applied to the other end of the sample. Temperature scans from 25°C to 100°C
at a heating rate of 1°C/min were made at frequencies of 1 Hz, and 10 Hz,
respectively.

LDPE/Pglass hybrid material was compression moulded to a thickness of
1 mm and cut into 7 mm wide samples. The free sample length in the measure-
ment setup was 8 mm. As a control, LDPE samples were also measured in the
same setup. They were compression molded to plates of a thickness of 0.9 mm
and cut into samples 10 mm wide.

For LDPE a storage modulus E ′ = 0.3 - 0.4 GPa at room temperature was
measured (Fig. 7.9). This is in reasonable accordence with values of 0.1 - 0.3
GPa given in the the literature for the tensile modulus of LDPE [85]. For the
LDPE/Pglass hybrid samples E ′ was in the range of 1.1 - 1.3 GPa at room
temperature (Fig. 7.10). The phase shift at room temperature is small (tan δ ≈
0.2) therefore the complex modulus E∗ is in this case comparable to the storage
modulus (since E∗ = E ′√1 + (tan δ)2).

Stiffnesses between 1 GPa and 2 GPa can easily be achieved with common
commercial polymers, e.g. HDPE has a stiffness of 0.4 - 1.4 GPa, PP has 1.1
- 2.1 GPa, or PA66 has 1.2 - 3.8 GPa [85]. With such polymers this stiffness
level can be achieved at a density of about 1 g/cm3 whereas the LDPE/Pglass
hybrids have a density of more than 2 g/cm3. Technologically the measured
stiffness of the hybrid is not very appealing since they can be easily achieved
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Figure 7.9: Result of DMTA measurements. Comparsison between pure LDPE and
LDPE/Pglass hybrid at a frequency of 10 Hz. Storage modulus E′ and loss factor
tan δ are shown.

Figure 7.10: Result of DMTA measurements. Two LDPE/Pglass hybrid samples
(mh021 and mh022) at a frequency of 1 Hz. Storage modulus E′ and loss factor tan δ
are shown.
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with common polymers. Considering specific stiffness the hybrids are in an even
less favorable position because at a density of more 2 g/cm3 they have the same
stiffness as what is achievable with pure polymers at 1 g/cm3. The brittleness
of the hybrids is a further drawback which should be taken into account.

These results show that at the present stage the stiffness of the hybrids is
technologically not very appealing. Nevertheless, the LDPE/Pglass hybrids
are interesting from a scientific point of view and have therefore been studied
further. Namely, it was interesting to determine the technological potential of
the interpenetrating microstructures and to identify the reason why it is not
realized in practice.

7.3.2 Micromechanical Models

Micromechanical models allow to make straight-forward predictions of the ef-
fective properties of a composite material. Their advantage is that they use
analytical expression, which makes the evaluation relatively easy and fast. But
on the other hand predictions are only bounds or estimates for very simple
geometries such as fully aligned fibres.

Nevertheless some results are presented here in order to see the range in which
the numerically predicted properties are expected. Reuss and Voigt bounds are
not very restrictive but very simple to calculate since they are based on the
assumption of equal stress or equal strain, respectively, in the two phases of the
composite. The upper (Voigt) bound is given as

EV oigt =
∑

fiEi (7.1)

where fi is the volume fraction of phase i, and Ei is Young’s modulus of phase
i. In this specific case with the phase properties given in Table 7.2 the Voigt
bound is EV oigt = 15.1 GPa. Meanwhile the lower (Reuss) bound is defined as

EReuss =
1∑
fi/Ei

(7.2)

and in our case is EReuss = 0.4 GPa. In the present situation the Reuss bound
is very close to the stiffness of the LDPE and the interval between Voigt and
Reuss bounds is very wide because of the large difference in the stiffnesses of
the two phases.

The Hashin-Shtrikman bounds on the effective elastic moduli make more rig-
orous predictions. They are based on a variational principle and it can be shown
that they are the most rigorous bounds that can be specified when only the vol-
ume fractions of the phases are known and no further information about the
microstructure of the composite is available [43, 86, 87].
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For the bulk modulus k and the shear modulus µ of a two phase composite
with phase properties k1, k2, µ1, and µ2 the lower and upper Hashin-Shtrikman
bounds on the effective moduli are

f1

1 + (1 − f1)
k1−k2

k2+kl

≤ k − k2

k1 − k2
≤ f1

1 + (1 − f1)
k1−k2

k2+ku

(7.3)

and
f1

1 + (1 − f1)
µ1−µ2

µ2+µl

≤ µ− µ2

µ1 − µ2
≤ f1

1 + (1 − f1)
µ1−µ2

µ2+µu

(7.4)

where for (µ1 − µ2)(k1 − k2) ≥ 0

kl =
4

3
µ2 (7.5)

ku =
4

3
µ1 (7.6)

µl =
3

2

(
1

µ2

+
10

9k2 + 8µ2

)−1

(7.7)

µu =
3

2

(
1

µ1

+
10

9k1 + 8µ1

)−1

(7.8)

and for (µ1 − µ2)(k1 − k2) ≤ 0

kl =
4

3
µ1 (7.9)

ku =
4

3
µ2 (7.10)

µl =
3

2

(
1

µ2
+

10

9k1 + 8µ2

)−1

(7.11)

µu =
3

2

(
1

µ1
+

10

9k2 + 8µ1

)−1

(7.12)

From these results the effective tensile modulus E and the effective Poisson’s
ratio is available through the relations

E =
9kµ

3k + µ
(7.13)

and

ν =
3k − 2µ

6k + 2µ
(7.14)

For the specific case with the phase properties of Table 7.2 the Hashin-
Shtrikman bounds on the effective Young’s modulus are Elower = 0.676 GPa,
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and Eupper = 10.845 GPa. The usefulness of these bounds is limited in cases
like this where the ratio between the moduli of the two phases is quite large.
Because here the bounds lie far apart.

The micromechanical model developed by Tandon and Weng [46] based on
Eshelby’s solution for an ellipsoidal inclusion in an infinite matrix [44] and on
Mori-Tanaka’s average stress [45] is a widely used model. It predicts the five
independent elastic constants of a transversely isotropic composite with fully
aligned ”fibres” with an aspect ratio between zero and infinity (i.e. platelets,
spheres, and fibres of various aspect ratio are covered by this) by the following
analytical expressions:

E11

Em

=

(
1 + ff

A1 + 2νmA2

A6

)−1

(7.15)

E22

Em
=

(
1 + ff

−2νmA3 + (1 − νm)A4 + (1 + νm)A5A6

2A6

)−1

(7.16)

G12

Gm
= 1 + ff

(
µm

µf − µm
+ 2fmS1212

)−1

(7.17)

G23

Gm

= 1 + ff

(
µm

µf − µm

+ 2fmS2323

)−1

(7.18)

ν21 =
νmA6 − ff(A3 − νmA4)

A6 + ff (A1 + 2νmA2)
(7.19)

K23

Km

=
(1 + νm)(1 − 2νm)

1 − νm(1 + 2ν21) + ff
2(ν21−νm)A3+(1−νm(1+2ν21))A4

A6

(7.20)

where λm, µm, λf , and µf are the Lamé constants of the matrix and the fibres,
respectively. ff is the volume fraction of the inclusion phase (fibres) and fm =
1− ff is the volume fraction of the matrix. Eq. 7.19 was derived by Tucker [32]
and is not the original equation derived by Tandon and Weng. The original
equation can only be solved iteratively because it is coupled with eq. 7.20. The
parameters A1, . . . , A6, B1, . . . , B5, and D1, . . . , D3 are defined as follows:

A1 = D1(B4 +B5) − 2B2 (7.21)

A2 = (1 +D1)B2 − (B4 +B5) (7.22)

A3 = B1 −D1B3 (7.23)

A4 = (1 +D1)B1 − 2B3 (7.24)

A5 =
1 −D1

B4 − B5
(7.25)

A6 = 2B2B3 −B1(B4 +B5) (7.26)

90



7.3 Mechanical Properties

Table 7.2: Properties of the LDPE and the Pglass used for the calculations. Young’s
modulus E, Poisson ratio ν, linear thermal expansion coefficient α, and density ρ.
Average values taken from the literature.

LDPE Pglass
E [GPa] 0.2 30.0
ν 0.49 0.27
α [10−6/K] 150.0 12.0
ρ [g/cm3] 0.92 3.64

B1 = ffD1 +D2 + fm(D1S1111 + 2S2211) (7.27)

B2 = ff +D3 + fm(D1S1122 + S2222 + S2233) (7.28)

B3 = ff +D3 + fm(S1111 + (1 +D1)S2211) (7.29)

B4 = ffD1 +D2 + fm(S1122 +D1S2222 + S2233) (7.30)

B5 = ff +D3 + fm(S1122 + S2222 +D1S2233) (7.31)

D1 = 1 + 2
µf − µm

λf − λm

(7.32)

D2 =
λm + 2µm

λf − λm

(7.33)

D3 =
λm

λf − λm

(7.34)

Sijkl are the components of Eshelby’s tensor which depend on the Poisson’s
ratio of the matrix νm and the inclusion aspect ratio a. Expressions for the
components of the Eshelby tensor can be found in the paper of Tandon and
Weng. [46]

The model of Tandon and Weng predicts E = 3.4 GPa for our composition.
However, it should be noted that this is not really a comparable situation since
it is a prediction for parallel fibres whereas here in the investigated material the
reinforcing phase forms a three-dimensional network.

7.3.3 Numerical Results

The finite element method of Ch. 2 was used to numerically predict the effective
elastic constants of the hybrids. Numerical estimates were calculated for two
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Table 7.3: Numerically predicted stiffness values of two hybrid samples (200×200×
275 voxels). All values in GPa.

Sample ID E11 E22 E33 Eeff

hyb275 01 8.193034 6.471022 6.863883 7.175980
hyb275 02 8.512704 6.711815 6.901985 7.375501

Table 7.4: Numerically predicted thermal expansion coefficients of two hybrid sam-
ples (200 × 200 × 275 voxels). All values in 10−5 · K−1.

Sample ID α11 α22 α33 αeff

hyb275 01 4.392 6.824 6.108 5.775
hyb275 02 4.201 6.629 6.272 5.701

different volumes with a size of 200× 200× 275 voxels each. Again phase prop-
erties as given in Table 7.2 were used. The energy minimization was stopped
when the gradient had reached 3 ·10−3 of its initial value. The effective Young’s
modulus for deformation in x-, y-, and z-direction, respectively, were extracted
from the effective stiffness tensor and the average value of the three was calcu-
lated Table 7.3. The effective thermal expansion coefficient for a temperature
change of ∆T = +1K was also calculated. Results are shown in Table 7.4.

The stiffness in the 11-direction is 20-30% higher than in the two perpendic-
ular 22- and 33-directions. The 11-direction is the extrusion direction of the
sample. The higher stiffness in this direction is caused by some degree of prefer-
ential orientation of the high stiffness Pglass phase in this direction induced by
the extrusion process. The lower thermal expansion coefficient in 11-direction
directly follows from the higher stiffness in this direction.

7.3.4 Difference to Measured Stiffness

An overview of measured, calculated, and numerically predicted stiffness values
is given in Table 7.5. The numerically predicted stiffness seems to be reasonable
in comparison with upper bound values (Sec. 7.3.2). It is about 33 % smaller
than the upper Hashin-Shrtrikman bound. But this is still a value which can
be explained by the particularities of the microstructure.

The measured stiffness (1.2 GPa), however, is less than 20 % of the numer-
ically predicted stiffness (7.3 GPa). This very striking difference is far beyond
the experimental error or the error of the numerical method. We therefore were
looking for a different reason for this obvious discrepancy.
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Table 7.5: Overview on measured, calculated, numerically predicted Young’s mod-
ulus of a 50/50 LDPE/Pglass hybrid sample. Measured and numerically predicted
results are given as average over two samples.

method Eeff [GPa]
measured 1.2
Voigt upper bound 15.1
Hashin-Shrtrikman upper bound 10.8
Tandon-Weng 3.4
numerical prediction 7.3

7.4 Local Thermal Stresses

In order to explain the large difference between the numerical prediction and
the measured stiffness of the hybrid we propose the following explanation: the
thermal expansion coefficient of the two phases differ by more than one order of
magnitude (150 ·10−6 K−1 vs. 12 ·10−6 K−1). During the cooling from the man-
ufacturing temperature to room temperature this mismatch will inevitably lead
two internal stresses in the two phases. We assume that the relevant temper-
ature interval for the build-up of thermal stresses starts at the glass transition
temperature of the Pglass, which is around 120℃ (approximately the melting
temperature of LDPE, too), and continues down to room temperature. There-
fore the relevant temperature interval it is about 100 K. By analyzing the local
thermal stresses obtained from the finite element calculation it can be decided
whether they are large enough to cause local damage in the structure. In partic-
ular, it is interesting whether the higher stiffness Pglass phase will be damaged
because this may lead to the observed low stiffness.

7.4.1 Method

During the calculation of the effective thermal expansion coefficients a virtual
temperature change of ∆T = +1 K is applied to the model. At the end of the
minimization process the local hydrostatic pressure and the local von Mises
stress caused by the temperature change in each individual element is cal-
culated and written to the output file. When the samples are manufactured
and subsequently cooled to room temperature, which is about 100 K below the
glass transition temperature of Pglass. Therefore it has been assumed that the
temperature difference, which causes thermal stresses, is ∆T = −100 K. The
elastic constants and the thermal expansion coefficient are assumed to be con-
stant over this temperature interval. Therefore the stress values predicted for a
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7 LDPE/Pglass-Hybrids

∆T = +1 K were multiplied by a factor of A = −100 to calculate the stresses
for a ∆T = −100 K.

The local stresses are calculated for two different volumes of 11 million ele-
ments each (275 × 200 × 200 voxels). The local stresses have been evaluated
separately for the LDPE and for the Pglass respectively.

7.4.2 Numerical Results

Histograms show the distribution of local von Mises stress and local hydrostatic
pressure occuring in the elements of one phase after the cooling process. It
should be noted that the ordinate of the histograms is plotted in logarithmic
scale because the distribution is dominated by the average stress and pressure
values. The number of elements that are subject to such average pressure of
stress are of the order of 106 out of about 5.5 · 106 elements. However, there
remain a significant number of elements (on the order of 101 to 102) that are
subject to much higher loads.

Considering the LDPE first (Fig. 7.11 and Fig. 7.12), we observe that the
majority of elements are under a von Mises stress of less than 4 MPa and
only very few undergo a von Mises stress of up to 8.5 MPa. Looking at the
hydrostatic pressure it is clear that the majority of the elements are under a
negative hydrostatic pressure which effectively is a tension. All tension is smaller
than 30 MPa. A minority of elements is under compression up to about 30 MPa.
But since compression is much less prone to cause failure of the material, this
can be neglected. Assuming that the amorphous domains of the LDPE are still
able to deform plastically to some degree damage is not expected to occur in
the LDPE phase.

Because of the relatively higher stiffness of the Pglass, which is 150 times
larger than the one of LDPE, stresses in this phase are much higher (Fig. 7.13
and Fig. 7.14). Von Mises stresses in the vast majority of elements are below
100 MPa but stresses of up to 230 MPa are found in significant numbers of
elements. The hydrostatic pressure is mainly positive meaning that most of
the elements are under compression and thus not susceptible to failure. But
considerable numbers of elements are still under tension of up to 20 MPa, which
is about 0.1% of the Young’s moudulus of Pglass.

7.5 Interpretation and Conclusion

Using the electrical conductivity as a test it was found that both the LDPE
phase and the Pglass phase are continuous at a 50/50 vol.-% composition of the
hybrid. This means the microstructure is co-continuous.
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7.5 Interpretation and Conclusion

Figure 7.11: Local thermal stresses occuring in the LDPE phase of sample hyb275 01
from a temperature change of ∆T = −100K. Distribution of local von Mises stress
(top) and local hydrostatic pressure (bottom). The total number of elements is
5’529’900.
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Figure 7.12: Local thermal stresses occuring in the LDPE phase of sample hyb275 02
from a temperature change of ∆T = −100K. Distribution of local von Mises stress
(top) and local hydrostatic pressure (bottom). The total number of elements is
5’461’397.
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7.5 Interpretation and Conclusion

Figure 7.13: Local thermal stresses occuring in the Pglass phase of sample hyb275 01
from a temperature change of ∆T = −100K. Distribution of local von Mises stress
(top) and local hydrostatic pressure (bottom). The total number of elements is
5’470’100.
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7 LDPE/Pglass-Hybrids

Figure 7.14: Local thermal stresses occuring in the Pglass phase of sample hyb275 02
from a temperature change of ∆T = −100K. Distribution of local von Mises stress
(top) and local hydrostatic pressure (bottom). The total number of elements is
5’538’603.
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7.5 Interpretation and Conclusion

The numerically predicted stiffness of the hybrid is in the range that one
would also expect from micro-mechanical models. However, this is six times
higher than the experimentally observed stiffness of real samples. It is assumed
that this discrepancy originates in some kind of damage that occurs upon cooling
of the material from the melting / glass transition temperature to room tem-
perature. The difference in thermal expansion coefficient leads to local stresses
in the material which were analyzed. It was seen that high stresses occur only
in a very small fraction of all elements but can reach levels that may well induce
damage in the brittle Pglass.

A cascade process started by generating cracks in some elements could cause
the failure of significantly more elements. However this cannot be seen in the
’static’ analysis we did here.
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8 Graphite/Aluminium Composites

Light metal infiltrated graphite composites exhibit an interpenetrating network
type of microstructure. The co-continuous microstructure is intrinsic to the
manufacturing process where porous graphite preforms are pressure infiltrated
with an aluminium melt. The graphite / aluminium (C/Al) composites have a
number of properties that make them good candidates for certain specific ap-
plications. Some of their major advantages are the low density, low coefficient
of thermal expansion (CTE), and the temperature resistance of the carbon ma-
terial. The metal phase is providing fracture toughness and improved thermal
conductivity. Further assets are the electrical conductivity and self lubricating
properties of the composite.

Prospective applications of such a composite material can be found in the
transportation industry. The use is planned as piston material for internal
combustion engines where a significant reduction in fuel and oil consumption can
be expected. Another possible application is as current collectors for electrical
locomotives.

C/Al composites have been studied in collaboration with Thomas Etter and
Prof. Peter Uggowitzer of the Laboratory of Metal Physics and Technology at
ETH Zürich. The material is studied in a European project involving materials
manufacturers and the automotive industry. Extensive information can be found
in the PhD thesis of Thomas Etter [88].

In the present thesis X-ray microtomography data was used to build a com-
puter model of one such C/Al composite. The electrical conductivity and elastic
properties of the material were then studied in the as produced state and after a
cyclic thermal treatment. Conductivity degradation after the thermal treatment
was investigated [22].

8.1 Composite Preparation

Graphite/aluminium (C/Al) composites with interpenetrating topology can be
produced by the infiltration of a porous graphite preform with liquid aluminium
alloys [89]. Due to the poor wettability between aluminium and graphite, ex-
ternal pressure is necessary to force the liquid metal into the preform. A short
contact time between the melt and preform is a prerequisite to avoid the for-
mation of detrimental carbides. This requires high pressure and fast cooling
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8 Graphite/Aluminium Composites

rates, and can be achieved in practice by using the Indirect Squeeze Casting
Process [90].

As a starting material an isotropic polycrystalline porous graphite with an
open porosity of about 14.5 vol.-% was used as preform. These preforms were
produced by cold isostatic pressing of special mesophase powders, subsequent
controlled thermal decomposition and final high temperature treatment. Pre-
forms were provided by Schunk Kohlenstofftechnik GmbH.

The porous preforms were infiltrated with a hypoeutectic AlSi7Ba (7 wt.-%
Si, 0.25 wt.-% Ba) alloy. The addition of surface-active elements such as barium
to the AlSi7 base alloy should facilitate the infiltration by lowering the surface
tension of the liquid alloy. [91] The superheated aluminium melt (750℃) was
pressed into preheated graphite preforms (680℃) with a hydraulic plunger and
solidified under a pressure of about 75 MPa. By using a moderate preform
temperature and a fast cooling rate, the formation of Al4C3 could be avoided.
Infiltration work was done at LKR Ranshofen, Austria.

8.2 Experimental Material Characterization and
Properties

A four-probe method was used by Etter to measure electrical conductivities [92].
In this method, a direct current is passed through the specimen between the
outer probes. The resulting potential difference is measured between the inner
probes.

Mechanical properties were measured in a 3-point bending test by Etter.

X-ray microtomography measurements were performed at the Materials Sci-
ence Beamline [76] of the Swiss Light Source, Paul Scherrer Institut, Villigen,
Switzerland using a monochromatic beam energy of 10 keV. The field of view
(FOV) was 1.4 mm, and 1001 projections over an angle of 180 degrees were
measured. The individual 2-D tomograms were reconstructed by a filtered back-
projection procedure. The resulting effective size of the digital volume element
(voxel) was 0.7 × 0.7 × 0.7µm3. Tomography measurements and image recon-
struction were done by Peter Wyss of EMPA Dübendorf, Switzerland.

Some properties of the studied C/Al composite are summarized in Table 8.1.

8.3 Electrical Conductivity and Representative
Volume Element (RVE)

Fig. 8.1 a/b show typical optical micrographs of the C/AlSi7Ba composite, and
Fig. 8.1 c/d show corresponding 2 D tomogram slices. As can be seen from the
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Table 8.1: Experimental material properties. Thermophysical and mechanical prop-
erties of the monolithic phases and the corresponding composite: electrical conductiv-
ity σel, thermal conductivity λ, linear thermal expansion coefficient α(average over the
range 100℃- 300℃), density ρ, four-point bending strength σc, and fracture toughness
KIC (n.d. not determined).

Graphite preform AlSi7Ba C/Al composite
σel [106/Ωm] 0.043 ± 0.001 24 ± 1 0.53 ± 0.03
λ [W/mK] 49 ± 1 183 ± 2 76 ± 2
α [10−6/K] 6.39 ± 0.05 22.4 ± 0.4 9.1 ± 0.3
ρ [g/cm3] 1.83 2.69 2.17
σc [MPa] 61 ± 2 n.d. 122 ± 5

KIC [MPam1/2] 0.94 ± 0.03 n.d. 1.93 ± 0.03

optical micrographs, the bright metal phase fills the pores homogeneously. The
residual porosity as determined by mercury porosimetry was less than 1 vol.-%.

A segmentation procedure was used to assign each voxel (effective voxel size
0.7×0.7×0.7µm3) of the tomography images to one of the three specific phases
(graphite, aluminium, or pores) according to its grey level. Since there were no
clear, high-contrast distinctions between the grey levels of the different phases,
the segmentation was carried out according to a combination of visual judge-
ment and the additional constraint that the porosity of the graphite preform as
measured by mercury porosimetry is 15 vol.%. Therefore the volume contents
of aluminium and pores should sum up to 15 vol.%. The right-hand sides of
Fig. 8.1 c/d show examples of image segmentation where the aluminium phase
is represented in white. In the next step the segmented images were used to
create a 3-D finite element model directly, by mapping each voxel to one cubic
finite element and assigning to it the corresponding phase conductivity value
(Fig. 8.2).

The effective electrical conductivity of the composite was calculated by solving
Laplace’s equation with a position dependent, piecewise uniform local electrical
conductivity σ(r)

divσ(r)gradφ = 0 (8.1)

on a cubic grid of serendipity family linear brick finite elements [2, 24]. In the
direction in which the conductivity was determined, a zero potential on one side
and that of unity on the opposite side was applied. In the two perpendicular
directions periodic boundary conditions were used. An iterative Krylov subspace
solver [25] was used and the effective composite properties were extracted by
using a linear response relation between the volume averaged fluxes and the
external potentials. In this study, we used computer models with up to about
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8 Graphite/Aluminium Composites

Figure 8.1: Microstructure of the C/Al composite. a/b, Optical micrographs of
C/AlSi7Ba composite (grey - graphite, white - aluminium, black - pores), and c/d,
2-D tomogram slices and Al segmentation of C/AlSi7Ba composite, pixel size 0.7µm.
The brighter phase corresponds to aluminium (approx. 15 vol.-%).
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8.3 Electrical Conductivity and Representative Volume Element (RVE)

Figure 8.2: 3-D view of the finite element model. The microstructure was recon-
structed from 3-D X -ray microtomography data and segmented into three phases.
The volume has a size of 600 × 600 × 200 voxels of a size of 0.7 × 0.7 × 0.7µm3 (dark
grey - graphite, light grey - aluminium, black - pores).
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108 elements. Typically, the CPU time needed for solving one model was a few
hours on a single processor of an HP Superdome with PA8600 processors (clock
rate 550 MHz).

The electrical conductivity as measured was σAl = 24 · 106/Ωm for the bulk
aluminium and σmeas = 0.043 · 106/Ωm for the porous graphite preform. For
the numerical calculations, however, the conductivity of the dense graphite, σ0

, rather than that of the porous graphite preform σmeas, needs to be known.
Unfortunately, the former cannot be measured directly. To circumvent this
problem we used an alternative, reconstruction approach. We first made an
initial estimate by using a linear mixing rule

σmeas = σ0(1 − f) (8.2)

where f is the volume fraction of pores. This value was then refined in a series
of auxiliary numerical calculations. For this, all aluminium containing voxels
in the computer models considered were replaced by pores, i.e. elements with
a zero electrical conductivity. A graphite phase conductivity value was then
sought that would yield the correct conductivity for the porous preform. The
correct value for dense graphite was found to be 0.053 · 106/Ωm.

Hashin-Shtrikman variational bounds establish rigorous upper and lower
bounds on the effective electrical conductivity 〈σ〉 of macroscopically isotropic
composites with an arbitrary microstructure [93]

σ1 +
f

1
σ2−σ1

+ 1−f
3σ1

≤ 〈σ〉 ≤ σ2 +
1 − f

1
σ1−σ2

+ f
3σ2

(8.3)

where σ1 is the electrical conductivity of the matrix, σ2 is the electrical conduc-
tivity of the inclusion phase and f is the volume fraction of the inclusion phase.
However, due to the large difference in electrical conductivity between the phases
of more than two orders of magnitude these bounds are far apart in a simpli-
fied two phase system consisting of a graphite matrix and 15 vol.-% aluminium
inclusions, which was considered here as a model system, i.e. 0.08 · 106/Ωm for
the lower bound and 2.49 · 106/Ωm for the upper bound (indicated by dashed
lines in Fig. 8.3).

When estimating effective material properties by numerical simulation tech-
niques, it is imperative to identify the representative volume element (RVE) of
that material, i.e. the volume that is sufficiently large to be representative of the
material on a macroscopic scale. It has been shown, both theoretically [36] and
numerically [1], that for composite materials with isolated inclusions (spheres,
platelets etc.) the RVE is surprisingly small. We demonstrate this by applying
the finite element procedure to a series of microstructures composed of different
numbers of non-overlapping identical aluminium spheres randomly distributed
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8.3 Electrical Conductivity and Representative Volume Element (RVE)

in a graphite matrix (1, 8, 27, 64, and 343 spheres respectively with an inclu-
sion volume fraction f = 0.15). In an additional study it was clearly established
that a resolution of 1203 elements results in well converged numerical predic-
tions for five different random microstructures of 64 spheres. For the different
system sizes studied, the grid dimensions were chosen to result in the same
number of elements per sphere diameter. Since the conductive inclusions do
not percolate, the predicted electrical conductivities are quite close to the lower
Hashin-Shtrikman bound (Fig. 8.3 b). But more remarkably, the individual es-
timates converge very rapidly to a single value, representative of the effective
electrical conductivity of the macroscopic composite. Even for microstructures
containing 27 spheres (grid size: 903 elements), the relative standard deviation
of the 15 individual predictions is only 2 %, and with 64 spheres (grid size: 1203

elements) the relative standard deviation is less than 1 %.
However, it is not immediately evident whether or not this remarkable fea-

ture would also pertain to interpenetrating composite materials. To elucidate
this problem numerically, we randomly chose a certain number of subvolumes
(typically ten for a given length scale) of predefined sizes (253, 503, 1003, 2003

voxels), out of the whole 200 × 600 × 600 voxel microstructure measured, and
numerically predicted the effective electrical conductivity of these subvolumes.
The estimates obtained for individual models showed a rather large scatter (Fig.
8.3a). As one can estimate from Fig. 8.3a, the numerical predictions would ten-
tatively converge only for very large simulation models of about 109 to 1010

elements. Such calculations are impractical at the moment, due to the current
CPU time and memory limitations. A possible suggestion might be that by ori-
entation averaging of the predictions for different directions one might improve
the convergence behaviour. We found a small improvement with the smallest
microstructures, but almost none with the larger ones.

Our results indicate that it is at present impossible to make rational numerical
predictions for interpenetrating C/Al composites based on a single microstruc-
ture of a size that is still computationally manageable, since one would merely
obtain a random result without any significance for the macroscopic effective
properties of the material. However, as seen in Fig. 8.3, the ensemble average
over the individual predictions obtained on a particular length scale converges
remarkably rapidly to the experimentally measured conductivity value, already
for very small, computationally tractable computer models.

It can be observed that all the individual predictions lie within the two Hashin-
Shtrikman bounds, but for the smallest simulation cells (253 voxels) the largest
and the lowest predicted values differ by a factor of about 15. This clearly
demonstrates that it is impossible to achieve accurate predictions based on a
single microstructure.

We have demonstrated that, because of the large representative volume ele-
ment size, it is not sufficient to base material property predictions of interpene-
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Figure 8.3: Numerical results. Predicted electrical conductivity depends on the
size of the simulation cell dots represent individual numerical predictions, black open
squares are the respective ensemble averages over the individual numerical predictions,
error bars are calculated as the standard deviation, the dash-dot line is the experi-
mentally measured conductivity σ = 0.53 · 106/Ωm, the dashed lines show the upper
and lower Hashin-Shtrikman bounds). In the interpenetrating C/Al composite a) the
convergence towards the effective electrical conductivity of the macroscopic material
is very slow, i.e. the representative volume element is extremely large, whereas for
random microstructures of nonoverlapping spheres b) this convergence is much faster
(1, 8, 27, 64, and 343 spheres).
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8.4 Electrical Conductivity of Thermally Aged Composites

trating phase composites on a single moderately sized simulation cell. However,
despite the highly different conductivities of the phases, remarkably accurate
predictions can nonetheless be achieved by carrying out ensemble averaging
over a sufficient number of small models. This opens a pathway to studying
the influence of microstructural changes, which can readily be simulated in the
computer models, on the effective physical properties (electrical conductivity,
thermal conductivity, dielectric constants) of such interpenetrating composites.
Hence, it will in time be possible to optimise the topology of composites in such
a way that certain desired properties may be obtained.

8.4 Electrical Conductivity of Thermally Aged
Composites

For the planned use of the C/Al composites in internal combustion engines it
is important to know about the behaviour of the composite material under a
cyclic thermal load. Experimentally this was tested by applying 1000 cycles of
heating the test sample from room temperature to 300℃ and cooling down to
room temperature again in ambient air.

It was observed that the the electrical conductivity of the aged composite,
is σage = 0.43 ± 0.03 · 106/Ωm. This is about 20% lower as compared to the
conductivity of the composite in the original state, σmeas = 0.53±0.03 ·106/Ωm.

We asked the question whether this experimentally observed effect can be
reproduced also in the simulation. To this end a sample of the same C/Al
composite was thermally cycled as described above. Subsequently, microtomo-
graphic measurements were made under the same conditions and in the same
measuring shift as the original sample.

The images were segmented as for the first sample assuming that the volume
fraction of Aluminium was equally 14.5%. An ensemble of ten non-overlapping
subvolumes with a size of 1003 voxels was randomly chosen out of the total sam-
ple volume. For these 10 subvolumes the electrical conductivity was numerically
calculated. The same phase properties as determined in Sec. 8.3 have been used.

Fig. 8.4 compares the predicted conductivities before and after the thermal
cycling. The conductivity drops from 0.52 · 106/Ωm to 0.45 · 106/Ωm, which
corresponds to a decrease of 13% from the original value is observed in the
thermally treated sample.

Although the effect in the simulation is not as well expressed as it was observed
experimentally, one can see a trend in the same direction. Naturally, one would
ask what are the reasons for this effect. Possible explanations are that some of
the aluminium channels break because of the difference in thermal expansion
coefficient between the graphite and the aluminium and are therefore no langer
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available for conducting the electrical current. Another reason, which has a
somewhat similar effect, might be that pores develop within the aluminium
phase or existing pores aggregate. This would equally reduce the conducting
cross-sections of the aluminium channels or interrupt some of them.

Experimentally, it was observed that after the thermal cycling the length of
the composite samples had increased by 0.1%. Most probably this increase in
length results from a increase in volume of the sample.

By using the numerical method it should be tested whether newly occurring
void spaces in the aluminium network are responsible for the observed decrease
in the conductivity. The potential defects were “healed” in the model by replac-
ing all pore elements by aluminium. As a control the same procedure was also
applied to the model of the original composite (without thermal treatment).

The results of this procedure are presented in Fig. 8.5. The original composite
(before TC) exhibited only a very small increase of the conductivity from the
state with pores to the state where all the pores were filled with aluminium. To
our surprise, however, the thermally cycled composite (after TC) was able to
regain almost the same electrical conductivity as the original sample.

Indeed, it was possible to simulate a “healing” of the damage which occurred
through the thermal cycling of the composite. This demonstrates that some
kind of porosity in the aluminium phase is responsible for the decrease in the
electrical conductivity. In the composite without thermal cycling, in contrast,

Figure 8.4: Electrical conductivity σeff of C/Al composite before and after thermal
cycling. A decrease of 13% is observed.
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Figure 8.5: Filling the pores with aluminium results in a recovery of the initial
electrical conductivity of the thermally cycled sample (right hand side, after TC).
The conductivity of the untreated sample remains unchanged (left hand side, before
TC).
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Table 8.2: Elastic properties of the phases used for the finite element calculations.
Young’s modulus E, Poisson ratio ν, linear thermal expansion coefficient α, and
density ρ.

graphite aluminium
E [GPa] 12.8 72.0
ν 0.18 0.33
α [10−6/K] 6.2 20.4

the remaining pores are mainly closed pores. They do not contribute to the
overall effective conductivity of the composite even when they are filled with
aluminium.

8.5 Elastic Properties

In this section the numerical prediction of the effective elastic properties of the
C/Al composites is discussed. The elastic properties of the two phases that were
used for the calculations are summarized in Table 8.2.

The effective stiffness tensor of subvolumes of different size was numerically
calculated with the finite element method described in Ch. 2. The subvolumes
were of a size of 253, 503, 1003, and 2003, respectively. Numerical predictions
for ten subvolumes of each size were made (nine subvolumes for 2003).

In Fig. 8.6 the individual predictions for the effective Young’s modulus for
a deformation in the x-, y-, and z-direction are plotted against the number of
elements of the simulation cell. The mean and the standard deviation are also
plotted in this figure.

It is observed that the predictions for the Young’s modulus converge quite fast.
Already for a model size of 1003 elements the scatter is very small (standard
deviation 4%). The predicted Young’s modulus converges to a value of 17.3
GPa.

As compared to the calculations of the effective electrical conductivity (Sec.
8.3), the convergence is much faster here. Other than with the electrical con-
ductivity, where the values of the two phases differ by more than two orders of
magnitude, the difference is much smaller here, i.e. a factor of six in the Young’s
modulus and about 1.5 in the Poisson’s ratio. For this reason the effective prop-
erties of the composite seem to be less sensitive to small changes in the volume
fraction of aluminium or the exact morphology of the metal channels.

From Fig. 8.6 it is obvious that a number of subvolumes with a size of 1003

will give well converged predictions for the effective elastic properties of this
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8.5 Elastic Properties

Figure 8.6: Individual numerical predictions of Young’s modulus of subvolumes
plotted vs. the number of elements (black dots). The mean (open boxes) and standard
deviations (error bars) are indicated.
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composite.
However, the absolute value of the predicted stiffness E = 17.3 GPa is about

20% smaller than the experimentally measured E = 21.3 GPa (determined in a
three-point bending test).

The numerical prediction of the effective Young’s modulus after thermal cy-
cling based on ten subvolumes of 1003 elements does not show any significant
deviation from the value before thermal cycling (Fig. 8.7). This finding is in
accordance with the experimental findings of Etter [88].

8.5.1 Elastic Properties of Model Structures

In order to better understand the achievable range of elastic properties in
graphite-aluminium composites the elastic properties of some simple model
structrures have been studied where the phase properties were the same as for
the real C/Al composites (see Table 8.2). For the case of a lamella and of unidi-
rectional cylinders (fibres), respectively, reliable bound estimates for the elastic
properties of the composites exist. These solutions are compared to numerical
calculations for the same model structures and to numerical results for the real
composite structure based on the tomography data and to the experimentally

Figure 8.7: Virtually no change in the numerically predicted Young’s modulus before
and after thermal cycling. Based on ten subvolumes of 1003 elements. Black dots
are individual predictions, open squares are the arithmetic mean, and error bars are
calculated as standard deviation.
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Table 8.3: Upper and lower bounds on the effective stiffness Eeff of C/Al composites
with a aluminium volume fraction of fAl = 0.15. Values in GPa.

Eup Elow

Voigt-Reuss 21.7 14.6
Hashin-Shtrikman 18.5 15.8

measured values.
For the cases of a lamella and of parallel cylinders in the direction of the

cylinder axis or in the plane of the lamella the so-called Voigt average modulus
can be used. The effective modulus of the composite Eeff can then be written
as

Eeff = fiEi + (1 − fi)Em (8.4)

where fi is the volume fraction of the inclusions, Ei is Young’s modulus of the
inclusions and Em is Young’s modulus of the matrix.

In the perpendicular direction(s) the so-called Reuss average is given as

1

Eeff
=
fi

Ei
+

1 − fi

Em
(8.5)

With an aluminium volume fraction of f = 0.15 and the phase properties of
Table 8.2 upper and lower bounds can be calculated (Table 8.3).

8.5.2 Numerical Predictions for Model Structures

For an aluminium lamella (Fig. 8.8, aluminium volume fraction f = 0.15) the
numerical procedure predicts a stiffness of E11 = 14.9 GPa in the direction
perpendicular to the plane of the lamella and of E22 = E33 = 21.8 GPa in the
two in-plane directions. Orientation averaging of this prediction gives a value of
E = 17.6 GPa for an isotropic material. For aluminum cylinders parallel to the
z-axis (Fig. 8.9, f = 0.15) the modulus in the two perpendicular directions is
numerically predicted as E11 = E22 = 15.5 GPa, while in the direction parallel
to the cylinders the modulus is E33 = 21.8 GPa.

In these two cases the results of the numerical method are within the bounds.
Furthermore two types of 3-D connected inclusions have been investigated.
First, a simple cubic inclusion network with quadratic cross section was used
as model structure (Fig. 8.10, f = 0.156). This forms an interpenetrating net-
work with the matrix. The numerically predicted modulus for this structure
is E11 = E22 = E33 = 18.4 GPa. Orientation averaging of the elasticity ten-
sor shows that a comparable isotropic material would have a Young’s modulus
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Figure 8.8: Model structure: lamella (f = 0.15).

Figure 8.9: Model structure: cylinder (f = 0.15).
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of E = 17.2 GPa. Second, a model structure consisting of three intersect-
ing lamellae (Fig. 8.11, f = 0.150) has a numerically predicted stiffness of
E11 = E22 = E33 = 19.8 GPa.

Figure 8.10: Model structure: simple cubic network (f = 0.156).

Figure 8.11: Model structure: intersecting lamellae (f = 0.15).
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Table 8.4: Results of parameter study. Dependence of Eeff and νeff on EGraph and
νGraph was studied.

νGraph

0.10 0.20 0.30
11.0 15.09 0.15 14.96 0.21 15.07 0.29

EGraph 12.8 17.08 0.14 16.94 0.21 17.02 0.29
15.0 19.45 0.15 19.29 0.22 19.39 0.29

8.5.3 Parameter Study

The determination of the elastic properties of the dense graphite is not straight-
forward. Experimentally only the properties of the porous graphite preforms
can be measured. For the numerical calculations, however, the properties of
the dense material are needed. We relied on the linear mixing rule Eporous =
(1 − p)Edense, where p is the volume fraction of the pores, to determine the
Young’s modulus of the dense graphite. It is not clear whether this method
gives an accurate value for Edense.

The Poisson’s ratio of the dense graphite was estimated from literature values.

Because of the uncertainty connected to these two materials properties we
investigated their influence on the composite properties. To this purpose a
parametric study was done where the Young’s modulus and the poissons ratio
of the dense graphite were varied independently. For EGraph values of 11.0, 12.8,
and 15.0, and for νGraph values of 0.10, 0.20, and 0.30 were chosen, resulting in
a matrix of 9 different combinations of parameters. The effective composite
properties (E and ν) of one subvolume of the measured microstructure with a
size of 1003 elements were calculated with these parameter combinations (Table
8.4).

From the results in Table 8.4 it can be observed that the Poisson’s ratio of
the graphite, νGraph, influences the effective Poisson’s ratio of the composite,
νeff , i.e. νeff increases linearly with νGraph. A regression analysis showed that
νeff = 0.07 + 0.72 · νGraph (correlation coefficient R = 0.997).

However, νGraph has only a very small effect on the effective Young’s modulus
of the composite Eeff . For νGraph = 0.20 the resulting Eeff is slightly smaller
than for the two other values, but the effect is negligible.

The νeff is unaffected by a change of EGraph from 11.0 GPa to 15.0 GPa. Eeff

depends linearly on EGraph following the relation Eeff = 3.13 + 1.08 · EGraph

(correlation coefficient R = 0.999).

From the above we see that within the limits tested (11.0 ≤ EGraph ≤ 15.0
and 0.1 ≤ νGraph ≤ 0.3) we can expect reasonable effective Young’s modulus
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even with an uncertainty in the Poisson’s ratio of the graphite.

8.5.4 Discussion of Model Calculations

For the cases of aluminium lamellae and parallel cylinders the numerical pre-
dictions coincide well with the upper and lower bounds that were analytically
calculated by the Voigt and Reuss average respectively. This shows that the
result of the numerical procedure are accurate in principle. For inclusions that
are connected in all three spatial dimensions the numerical procedure predicts
equal moduli in all three directions that lie well between upper and lower bound
as one would expect.

The stiffness numerically calculated for the real structure (Eeff = 17.3 GPa) is
close to the value predicted for the simple cubic interpenetrating network (E11 =
E22 = E33 = 18.4). In fact, orientational averaging of the stiffness tensor of this
model structure gives a Young’s modulus for an isotropic material of E = 17.2
GPa. Comparing this to the numerical prediction for the real structure measured
by microtomography (Eeff = 17.3 GPa) indicates that the real microstructure is
almost elastically isotropic. Surprisingly, the experimentally measured stiffness
of the composite (Eeff = 21.3 GPa) is about 25 % higher than we would expect
from the numerical prediction. It coincides basically with the upper (Voigt)
bound (Table 8.3). This result is not well understood considering the other data
since one would always expect, that for an isotropic “reinforcement” the stiffness
is lower than the upper bound, which holds for unidirectional reinforcement.

The discrepancy observed might be due to inaccurate measurements of the
composite stiffness. But more probable is the explanation that the phase proper-
ties used for the calculations (Table 8.2) are somewhat inaccurate. The stiffness
of the graphite could not be measured directly. Therefore some uncertainty is
connected with the value used. Furthermore, one should also think about the
possibility that the aluminium alloy in the narrow channels may have a stiffness
that is different from its bulk value.

8.6 Thermal Conductivity and Thermal Expansion
Coefficient

The thermal conductivity of the porous preform and of the C/Al composite
was calculated for ten subvolumes of 100 × 100 × 100 voxels. The model of the
porous preform was constructed by changing all metal containing elements in
the composite to pore elements.

Predicted thermal conductivities (Fig. 8.12)show a relatively narrow distribu-
tion and are in reasonable accordance with the experimentally measured values.

119



8 Graphite/Aluminium Composites

The thermal expansion coefficient was numerically calculated for a number of
subvolumes of the C/Al composite. Subvolumes were of different size, i.e. 253,
503, 1003, and 2003 voxels.

As compared to the experimentally measured value of α = 9.1 · 10−6K−1

the numerical predictions are slightly too high (Fig. 8.13). This is due to the
fact that stiffness values are predicted too low as compared to the measured
value. The numerically calculated stiffness directly enters the calculation of the
thermal expansion coefficient.

8.7 Discussion

The microstructure of C/Al composite with 15 vol.% metal content has been
imaged by X-ray microtomography. The tomography data has been used to di-
rectly build a finite element model of the microstructure. Based on this model
the effective electrical and heat conductivity as well as effective mechanical prop-
erties (Young’s modulus and coefficient of thermal expansion) of the composite
have been numerically predicted.

The predicted electrical conductivity values showed a wide scatter for different
subvolumes of the sample. This lead to the conclusion that the representative

Figure 8.12: Thermal conductivity of the porous graphite preform and the C/Al
composite. Numerical predictions for ten individual subvolumes of 100 × 100 × 100
voxels, average and standard deviation are shown.
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8.7 Discussion

Figure 8.13: Thermal expansion coefficient of C/Al composite for subvolumes of 253,
503, 1003, and 2003 voxels. Numerical predictions for individual subvolumes, averages,
and standard deviations are shown. The experimental value is 9.1 · 10−6K−1.
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8 Graphite/Aluminium Composites

volume element (RVE) of this kind of composites is very large for the electrical
conductivity. However, we were able to show that the ensemble average over a
sufficiently large number of subvolumes allows to make very accurate predictions
of the effective electrical conductivity of the composite which are in very good
accordance with the experimentally measured values.

The decrease of the electrical conductivity of the composite after thermal
cycling which was observed experimentally could be well reproduced by the
numerical procedure although not to its full extent.

For the Young’s modulus and the thermal expansion coefficient good predic-
tions have been achieved, however, the numerical predictions are not as accurate
here as for the electrical conductivity. The convergence of the individual pre-
dictions is faster for the elastic properties. In order to understand the reasons
for the discrepancy between the experimental and the numerical results some
simple model structures have been investigated but a conclusive explanation has
not been found.
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9 Conclusions and Outlook

In the first part of this thesis the accuracy of direct numerical predictions for
the thermoelastic properties of short fibre reinforced materials has been demon-
strated. The often applied model of Halpin-Tsai has been shown to be system-
atically less accurate than the Tandon-Weng (Qiu-Weng) model. The Tandon-
Weng model in turn is relatively accurate with glassy polymer matrices but less
accurate for lower stiffness semi-crystalline matrix materials. For (anisotropic)
carbon fibres the Qiu-Weng predictions are considerably less accurate than the
corresponding predictions of the Tandon-Weng model for (isotropic) glass fibres.

We have shown that the following approach can deliver accurate as well as
fast property predictions for short fibre composites with any arbitrary fibre ori-
entation state. First, direct numerical finite element calculations are used to
predict the properties of unidirectional composites. Subsequently, a fast arith-
metic orientation averaging is applied to account for the (local) fibre orientation.
This process is fast enough to be implemented into a mould filling simulation
software that is able to predict the local fibre orientation and therefore, applying
the scheme described above, also the local elastic properties of the short fibre
reinforced composite.

In the second part, it has been been shown in this work that the principle of
using 3D tomography data of composite materials to directly build 3D computer
models is feasible. With such models finite element predictions of effective
materials properties can successfully performed. It is therefore not necessary
to use the cumbersome detour via surface triangulation and unstructured mesh
generation.

With the finite element method of Ch. 2 fairly large computer computer mod-
els i.e. of a size of 2003 = 8 · 106 elements can be solved within reasonable time.
Some hours to a few days of CPU time are required.

Although the representative volume element (RVE) can be very large in this
type of interpenetrating composites it is possible to realize good numerical pre-
dictions of the effective properties of the composite. The properties of a suf-
ficiently large number of relatively small models is predicted. The ensemble
average over all these predictions has been demonstrated to give a very good
estimate for the effective properties of the composite.

Some improvements might be possible with the use of more sophisticated im-
age analysis techniques. This would perhaps facilitate the image segementation
and leave less uncertainty in that process.
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9 Conclusions and Outlook

More detailed statements about the possible damage mechanism in the
LDPE/Pglass hybrids could be made if the “static” calculation of thermal
stresses would be extended to a “dynamic” modeling of the damage process.
With such a method the growth of damages might be simulated. Subsequently
it would be possible to calculate the mechanical properties of the simulated
damaged structure and to see whether this can reproduce the real damage pro-
cess.

It would be instructive to extend the study to different microstructures e.g.
with other volume contents of metal or a different morphology. A follow-up
study with some other types of C/Al composites has been started.

The investigation of the local thermal stresses in the C/Al composites may
help to understand the mechanism that leads to the observed degradation of
properties of the composite upon thermal cycling.

Guided modification of the microstructure with subsequent property predic-
tions may help to optimize the composite microstructure in order to realize some
desired properties.
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Two-Component Injection Moulded Parts

March 2000 - June 2000 PC supporter, SWX Swiss Exchange,
Zürich

March 2003 - July 2005 Teaching assistant in Physical Foun-
dations of Materials Science, Polymer
Physics, and Finite Elements in Solids
and Structures courses, Department of
Materials, ETH Zürich

December 2000 - September 2005 Research assistant in the groups of Poly-
mer Chemistry and Polymer Physics,
ETH Zürich

Awards

1993 Sidler-Perovic Award for second best
Matura

2000 SVMT-Award for best Diploma Thesis
(Schweizerischer Verband für Material-
technik)
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