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Abstract

Supercomputers are used to solve big problems - they are «nutcrackers» that support

scientists, researchers and developers in decoding the human genome, simulating the

weather and climate, creating virtual wind tunnels for planes and cars, and designing

effective medicaments - the so-called «grand challenge problems». Smaller supercom¬

puters are used for tasks that require more performance than a single computer can

deliver: Web-servers, data centers and calculation systems for in-house research.

One buzzword is currently changing the supercomputing market dramatically: Com¬

modity. More and more systems are based on «commodity off-the-shelf parts»: CPUs,

memories, storage devices, networking technologies and software that are used in ordi¬

nary workstations and servers are also used in these «commodity supercomputers». In

the most extreme cases, the supercomputer basically consists of commercially available

computers - specialized custom technologies are only used where absolutely necessary.

These «clusters of workstations» (or «superclusters») are very likely to replace the con¬

ventional supercomputers installed in supercomputing centers, because many of these

centers are actively investigating their potential and supporting the research in «com¬

modity supercomputing».

However, one issue inhibits replacing supercomputers with superclusters today: The

lack of a comprehensive integrated system management. Manual management using

shell commands, scripts and independent tools only works for small systems with a few

compute nodes. But for superclusters that consist of some thousand or million different

components, computer-aided system management is mandatory. To provide high su-

percluster availability, this management must be fast, scalable, reliable, and secure.

This dissertation is the first complete research in this area that presents a concept for

integrated and comprehensive system management of superclusters. This concept un¬

derstands management as a lifecycle with the three phases: Design and simulation, in¬

stallation, and operation - although only the operational phase is analyzed in-depth.

The expectations, fears and requirements of the people working with superclusters

have been analyzed and compiled into the eight bottlenecks and central requirements of

supercluster management: Scalability, availability, management integration, reliability,

security, (low) overhead, compatibility, and cost. Also the seven elements of supercluster

management are analyzed and presented: Control, configuration, monitoring, fault de¬

tection, trap handling, accounting, and planning. With these two tools in hand (bottle¬

necks and elements) it is possible to evaluate new and existing management architec¬

tures for their suitability for supercluster management.
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Il Abstract

This thesis presents some management architectures and offers a guide that allows the

selection of the optimal architecture depending on system size and user requirements.

One of the presented architectures has been implemented for the first Swiss-based su¬

percluster «Swiss-Tl», installed at the supercomputing center CAPA of the EPFL. This

first implementation (called «COSMOS») is presented in detail in this dissertation, to¬

gether with the project «Swiss-Tx» that this thesis was part of.

Of the eight bottlenecks and central requirements, scalability and availability have been

analyzed on a theoretical level and the results have been turned into the presented

management architectures - with clusters for availability and proxies for scalability. In¬

tegration and overhead are additionally covered in practice with the implementation of

COSMOS. The remaining issues (reliability, security, compatibility, and cost) were

taken out of the research focus and therefore neglected.

This dissertation proves that comprehensive and integrated supercluster management

is an equal partner for enabling commodity supercomputing - together with networking

technologies, communication libraries and distributed storage systems. The achieve¬

ments of the research are blueprints of management architectures, with clustered man¬

agers for high availability, layers of proxies for scalability, tightly integrated application

management for reliability, and modularity for integration. The implementation proves

the concept to be correct, allowing efficient, stable, effective, and comprehensive man¬

agement of the Swiss-Tl supercluster.



Zusammenfassung

Supercomputer werden gebaut, um grosse Probleme zu lösen - es sind «Nussknacker»,

um Wissenschaftlern, Forschern und Entwicklern bei der Entschlüsselung des mensch¬

lichen Genoms, der Simulation von Wetter und Klimaveränderungen, der Erstellung

virtueller Windkanäle für Flugzeuge und Autos sowie der Entwicklung wirksamer Me¬

dikamente zu helfen - den so genannten «Grand Challenge Problems». Kleinere Syste¬

me werden für Aufgaben verwendet, welche nicht durch einen einzelnen Computer ge¬

löst werden können: Internet-Server, Datenserver und Rechensysteme für firmeninter¬

ne Forschung.

Der Supercomputermarkt wird momentan mit einem Schlagwort umgekrempelt: Com¬

modity. Immer mehr Systeme basieren auf handelsüblichen Komponenten «ab der

Stange»: Prozessoren, Speicher, Massenspeicher, Netzwerktechnologien und Software,

welche in üblichen Workstations und Servern eingesetzt werden, werden auch auf die¬

sen «Commodity Supercomputers» eingesetzt. Im Extremfall bestehen diese Super¬

computer aus kommerziell erhältlichen Computern - spezialisierte Technologien wer¬

den nur dort eingesetzt, wo es absolut notwendig ist. Es ist sehr wahrscheinlich, dass

die «Clusters of Workstations» (oder «Superclusters») die konventionellen Supercom¬

puter ersetzen werden, welche in Supercomputing Centers installiert sind. Diese Re¬

chenzentren betreiben aktiv Forschung im Bereich «Commodity Supercomputing», um

dessen Potential abzuklären.

Supercomputer werden jedoch aus einem Grund noch nicht durch Supercluster ersetzt:

Es fehlt ein umfassendes System Management. Das manuelle Management mittels

Shell-Kommandi, Skripts und voneinander unabhängigen Tools funktioniert nur bei

kleinen Systemen mit wenigen Rechenknoten. Für Supercluster mit einigen Tausend

oder Millionen Komponenten ist jedoch ein computergestütztes Systemmanagement

notwendig. Um eine hohe Verfügbarkeit des Superclusters zu erlauben, muss es

schnell, skalierbar, zuverlässig und sicher sein.

Diese Dissertation ist die erste vollständige Forschungsarbeit in diesem Gebiet und

präsentiert ein Konzept für ein integriertes und umfassendes Systemmanagement von

Superclustern. Dieses Konzept sieht Systemmanagement als einen Lebenszyklus mit

den drei Phasen Entwurf und Simulation, Installation und Verwaltung - wobei nur die

Verwaltungsphase detailliert analysiert wird.

Die Erwartungen, Ängste und Anforderungen der Menschen, welche mit Superclustern

arbeiten, wurden analysiert und zu den acht Flaschenhälsen und zentrale Anforderungen

zusammengefasst: Skalierbarkeit, Verfügbarkeit, Integration der Verwaltung, Zuverläs¬

sigkeit, Sicherheit, (geringer) Zusatzaufwand, Kompatibilität und Kosten. Auch die sie-
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IV Zusammenfassung

ben Elemente des Supercluster Managements werden analysiert und präsentiert: Kon¬

trolle, Konfiguration, Überwachung, Fehlererkennung, Warnsignale, Verrechnung und

Planung. Mit diesen zwei Werkzeugen (Flaschenhälse und Elemente) ist es möglich,

bestehende und neue Architekturen für Management Software zu evaluieren, ob sie für

die Verwaltung von Superclustern geeignet sind.

Diese Dissertation präsentiert einige Management-Architekturen und bietet einen Füh¬

rer an, welcher die Wahl der optimalen Architektur gestattet, abhängig von der Sys-

temgrösse und den Anforderungen der Benutzer. Eine der präsentierten Architekturen

wurde für den ersten Schweizer Supercluster «Swiss-Tl» des Rechenzentrums CAPA

der EPFL implementiert. Diese erste Implementation (mit dem Namen «COSMOS»)

wird in dieser Dissertation detailliert präsentiert, zusammen mit dem Projekt «Swiss-

Tx», deren Teil diese Arbeit war.

Von den acht Flaschenhälsen und zentralen Anforderungen wurden die Skalierbarkeit

und die Verfügbarkeit auf einem theoretischen Niveau analysiert und führen zu den

präsentierten Architekturen - mit Clustern für die Verfügbarkeit und Proxies für die

Skalierbarkeit. Integration und Zusatzaufwand werden in der Praxis durch die Imple¬

mentation von COSMOS abgedeckt. Die verbleibenden Punkte (Zuverlässigkeit, Si¬

cherheit, Kompatibilität und Kosten) waren nicht Bestandteil der Forschung.

Diese Dissertation beweist, dass umfassendes und integriertes Supercluster Manage¬

ment ein gleichberechtigter Partner ist für die Ermöglichung des «Commodity Super¬

computing» - zusammen mit den Netzwerktechnologien, Kommunikationsbibliotheken

und verteilten Festplattenspeichersystemen. Das Ergebnis dieser Forschung sind Bau¬

pläne für Managementarchitekturen, mit geclusterten Managern für hohe Verfügbar¬

keit, Schichten von Proxies für die Skalierbarkeit, straffe Integration des Applikations-

managements für die Zuverlässigkeit sowie Modularität für die Integration. Die Imple¬

mentation beweist die Korrektheit des Konzepts, welches eine effiziente, stabile, effek¬

tive und umfassende Verwaltung des Swiss-Tl superclusters ermöglichte.



Preface

The title of this thesis, Computer-Aided Management of Commodity Parts-Based Super¬

computers, is very bold. It is big enough to cover a standards book, a universal descrip¬

tion or a research manual. Since the specific research area is new and the author tends

to be both precise and complete, there was quite a risk that this dissertation would turn

into such a shelf-bending monster. To be honest, the first drafts were rather like that.

During the long editing time and the many reviews with the examiners, this book

turned into that which dissertations are initially meant to be: A reporting guide. It is a

guide for those readers, who will travel to similar destinations. And it is a report for

those readers, who want to see the beauty of the paths followed by the author himself.

As an expedition report and travel guide to yet undiscovered countries, this dissertation

will not disappoint both types of readers.

As the title suggests, there are two main topics:

Supercomputers, particularly those that are based on commodity off-the-shelfparts

Management, especially the computer-aided type

The combination of these topics creates some questions that are answered in this dissertation:

Question Chapter

What are «supercomputers» and what are they used for?

What are «commodity parts-based» supercomputers? 1

Why are they so Interesting?

What does «management» mean and what does it include?

How can this be «computer-aided»? 2

Where are the problems?

What are the possible software designs for this management?
3

Do those designs solve the problems?

What did others do to solve the problems?
4

Why is there still a need for more research?

What did the author do to solve the problems he faced?
5

What did the author's project look like?

Did his design solve the problems?

What would he do differently next time? 6

What else needs to be done?

Table 1: Arising questions and where they are answered in this thesis
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VI Preface

This dissertation thesis describes how modern supercomputers will be managed using

specialized software (guide) and presents the author's management software design

that was created for the «Swiss-Tx» project's supercomputers (report).

The structure of this dissertation is quite classical, as the chapter numbers next to the

questions suggest. In order to keep the dissertation fluent and interesting, sections con¬

sidered too detailed or potentially boring were moved to the appendices.

In contrast to the classical structure of the dissertation, the project structure was quite

unorthodox: The research work (occupying the first chapters) happened after the soft¬

ware was designed within the project (occupying the last chapters). This inverted order

allowed for some interesting observations and procedures:

The presented theoretical software architectures are better because of the practi¬

cal experience made with the prototype.

The selected design of the author is better analyzed, since all possible paths were

discovered after the goal had been reached.

The difficulties experienced opened the eyes to further potential problems.

After being a «management guy» too, it was easier to discuss with administrators

and other «management guys» the advantages and problems of creating manage¬

ment tools.

Surprisingly, the author's intuition selected the optimal path for the project.

The author was at first disappointed by his design, since the research work dis¬

covered that there were more beautiful paths to travel - on the other hand, these

paths would have remained undiscovered if the less beautiful path had not previ¬

ously been taken by the author.

The project structure suggested a second system to the author, but it was not created,

because the succeeding project step was not taken: A larger supercomputer requiring

this second system was not ordered, leaving the author unhappy. After time had healed

the wounds created by the project's termination, this dissertation allowed a clearer view

of the results, making the author happy and proud of his created thesis.

Now, about 3 years of editing later, this reporting guide can be published with pride,

and also with some hope, that the guiding part will guide the developers who are fol¬

lowing the paths, and the reporting part will demonstrate that also rapidly created pro¬

totypes have their beauty.
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1 Introduction

The cost of CPU chips is [...] leading to systems containing a large

number ofprocessors. Connecting all these processors using stan¬

dard technology [...] is easy. The hard part is designing and im¬

plementing software to manage and use all of this computing

power in a convenient way.

Andrew S. Tanenbaum [TKR+91]

Since their introduction in the last century, computers have been used to solve compu¬

tational problems or problems that are based on large amounts of data. Computer tech¬

nologies have enabled mankind to create stable buildings, to conquer the cosmos, and

to manage complicated machineries.

Supercomputing has industrial targets: Building safer cars, creating more efficient air¬

planes, designing more effective medications - in short: Allowing a convenient life for

everyone. Because supercomputers have a high computing performance (about 1 000 to

10 000 times higher than common computers), they allow problems to be solved within

hours that would take years on ordinary computers.

Figure 1.1: Two common supercomputer tasks: Climate simulation and virtual crash test

Achieving this computing performance requires high-tech and creativity. Many new

technologies are introduced and increase the supercomputing performance every year.

And it is necessary to continue these efforts, because there are many applications that

are capable of keeping systems busy for decades, no matter how fast they are Qaf84]:

1



2 Introduction

Analysis of the human genome and molecular structure of proteins, simulation of

the cellular response to designed drugs. This enables effective and efficient drugs

to be found without tests on animals needing to be done.

Simulation of meteorological effects for reliable long-term weather and climate

forecasts. Precise and reliable forecasts prevent casualties and costly damages.

Virtual wind/water tunnels to simulate pressure distributions on surfaces. This

enables planes, ships and cars to be created that use fuel more efficiently.

This chapter introduces supercomputing, shows what supercomputers look like, how

they work and how they will look in a few years if the current trends continue.

1.1 Supercomputing in a Nutshell

As in all other niches in computing, supercomputing has its own vocabulary and logic. Al¬

though the glossary (see appendix F) covers most of the commonly used terms, some of

them are worth presenting briefly individually, together with some supercomputing basics.

1.1.1 Supercomputing Newspeak

The most commonly used performance abbreviation in supercomputing is FLOPS

(floating point operations per second). It explains how fast a processor or supercom¬

puter is. One million (106) floating point operations per second are one MFLOPS, one

billion (10") are one GFLOPS, and one trillion (1012) are one TFLOPS, etc.

0 64 128 192 256 320 384 448 512

Number of Processors

Figure 1.2: Amdahl's law: Speed-up in relation to processor count
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Processor or supercomputer manufacturers present their products with peak perform¬

ance. The manufacturer guarantees that the system cannot exceed this performance. It

is usually driven by the clock rate and the operations started per clock. Four execution

units with 2.5 GHz give 10 GFLOPS of peak performance.

The sustained performance is the performance, at which the processor or supercom¬

puter is able to execute real-life applications. System-internal and application-specific

bottlenecks reduce the peak performance by 5-85%. The fastest supercomputers have

an efficiency rate of 50-90%.

The magic word in supercomputing is speed-up, which describes the performance re¬

lation between two systems. Since all supercomputers are multi-processor systems, the

speed-up today relates the performance of systems to the different processor counts.

If the speed-up grows almost linearly with the processor count, the speed-up scales. In

some cases there is a performance limit, in other cases the performance decreases with

additional processors. Amdahl's law describes this behavior (see Appendix A).

1.1.2 Supercomputer Classification

The goal of every supercomputer architect is to create a computing system with supe¬

rior performance. Since computers execute instructions on data, the possibilities for

increasing the performance are limited:

Increase the processor clock rate

Increase the amount of data being handled by one instruction

Increase the amount of processors

Distribute the memory to the processors and interconnect these nodes

All these formulas can be put into categories, leading to the computer classifications as

described by the computer architects Michael Flynn [Fly72] and Gordon Bell [Bel92].

1.1.2.1 Classification according to Michael Flynn

Computer architect Michael Flynn analyzed the instruction and data streams through

the computer [Fly72]. Each stream type can be either alone (single stream) or there can

be concurrent streams (multiple streams). This leads to a map with four areas:

Single

Multiple

Data Streams

Single Multiple

Instruction SISD SIMD

Streams 1 MISD MIMD

Table 1.1: Architecture classification according to Michael Flynn [Fly72]

The simplest architecture is SISD (Single Instruction, Single Data). There is one proc¬

essor in the computer, executing one application, operating on one data item at a time.

This category includes conventional single-CPU computers such as PCs and worksta-
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tions. The performance is increased by increasing the clock rate and other such tricks

(e.g. pipelining). Signal propagation delays, heat generation and other physical effects

limit the clock rate to some GHz.

i/o

Control

Unit

Instruction

Memory

iL

Data

Unit

Data

Memory

Figure 1.3: SISD computer architecture: One control unit manages one data unit

Allowing one single instruction to manipulate multiple data items at the same time

leads to the SIMD architecture (Single Instruction, Multiple Data). These multiple data

items can be vector elements that are added or multiplied. This category includes vector

supercomputers and modern PC processors equipped with data-parallel processing

technologies such as MMX [INTEL] or AltiVec [IBM]. A famous supercomputer of this

category is the CRAY 1 with 160 MFLOPS and 8 MBytes of RAM, first installed in 1976

at Los Alamos National Laboratory for US$ 8.8 million. The performance is increased

by increasing the number of data items manipulated by one instruction (and increasing

the clock rate, enhancing the memory interface etc.).

Control

Unit

Instruction

Memory

Data

Unit

Data

Memory

Data

Unit

Data

Memory

I/O
Interconnection Network

Figure 1.4: SIMD computer architecture (left) and CRAY 1 (right):

One control unit manages multiple data units

The MISD architecture (Multiple Instruction, Single Data) is without supercomputing

relevance today. It is used for specialized processors, where multiple applications oper¬

ate on the same data, such as DSPs, audio processors or graphic pipelines.

Control Instruction

Unit Memory

Control Instruction

Unit Memory

I/O Data Data

Unit Memory

Data

Unit

Data

Memory

Data Stream

Figure 1.5: MISD computer architecture
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«Divide and conquer» is the philosophy behind MIMD (Multiple Instruction, Multiple

Data). If adding data units increases the complexity so much that the clock rate is com¬

promised, additional control units with their own instruction streams are used, each

managing one or more data units. These nodes (control units with associated data units)

are independent and operate autonomously, but they require a system-area network for

data exchange and an inter-node synchronization mechanism. This category includes

multi-CPU computers and all modern supercomputers. System performance is in¬

creased by adding nodes (and increasing node and network performance).

Control

Unit

Instruction

Memory

Control

Unit

Instruction

Memory

Data

Unit

Data

Memory

Data

Unit

Data

Memory

I/O
Interconnection Network

Figure 1.6: MIMD computer architecture (left) and CRAY T3D (right):

Interconnected nodes (control unit with associated data unit)

Since all modern supercomputers are MIMD systems, and because there are big archi¬

tectural differences between these systems, an additional classification for MIMD sys¬

tems is necessary.

1.1.2.2 Classification according to Gordon Bell

The classification according to Gordon Bell [Bel92] analyses the memory model of the

MIMD systems and divides them into two basic types: Multiprocessors and multicomputers.

Categories Examples

MIMD

Multiprocessors

• Single Address Space

• Shared Memory

Distributed Memory (NUMA)

(scalable)

KSR, Alliant, BBN, Cedar,

Cray T3, NUMA Systems

Centralized Memory (SMP)

(not scalable)

Cray Vector, Fujitsu, IBM,

NEC, Tera, SMP Systems

Multicomputers

• Multiple Address Spaces

• Message Passing

Distributed Multicomputers

(scalable)

Intel, NCUBE, Tandem,

Compaq, NOW/COW

Centralized Multicomputers

(fixed network, not scalable)

SCS GigaBooster

Table 1.2: Classification ofMIMD systems according to Gordon Bell [Bel92]

Multiprocessor systems are computers with many processors that have a common,

shared memory space. They are mainframes with either centralized memory (SMP =

symmetrical multiprocessing) or distributed memory (NUMA = non-uniform memory

access). All processors can access each memory cell. In SMP systems, memory access is

identical for all nodes. In NUMA systems, foreign memory access is slower than local
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memory access. Most multi-CPU computers have this architecture. For supercomput¬

ing, the performance is limited too quickly, as the memory access is the system bottle¬

neck (bandwidth, synchronization).

Processor

Network

Interface

Processor

Network

Interface

Processor

Network

Interface

p

T
M

Network

Interface

P

T
M

Network

Interface

P

T
M

Network

Interface

Interconnection Network Interconnection Network

I/O

Network

Interface

I/O

Network

Interface

Memory

Network

Interface

Devices

Network

Interface

Devices

Network

Interface

I/O
I/O

Figure 1.7. Multiprocessor MIMD architecture (SMP left and NUMA right)

Multicomputer systems are interconnected independent computers. Every computer

contains one or more processors with its own memory and a network interface. Each

processor can only access its own memory, data of foreign memories is sent and re¬

ceived over the network. The fastest supercomputers have this architecture, designed

as modular mainframes (as the IBM/SP) or as clusters of workstations (COW).
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Figure 1.8. Multicomputer MIMD architecture

1.1.3 Supercomputer Utilization

Supercomputers are used for high-performance calculations. These calculations are

done in applications. The users submit applications as a job into a queue. A manage¬

ment application - the scheduler - selects a job from the queue as soon as the system is

available. There can be multiple queues (e.g. daytime, night, and weekend) that are ac¬

tivated by the scheduler. This job selection is based on a scheduling algorithm that uses

user/department/project priorities, estimated run time and other information. The job

is then started on the supercomputer, and the application fetches input data from stor¬

age and saves output data to storage. Once the job is finished, the supercomputer is

cleaned up and the next job is started from the queue.
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1 : Users submit applications
into the queue

2: The scheduler selects and

starts the application

3: The supercomputer

fetches the input and

executes the application

4: The output is stored

after termination

Users Queue Supercomputer Storage

Figure 1.9: Basic supercomputer utilization - batch jobs in a queue

Applications can either terminate successfully, or they can be aborted. This abortion

can either be caused by a programming error or by the scheduler: If an application con¬

sumes too many resources (e.g. too much time), the application receives a signal and

aborts immediately.

The utilization is measured and accounted to the users, departments and projects.

1.1.3.1 Utilization of SISD and SIMD Systems

The utilization is very simple in SISD and SIMD systems, since only one application is

executed by the processor within the supercomputer at a time. Each application «owns»

the whole system during its execution.

1.1.3.2 Utilization of MIMD Systems

The utilization of MIMD systems is more complicated. The presence of multiple proces¬

sors that can run in parallel and autonomously allows three basic utilization models:

In the first model, the MIMD supercomputer is used as multiple SISD/SIMD computers.

Each processor executes an application with its own portion of main memory. The sched¬

uler for this model is very simple, since it distributes the jobs to each processor separately,

handling the parallel supercomputer as independent SISD/SIMD supercomputers.

Queue Supercomputer

Figure 1.10: Utilization of a 4-processor MIMD system as 4 parallel SISD/SIMD systems

The applications do not know anything about the fact that they are running on a paral¬

lel supercomputer. The developer does not need to include any parallel logic or link any

parallel library. He can use the MIMD system as a plain old SISD/SIMD system.
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In the second model, the MIMD supercomputer is used as a processor/co-processor

system. There is one application running on all processors - the application uses one

processor as the main processor and all other processors as co-processors. The sched¬

uler for this model is also simple, since it handles the parallel supercomputer as one

SISD/SIMD system, where only one application is running at any one time.

Queue Supercomputer

Figure 1.11: Utilization of a 4-processor MIMD system as a processor/co-processor system

The application must handle the arising complexity of parallelism (synchronization,

mutual exclusion etc.) itself. It distributes parts of the work to the co-processors which

then execute the code in parallel. As in multithreaded applications, communication be¬

tween the processors (or threads) happens through signals and shared memory. This

functionality is usually covered by multiprocessing libraries (e.g. OpenMP [OPENMP]).

In the third model, the supercomputer is used as a parallel system where each appli¬

cation can use between one and all available processors. The user submits the job to¬

gether with the requirements (processor count range, estimated job duration). The

scheduler for this model requires some kind of artificial intelligence, because each job

needs to be entered as a rectangle in a matrix with the two dimensions being processors

and time. As in a hotel's rooms rack (or the famous game Tetris), it is the scheduler's

job to place the jobs in this matrix with maximal utilization and least wasted space.
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Figure 1.12: Utilization of a 4-processor MIMD system as a parallel system

The scheduler starts the application as processes on the allocated processors and informs

each process of the application size (number of processes) and its rank within the appli¬

cation (from one to the number of processes). There are multiple independent applica¬

tions running on the system. The communication between the application processes hap¬

pens through messages (using a messaging library such as MPI [MPI95] [MPI97]).
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1.2 Supercomputing History

The computer market is divided into segments, which are usually defined by the users'

needs, such as performance, feature quality and count, available options, and price.

During the last two decades, this segmentation has changed dramatically, this having

basically been caused by the unification and improvement of computing technologies.

1.2.1 Computing in the Past

In the past, the computing universe was separated into six segments, the home computers

at the bottom with the lowest price and least performance, and the supercomputers at the

top providing the greatest performance at the highest price. Most manufacturers were pre¬

sent in one segment only, but bigger manufacturers were present in several segments.

Category 1 Selling Price Typical Manufacturers

Supercomputer | 10-50M$ CDC, Convex, Cray

Super-Mini | 1-5 M$ IBM

Minicomputer 1 500 k$ DEC

Workstation 1 50 k$ HP, SGI, SUN

Personal Computer 5k$ IBM, Apple, Compaq

Home Computer 1 k$ Commodore, Atari

Table 1.3: Computer segmentation in the past (early 1980's)

The borders between the segments were basically technological borders, combined with

system features and expandability provided. At the bottom, high-volume low-cost inte¬

grated components were used, such as microprocessors and ordinary memories. At the

top, more specialized components were used to provide higher performance and more

features, using customized processors, buses and network technologies.

For supercomputers, only leading-edge technologies were used since the computation

performance was the main driver. The processors were based on discrete parts using

the latest and fastest semiconductor technologies:

Special wiring techniques allowed transportation of data very quickly internally

and between boards containing processors, memories and storage.

Exotic cooling was necessary to push the clock rates to the physical limit.

Custom cabinets and interconnects were invented to package the boards as

closely as possible to each other to reduce wire lengths and storage area.

The supercomputers of the past were full-custom SISD or SIMD designs, most often

vector computers. Processors, memories, bus technologies, cabinets, storage - every¬

thing was developed, designed, produced and assembled by the manufacturer himself.

The software was specifically tailored for the supercomputer: Operating system, tools,

compilers and libraries were designed and tuned to allow the applications to approach

peak performance as closely as possible. All this required great effort in research and

development, but also led to high costs and long development cycles.
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Figure 1.13: Internal wiring of the Cray Y-MP supercomputer

In short, supercomputers of the past provided superior computation performance using

leading-edge technology and experimental architecture. This technology created seri¬

ous implementation problems (wire length, clock rates, packaging, and heat) that made

smart solutions necessary by building intelligent supporting technology. Huge devel¬

opment effort with a long time-to-market period was the result, together with high costs

and selling prices.

1.2.2 Computing in the Present

Today, the computing universe is still divided into segments, but into different and a

smaller number of segments than before. Most computer manufacturers produce com¬

puters for multiple segments now, because there are no fundamental technological dif¬

ferences between the computer market segments.

Category 1 Sellinç Price Typical Manufacturers

Supercomputer 20 M$ HP/Convex, NEC, SGI, Cray

Super-Server 2M$ Compaq/HP, IBM, SGI, SUN

Server 200 k$ Compaq/HP, IBM, SGI, SUN

Workstation 20 k$ Compaq/HP, IBM, SGI, SUN

Personal Computer | 2k$ Intel, Apple

Table 1.4: Computer segmentation today (late 1990's)

Apart from the supercomputers produced in Japan, the computers of all segments basi¬

cally use the same technology: Highly integrated CMOS semiconductor parts, and often
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commodity off-the-shelf components. The only difference is the quality and number of

components used within a computer. Multiprocessor computers with multiple memory

banks and multiple I/O buses can be found in every segment today.

The microprocessor has developed into a supercomputer killer - according to Moore's

law [Moo65], the number of transistors on a chip doubles every two years, leading to a

performance increase of microprocessors by 50% every year. Full-custom supercomput¬

ers in contrast increase their performance only by 25% every year [CSG98]. It is also

less expensive to couple multiple microprocessors than to push the performance of a

single processor to achieve the same performance. It was therefore only a question of

time until a massive-parallel supercomputer using microprocessors would provide the

same performance as full-custom supercomputers.

Most supercomputer manufacturers use custom components for their system design,

but the processors in use are often commercial microprocessors, sometimes slightly

modified to match the needs of the supercomputer users. To fit maximal performance

into a minimal space, the experiences previously gained are still in use: Special racks

with sophisticated interconnections of the boards and modern cooling mechanisms al¬

lowed for dense systems with high processing power. The development time has de¬

creased through using microprocessors, but the custom packaging and supporting tech¬

nology still need a lot of development effort.

Figure 1.14: Rails with integrated connectors for the Cray T3D processor boards

In short, the supercomputers of today use commodity parts where they have outper¬

formed the previously superior technology, according to the slogan «if you can't beat

them, join them». Some specialized technology is still in use to maximize system per¬

formance and density.
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1.3 The Supercomputer Top500 List

Supercomputers have a computation performance and this performance can be meas¬

ured and compared. Although every supercomputing application has its own system

requirements and scalability behavior, the supercomputing community selected a

benchmark suite to compare the installed supercomputers worldwide: The UNPACK1

benchmark, introduced by Jack Dongarra, solving a system of linear equations [Don94].

The Supercomputer Top500 List [Top500] contains the 500 fastest supercomputers

worldwide and is updated twice a year (in June and November). The archive of the

website allows analysis of the data back to June 1993, when the list was first published.

1.3.1 The Current List (June 2005)

According to the list of June 2005, the fastest supercomputer available is the

BlueGene/L, an MPP supercomputer installed at LLNL (USA).

Figure 1.15: BlueGene/L - The fastest supercomputer today: Preview (top left),

installation (top right), real system (bottom left) and sample application (bottom right)

1

LINPACK is a standardized library for linear algebra
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It is a supercomputer using off-the-shelf components, with custom modular system ar¬

chitecture and design. This design allows supercomputers of various sizes to be created,

which makes the BlueGene not a unique supercomputer, but part of a supercomputer

product family that will be installed many times. The BlueGene/L at LLNL (Lawrence

Livermore National Laboratories) has 65 536 processors (IBM PowerPC 440 with 700

MHz) and delivers 136.8 TFLOPS sustained performance.

Some of the following systems are the supercomputers that have been built within the

ASCI project of the US government. The ASCI project has the principal goal of building

supercomputers that are fast enough to simulate the effectiveness and efficiency of nu¬

clear weapons. Of course, the computers are also open to civil applications. The ASCI

machines are installed at the national laboratories in Albuquerque (Sandia), Livermore

and Los Alamos. They have been built by major computer (not supercomputer!) manu¬

facturers using interconnected workstations (Compaq), super-servers (IBM and SGI) or

using custom boards with commodity parts (Intel). The smallest ASCI machine contains

5808 microprocessors, the largest 9632 microprocessors - commodity off-the-shelf

CPUs that are also found in workstations and servers all over the world.

1.3.2 Supercomputer Performance

When the list was first published in June 1993, the fastest supercomputer was a Con¬

nection Machines CM-5 with 1024 processors and a sustained performance of

60 GFLOPS (peak 131 GFLOPS). The total performance of the top 10 supercomputers

was 280 GFLOPS and the top 500 supercomputers provided totally 1.2 TFLOPS.

Sustained Performance (in GFLOPS)
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Figure 1.16: Sustained performance (in GFLOPS) of the top 10 and 500 supercomputers;

Please note the logarithmic scale ofperformance!
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Today, the fastest supercomputer is the IBM BlueGene/L supercomputer with

65 536 processors and 136.8 TFLOPS of sustained performance (peak 183.5 TFLOPS).

The total performance of the top 10 supercomputers is 457 TFLOPS and the top 500 su¬

percomputers provide a total of 1 687 TFLOPS.

The performance of the top 10 and top 500 supercomputers doubles every year. The

performance of all supercomputers in the top 500 is reached by the top 10 supercom¬

puters 2V2 years later.

1.3.3 Supercomputer Architectures

When the list was first published, about half of the supercomputers were SMP ma¬

chines (MIMD multiprocessors), one quarter was SISD or SIMD machines and the re¬

maining quarter was MPP (massive parallel processing) systems (large MIMD systems).

Supercomputer Architectures

Figure 1.17: Supercomputer type classification in the Top500 lists

The SISD and SIMD systems have completely disappeared since the November 1997

list, and the SMP systems disappeared in November 2003. The reason for this is the de¬

sign overhead for computer-internal communication technology between processors

and memories, which is much higher than that for designing network interfaces which

are interconnecting computers.

For a long time, most of the supercomputers were MPP systems - interconnected inde¬

pendent computing units (called processing elements (PE) or nodes). The MPP systems

became more important as massive-parallel algorithms became available and the paral¬

lel applications performed better than the applications on SISD, SIMD or SMP systems.
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Starting with the November 1995 list, «constellations» became more important. Constel¬

lations are clustered powerful MIMD multiprocessor mainframes. Clusters first ap¬

peared on the November 1998 list - these are interconnected off-the-shelf computers

that use either commodity parts only (NOW) or commodity and custom parts (COW),

where the custom parts are usually high-speed communication hardware. Clusters and

constellations make up three quarters of the list entries today.

1.3.4 Processor Types

When the list was first published, SIMD and scalar (SISD) processors were the minor

players while vector processors were found in the majority of supercomputers.

Processor Types

Figure 1.18: Processor type classification in the Top500 lists

Today, the SIMD processors have disappeared and the vector processors can be found

in only 5% of supercomputers, which mainly come from Japan. The rest of the super¬

computers on the list - about 95% - are based on scalar processors, which are commod¬

ity off-the-shelf microprocessors such as IBM Power, Sun SPARC, SGI/MIPS, Com¬

paq/HP Alpha, and Intel x86.

1.3.5 Processor Count

Since the first published list, the number of processors in the top 10 supercomputers

has increased from 3 912 to 164 344, and the total number of processors in the whole list

has increased from 71 707 to 580 336. This increase in the number of processors is very

likely to continue.
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Cumulated Number of Processors
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Figure 1.19: Cumulated number ofprocessors in the top 10 and top 500 supercomputers

The current fastest supercomputer contains more than 65 000 processors. This will be

topped by future systems. This high amount of processors, storage devices and connec¬

tions poses many problems concerning scalability, reliability and manageability - and of

course also in usability, since debugging or monitoring parallel applications with many

thousand processes requires a set of very sophisticated tools.

1.3.6 Summary

What can be extracted from the given information about the Top500 list?

Computation performance doubles every year.

The number of clusters is increasing.

More clusters will be found in the top 10 in the future.

These clusters will integrate commodity off-the-shelf computers and components.

PC manufacturers will build most of the supercomputer clusters.

The number of processors will grow further by about 25% per year.

The good news is that supercomputers will get faster and bigger over the next few

years, and that there is an open market for supercomputer manufacturers and custom¬

ers. The bad news is that these supercomputers will integrate commodity off-the-shelf

(COTS) components and there is not enough experience so far in creating such systems

with many thousands of processors.
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1.4 Commodity Supercomputing in a Nutshell

Every institution that owns several hundred computers wastes processing power to the

value of a supercomputer: The idle cycles of the workstations standing on everybody's

desk. In the late 1980's, new software allowed those wasted cycles to be caught, thus

creating a parallel supercomputer. During the night, when the workstations are unused,

large parallel applications were able to run. As long as the applications do not exchange

too much data, these «network of workstations» (NOW) systems can achieve supercom¬

puting performance as proven by various projects such as cryptographic attacks or

event computations in nuclear accelerators [CERN].

Unfortunately, processes of parallel applications tend to communicate heavily. The us¬

ers of the workstations also reduce the processing power, creating an unbalanced su¬

percomputer that is only fully available during the night or at weekends. If dedicated

computers are acquired for supercomputing only and a dedicated network for high¬

speed inter-process communication is used, such a system can achieve supercomputer

performance easier and is always available. Such systems are called «clusters of work¬

stations» (COW) systems and because of the similar structure, the same tools as in

NOW systems can be used.

Using commodity off-the shelf computers, networks and many other parts is a strong

trend in supercomputing today. Many supercomputers today are based mainly on com¬

modity parts - custom technologies are only used, where a significant performance ad¬

vantage can be detected.

Because the computers are put together in clusters and these clusters are used as a su¬

percomputer, the community refers to such systems as superclusters.

1.4.1 Why Commodity Supercomputing?

There are several advantages to buying or building superclusters instead of supercomputers:

Using many mass-production parts instead of some low-volume custom parts de¬

creases the system price (economy of scale [Sei92]).

Due to the standardization of commodity parts, the community using the same

platform is larger and allows effort to be concentrated on increasing performance

and decreasing cost.

There are many ways to increase system performance (adding more nodes, re¬

placing or upgrading the components etc.).

The supercluster platform is similar or the same as the platform on the users'

desks, allowing the users to reuse their utilization knowledge.

The performance of such systems is high enough for the majority of applications.



18 Introduction

Of course, there are also some problems and obstacles in creating superclusters:

Commodity components were not created with supercomputing in mind, causing

some nasty drawbacks such as lower reliability, scalability and manageability. In

other words, superclusters are very hard to manage with currently existing man¬

agement tools.

Not every application scales with the processor count.

Commodity products are not completely homogenous due to production toler¬

ances, creating slightly slower and faster components and an unbalanced system.

Superclusters are not as dense as supercomputers, thus requiring a huge amount

of space.

Installing a supercluster is a time-consuming task with many sources of mistakes.

Commodity components have a limited time on the market and replacing a defec¬

tive part could require an unscheduled upgrade of all like components in the

whole supercluster.

Looking at the Top500 supercomputers list, it seems that the advantages outperform the

disadvantages of building superclusters.

1.4.2 System Performance and System Size

In theory, superclusters can achieve infinite computing performance through an infi¬

nite number of processors. In practice, some limitations inhibit the building of such

«towers of Babel»: Budget, technology, on-site resources, and software limit the system

size today to about 10 000 nodes.

The current fastest ASCI supercomputer available (ASCI Q) offers a peak performance of

20.5 TFLOPS using 8192 processors. The LINPACK benchmark shows sustained perform¬

ance of 13.9 TFLOPS. And the users desire even faster supercomputers to solve their com¬

putational problems: Hundreds or thousands of TFLOPS will be required over the next few

decades - and technology must evolve quickly to provide the required performance.

Suppose a supercluster provides a peak performance of between 1 TFLOPS and

1 EFLOPS, and uses products available today or in the near future. How large will the

whole supercluster be? What will its price, space and power requirements be?

The sample superclusters consist of the following two main components:

Node Computers: Node computers contain one CPU providing a peak perform¬

ance of 10 GFLOPS (4 pipelines with 2.5 GHz) for the price of US$ 2500. The CPU

consumes 300 W of electrical power, 16 nodes are placed in one rack and it has an

expected statistical lifetime of 5 years (MTBI).

System-Area Network: The network switches build a 3D mesh with 10 nodes

connected to one switch. The switch costs US$ 5 000, consumes 100 W of electri¬

cal power and 16 switches are placed in one rack.

The rack itself has a standing area of 1 m2 with 150% additional overhead space re¬

quired for access and cabling. Everything else (LAN, storage etc.) is not included.
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Peak Number of Space Power Price System MTBI

Performance Nodes [m2] [W] [US$]

1 TFLOPS 100 20 31 k 300 k 18 days

10TFLOPS 1000 175 310k 2400 k 44hrs

100 TFLOPS 10 000 1 720 3 100 k 19M 263 min

1 PFLOPS 100 000 17 188 31 M 154M 26 min

10PFLOPS 1 000 000 171 875 310M 1 229 M 158 sec

100 PFLOPS 10 000 000 1 718750 3 100 M 10B 16 sec

1 EFLOPS 100 000 000 17 187 500 31 G 79 B 1 sec

Table 1.5: Sample supercomputers ofvarious sizes with current technology (rectangle)

The above table contains not only details of the system peak performance, but also the

number of nodes, system price (US$), space (m2), electrical power (W) and the expected

mean time between interruptions (MTBI). The table adheres to the principles of «econ¬

omy of scale», in that a ten times larger system is not ten times more expensive, but in¬

cludes a 20% component price rebate.

The following observations can be made:

The Swiss nuclear power plant Leibstadt produces 1.145 GW of electrical power

[ATEL], which enables one 30 PFLOPS supercomputer to be powered. The distri¬

bution of this amount of energy is hard, but the evacuation of the same amount of

heat energy is very difficult.

One official soccer field (7 350 m2) can accommodate a 500 TFLOPS supercomputer,

one official basketball field (440 m2) a 25 TFLOPS supercomputer. Distances play an

important role in supercomputing, since every meter adds 3-5 ns latency.

The budget of the Swiss Federation (2003: CHF 50 billion = US$ 33 billion) enables

the acquisition of a supercomputer with a performance level of 350 PFLOPS.

The most disturbing part of this table is the mean time between interruptions (MTBI).

A supercluster with 10 000 processors will face a broken node 9 times per day. A broken

node usually requires a restart of the affected application. A huge application has a

high risk of never finishing2.

1.4.3 Supercluster Reference Architecture

A complete supercluster system contains some thousand or million components: Com¬

puters, network concentrators, data servers, disk arrays, workstations, racks, cables,

power cords, operating system, application software, interfaces, and much more. The

components are organized in subsystems on different layers:

2

For the ASCI supercomputers, the Top500 benchmark often aborted because of hardware faults
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Figure 1.20: Reference architecture of a supercluster

1.4.3.1 Layer 1 : User Interface Layer

The supercluster personnel access the supercluster through User Interface Software on

their personal workstations or other agents such as mobile devices. The access is pro¬

tected through security mechanisms (authenticity, integrity and encryption). This al¬

lows access to the supercluster almost from anywhere at maximum level security.

Figure 1.21: User interface application on a PDA system
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1.4.3.2 Layer 2: Management and Access Layer

The supercluster is managed by one or more computers running the management soft¬

ware. They are connected through the LAN Subsystem to all components of the super-

cluster (it may also contain dedicated LAN components for management traffic only).

Access to the data stored in the supercluster storage subsystem is also provided by

these computers.

The management not only includes the mere hardware management, but also the man¬

agement of the «soft» supercluster resources: Processing time, users, and applications.

1.4.3.3 Layer 3: Supercluster Hardware Layer with its Subsystems

The supercluster architecture is simplified when like components are placed in subsystems.

The node subsystem contains the node computers. These computers contain - besides

the usual components - network interface adapters. They also contain multiple internal

storage devices, used for the operating system, such as a scratch drive for temporary

files, and additional drives if a distributed file system is used. Modern node computers

for mounting in 19" racks are small - so-called «blade servers» allowing up to 280 nodes

per 42U rack3. With this technology, a 1 PFLOPS system with 100 000 nodes can be

stored in 4 000 racks.

Figure 1.22: Blade server with small outline for high-density superclusters

The SAN subsystem interconnects all nodes and is used by parallel supercomputing

applications. It consists of high-performance networking technology products such as

switches, repeaters, protocol translators or partitioning enablers. The technology pro¬

vides superior communication performance with high bandwidth and low latency.

Figure 1.23: Examples ofSAN topologies: Fat Tree on the left, 2D-Torus on the right;

circles are SAN switches, boxes are nodes, lines are SAN cables

3

42U racks are 19" racks with 42 standardized height units (1U = 45 cm) Such a rack has the dimensions 60x100x200 cm
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The nodes and the SAN switches build a topology. The supercomputing center selects

the topology with the best performance for the majority of the applications [Nem99].

The LAN subsystem consists of all network components that are used for standard

socket- and OS-based communication systems such as FTP, NFS and others. It usually

contains Ethernet hubs, switches, terminal servers and firewalls. It interconnects all

nodes - and all other components connected to the LAN. To protect the system man¬

agement traffic from usual LAN traffic, it is reasonable to use a separate network for

management only. The LAN subsystem is not used for the communication of the paral¬

lel application, since the performance of current LAN technology (TCP/IP, MPICH) is

too weak to achieve supercomputer performance.

The power subsystem is in charge of distributing electrical power to all components of

the supercluster - no simple task because systems such as the ASCI White consume

more electrical power (6.2 MW) than a small city.

The storage subsystem provides fast and reliable file and data storage for the users

and supercluster nodes. There are two ways to provide this service (see Figure 1.20):

The storage is provided by the nodes themselves (example A). Some of the node's

storage is provided to a system-global file system in which each node participates.

The storage is provided by dedicated servers with storage arrays (example B).

Because of the distributed nature of superclusters, the distributed storage ap¬

proach (example A) seems to be the best match.

1.4.4 Superclusters Examples

The presented reference architecture requires illustration with existing superclusters.

The two superclusters «Swiss-Tl» (installed at the EPFL in Switzerland) and «ASCI

Red» (installed at the SNL in the USA) show that this architecture holds.

1.4.4.1 «Swiss-Tl»at EPFL

The «Swiss-Tl» supercluster is installed at the center for parallel applications (CAPA)

at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland [EPF00].

It is a small system consisting of 32 node computers with 2 processors each.

The following observations can be made when comparing the reference architecture

with the «Swiss-Tl»:

The 32 node computers of the node subsystem are organized in 8 subclusters with

4 nodes and one SAN switch each.

The eight SAN switches are interconnected in a 2-ring topology [KG99].

The node computers are also interconnected using standard Ethernet technology.

The storage subsystem with disk arrays is managed by the front-end computers.

The management subsystem contains one computer which manages the SAN

switches (management agent) and the front-end computers, which manage the nodes.
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Figure 1.25: The Swiss-Tl supercluster installed at the EPFL in Switzerland

The presented supercluster reference architecture matches the Swiss-Tl architecture.

1.4.4.2 «ASCI Red» at SNL

The «ASCI Red» supercluster is installed at the Sandia National Laboratories in Albu¬

querque, USA [San96] [MH98]. It is a large system consisting of 9728 productive proc¬

essors, organized in 4864 nodes. The computation nodes are organized in a 38x32x2

mesh network. There are additional nodes used for network management (12), disk I/O

(73) and service tasks (52). Two nodes are used for system management.

Figure 1.26: ASCI Red supercluster
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Comparing the reference architecture with «ASCI Red», the following observations can

be made:

The 4864 nodes of the Node Subsystem are separated into 3 subclusters and the

connections between the subclusters are plugged mechanically so that security

personnel can check whether the red/black separation has been successful and

no classified data can be seen outside.

The SAN Subsystem contains 2432 switches of the high-performance network.

The LAN Subsystem contains 12 nodes managing the Ethernet and ATM network.

The Storage Subsystem contains 73 nodes, managing 20 cabinets with 12.5 TBytes

disc capacity.

The Management Subsystem contains two computers which manage the system.

These computers are supported by management boards, each managing 16 nodes.

Although the Management Layer and Supercluster Hardware Layer are integrated into

one layer, the tasks of the Management Layer are performed by dedicated computers.

The reference architecture is simplified and holds, since the subsystems are present.
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Figure 1.27: Structure of the ASCI Red supercluster
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1.4.5 Four Basic Custom Supercluster Technologies

Not all commodity off-the-shelf parts are suited to supercomputing today. Whereas the

performance of the nodes is high enough, the performance and skills of other products

is too limited. Four basic non-commodity supercluster technologies are required:

High-speed System Area Network (SAN) - because the available Ethernet-

based communication is too weak for supercomputing.

Communication libraries using the SAN (e.g. MPI) - because the available ge¬

neric libraries do not take advantage of the high-speed network.

Distributed storage - because centralized storage designs cannot scale.

Comprehensive system management - because there are no satisfactory tools to

control the whole supercluster.

These technologies are derived from the mainframe-type supercomputer technologies

and are the subject of intensive research and development effort today.

1.4.5.1 High-Speed System Area Network (SAN)

The processes of a parallel application communicate with each other. After an iteration

step, the results are broadcast to all other processes that need these results. This com¬

munication phase must be as short as possible, otherwise not only will the system per¬

formance be limited, but adding more processors will not increase, but decrease the

performance (see Appendix A.l, especially Figure A.2 and A.3).

Figure 1.28: SAN hardware ofMyricom (NIC left, switch right)

Besides simple data transfers, the hardware must also provide the following functional¬

ity that is necessary for efficient and scalable commodity supercomputing:

Multicast and Broadcast of Messages - Processes of a parallel application can

create groups and broadcast data within this group (and also broadcast data to the

whole application). This is only efficiently possible, if the network supports multi-

casts. If it does not support multicasts, the message must be sent repeatedly by

the sender to all recipients.

Barrier and Event Synchronization - For the synchronization of all processes of

an application, two models are used. The barrier synchronization is used if the ap¬

plication needs to wait until all processes have finished their tasks and are ready to
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continue with the next task. The event synchronization is used if the one process

wants to inform all the other processes that some condition has been reached. Es¬

pecially barrier synchronization scales poorly without hardware support.

Key Management for Mutual Exclusion - For transactions using shared re¬

sources and critical sections in applications, mutual exclusion of processes is

needed. The resource can only be used or the critical section can only be entered,

if the process owns the corresponding key. All other processes must wait until the

process returns the key and a mechanism selects the next key owner. This func¬

tionality is hard to implement without hardware support.

Adaptive Routing - If the message cannot be sent through the correct SAN link (bro¬

ken or stalled), the message is sent through alternative paths. If there is only one link

which may be used, the applications will stall and the whole system must be restarted.

Intelligent and efficient MPI Messaging - MPI has various message sending

mechanisms that require smart hardware support. To prevent costly application

redesign (for using the most efficient mechanisms of the hardware), the most

commonly used mechanisms must be supported.

Only a well designed SAN hardware (with appropriate MPI support) with high message

bandwidth (of some GBytes/s), low latency (some us overhead) and the mentioned fea¬

tures, allows the adding of nodes for increasing the system performance.

Some communication models and network technologies were designed in the author's

project. The results are summarized in the dissertation of Martin Lienhard [LieOO].

1.4.5.2 Efficient Messaging Libraries (MPI)

The Message Passing Interface (MPI) is the standard for using parallel supercomputers

[MPI95] [MPI97]. It contains calls for sending and receiving messages, creating groups,

synchronization, storage access and data I/O.

The applications use MPI directly or indirectly, using mathematical libraries that are

based on MPI. MPI needs to be ported on a particular platform, supporting the many

features that are implemented in the hardware. It is an art to design and port an MPI

implementation on a platform that takes advantage of the hardware features and opti¬

mizes those MPI calls that are used by the applications and libraries.

MPI was ported to the network platforms that were designed within the project. Hard¬

ware and software were closely coupled and highly efficient. The results of this work

are summarized in the dissertation of Stephan Brauss [BraOO].

1.4.5.3 Distributed Storage

Supercomputers with many thousand nodes require large storage systems. Centralized

storage servers with disk arrays may not match the performance requirements, since

the network to these servers is the system bottleneck.

The nodes contain storage devices and can provide some space to the whole system. All

they need is software that creates a virtual global file system. A system-wide RAID with
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fail-over mechanisms is the goal of many developments at companies and universities,

providing multi-terabyte storage space with an unmatched access and transfer per¬

formance [CPQPF].

1.4.5.4 Comprehensive System Management

To replace supercomputers with superclusters, the supercluster with all its components

(from a few dozen up to several thousand) must be manageable. The existing systems

use a combination of shell scripts and several tools, but this approach is not very effi¬

cient and effective for small systems - and big systems are almost impossible to manage

without specialized software and dedicated hardware.

The author was responsible for designing the system management software for the cre¬

ated superclusters within his project. This dissertation summarizes the results.

1.5 Future of Supercomputing

Since there will be only one major technology for building computers, the computing

universe will only have the segments of servers and workstations. The lowermost seg¬

ment will be the appliance systems - downsized computers for specific usage such as

Internet terminals and PDAs.

Typical Manufacturers

Compaq/HP, IBM, Intel, SUN

Compaq/HP, IBM, Intel, SUN

Many different manufacturers

Table 1.6: Computer segmentation in the nearfuture

The separation into servers and workstations is artificial, since the basic technology is

the same: Both systems have one or multiple CPUs connected to the memory in SMP or

NUMA style and have basically the same in-system interconnections and components.

The only difference is that servers move data more efficiently and are highly reliable -

with redundant subsystems and modular components that can be replaced while the

system is running - and workstations are highly interactive with powerful visualization

subsystems and operating systems.

The supercomputer segment with its classical full-custom or partially-custom main¬

frame designs will have (almost) disappeared - the systems that will provide supercom¬

puting performance are clusters of standard computers with off-the-shelf components.

In short, supercomputers of the future will contain nothing but interconnected, clus¬

tered standard single-CPU computers: Microprocessors, memories, storage, operating

systems and everything else will be taken off the shelves of computer stores.

Category Selling Price

Servers» 1 20 k$

Workstations» 2k$

\ppliance Systems 1 200$
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1.6 The Gap: System Management

In the past, supercomputers were huge boxes that were installed in a room. They had a

power button and the management application ran on the system itself or on an associ¬

ated box next to it. Managing a supercomputer was almost as easy as managing a work¬

station on the desk.

Figure 1.29: The power switch of the CrayJ90 supercomputer (left)

and the C-Plant supercluster with 1 800 power switches (right)

Today, supercomputers consist of many hundred racks installed in huge rooms. Managing

a supercomputer has the same complexity as managing employees of a huge company.

Many research teams are investing a lot of time and money in high-speed network

technology, efficient message passing interfaces, and parallel file systems. The per¬

formance of the products can be measured in MBytes per second and microseconds.

The results are proudly presented in conferences, papers and dissertations, and com¬

pared to the results of others.

System management was considered to be consuming resources that would be better

invested in increasing performance and functionality, and decreasing latency and cost.

Supercomputer management today is a patchwork of small and usually self-made tools

that try to fix a usability gap created by the integration of various products within the

supercluster. It is a research orphan, considered to be boring, complex to implement,

with goals that are hard to describe, and performance that cannot be measured. Man¬

agement is fuzzy and therefore not beloved by engineers.
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MTBI versus System Size
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Figure 1.30: MTBI (Mean Time Between Interruptions) in hours versus

system size (processors) for various component lifetimes (1, 10 and 100 years)

It is hard to understand why there is no integrated system management software avail¬

able today - this thesis is the first work in this direction. Systems that deliver hundreds

of TFLOPS or several PFLOPS will contain between 100 000 and one million CPUs that

cannot be handled without computer-aided management, since one single minute

downtime will cost US$ 584. Ironically, managing top-edge supercomputers of the future

will require a small supercomputer itself.

Reading the reports of the supercomputing centers that own the fastest supercomputers

of the world, it can be clearly seen that the management facilities cannot keep up with

the increase of system performance and size. Supercomputing management is an un¬

solved matter that urgently needs research. Many facts and reports show that action

must be taken immediately:

The management software that was created for the old supercomputers cannot be

used anymore because the superclusters have different system architectures.

Managing each node individually with the supplied management tools is a never-

ending task if many computers must be managed. Using one additional tool for

every additional component type makes system administration impossible.

The ASCI Q supercomputer, installed at Los Alamos National Laboratories, has a

MTBI of 8 hours and about 110 failures every month. Each failure blocks the sys¬

tem and the affected applications must be restarted [Mor03].

4

The US$ 58 per minute is a calculated value under the assumption, that the supercomputer will depreciate within 5 years

and has a price of US$ 154 million, not taking into account the cost of space, power and personnel
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Global commands (start-up, shut-down, update with patches) take too much time

and are unreliable, monitoring the system breaks bandwidth limits quickly, and

administration is very hard for huge systems [Gon03].

System management is identified as one of the important problems - if not in fact

the most important problem of all - of commodity supercomputing. The ASCI

laboratories want to build a team that searches for concepts of system manage¬

ment and develops «supercomputing enabling software».

Integrated system management software is therefore the most important issue both to¬

day and in the future. Its job is the following:

Keep the supercluster available to the users as much as possible.

Detect failures as soon as possible and handle them automatically.

Provide the system status and log to the administrators.

Support the developers in optimizing and debugging their applications.

Protect the supercomputer from intruders, malicious codes and users.

Allow accounting and usage analysis.

The goal of this dissertation was to take the first step toward integrated management of

commodity parts-based supercomputers, and to search for an optimal computer-aided

software solution for comprehensive, effective, efficient, scalable and reliable system

management of commodity supercomputers of today and the near future.
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Power is nothing without control.

Slogan ofPirelli

Supercomputer users are creating applications, which are consuming resources. These

resources are provided by the supercomputer hard- and software. All involved partners

(users, applications, resources, hardware, and software) are part of a system. It is the

management's job to keep this system running.

******
Users create applications

Applications

^ Applications consume resources

Supercomputer Softwa re

OS, L&aria» Tools

Supercomputer Hardware

Computers, Switches, Storage

°°°°°°°QQ°--"[
I , ,q i , ,q

Resources

Supercluster provides resources:

Processing time, main memory,

storage capacity,...

Figure 2.1: Supercomputer system - the management keeps it running

It can be seen that supercomputer system management includes:

Management of the supercomputer hardware and software.

Management of the supercomputer users.

Management of the applications and resources.

This chapter is the «problem statement» of this dissertation and explains, what «com¬

puter-aided supercluster management» means. It introduces the users with their expec¬

tations, fears, and requirements. It shows that comprehensive system management also

includes the planning and installation process. It lists the functionality that is required

for system management. And, finally, it highlights the bottlenecks and problems that

make system management difficult.

33
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2.1 Supercluster People

There are four types of people around superclusters.

Those who use superclusters. The users.

Those who buy superclusters. The managers.

Those who sell superclusters. The sales people.

Those who keep the superclusters running. The administrators and field service.

The field service and the sales people are employees of manufacturers. All others work

at the supercomputer center where the supercluster is installed.

Consult -

t
Sales People

f
Field Service

Manufacturer

Figure 2.2. Persons involved in supercomputer usage

This section shows how they work, what they want, and what they are afraid of.

2.1.1 Supercomputer Center Manager

The manager is responsible for all financial matters. He buys the supercomputer and he

wants to be sure that the selected system always operates at maximum performance. No

matter what the management software looks like, he requires the following functionality.

He wants to buy the fastest supercomputer he can get for his money. He needs

software that helps him to find the fastest system for the applications his users

will run on the supercomputer.

During operation, he wants to check the utilization and performance and he

wants to know why the system is not running at 100% and what he can do better

when buying the next supercomputer or upgrading the current system. For this,

he needs software support.

If a new supercomputer is installed, the previous model is removed. During that

time, the users cannot run their applications. The manager wants to keep the in¬

stallation time as short as possible. With many thousand cables, this requires

software support.
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There are three things he is afraid of:

He does not want to install a system that - because of the system architecture and

the selected components - is not capable of delivering the performance he needs.

He does not want to use a supercomputer without quantitative feedback about its

performance and utilization. Management without reliable figures is impossible.

He does not want to have a lot of technicians running around during installation

(and later operation), searching for badly placed cables, wrong configurations and

defective parts.

The manager's requirements suggest three main management applications:

Design and simulation software that outputs the estimated performance of a su¬

percluster design created by the manager itself.

Installation software that shows whether the supercluster has been installed correctly

in accordance with the previously created design or what needs to be changed.

Operation software that permanently monitors the utilization and performance

and summarizes it into a database and printable reports.

Since the manager is responsible for a multi-million dollar investment, he wants man¬

agement software that proves to him that he has made correct decisions.

2.1.2 Supercomputer Users

The users develop applications and execute them on the supercomputer. They want to

have the fastest system available for their applications so they can attain results very

quickly. They have the following requirements:

They want a supercomputer that executes their applications with the highest pos¬

sible performance. They want to be able to tune the system and their applications

to reach this goal. In academic environments, the users want to turn the results

into published papers and reports.

They want a fair scheduling system where every user, project, and department

can be sure that their applications are run within a reasonable timeframe.

They want the large applications using all processors for a long time to have a

high probability of terminating successfully.

They want debugging and profiling access to all processes of an application.

They want a supercomputer that efficiently supports the most important func¬

tions of the main programming libraries (such as MPI or UNPACK).

There are four things they are afraid of:

Applications are slow because of the supercomputer or application design.

The applications are stuck in a queue and are not scheduled to start anytime soon,

or the application is so large that hardware faults require permanent restarts.

The system does not support debugging (debugger access, message tracing)

which makes development and tuning of applications very slow.

The applications need to be re-designed because the programming libraries are

either incomplete or the most often used functions are inefficiently implemented.
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The users' requirements suggest further features for main management applications:

For the design and simulation of supercomputer architecture, the application

(communication pattern between processes, instruction and MPI call mix) must

be respected. This prevents buying supercomputers that are unable to provide the

required performance.

The libraries must be either complete and the functions efficiently implemented,

or the speed-up using other functions or new libraries must be so high, that the

users are motivated to re-design their applications.

The users work every day with the supercomputer. They require the management soft¬

ware to simplify their work instead of making it more complex.

2.1.3 Administrators

The administrators keep the supercomputer running. They want to keep utilization

high and downtime low. They have the following requirements:

They want the system to automatically detect all faults and resolve them auto¬

nomously without manual intervention. They also want the system to anticipate

faults and show which components need replacement as soon as possible.

They want the management software to provide a one-system view, where man¬

agement actions are quickly broadcast and executed. They also want access to

every component individually (or in groups) for management treatments.

They want to be sure that the whole system is correctly configured, especially after

installation or downtimes before the supercomputer is re-opened for the users.

They want the system to protect users, applications, software and hardware.

There are four things they are afraid of:

Applications, software or hardware faults must be detected and resolved manu¬

ally. These faults block the whole system, and waste many processing hours.

Every single component must be managed individually, leading to many hours or

days of manual interactive work with many sources for tricky errors.

It is impossible to detect whether one or more components has been badly con¬

figured or some cables have been wrongly placed. These mistakes leave the whole

system blocked and unusable.

Malicious users and applications, as well as interactions between users, applica¬

tions, software and hardware cause unwanted side-effects with low performance

and utilization.

The administrators' requirements suggest the following features for main management

applications:

Monitoring and fault detection is essential for the operation. Monitoring allows -

besides measuring the performance - the detection of parts that will break soon.

Fault detection reduces the time where parts block the system's operation. Both

features increase utilization and decrease downtime frequency and duration.
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Management actions to single, multiple or all components of the supercluster

must be transported reliably and efficiently.

Monitoring also detects wrong configurations and badly placed connections when

using smart diagnostic software that is part of the management.

The management software must make the supercomputer easy to handle. Administra¬

tive staff make operation expensive and bad management software requires many ad¬

ministrators.

2.1.4 Salespeople

The sales people sell either the whole supercomputer (as «integrator») or parts of it

(single components or whole subsystems). They are well informed about component

performance, compatibility, price, reliability and availability. They want the center

manager to be confident with the system, so they consult him regarding his decisions

and evaluations, and they suggest upgrades as soon as they are available and reason¬

able. They also advise the supercomputer users about how they can improve the per¬

formance of their applications.

With regard to the management software, they have the following requirements:

The management software either supports their product directly or makes it easy

to integrate the product's management software into the management system.

The management software supports the product's features allowing the product to

operate with the highest possible performance. The management software must

also support the applications in using those features.

The sales people want to know why the products do not deliver maximum per¬

formance and the management software has to provide this information.

There are four things that they are afraid of:

Their products are not supported by the management software or the product's

management software cannot be integrated into the system's management software.

The key features for the product's superior performance are not fully supported

by the management software, resulting in poor performance.

It is impossible to find out why products perform slowly or unreliably.

The users, administrators and the center manager are not confident about the per¬

formance. This results in no further purchases, bad reviews and bad reputation.

The sales people's requirements suggest the following features for main management

applications:

The specifications of the products used must be included in the design and simu¬

lation process in order to find optimal products for the supercomputer.

The supercluster management software must have an open interface that allows

the integration of the products' management software or its management features.

The product's management software must provide current and historical monitor¬

ing information in order to find out how the product could perform better.
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The sales people want to sell their products. They want to be sure that they advised the

managers correctly and sold the right product. The management software must prove to

him that the products perform as promised and that he gave good and accurate advice.

2.1.5 Field Service Personnel

The field service personnel are on-site during installation and downtimes. They config¬

ure the products for optimal operation and fix problems. They regularly check the per¬

formance and suggest replacement during the next downtime. Their requirements are

as follows:

The management software allows them to access each component individually for

configuration and monitoring. The log files store any event that might help in

finding problems.

The supercomputer design file allows them to generate configuration files for all

products.

The management software increases the system availability and the field service

personnel are only on-site for «scheduled» downtimes (e.g. once a week).

There are three things they are afraid of:

Configuration and monitoring access to each part is complicated. Additionally, the

management application only allows access to one part at a time.

There are no tools available that create configuration data automatically.

«Unscheduled» downtimes, created by unexpected fatal faults require immediate

on-site presence by the field service personnel. Either more personnel are ac¬

quired that make the product more expensive, or the reaction time is massively

increased thus decreasing usage and performance of the supercomputer. Both

make the customers angry.

The field service personnel's requirements suggest the following features for main

management applications:

The design files allow automated configuration generation for each product.

The configuration data can be easily distributed and applied to all products.

Special configuration data for diagnostic treatments can easily be applied to one

single part or a group of parts.

Reliability features of the management software reduce unscheduled downtimes.

The field service personnel prevent and fix problems. They expect the management

software to prevent and fix problems autonomously, making his presence only neces¬

sary in complex cases.
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2.2 Supercluster Lifecycle

The previously presented requirements of the supercluster people and the nature of the

superclusters themselves show, that management is more than «a tool» that keeps an

existing supercomputer «alive». There are some tasks that require software support be¬

fore the supercomputer is ready to use. These tasks depend on each other, and lead to

the following «supercluster lifecycle».

Figure 2.3: Supercluster Lifecycle

The supercluster lifecycle has three phases and a common database, the «Management

Information Base» (MIB):

The design phase, where various system architectures and components are

evaluated. The performance of these systems is estimated and the best design is

selected. The design description and estimated performance is stored in the MIB.

The installation phase, where the virtual system design description is translated

into physical construction plans and configuration data for all components. This

basic configuration data is stored in the MIB.

The operation phase, where the supercluster is managed.

The nature of superclusters allows three ways to increase performance:

Extending the supercluster with the same components as already used.

Upgrading one subsystem's components with other products.

Creating a new supercluster with re-used components of previous superclusters.

This explains why there is a link between the operation and design phase: The super-

cluster is not a project with a start and an end, but is a cycle.

Describing the whole lifecycle with all its possible aspects would be enough work for a

person's entire professional life or many dozen dissertations by smart researchers. This

thesis therefore can only cover the aspects of one single phase: The operational phase.

The other phases are described briefly for the completeness of this section.
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2.2.1 Management Information Base (MIB)

The management information base (MIB) is the central part of the supercluster lifecy¬

cle. Each phase creates data which is stored in the MIB and data is consumed from this

MIB as well as external sources. This MIB basically contains the following types of data.

Supercluster design data - The supercluster design data contains the superclus¬

ter architecture. This includes system size, placement of components, and ex¬

pected performance. This data is created in the design phase and remains static

until the next design phase.

Performance simulation data - For main applications, this is the estimated per¬

formance for different sizes. This allows comparison of the effective performance

with the estimated data, which was used as a decision base for the system purchase.

Basic configuration data - All components must be identified and require a basic

configuration, which is downloaded to the components during start-up and reset.

Temporary configuration data - Components receive temporary configuration

changes caused by faults or application requests. These changes are undone after

the defective component has been replaced or the application has finished.

Log file data - The log file contains details of events that are worth being regis¬

tered, such as triggered management tasks, failures or security-relevant data such

as attacks, resource misuse or unexpected hardware changes.

Monitoring data - The components are permanently observed and this data

needs to be stored in a sensible way, since there is a huge amount of data that

needs to be synchronized («global heartbeat») with context («which traffic is

caused by which application»).

Accounting data - The resource usage that is charged to the causative users.

User profile data - The people allowed to use and manage the system are de¬

fined, together with their permissions and resource quotas.

A sample MIB is presented in Appendix B.

2.2.2 Design Phase

This phase has one goal. Finding the supercluster design that satisfies all needs.

Figure 2.4. Design phase - requirements (left), outcome (right), MIB data (grey)

Designing a supercluster is creative work. All requirements are concentrated into a va¬

riety of possible supercluster designs. Simulations of the application on these designs
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(as well as conditions such as available space and money) allow the best design to be

selected for implementation.

The requirements are quickly listed:

System architecture: System size, network topology.

Applications: Instruction and messaging call mix, communication patterns.

Requirements: System performance, available libraries, management capabilities.

Gained experience: Which products, topology, size, libraries.

Product specifications: Effective performance and capabilities of products.

The output of this phase is as follows:

Limits & bottlenecks: Performance limits defined by architecture and products.

Required resources: System cost, size, power consumption, etc.

Estimated performance: Performance for each application in various sizes, based

on the methods presented in Appendix A.

Design description: Data that describes the supercluster design.

Required products: Amount and type of products needed to build the supercluster.

The outcome of this phase can be tabled as follows:

Criteria System Ä 1 System B 1 System C

Topology Type 4D Torus 1 3D Mesh Fat Tree

Topology Size (Switches) 8x8x8x8 16x16x16 5x4096

z
Switch Count 4 096 4 096 20 480

3S Nodes per Switch 8 8 8

Link Count 49 152 44 288 163 840

Bandwidth (bidirectional) 2 GBytes/s 2 GBytes/s 2 GBytes/s

M

Node Performance 10 GFLOPS 10 GFLOPS 10 GFLOPS

0)

o
Node Count 32 768 j 32 768 j 32 768

z
SAN NICs per Node 1 1 1

System Peak Performance 328 TFLOPS] 328 TFLOPS | 328 TFLOPS

J2 Bisectional Bandwidth 2 048 GBytes/s 512 GBytes/s 32 768 GBytes/s
o3 u

Average Bandwidth 125MBytes/sj 44 MBytes/s 1 000 MBytes/s

.imi ttle System Cost 1 097 M$ 1 097 M$ 1 283 M$
- o

00 System Size 14 132 m2 14 132 m2 18 228 m2

Power Consumption 20MWJ 20MW1 22 MW

Application A, 1024 Nodes 70% | 70% | 70%

s Application A, all Nodes 55% 50% 65%

Application B, 1024 Nodes 55% 50% 60%

o
I*.

Application B, all Nodes 50% 50% 50%

a. Application C, 1024 Nodes 70% 70% 70%

Application C, all Nodes 40% 40% 70%

Table 2.1: Sample design comparison table
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After this phase, one design which is thoroughly known with its expected performance,

all advantages and disadvantages can be selected. The design is stored in the MIB, to¬

gether with details of its expected performance which can later be compared with its

effective performance.

2.2.3 Installation Phase

This phase has one goal. Installing the supercluster according to the design previously selected.

Figure 2.5. Installation phase - input (left), output (right), MIB data (grey)

The installation phase is the organizational and physical work. Out of the design files, a

floor plan is drawn, a shopping list created, and configuration data generated. The parts

are ordered, checked, assembled, configured and the whole system is tested and tuned

[SGL03] [SSB+99]. At the end of the phase, benchmark applications are used to verify

the performance estimations.

Design

Shopping List

Figure 2.6. Installation phase -from the virtual design to the physical supercluster

The termination of the installation phase is normally celebrated with an inauguration

day with supercomputing center staff, manufacturer representatives, users, developers,

researchers and journalists. It is the official birthday of the supercluster.

2.2.4 Operational Phase

This phase has one goal. Maximize the usage of the installed supercluster.

Using management software, the administrators observe and control the system, the

users their applications, the field service their products, and the center manager gets

the data he needs.
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Results

Tern porary Configuration)

Mon itoring / Accounting

Figure 2.7. Operational phase - input (left), output (right), MIB data (grey)

This dissertation presents the software that is used in this phase.

2.3 Supercluster Management

Describing the functionality of the management software for the operational phase

quickly becomes a bucket full of puzzle pieces. A strategy and some clues are needed to

finish the puzzle. The strategy separates the functionality into categories of like tasks.

The clue is that tasks depend on other tasks, similar to a pyramid structure, where up¬

per layers depend on lower layers.

2.3.1 Management Functionality Categories

Core management software has four basic categories of functions. These are the four

basic elements of supercluster management that cannot be replaced with other func¬

tionality and are required not only by the users and administrators, but also by the su¬

percluster itself.

Control: Perform actions that change something.

Configuration: Generate and distribute configuration data.

Monitoring: Observe the supercluster.

Fault Detection: Detect fatal errors.

Three further categories are based on these four basic categories. These are the first-

level derivatives of the elements which are not absolutely necessary, but simplify the

management for administrators and managers.

Trap Handling: Detect abnormal behavior using monitoring data.

Accounting: Charge resource consumption using monitoring data.

Planning: Perform actions and configuration changes based on a schedule.
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The following figure illustrates these categories:

Contre MonStoring

[ AOBBHf j
Management Core

j T«prliiriliis j
H ÜBBlIlf |-

Confîguratïon Fault Detection

Figure 2.8: Managementfunctionality categories

The core holds the MIB and the central intelligence detailing how the whole functional¬

ity may be integrated into a homogenous management application, how to use the func¬

tionality to achieve the main goals of the operational phase management software:

Maximize the availability of the resources (computation time and storage).

Minimize downtime duration and frequency.

Protect everything and everyone from everything and everyone else.

Gather as much information as needed from managers, administrators and users.

This section presents the categories briefly in general, using the cockpit of an airplane

as a metaphor. A detailed sample functionality description is presented in Appendix C.

2.3.1.1 Control

The control category can be compared to the switches and levers that are available in a

cockpit. When the pilot presses a button or turns a handle, something happens in the

airplane: The engines start or stop, the plane turns left or right, etc.

Figure 2.9: The Concorde cockpit, the workspace of the pilots for control tasks

The control functionality group has the same kind of tasks: Switching parts on and off,

distribute applications, change configurations, etc.

The power status is basic for the supercluster hardware. The actions that can be taken

by the management software (and the users and administrators) depend on the current

status of every individual part or the status of the whole system.
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Busy

Abort

Finalize

Spawn

Run

Ready

Shutdown Boot

Reset

Power Off

Power Off

The state «Busy» indicates that resources are being used by
an application. The action Spawn starts a parallel application

process; the action Run starts a local application (e.g. for

management tasks). The application can either terminate

successfully {Finalize) or be terminated by an error or abor¬

tion {Abort).

In the state «Ready», the component is booted and ready to be

used. The management software provides the action ßoof that

boots the node (with the option, which boot image to select).

In the state «On», the component is shut down, ready to be

booted or switched off. The management software provides

the action Power-On that turns the power on and Shutdown

that shuts down the operating system, fiesef returns each

component to this status immediately like pushing the reset

button on a PC.

In the state «Off», the component is powered off. The manage¬

ment software provides the action Power-Offthat turns the

component off, using either hardware-internal power-switching
features (e.g. console) or external remote power switches.

Figure 2.10. Power states ofsupercluster hardware

On

Power On

Off

Using graphical user interface (GUI) software for system management, the functionality

of this category is available in a context-sensitive menu accessed by clicking on a com¬

ponent with the mouse, as in the following illustration.

Node 12/14/3

Status Read

Node 12/14/3 :R-

Run

Shutdown

Reset

Power Off

Show Config

Change Config

**

Figure 2.11. Sample context-sensitive menu for nodes with available control actions

Of course, not only single nodes can be selected in the GUI application, but also groups

of nodes, groups of parts of every subsystem, subclusters including switches and stor¬

age devices etc.
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2.3.1.2 Configuration

The configuration functionality category can be compared to plane setups, where cor¬

rect settings allow the pilots to perform the actions they want: There is a setup for dock¬

ing, a setup for taking-off, a setup for the flight itself, a setup for landing, etc. Each

setup is described in a manual and achieved through actions previously described.

Besides these basic setups, there are setups for special cases, e.g. if turbulence requires

a route change, balance changes if an engine is switched off, or another landing setup

because a tire became flat during the start. These temporary configurations are also de¬

scribed in a manual, but they are only selected when special conditions are present. Af¬

ter the special condition has disappeared, the pilots select the basic setup again.

The supercluster also has a set of basic configurations as the following samples suggest:

Whole supercluster is switched off.

Whole supercluster is on, in use for management tasks, disabled for public use.

Whole supercluster is on, open for public daytime use (small applications).

Whole supercluster is on, open for public night or week-end use (large applications).

Whole supercluster is on, parts are open for public use, and other parts are closed

for management tasks.

The basic configurations can be altered in special cases as the following samples suggest:

A link or switch is broken and the network traffic must be re-routed. The routing

tables of the surrounding switches are recalculated and distributed. After the

problem has been fixed, the routing tables are reset.

A parallel application creates a MPI group which requires a routing table modifi¬

cation for fast broadcast and multicast of messages. The routing tables of the af¬

fected switches are recalculated and distributed. After application termination,

the modifications are undone.

An application generates a lot of traffic. The messages of other applications that

would normally go through the same links are temporarily re-routed through

links with less traffic.

The basic configurations are created (and selected) by the administrators. Temporary

configurations are created on-the-fly and selected by the management software.

2.3.1.3 Monitoring

The monitoring functionality category can be compared to watching the gauges and me¬

ters in the cockpit, which describe the current status and performance. Certain values

are archived for diagnostic reasons (black box) or management statistics.
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Figure 2.12: The Concorde cockpit, the workspace of the flight engineer

Monitoring functionality observes all components of the supercluster, measures various

values and stores these in the MIB. These values include:

The current power status and status changes.

The current configuration and configuration changes.

The current resource usage, performance and other vital values.

All kind of events which are written in a log file.

For integrated system management, where monitored values of all subsystems are

stored in the same MIB and accessed with the same user interface software, it makes

sense to store the data with additional context data such as:

Exact system time, using a global heartbeat.

Resource usage with its cause5, e.g. bandwidth and CPU load per application.

o%

100%

Figure 2.13: Monitoring data of two nodes (CPU load and NIC bandwidth)

The collected data is shown in graphical user interfaces for checks, and the data is also

used for accounting and trap handling.

'

The context is derived from business economics, where costs are separated into product lines, production lines and cost

type The figures allow the cost structure to be analyzed and are required for management decisions
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2.3.1.4 Fault Detection

The fault detection functionality category can be compared to the bells and flashlights

that go on in the cockpit when something fatal happens and the pilots must take action

quickly. If an engine is on fire, a door lock opens during flight, fuel pipes leak or gears

become blocked, the pilots can perform actions that either allow the flight to continue

normally or allow an emergency landing - if nothing is done, the plane is likely to crash

during the flight or the landing.

Figure 2.14: Defective brakes (left) or blocked gears (right) require precautions for landing

Supercluster faults are usually lethal for the applications, since broken nodes, switches,

cables and other components usually block parts of the supercluster. If the fault re¬

mains undetected for 30 minutes, a 10 000 nodes supercluster loses 5 000 CPU hours.

Management software must not only detect the fault quickly, it must also take appropri¬

ate action to «heal» the system, thus minimizing the effect of the fault for the remaining

supercluster and running applications, and maximizing the supercluster availability

and performance. These «self-healing mechanisms» are stored (e.g. in a script-like lan¬

guage) in the MIB and usually create a temporary configuration for the supercluster.

Nad* U/14/3 »portai fault;

SAN NIC 1 his broken MM lint

- Mode 12/14/3 Is taken out of pool,
- Application 123<*5 of uier MinDoe

ii retirtetl on new let of mwiii.

Required actions;

- PtMM rfpu« SAN fini« 12/14/1,

Show Lea*» OK I
* ' : a

Figure 2.15: Fault message indicating fault cause and required administrative action

Not every fault can be completely resolved automatically, but may also require manual

or physical work by the administrators. The management software resolves as much as

possible in order to minimize the fault effects, but it also informs the administrators

about the fault and indicates its source. This allows the administrators to fix the fault

quickly and minimizes the downtime duration.
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2.3.1.5 Trap Handling

There are also bells and flashlights if monitored values break predefined limits. They

warn the pilots about stalling conditions, ground contact without gears, collisions with

other planes, too high engine temperature and many more. These warnings are necessary,

as there are too many meters and gauges to be observed by the flight engineers and pilots.

Exceeded limits do not automatically mean immediate danger, but they show that some¬

thing might be wrong and a check is required. This allows parts that demonstrate strange

behavior to be replaced or serviced - before the part breaks and causes a catastrophe.

Figure 2.16: Warning bells prevent a landing where wings will touch the ground

There is no administrator watching all meters of the supercluster 24 hours per day. This

task is easily performed by the management software that collects the monitoring data.

Each monitoring data item is protected with a set of limits and associated actions that are

triggered if a limit is exceeded (trap), in a similar way to the fault detection mechanism.

Inner Limit («Flashlight») Inner Limit («Flashlight»)

Breaking this limit triggers a
~-^^ ^^^ Breaking this limit triggers

notification message ^~~^>. V ^r~^^ a notification message

Outer Limit («Bell»)
^^

W Outer Limit («Bell»)

Breaking this limit triggers ~^ji(((f K 11l(lll~~~ Breaking this limit triggers

emergency action ^H ^\ ^H emergency action

1
*

I

Figure 2.17: Monitored values protected with two limit pairs

The basic idea behind trap handling is the fact that components do not break from one

moment to another. They usually start by having higher non-fatal error rates, higher

temperatures and other values compared to other components. Trap handling prevents

unexpected downtimes because «strange» components can be replaced during sched¬

uled servicing downtimes.

2.3.1.6 Accounting

Accounting is nothing more than charging resource consumption to the consumer. The

passengers are paying for the flight and the senders for the cargo. For supercomputing,
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the consumption of resources (CPU time, memory, storage, network traffic) is ac¬

counted, alongside the following events:

Application abortion due to programming errors.

Quota violations (exceeding the «soft» limit on memory or storage consumption).

Bad estimation of application execution time.

The managers require a tool to find out which users, projects and departments are con¬

suming the resources. This allows the resources available for the next days and weeks

to be planned. Accounting can also prove the need for a larger supercluster through the

production of figures.

2.3.1.7 Scheduling

Scheduling in avionics has three tasks: Flight schedules for passengers and cargo (arri¬

vals, departures), scheduling of the basic configurations during the flight, and schedul¬

ing of maintenance. The goal of scheduling is to optimize usage.

Figure 2.18: Scheduling offlights, configurations, and maintenance

For supercluster management, scheduling basically includes two tasks:

Disposition - plan the available calculation time for efficient usage, e.g. using a

time/node matrix, entering applications as boxes, trying to reduce unused space.

Configuration scheduling - schedule configuration changes for the supercluster,

e.g. shutdown after last application, restart with a different configuration.

Organizing the resource matrix is a complicated, NP-hard problem. At the same time,

scheduling mechanisms must be simple enough that the users can check when the ap¬

plication will start or terminate and understand the scheduling criteria.

2.3.2 Management Pyramid

The Maslow's pyramid of self-actualization [Mas71] shows that human needs have a

hierarchy: It only makes sense to reach for higher-level needs if all lower-level needs

have been fully satisfied.
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Self-actualization needs

Personal potential, self-fulfillment...

Aesthetic needs

Appreciation, beauty...

Cognitive needs

Knowledge, meaning...

Esteem needs

Self-esteem, achievements, status, prestige...

Belongingness and love needs

Workgroup,family,affection, relationships...

Safety needs

Protection from elements, security, order, law, limits, stability...

Biological and physiological needs

Air, food, drink, shelter, warmth, sleep...

Figure 2.19: Maslow's pyramid ofself-actualization [Mas71]

Supercluster management tasks also have a hierarchy: If lower-level capabilities or

tasks are unavailable, it is impossible to provide higher-level tasks and capabilities.

This leads to the pyramid of supercluster management.

Fault handling

Temporary configurations

Configuration spawning and enforcement

Monitoring and fault detection

Power state control

Management access to each component

Management information base (MIB)

Figure 2.20: Supercluster management pyramid

The basis of supercluster management is the management information base (MIB). It pro¬

vides all the data that the higher levels need, and it collects all the data of the higher layers.

The management software must have management access to each component, the abil¬

ity to control it, to enforce configurations, to monitor it, and to detect faults. The MIB con¬

tains all the connections to each component plus the protocol for using each connection.

The basic management action is the power status control, the ability to switch all com¬

ponents on and off, globally as well as individually. This requires management access to

each component.
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The founders of SNMP (Simple Network Management Protocol) [Ros96] commented

that «showing up» solves most of the management problems. Monitoring and fault de¬

tection is therefore the next layer in the pyramid. A detected fault may require switch¬

ing on and off components.

The management software has sets of basic configurations. These configurations are

selected by administrators or the management software. Configuration spawning and

enforcement makes sure that the selected configuration is used by the supercluster.

Checking the configuration requires monitoring (version check) and fault detection

(blocking components).

In certain cases, the basic configuration is slightly altered: Faults, traps and applica¬

tions require temporary changes which are removed afterwards. These temporary con¬

figurations are calculated by the management software and require mechanisms that

distribute the configurations.

Automated fault handling is at the top of the pyramid. It requires the ability to detect

faults, create temporary configurations and distribute them to all components.

This hierarchy has one important clue for management software developers: The man¬

agement software's goals define the height of the pyramid. The higher the pyramid is

built, the broader and stronger the lower levels must be. Adding an additional layer to

existing software means that some effort will be necessary to improve the lower levels.

The author assumes that every additional layer doubles the implementation efforts for

the management software developers.

2.4 Bottlenecks and Central Requirements

The supercluster people and their expectations have been introduced, the supercluster

lifecycle has been presented, and the management functionality has been described. So

far, this chapter has created the illusion that creating supercluster management soft¬

ware is easy and straightforward.

So what are the problems that made this dissertation necessary? Why are the adminis¬

trators and users of existing supersize-superclusters unhappy with the management

software? Why is supercluster management currently a never-ending tragedy?

In mathematics, very large numbers obey different laws. In supercomputer management,

the supercluster, with its many components, turns the simplest tasks into logistical

nightmares. There are many bottlenecks, leading to central requirements for the man¬

agement software design and implementation. This section illustrates these problems.

2.4.1 Scalability

The biggest problem in supercluster management is scalability, which appears at vari¬

ous places with various effects. Reliability drops exponentially and execution time of
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management tasks grows linearly with the component count. It is the job of the man¬

agement software designers to find solutions to overcome the problems caused by the

large scale of the parts used together.

System Size
Task Duration

[Nodes]
1 us 1 ms

«Ping»

1 s

«Spawn»

10s

«Boot»

1 min

«Update»

10 min

«Upgrade»

100 100 us 100 ms 100 s 17 min 100 min 17 hrs

1000 1 ms 1 s 17 min 3 hrs 17 hrs 7d

10 000 10 ms 10s 3 hrs 28 hrs 7d 69 d

100 000 100 ms 100 s 28 hrs 12d 69 d 2y

1000000 1s 17 min 12 d 116d 2y 19y

10 000 000 10s 3 hrs 116d 3y 19y 190y

100 000 000 100 s 28hrs 3y 32y 190 y 1901 y

Table 2.2: Task duration ifperformed serially

The above table shows the effect of simple-minded solutions for management tasks.

Good scalability does not come for free and requires good ideas from management

software developers. In some cases, these worst-case duration scenarios hold true (such

as booting some superclusters effectively takes hours because of SAN-to-node side ef¬

fects), but management software must scale much better, such as constant or logarith¬

mically with size.

Good scalability is one of the main requirements of the supercluster users:

Collection, transportation and storage of high-rate monitoring data are a problem,

since moving gigabytes of monitoring data to the manager is not a good idea as

the following table demonstrates. But high-speed monitoring is required by users

and administrators.

The users also expect the system to operate at maximum performance. Distribu¬

tion of new routing tables, after a MPI group creation of application or temporary

configuration data after a fault, must happen quickly, otherwise the performance

and utilization will drop.

Administrators and users expect permanent connections between user interface,

manager and managed components for observation and debugging. Maintaining

thousands of permanent connections between manager and all managed compo¬

nents is a problem.

For high system performance and utilization, faults need to be detected quickly -

ideally before they happen so the administrators can replace weakening parts be¬

fore they break. The management requires a scalable fault detection mechanism

to achieve this goal.
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Monitoring is the most important management feature. If 64 Bytes monitoring data is col¬

lected per node and sample, the monitoring data overloads the management software:

System Size

[Nodes] 1Hz

100 6400

1000 64 k

10 000 640 k

100 000 6400 k

1 000000 64 M

10 000 000 640 M

100 000 000 6400 M

100 Hz 1kHz

640 k 6400 k

6400 k 64 M

640 M

640 M 6400 M

6400 M 64 G

64 G 640 G

640 G 6400 G

0 kHz 100 kHz

64 M 640 M

640 M 6400 M

6400 M 64 G

64 G 640 G

640 G 6400 G

6400 G 64T

64 T 640 T

Sampling Frequency

10 Hz

64 k

JOk

6400 k

64M

640 M

6400 M

64 G

Table 2.3: Data bandwidth to main managers in Bytes/s (64 Bytes per node and sample)

Current systems have 1 Hz, but several kHz are required

Current systems with 1 000 nodes and a sampling rate of 1 Hz create less than

100 kBytes of monitoring data per second (and 5 GBytes per day). This amount of data

is easy to handle, but current processors execute some billion instructions and modern

networks transfer TBytes of data within a second. This sampling rate is obviously too

slow for monitoring tasks as required by administrators and users for profiling and op¬

timizing applications and superclusters.

Monitoring systems with 100 000 nodes and 1 kHz sample rate is challenging, creating

6.4 GBytes of monitoring data per second and 540 TBytes per day. Without a smart idea

about how to handle and store this amount of data, monitoring superclusters will re¬

quire superclusters themselves.

Scalability is the most important issue for system management. It should be able to

manage any system, regardless of size.

2.4.2 Availability

If the management software crashes, the supercluster is blocked: Faults are not de¬

tected and handled, application requests go unanswered. The processing time since the

last checkpoint (or since the application's start) is lost. Management software crashes

are expensive events, since one minute costs more than US$ 58 for a 100 000 nodes sys¬

tem. The management software must be designed to minimize crash probability, dura¬

tion and effects.

The following examples assume that the nodes have an MTBF of 5 years. The system

price covers the hardware cost only (US$ 2500 per node and US$ 5000 per SAN switch,

both respecting the «economy of scale» with 20% discount for the 10 times larger sys¬

tem), without additional costs (space, people, energy). The price per minute is the sys¬

tem price divided by the expected usage of 5 years.
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System Size Performance System MTBI Price Price/min.

[Nodes] [FLOPS] [US$] [US$]

100 1 TFLOPS 18 days 300 k 0.11

1000 10 TFLOPS 44 hrs 2 400 k 0.91

10 000 100 TFLOPS 263 min 19M 7.30

100 000 1 PFLOPS 26 min 154 M 58.41

1 000 000 10 PFLOPS 158 sec 1 229 M 467.26

10 000 000 100 PFLOPS 16 sec 10B 3 738.08

100 000 000 1 EFLOPS 1 sec 79 B 29904.63

Table 2.4: Supercluster size, performance, MTBI, cost and cost per minute (5 years usage)

Not only management software crashes create expensive downtimes. Defective compo¬

nents or crashed software on the component may also block the whole system. The

management software must therefore also prevent loss of time and money due to faults.

High availability of the management software and the supercluster resources managed

by this software is a requirement of the users, administrators and center manager. Time

is money, and low utilization and performance is expensive.

2.4.3 Management Integration

Although this dissertation expects that the management of all supercluster subsystems is

to be integrated into one software toolkit, this is not mandatory - at least for the moment.

Management integration can happen at three different places:

User Level Integration: The user can be the integrative element. Every subsys¬

tem is managed individually with specialized management software and the users

have to juggle with the tools. This is of course very complex and the bottleneck of

this design is the user.

Middleware Level Integration: Management software applications of each sub¬

system still act independently, but special software («interfaces», «middleware»)

is used to make the applications interact. Creating such software is difficult and is

the bottleneck of this design.

Application Level Integration: Management of all subsystems is integrated into

one single software toolkit. Creating such software is time-consuming (has to be

created from scratch) and expensive, but has the most advantages since the bot¬

tlenecks are under the control of one software instead of many independent inter¬

faces or the users.

From an academic point of view, full integration into one application toolkit would be

the most beautiful approach, moving the bottlenecks (performance, scalability, reliabil¬

ity) away from the users and interfaces towards the software, but creating such a sys¬

tem consumes the most resources.
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Management for

Subsystem A
Management for

Subsystem B

Management for

Subsystem C

Management for

Subsystem D

Management Ce»nsole / Computer

Management for

Subsystem A
Management for

Subsystem B

I 1

Interface Interface

I 1

Management for

Subsystem C
Management for

Subsystem D

Management Consola / Computer

Module for

Subsystem A

Module for

Subsystem B

Module for

Subsystem C

Module for

Subsystem D

Management Software

Management Console / Computer

Figure 2.21: The three management integration levels (from left):

User level integration, middleware level integration and application level integration

Integration is important when the users' requirements are analyzed:

Monitoring data is only available in full context if the subsystem management is

integrated (data bandwidth and CPU time per process and application, MPI

groups per application). Debugging access for users and administrators also re¬

quires monitoring access to all parts.

High availability and the reduction of fault effects are only available if the man¬

agement software can access monitoring data of all components, if it can detect

faults of every subsystem's component, and if it can create and apply temporary

configurations to all parts of the supercluster.

The «one system view», where the whole system can be observed centrally and

the administrators and users can zoom into single cabinets, nodes and switches,

requires integration.

Effective integration requires not only that the management of the most important sub¬

systems is integrated, but that their key features are fully supported and implemented.

Only integration allows the creation of configuration data for all components out

of one design file, created by the center manager during the design phase.

The grade of integration determines the usability of the management software.

2.4.4 Reliability

The management software must make sure that everything is reliably executed, moni¬

tored, and transferred. If all nodes but one are booted and this one blocks the superclus¬

ter, or a lost process on a node inhibits submitting further applications, or some routers

have a bad routing table and messages are lost, the management software is not effective.

Reliability can be extracted from the users' requirements:

The users expect fair scheduling of their applications. They want to be sure that

their applications will finish successfully within a predefined timeframe. They do

not want to be afraid that their applications will never be run because other ap¬

plications are preferred.

Users and administrators require faults to have no or low effect on the perform¬

ance and utilization of the supercluster. If large jobs requiring almost all nodes

cannot start because there are never enough free nodes because of faults, or if

large jobs never terminate successfully because a node fault aborts the applica¬

tion, utilization and performance will drop.
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Faults need to be reliably detected and handled. Undetected faults will lead to low

utilization and performance which is not accepted by users, administrators and

center managers.

Management tasks must be executed reliably on single parts, on groups of parts, or

on all parts of the supercluster. Aborting an application for instance must wipe out

all processes of the application on all nodes, since surviving processes will block

these nodes for further applications, leading to low utilization and performance.

Where scalability is mandatory for efficiency, reliability is required for effectiveness.

2.4.5 Security

Security in supercluster management comes in many shapes and forms, since an unau¬

thorized user («hacker») or application («virus», «Trojan horse», «worm») can be dan¬

gerous in various ways. The management software has the job of protecting the system

and the users from malicious attacks coming from inside and outside the supercomput¬

ing center:

The management software is the only authority that manages the supercluster.

Any other managing access or action is prevented and inhibited by the manage¬

ment system. The management software and hardware build a «firewall» around

the supercluster.

Only authorized and authenticated users can access the supercluster and the ap¬

plications of the management software. Any intruder is blocked from accessing

any component. The management software is the gatekeeper and key master of

the supercluster.

Every application and all its data (files on storage, memory content, network traf¬

fic) must be protected from all other applications and users. No other application

or user should be able to access this data, nor to consume resources reserved for

this application.

Even authorized personnel can trouble the supercluster operation, intentionally

or unintentionally. Permission policies for every user - enforced by the manage¬

ment software - prevent downtimes caused by dangerous manipulations.

The weakest link defines the strength of the security chain, such as database systems

for the MIB, network connections of the management software, holes in the nodes' op¬

erating system, weak authentication mechanisms, open doors in the supercomputer

center, open VPN connections, or standard console passwords. The weakest link causes

crashes, expensive downtimes, damage, lost secrets, stolen blueprints.

Security is a basic requirement and one of the biggest problems in every management

system. Security must already be integrated in the design, since it is absolutely impos¬

sible to add security to a non-secure implementation - every attempt to prove the con¬

trary has failed up until now.
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2.4.6 Overhead

Every management system causes overheads, which are always part of discussions. Addi¬

tional software on nodes consumes processing time, memory, storage, and network band¬

width. Additional computers managing the supercluster require space, money, and electricity.

The amount of additional computers for management should be low, at most in linear

relationship with the system size. Higher quality of management functions (higher

availability, better monitoring) may require more management computers.

The management overhead on the nodes (and the networks) must be minimal and ho¬

mogenous. If some nodes have higher overheads than others, they will slow down the

application. Because of the required homogeneity, the management software requires

separate computers.

2.4.7 Compatibility

The supercomputing market is very heterogeneous: Ten node manufacturers, three op¬

erating systems, ten SAN manufacturers, some dozen programming libraries, techno¬

logical evolutions and revolutions, and new product lines every few months. There are

some 100 possible combinations. Because of the lack of management standards, inte¬

grating all products into a homogenous supercluster is hard, writing management soft¬

ware even harder.

Compatibility is one of the major users' requirements:

All programming libraries must be available for the supercluster platform.

These programming libraries must be fully implemented - partially implemented

libraries are very painful for software developers, since experience has proven

that those parts which are needed most in one's applications are usually those

which are missing. Developers usually do not want to have to redesign their ap¬

plication for each platform, except if there is a huge performance gain.

Users and administrators are used to certain tools and applications which must be

available on the platform (parallel debuggers, parallel shell scripting, and mes¬

sage tracers).

The management software should ideally integrate all components of all subsys¬

tems. This is only possible if the component is compatible to the management

software. It is also important that it supports the key features of the component,

making it possible to operate at maximum performance.

The operating system software of modern workstations supports many hardware prod¬

ucts, and the hardware manufacturer can provide custom drivers if there is no standard

driver available.

The supercluster management software must support a similar strategy, where a wide

variety of supercomputing products is supported directly, and the manufacturers of su¬

percomputing hardware and software can easily integrate their products using docu¬

mented interfaces.
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2.4.8 Time and Cost

The management functionality pyramid illustrated in Figure 2.20 shows that the design

and implementation of management software requires a lot of work, depending on the

pyramid level to be reached. The more functionality, the more supported platforms, the

more work it takes.

If the management software is developed by the supercluster owner, the cost of devel¬

opment is low because only the components in use are supported and there is no need

to create anything more than a simple tool. However the effort is almost completely lost

when buying a new supercluster. The development of the management software for the

Swiss-Tl supercluster as presented later took about 2 man-years. Fully integrated

management software for this system would have taken double that. These 4 man-years

would have cost about US$ 500 000 in an academic environment.

Turning this management software into a fully documented and tested product would

have taken at least 3 as long [Bro75]. This would be the approach used by supercluster

integrators that build multiple similar superclusters and sell them to supercomputing

centers. The development cost for the 12 man-years project of US$ 1.5 million can be

divided by the number of superclusters installed, but again, the efforts are almost lost if

new product lines need to be supported.

If a company were to accept the challenge and develop general-purpose management

software for many platforms, the development would take at least 10 times longer.

These 40 man-years, which would cost about US$ 5 million, can be divided by the many

superclusters that use the software.

These simple calculations show that developing management software is a multi-million

dollar project. From an academic point of view, time and money is not a bottleneck, but in

reality, it is. Additionally, the prices are based on salaries in academic environments (US$

125 000 per year). IBM calculates internal salaries of US$ 250 000 per year.
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2.5 Conclusions

What have we learned from this chapter?

There are three phases in the supercluster lifecycle:

The design phase, where superclusters designs are created and evaluated.

The installation phases, where the selected supercluster design is installed.

The operational phase, where the supercluster is used.

All functionality is grouped in categories that depend on each other as in a pyramid

and the height of the pyramid defines the required effort:

The base is the management information base (MIB).

The management software has management access to each component.

Each component is controlled by management actions.

Monitoring alone solves most of the problems and is the base for trap handling

and accounting resource consumption to users and departments.

Fault detection reduces downtime duration and saves money.

The management software has configuration setups that can be spread and enforced.

These basic configurations can be varied by the management software in certain

cases (faults, traps, application requests) leading to temporary configurations.

The top of the pyramid is the automated fault handling where the management

software autonomously heals faults and keeps even damaged systems running.

For design and implementation of management software, there are problems and bot¬

tlenecks, caused by the nature of superclusters and by the requirements of the super-

cluster people.

Some problems and bottlenecks have an effect on the management efficiency:

> Scalability

> Availability

> Overheads

> Management cost and implementation time

Some problems and bottlenecks have an effect on the effectiveness:

> Integration

> Reliability

> Security

> Compatibility

Inefficiency can have such fatal effects that it leads to ineffectiveness.

The next chapter will present some designs for management software of the opera¬

tional phase that respect all of these issues.



Management 61

2.6 Research Focus

It can be clearly seen, that research and development of integrated management soft¬

ware for large superclusters would be enough work for dozens of researchers and hun¬

dreds of developers. This amount of work cannot be covered in this single dissertation,

but many more dissertations in this area will certainly follow, covering the previously

unknown land of integrated scalable management software for large superclusters.

From the supercluster lifecycle presented in 2.2, this dissertation is only interested in

the software required for the operational phase (presented in 2.2.4), where the super-

cluster is already installed on-site and ready to use by the administrators and users.

From the central requirements and bottlenecks presented in 2.4, this dissertation only

covers the following issues:

Scalability and availability is covered in theory in the next chapter, where ar¬

chitecture and design of supercluster management software are presented.

Integration and overhead is covered in practice in chapter 5, where the author's im¬

plementation of supercluster management software is presented («proof of concept»).

All other issues (reliability, time & cost, security, compatibility) are neglected in

this work.

There are many activities in building supercomputers with 50 000 nodes and more. The

owners of the current fastest supercomputers experience many lost processing hours

due to inadequate system management features. The utilization and performance pres¬

sure from the owners will create research activities focused on creating efficient and

effective management software for such number crunching monsters. Indeed, efforts

were made to create DOE-based research by management software teams in the US,

but the election of the current president and his budget priorities have stopped these

efforts for the time being.
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Everything should be made as simple as possible, but not simpler.

Albert Einstein

The previous chapter presented what supercluster management software has to do and

which problems it has to solve. This chapter will now present the way that software

must look so it can perform these tasks efficiently and effectively. This includes:

The software pieces that build the management system.

The relationship between these software pieces.

The internal design of the software pieces.

One additional part is also presented: A measure for estimating how efficient and effective

the architecture will be. These evaluations tables are not only used in this chapter, but also

used for evaluating existing solutions and the author's implementation «COSMOS».

3.1 Management Components

Management systems generally consist of the following components:

The user interface, the software used by the users for management.

The manager, the central software deciding everything.

The agent, the software managing the hardware and software.

The managed hardware and software itself.

The following illustration presents the basic architecture of the components.

Ul

M

A r-HW

HW

HW-j

sw'

A
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Figure 3.1: Basic management components: User interface (UI), manager (M), agents (A)

and managed hardware (HW) and software (SW)
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3.1.1 User Interfaces

Management software usually operates in the background, managing the supercluster

automatically without user interactions. The user interface allows the management

software to step out of this darkness, and allows users to interact with the supercluster.

There are three basic types of user interfaces for management software:

The graphical user interface (GUI) is the most suitable strategy for users. In¬

formation is shown graphically or in tabular style in a window, and the users use

their mouse and keyboard to execute their tasks. With current web-based tech¬

nology, it is also possible to create GUI applications that run in web browsers.

The command line based interface (CLI) is limited in presentation and usage to

keyboard and text-based terminals. Users type their commands in a command

line, and the response is written as a list of data.

The shell-based interface consists of many commands used in shells or scripts.

State-of-the-art management software must include at least the shell-based user interface

and the graphical user interface. The shell-based user interface is mandatory, since users

and administrators are used to shells and shell scripts in UNIX and Linux. The GUI is

mandatory, because large amounts of data can only be conveniently presented graphically.

Figure 3.2: The GUI of COSMOS, the Swiss-Tl supercluster management software

In the presented architecture, the user interface connects to the manager only to ex¬

change management data, it does not connect to any agent, managed hardware or soft¬

ware, or other user interfaces. There can be as many user interfaces connected to the

manager as he can handle without compromising performance or reliability.

The user interfaces are the face of the management software. It is therefore important

that the users like the face and that the promises made by the face are matched by the

underlying management functionality.
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3.1.2 Manager

The supercluster is managed centrally by the manager application. For non-integrated

management architectures, there may be multiple managers, where each manager only

manages the associated subsystems (e.g. nodes). For availability and performance rea¬

sons, multiple instances of the same manager application are possible, but they require

internal synchronization.

The manager application is connected to the user interfaces and the agents described

next. The tasks that are performed by the manager can be described as follows:

The manager maintains a global database, where everything relevant for man¬

agement is stored. This database is called MIB (Management Information Base)

and usually has a hierarchical and relational structure (see Appendix B).

The manager sends orders to the connected agents. These orders are either based

on the commands sent by the administrators and users through the UIs, or they

are automated orders based on scheduled services, detected faults or traps, or re¬

quests from applications (e.g. creation of multicast routing table extensions).

The manager receives messages that are stored in the MIB from the agents and/or

which trigger automated reactions as configured by the administrators or users.

Since the manager must always be available (for the GUI and automated reactions to

faults and traps), it is reasonable that this application be implemented as background

service («demon» [Ste98]). The following figure illustrates the basic structure of the

manager application.
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MIB Access

Library MIB

Management Layer

Functionality
Libraries
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Threads
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Threads
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Figure 3.3: Basic structure of the manager application

This basic structure consists of three layers:

The Communication Layer maintains the connections to all agents and user in¬

terfaces. It consists of one or more threads that handle connections and messages.

The Management Layer contains the management logic. It consists of the func¬

tionality libraries (one per managed subsystem) that describe how the compo¬

nents are managed, and the manager threads (usually one per managed subsys¬

tem) that perform the management.
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The MIB Layer contains the MIB itself and information about how to access the

MIB. The MIB can be implemented either in the manager's memory or as a per¬

sistent external database.

Every layer has problems that must be solved by the developers in the design:

The communication layer usually maintains persistent connections to the user in¬

terfaces and agents. These persistent connections are usually socket-based TCP

connections that create a lot of overhead, which in turn limits the amount of con¬

current connections to about 200.

The management layer contains one functionality library per managed subsys¬

tem. Since flexibility should be the goal of the design, the interface between li¬

brary and manager should be flexible enough to support multiple platforms (al¬

though not at the same time).

The MIB is filled with data, accessed by the center (read/write) and the user in¬

terfaces (read only, usually through the center). Storing the MIB in a database

system (e.g. Oracle or MySQL) is a good idea, but these database systems have

limited performance.

Within this document, the manager is referred to as «management center» or «center».

3.1.3 Agent

The agent application runs on or close to the associated managed hardware or software.

It is connected to the center and performs the orders received from it. Since the agent

must be always available (to receive the orders or send fault notifications), it is reason¬

able that this application be implemented as «demon» [Ste98].

The following figure illustrates the basic structure of the agent application.
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Figure 3.4: Basic structure of the agent application

This basic structure consists of two layers:

The Communication Layer maintains the connections to the center and - if ap¬

plicable - managed hardware or software. It consists of one or more threads that

handle connections and messages.

The Management Layer contains the management logic. It consists of the func¬

tionality libraries (one per subsystem that is managed by the agent) that describe
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how the component is managed, and the functionality threads (usually one per

managed subsystem) that perform the management.

Since the number of subsystems and different components in a supercluster is limited,

there will be the following potential agents in such a system:

The node agent runs on the node computers, managing their hardware and soft¬

ware. Depending on the management architecture and implementation of the fea¬

tures, it is possible that there will be multiple agents running on the nodes, each

serving other subsystems or functionality, e.g. one separate replication agent for

the spawning mechanism, one agent for the local SAN NIC, one agent for the

LAN NIC, one for the node itself, one to manage the application etc.

The SAN agent runs either in the SAN switches themselves, or on separate com¬

puters. If it runs on separate computers, it is possible for the same agent to man¬

age multiple (or all) SAN switches of a supercluster. In this case, the agent con¬

nects to the switch-internal operating system that performs the management

tasks. If the SAN agent runs in the SAN switch itself, the functionality library al¬

lows those tasks to be performed.

The LAN agent usually runs on a separate computer, and manages multiple (or

all) LAN components of the supercluster (Ethernet switches, routers, firewalls,

console servers). Since these components are usually managed using SNMP, the

LAN agent translates the management-internal protocol to SNMP, making it more

reliable and effective.

The storage agent usually runs on the computers that connect the storage sub¬

system to the supercluster. These computers have special hardware and software

installed that transfer the data to the nodes over the SAN or LAN. The storage

agent usually communicates with this manufacturer-supplied software for man¬

agement purposes.

The power agent runs on separate computers and is used to manage the power

state of all supercluster components. Nodes are usually controlled directly via the

console (through console servers). Other components may require remote power

switches.

The node agent is very delicate, since it consumes resources on the computer that is used

for calculation. Users are very suspicious about services running on the nodes, since even

the slightest imbalances on the nodes can have a huge impact on performance:

If one node has an additional service that consumes l%o of CPU time, there is only

99.9% CPU time left for the process of the parallel application. All other processes

must wait for the process on this node. This is the reason why the nodes must

have balanced load.

If the service is required to send monitoring data once a minute to the center (tak¬

ing 0.05 CPU seconds) and the iteration of the currently running parallel applica¬

tion takes 1 second, the iteration is slowed down to 1.05 seconds if the services are

not globally synchronized, since there is always at least one node that has to send

the data in this iteration. If the service is globally synchronized, only one single

iteration step is slowed down per minute.
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The first case slows the application down from 100% to 99.9% of the potential peak. In

the second case, the application is slowed down from the potential peak of 99.2% to

95.2%. Considering shorter iteration steps, higher process switch penalties and potential

cache memory trashing, performance can drop far below 80%.

For the other agents, resource consumption is not as important.

3.1.4 Managed Hardware

The goal of comprehensive system management is to manage all components of the su¬

percluster. Therefore, all hardware must be manageable, and is usually managed by the

associated agents:

The nodes and all included hardware are managed by the node agents.

The LAN components are managed by the LAN agents.

The SAN switches are managed by the SAN agents.

The storage is either managed by the storage agents (if the storage subsystem has

dedicated hardware) or the node agents (if distributed file systems are used that

use the node-internal storage devices).

The power agents are used for supporting the centers in controlling the power

status of all hardware components - if the centers do not control the power status

by themselves.

If the managed hardware is able to include the agents as described earlier, the structure

of the managed hardware and the agent are glued together as in the following figure.
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Figure 3.5: Managed hardware with integrated agent (lower box)

The functionality of the component is on top of the management agent, managed by the

functionality library.

If the managed hardware cannot include the agent, but has an internal operating sys¬

tem responsible for management, the agent must translate the management protocol

used by the center to the protocol used by the hardware component (such as SNMP).
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Figure 3.6: Managed hardware (right) and associated agent (left)

This kind of management is very likely to be used for storage, SAN and LAN manage¬

ment, where the subsystem is usually managed by custom software.

3.1.5 Managed Software

The «managed software» is the set of parallel applications with their processes, con¬

suming the resources of the node computers. The other software subsystems (users and

resources) are managed by the center alone, but the application processes must be

managed by the node agents for the following reasons:

It is easier for the process to connect with a local host than a distant center.

Only the node agents can efficiently detect the resource usage of the processes.

Only the node agents can reliably abort applications or detect faults.

The integration of the application processes into the management software requires a

library that is linked to the application directly, or linked to the parallel environment.
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Figure 3.7: Managed software («application library») with integration

in the parallel environment (left) or in the application (right)

If the library is linked to the parallel environments, the manufacturers of the library

have to re-design their software. The advantage of this approach is that all applications

using these parallel environments can be integrated into the system management. The

disadvantage is that manufacturers are not very motivated to alter their source codes.
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If the library is linked to the applications, the application developers have to re-design

their applications. The advantage of this approach is that the parallel environments can be

left as they are («commodity» off-the-shelf and unaltered). The disadvantage is that only

applications using this library can be integrated into the system management software.

The parallel environment manufacturers can be motivated to change their software if

they can benefit from the centralized and integrated system management - such as re¬

ceiving SAN device information and control. The application developers can be moti¬

vated to change their applications, if the management library allows welcome features

(such as checkpointing, enhanced monitoring, or process migration). Ideally, the man¬

agement library should consist of both parts: The (mandatory) library for the parallel

environment, and the (optional) library for the application.

For the Swiss-Tx project, the parallel environment FCI/MPI was created by the project

team. The initial version that was created for the EasyNet hardware, had no management

interface, and the parallel application managed itself using socket connections between

all processes of the same application. Since 63 concurrent connections cause a lot of

overhead and FCI/MPI was redesigned anyway for the T-Net hardware, this manage¬

ment part was taken over by COSMOS, and FCI/MPI depended on COSMOS. The second

parallel environment used on the Swiss-Tl supercluster (MPICH, an open-source MPI

implementation using sockets) was not altered and therefore not managed by COSMOS.

It would have been possible to alter MPICH to use COSMOS, but since this software has

regular patches and many parts would have had to have been changed, this path was not

followed - also because the benefit would have been low for such a small system.

3.2 Architecture Evaluation Method

What is a good design and what is a bad design for supercluster management software?

How can its performance be measured or estimated? Which architectures are suitable

for large superclusters, which due to the limitations of their design are suitable for

small systems only? This section presents a measure for comparing supercluster soft¬

ware architectures and designs, based on three different tables:

The first table evaluates the design efficiency for systems between 100 and

100 000 nodes.

The second table evaluates the bottlenecks and central requirements.

The last table evaluates the support of typical management tasks.

The quantitative and qualitative results allow developers to select the right design for

their supercluster management software.

3.2.1 Quantitative Evaluation Table

Bad decisions in software design quickly become evident if the size of the problem in¬

creases. Without smart engineering ideas, execution time and resource usage grow in
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linear relationship (or even worse) to the problem size. For management software, bad

design decisions are disastrous - everything seems to work fine in the confined testing

environment of the designers' laboratory, but does not work reliably anymore when in¬

stalled on huge productive systems.

The quantitative evaluation table contains values that can be measured, calculated or

estimated. These values are characteristic of the software architecture and will not

change in orders of magnitude between designs based on the same architecture.

The following table shows an example of the quantitative evaluation table.

Criteria Value
System Size [Nodes] (+1 Switch per 10 Nodes)

100 1 000 10 000 100 000

Required bandwidth for 1 Hz 6.4 kB/S 64 kB/S 640 kB/S 6.4 MB/S

monitoring (64 B/Comp.) 1 kHz 6.4 MB/s 64 MB/s 640 MB/s 6.4GB/S

Duration startup/shutdown 10s/Comp. 18 min 3 hrs 31 hrs 13 days

Duration OS download 30 s/Node 50 min 8 hrs 83 hrs 35 days

Duration group creation 0.1 s/Comp. 11 sec 2 min 18 min 3 hrs

Duration process spawn 1 s/Node 2 min 17 min 3 hrs 28 hrs

Duration fault detection 0.5 s/Comp. 55 sec 9 min 92 min 15 hrs

Duration config change 1 s/Comp. 2 min 18 min 3 hrs 31 hrs

Table 3.1: Quantitative evaluation table sample for management software designs

The first two lines of the table show the required network bandwidth of the center for

monitoring. These values are based on the assumption, that the agents send their moni¬

toring data to the center (average of 64 Bytes per component and sample), and that the

sampling rate is either 1 Hz (upper line) or 1 kHz (lower line). Since the bandwidth to

the canter is limited by the LAN technology (10 to 100 MBytes/s), the monitoring cover¬

age is limited as well.

The other lines show the execution time for the most important management tasks if exe¬

cuted sequentially for all components. This sequence is of course simplified and it is the

task of the developers to find smarter solutions, but in some cases it might be mandatory.

The duration of startup and shutdown is 10 seconds per node, because the center

must use the console server connections, send a sequence of text-based com¬

mands and wait for text-based responses. It would be nice to be able to send one

simple Ethernet packet to the LAN NIC for this task, but the current UNIX-based

workstations and servers require such a protocol.

Upgrading the node OS takes about 30 seconds per node, because downloading an

image of about 150 MBytes from the center should be serialized for efficient stor¬

age access, and the bandwidth to and from the center is limited.

Creating or deleting an MPI group includes the calculation and distribution of

new routing tables to the SAN NICs and switches, taking about 0.1 seconds per

affected component. In the worst case, all components require new routing tables.

The start-up of parallel applications includes the creation of the processes on the

nodes. This can be performed using a shell script (e.g. «mpirun») with serial re-
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mote shell calls from the center, by forking away processes from the node agents,

or other mechanisms. Center-based startup mechanisms using remote shells re¬

quire one second per node.

There are two ways of checking reliably whether a component is operating or not:

Either the component is actively sending its current status to the center, or the

center has to query the component. Querying each component may take 0.5 sec¬

onds per component, performed by a thread or process in the center.

Distributing a new configuration (e.g. after a fault) may take longer than a simple

routing table update, about one second per component, performed sequentially by

the center.

The 64 Bytes monitoring data per component and sample is calculated as follows:

Object Monitored Value Unit Size [B] Rate

Node Temperature

CPU Load

Memory Usage

Storage Usage

°c

%

%

%

1 Low

1 Low

1 Low

1 Low

Node / Process Memory Consumption

Storage Consumption

CPU load

Message Data Sent

Message Data Received

kBytes

MBytes

%

kBytes

kBytes

4 High

4 High

1 High

4 High

4 High

Node / SAN NIC / Port Bandwidth In / Out

Packet Rate In /Out

Error Rate In/Out

Bytes/s

Packet/s

%

8 High

8 High

2 High

SAN Switch Temperature

CPU load

Memory Usage (2 types)

SAN Switch / Port Bandwidth In / Out

Packet Rate In/Out

Error Rate In / Out

°C

%

%

Bytes/s

Packet/s

%

1 Low

1 Low

2 Low

8 High

8 High

2 High

Table 3.2: Sample monitoring data for node and SAN switch

For this sample, each node contains one single-port SAN NIC and one process slot.

This leads to 39 Bytes of monitoring data per node. The SAN switch has 16 ports, lead¬

ing to 292 Bytes per switch. The data amount per 10 nodes is 682 Bytes, and with smart

compression (high and low sampling rates) and additional overhead, these 68.2 Bytes

per node can be reduced to 64 Bytes.

The effective time or required bandwidth differs dramatically between architectures.

Smart designs will massively reduce these values and make management more scalable.
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3.2.2 Qualitative Evaluation Table

«Not everything that counts can be counted - and not everything that can be counted

counts» - this succinct saying of Albert Einstein is also valid for system management

design, because not everything important can be precisely measured. The qualitative

evaluation table includes eight points that cannot be measured, but are important for

efficiency and effectiveness.

Criteria

Monitoring Synchronization

Monitoring Context

Development Time & Cost

Management Overhead

Reliability & Availability

Scalability

Security & Vulnerability

Quality

-/o/ +

-101 +

-101 +

-101 +

-101 +

-101 +

-101 +

-101 +

Comments

How difficult is it to implement a global
heartbeat mechanism in the design?

How well can the monitoring data be inte¬

grated into other subsystems' data?

How complex is the design, how much

time and money will implementation take?

How many additional resources need to be

added for system management?

How reliable is the distribution and execu¬

tion of administrative tasks in the system?

How well does the management scale? What

is the estimated maximum system size?

How well are the applications, users and

system components protected?

Howflexible is the management if require¬

ments, size or components are to be changed?
Flexibility

Table 3.3: Qualitative evaluation table sample for management software designs

These eight points include:

Effective system monitoring requires a global heartbeat, a regularly repeated mo¬

ment during which all monitoring data is sampled, collected and sent to the center.

This point analyses how well this synchronization has been or could be implemented.

Effective system monitoring also requires a context between monitoring data (e.g.

bandwidth consumed by process x of application y). This point analyses whether

the context of the monitoring data is also collected for precise statistics.

Most software projects fail because of a lack of calendar time and money. This

point analyses the implementation cost and time for the design, as well as

whether invested time is protected if the design is improved.

All management creates overheads: Additional computers to run the management

software must be installed and processor cycles on the nodes are used for admini¬

stration. This point analyses the overheads created by the system management

and its scalability.

The management software availability is important, since crashed management

software leads to a blocked system, thereby losing much processing time. This

point analyses the mechanisms in the design that should permit high availability

and reliability.
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Scalability is the key to supercomputing. This point analyses whether the design

scales with the supercluster size, based on the quantitative evaluation table pre¬

viously presented.

Security and vulnerability become important as soon as applications of secret

projects are executed on the supercluster. This point analyses the protection from

malicious use of users, applications, supercluster hardware and software as well

as the management software itself.

Some management software is designed for use with only one system, and some

for use with only one platform. If the size is changed or the main product of a

subsystem is changed, the management software can only operate with difficul¬

ties. This point analyses the flexibility of the design.

This qualitative evaluation table describes the design on a «management summary» level.

3.2.3 Typical Tasks Evaluation Table

This table evaluates how well the management software supports the typical tasks. It

also describes the quality on a «management summary» level as the qualitative evalua¬

tion table, selecting only the most important typical tasks that have a direct effect on the

system manageability.

Criteria Quality Comments

Design, Installation & Configuration -/0/ +
How well are the design, installation and

configuration processes supported?

Power Management Implementation -/0/ +
How reliable and efficiently are start-up,

boot and shut-down implemented?

Monitoring Transport to User Interfaces -/0/ +
How good is the monitoring data trans¬

port from components to user interfaces?

Process Groups / Routing Tables Creation -101 +
How well are process groups supported by
SAN and system management?

Application & Process Control -101 +
How completely are applications and their

processes managed and observed?

Detection & Handling of Faults -101 +
How efficiently and reliably are faults

found and corrected?

Table 3.4: Typical tasks evaluation table sample for management software designs

The following tasks are analyzed:

Design, simulation, installation and configuration are the most time-consuming

tasks, since they are usually not supported by the system management software.

If these tasks are computer aided, the system design quality will improve since

changes are quickly simulated, distributed, checked - and undone.

Power control is the second step of the management pyramid (see Figure 2.20). If

changing the power state does not scale or is unreliable, effective management is

impossible.

Transporting (and storing) monitoring data is one of the most important tasks of

the system management software because they are of global interest. Efficient
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transport (between component and user interface) and smart storage (for later re¬

trieval) are mandatory.

Process groups are frequently created and group-internal communication often

used in MPI applications. Some SAN technologies support this multicast-type

communication, but the management software must quickly calculate and distrib¬

ute the new routing tables for the NICs and switches. If unavailable, the processes

must use sequential unicast communication and this slows down the performance.

Parallel applications and their processes must be tightly controlled by the man¬

agement software. Lost processes and forgotten applications block the system,

leading to abortions of succeeding applications, and low usage and efficiency.

In systems of several thousand components, faults occur regularly and potentially

block the system completely. This is the reason why faults must be detected im¬

mediately, their effects must be reduced and affected areas and applications must

be restarted or taken off-line. All this requires quick calculation of temporarily

used configurations and reliable transport to all affected components - and later

removal if the fault is corrected.

This table, together with the qualitative and quantitative evaluation tables previously

presented, covers the system management software completely, evaluating design pro¬

posals in this chapter, the existing designs in chapter 4 and the COSMOS design in

chapter 5.

3.3 Management Architectures

There are three main grades of management integration, leading to three main architectures:

If there is no integration between the management software of each subsystem,

the software design follows the «non-integrated software architecture». The

user or administrator has to manage each component and subsystem individually.

This architecture is presented in subsection 3.3.1.

If only some supercluster subsystems are integrated in one management applica¬

tion, the software design follows the «glueware software architecture». The

management simplifies the utilization and administration of the supercluster, be¬

cause tasks that require interactions between subsystems that are glued together

can perform automatically. This architecture is presented in subsection 3.3.2.

If the management of all subsystems is integrated into one application, the soft¬

ware design follows the «integrated software architecture». All tasks that re¬

quire interactions between subsystems can be performed automatically, since all

subsystems are managed by the same application. This architecture is presented

in subsection 3.3.3.

The integrated architecture is presented with further capabilities, such as availability-

enhancing features in subsection 3.3.4 and scalability-enabling features in subsection 3.3.5.
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3.3.1 Non-Integrated Architecture

In the non-integrated management architecture, all components of each subsystem are man¬

aged by the specifically designed management software toolsets of the manufacturers. There

are no interfaces between the toolsets (such as between SAN and nodes or applications). Some

of the management functionality can be provided by using shell scripts (e.g. remote shell scripts

for power control or process management). These tasks are usually executed sequentially.

This architecture requires that users and administrators use the user interface applications of

each subsystem in parallel. There might be user interface applications that use those user in¬

terfaces to create something that looks like an integrated user interface (such as web-based so¬

lutions), but they are no match when compared with the integrated management applications.

User Interfaces

Workstation

J

Workstation

®©

Workstation

(A) (B) (Cj (P) (1)

Node Storage

Agents & Processes

Figure 3.8: Non-Integrated Management Architecture Sample

Figure 3.8 illustrates a simplified sample supercluster that is managed by six independ¬

ent management applications («A» to «F»). Additional management components

(scripts, MIB etc.) have been omitted in this simplified figure.

The six center applications («A» to «F») run on the center computer.

There are three workstations that have user interfaces connected to the centers:

> The left hand workstation runs only the user interface of management applica¬

tion «A», e.g. for monitoring the SAN NICs.

> The middle workstation runs the user interfaces of management applications

«B» and «C», e.g. for monitoring the user's applications and their resource usage.

> The right hand workstation runs the user interfaces of all management appli¬

cations. This workstation is very likely to be the computer of the administrator

that wants to be fully informed of the supercluster's status and performance.

There are three agents running on the nodes («A» to «C»), where two of them ob¬

serve the processes of the parallel application («P»).

One agent controls the SAN switch («D»), one the LAN switch («E») and one addi¬

tional agent the storage subsystem («F»)

Since there are no interfaces between subsystem management applications, there is no

possibility for symbiosis, such as:
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Crashed nodes are not reported by the node management to the SAN management.

Defective SAN NICs are not reported by the SAN management to the resource

management to prevent further applications on the affected node.

The missing integration is compensated for by the manual work of the administrators and users.

Up to a certain size (and quality level expectation), this type of management works well. But this

approach is not very professional, since permanent administrative presence is required.

The evaluation table of this architecture is as follows:

Value
System Size [Nodes] (4 1 Switch per 10 Nodes)

100 1 000 10 000 100 000

1 Hz 6.4 kB/s 64 kB/s 640 kB/s 6.4 MB/s

1 kHz 6.4 MB/s 64 MB/s 640 MB/s 6.4GB/S

10 s/Comp. 18min 3 hrs 1 day 13 days

30 s/Node 1 hrs 8 hrs 3 days 35 days

0.1 s/Comp. 11 sec 2 min 18 min 3 hrs

1 s/Comp. 2 min 18 min 3 hrs 1 day

2 s/Comp. 4 min 37 min 6 hrs 3 days

1 s/Comp. 2 min 18 min 3 hrs 1 day

Criteria

Required bandwidth for

monitoring (64 B/Comp.)

Duration startup/shutdown

Duration OS download

Duration group creation

Duration process spawn

Duration fault detection

Duration config change

Table 3.5: Quantitative evaluation table for non-integrated architecture

The above figures allow the following observations:

The fault detection duration (that grows with size if implemented as sequentially

performed checks) competes with the MTBI (that decreases with size).

The sequentially executed tasks for startup/shutdown or process spawning show

the system limits concerning scalability and expected reliability.

The bare numbers show that only small systems of some hundred nodes can be reliably

and effectively managed with this management architecture.

Criteria

Monitoring Synchronization

Monitoring Context

Development Time & Cost

Management Overhead

Reliability & Availability

Scalability

Security & Vulnerability

Flexibility

Quality

+ /-

+ /-

Comments

No global heartbeat, no synchronization
between subsystems possible

No context possible to monitoring data of

the other subsystems

Quickly developed and installed, but hard

to debug, maintain and extend

No additional HW, many node agents

Each tool acts independently of all others

Limited by the least scalable subsystem

management software and shell scripts

The weakest security mechanism of all

subsystems defines its vulnerability

Management quickly adapted to changes

Table 3.6: Qualitative evaluation table for non-integrated architecture
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Except for the flexibility and the low cost of development and usage, there are many disad¬

vantages to this architecture. The most problematic disadvantages are the bad scalability

and low availability and reliability, together with the many agents running on the nodes.

Criteria Quality Comments

Design, Installation & Configuration -

Manual hard work with no computer-

aided support, many sources of mistakes

Power Management Implementation - Script-based, slow and unreliable

Monitoring Transport to User Interfaces -

Each tool transports data independently to

centers and user interfaces

Process Groups / Routing Tables Creation -

Not possible, since node, SAN and applica¬
tion management are not integrated

Separate from other subsystems, no cur¬

Application & Process Control rent system information (unavailable

nodes due to non-application based faults)

Simple faults are handled, complex multi-

Detection & Handling of Faults " subsystem faults require the administrator

to be on-line and on-site

Table 3.7: Typical tasks evaluation table for non-integrated architecture

Except for the fact that the non-integrated management system is inexpensive, there are

too many problems making it hard to use efficiently and manage the supercluster effec¬

tively. This is the reason why only small systems should be managed with non-integrated

management software - or systems where service availability and reliability is unimportant.

The non-integrated management software approach is indeed the most frequently used

architecture, since the applications can be used, updated, and altered (almost) independ¬

ently from each other. The high number of concurrent socket connections between cen¬

ters and agents (and the overheads created by these connections in the center) can be

addressed by use of separate computers for each of the management center applications.

This architecture leads to independent MIB content, and whenever the MIB content is

inconsistent, problems occur that are hard to find and to fix: Crashed nodes are usually

still available in the resource management for some minutes - and in some cases, appli¬

cations are still scheduled with processes on unavailable nodes for hours. MIB inconsis¬

tencies are the most annoying effects of non-integrated management architectures, and

make the administrators very busy.

3.3.2 Glueware Architecture

In the glueware management architecture, some subsystems (usually the major subsys¬

tems6) are managed by integrated management software, while the others are still man¬

aged by the specific management toolset of the manufacturer. Between the subsystem

management applications, interface software (often shell scripts) may be used, which is

often developed on-site.

6
The major subsystems are the nodes, SAN, resource and application management
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User Interfaces
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Workstation
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Figure 3.9: Glueware Management Architecture Sample

Since there are still multiple management applications, the users and administrators

are forced to use various user interfaces. The integrated subsystems simplify the man¬

agement, especially the fault handling, where inter-subsystem transactions are re¬

quired (e.g. shutting down nodes that are connected to a defective SAN switch, aborting

the affected applications).

Some of the basic functionality can still be solved using shell scripts (e.g. application spawning or

system power control). These tasks are usually executed sequentially with high OS overheads,

but the high-overhead jobs can nowbe executed by the integrated, compiled applications.

Based on the non-integrated cluster from Figure 3.8, Figure 3.9 illustrates a simplified

sample supercluster that is managed by three single-subsystem management applica¬

tions («B», «E» and «F») and one management application integrates the subsystems

«A», «C» and «D» (e.g. applications, SAN NICs and SAN switches). Additional manage¬

ment components (scripts, MIB etc.) are omitted in this simplified figure.

The four center applications run on the center computer.

The three workstations run the user interfaces that are connected to the center:

> The left hand workstation runs only the user interface of management applica¬

tion «ACD». Although the user only wants to monitor subsystem «A» (e.g. SAN

NICs), additional information about the other subsystems is available.

> The middle workstation runs the user interfaces of management applications

«B» and «ACD». Although the user wants to monitor subsystems «B» and «C»

(e.g. applications and their resource storage), additional information about the

subsystems «A» and «D» (SAN NICs and switches) is available to him.

> The right hand workstation runs the user interfaces of all management appli¬

cations. Due to the integration of three subsystems, only four instead of six ap¬

plications are run, and display data of the integrated subsystems in context.

Only two agents are run on the nodes, because application and SAN NIC manage¬

ment is now integrated into one agent application. Both agents observe the processes.

The agent for the SAN subsystem («D») is integrated into the management soft¬

ware for the subsystems «A», «C» and «D». Since additional features are possible

(e.g. application-based SAN monitoring), more functionality can be integrated.
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The agents for the LAN («E») and storage («F») subsystems are the same as those

in the non-integrated management architecture.

The reduction of user interfaces simplifies the utilization for the users and administra¬

tors. The management integration of the major subsystems into one application reduces

complexity and allows functionality that cannot be reached with non-integrated man¬

agement (such as SAN monitoring data with context to the application). Of course, this

requires the integrated subsystems to have a direct relationship.

The evaluation table of this architecture is as follows:

Criteria

Required bandwidth for

monitoring (64 B/Comp.)

Duration startup/shutdown

Duration OS download

Duration group creation

Duration process spawn

Duration fault detection

Duration config change

Table 3.8: Quantitative evaluation table for glueware architecture

Value
System Size [Nodes] (+ 1 Switch per 10 Nodes)

100 1000 10 000 100 000

1 Hz 6.4 kB/s 64 kB/s 640 kB/s 6.4 MB/s

1 kHz 6.4 MB/s 64 MB/s 640 MB/s 6.4GB/S

10 s/Comp. 18 min 3 hrs 1 day 13 days

30 s/Node 1 hrs 8 hrs 3 days 35 days

0.1 s/Comp. 11 sec 2 min 18 min 3 hrs

1 s/Comp. 2 min 18 min 3 hrs 1 day

2 s/Comp, 4 min 37 min 6 hrs 3 days

1 s/Comp. 2 min 18 min 3 hrs 1 day

Comparing these values with those of the non-integrated management architecture

(Table 3.5), it can be seen that there is no advantage to this architecture when consider¬

ing the quantitative values.

The difference lies in the qualitative evaluation:

Criteria

Monitoring Synchronization

Monitoring Context

Development Time & Cost

Management Overhead

Reliability & Availability

Scalability

Security & Vulnerability

0Flexibility

Table 3.9: Qualitative evaluation table for glueware architecture

Quality

0

+ /-

Comments

Global heartbeat and synchronization
within integrated subsystems possible

Context between monitoring data within

integrated subsystems possible

Requires development of software for the

integrated subsystems and interfaces

No additional hardware, many node agents

All tools are basically independent and

loosely coupled with interfaces

Limited by the least scalable subsystem

management software and shell scripts

The weakest security mechanism of all

subsystems defines its vulnerability

Quickly adapted to changes, except for re-

programming due to component changes
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This architecture has the advantage - compared to the non-integrated approach - that

the monitoring quality is increased (with context and synchronization). This is com¬

promised by lower flexibility and higher development cost, due to the development and

maintenance of the software of the integrated management subsystems. Also the load

on the nodes is lower, since the number of node agents has decreased.

Criteria Quality Comments

Design, Installation & Configuration -

Manual hard work with no computer-

aided support, many sources of mistakes

Power Management Implementation - Script-based, slow and unreliable

Monitoring Transport to User Interfaces -

Each tool transports data independently to

centers and user interfaces

If SAN, node and application management
Process Groups / Routing Tables Creation -/ + are integrated in one tool, this is simple. If

not, it remains impossible

Application & Process Control 0/ +
If application and resource management

are integrated, they scale and are reliable

Problems are detected quicker in inte¬

Detection & Handling of Faults 0 grated subsystems since they are observed

by more instances from different sides

Table 3.10: Typical tasks evaluation table for glueware architecture

The glueware architecture has some advantages compared to the non-integrated approach:

Reliability and scalability are boosted within the integrated subsystems, but the

worst subsystem management software sets the limit.

Monitoring, fault detection and handling, and trap mechanisms are simple to im¬

plement in the integrated subsystems, even if affecting multiple subsystems, since

the borders have been broken down.

As with non-integrated management architecture, this architecture is also only suitable

for small systems, since the management of the non-integrated subsystems sets the limit.

3.3.3 Integrated Architecture - Basic Version

In the integrated management architecture, all subsystems are managed by the same software,

all tasks are performed within the same application, and the potential for efficient, effective

and scalable management of superclusters is the highest of all presented architectures.

Figure 3.10 illustrates a simplified sample supercluster where all subsystems are managed by

one integrated management application, based on the architectures presented previously.

The center application runs on the center computer.

The three workstations run the user interfaces that are connected to the center.

Since there is only one user interface, all workstations run the same user interface.

One agent runs on the nodes, and manages the node comprehensively, observing

the processes of parallel applications.

The agents of the SAN, LAN, and storage subsystem are connected to the center.
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Because of the integration, the users are confronted with one single set of user interface

applications. This simplification makes the work of the users - and administrators -

easier, more efficient, and the user can concentrate more on his scientific work instead

of on the complexity of using the supercluster.

User Interfaces

Workstation

( ABCDEF)

Workstation Workstation

( ABCDEF ) ( ABCDEF )

Storage

Agents & Processes

Figure 3.10: Integrated Management Architecture Sample (basic version)

The evaluation table of this architecture is as follows:

Criteria Value
System Size [Nodes] (+1 Switch per 10 Nodes)

100 1000 10 000 100 000

Required bandwidth for 1 Hz 6.4 kB/S 64 kB/S 640 kB/S 6.4 MB/S

monitoring (64 B/Comp.) 1 kHz 6.4 MB/s 64 MB/s 640 MB/s 6.4GB/S

Duration startup/shutdown 10 s/Comp. 18 min 3 hrs 1 day 13 days

Duration OS download 30 s/Node 1 hrs 8 hrs 3 days 35 days

Duration group creation 0.1 s/Comp. 11 sec 2 min 18 min 3 hrs

Duration process spawn 1 s/Comp. 2 min 18 min 3 hrs 1 day

Duration fault detection 2 s/Comp. 2 sec 2 sec 2 sec 2 sec

Duration config change 1 s/Comp. 2 min 18 min 3 hrs 1 day

Table 3.11: Quantitative evaluation table for integrated architecture (basic version)

Comparing these values with those of the non-integrated and glueware management

architecture (Table 3.5 and Table 3.8), it can be seen that there is no major advantage to

this architecture when considering the quantitative values - except for the fault detec¬

tion duration. This short period of time can be achieved because disconnected agents

can quickly be detected by the center and defects of the components can be detected by

the agents, which inform the center immediately.

The integrated approach has a huge advantage when considering the qualitative evaluations:
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Criteria Quality Comments

Monitoring Synchronization + Full synchronization possible

Monitoring Context + Full context possible

Development Time & Cost 0
Requires development of open interfaces,

standardization and broad acceptance

Management Overhead +
One additional server required for center,

only one agent on nodes

Reliability & Availability 0 Center is single point of failure

Scalability 0
Limited size, but efficient and effective

execution of management tasks

Security & Vulnerability +
Integrated, monolithic design reduces se¬

curity hole size and number

Flexibility 0
Limited by the availability of subsystem
modules for the center and agent

Table 3.12: Qualitative evaluation table for integrated architecture (basic version)

Because of the integrated design, monitoring is massively improved. This is because a

global heartbeat for synchronization is available and full monitoring context is also

available (such as the consumed network bandwidth per application process). The inte¬

grated design also reduces the number of weak points where attackers can try to in¬

trude into the management system.

Depending on the design of the center and agent applications, the flexibility concerning

supercluster component selection varies. If open and standardized interfaces are avail¬

able, the manufacturer of the component can implement himself center and agent sub¬

system modules that allow integration into the management software. This also has an

effect on the development time and cost of the management software development

company or team: Open interfaces can motivate manufacturers to implement the mod¬

ule themselves, allowing the integration of their hardware and software into super-

clusters that are managed by this center and agent software.

Criteria

Design, Installation & Configuration

Power Management Implementation

Monitoring Transport to User Interfaces

Process Groups / Routing Tables Creation

Application & Process Control

Quality Comments

Integration allows integrated design,
simulation and installation software

+ Integrated in management software

0 Center is bottleneck

+ Integrated in SAN & application modules

+ Integrated in node & application modules

+ Detected by agents and centerDetection & Handling of Faults

Table 3.13: Typical tasks evaluation table for integrated architecture (basic version)

The integration allows the design of an additional toolset for automated design, test,

simulation installation and configuration of superclusters, making the supercluster

management complete. Configuration changes due to application execution (group

creation/deletion) or faults are generated on the fly and enforced by the agents imme¬

diately. The integration makes many things very simple and comfortable.
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The biggest problem of this design is the center. It is the point of failure and bottleneck:

If the center becomes unavailable or crashes, the management stalls, all applica¬

tions must be aborted and the supercluster needs to be reset.

Socket-based Ethernet communication is limited by the OS overhead and design

to a few thousand concurrent connections. Since all agents need a stable connec¬

tion, this leads to a system size limit of a few thousand managed components.

All this makes this architecture suitable for medium-sized systems of up to a few thousand

nodes. More nodes break the limit for concurrent connections between agents and center.

The available bandwidth for monitoring data between agents and center, as well as center

and user interfaces, sets the system size limit to a reasonable size of about 1000 nodes.

3.3.4 Integrated Architecture - Reliable Version

One of the problems of the previous architecture - missing management availability in case

of center faults - can be solved by using multiple instances of the center application. The

workload is distributed to the available centers which build a reliable cluster. If a center

becomes unavailable, the workload is re-distributed to the remaining members, and the

agents that were connected to this center become connected to any other available center.

Workstation

( ABCDEF )

User Interfaces

Workstation Workstation

( ABCDEF ) ( ABCDEF )

Agents & Processes

Figure 3.11: Integrated Management Architecture Sample (with clusters)

Membership mechanisms prevent multiple center clusters from trying to manage the

supercluster independently. It is usually sufficient for just the cluster with the majority

of the potential center cluster members to be allowed to manage the supercluster.

Figure 3.11 is based on the integrated architecture previously detailed, showing an ex¬

ample of a reliable, integrated management architecture.

The center cluster consists of two centers that are ideally run on separate computers.

The three workstations run the user interfaces that can connect to any available center.

All agents connect to the centers, and the centers distribute the agents in such a

way that all centers receive a similar workload.
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The evaluation table of this architecture is as follows, based on the assumption that

there are four members in the center cluster:

Criteria Value
System Size [Nodes] {+1 Switch per 10 Nodes)

100 1 000 10 000 100 000

Required bandwidth for 1 Hz 1.6 kB/s 16 kB/s 160 kB/s 1.6 MB/s

monitoring (64 B/Comp.) 1 kHz 1.6MB/S 16 MB/s 160 MB/s 1.6GB/S

Duration startup/shutdown 10 s/Comp, 5 min 46 min 8 hrs 3 days

Duration OS download 30 s/Node 13 min 2 hrs 21 hrs 9 days

Duration group creation 0.1 s/Comp. 3 sec 28 sec 5 min 46 min

Duration process spawn 1 s/Comp. 28 sec 5 min 46 min 8 hrs

Duration fault detection 2 s/Comp. 2 sec 2 sec 2 sec 2 sec

Duration config change 1 s/Comp. 28 sec 5 min 46 min 8 hrs

Table 3.14: Quantitative evaluation table for integrated architecture (reliable version)

Compared to the integrated version, the figures are cut to one quarter. It is possible to increase

the number of centers in the center cluster much higher than 4, but above a certain number of

centers, the efficiency drops because inter-center communication overhead quickly increases.

Criteria

Monitoring Synchronization

Monitoring Context

Development Time & Cost

Management Overhead

Reliability & Availability

Scalability

Security & Vulnerability

Quality

+

+

0

Comments

Full synchronization possible

Full context possible

Requires development of open interfaces,

standardization and broad acceptance

Additional servers required for centers,

only one agent on nodes

No point of single failure in design

Limited size, but efficient and effective

execution of management tasks

Integrated, monolithic design reduces se¬

curity hole size and number

Limited by the availability of subsystem
modules for the center and agent

Flexibility

Table 3.15: Qualitative evaluation table for integrated architecture (reliable version)

From the qualitative point of view, this reliable design has the advantage that there is

no single point of failure, so the probability of a management service crash is very low,

increasing the supercomputing service availability.

One additional advantage is that the workload can be distributed to the centers and the

management service therefore scales better than that of the previous architecture with

one single center - but the small number of centers (ideally below 10) does not reduce

the required bandwidth for monitoring and the number of concurrent connections far

enough. Additional «tricks» are required to enable scalable management.
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One disadvantage is added to the design compared with the one-center approach: The

development of reliable cluster software is complex and requires more time and money.

There are no differences in the typical task table when compared to the architecture

with only one center, since from a scalability point of view, it is irrelevant whether there

is one center or a cluster with ten centers - compared to potential systems with 100 000

or more nodes, this number is very low and monitoring data transport to the user inter¬

faces is still unsolved as is the number of connections that each center must maintain.

Criteria

Design, Installation & Configuration

Power Management Implementation

Monitoring Transport to User Interfaces

Creation of Process Groups / Routing Tables

Application & Process Control

Detection & Handling of Faults

Quality Comments

Integration allows integrated design,
simulation and installation software

+ I ntegrated i n management software

0 Centers are bottleneck

+ Integrated in SAN & application modules

+ Integrated in node & application mod.

4- Detected by agents and center

Table 3.16: Typical tasks evaluation table for integrated architecture (reliable version)

For medium-sized systems of some thousand nodes, this architecture is sufficient - and

even larger systems are allowed, as long as high-performance monitoring is not re¬

quired by the users.

3.3.5 Integrated Architecture - Scaleable Version

Bandwidth for monitoring data transportation to the centers and user interfaces, as well

as the number of concurrent connections, are the only problems left by the previously

presented reliable management architecture using center clusters. Both problems can

be solved using scalability-enabling components that act as intermediate centers.

This «middle management» takes commands from the centers, distributes them to the

agents, collects data from the agents and forwards compressed information to the cen¬

ters. These components can be called «management proxies», influenced by the term

«proxy» used by other computing technologies.

These proxies can be layered in order to increase the number of components used in a

supercluster. With 4 centers in the center cluster, each serving 64 proxies, and each of

them serving another 64 proxies that serve 64 nodes, the final supercluster can have 1

million nodes - although managed by 4 164 proxies and centers.

The proxies must support the reliability mechanisms that are used in the center cluster:

If there is only one center, it is possible to use independent proxies. This ap¬

proach has not only the disadvantage that the center is a point of failure, but that

also every single proxy is a point of failure. The components controlled by the

proxy are unmanageable. This approach is therefore only acceptable when there

is a small amount of proxies.
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If there are multiple centers in a center cluster, the proxies can also build reliable

clusters. Ideally those proxies serve nodes that are topologically close. This ap¬

proach has the advantage that there is no single point of failure.

The following figures show both approaches: The architecture with individual proxies serving one

center (Figure 3.12), and the architecture with a center cluster and proxy clusters (Figure 3.13).

Both approaches reduce the number of concurrent connections to the center, since only

the first-level proxies are connected to the centers. The solution for reducing the

bandwidth required for monitoring data transportation has already been sketched: The

additional connections between the rightmost user interface and the rightmost proxies.

The reason for this is that the proxies can be used to store live monitoring data that is ac¬

cessed by the user interfaces. The centers only contain concentrated statistical information

for archiving and accounting. This reduces the amount of monitoring data sent to the cen¬

ters. If the user wants to monitor the SAN or his application processes on the nodes, he can

connect his user interface to those proxies that manage the nodes that house those proc¬

esses. Only the bandwidth available from the user interface to the proxies sets the limit.

User Interfaces

Workstation j I Workstation

( ABCDEF ) ( ABCDEF )
^ I I *

Workstation

( ABCDEF )

Proxy (ABCDEF^) (ABCDEF") ( ABCDEF ( (ABCDEF ")

LAN

Switch Storage

Agents & Processes

Figure 3.12: Integrated Management Architecture Sample with individual Proxies

User Interfaces

Workstation

LAN

Switch Storage

Agents & Processes

Figure 3.13: Integrated Management Architecture Sample with Proxy Clusters

The following tables assume that there are one and four centers in the center cluster,

with 30-40 agents (or proxies) being served by each proxy, and with one and two proxies
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per proxy cluster. The tables with one center and individual proxies have systems from

100 to 100 000 nodes, those with the clusters have between 1 000 and 1 000 000 nodes.

Value

System Size [Nodes] + Proxies/Layers

Criteria 100 1 000 10 000 100 000

3/1 30/1 310/2 3103/3

Required bandwidth for 1 Hz 2.0 kB/s 20 kB/s 200 kB/s 2.0 MB/s

monitoring (64 B/Comp.) 1 kHz 2.0 MB/s 2.0 MB/s 2.0 MB/s 2.0 MB/s

Duration startup/shutdown 10 s/C + 0.1 s/P 6 min 6 min 6 min 6 min

Duration OS download 30 s/N + 30 s/P 18 min 32 min 37 min 51 min

Duration group creation 0.1 S/C + 0.1 S/P 4 sec 7 sec 8 sec 10 sec

Duration process spawn 1 s/N+0.1 s/P 34 sec 37 sec 38 sec 41 sec

Duration fault detection 2 s/Comp. 2 sec 2 sec 2 sec 2 sec

Duration config change 1 s/C + 0.1 s/P 37 sec 40 sec 41 sec 44 sec

Table 3.17: Quantitative evaluation table for integrated architecture

with proxies and one center

The use of proxies boosts the performance. Under the assumption that each manage¬

ment proxy adds 0.1 seconds of latency (except for the OS download), the duration of all

tasks grows in logarithmical relationship to the system size. The bandwidth for moni¬

toring data has been limited artificially for statistical purposes. Start-up and shutdown -

as well as the fault detection - are performed by the lower-most proxies. This is the

reason why it takes the same amount of time, no matter how many nodes are served.

Value

System Size [Nodes] + Proxies/Layers

Criteria 1000 10 000 100 000 1 000 000

30/1 310/2 3100/2 31030/3

Required bandwidth for 1 Hz 2.0 kB/s 20 kB/s 200 kB/s 2.0 MB/s

monitoring (64 B/Comp.) 1 kHz 2.0 MB/s 2.0 MB/s 2.0 MB/s 2.0 MB/s

Duration startup/shutdown 10 s/C+ 0.1 s/P 6 min 6 min 6 min 6 min

Duration OS download 30 s/N + 30 s/P 21 min 34 min 45 min 53 min

Duration group creation 0.1 s/C + 0.1 s/P 5 sec 7 sec 9 sec 11 sec

Duration process spawn 1 s/N+0.1 s/P 35 sec 36 sec 40 sec 41 sec

Duration fault detection 2 s/Comp. 2 sec 2 sec 2 sec 2 sec

Duration config change 1 s/C + 0.1 s/P 38 sec 39 sec 43 sec 44 sec

Table 3.18: Quantitative evaluation table for integrated architecture with proxy clusters

The clustered version has the advantage, that the centers only serve the directly con¬

nected proxies and that the proxies not only serve their lower-level proxies or nodes,

but also the other proxies of the same proxy cluster. This advantage shows up in the

duration of the above tasks, where 10 times larger systems have similar figures.

The proxy adds scalability, but also implementation costs into the qualitative evaluation table.

If there is only one center per center cluster and one proxy per proxy cluster, the reliability

drops because of the many points of failure. With reliable clusters, the quality is a lot higher.
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Criteria Quality Comments

Monitoring Synchronization + Full synchronization possible

Monitoring Context + Full context possible

Development Time & Cost -

Development of proxies necessary, and

additionally reliability features for clustering

Management Overhead +
Additional servers required for center, only

one agent running on nodes

Reliability & Availability 0/ +
Too many points offailure if only one com¬

ponent per cluster present

Scalability + Proxies enhance scalability massively

Security & Vulnerability +
Integrated, monolithic design reduces se¬

curity hole size and number

Flexibility 0
Limited by the availability of subsystem
modules for the center and agent

Table 3.19: Qualitative evaluation table for integrated architecture (with proxies)

Also the user interface is more complex to implement, because the basic MIB data is

still received by the center, but the detailed monitoring data (exceeding the accuracy

stored in the center's MIB) must be downloaded from the respective proxies.

Criteria

Design, Installation & Configuration

Power Management Implementation

Monitoring Transport to User Interfaces

Process Groups / Routing Tables Creation

Application & Process Control

Detection & Handling of Faults

Table 3.20: Typical tasks evaluation table for integrated architecture (with proxies)

The typical tasks are well supported.

It is evident that the integrated management architecture with proxies and clusters is

the crowning design, making it suitable for large systems of up to some 100 000 nodes,

and is only limited by available space, energy and money.

3.3.6 Summary and Conclusions

The evaluation tables of the previous subsections can be reorganized in order to com¬

pare the architectures directly. The qualitative tables show the advantages and disad¬

vantages of the architectures, the quantitative tables are fixed for some system sizes

(100, 1 000, 10 000 and 100 000 nodes) that show the time required for each task.

Quality Comments

Integration allows integrated design,
simulation and installation software

+ Integrated in management software

+ User interface is bottleneck

+ Integrated in SAN & application modules

+ Integrated in node & application modules

+ Detected by agents and center
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The table headers use the following abbreviations for the architectures:

Non-integrated management architecture (N)

Glueware management architecture (G)

Basic version of the integrated management architecture (I)

Integrated management architecture with clusters (C)

Integrated management architecture with proxies and reliable clusters (P)

In the integrated designs with proxies, there is 1 proxy for 30-40 agents or lower-level

proxies. The reliable center cluster consists of 4 members. The architecture with one

component per proxy or center cluster is omitted in this summary.

3.3.6.1 Qualitative Evaluation Tables

The following table summarizes the quantitative evaluation of the architectures.

Criteria
Quality per Design

N G 1 c p

Monitoring Synchronization - 0 + + +

Monitoring Context - 0 + + +

Development Time & Cost + /- 0 0 0 -

Management Overhead + /- + /- + + +

Reliability & Availability - - 0 + +

Scalability - - 0 0 +

Security & Vulnerability - - + + +

Flexibility + 0 0 0 0

Table 3.21: Qualitative evaluation summaryfor all architectures

The advantage of the integrated architectures is obvious. But for small and well pro¬

tected systems with reduced expectations in application reliability and observability,

the glueware and non-integrated management architectures are good enough.

The following table summarizes the typical tasks evaluation of the architectures.

Criteria
Quality per Design

N G 1 c p

Design, Installation & Configuration - - + + +

Power Management Implementation - - + + +

Monitoring Transport to User Interfaces - - 0 0 +

Process Groups / Routing Tables Creation - -/ + + + +

Application & Process Control - 0/ + + + +

Detection & Handling of Faults - 0 + + +

Table 3.22: Typical tasks evaluation summaryfor all architectures
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The advantages of the integrated architectures are also easily visible for the typical

management tasks. The glueware architecture is only reasonable, if at least application

and SAN management are integrated into one tool.

3.3.6.2 Quantitative Evaluation Tables

The following tables summarize the quantitative evaluation of the architectures for a sys¬

tem size of 100, 1 000, 10 000 and 100 000 nodes. Each table is summarized with a «+/0/-»

evaluation in regard to the usability of the architecture for this specific system size.

Criteria
Values per Design

N G 1 C P

Required bandwidth (1 Hz) 6.4 kB/s 6.4 kB/s 6.4 kB/s 1.6 kB/s -

Required bandwidth (1 kHz) 6.4 MB/s 6.4 MB/s 6.4 MB/s 1.6 MB/s -

Duration startup/shutdown 18 min 18 min 18 min 5 min -

Duration OS download 1 hrs 1 hrs 1 hrs 13 min -

Duration group creation 11 sec 11 sec 11 sec 3 sec -

Duration process spawn 2 min 2 min 2 min 28 sec -

Duration fault detection 4 min 4 min 2 sec 2 sec -

Duration config change 2 min 2 min 2 min 28 sec -

Usability + + + +

Table 3.23: Quantitative evaluation summaryfor all architectures with 100 nodes

For small systems of 100 nodes, each of the presented architectures is well suited.

Criteria
Values per Design

N G 1 C P

Required bandwidth (1 Hz) 64 kB/s 64 kB/s 64 kB/s 16 kB/s 2.0 kB/s

Required bandwidth (1 kHz) 64 MB/s 64 MB/s 64 MB/s 16 MB/s 2.0 MB/s

Duration startup/shutdown 3 hrs 3 hrs 3 hrs 46 min 6 min

Duration OS download 8 hrs 8 hrs 8 hrs 2 hrs 21 min

Duration group creation 2 min 2 min 2 min 28 sec 5 sec

Duration process spawn 18 min 18 min 18 min 5 min 35 sec

Duration fault detection 37 min 2 sec 2 sec 2 sec 2 sec

Duration config change 18 min 18 min 18 min 5 min 38 sec

Usability - 0 0 + +

Table 3.24: Quantitative evaluation summaryfor all architectures with 1 000 nodes

For medium systems of 1 000 nodes, scalability already plays an important role, since

startup and shutdown takes some hours and regular tasks some minutes without inte¬

gration and proxies.



92 Architecture and Design

Criteria
Values per Design

N G 1 C P

Required bandwidth (1 Hz) 640 kB/s 640 kB/s 640 kB/S 160 kB/s 20 kB/s

Required bandwidth (1 kHz) 640 MB/s 640 MB/s 640 MB/s 160 MB/s 2.0 MB/s

Duration startup/shutdown 1 day 1 day 1 day 8 hrs 6 min

Duration OS download 3 days 3 days 3 days 21 hrs 34 min

Duration group creation 18 min 18 min 18 min 5 min 7 sec

Duration process spawn 3 hrs 3 hrs 3 hrs 46 min 36 sec

Duration fault detection 6 hrs 6 hrs 2 sec 2 sec 2 sec

Duration config change 3 hrs 3 hrs 3 hrs 46 min 39 sec

Usability - - - - +

Table 3.25: Quantitative evaluation summaryfor all architectures with 10 000 nodes

For large systems of 10 000 nodes, the integrated architecture with proxies is required. Scalabil¬

ity, security and reliability are important and cannot be provided by the other architectures.

Criteria
Values per Design

N G 1 C P

Required bandwidth (1 Hz) 6.4 MB/S 6.4 MB/S 6.4 MB/S 1.6 MB/S 200 kB/s

Required bandwidth (1 kHz) 6.4GB/S 6.4GB/S 6.4 GB/S 1.6 GB/S 2.0 MB/S

Duration startup/shutdown 13 days 13 days 13 days 3 days 6 min

Duration OS download 35 days 35 days 35 days 9 days 45 min

Duration group creation 3 hrs 3 hrs 3 hrs 46 min 9 sec

Duration process spawn 1 day 1 day 1 day 8 hrs 40 sec

Duration fault detection 3 days 3 days 2 sec 2 sec 2 sec

Duration config change 1 day 1 day Iday 8 hrs 43 sec

Usability - - - - +

Table 3.26: Quantitative evaluation summaryfor all architectures with 100 000 nodes

For huge systems with 100 000 and more nodes, only architectures with layers of proxies

and reliable clusters are adequate. Availability is very important, since many processing

hours are lost if the management becomes unavailable for one minute or crashes.



Architecture and Design 93

3.3.6.3 Conclusion

The following graph shows how a suitable architecture may be selected.
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Figure 3.14. Quick guide to finding the right management software architecture
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3.4 Management Component Design

The previous sections presented the software components of the supercluster manage¬

ment software (3.1) and the software system architecture (3.3). This section presents

the internal structure of the software components on a theoretical, qualitative level. Al¬

though the illustrations of this section suggest an integrated architecture, the presented

structures can be used for all software system architectures.

3.4.1 Basic Component Design

Large software products are preferably designed in a modular fashion, with a frame¬

work and (independent) modules that communicate using documented interfaces. De¬

pending on the computer platform where the software will later be executed, the avail¬

ability of development tools, and the skills of the software developers, various technolo¬

gies can be used for creating software products.
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Figure 3.15: Basic modular component design

The framework interconnects the connected modules, allowing fast and simple interactiv¬

ity. The documented and standardized interface between the framework and modules -

together with an open architecture - allows third-party modules to integrate easily. This

is similar to the driver software strategy of modern operating systems, where the drivers

of hardware manufacturers usually integrate easily into the computing system.
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Figure 3.16: Communication strategies between components, using an in-framework

communication layer (left) or a dedicated communication module (right)
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In hierarchical software architectures, the frameworks of the components communicate

with each other - either directly through an integrated communication layer, or by us¬

ing a dedicated communication module connected to the framework.

For the management software, there is a relationship between the modules of the cen¬

ter framework and the modules of the agent frameworks: The center module that man¬

ages a subsystem communicates through the frameworks with the agent module that

actually performs the actions requested by the center module.
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Figure 3.17: Relationship between center modules and agent modules

Whereas the center manages all subsystems, the agents only manage their associated

components. This is the reason why the center framework has all subsystem manage¬

ment modules connected to it, and the agent framework on the other hand has only

those subsystem management modules connected to it that the managed component is

part of: The node is usually part of all subsystems and has therefore almost all modules

connected to the node agent's framework, whereas the SAN switch agent usually has

only the management module for managing the SAN switch connected to it (plus possi¬

bly the resource and application management module).
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Figure 3.18: Agentframeworks with only those modules connected that they actually need

The interface between the framework and all modules is bi-directional, where the

framework offers functionality to the module, and the module offers functionality to the

framework and all other connected modules (illustrated as the two «puzzle knobs» in
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the previous figures). Only this bi-directionality allows the interactive integration of

subsystem management as required by the integrated or glueware architectures.

3.4.2 Management Center Design

The management center is the point of authority in the supercluster. It contains all

management modules, since it manages all subsystems centrally, and it contains addi¬

tional modules that are required for further features and integration into other higher-

level management systems. The center framework interconnects all center modules.
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Figure 3.19. Software structure of the supercluster management center software

Figure 3.19 shows a sample design of the management center software with all subsys¬

tem management modules (right), and additional modules (left).

The User Interface Module handles the messages that are received from the con¬

nected user interfaces. They hide the implementation of the MIB (usually speed-

optimized, object-oriented data structures for fast and efficient access) and present the

data in a structured way (usually hierarchical, such as the SNMP MIB). Command line

interfaces (CLI) usually have «data pull design» (the user types a request and expects a

response), whereas graphical user interfaces (GUI) usually have «data push/pull de¬

sign» (the center can additionally send messages that are not intended by the user, such

as failure notices and other interactive requests). Both data handling designs must be

implemented in this module.

The Shell Command Module allows simple management interaction without the need

for the use of structured user interfaces (CLI/GUI). For shell scripting in UNIX envi¬

ronments, it is often sufficient to permit management actions by using shell commands.

Opening or closing queues, aborting or submitting jobs, etc. The users are used to this

user interface, since most management tools available for supercomputers and super-

clusters also offer this interface.
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The Application Programming Interface allows third-party software manufacturers to

use the functionality of the management software. External higher-level management

tools, that manage whole farms of superclusters, may have an influence on the super-

cluster managed by this management software. In the simplest case, the external soft¬

ware only gathers monitoring data for web-based services (e.g. current usage and per¬

formance), in the most complex case, the external software controls a large computing

environment, which the supercluster is only one part of.

The SNMP Access Interface is a tribute to the computing de-facto management stan¬

dard SNMP, allowing SNMP user interfaces to access the MIB of the supercluster man¬

aged by the management software. Since SNMP is not secure, only monitoring should

be allowed.

The framework for the management center holds a virtual representation of the whole

supercluster in its MIB, potentially shared with additional instances of the center. It

knows the strategy («what to do») for managing the supercluster, but the subsystem

management modules hold the component-specific tactical («how to do») information.

The Node Management Module manages all nodes of the supercluster, handles

messages of the node agent's node management module, and forwards tasks re¬

ceived by the framework or other management modules to the node agent's man¬

agement module.

The SAN Management Module manages all SAN switches (using the SAN

switch agents) and the SAN NICs (using the node agents), handles the agents'

messages concerning SAN components and forwards requests from other mod¬

ules and the framework.

The Application Management Module manages the applications and their parts,

and the processes run on the nodes. It handles the messages received by the ap¬

plication management modules running on the nodes and forwards tasks received

by the framework and other management modules.

The Resource Management Module manages the queues and their availability

to applications and users. It only handles messages received by the framework

and other modules, since it has no agent module.

The LAN Management Module manages the LAN components (using the LAN

agents) and the LAN NICs (using the node agents), handles the agents' messages

concerning LAN components and forwards requests from other modules and the

framework.

The Storage Management Module manages the storage subsystem using either

dedicated storage agents or node agents, depending on its implementation (stor¬

age agents if using an independent storage subsystem, node agents if using in-

node storage devices for a distributed file system).

The User Management Module manages the users, user groups, projects and

their credits and permissions. It handles messages received by the agents' user

management modules, and the center framework and its modules.

The Power Management Module manages the power supply of all supercluster

components. Depending on the interface design between managed component

and associated agent, the power subsystem uses external power switches or addi-
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tional software components, if the agent is shut down together with the managed

component7.

Most of the management modules have a corresponding party on some of the agents.

Some of the management modules are center-based without agent modules - these

modules do not usually manage real hardware, but a virtual «soft» subsystem that is

used for planning or accounting.

The job of the framework is not just gluing the modules together. It has a complex list

of tasks:

It manages the MIB, no matter if implemented as a persistent database or in the

main memory.

It maintains the connections to all other management components.

It reacts to faults, traps, and other events that require management action. Such

actions are performed by the framework, which delegates the real work to the

center's management modules, which in turn send messages to their agent mod¬

ules. This behavior of the framework is stored in the MIB, and is thus manageable

by the administrators.

It communicates with the administrators and users using the user interfaces.

It reacts when the management itself has problems (crashing centers, proxies,

agents), and takes appropriate action. These actions are stored in the MIB, and

are thus adjustable by the administrators.

The framework is a complex part to design and implement, and takes most of the de¬

velopment time.

3.4.3 Management Proxy Design

For the proxies, the management modules have the task of gathering and concentrating

monitoring information and other data from the agents for the center, and for distribut¬

ing messages from the center to the agents. Since user interfaces and shell commands

for monitoring connect to the proxies to gather monitoring data from their MIB, there

are also modules for the user interfaces and the shell commands, similar to those of the

management center.

The modules are simplified compared to the agent or center modules, since they only

collect and distribute data, but do not perform actions received by the center, nor de¬

cide anything based on the messages received from the agents.

The only exception is the power management module that can connect to components

to switch their power on and off or start up or shut down their services.

7

Some components have a permanently running console server, allowing powering up even if switched off Some compo¬

nents require a wake-up IP packet Other components require an external remote power switch
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Figure 3.20. Software structure of the supercluster management proxy software

3.4.4 Management Agent Design

The framework of the management agents keeps the virtual representation in the cen¬

ter MIB identical with the physical reality. The connected subsystem management

modules know how to perform these tasks - the division between the strategic frame¬

work («what») and tactical modules («how») is present here also.

The management modules actually perform the «physical task» that was ordered by the

center module. They change the configuration, abort the application, shut down the

node, report faults, and send monitoring data.

The agent module is specifically implemented for the component technology in use, and

it is replaced when the component is upgraded. Of course, this simple replacement is

only possible when using open interface architectures for integrating third-party mod¬

ules to the framework.

The agent framework has only those subsystem management modules connected that

are indeed managed by the agent. The following illustration shows four sample agents

(node agent, SAN switch agent, storage agent and LAN agent) with only one to six con¬

nected subsystem management modules.

Additionally, the other modules that were present in the center and proxy are not used

in the agent. Since the user interfaces and shell commands do not communicate with

the agent directly (only via the center as its single authority), there are no user interface

modules. Also third-party software products communicate with the API and SNMP

module of the center only.
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Figure 3.21. Software structure of the supercluster management agent software

The modules are specifically designed for their agent usage.

The Node Management Module communicates with the OS of the node, gathers

all information for the center and manages the node in accordance with the cen¬

ter's order.

The SAN Management Module on the node agent communicates with the driver

of the SAN NIC, gathers data for the center and manages the NIC in accordance

with the center's order. The module on the SAN switch agent communicates with

the SAN switch firmware, using either a communication channel (LAN, console,

serial port) if the agent is run externally or with the switch OS directly if the agent

is run on the SAN switch.

The Application Management Module on the node agent starts application

processes, manages them and sends signals to control them. It gathers their data

and sends it to the center and controls the processes in accordance with the cen¬

ter's order. The application module on the SAN agent has the goal of managing

application-specific configuration changes (such as routing table entries) which

need to be removed after finalization or abortion.

The LAN Management Module on the node agent manages the LAN NICs and

their configuration using the OS. The LAN module on the LAN agent manages the

LAN components directly (if run on the component) or using a communication

channel (LAN, console, serial port, SNMP) if run externally. Both collect data for

the center and perform the actions in accordance with the center's order.



Architecture and Design 101

The Storage Management Module is located either on the node agent (if a dis¬

tributed file system using the node's storage devices is being used) or on a dedi¬

cated agent (if an independent subsystem is being used). Both collect data for the

center and perform actions in accordance with its orders.

The User Management Module on the node agent enforces the user permissions

to the application processes owned by that particular user. This enables user-

specific environments and reduces vulnerability (e.g. if the processes are being

run with root permissions). The user management module is also useful for the

storage agent, when quotas of users, projects or departments must be maintained

or file permissions are to be enforced.

The modules can have multiple threads, where some threads execute the messages re¬

ceived from the framework, some threads communicate with other parties (e.g. OS or de¬

vice driver), and other threads are regularly invoked for checks and cleanup purposes.

A lot of care must be taken in the design and implementation of the node agent mod¬

ules and framework. The performance loss due to management must be minimal, since

the node is primarily used for calculation. Additionally, the management load must be

homogenous when considering geographical distribution (all nodes have the same load)

and temporal distribution (all nodes receive the additional load at the same time). The

slowest node defines the maximum performance.

3.4.5 Management Action Examples

The following examples illustrate how management actions are distributed between the

management modules of the center and agents, and how they interact to solve problems

in common management tasks.

3.4.5.1 Example 1 : Application spawning

The user has entered an application into the queue and the resource management has

blocked the requested amount of neighboring nodes for this application. When the time

arrives, the application will need to be started on the supercluster.

The resource management detected that the application is scheduled for startup

and performs some checks before it indeed starts the application.

> It checks the MIB to see if the process slots on the projected nodes are empty.

> It checks to see if there are enough free SAN NIC channels for the processes.

The resource management requests the application management to start the ap¬

plication.

> The center application module sends the spawn message to the agent modules.

> The agent application module downloads the application executable and addi¬

tional files as described by the user at job submission.

> All application processes are started on all nodes and go into the startup bar¬

rier. The application is ready to start.

The other subsystems are informed that the application is about to start.

> The SAN subsystem receives information about the application (e.g. applica¬

tion ID, SAN NIC channels of the processes on the nodes). This is required for
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the SAN switch and NIC routing tables and other features such as broadcasts

or multicasts.

> The node management receives the process IDs of the processes on each node.

This is required for the monitoring of the application operation and resource usage.

If all subsystems are ready for the application, the processes are allowed to start.

During execution, the application processes are closely coupled to the node agent, ex¬

changing management messages (such as group creation that requires routing table

changes on the SAN switches) and standard I/O. The node agents also monitor the

processes. The management messages of the application are first handled by the agent

management modules, but are usually later forwarded to the center management mod¬

ules that decide what to do.

3.4.5.2 Example 2: Crash of an application

Failing applications are unfortunately a known and common scenario. Programming

errors, data errors and hardware faults can cause a process to abort, and since all proc¬

esses are required for regular execution, the whole application needs to be wiped out of

the supercluster.

One process of a parallel application detects a serious problem that requires an

abortion of the whole application, thus aborting all processes of the application.

> If the process detects problems, it sends an abortion request to the node agent.

> If the process catches a signal, it either sends an abortion message to the node

agent (if handled by the signal handler) or just disappears (e.g. kill signal).

> The process can just exit, disappearing from the node.

The node agent receives either an abortion message from the process, or it de¬

tects a connection drop with the process. The node then sends an abortion mes¬

sage to the center.

The center decides to abort the application and advises its subsystems.

> The event is logged into the system management journal.

> The application management module has to wipe out the affected application.

> The SAN management module has to clean up the SAN.

> The resource management is informed that the application is aborting.

The center management modules perform the requested actions.

> The application module requests the node module to abort the application.

> The SAN module requests the switch and node module to remove all messages

of this application from the network, as well as all its routing table entries. Also

the SAN NIC channels used by the application processes are freed.

> The resource module reorganizes the scheduling map to reduce the number of

unused time slots.

The node agents remove the application processes and all dependencies.

> The application module aborts the processes by sending abortion signals.

> The SAN NIC module closes the NIC communication channels for those proc¬

esses, and removes any temporary configurations associated with the application.

The SAN switch agent also removes any temporary configurations and messages

associated with the application.

All agents report the success of their actions to the center.
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The resource management module is allowed to use the available process slots.

The application abortion mechanism is also used in cases, where the application itself

is working well: The application has used up all reserved time, the nodes need to be

shut down because of a fault or trap, etc.

3.4.5.3 Example 3: Creation of groups

The programming environment MPI (and other environments too) allow the creation of

process groups. The processes within this group can use group-internal synchroniza¬

tion and communication mechanisms such as barriers or broadcasts. These group-

internal mechanisms are usually supported with SAN features that require temporary

configuration changes or extensions.

The process sends a group creation request to the node agent.

The node application module forwards this request to the center.

The center application module forwards the request to the center SAN module.

The center SAN module creates the new routing table entries for SAN switches

and NICs and sends them to the SAN switch agents and node agents.

The SAN modules of the SAN switch agents enter the new entries into the routing

table, and the SAN modules of the node agents adapt the SAN NIC configuration.

After the agents confirm that the changes have been applied, the center SAN

module returns the multicast handle to the center application module.

The center application module forwards this handle to the node application mod¬

ules.

The node application modules forward this handle to the processes.

The groups can also be deleted, requiring the routing table entries to also be deleted.

3.4.5.4 Example 4: Crash of a node

In large superclusters, nodes crash regularly, caused by hardware faults or operating

system problems. Restarting or shutting down a node is a frequent task.

The node management module of the node agent either detects a problem which is

then forwarded to the center's node management module, or the node just crashes.

The node management module of the center either receives the message or de¬

tects a disconnected node agent. A disconnected node agent has a certain time to

reconnect before it is considered to have crashed.

The center node module informs the other subsystems that the node has crashed.

> The resource management removes the node from the resource pool, and re¬

organizes the applications in the resource map.

> The application management aborts all applications with processes on that

node. It also requests the resource management to restart those applications.

> The SAN management removes the node from the routing tables.

> The node management tries to restart the crashed node.

The center forwards the messages to the agents.

> The application modules of the nodes abort processes of affected applications.
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> The SAN NIC module of the node agent adapts the SAN NIC configuration

based on the routing tables received by the center.

> The SAN switch agent adapts the routing table based on the center data.

As soon as the node is operational again, the node is entered into the node pool of

the resource map and the applications are re-organized again.

The applications that were restarted because of the node crash are usually restarted

from the last complete checkpoint. In contradiction to the previously presented applica¬

tion crash (where the application is not restarted), the applications were working well

and the applications are safe to continue operation on a new set of nodes.

3.4.5.5 Example 5: Crash of a SAN Switch

One SAN switch has crashed and cannot be restarted. In this case, all connected nodes

need to be deactivated, the applications currently running on these nodes need to be re¬

started on a new set of nodes, and the neighboring SAN switches need new routing tables.

The framework of the center holds the supercluster topology and knows which

switches to re-configure and which nodes to take out of the pool and to switch off.

It transfers this information to the application, resource, node and SAN manage¬

ment modules of the center.

> The resource management module stops submission and takes the nodes, with

their slots, out of the pool. It also finds a new set of nodes for the re-submitted

application and schedules it for execution from the last complete checkpoint.

> The application management module aborts the application and re-submits it.

> The SAN management module calculates new routing tables for all SAN

switches and turns off the crashed SAN switch.

> The node management module shuts down and switches off the nodes that are

connected to the crashed SAN switch.

The center framework receives the messages from the management modules and

forwards them to the respective management agents.

The framework of the node agent receives the messages from the center frame¬

work and forwards them to the respective agent management module.

> The application management module aborts those application processes,

which belong to the applications running on the nodes connected to the

crashed SAN switch.

> The node management module shuts down and turns off the node, if the cen¬

ter has decided that this node is to be shut down and switched off.

> The SAN management module adapts the routing table in the SAN NICs.

The framework of the SAN switch agent receives the messages from the center

framework and forwards them to the respective SAN switch management module

(usually the SAN management module only).

> If the center has decided that this SAN switch is to be shut and powered down,

it will do so.

> If the message contains routing changes, the routing table will be adapted.

After all the tasks have been successfully completed, the queues are enabled again.
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One issue is open in this action: There is a possibility that additional applications stall

because of the crashed SAN switch. When application processes are distributed in the

supercluster topology and the communication between those processes passes through

the affected SAN switch, it is possible that those messages will be lost, leading to hang¬

ing processes waiting for messages that never arrive. This issue can be handled by a

mechanism implemented in the application management, which detects applications

without consumption of CPU time, aborting them after a certain time. This is a nice

demonstration, where a hard-to-detect side-effect of a problem of one subsystem man¬

agement (SAN switch crash causes hanging applications) is solved by a mechanism of

another subsystem management (hanging application are aborted).

3.4.5.6 Example 6: Supercluster start-up

Starting up the supercluster is a standard, but not often executed task. Its goal is to

make the supercluster fully operational as fast as possible.

The management is first started up, since except for the center (or one center, if

there is a cluster), all other supercluster and management components are pow¬

ered off.

> If there is a center cluster, the center which is running powers on all other

centers that are powered off at the moment. All centers are required to start up

the supercluster. All centers wait until enough center demons (to reach the

quorum) have started.

> The centers power on all proxies and wait until they have started the proxy

demon.

Now the supercluster subsystems are started in a controlled fashion.

> The proxies and centers start all computers that act as agents (except for the

nodes).

> The agents start the components that they manage (LAN, SAN, and storage). It

is often necessary to have the subsystems already running when the nodes start.

Finally, the nodes are started.

> Since starting all nodes at once may create a power bounce, the start-up is

staggered, starting each part individually, waiting a few seconds, starting the

next part etc.

> When the nodes have been booted, the node agent configures the subsystems

for operation (e.g. downloading firmware to the SAN NIC, installing the basic

configuration).

When the supercluster is running, the management checks its configuration.

> The supercluster is checked to see if all components to be managed are present.

> During a system downtime, servicing tasks by administrators and field service

personnel are performed, such as replacing defective hardware, or updating

software. The management software schedules some applications that check

the current status.

When everything is working well, the supercluster is opened for the users and sched¬

uled jobs.
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3.4.5.7 Example 7: Supercluster shut-down

Shutting down the supercluster works in the opposite way to starting it up.

For a regular shutdown, scheduling for all application queues is stopped.

As soon as all jobs have finished, the node agents shut down and switch off the

nodes.

The agents shut down the components and the subsystems that they manage. Fi¬

nally, they also shut down the computers that they are running on.

The proxies shut down the computers they are running on.

If the centers form a cluster, the main center continues to run and all other cen¬

ters shut down the computers they are running on.

There is of course an emergency scenario, e.g. if there is a fire or unexpected power loss.

The centers abort all applications currently running on the supercluster. Alterna¬

tively they receive a checkpoint signal (to write their current status on persistent

storage for later continuation from that status).

The nodes are shut down and switched off as soon as the applications have finished.

The agents shut down the components they are managing and switch off the

computer they are running on.

The proxies shut down the computers they are running on.

If the centers form a cluster, the main center continues to run and all other cen¬

ters shut down the computers they are running on. Alternatively, also the main

center shuts down.

Shutting down the whole supercluster is useful for downtime tasks (such as hardware

upgrade, replacing defective hardware, re-routing cables, dust removal, etc.). For large

superclusters, it may be reasonable to allow the shutting down of currently unused parts

of the supercluster to save electrical energy (of the nodes and of the air conditioning).



4 Superclusters Worldwide -

Competing Technologies

The secret to creativity is knowing how to hide your sources.

Albert Einstein

Supercomputing or managing supercomputers is nothing new. The structure and the

size of the supercomputers have changed, requiring new strategies and products to

manage these systems. Comparing the strategies and implementations created else¬

where with the presented concepts and problems of this thesis, it is possible to find new

solutions and to create new designs that respect both the special requirements of com¬

modity massive-parallel supercomputing and the gained experience and knowledge of

similar existing solutions.

4.1 Management of the ASCI Supercomputers

Figure 4.1: The ASCI Supercomputer Family (February 2004)
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The management software used for the ASCI supercomputers is usually an extension of

the software already available for the specific platform, except for the supercomputers

that are not based on commercially available components. Unfortunately most informa¬

tion is classified since the computers are also used for secret applications.

IBM extended their basic packages LoadLeveler, Parallel Environment (PE) and

Parallel System Support Tools (PSSP) for the ASCI White and ASCI Blue Pacific.

SGI/Cray extended theAdvanced Cluster Environment (ACE) for the ASCI Blue Mountain.

Sandia developed custom management software for the ASCI Cplant.

Intel extended the Desktop Management Interface (DMI) for the ASCI Red.

In the following, the management software approaches are presented (as far as the informa¬

tion is available and allowed to be published). The management software of the ASCI Red is

presented in detail, since great effort has been put into its design and implementation.

The following table summarizes the four ASCI supercomputer specifications.

Criteria 1 Red White Blue Pacific Blue Mountain

Integrator 1 Intel IBM IBM SGI

Installation year 1997 2000 1999 1998

Installation site SNL LLNL LLNL LANL

Peak performance [GFLOPS] 13 207 12 288 3 857 3 072

Sustained performance [GFLOPS] 2 379 7 304 2 144 1608

Processor type j Pentium Xeon Power3 604e R10000

Processor frequency [MHz] 333 375 332 250

Processor count 9 632 8 192 5 856 6144

Interconnect 1 Custom SP Switch SP Switch HIPPI

Topology j 2ViD mesh Fully switched Fully switched Crossbar

Main memory [GBytes] |1 212 8 192 2 600 1536

Storage memory [TBytes] 12.5 160 82.5 76

Operating system j Custom AIX 5.2 AIX 5.2 IRIX

Management software DMI-type PSSP 3.5 PSSP 3.5 AS, LSF

Management architecture j Integrated Non-integrated Non-integrated Glueware

Footprint [m'] 233 1116 900 930

Energy consumption [kW] 1 200 2 000 486 1600

Cost [million US$] j 55 no 54 78

Weight [t] 44 106 53

MTBF [hj 10 40 22 20

Table 4.1: Specifications of the first-generation ASCI supercomputers

4.1.1 ASCI White & Blue Pacific (IBM, Lawrence Livermore NL)

During the last decade, IBM built several software packages for management and ad¬

ministration of their high-end AIX-based servers. Since the RS/6000 SP-type servers

are based on independent nodes that are interconnected using a switch, there is no big

leap toward superclusters.



Superclusters Worldwide - Competing Technologies 109

The management is based on the following products:

IBM AIX Operating System

The AIX operating system is the UNIX implementation of IBM for their worksta¬

tions and servers. As in many other UNIX implementations, it contains custom

features for automated remote management as well as an adaptable SNMP agent.

IBM PE (Parallel Environment) for AIX

The PE software contains the libraries and applications required to develop par¬

allel applications. It contains the MPI (Message Passing Interface) library, math

libraries, parallel profilers and benchmark tools, and checkpoint/restart en¬

hancements required for large and long-running jobs.

IBM LoadLeveler

The LoadLeveler software evolved from CONDOR and is the resource and batch

management application for AIX-based computers. It includes the gang scheduler, the

workload manager, the checkpoint/restart management and the file system monitor.

IBM PSSP (Parallel System Support Programs) Toolkit

The PSSP tools provide a comprehensive suite for installation, operation, man¬

agement and administration of AIX-based servers from a single point of control.

Every SP server is managed by a control workstation which runs a managing demon,

which communicates with the server components through Ethernet and a serial link. It

monitors the cabinet, the nodes and the SAN switch (power, fans, and temperature) and

it can control the power of each component separately. It executes commands and logs

messages using the logging service.

The system configuration of every SP computer is entered using the hardware man¬

agement console (HMC) which allows the servers installed at a location to be graphi¬

cally managed. For a homogenous pool of servers, the HMC may be extended to man¬

age all servers of a supercomputer. The administrators developed a web-based moni¬

toring service open to the registered users. The users basically use shell commands for

the management of their applications.

There are three software packages managing the supercluster. A web-based monitoring

user interface displays current data. The software design scheme is the non-integrated

variant as described in section 3.3.1, with the extension of the HMC that resembles the

functionality of management proxies.

4.1.2 ASCI Blue Mountain (SGI/Cray, Los Alamos NL)

The Cray supercomputers are the best known supercomputers worldwide, with their

unique shape and uncompromised search for processing performance. The supercom¬

puter knowledge was integrated into new products that allowed SGI to enter into high-

end technical computing.

For the management of their large servers and clusters, SGI developed the Advanced Clus¬

ter Environment (ACE) that provides an integrated and comprehensive management solu¬

tion. ACE is used in the ASCI Blue Mountain supercomputer and in the server clusters for

technical and business computing installed worldwide. It provides a single system view from

a single point of administration, and manages all (SGI) hardware and software installed.
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ACE consists of the following components:

SGI IRIX Operating System

The IRIX operating system is the UNIX implementation of SGI for their worksta¬

tions and servers. As with many other UNIX implementations, it contains custom

features for automated remote management as well as an adaptable SNMP agent.

SGI Message Passing Toolkit (MPT)

The Message Passing Toolkit (MPT) integrates the most used standardized mes¬

sage passing libraries. This allows the users and developers to easily port and

create applications.

Job Management (SGI Performance Co-Pilot, LSF)

The Performance Co-Pilot allows performance problems to be analyzed in paral¬

lel systems. The cluster-wide performance, resource utilization, activity and bot¬

tlenecks are analyzed from one single point of administration. The Load Sharing

Facility (LSF) is a third-party product (from Platform Computing), used for the

job scheduling and management.

SGI Array Services and Robolnst

The Array Services are a scalable and highly available solution for large-scale com¬

puting. Robolnst allows software to be installed and maintained on a set of computers.

Of course, the administrators of the ASCI Blue Mountain developed their own applica¬

tions on top of ACE for their daily tasks.

The management software ACE works like glue between the components, and the soft¬

ware architecture can therefore be described as «glueware».

4.1.3 ASCI Red (Intel, Sandia NL)

Although the ASCI Red supercomputer is based on commodity CPUs, memories and

storage devices, the architecture and design is very customized, using custom boards,

interconnections, libraries and operating systems. The management software «Scalable

Platform Services» (SPS) is based on the Desktop Management Interface (DMI) [DMI],

which has been designed for the management of networked desktops.

Two processors are grouped in a node and two nodes are placed on a node board. Eight

node boards are managed by one Patch Support Board (PSB) which also manages the

backplane of this group. Four groups are placed in one cabinet, which leads to a total of

76 cabinets, placed in a 4x19 grid, and matching the SAN topology (2V2D grid, 2x32x38

node boards) very well.

The supercomputer is managed by a management station running Microsoft Windows NT,

which exports the functionality to administrators through CLI- or GUI-based management

applications. The following illustration shows the architecture of the system management.
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Figure 4.2: SPS Architecture [Mit98]

The automation functionality of SPS allowed the supercomputer to be built, installed

and configured within a tight schedule. The functionality includes the following:

Scripted Booting/Shutdown allows the starting or stopping of the supercomputer

partitions and the booting of one of the two available operating systems installed

on the machine.

The Fault Management is based on the software agents. If they detect a hardware or

software failure, the affected components will be isolated and automatic recovery

operations will be initiated and all available information will be stored in the log.

The Configuration Management is also based on software agents that keep the

hardware and software inventory data up-to-date.

The Repair Services include script-based support for board repair, power control,

firmware upgrade and hardware reset operations.

The Field Diagnostics include script-based support for encapsulated diagnostic

test scenarios, covering many platform hardware components.

The Operating System Console Access allows the consoles to be accessed from re¬

mote clients.

The management software operates as a 3 2-bit Microsoft Windows NT application and

has the following structure:
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Figure 4.3: Management Software Structure & Components [Mit98]

The Console User Interfaces run either on the management workstation itself or on a

remote console. They communicate through the SPS message system to the managers.

In the GUI, the supercomputer is shown physically as four rows of 19 cabinets each. An

additional view allows zooming into the cabinets, looking at the components within, and

creating selections for actions.
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Figure 4.4: Management GUI of the ASCI Red supercomputer [Mit98]
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The SPS Message System allows reliable datagram communication between the (poten¬

tially) remote consoles and the SPS managers. Its main purpose is to support user in¬

terfaces on computers other than the management station. It also contains authentica¬

tion mechanisms to restrict administrative access in accordance with the membership

in security groups.

The managers operate as separate NT services on the management station. The Boot,

Diagnostics, Fault and Repair Managers advertise a list of control operations, which are

backed by a script. The scripts are triggered by the administrators, except for those of

the Fault Manager, which are executed automatically.

The Desktop Management Interface (DMI) contains the DMI database and provides the

illusion of managing a single, unified system. The supercomputer consists of 3600 com¬

ponents, resulting in 21500 DMI groups with 99000 DMI attributes. An extension was

necessary, since the standard DMI only supported 254 components. Building the data¬

base takes 15 minutes, compared to 2 days without further scalability enhancements.

The DMI standard defines a Component Instrumentation interface, which performs the

required low-level management operations. Since the operations are performed on the

PSB, Component Instrumentation Proxies (CSP) are needed. The five proxies (for nodes,

backplanes, PSBs, clock and cabinets) run as separate NT services and communicate with

the corresponding agent on the PSB for data collection and management requests.

The lowest layer is the PSB transport layer, which operates as an NT service. It provides

reliable datagram communication between the proxies and one or more of the PSBs. The

PSB transport layer also detects when a PSB drops off the network and triggers a fault.

The developers of the management software found the following challenges:

The most pervasive challenge was the integration of a diverse collection of off-

the-shelf software components.

Another problem was the lack of available target hardware, leading to a specific

design for the ASCI Red with few testing platforms.

A variety of scalability challenges were encountered, which forced the developers

to design the software carefully to prevent performance bottlenecks.

For the installation, support for manufacturing tests was needed, requiring incomplete

versions of SPS for booting, power control, diagnostic and other features. This required

trade-offs between feature availability, stability and progress towards the final product.

In large systems, the secondary management problem - managing the manage¬

ment software and hardware itself - is as difficult as the primary management

problem - managing the supercomputer. Installation, upgrading and debugging of

management software on the PSBs and assignments of IP addresses proved to be

non-trivial tasks in practice.

The selection of the off-the-shelf components has a significant effect on the

product quality, system availability and management software project schedule.

The acceptance of Windows NT was a cultural barrier within supercomputing

centers, since traditional management environments are based on UNIX operat¬

ing systems. These concerns were largely ameliorated by providing UNIX-like

commands and a telnet server on the management station.
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The SPS management software was able to profit from the following issues:

The administrators were hand-picked and acquired in-depth knowledge of the ASCI Red.

The supercomputer is homogenous in respect of used components.

The size of the supercomputer is fixed and will not change.

The SPS played an important role in enabling Intel to win the teraflop performance race.

With the adapted DMI architecture, the management software architecture resembles

the integrated version with the PSBs operating as proxies.

4.1.4 Summary

The ASCI-like supercomputers are homogenous systems installed by the node manu¬

facturers. They provide the most integrated system management software: Like a suit,

the management software is tailored to the underlying platform and it does not fit any

other body. It is not possible to easily replace any individual product, because the soft¬

ware is not modular. It is also not possible to massively increase the system size, since

the management software runs at its scalability limit.

The management software packages of the ASCI supercomputers have something in

common: The complaints of the administrators that are described in section 2.4 (com¬

pare the values with the numbers in Table 3.25):

Monitoring is only possible at a very slow rate and the data is without context.

Boot takes between 4 and 8 hours.

The management software is the cause of 50% of the crashes.

Updating the system with a new boot image takes eternities and is unreliable.

Complex group routing mechanisms in the SAN are not supported.

Starting applications take up to one hour.

The MTBF is less than 10 hours.

Lost processes block the system, requiring regular reboots of the whole computer.

The administrators and users feel lucky, but they are far from being confident.

4.2 Management of Clusters of Workstations

Clusters of workstations are currently managed with the following strategies:

Each manufacturer supplies management software for his subsystem only, leading to

the non-integrated software architecture, since the administrators have to put those

subsystem management packages together using scripts and other self-made tools.

One manufacturer supplies management software for his own and some associ¬

ated subsystems (e.g. SAN, node and applications), while the other subsystems

are managed using tools of their respective manufacturer. This strategy leads to

the glueware architecture.
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Existing management software used for one subsystem is extended towards an inte¬

grated management application, e.g. SNMP or resource management applications.

In the following subsections, these strategies are briefly described and evaluated.

4.2.1 Quadrics RMS (Resource Management System)

Quadrics Supercomputers World is better known under the former name Meiko that

built parallel supercomputers such as the CS-2. The architecture of RMS (Resource

Management System) and its GUI resemble the management software of the Meiko

CS-2, which allows RMS to be seen as its further development.

RMS is used for superclusters that use the SAN technology QsNet [QuaOO] like some

Alpha-based superclusters. RMS itself has been extended to cover more than the SAN

only. Unfortunately, QsNet only supports fat tree topologies (with a fan-out of 64),

which are good in performance, but bad in system scalability and price.

RMS is based on a persistent database (that can be accessed using SQL statements and is

controlled by the Transaction Log Manager) and a set of manager demons that can run on the

same or different computers to distribute load. The manager demons have the following jobs:

Machine Manager

The Machine Manager is responsible for detecting and reporting changes in the

state of each node computer in the system. It records the current state of each

node and any changes in state in the persistent database. When a node is working

correctly, the node demon will periodically update the database. However, if the

node crashes or IP traffic to and from the node stops, these updates will stop.

Partition Manager

The system can be divided into partitions, groups of nodes that can be used for user

jobs. Each partition is controlled by a Partition Manager. The partition manager me¬

diates each user request for resource availability to run jobs in the desired partition.

Switch Network Manager

The Switch Network Manager controls and monitors the data network. It checks for

network errors and can monitor network performance. If it detects an error in the

switch network, it will update the status of the concerned switch and generate an event.

It collects fan, power supply and temperature data, and generates appropriate status

changes and events if components fail or temperatures exceed their allowed limits.

Event Manager

The Event Manager executes recovery scripts that will either correct detected

faults or report them to the operators if manual intervention is required. On re¬

ceiving an event notification, the Event Manager looks for a matching entry in the

event handler's table, executing the handler script if it finds a match. If no match

is found, it runs the default script.

Applications are spawned using a mpirun-like application called prun that distributes and

starts the processes - the MPI information is transmitted through environment variables (size,

rank) and the manufacturer-supplied SAN-specific MPI implementation (routing information

to the other participating processes). The resource management is not performed by RMS it¬

self but is outsourced to any batch management software package suited to the users.
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Figure 4.5: Pandora, the user interface ofRMS

RMS integrates SAN management, node monitoring and application management (as

COSMOS, see 5.2), resembles the glueware software architecture as presented in 3.3.2.

The selected design has the following advantages and disadvantages:

The distribution of the modules into separate demons has the following effects:

> The risk of a total management functionality outage is reduced, since the de¬

mons can run on separate computers, which also allows for workload balancing.

> Since all demons are expected to run, one failed demon (or crashed computer)

blocks the management, since redundancy is currently not featured in RMS.

> Each server demon has a connection to each workstation demon, leading to a

huge number of connections for large systems.

The persistent database has the following effects:

> MIB data is not lost if demons crash or are restarted.

> The MIB can be accessed using queries with standard SQL statements.

> The persistent database is a single point of failure.

> Inter-demon synchronization mechanisms are necessary to prevent inconsistency.

The system size is limited since the design does not scale (no proxies, no mecha¬

nisms for high availability).

The evaluation tables of this architecture are as follows:

Criteria

Monitoring Synchronization

Monitoring Context

Development Time & Cost

Management Overhead

Reliability & Availability

Scalability

Security & Vulnerability

Flexibility

Table

Quality Comments

0 I Synchronized node/SAN subsystem

0 I Context in node/SAN subsystem

+ j Integration of in-house products

+ j No additional hardware and software

j One broken demon blocks management

I Li mited by demon communication

j Only SAN is fully managed

j Only works for QsNet and Alpha systems

L2: Qualitative evaluation table for RMS
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Criteria Quality 1 Comments

Design, Installation & Configuration - j No support

Power Management Implementation - 1 Script-based, slow and unreliable

Monitoring Transport to User Interfaces 0 1 Efficient transport to Pandora

Process Groups / Routing Tables Creation 1 Not necessary because of Fat Tree

Application & Process Control + j Integrated
Detection & Handling of Faults 0 1 Only SAN and node faults are detected

Table 4.3: Typical tasks evaluation table for RMS

Extending the management software used to manage the nodes or SAN is a complex task

and often ends up with the selection of only a few additional products to manage. This

then leads to closely coupled platforms such as UNIX-based COMPAQ AlphaServers and

Quadrics SAN products. Replacing subsystem products with other manufacturer's prod¬

ucts is hard or impossible, requiring homogenous monolithic systems.

The biggest disadvantage of RMS is the agent software design: The agent is part of the

operating system kernel, and each OS version and patch requires re-implementation of

the agent software.

4.2.2 Supercluster Management using Resource Management

There are numerous resource management tools available today, with their origins in

the batch management of supercomputers. They optimized the supercomputer usage,

and in «networks of workstations», they catch wasted cycles in workstations for the

execution of parallel applications.

Three resource management software packages are commonly used today:

The open source product PBS (Portable Batch System) and the extended com¬

mercial version PBS Pro.

The commercial products GRD and Codine that are planned to go open source.

The commercial product family LSF (Load Share Facility).

These program packages usually contain the following functionality:

Combining available calculation resources (processing elements in supercomput¬

ers, individual computers) into virtual parallel supercomputers.

Offering these calculation resources to users for parallel applications.

Limiting the access to known users, groups and projects.

Building queues, where users can submit their applications and these jobs are

processed in a defined order using priorities and other scheduling mechanisms.

The consumed resources are logged and accounted to the user, group or project.

These packages are very powerful and include parts of application and node manage¬

ment besides the essential resource management features. It seems to be a good idea to

extend the existing and established products with the system management features into

integrated and comprehensive system management software.
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Since resource management software is not designed for system management, many changes

are necessary for the integration, but some products are open enough (and the sources are

available) to allow this integration. There are the following advantages and disadvantages:

The existing framework with managers and agents has the following effects:

> Existing frameworks with basic functionality are available which save time.

> Remote management using shell commands and GUI applications is available.

> Designed for low overhead on the node computers.

> Platform interoperability (UNIX and Linux, some support Windows).

The available and missing functionalities of the toolset have the following effects:

> Node monitoring and fault handling is often already integrated, as well as parts

of the application management (spawning, abortion, checkpointing).

> Adding more features may be hard, depending on design and implementation.

> There are usually no features for high availability, reliability and scalability.

High cost for the development of the new features, leading to high license fees.

Large installed base and therefore easy market penetration.

Depending on the integration grade, this approach resembles the (simple) integrated or

glueware architecture with its advantages and disadvantages.

The evaluation tables of this architecture are as follows:

Criteria

Monitoring Synchronization

Monitoring Context

Development Time & Cost

Management Overhead

Reliability & Availability

Scalability

Security & Vulnerability

Quality I Comments

0 j Synchronization in integrated subsystems

0 I Context in integrated subsystems

0 j Dependent on external implementation

+ j No additional hardware or software

0 I Dependent on implementation

j Limited by communication overhead

0 j Integrated in design

0 I Supports many platforms and systemsFlexibility

Table 4.4: Qualitative evaluation table for Resource Management

Criteria Quality 1 Comments

Design, Installation & Configuration - 1 No support

Power Management Implementation - j Script-based, slow and unreliable

Monitoring Transport to User Interfaces 0 j Efficient transport to GUI

Process Groups / Routing Tables Creation - 1 SAN management not supported

Application & Process Control + j Integrated
Detection & Handling of Faults 0 1 Only node and application faults detected

Table 4.5: Typical tasks evaluation table for Resource Management
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4.2.3 SNMP-Based Supercluster Management

Network management is one of the basic needs where computers are used and inter¬

connected. Many hardware components are designed for networking: Ethernet network

adapters, switches, hubs, routers and many more. In the beginning, every manufacturer

supplied their product with specialized software for the management of the compo¬

nents. Incompatibility of hardware and software slowed down the use of networking in

business, until standardization committees started to introduce networking standards

that were respected by the manufacturers.

The management of the networking components was somehow not standardized, be¬

cause every network component manufacturer believed his product to be special and

unique. The network management protocol SNMP (Simple Network Management Pro¬

tocol), introduced by Marshall T. Rose and Jeffrey D. Case [Ros96], was an attempt to

standardize the management protocol chaos. This standard developed into a de-facto

standard, followed by the manufacturers.

SNMP basically follows the idea of a «dumb component» that contains «useful stuff», an

instrumentation layer and the management protocol that includes the management in¬

formation (the MIB) and the transport protocol. The network management station ac¬

cesses the management information by use of the transport protocol, and processes and

displays its data to the users.
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Figure 4.6: General management model [Ros96]

The SNMP MIB is basically a tree of values, which is accessed using structured names.

The MIB entries are accessed individually or in bulk containers. The values are read,

written, created and deleted using messages. The data is transported over the UDP/IP

protocol, an unreliable datagram transportation protocol.

Faults are handled with trap messages that are sent to a specified destination computer.

This trap is only handled if the destination computer receives the message, which is not

guaranteed using the UDP/IP protocol.

Security in SNMP is not effectively implemented. Identification and protection of the

MIB is only implemented using a common «community» identifier between the network

management station and the managed node. Encryption of messages (planned for

SNMP V2) is not available.
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This is the reason why most components support SNMP for monitoring only, since

«showing up already solves 80% of the problems». Configuration using SNMP is often

supported, but the most vital parts of the component are managed either using telnet-

based or HTTP-based user interfaces or private extensions of SNMP for security.

SNMP is used for supercluster management in several places [SMFOO] with an exten¬

sion: SNMP proxy computers (intermediate level manager) allow scalability and some

values in the MIB represent the result of an application or script.

Extending SNMP for supercluster management has the following issues:

The usage of a standardized and accepted product has the following effects:

> The administrators already have the required know-how.

> There are many open-source frameworks, applications and user interfaces

available that allow SNMP-based management components to be developed.

> Known security mechanisms and shortcomings allow intrusions.

The utilization of SNMP has the following effects:

> SNMP is modular and would allow extensions for supercluster management.

> SNMP has no security mechanisms (encryption, authentication, integrity)

> Malicious software that acts as manager can harm the agents, since the man¬

ager actively connects to the agents without any communication security.

Without custom proxies, SNMP does not scale for large superclusters.

SNMP does not contain mechanisms enabling high availability and reliability.

The evaluation tables of this architecture are as follows:

Criteria Quality 1 Comments

Monitoring Synchronization - 1 Unavailable in design

Monitoring Context 0 j Implementation-specific
Development Time & Cost 0 j Special features need time

Management Overhead + 1 No additional hardware and software

Reliability & Availability - 1 Unreliable center-based transportation

Scalability - 1 Proxies required, unavailable in design

Security & Vulnerability - j Unavailable

Flexibility + j Supports many platforms and systems

Table 4.6: Qualitative evaluation table for SNMP

Criteria Quality 1 Comments

Design, Installation & Configuration - 1 No support

Power Management Implementation - 1 SNMP-/Script-based, slow and unreliable

Monitoring Transport to User Interfaces - j GUI pulls data, inefficient

Process Groups / Routing Tables Creation 0 j Logic must be implemented in manager

Application & Process Control - j Unavailable

Detection & Handling of Faults 0 j Possible though SNMP traps

Table 4.7: Typical tasks evaluation table for SNMP
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In theory and with a lot of work, SNMP-based applications can be extended to the inte¬

grated architecture with reliable clusters and proxies. In practice, the efforts required

are too great compared with creating a new management system from scratch.

4.2.4 Script-based Supercluster Management

Most superclusters today - mainly small systems installed in the research institutes of universi¬

ties and industry - are managed manually using shell scripts: Perl, Crontab and Expect are the

environments used for this type of management. For the Swiss-Tl, some tasks are also solved

with scripts, such as starting and stopping the COSMOS node agent demons on all nodes, boot¬

ing and shutting down the node computers or controlling the power state of the SAN switches.

Managing superclusters with scripts has the following advantages and disadvantages:

Simple to use since UNIX administrators know scripting very well.

Basic tasks are simple to achieve, first progress is very fast.

Fast implementation adaptation to changes in the supercluster configuration.

The complexity grows with the number of possible tasks.

Fault handling is hard to achieve in monitoring-only scripting management.

Scripts are unreliable.

Debugging scripts is difficult.

The evaluation tables of this architecture are as follows:

Criteria

Monitoring Synchronization

Monitoring Context

Development Time & Cost

Management Overhead

Reliability & Availability

Scalability

Security & Vulnerability

Flexibility

Quality I Comments

Unavailable

I Unavailable

0 / - j Quick prototype, bad debugging

+ I No additional hardware and software

j Shell-Scripts are unreliable

1 Shell-scripts do not scale

I Unavailable

+ I Supports many platforms and systems

Table 4.8: Qualitative evaluation table for scripting

Criteria

Design, Installation & Configuration

Power Management Implementation

Monitoring Transport to User Interfaces

Process Groups / Routing Tables Creation

Application & Process Control

Detection & Handling of Faults

Table 4.9: Typical tasks evaluation table for scripting

Quality Comments

No support

Script-based, slow and unreliable

GUI scripting is slow and inefficient

Unavailable

Unavailable

Serial and slow

Script-based management is a bad idea. For some tasks, it is an efficient tool, but it

cannot be used for comprehensive management such as described in this thesis.
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4.3 Conclusions

Analyzing the related work and comparing it with the research of the previous chapters,

the following observations can be made and conclusions drawn:

The management of the ASCI supercomputers is adapted to their respective hard¬

ware and software, allowing an integrated view and usage. They can be seen as

successors of the monolithic management applications of the earlier supercomput¬

ers. But they are not flexible enough to serve systems of different sizes or types.

> The software cannot be used on systems that are different from the original

supercomputer (different SAN, platform, size, or topology).

> The systems are «one-shot» systems: They are installed once and never al¬

tered. Upgrades are performed on a per-component level; system structure or

size changes are difficult. If another system is ordered, a copy with minor dif¬

ferences from the original is built.

> It is very unlikely that the software will be published officially, because the in¬

tegrating company will not want to uncover secrets or the mission-critical

ASCI security mechanism.

> The management software is not designed to be modular and extendable.

Resource management applications are already being run on superclusters today.

It seems that the extension toward comprehensive integrated management is a

short path. Unfortunately this shortcut turns out to be a very long trip.

> The software already uses manager/agent architecture. Adding further fea¬

tures into those existing software components seems easy.

> Additional components for scalability (proxies) and changes to the architecture

to add reliability and availability (clusters, master/backup) are necessary.

> The extension of commercially available software itself is unlikely, since the

development efforts are high and the market is (currently) small.

> It is more likely that new or available open-source products will be extended

by the research institutes of universities, suppliers and integrators.

> Extending an existing product with features and functionality that it was not

designed for is very difficult - it is easier to start from scratch (using the ac¬

quired experience) instead of inflating a framework and struggling with flaws,

protocols and interfaces.

SNMP is already used for managing network components. Supercomputers and all

their switches, nodes, applications and more can also be seen as network compo¬

nents. Turning SNMP into secure, reliable and scalable supercluster management

software will require a huge effort and will lead to a completely different product.

> The connection between agents and manager is insecure and unreliable.

> There is no security (authentication, integrity, etc.).

> The architecture must be extended with proxies, reliable managers (e.g. clus¬

tering), persistent MIB storage, application management and more. Too much

for a simple extension - it is easier to create something from scratch.

The current management tools, fixes, workarounds and extensions are too weak or un¬

usable for the large commodity supercomputing systems of the future. Only global re¬

search and development effort with the goal of standardized interfaces for management
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modules and a globally used framework can lead to integrated, comprehensive man¬

agement software for superclusters.

Since the effort will lead to a global standard, the best idea is to keep the development

in the open-source community. Because all manufacturers of supercomputing-enabled

components will profit from this approach, all should contribute resources towards the

goal. If a manufacturer wants to invest in its own management software, he will quickly

recognize that his effort will be lost because the world outside will integrate, making his

own product obsolete and unusable in the standardized environment.
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It is common sense to take a method and try it. If it fails, admit it

frankly and try another. But above all, try something.

Franklin D. Roosevelt

While the previous chapters presented problems, solutions and existing software for

supercomputer management, this chapter is dedicated to the author's management

software «COSMOS» (short for «Commodity Supercomputing Management Operation

Software») and «Swiss-Tx», the research project where COSMOS was embedded.

5.1 The Swiss-Tx Supercomputing Project

The «Swiss-Tx» supercomputing project [GG97] [GD+98] [KG99] [BLF+99] was

launched in 1997. Its goal was to strengthen and support computing experience and re¬

search of leading-edge technology for commodity parts-based supercomputing.

The following institutions participated in the project:

The Swiss Federal Institute of Technology in Lausanne (EPFL) maintained

the superclusters of this project. Their rich know-how and experience with su¬

percomputers and their software allowed the right goals to be focused on.

The Swiss Federal Institute of Technology in Zurich (ETHZ) developed the

commodity supercomputing technologies for the project: The system area net¬

work, the communication libraries and the management software.

The Swiss Commission for Technology and Innovation (CTI) funded the pro¬

ject and supported the project management.

The Swiss Center for Scientific Computing in Manno (SCSC) supported the

project by developing software for debugging and tracing data in superclusters.

Supercomputing Systems Ltd. (SCS) built the superclusters and co-operated

with ETHZ in developing the technologies for commodity supercomputing. The

development teams consisted of members of both institutions, including graduate

students of ETHZ.

COMPAQ Computer Corporation (CPQ) provided the computers for the super-

cluster and supported the implementation of the supercluster technologies as well

as the integration with the necessary software and the installation and configura¬

tion of the system.

125
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The goal of the project was to develop the technologies and skills to build and install

supercomputers with a peak performance of one TFLOPS. This supercomputer was to

be built using standard workstations and as many commodity components as possible.

5.1.1 The five Swiss-Tx Superclusters

Five milestones were defined for the Swiss-Tx supercomputing project, represented by five

superclusters. Each supercluster used the best technology available at the time and every

design was analyzed for further steps. The five milestone superclusters were as follows:

Machine Number of Memory Storage SAN Installation

Name Processors [GBytes] [GBytes] Technology Date

Swiss-TO 8 2 64 EasyNet 12/1997

Swiss-TO (Dual) 16 8 170 EasyNet 10/1998

Baby-T1 12 6 130 T-Net 08/1999

Swiss-Tl 64 32 900 T-Net 01/2000

Swiss-T2 504 252 5000 Open Open

Table 5.1: The five Swiss-Tx milestone superclusters

The last supercluster «Swiss-T2» was never built because the EPFL supercomputing cen¬

ter CAPA chose to buy an ordinary supercomputer. Creating a Tera-scale supercluster

based on self-made products and technologies would have boosted the supercomputing

research workplace in Switzerland - the spineless retreat, however, stopped these efforts.

5.1.1.1 Swiss-TO Supercluster

The first supercluster, the Swiss-TO, fit with all its components into one single rack:

Eight Alpha-based single-CPU workstations running COMPAQ Tru64 UNIX, intercon¬

nected with the bus-based EasyNet SAN technology, one Ethernet switch, one terminal

server and a DLT library.
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Figure 5.1: Structure of the Swiss-TO

This system was a copy of a prototype at ETHZ with eight Intel-based PCs running Linux.

Both systems suffered from being used with the EasyNet bus, since the ribbon cable broke

easily and the bus-based communication had limited performance that did not scale.
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5.1.1.2 Swiss-TO (Dual) Supercluster

The second supercluster, the Swiss-TO (Dual), needed two cabinets containing eight Alpha-

based dual-CPU SMP servers running Microsoft Windows NT. The operating system was

later replaced with Tru64 UNIX because the users did not want to port their applications to

Windows NT, although the performance was the same. The bus-based EasyNet SAN tech¬

nology was used to interconnect the nodes, but the limitations in cable length and connec¬

tion-to-connection distance required a special node placement within the racks.
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Figure 5.2: Structure of the Swiss-TO (Dual)

Because the nodes were bigger than those of the Swiss-TO, the ribbon cable connecting

the nodes was longer, leading to a lower maximal network bandwidth of 40 MBytes/s.

The higher node performance could not compensate for the slower network perform¬

ance, and lead to the Swiss-TO (Dual) having the same performance for applications

using all processors as the Swiss-TO.

5.1.1.3 Baby-T1 Supercluster

The Baby-Tl was the third supercluster. The switch-based T-Net SAN technology had

been finished and the Baby-Tl was its prototype system. Eight Alpha-based dual-CPU

SMP servers running Tru64 UNIX delivered the expected performance.
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Figure 5.3: Structure of the Baby-Tl

Because the T-Net technology was limited to one 12-port SAN switch and one CPU per

SAN NIC, only six of the eight computers were connected to the switch. The largest job

for the SAN-based MPI was limited to 12 CPUs, but all 16 CPUs could be used for other

MPI implementations such as MPICH that used Ethernet for communication.
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Figure 5.4: The Baby-Tl supercluster

5.1.1.4 Swiss-Tl Supercluster

The Swiss-Tl was the fourth supercluster and was in use until late 2003. The switch-based

SAN technology T-Net was used here after it had proved its functionality in the Baby-Tl. The

Swiss-Tl was the first supercluster in which all components were designed for 19" racks.

m

Figure 5.5: The Swiss-Tl supercluster
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The supercluster consisted of 32 COMPAQ AlphaServer DS20 compute nodes with 2

Alpha 21264 microprocessors at 500 MHz and 1 GBytes main memory each. Two addi¬

tional DS20 computers built the management layer (called «front-end nodes»), used as

file server, management center and additional tasks. One single DS20 computer was

used as a stand-alone test machine. All computers used the COMPAQ Tru64 UNIX op¬

erating system. The 32 nodes were mounted in 4 racks, the storage subsystem was

placed in a separate rack, the two front-end computers and the independent 33rd node

were found in another rack.
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Figure 5.6: Structure of the Swiss-Tl

The Swiss-Tl SAN topology was an invention of the EPFL: A one-dimensional 2-Ring

of the size 8. The eight SAN switches were interconnected in two rings each having four

neighbors, and building a cube with interconnected diagonals. Each SAN switch had

four nodes connected to it and every node had two SAN NICs inserted into it. All nodes

were connected to the Ethernet switch using a Fast Ethernet link. The two front-end

nodes built a reliable cluster for the file server service. Both were connected to the

compute nodes using a Gigabit Ethernet link.

One rack contained the 9 SAN switches (8 for the Swiss-Tl, one separate one for the test

system), the Gigabit Ethernet switch, the two power switches and the two terminal serv¬

ers. This rack was used for the interconnections and the management of the supercluster.
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Figure 5.7: One of the four node racks (left), each containing 8 AlphaServer DS20E nodes.

The network rack (right) containing 9 T-Net switches, two terminal servers, the Gigabit

Ethernet switch, a management computer and two remote power switches (from top)

5.1.1.5 Swiss-T2 Supercluster

The Swiss-T2 supercluster would have consisted of 21 T-Net switches, interconnected in a

3-ring topology, with 6 quad-CPU computers per switch, making a total of 504 processors.

Figure 5.8: The structure of the Swiss-T2 with 21 switches, 126 nodes and 504 processors
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5.1.2 The Swiss-Tx Networking Technologies

Two SAN products were developed for the Swiss-Tx project. The bus-based «EasyNet»

and the switch-based «T-Net». Both were developed in co-operation between SCS and

ETHZ. The details of the research and design have been summarized in the dissertation

of Martin Lienhard [LieOO].

5.1.2.1 EasyNet

EasyNet is a low-cost, bus-based network. It consists of a PCI-based SAN NIC and a

ribbon cable interconnecting the NICs. The NIC consists of a PCI bridge and a FPGA

chip that contains the communication controller. The ribbon cable has a width of about

10 cm and contains 60 lines for a bus of 32 Bits width with error detection, control, syn¬

chronization and key management.
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Figure 5.9. Image and block diagram of the EasyNet SAN NIC

The SAN NIC that is located in the middle of the bus provides the bus clock, and the

two outermost SAN NICs terminate the bus signals. The design allows communication

mechanisms that basically use broadcasts, such as the extended reflective memory

model [JM99] [PTM96] [Mea96] that can be seen as globally distributed shared memory

with global store and local read access.
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Figure 5.10. EasyNet network structure

The advantages of the design are the moderate bandwidth (between 40 and 80 MBytes/s) and

low node-to-node latency (about 5 us), together with the possibility of performing broadcasts,

as well as the copying-free transfer mechanism between sending and receiving applications

(«zero-copy»). The bottleneck of the design is the bus, since the available bandwidth is di¬

vided by the communicating nodes and the bus clock is limited by the cable length.
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The most annoying problem of this product was the ribbon cable: It was hard to manu¬

facture, inflexible and broke easily. The connector fell out readily and the cable aged

quickly. Debugging the software and driver was very difficult since it was hard to say if

a problem was caused by a software bug or the unreliable hardware.

5.1.2.2 T-Net

T-Net was designed as a high-end, switch-based network. It consists of a PCI-based

SAN NIC and a 12-port SAN switch. The NIC consists of a PCI bridge, two FPGA chips

for the communication and link controller, and a link interface for the bi-directional

Gigabit link. The link can be either a FC-compatible copper cable of up to 20 m, or an

optical link of up to 500 m that requires MIA (media interface adapter) devices.

The SAN NIC contains a page table (for virtual-to-physical address translation in non¬

contiguous memory blocks) and an ID validation table that contains a list of process IDs

that are allowed to send or receive messages.

Figure 5.11: Image of the T-Net SAN NIC
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Figure 5.12: Block diagram of the T-Net SAN NIC

The SAN switch is a 12-port non-blocking crossbar switch. The on-board routing table

allows destination-based routing with extensions for broadcasts and multicasts. The

simple deadlocks that can occur in mesh-like topologies are prevented by hardware.

The on-board controller manages the whole SAN switch. It programs the FPGA chips,

maintains the routing table, updates the firmware, controls the switch display and pro¬

vides the monitoring information.
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All T-Net features were designed with MPI as the communication library in mind. This

optimization allows high bandwidth (about 80 MBytes of sustained performance) and

low latency (less than 10 us) in combination with low cost.

fwBBw

Figure 5.13: Image of the T-Net SAN Switch
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Figure 5.14: Structure of the T-Net SAN Switch

The SAN NICs and switches build a network topology and T-Net supports many classi¬

cal regular topologies (multidimensional mesh and torus, hypercube) as well as modern

topologies (fat tree, multidimensional k-torus).

Figure 5.15: Topologies for switch-based networks (from left):

2D mesh, 2D torus, 4D hypercube, fat tree
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5.1.3 The Swiss-Tx Communication Libraries

The programming model most often used for parallel programming is MPI (Message

Passing Interface) [MPI95] [MPI97]. For the Swiss-Tx project, MPI was implemented as

a layer on top of the core communication library called FCI (Fast Communication Inter¬

face). FCI communicates with the NIC device driver using a standardized custom inter¬

face (DDI - Device Driver Interface) and with the NIC hardware directly through use of

another standardized custom interface (NHI - Network Hardware Interface).

Both standardized but custom interfaces DDI and NHI allow the reduction and simplification

of the software modification if the underlying platform (EasyNet, T-Net, future SAN NICs)

changes. The driver is only used for functionality where kernel support is necessary (inter¬

rupt and memory handling, inter-application security). For most message-passing opera¬

tions, the SAN NIC is accessed directly without application and operating system invocation.

Data is moved between application memory regions on the source and destination

nodes, allowing zero-copy operations and therefore low latencies and high bandwidth.

With zero-copy, the message-passing send function writes the message directly into the

SAN NIC and the destination moves the data directly into the application memory.

Zero-copy allows the bus load to be reduced, and the operating system is not invoked

which saves context switch time (some us).

MPI Application

FCI Application

MPI Application Programming Interface

MPI

Message Passing Interface

FCI Application Programming Interface

FCI

Fast Communication Interface

Device Driver Interface (DDI)

^^^^^^^^^^^^^B Network Hardware Interface (NHI}

Communication Hardware

Figure 5.16: FCI and its integration in the environment

FCI provides the following functionality:

Management of process groups.

Blocking and non-blocking routines for message passing send, receive and probes.

Collective operations such as barriers and broadcasts.

Procedures for the Remote Store programming model.

Routines for mutual exclusion (key management).

Environmental management calls (start-up, shut-down, environmental queries).
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The communication library system FCI/MPI has been successfully implemented and

ported to the platforms COMPAQ Tru64 UNIX, Linux and Microsoft Windows NT 4.0.

The details of the research, design and implementation of the communication library

technologies for the Swiss-Tx project have been summarized in the dissertation of

Stephan Brauss [BraOO].

5.2 COSMOS Concept

From an ideal point of view - especially after reading chapters 2 and 3 of this disserta¬

tion - the management software for the Swiss-Tl (and its successors) should have been

fully integrated. The users and administrators use one user interface and access the

MIB of one management application, which manages the entire supercluster.

Since the presented research was performed after the creation of COSMOS, the advan¬

tages of the integrated approach over the later selected glueware architecture was not

known at the time when COSMOS was implemented - the ideal (and more beautiful)

design was only discovered later.

According to the Swiss-Tx project plan, COSMOS was considered to be a simple applica¬

tion, managing T-Net hardware and applications using the MPI/FCI parallel environment

only. This consideration was based on the experiences which had been made with NOW

systems (networks of workstations), where the subsystems are managed independently,

expecting that the SAN and applications would be just more independent subsystems.

Based on the needs of administrators and users, as well as the needs of T-Net and

FCI/MPI, COSMOS concentrated on software that allowed comprehensive, but not inte¬

grated, supercluster management. Due to the small system size of the Swiss-Tl, the ef¬

fects of this non-integrated approach did not pose too many measurable problems.

5.2.1 Administrator and User Needs

The needs of the administrators and users are basically explained in section 2.1. How¬

ever, the needs of the Swiss-Tl supercluster were not as sophisticated when concern¬

ing functionality, integration and automatism.

The administrators' needs can be summarized as follows:

The 32 nodes are the body of the Swiss-Tl and must be fully managed.

> They want to be able to control the power state of the nodes remotely. This takes

place through the console, which is connected to the LAN using a console server.

> They want to be able to update the image that is stored on the local hard drive,

containing OS, software, drivers, firmware (e.g. for the SAN NIC), and global

or node-individual configuration data. This update requires special configura¬

tion and control software.
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> The administrators want to have direct access to each individual node, which is

quite simple because they can use the standard UNIX tools and mechanisms

(telnet, remote shells).

> They want to be able to monitor the vital values: Status, active processes, and

resource utilization.

> They want to be able to detect faults and problems quickly, because utilization

and efficiency drops when hanging nodes or blocked resources prevent appli¬

cations from being executed.

The 8 SAN switches and 64 SAN NICs interconnect the nodes for fast communication.

> They want to be able to control the power state of the SAN switches. Since T-

Net has no remote power capabilities, LAN-based power switches must be used.

> They want to be able to download and update the firmware and configuration

data that is stored in the memory of the switches and NICs.

> They want to be able to monitor the vital values: Temperature, memory utiliza¬

tion, uptime, and for each port the status, data and error rate.

> They want to be able to detect faults, since the applications are forced to use

massively slower MPI implementations (such as MPICH) instead of MPI/FCI if

the SAN is unavailable.

The LAN consists of one Gigabit Ethernet Switch, interconnecting all nodes, as

well as the console servers that connect the nodes' console ports to the LAN.

> They want to be able to control the power state, the configuration, as well as

the many features.

> They want to be able to detect faults, since unavailable LAN connections dis¬

able storage and management access to all supercluster components.

The storage subsystem consists of a RAID array connected to the two front-end computers.

> They want to be able to control the storage service, as well as its configuration.

> They want to be able to detect faults as well as exceeded limits, such as user

quotas, soft errors, consumed storage space etc.

The administrators want to be able to manage the computation resources: Queues

and CPU hours.

> They want to be able to control the queues and node resources (CPU slots) as well as

be able to update the configurations relating to open times, user access, priorities, etc.

> Theywant to be able to account for the resource usage per user, department and project.

> They want to be able to detect faults: Unavailable CPU slots, blocked queues

and applications, etc.

The administrators want to be able to manage the resource consumers, the applications:

> They want to be able to control the applications (mainly aborting them).

> They want to be able to monitor the applications and their processes: Status,

resource consumption, node location, time stamps, etc.

> They want to be able to detect application abortions and the reasons for such abortions.

The administrators want to be able to manage the database for users, depart¬

ments and projects, mainly in regard to the permissions for resource access and

consumption, as well as user and group rights on the node computers.

The requirements of the users and developers concerning the management software

toolkits can be summarized as follows:
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The users want to have fair and deterministic access to the supercomputer resources:

> They want to know when their applications will start and finish.

> They do not want higher-priority users always to expel their applications.

The users want to have enough information and permissions for their job:

> They want to know on which nodes the processes of their applications are to

be executed, so they can connect debuggers, tracers, and other development

tools to those nodes.

> They want to have permissions to connect to the nodes, using those tools, and

to send signals to their application processes.

The users want their applications to receive all available computing time, and no

resources to be lost on management or other non-productive tasks.

All these needs are respected in the management requirements and constraints presented next.

5.2.2 Requirements and Constraints

The administrators of the Swiss-Tl were already used to various management applica¬

tions. They expected that they would be able to use the same software as with their NOW

systems for the various tasks and components. This included the following software:

The Gigabit Ethernet switch was managed by using either a web browser for http-

based management of the whole configuration and functionality, or one of the

many available free or commercial SNMP manager tools.

The node computers were managed individually using manufacturer-supplied

management software (SYSMAN). The manufacturer also created special soft¬

ware and script-based tools that allowed more global tasks (such as global boot,

image update, or shutdown).

The resources were managed using GRD/Codine from GRIDWARE (now a sub¬

sidiary of Sun Microsystems), which included the management of queues, users,

and applications.

The storage subsystem was managed using manufacturer-supplied software.

The previously presented requirements can be put into a matrix, with the subsystems

as presented in 1.4.3 in one dimension, and the functionality groups as presented in

2.3.1 in the other dimension. The content of each cell is the management software that

takes care of the functionality of the respective supercluster subsystem:

Subsystem
Functionality

Control Config Monitor Fault Trap Account Sched.

Resource Management GRD GRD GRD GRD GRD GRD GRD

Application Management GRD GRD GRD GRD GRD GRD GRD

User Management GRD GRD GRD GRD GRD GRD GRD

Node Management SYSMAN SYSMAN GRD SYSMAN GRD

SAN Management

LAN Management SNMP SNMP SNMP SNMP SNMP

Storage Management COMPAQ COMPAQ COMPAQ COMPAQ COMPAQ

Table 5.2: Distribution of the functionality to the management applications (initial)
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Accounting and scheduling is only necessary for the resource usage by users and appli¬

cations, and not for the other subsystems - this is the reason why these cells have been

left empty. The empty SAN management line should have been filled by COSMOS,

since it was considered to be a simple application for managing the SAN.

This matrix suggests that the Swiss-Tl is managed in the same way as the classical

NOW systems, where the resource management software (in this case GRD/Codine)

takes care of the software subsystems, and manufacturer-supplied management soft¬

ware packages take care of the respective hardware subsystems. The administrators are

accustomed to this setup and know how to use the software to manage the supercluster.

During the implementation of MPI/FCI for EasyNet, the scope of COSMOS was enlarged,

since shortcomings in GRD/Codine and the selected design of MPI/FCI meant that some

of the functionality had to be covered by COSMOS. At the beginning of the design and

implementation of COSMOS, the management software matrix looked as follows:

Subsystem
Functionality

Control Config Monitor Fault Trap Account Sched.

Resource Management GRD GRD GRD GRD GRD GRD GRD

Application Management COS/GRD COS/GRD COS/GRD COS/GRD COS/GRD GRD GRD

User Management GRD GRD COS/GRD GRD GRD GRD GRD

Node Management SYSMAN SYSMAN GRD COS/SYS GRD

SAN Management COSMOS COSMOS COSMOS COSMOS

LAN Management SNMP SNMP SNMP SNMP SNMP

Storage Management COMPAQ COMPAQ COMPAQ COMPAQ COMPAQ

Table 5.3: Distribution of the functionality to the management applications (definitive)

This matrix leads to the glueware architecture as presented in chapter 3, where the us¬

ers and administrators integrate the functionality provided by the various management

applications, and some management applications cover more than one subsystem.

Since the users prefer using management software and user interfaces that they have

known for years, and can hardly accept any new management software, this decision

was very reasonable.

The functional requirements for COSMOS can be summarized as follows:

It manages the SAN switches and SAN NICs.

It manages the applications and their processes.

It monitors the nodes, and detects and handles crashes.

It monitors the users as owners of the applications.

It provides information to users using graphical and text-based user interfaces.

It does not consume too many computation resources on the nodes.

It interfaces or overlaps with other management tools where necessary, but does

not interfere with them (e.g. does not perform tasks that are owned by other tools

such as shutting down nodes or closing queues).
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Besides these functional requirements, there were also the following project-based requirements:

Support the Swiss-Tx supercluster platform:

> Nodes with COMPAQ Alpha or Intel x86 processors.

> COMPAQ Tru64 UNIX or Linux operating system.

> T-Net SAN products (NIC and switch).

> FCI/MPI communication library.

Support the potential Swiss-Tx supercluster architectures:

> 32 to 126 node computers, 64 to 504 processors.

> 8 to 21 SAN switches, 64 to 504 SAN NICs.

> One-dimensional 2-ring or 3-ring SAN topology.

Time constraints:

> Working prototype for installation day (6 months after development start).

> Reliable production version for inauguration day (10 months after develop¬

ment start).

> Whole development (including fancy GUI) to be finished within 15 months.

Besides these requirements, which were defined by the Swiss-Tx project and their

managers, the development of COSMOS also faced additional constraints created by the

project setup:

Provide text-based interface from the beginning, graphical user interface later.

Use open-source programming libraries that are available on all platforms.

Programming in C (except for the GUI that required C++).

Since GRD/Codine uses a center application on the front-end computers, and

connected demons (background services [Ste98]) on the nodes, COSMOS should

use a similar design.

Development of COSMOS closely coupled to FCI and T-Net development, using

same source tree and tools (compilers, libraries, source management).

These requirements and constraints - following on from the needs of users and admin¬

istrators - were the only basis for the design and implementation of COSMOS. Every¬

thing else was left to the author's discretion.

5.2.3 Specifications

The previously presented requirements and constraints were consequences of the needs

of the administrators and users. In order to create the software, these requirements and

constraints had to be converted into detailed specifications, which were defined during

intensive discussions with the project team members at EPFL, ETHZ and SCS.

Part of the specification process was the separation of management tasks into those

that were to be solved using software, and those that were to be solved using shell

scripts. Some functionality was easier and faster to design and implement with tools

that are available in UNIX and Linux shell environments (using remote shell or expect

scripts, Crontab etc.), and some functionality required specially compiled software in

higher-level programming languages.
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The requirements led to the following detailed specifications for COSMOS:

COSMOS is to manage the SAN switches and SAN NICs:

> It is to control the power state of the switches, using remote power switches with a

telnet-based user interface. The power state is to be controlled with expect scripts.

> It is to download and update the firmware and configuration of switches and

NICs. The switch firmware is to be stored in persistent memory and updated

using shell scripts. The firmware of the NIC is to be stored in volatile memory

and must be downloaded during the node boot process. A script is to download

the current firmware into the NIC, together with the basic NIC configuration.

> It is to monitor the vital values of the switches. The switch monitoring is to be

performed using programmed software, but the NIC is not to be monitored be¬

cause it does not include any monitoring functionality (insufficient on-board

hardware resources).

> It is to detect switch errors using programmed software. Since the switches pre¬

sent «temporary soft errors» (bit errors in messages) in the same way as they

present «permanent hard errors» (open link), handling those errors automati¬

cally (e.g. aborting applications on nodes with erroneous T-Net links) would

have been very difficult. COSMOS therefore was only required to display these

errors. The NIC was not covered because it was impossible to monitor.

COSMOS is to manage the applications and their processes using MPI/FCI:

> It is to distribute the processes to the reserved nodes and process slots, using

remote shell scripts that are called by GRD/Codine.

> It is to control the processes and applications using programmed software, be¬

cause the processes must receive T-Net access information, detect its PID that

is required by the management software for reliable process control.

> It is to allow users and administrators to reliably abort applications with user

interfaces. The user interface is to communicate with the programmed soft¬

ware which is then to send abortion signals to the processes of an application.

> It is to provide the system and application configuration to all processes. This

information is to be transmitted by the programmed software during startup.

> It is to monitor the vital values of processes and applications. This information

is to then be stored by the programmed software in its MIB.

> It is to detect abnormal behavior in the processes and applications. The pro¬

grammed software is to detect time-outs of the processes (during startup, fi-

nalization, abortion and other management-relevant actions) and is to handle

them in accordance with policies.

> It is to detect and handle faults of processes and applications. The pro¬

grammed software is to detect process crashes (and their causes) and initiate

the application abortion.

COSMOS is to monitor the nodes, and detect and handle crashes. The programmed

software is to detect whether nodes are ready to accept new processes, or whether

they have crashed and applications with processes on that node need to be aborted.

COSMOS is to monitor the users as owners of the applications. The programmed

software is to detect the users (and further information) with the PID detection

process during startup.
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COSMOS is to provide information to the users and administrators:

> It is to show vital values of each node, SAN switch, SAN link, application and

process. The programmed software is to collect this data and provide the in¬

formation to user interfaces.

COSMOS is not to consume computation resources on the nodes. Inspired by the

model of GRD/Codine with one center and agents on the nodes, the programmed

software on the nodes is to be passive and is to react only when application proc¬

esses or the programmed software running on the center sends messages.

COSMOS is to provide graphical and text-based user interfaces. For efficiency

reasons, both user interfaces must be programmed software (instead of script-

based tools, e.g. Tcl/Tk) which connects to the programmed monitoring data col¬

lector and manager on the center.

COSMOS is to interface or overlap with other management tools where necessary,

without interfering with their tasks or exchanging data that might be inconsistent

with their MIB:

> GRD/Codine is to use the remote shell script provided by COSMOS for distrib¬

uting the application processes on the nodes.

> GRD/Codine is to use its own resource usage map to decide which slots to use,

but COSMOS is to check these slots as well because they are bundled with a T-

Net NIC channel. If COSMOS detects an inconsistency (e.g. already occupied

node slot), it is to abort this application before being started.

> COSMOS is to detect crashed or unavailable nodes, but it is not to boot or shut

them down.

> GRD/Codine and COSMOS are to detect application abortions or can trigger

them. Since the administrators detected that GRD/Codine tends to lose proc¬

esses, COSMOS must include a mechanism to reliably abort application proc¬

esses that may occupy slots.

COSMOS must include mechanisms for its own management:

> Shell scripts are to start, restart or stop COSMOS on the whole supercluster.

> The programmed software on the center is to detect unmanageable nodes.

> The programmed software on center and nodes is to deduct its own configura¬

tion from global configuration files.

To be honest, some of the points in this specification were missed from the first version,

since not all points had the same importance, or were not required in the first version.

Indeed, COSMOS evolved over three generations:

The first version was required as a prototype system at SCS and for the installation

of the Swiss-Tl at EPFL in January 2000. This version required only basic applica¬

tion management functionality (centralized startup and finalization support).

The second version was available for the inauguration of the Swiss-Tl in August

2000. This version included the complete specification list as presented above, ex¬

cept for the SAN monitoring and the graphical user interface.

The last version became available in March 2001 and included the complete

specification list, including SAN monitoring and the graphical user interface.

The initial specification list was created in December 1999 (for the first software ver¬

sion), with slight modifications and extensions being made between January 2000 and

May 2000 (for the inauguration version). After inauguration, the author created the
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specification for a second implementation of COSMOS that would have been used on

the Swiss-T2. After EPFL decided not to order this system, the author concentrated on

the third software version, adding the SAN management features and the graphical

user interface to the above specification.

During implementation, some of the points which were to be solved using scripts were

experimentally implemented in software (such as distribution of processes on the

nodes). Although the results of those experiments were promising, the initial scripting

solutions were used until the end. The main reason for this decision was that adding

those features to the software would not bring any benefits to the users.

5.3 COSMOS Design

The design of COSMOS follows the previously presented concept:

COSMOS uses the same «mental model» as GRD/Codine or SYSMAN, with a cen¬

ter application, agents on the nodes, and user interfaces:

> The users are used to this architecture and they accept it.

> Documentation and explanations are unnecessary because COSMOS works

similarly to the tools they are already used to.

> The design decisions taken by the other tools' developers were based on rea¬

sons, and there is no need to create something completely different if these de¬

signs work well.

The center is the central authority in the supercluster:

> It manages the applications and the process slots on the nodes.

> It detects node faults (such as disconnected node agents).

> It holds the central MIB in its memory.

> It is the central connection point for all user interfaces.

The node agents support the center as reliable partners in process management:

> They monitor the vital values of the node and FCI/MPI processes.

> They control all FCI/MPI processes running on the local node.

> They provide configuration data for FCI/MPI processes.

> They detect FCI/MPI process faults and abnormal behavior.

The SAN agent monitors the SAN switches and collects their vital values.

The user interfaces allow the users to browse the center's MIB and aborting ap¬

plications:

> The CLI is a text-based application that can be used from any shell.

> The GUI is a graphical application that requires a UNIX workspace.

The FCI/MPI applications are integrated into management using a shared library.
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The following illustration presents this six-component design of COSMOS:

Workstation Workstation

CLI User Interface GUI User Interface

Manager

Center

Node

Node Agent

Library

Appli¬
cation

SlotO

Manager

SAN Agent

Library

Appli¬
cation OS

Slotl SAN Switch

Figure 5.17: COSMOS component hierarchy (with COSMOS software in grey)

This illustration also presents one design decision, the «bottom up» connection strategy:

The library connects to the node agent, and the agents connect to the center, as well as

the user interfaces. Only the SAN switches are connected by the agents «top down»,

because the OS is unable to create connections autonomously. The reason for this strat¬

egy - which is the opposite of the connection strategy of all other known management

tools - is simplicity and security:

The center has more important tasks to do than connecting to all agents, which consumes

a lot of time and resources. Especially in fault cases, where nodes are unavailable, the cen¬

ter is forced to lose time that should be used for handling these faults instead of trying to

connect them. Additionally, the servants should go to the king, and not vice versa.

Malicious software can easily act as center and harm the operation if the agents are re¬

quired to accept center commands originating from incoming connections. Since the agent

accepts the center as the single management authority and knows how to contact it to re¬

ceive commands, malicious software cannot gain control over nodes or SAN switches.

The library connects upwards to the local node agent, and the GUI and CLI connect

to the center, so it seems logical that the agents should connect to the center as well.

In addition to the specifications described above, there were also several additional re¬

quirements for the design and implementation process of COSMOS:

The software design must allow extensions easily, thus allowing evolutionary steps («rapid

prototyping»). This increases the design time, but reduces total implementation time:

> Software redesign usually requires new implementation, whereas a design extension

allows the created software to be reused and only requires features to be added.

> The intermediate versions are fully functional and can be used by the users.

> For example, this approach allowed the SAN agent and GUI to be added to the COS¬

MOS design with only a few changes to the already existing software (center and CLI).

Use custom software onlywhere necessary, and use commodity software wherever possible:

> There are many established standard software packages and libraries that can be

used for free or come with the platform. There is no need to re-create these features.
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> Some of the standard libraries behave differently on different platforms (sock¬

ets, threads) and these differences must be hidden in «wrappers» - custom

software that can make these libraries behave identically between platforms

where needed by COSMOS.

> Some features could have been provided by use of standard software. In some

cases, the author did not select this path because he did not have enough

knowledge to adapt these standards for his own design (as with the MIB that

could have been solved with persistent SQL-based databases), and in other

cases the available software did not match the required quality (such as

COM/CORBA for communication between the software parts).

Less is more. Users prefer fewer features but ones which are practical and useful

and work well instead of a greater number of features which are hard to use (or

flawed) and will be seldom used anyway.

The following figure illustrates a simplification of the management architecture used in the Swiss-

Tl supercomputer, with the three main management toolkits SYSMAN (S) for node management,

GRD/Codine (G) for resource management, and COSMOS (C) for SAN and applications.

Workstation Workstation Workstation

User Interfaces

Managed

Components

Figure 5.18: Glueware management architecture on the Swiss-Tl with the three main man¬

agement applications SYSMAN (S), GRD/Codine (G) and COSMOS (C).

The center - as central authority in the supercluster - holds the management information base

(MIB). Its structure is created during start-up, based on the configuration files. During operation,

the center fills the MIB with data, which has been collected by the SAN agent and the node

agents, and of course with the data created by the center's operation as well. The MIB structure is

similar to SNMP, where data is stored and accessed in a tree-like structure as in the illustration

below. The MIB is stored in the main memory and is lost after the center is shut down or crashes.

Nodes (0) SAN£1) Applications (2)

Name(O) ...
SAN NICs (15) Name (0) Links {10) ID(0) Processes (10)

Name (0) Links (5) Status (0) ... ErrorRate (5) Node [0) Status 00)

Status (0) ErrorRate (5)

Figure 5.19: Basic hierarchical structure of the COSMOS MIB (see Appendix B.8)
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The design process was performed in December 1999, immediately after writing down

the specifications. Since the design was flexible and extendible, no major changes were

required for the second and third versions, after the specifications had been modified.

5.4 COSMOS Implementation

The implementation of COSMOS was performed between December 1999 and February

2001. It evolved in three stages that were also the three implementation milestones:

The first version was required by January 2000 for the prototype system installed at

SCS. Consisting of few nodes, it was used by the developers of T-Net and FCI/MPI. It

was also used on the freshly installed Swiss-Tl at EPFL in February 2000. Based on

the needs analysis, only the following components from Figure 5.17 were implemented:

> The center, with basic application management and node monitoring features.

> The node agent, with basic application management features.

> The application library, with all specified features.

The second version was required for the Swiss-Tl inauguration day on August

23rd 2000. The productive version required more features and components:

> The center was complete, except for SAN management and GUI support.

> The node agent was complete as specified.

> The application library, with some minor enhancements.

> The CLI for application monitoring.

The third version was installed on the Swiss-Tl in February 2001. Since EPFL did not

order the succeeding Swiss-T2 supercluster, there was no longer any need to create a

second-generation COSMOS, and the time saved was invested in completing COSMOS:

> The center demon was extended with SAN monitoring and GUI support.

> The node agent demon was slightly enhanced.

> The SAN agent demon was created for monitoring.

> The application library was already finished.

> The CLI was enhanced with SAN monitoring and application control.

> The GUI was created with some fancy features.

Although the six components of COSMOS evolved through these three versions, this

section describes the final version of the software as if it had been developed this way

straight from the beginning.

5.4.1 COSMOS Demons: Center, Node Agent and SAN Agent

In technical terms, the three COSMOS demons (center, node agent, SAN agent) have

similar functionality and behavior. This is the reason, why they share the same soft¬

ware framework and many parts of the source code. Additionally, such a shared design

also allowed implementation and debugging time to be saved.
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This demon framework design must cover the following basic functionality.

Reliable communication protocol with extendable message handling.

Safe multithreading and signal handling within the demon.

Internal interfaces for those parts that are different between the three demons.

Access to and storage of the global (center) or local (agents) MIB.

This basic functionality leads directly to a three-layer framework, as illustrated and described below.

MIB (Management Information Base) Layer

MIBAccess

Library

Management Layer

Functionality

Library

Manager
-J Thread

Communitatlon Layer

Connection

Manager

Message
Receiver

Message
Sender

Figure 5.20. Basic COSMOS demon structure

The MIB Layer includes the MIB itself and some access procedures.

The Management Layer includes those parts that differ between the demons.

The Functionality Libraries contain the management knowledge. There is one

library per subsystem that is managed by the demon. The library functions are

not only called upon by the associated manager thread, but also by other manager

threads and the threads of the communication layer.

The Manager Threads actively manage the components and MIB of the associated

subsystem. There is usually one thread per subsystem that is managed by the demon.

The Communication Layer takes care of all the socket-based communication of the framework.

The communication between the center and all agents is very important. This is the reason why a

lot of time was invested in creating an effective and efficient design and implementation of this

layer. The basis for this layer was a socket library created for a former version of FCI (for EasyNet),

with added features for reliable communication. It consists of the following three threads.

The Connection Manager that accepts incoming and creates outgoing connections.

> It creates socket connections for outgoing communication.

> It creates a socket that accepts incoming connections.

> All connections are checked regularly to see whether they are active or broken.

The Message Receiver that checks all active connections for incoming messages.

> It traverses all connections and checks for incoming messages.

> Incoming messages are checked and forwarded to the appropriate manager.

The Message Sender that sends queued messages through active connections.

> It checks all connections to see whether there are messages that need to be sent.

> New messages are sent immediately if the connection is active.

> Messages with a «time-out» acknowledgment are sent again with a «retry» flag.

> The thread can be activated by any manager thread when messages need to be sent.
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There would have been several commercial or open-source products available for use

with the communication layer (such as COM or CORBA), but there were some special

requirements that made a custom implementation necessary.

Broken connections must be able to be detected immediately. If an application or node

crashes, standard products need minutes or hours before they detect such a failure.

When problems arise, messaging calls block the calling thread for several seconds.

Since the threads have important things to do, the blocked time must be reduced

and the threads must be reactivated immediately when problems arise. Standard

products do not permit the reduction of timeout limits for messaging calls.

COSMOS uses a message format that allows quick content decoding. The standard prod¬

ucts also include such mechanisms, but they are of no additional benefit to COSMOS.

COM and CORBA (requiring C++) are not designed to be used in demons (requiring C).

It turned out that using available standard products would increase implementation

complexity and development time and would not add any measurable advantage.

5.4.1.1 COSMOS Center

The COSMOS center demon, called cosmos_center, is started on a front-end com¬

puter, and accepts incoming connections of the node and SAN agents, as well as the

user interfaces. It is the main authority that decides what is wrong or right.

There can only be one active center demon per supercluster. It performs the following

checks before start-up and aborts if one of these fails.

The center demon checks to see whether its own computer is listed as center in

the configuration files.

The center demon checks to see that no center is running on the local computer.

The center demon checks to see that no center is running in the supercluster.

The COSMOS center demon has the following structure.

MIB (Management Information Base) Layer

MIB Access

Library

Application Mgmt

Library

SAN Management

Library

Node Management

Library

Connection

Manager

Management Layer

Application

Manager

Communication Layer

Message
Receiver

Message
Sender

Figure 5.21. COSMOS center demon structure
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The MIB layer holds the complete supercluster MIB that is queried by the center de¬

mon itself and by the user interfaces. It is implemented as a hierarchical tree that could

be re-implemented using SQL-based relational databases.

The Management Layer of the center contains the following:

The Application Manager manages the applications running on the supercluster.

The Application Management Library contains the knowledge for managing applications.

The SAN Management Library contains the knowledge for T-Net switch monitoring.

The Node Management Library contains the knowledge for fault handling.

The Application Manager regularly traverses the active applications, checking their status:

The application is in the start-up process until all processes have started and

joined. If this start-up takes too long, some of the processes are lost or aborted

before they have joined. The application must be aborted after a predefined pe¬

riod of time to save resources.

The application is in the abortion process if the user (or GRD/Codine) sends an

abortion request or a process either crashes or detects a condition that requires

an abortion. The application usually saves the results for later recoveries to stor¬

age, but if the abortion takes too much time, the application is wiped out because

resources are spoiled.

The Communication Layer has some important functions, as there is no node or SAN

manager thread in the center demon.

The availability of the nodes is determined by the connection status to the node agent.

> If the node agent connects, the node resources are enabled for applications.

The center expects that the resources on the node are unused and free.

> If a node agent disconnects unexpectedly, the node is assumed to have crashed

and applications that had processes running on the node are aborted.

The monitoring data delivered by the SAN agent is inserted into the MIB.

The COSMOS center has a source tree size of about 1 MBytes (50 000 lines of code, of

which 30% is shared framework). The executable size is below 400 kBytes.

5.4.1.2 COSMOS Node Agent

The COSMOS node agent demon, called cosmos_agent, is started on each node com¬

puter, and accepts incoming connections of the application processes through the

COSMOS library. There can only be one node agent demon active per node computer -

a second instance would be terminated by the center demon.

The COSMOS node agent demon has the following structure:
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MIB (Management Information Bas«) Layer

MIB Access

Library

Application Process
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Communication Layer
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Figure 5.22. COSMOS node agent demon structure

The management layer of the node agent contains the following.

The Process Manager manages the application processes running on the node.

The Application Process Management Library contains the knowledge to man¬

age processes of parallel applications.

The process must follow a certain protocol to be accepted as a FCI/MPI application process.

It must connect to the node agent after being started on the node.

It must be authenticated as a valid FCI/MPI process within a period of time, oth¬

erwise the connection will be closed by the node agent.

> Using a special SHMEM procedure, it must discover its PID (for process con¬

trol, such as sending abortion signals).

> It must send the mpirun parameters, which are forwarded to the center.

The process must wait until the center returns the permission to start (with con¬

figuration data for FCI/MPI and T-Net) or aborts this start-up (either time-out or

blocked resources).

After start-up, the processes use barriers for global synchronization of FCI/MPI.

The processes start operation and continue, until they either send a finalization mes¬

sage on success, or until they send an abortion message if something went wrong.

The process manager traverses the active processes, and checks their current status.

Anomalies are immediately sent to the center which decides whether the application is

to be continued or aborted. If a process disconnects unexpectedly, the center is in¬

formed and aborts the application immediately on the whole supercluster.

The node agent demon could also connect to the SAN NIC driver, but since the drivers

and SAN NICs do not allow management actions, this functionality was not implemented.

The COSMOS node agent has a source tree size of about 1 MBytes (50 000 lines of code,

of which 30% is shared framework). The executable size is below 400 kBytes.

5.4.1.3 COSMOS SAN Agent

The COSMOS SAN agent demon, called cosmos_sagent, is started on a computer that

can access the SAN switches through the LAN and terminal servers. There can only be

one SAN agent demon active per supercluster - a second instance would be terminated

by the center demon.
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The COSMOS SAN agent demon has the following structure.

MIB (Management Information Base) Layer

MIB Access

Library

F=—^
[ MIB I

Management Layer

SAN Switch

Mgmt Library

Communication Layer
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Manager
o Message r~\
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Figure 5.23. COSMOS SAN agent demon structure

The management layer of the SAN agent only contains the SAN Switch Management Li¬

brary which contains the knowledge for monitoring the T-Net switches. There is no additional

thread (such as a «SAN Switch Manager») in the framework, since all library calls are made by

the connection manager and the message receiver threads. There would be a SAN Switch

Manager thread if the SAN agent were to do more than just monitor the switches, such as ana¬

lyze non-fatal errors and manage the T-Net switches, or support the center demon for full

coverage of the T-Net switch management. Since the OS of the T-Net switch can not reliably

support more than monitoring, the management part was not implemented for COSMOS.

The COSMOS SAN agent has a source tree size of about 600 kBytes (30 000 lines of

code, of which 50% is shared framework). The executable size is below 300 kBytes.

5.4.2 COSMOS Application Library

The COSMOS library, called libcosmos, a, integrates the application process into the

supercluster management. The library connects to the local node agent, authenticates

itself as a valid FCI/MPI process, and exchanges management messages.

It consists of a data structure that describes the application, as received by the center de¬

mon, and four simple calls. FCI/MPI has been re-designed to support the COSMOS envi¬

ronment, and other communication libraries (such as MPICH) can be readily adapted.

Integration of the processes into the management allows for full control over the appli¬

cations, including monitoring the applications and reliably terminating the applications

without orphaned processes blocking the supercluster resources.

The four COSMOS library calls are the following.

Cosmos_Init() initializes the data structures of the library, installs the signal

handler, connects the process to the local COSMOS node agent, authenticates the

connection, sends the startup request and waits for the response. The response is

parsed and - if the application is allowed to start - configuration data is returned

to FCI/MPI to open the SAN NIC device and initialize its own data structures.

Cosmos_Barrier() enters the process into a global barrier. The call returns when all

processes have entered the barrier and continue to work. Global barriers are used
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by FCI/MPI to synchronize management actions, such as opening the SAN NIC de¬

vice, setting up the SAN NIC registers or starting or stopping SAN-based services.

Cosmos_Finalize() informs the management subsystem that the process has fin¬

ished its job successfully and that the application is about to end. There is no time

limit between the first and last finalize call of the application processes.

Cosmos_Abort() informs the management subsystem that the process has de¬

tected a failure that requires a global abortion of the application. The processes of

the application are terminated by the node agents.

Additional calls can be implemented for the management of process groups (MPI calls them

communicators, the hardware designers multicast groups) such as creation, deletion and merge.

Also user-level calls are possible, such as calls that tell the management subsystem the comple¬

tion status of the application (such as «80% completed») or store text into the application log.

The COSMOS application library has a source tree size of about 300 kBytes (15 000 lines

of code). The library size is about 1.1 MBytes.

5.4.3 COSMOS User Interfaces

All previously presented components are invisible to the users and administrators. The

functionality operates in the background. The two user interfaces allow COSMOS to

step out of the darkness, and allow him to see what is happening or has happened. The

CLI was available from the first day, and the GUI was added at the end.

5.4.3.1 COSMOS CLI (Command Line Interface)

The COSMOS Command Line Interface, called cosmos_cli, can be started on any com¬

puter that is allowed to connect to the COSMOS center. The CLI has been implemented for

computers running COMPAQ Tru64 UNIX, Linux or Microsoft Windows NT. The center

has no limits with regard to the number of connected CLI applications, because its request-

based design creates low computing load and communication overhead on the center.

The CLI writes a prompt and waits for user entry. The CLI commands have a similar

structure to the COSMOS MIB. The first token specifies the management module (node,

san, and app, extended with the simple commands exit and help). The second token

specifies the entity, the third token usually a sub-tree of the MIB etc.

The entered command is parsed and sent as a MIB data request to the center. The cen¬

ter queries the MIB and replies with the data - except for the application abortion

command. The CLI waits for the reply which is parsed and printed in a readable format.

COSMOS : app

Number of applxcatxons: 1402

COSMOS: app 1 status

Applxcatxon 1: Status 4 (aborted)

COSMOS: app 1 rank 1 acause

App 1 Rnk 1: Recexvecl SIGSEGV (Segmentatxon Vxolatxon, programmxng Error)

Example 5.1: Some request commands of the CLI



152 COSMOS - The Implementation

Some data can be requested as bulk information, such as an overview of all currently

running applications or all information about a particular application.

COSMOS: app 0

Applxcatxon 0 ID 180388626474 (42/42)

Applxcatxon 0 Name . /inpxtest9

Applxcatxon 0 Path /usr/scs/nemecek/tnet/OS DEC UNIX

Applxcatxon 0 Owner 11067 (nemecek)

Applxcatxon 0 Barrxers 1

Applxcatxon 0 Created 13.03.01 16 44 23

Applxcatxon 0 Started 13.03.01 16 44 24

Applxcatxon 0 Barrxer 13.03.01 16 44 24

Applxcatxon 0 Fxnxshed

Applxcatxon 0 Status 2 (Started)

Applxcatxon 0 Sxze 2

Applxcatxon 0 Slot Host PID Txme Regxstered Txme Fxnxshed Status

Applxcatxon 0 0 gs3 800 i:
H ft'îl f\~\ ~\ £ • A A •

0 A c; +- -a T-+- £i.~t
}. Uj. Ul lu. 11 . c-1 ötartect

Applxcatxon 0 1 gs3 842 13.03.01 16:44:23 —. —. :
—

:- Started

Example 5.2: Request complete application information of the CLI

The CLI is simple to use and was very helpful for error and bug tracking by the admin¬

istrators, the communication library developers and the author. It not only consumed

few cycles on the center, but also required low bandwidth, allowing it to be used with

slow modem connections.

The COSMOS CLI has a source tree size of about 600 kBytes (30 000 lines of code). The

executable size is below 200 kBytes. Its manual can be found in Appendix D.

5.4.3.2 COSMOS GUI (Graphical User Interface)

One of the first requests of the Swiss-Tx project managers was for a graphical user in¬

terface with flashing lights and boxes, showing the current performance of the whole

supercluster. Although the CLI was effective for the administrators and users, the pres¬

entation of information as text was not satisfying and the GUI was created as the last

component of COSMOS.

The COSMOS Graphical User Interface, called cosmos_gui, can be started on any com¬

puter that is allowed to connect to the COSMOS center. The GUI has been implemented

for computers running COMPAQ Tru64 UNIX and Linux. The center has no limits in

regard to the number of connected GUI applications, but because it creates a lot of re¬

petitive traffic for on-line monitoring, only one or two should be used at the same time.

The COSMOS GUI has two threads: One thread handles the user actions and the other

updates the local MIB copy of the GUI. The MIB thread uses the available bandwidth to

the center efficiently by fetching only those parts that are requested by the user, and by

caching those parts locally that will not change anymore (MIB data of already termi¬

nated applications).

The Configuration tab is shown first when the GUI is started. The user can enter the

center name and port for connecting to the center, as well as the MIB update rate. Al¬

though a user name and password can be entered, this feature was not supported. The

other widgets allow the layout of the contents of the SAN topology tab to be configured.
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File

COSMOS GU
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Figure 5.24: COSMOS GUI configuration tab

In the Applications tab, the upper half displays the application records of the MIB and

the lower half shows the process information of the selected application.

* i

File
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242(42/42) 11067 (nemecek) 28 02 01 13 47 06 280201134720 Aborted 2 /mpitest9

342(42/42) 11067 (nemecek) 280201134736 Aborted 2 /mpitest9

442(42/42) 11067 (nemecek) 280201134744 Aborted 2 /mpitest9
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Figure 5.25: Applications Tab

Every application is written on one line and is updated if selected or if the update

thread detects a change of the COSMOS MIB and has downloaded the updated applica¬

tion records. In the lower half (process information), each line represents one process

and contains the rank number, the node host name, the process ID on that node, the

time of registration and termination, the current status and the abortion cause. The

context menu (accessed by clicking on an application with the right mouse button) al¬

lows the selected application to be aborted (after a confirmation request).
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The Nodes tab shows all nodes (with their status) in the upper half and their slots (with

their status and currently owned processes) in the lower half.

— -UI

File

COSMOS GU a x

Configuration | Applications [ Nodes SAN Switches | BAN Iopology | SAN History

# N ode Alias Status Number of Slots

5lebowski Ready

6sevenup Down

7 fargo Down
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11 genesis Ready

12gs0 Down

glotjSANNICJDjjipjjigjoj^rjarjygteajs,
0 042(42/42) OUsed

1 142 (42/42) 1 Used

|Cu____________e

Figure 5.26: Nodes Tab

The content on this page should correspond to the current status of GRD/Codine. This page was

the first page that was referred to by the administrators when applications began to be aborted

without any visible reason. GRD/Codine tends to lose applications, and schedules new applications

for start-up although the resources are already in use. This page allows the application currently

blocking the resources to be detected and the application to be manually aborted using COSMOS.

The SAN Switches tab shows all switches (with status, temperature and basic configuration)

in the upper half and their ports (with current status and monitoring data) in the lower half.

—-M|

File
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Configuration | Applications | Nodes [ SAN Switches SAN Iopology | SAN History
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3 Node gs3 3 0 0 0 0 OUp
4 Node janacek4 0 0 0 0 OUp
5 Node lebowski 5 0 0 0 0 OUp
6 Node sevenup 6 0 0 0 0 OOpen
7 Node fargo 7 0 0 0 0 OOpen
8 Node cc8 0 0 0 0 OOpen
9 Switch ses-1 9 0 0 0 0 OUp
10 Switch scs-1 10 0 0 0 0 OUp
11 Open Link 0 0 0 0 OOpen

Befresri

p____________

Figure 5.27: SAN Switches Tab
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The content allows numerical information about the current load of the SAN. This was the

first page that was inserted into the GUI after the SAN agent had been implemented. It en¬

abled information regarding the quantity of data being sent over the network links to be

displayed in absolute figures. This page was very important for the managers, since it made

it possible to see remotely that T-Net indeed allowed about 100 MBytes/s to be transported.

The SAN Topology tab shows the physical connections between nodes and switches. The

top selector allows the data set being displayed in the topology plane to be selected. The

possible selections are «Bandwidth [Bytes/s]», «Bandwidth [Packets/s]», «Retries [Packets/s]»

and «Status». The Refresh button at the bottom updates the topology plane immediately;

otherwise the data is updated regularly by the update thread (usually every 1 to 10 seconds).

Configuration | applications | Ëocies | SAN Switches | SftN Topology | SAN History |
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Figure 5.28: SAN Topology tab of the testing cluster
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Figure 5.29: SAN Topology tab of the Swiss-Tl
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The SAN switches are placed on the inner circle and the SAN NICs of the nodes on the outer

circle. The color of the nodes and switches identifies its current status (red means switched

off, green means ready). The lines between the switches and nodes represent links.

The width and color of the links vary depending on the data set and data value. The

small boxes in the links contain gauges that also represent the value.

For the bandwidth record sets, the line varies from blue (size = 1 pixel) when no

traffic is sent through the link, and red (size = 10 pixels) when the traffic is at its

maximum rate.

For the error rate record sets, the line varies from green (size = 1 pixel) when no

errors occur, and red (size = 10 pixels) when only errors occur.

For the status record sets, the line changes from green when the link is up to red

when the link is down.

Iimelite:10

-yiZSfS.

Iimelite:10

_ _ _ -^ _

limelite:11 'g' g ilK^ _ limelite:11

Figure 5.30. Varying line size and gauge fill for low (left) and high value (right)

The SAN History tab allows the data about the SAN to be viewed in the history view.

This view is very useful for users (e.g. when they want to analyze the communication

behavior of their applications) and for administrators (e.g. when they want to analyze

error rates in relation to communication performance).
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The top selector allows the data set being displayed in the topology plane to be selected.

The possible selections are «Bandwidth In [Packets/s]», «Bandwidth Out [Packets/s]»,

«Bandwidth Total [Packets/s]», «Bandwidth In [Bytes/s]», «Bandwidth Out [Bytes/s]» and

«Bandwidth Total [Bytes/s]». The Refresh button at the bottom updates the history plane

immediately; otherwise the data is updated by the update thread.

On the left-hand side, SAN ports can be selected which are then displayed on the right-

hand side. This selection is grouped by the SAN switches and organized as a tree. Every

port is described with its connected entity for convenient selection.

On the right-hand side, the history of the selected record set of the selected links is dis¬

played. The charts move from right to left, and show the most current data on the right

border. The red lines display data moving into the switch, the blue lines display data

moving out of the switch, and the green lines display retransmissions.

The current implementation stores 1000 sample points, which gives a total view of

about 10 minutes with a 5-second update rate. Since the COSMOS center MIB does not

include archived monitoring data, the content is lost when the GUI is closed.

The topology and history tabs impressed the administrators, developing team members, and

many administrators of other supercomputers. These two tabs (plus the application tab) showed

the importance and advantage of integrated, comprehensive supercluster management.

The COSMOS GUI has a source tree size of about 500 kBytes (25 000 lines of code). The

executable size is about 1.3 MBytes. Because of the local MIB copy with archive, the

GUI consumed up to 250 MBytes for the Swiss-Tl.

5.4.4 Implementation Summary

Does the implementation match the previously presented design, the specifications, the

requirements and the needs of users? The author believes so for the following reasons:

The implemented software uses the designed center-agent architecture and in¬

cludes the six software components of the design:

> The center can be run on either front-end computer.

All agents and the user interfaces are connected.

It holds the complete MIB and provides it to the user interfaces.

It is the only instance of management authority for applications.

It detects node faults and aborts applications if processes are lost.

> The node agents run on all node computers.

They only use a few resources of the node computer.

They allow the center to fully control all application processes.

They detect process faults and abnormal behavior.

They monitor the node and application processes.

They provide configuration data for the processes.

> The SAN agent runs on the opposite front-end computer from the center.

It provides the collected monitoring data of the T-Net switches to the center.

> The application library integrates FCI/MPI-based processes into COSMOS.

The processes are managed by COSMOS.
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The FCI/MPI implementation is closely coupled to and depends on COSMOS.

> The CLI is used for text-based monitoring and application abortions.

It enables control and monitoring to take place using any low-bandwidth connections.

It was available from the first day.

> The GUI is used for graphical monitoring and application abortions.

It presents the vital values of the whole supercluster graphically.

Commodity software libraries are used where possible (sockets, Qt, pthreads).

COSMOS is closely coupled to T-Net and FCI, using the same source tree.

Although designed for the Swiss-Tl, COSMOS could also have been used on the

Swiss-T2 supercluster without and changes being needed.

COSMOS interfaces well with the other management applications.

The development was finished on-time for each milestone.

The finished product was in use without problems or changes until the Swiss-Tl super-

cluster was taken out of service in late 2003. It matched the needs of the users and ad¬

ministrators who were satisfied due to having information about the SAN, additional

information about the applications that GRD/Codine could deliver, and a reliable tool

for checking resource availability and aborting applications.

5.5 Qualitative and Quantitative Evaluation

Chapter 3 introduced qualitative and quantitative evaluation tables. The architectures

that were presented in the same chapter were evaluated using these tables, as well as

the related work in chapter 4. It is therefore only fair to also evaluate COSMOS using

these tables.

Criteria Value
System Size [Nodes] (+ 1 Switch per 4 Nodes)

100 1000 10 000 100 000

Required bandwidth for 1 Hz 9.2 kB/s 92 kB/s 920 kB/s 9.2 MB/s

monitoring (92 B/Node) 1 kHz 9.2 MB/s 92 MB/s 920 MB/s 9.2 GB/s

Duration startup/shutdown* 10 s/Comp. 21 min 3 hrs 1 day 14 days

Duration OS download* 30 s/Node 50 min 8 hrs 3 days 34 days

Duration group creation* 0.1 s/Comp. 13 sec 2 min 21 min 3 hrs

Duration process spawn 0.5 s/Node 1 min 9 min 83 min 14 hrs

Duration fault detection 2s 2s 2s 2s 2s

Duration config change* 1 s/Comp. 2 min 21 min 3 hrs 1 day

Table 5.4: Quantitative evaluation table for COSMOS (estimated values have an asterisk)

The monitoring data message that the SAN agent sends to the center has a size of

2 936 Bytes for the Swiss-Tl, leading to 92 Bytes per node (32 nodes, 8 T-Net switches).

As the T-Net switches can only send one monitoring message per second, there is

enough bandwidth (using Fast Ethernet) for up to 100 000 nodes. If node monitoring

(with CPU usage and SAN NIC monitoring) were to be implemented, the monitoring

data size would grow to 150 Bytes per node, which would limit the system size to some
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10 000 nodes, which is equivalent to the size of the current ASCI superclusters. The ef¬

ficiency of COSMOS monitoring is good.

The spawn mechanism uses a remote shell script that requires 0.5 seconds per node (15

seconds on the Swiss-Tl, estimated 1 minute for the Swiss-T2 with 126 nodes). The es¬

timated 9 minutes for the system with 1 000 nodes was already the maximum that the

users would accept. Larger systems requiring hours using this mechanism would either

need a more sophisticated script that scales, or another mechanism. An experimental

system was created that used the node agent for spawning (instead of the remote shell

script) by request of the center. Such a mechanism could spawn the application simul¬

taneously, and would have been implemented for the Swiss-T2.

Since COSMOS uses persistent connections, it immediately detects disconnected agents

and processes. Faults are detected within a few seconds, independent of system size. The

COSMOS connection strategy therefore permits much lower fault detection duration than

the standard glueware approach, where components are usually «pinged» sequentially.

The other values in the table have been estimated (marked with an asterisk), since the

functionality was not implemented in COSMOS. If the functionality were to be imple¬

mented, it would have the following behavior:

System startup or shutdown would happen through terminal servers, using sys¬

tem console for nodes, and remote power switches for the T-Net switches. Since

the communication is text-based, each component would require about

10 seconds for the power control. If the components were controlled serially, the

duration would increase linearly with size.

Downloading a new OS to the nodes (or a new firmware to the T-Net NICs or

switches) would be done by saving a new image to the node's storage. This proc¬

ess would take about 30 seconds per component. Since the bandwidth of the cen¬

ter (or the computer where the image is stored) is limited, the number of concur¬

rent downloads would be limited, so the download would be serial and the update

time would grow with system size.

The creation of a group would trigger two different processes in T-Net: The cal¬

culation of new routing tables for all switches, and the updating of the «allowed

destination ID table» on the NICs. The time for routing table calculation and up¬

dating the configuration data would grow with system size.

Estimating the time for updating the configuration would be difficult, because the

number of affected components and duration per component would differ from

one update reason to another: One broken node only requires applications to be

restarted, but a broken SAN switch may require all routing tables to be updated

and many nodes to be shut down.

These values show that COSMOS is only reasonable for superclusters with some hun¬

dred nodes. The typical tasks do not scale, but with additional proxies and more fea¬

tures implemented into software (instead of scripts), the tasks would scale well. Assum¬

ing one proxy per 100 nodes (or 100 proxies) and additional implemented features, the

table would look as follows:
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Value

System Size [Nodes] / Proxies / Proxy Layers

Criteria 100 1000 10 000 100 000

0/0 10/1 100/1 1010/2

Required bandwidth for 1 Hz 9.2 kB/s 92 kB/s 920 kB/s 1 MB/s

monitoring (92 B/Node) 1 kHz 1 MB/s 1MB/S IMB/s IMB/s

Duration startup/shutdown* 10 s/Comp. 21 min 21 min 21 min 21 min

Duration OS download* 30 s/Node 50 min 52 min 57 min 60 min

Duration group creation* 0.1 s/Comp. 13 sec 13 sec 13 sec 13 sec

Duration process spawn 0.5 s/Node 1 min 1 min 1 min 1 min

Duration fault detection 2s 2s 2s 2s 2s

Duration config change* 1 s/Comp. 2 min 2 min 2 min 2 min

Table 5.5: Quantitative evaluation table for COSMOS with assumed proxies

The system with 100 nodes does not need proxies, and systems between 1 000 and

10 000 nodes only need one layer of proxies. The system with 100 000 nodes has one

lower layer with 1 000 proxies and one upper layer with 10 proxies. The proxies would

collect the monitoring data and only forward statistical data to the center, which would

be limited to 1 MBytes/s. The user interfaces would connect to the proxy to get full

monitoring data coverage - or at least as much as their network connections can bear.

The spawning mechanism could take advantage of the proxies. The remote shell scripts

could be executed by the (lower level) proxies in parallel with 100 nodes per proxy,

leading to the one minute spawning time.

In addition the estimated values take advantage of the proxies, since the tasks that are

performed by the center are now distributed to the (lower level) proxies which handle

their 100 connected nodes:

Since each proxy has 100 nodes to manage, system startup or shutdown would

happen within 18 minutes (with 10 seconds per node).

Downloading the new OS to the nodes would happen in two phases. First, the OS

would be downloaded to the proxies, and then the proxies would download the

OS to their agents. With efficient programming, downloading the OS to the prox¬

ies would grow in logarithmic scale to the proxy count in each layer. Downloading

the image from the (lower level) proxies to the agents would take 50 minutes. The

sum of these two phases would be about one hour.

If the calculation of new routing tables and configurations were to be delegated to

the proxies (only asking the center for permission to perform the update in the

associated nodes and SAN switches), these tasks could be massively accelerated.

If the center was required to calculate and distribute these changes, the proxies

could not improve the figures of the previous table.

The quantitative evaluation table shows that COSMOS scales well up to a system size of

about 1 000 nodes without proxies. With proxies, it would also be possible to use COS¬

MOS for systems of some 10 000 nodes.
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Criteria Quality 1 Comments

Monitoring Synchronization 0 j Available for node, SAN and application

Monitoring Context 0 1 Available for node, SAN and application

Development Time & Cost + 1 Quickly implemented

Management Overhead + 1 No additional hardware and software

Reliability & Availability - j Center is single point of failure

Scalability 0 1 Efficient, requires proxies for large systems

Security & Vulnerability 0 j Authentication available and stable

Flexibility - 1 Supports UNIX/Linux, but T-Net only

Table 5.6: Qualitative evaluation table for COSMOS

Since monitoring only covers SAN, nodes and applications, the synchronization and

context is only available for these subsystems. Monitoring of the other subsystems (and

performance monitoring of the nodes) is available with other tools, but without context

and synchronization to COSMOS. The flexible design of COSMOS would have allowed

further coverage, but was not required.

The development efforts for COSMOS were very low. No additional computers were

used for COSMOS, because the two front-end computers were required for the storage

subsystem. The node agent only consumed few resources on the node, so the overhead

caused by COSMOS was very low as well.

The center is the single point of failure - if it crashes, the whole supercluster will be

blocked. Although the center of the Swiss-Tl crashed only twice during the full opera¬

tion time, the limited availability and reliability is the weak point of the design. For lar¬

ger systems (such as the Swiss-T2) a master/backup strategy with persistent database

would have been necessary.

For systems of up to some 100 nodes, the system is efficient enough as shown above,

but for larger systems of some thousand nodes, proxies are required, thus increasing

the scalability. If proxies were inserted into the design, the user interfaces would not

only connect to the center, but also to the proxies to download current monitoring per¬

formance, since the center would then only store archived data for statistical reasons.

The design removed much potential vulnerability, making the management safe, but

more features would be required if COSMOS were to be turned into a professional

product (for example message data encryption, user permissions).

COSMOS was designed for T-Net SAN products exclusively, and implemented for

Linux and UNIX. On the one hand, these limitations reduce the flexibility in supported

products, but on the other hand, the limitations were selected intentionally because

COSMOS is research management software used for research platforms, where no

flexibility is required. Of course, this reduction also reduced the development time.

The qualitative evaluation table shows that COSMOS performs a little bit better than the

usual glueware design approach, due to the fixed destination platform and available software.
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Criteria Quality 1 Comments

Design, Installation & Configuration - 1 No support

Power Management Implementation - 1 Script-based, slow and unreliable

Monitoring Transport to User Interfaces + j Efficient transport, Cache MIB in GUI

Process Groups / Routing Tables Creation - 1 Not implemented

Application & Process Control + 1 Integrated in COSMOS

Detection & Handling of Faults 0 1 Fast detection, but hardcoded handling

Table 5.7: Typical tasks evaluation table for COSMOS

The support for typical management tasks is low, since many different tools are used

which are not integrated into one user interface. Design, installation and configuration

were fully manual processes without any support from COSMOS and the other man¬

agement tools.

Power management was slow and unreliable using shell scripts, but this was not a

problem because the Swiss-Tl was small and the power was seldom switched on and

off. Implementation into software would increase reliability and performance, so in this

point, it would be possible to increase the quality grading to a «+».

The problem of transporting monitoring data from the center to the user interfaces is

very efficiently solved in COSMOS, because the GUI and CLI each contain partial cop¬

ies of the system MIB. The user interfaces only fetch the MIB data from the center that

is requested by the user. To reduce the network traffic further, the user interfaces only

fetch MIB data that is already available locally for a second time, if there is a chance

that the data has changed.

The efficient implementation of MPI groups requires adaptations to the routing tables

of the SAN switches. Since this feature was not reliably available for the T-Net

switches, COSMOS did not support the management of MPI groups and routing tables.

If hardware-based multicast is not implemented, the message sender must send the

message to each destination individually - which is not a serious problem in small sys¬

tems such as the Swiss-Tl. Because the calculation of new routing tables (in case of

faults or the creation of groups) is simple, this feature could be added later which would

increase the quality grading to a «+» in this point.

Since COSMOS was built for managing applications and their processes, this functionality

was well covered by COSMOS and fully integrated. The detection of faults was also well

integrated, but their handling was limited due to the unreliable detection of T-Net faults.

The evaluation table of the typical tasks shows that COSMOS covers the features de¬

scribed by the specifications very well.
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5.6 COSMOS Experiences

COSMOS was installed on the following systems:

The Swiss-Tl supercluster at EPFL with 33 nodes (Compaq Tru64 UNIX).

The Baby-Tl supercluster at EPFL with 8 nodes (Compaq Tru64 UNIX).

The T-Net test and development system at SCS with 12 nodes (UNIX and Linux).

The Intercept test and development system at SCS with 24 nodes (UNIX and Linux).

COSMOS with its user interfaces has some features that were highly appreciated and

well used by the users and administrators:

It is very stable and reliable. While hardware, firmware and the operating system

caused the majority of problems at the beginning, lost processes of the resource man¬

agement troubled the days of the administrators during the productive phase. It was

very seldom that the system had to be rebooted due to COSMOS-originating problems.

COSMOS is very easy and straightforward to use, requiring only a few minutes in¬

troduction to the system configuration and the usage of CLI and GUI.

It facilitates a quick topological view to check whether all nodes and switches are

present or not. Faults are immediately detected (within the TCP/IP-based keep-

alive functionality) and shown.

Since the SAN link technology was new, the fact that some cables were weak only

showed up under full load with higher retransmission rates than the other links.

The monitoring mechanism allowed those bad cables to be detected and they

were replaced during scheduled downtimes or unexpected downtimes caused by

other sources.

Because GRD/Codine regularly lost application processes, subsequently spawned

applications waited for the blocked slot resources and were aborted after a time¬

out. Those processes could not be aborted using GRD/Codine. COSMOS allows

immediate and reliable abortion of all lost processes within a second - this feature

was regularly used on the Swiss-Tl.

COSMOS logs the abort reasons. The administrators could check the application

termination code (successful or unsuccessful). If a user had too many abortions,

he was forced by the administrators to ask for development support or attend

programming courses.

The strength of COSMOS is that the process is connected to the COSMOS node

agent only. All other management attempts of MPI are based on global communi¬

cation, where all processes have open connections to all other processes of the

same application, and leading to a high inter-process communication overhead.

The execution of the MPI test suite was accelerated as soon as COSMOS became

available. The distribution, finalization and abortion process is much faster than

the previous FCI-internal solution using global socket-based communication.

In combination with the other management tools of this glueware software architecture,

the supercluster was well manageable and efficiently used for many applications, in-
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eluding the calculation of the optimal design of the high-performance racing yacht Al-

inghi (winner of the America's Cup 2003) [Saw02].

Other parallel applications that were executed on the Swiss-Tl include industrial flow

simulations [VosOO] based on parallel discrete element methods [SCa99] or smoothed

particle hydrodynamics [SCHOO], structural mechanics simulations [VolOO], molecular

dynamics simulations of modulated crystalline structures [PCB02], and many more.
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One of the problems of being a pioneer is you always make mis¬

takes and I never, never want to be a pioneer. It's always best to

come second when you can look at the mistakes the pioneers made.

Seymour Cray

The successful supercomputer architect Seymour Cray preferred not to be a pioneer. He

preferred analyzing existing solutions, improving their advantages, and reducing the ef¬

fects of their disadvantages. He was not the first to use vector processing units, symmetri¬

cal multiprocessors, or massive-parallel architectures - but his supercomputers were al¬

ways the fastest systems available at the time. The only problem with the above strategy

is that existing solutions need to exist and be available. There was no existing solution for

Conrad Zuse's problem of repetitive, boring civil engineering calculations and so he unin¬

tentionally invented the first computer to be used for scientific calculation.

Figure 6.1: Supercomputer architect Seymour Cray (1925-1996) who refused to be a pio¬

neer (left), and civil engineer Conrad Zuse (1910-1995) who invented the modern computer

Pioneering is exploring undiscovered areas: The goal is known, but no roads lead to this

goal as yet. The pioneer must select a path without knowing whether it leads to the

goal, if it is dangerous, or if there could be more efficient paths. The joy of being a pio¬

neer is the freedom of choice, being first, earning fame. Everybody knows who discov¬

ered America, who invented the light bulb, who was the first man on the moon - but

few know who was the second, the «optimizer», the successor.

Due to the dissertation project setup, this dissertation presents two pioneering works:

It describes how to build comprehensive management software for superclusters.

It presents the first management software that tightly integrates applications.

165
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This chapter not only presents the achievements, the contributions to the supercomput¬

ing community, the outlook into the future and some personal experiences, but it should

also transmit the author's sense of pride and fun of pioneering from himself to the reader.

6.1 Achievements

The basic achievements of this thesis are the research in supercluster management, pre¬

sented in chapters 1 to 3, and the creation of COSMOS, presented in chapter 5. Both in¬

clude important achievements, which are simultaneously contributions to the community.

A pile of hardware does not make a supercomputer - some «magic» is required to

make it behave as one entity. This «magic» is management software as presented

in this dissertation, and this dissertation proves that system management soft¬

ware is mandatory. The proofs are presented in the sections 1.6, 2.1, and 2.4.

The thesis is the first complete research about comprehensive and scalable

computer-aided management of large commodity parts-based supercomputers.

No other document is known to the author where this issue of supercomputing

has been presented in this amount of detail, and illustrating that management is

more than just a «tool» that is nice to have.

For all those readers who want to create management software for superclusters,

chapter 3 contains blueprints of architectures with the following characteristics:

> The architectures are hierarchical, with managers («centers») at the top and

managed components (running «agents») at the bottom.

> The architectures use scalability-enabling devices («proxies») if the system

size or administrative requirements exceed limits. These proxies can be cas¬

caded in several layers, and they can also serve as data aggregation devices

for monitoring data.

> The architecture can be made highly available with master/backup or reliable

cluster mechanisms, which are implemented in the centers and proxies.

> The parallel application is made manageable with a library that attaches the

application closely to the management.

> The user interfaces connect to the center and - if available - to those prox¬

ies that can provide the on-line monitoring data that the user wants.

> The management software is modular and allows all subsystems to be integrated.

The supercluster management software «COSMOS» which the author created for

the Swiss-Tl supercomputer, has the following characteristics:

> Although COSMOS was developed in 2000/2001, it is still in use today, because

it is easy to use and maintain, and additional functionality is easy to implement.

> COSMOS has only crashed twice during its 3% years of operation, once be¬

cause of a programming error, and once because of an unscheduled OS up¬

grade. Indeed, COSMOS has been proven to be the most reliable and stable

management application available on Swiss-Tl.

> COSMOS is very efficient: The resource consumption of the center was low (1

CPU hour per week), and that of the node agent was also very low (about 5

CPU seconds per week).
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> The tight integration of the application management allowed for previously

unavailable features. Effective system management therefore requires ap¬

plication management.

> COSMOS was created by the author within 15 months, including SAN agent and

GUI that were added to the finished design within 1 month of being requested.

> The intuitively selected architecture and design (center, agents, library, GUI

and CLI) proved to be correct according to the research presented previously.

> Only commodity software technologies were used, except for the GUI that uses qt.

> The topology and history tabs of the GUI include innovative presentation

and utilization, which allows problems in the supercluster to be seen quickly.

Indeed, the GUI was admired by both the administrators and Prof. Gunzinger.

The author is proud to announce that all presented achievements were executed by

himself, although influenced by his examining professors, team members, research of

other software developers (such as SNMP or supercomputer management software), or

other scientific areas (such as human resources, psychology, physics, and arts).
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Figure 6.2. The COSMOS GUI with the two favorite monitoring data presentation tabs.

The topology tab with all nodes, switches and links with its status and performance (left)

and the history tab where the links to be shown can be selected in the left pane (right)

Although COSMOS was previously considered to be a prototype for second-generation

management software, it was a proven success and used by many confident administra¬

tors and users.

Indeed, all software and hardware that was designed and developed by ETHZ and SCS

for the Swiss-Tx supercomputer project was very successful. This fact shows that Swit¬

zerland would be a major player in the supercomputing community if the «critical

mass» were to be exceeded, if Swiss-based companies could deliver products and tech¬

nologies all over the world, if commodity supercomputing would really become a «com¬

modity» and the major players in computing (such as SUN, SGI, HP or IBM) would not

try to suppress technologies and products of organizations that are not affiliated with

their companies.
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6.2 Inventions and Contributions

If software solves technical problems and has technical or physical effects, it can be

protected with patents, together with the methods that lead to the creation of this soft¬

ware. Integrated management software for superclusters complies with these condi¬

tions, and for this reason it can be patented, together with the user interfaces that con¬

trol the supercluster.

The author believes that the following four inventions (all of which have been pre¬

sented in this dissertation) would be worth protecting with patents:

This dissertation presents a method showing how effective and efficient manage¬

ment software for supercomputers that contain mostly commodity off-the shelf

components could be created. This method includes the following two discoveries:

> The «Supercluster Lifecycle» (presented in 2.2) with its three phases «Design»,

«Installation» and «Operation» shows that there must be at least three software

products (each serving one phase) with a common MIB for comprehensive

management software.

> All management functionality has a hierarchy as presented in the «Functional¬

ity Pyramid» in 2.3.2, which is inspired by Maslow's pyramid of self-actualiza¬

tion. If functionality of a certain layer is required, all functionality of the layers

beneath must be implemented.

The scalability-enhancing proxy as presented in 3.3.5 is an innovation, since it

serves not only as a communication collector/distributor for the center and

agents, but also as a (monitoring) data aggregating entity, delivering statistical in¬

formation to the centers and all information on-demand to UI applications.

The inverted connection strategy (the agents connect with the center/proxy instead

of vice versa) reduces communication overhead in the center/proxy and closes an

important security hole: Malicious software acting as managers cannot connect to

the agent and create problems that are hard to detect by the center or proxy.

The integration of the application management into the system management

makes the supercomputer management complete. This integration of software

into mainly hardware management is new and allows many new features to be

accessed by the users and administrators.

Fault handling

Temporary configurations

Configuration enforcement

Monitoring and fault detection

Power state control

Management access to each component

Management information base (MIB)

Figure 6.3: Two methods that lead to effective and comprehensive supercluster manage¬

ment: The lifecycle with its three phases (design, installation and operation, left) and the

management functionality pyramid with the hierarchy of the provided functionality (right)
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As soon as the information about inventions is published, the possibility of protecting

them with patents disappeared. Since this dissertation has been published prior to any

patenting efforts - and the author is not going to perform any - they have become con¬

tributions of the author to the supercomputing community.

The author hopes that these contributions will lead to many management software im¬

plementations being run on superclusters worldwide with civil applications.

6.3 Looking to the Future

No crystal ball is necessary to foresee the future of supercomputing:

More supercomputers containing commodity parts only will become available.

The system size will increase towards millions of nodes.

The system performance will reach some PFLOPS in a few years time and some

EFLOPS a decade later, with an MTBI of some minutes or seconds.

There will be commercial providers of supercomputing resources to the public, and us¬

ers from all over the world will be able to submit their jobs via the internet («GRID»).

With the experience gained through research and COSMOS presented in this disserta¬

tion, it can clearly be seen that management is the key: Without system management

software, the supercluster is only an inefficient and ineffective pile of hardware,

whereas the addition of fully integrated management software gives the supercluster

the self-consciousness that it needs.

This required self-consciousness will not come from itself, but will require two efforts:

The first effort is that of creating the management software itself. This effort can

be performed by research teams at universities, open-source programming teams,

or developers at supercomputer integrators or manufacturers. This dissertation

should give those teams the knowledge of how to create this software.

The second effort is that of creating hardware and software that can be smoothly

integrated into superclusters. This must be done by the component manufacturers,

by adding features that enable comprehensive management of the component.

This section therefore contains two parts: The first part shows how COSMOS (or its

successors) could be turned into comprehensive system management software, and the

second part gives some hints how commodity hardware and software could be en¬

hanced for manageability.

6.3.1 Improving COSMOS

COSMOS is a working prototype - nothing less, but also nothing more. Fredrick P.

Brooks once stated «plan to throw one away - you will, anyway» [Bro75]. Although

much work and pain was invested in the development of COSMOS, it should be

«thrown away», since the gained experience will allow a successor system to be built.
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What would the author do today were he asked to create supercluster management

software - or what would he suggest to the developers if he were asked for his opinion?

The following list summarizes the architecture, design and implementation decisions he

would take or suggest.

State-of-the art supercluster management software must have the integrated

architecture as presented in 3.3.3. The Swiss-Tl experience shows that cur¬

rently available management software for individual subsystems is unreliable,

hard to use, and does not scale. Non-integrated or glueware architectures will

therefore fail.

The design must include high-availability mechanisms for managers as pre¬

sented in 3.3.4. The supercluster owner loses money if the system management

service is unavailable. For small systems, the master/backup mechanism is suffi¬

cient and simple to implement. Larger systems require the «reliable cluster»

mechanism that balances the workload over all members, which is harder to im¬

plement, but scales better and is more reliable.

The architecture must include proxies as presented in 3.3.5 if the system

size exceeds 500 nodes per center or high-speed monitoring is required.

More nodes per center increases communication overhead and response time,

and more than 4 000 nodes per center is not possible with current UNIX imple¬

mentations without recompiling the kernel.

The product must include software for design and installation of the super-

cluster. Creating basic configuration data manually is not only inconvenient, but

also often a source for inconsistency errors that are hard to find and to solve. One

central MIB, which is fed by design software, and is the source for basic configu¬

ration data of all components, reduces the setup and installation time by at least

one order of magnitude.

Integrate the most important subsystems only, but integrate them com¬

pletely. The most important subsystems are nodes (including the inserted SAN

and LAN NICs, storage, and OS), SAN (switches), resource («batch manage¬

ment»), and application management. The other subsystems (LAN, storage) are

often only manageable with proprietary applications of the manufacturers - often

protecting business secrets or security mechanisms.

Use standardized and open-source products for implementation. Modularity

and communication should be implemented using an object-orientated compo¬

nent library (DCOM or CORBA), visualization should use widget libraries (qt or

others), reporting should be implemented using a reporting tool (such as CUBE or

Crystal Reports). There are many standardized products and technologies that

can be integrated into a professional product. The complexity of integrating these

technologies is more than compensated for by the time gained if the functionality

need not be implemented by the developers.

Create a structured scripting language for describing management actions.

Administrators and users are used to having scripts for various tasks. Fault and

trap handling must not be implemented using hard-coded actions, but in a way

that allows the standard management actions to be adapted. This is only possible

if a script language for describing those actions is available, and the management

software includes an interpreter for these scripts.
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The MIB must be implemented as a SQL-based database. This has the admin¬

istrative advantage of the MIB to also be made available offline, when the COS¬

MOS center is down or has crashed, or after the supercluster has been removed.

The statistical long-term data would have been of particular interest to the ad¬

ministrators, users - and the Swiss-Tx project managers. The user interfaces are

able to access the MIB directly without consuming processing time and/or com¬

munication bandwidth to the center.

Create GUI and shell commands as user interfaces to the management. Since

human beings are visually driven, the supercluster should be managed graphi¬

cally and a fancy GUI must be available from the first day. As UNIX users are

used to creating and applying shell scripts, the user interface should also include

many shell commands, which would also be useful if only slow connections were

available. The CLI as for COSMOS is not necessary.

The biggest problem of designing management software for supercomputers is the en¬

vironment for testing. It should be big enough that scalability and concurrency prob¬

lems can occur, leading to a test supercluster of at least 64 nodes. COSMOS was tested

on a small system with four nodes, which was concurrently being used by the develop¬

ment teams of T-Net and FCI/MPI. In-depth testing was only possible after the installa¬

tion of the Swiss-Tl supercluster at EPFL, which lead to insomnia for the whole devel¬

opment team between installation and inauguration day. The development team must

insist on having exclusive access to a homogenous testing environment on-site.

6.3.2 Work for «the Others»

Management software can only manage what is made manageable. All the hopes that

are put into management software concerning increasing MTBI, scalability and func¬

tionality, as well as decreasing vulnerability and complexity, depend on the capabilities

of the hardware and software that is used in the supercluster. This dissertation as¬

sumed that these components allow full manageability, but the reality is different. Many

obstacles prevent the fulfillment of these hopes, and it is not in the hands of the man¬

agement software developers to remove these obstacles.

The manufacturers of the «commodity off-the-shelf components» also have some work

ahead of them, to turn commodity supercomputing into a full technological and economi¬

cal success. The following is an incomplete «wish list» aimed at those manufacturers.

Make the components easily and completely manageable. Do not hide any in¬

formation, make the component-internal MIB completely accessible to the man¬

agement agents, allow every single feature and control action to be accessed by

the agent. The following list shows some examples where such easy and complete

management is not yet possible.

> If the memory subsystem corrects errors by itself, the error rate must be made

available, so that the administrators can replace memory modules during

scheduled downtimes if they make too many «non-fatal errors», before the

node causes a costly application abortion or the proxy/center causes an expen¬

sive supercluster downtime. Fatal faults are almost always preceded by ab¬

normally high «soft error» rates.
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> Many computers cannot control their own power status. Low-cost computers

cannot even be switched on or off remotely. There must be a permanently

available computer-internal management mechanism that allows at least se¬

cure power management of the computer, e.g. in the LAN NIC.

> The management software of many hardware parts often accepts telnet con¬

nections only, with text-based command line interfaces (such as most UNIX-

based servers for power and boot control). These interfaces cause complex

codes and much overhead in the system management software. There must be

a socket-based message protocol that allows management messages to be sent

and received without complicated interpreters.

Design the hardware for easy maintenance. Especially hardware for 19" racks

must be designed for easy utilization, access and replacement without tools.

> Replacing parts should be as simple as replacing the light bulb in a lamp, noth¬

ing more than pulling out a drawer, opening a hood with one finger, grabbing

the defective part, putting in the new part, closing the hood and pushing the

drawer back into the rack.

> All connectors must be on the same side: On the back. Terminal servers usu¬

ally have all connectors on the front, whereas the nodes have all connectors on

the back. Connecting console cables to nodes is a ridiculous task if many racks

are standing side-by-side and the installer has to walk many meters around

those racks to switch sides.

Design operating systems and all software for easy maintenance. It should be

possible to create a complete software image that can be downloaded to the node,

without the need for complex configuration adaptation tasks for each individual node.

> Installing an OS upgrade on a supercluster should not include the modification

of many configuration files on each node. Download an image, unpack the im¬

age on the shadow disk of the node, reboot the node from the shadow, check

the operation, duplicate the image from the shadow to the productive disk and

reboot from the productive disk. That should be all that needs to be done.

> Installing new software on the supercluster must be non-interactive and non¬

destructive, must not require configuration file adaptations, and must be easy to

de-install. Since software installations happen more often than OS upgrades, they

must be faster and easier to perform than the OS installation described before.

Apply established product and management standards. Although innovations

hardly correspond to existing standards and bright ideas cannot be put into stan¬

dardized frames, it must be possible to manage everything with standardized

management software. Innovative technology cannot be used in superclusters if

they cannot be managed by the system management software. As mentioned

above, glueware or non-integrated management software architectures are use¬

less, which disqualifies products with non-standard management architectures.
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6.4 Personal Experiences

If supercomputing allowed products and technologies for time travel to be created, thus

breaking physical laws, and enabling mistakes in global and personal history to be un¬

done, the author would travel back in time and explain the following to his past self:

Tell the Swiss-Tx project managers the importance of system management. They

were wrong to expect system management software to be a small tool to manage highly

sophisticated and autonomous hardware. Since integrated management for super-

clusters was new, they could not know any better. The development time for T-Net and

FCI would have been much shorter if COSMOS had been developed as an equal partner

in parallel with a larger team of 2 to 3 people. Global management features would have

been solved in COSMOS instead of in the hardware, which would have led to more fea¬

tures and reliability in less time.

Time invested in specification and design is not lost, but re-couped 10-fold. Every

minute saved in the design process is paid for with one additional hour of implementa¬

tion and testing time. Although there was a need for working prototypes and not

enough time for the design process, many weekends and nights of work could have

been spent on other tasks. On the other hand, many of the most creative and unortho¬

dox solutions were the result of this pressure.

There is no such thing as a single solution, and if there is thought to be, it will

turn out to be the wrong solution. Heading in a direction where multiple solutions are

expected is a safe bet, since one of them will certainly work. Immediately implementing

the only expected solution is dangerous, since it will surely be found to be wrong at a

later stage, such as during implementation or testing. A spiral path around possible so¬

lutions, evaluating them and selecting the most promising one, is less efficient but more

effective, whereas a direct selection of the «only solution» always turns out to be more

efficient but less effective.

Use available commodity products that simplify design and implementation. It is

OK to use standard products in an academic project in order to shorten development

time. It may take more time to integrate these products into the design than creating an

own solution, but the gain is made by using established and working modules. This is

especially true for databases, transaction-like communication and thread-safe data

handling in queues and lists. Using qt for the GUI allowed its development time to be

massively reduced.

Implement a graphical user interface from day one. Since people are visually driven,

graphical user interfaces are very important. The confidence in COSMOS - and the au¬

thor - massively increased after the GUI was finished. Command-line based user inter¬

faces are nice, but a colorful window with flashing lines, boxes and circles, with per¬

formance meters and many other bells and whistles is very important.

Linux and Tru64 UNIX are not completely compatible. Many hours were lost be¬

cause fundamental data types and libraries look the same, but are not the same. Socket

communication and pthreads multithreading in particular are differently implemented.
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There are additional challenges in Linux: Some functionality has not been completely

implemented (such as timeout and watermark values for sockets), and some other func¬

tionality has been simplified so much that it cannot be used as intended (such as send¬

ing signals between threads).

Experience comes from making mistakes, analyzing them and learning how to do it bet¬

ter next time. Since pioneers are allowed to make mistakes - and the goal of research is

to learn how to do something, how to make things better - the project created a wealth

of experience that is printed in this dissertation. And the author hopes that this docu¬

ment will help developers to create state-of-the-art comprehensive system manage¬

ment software for superclusters.

When management software gains control over hardware, when the components react

immediately at the fingertips of the GUI user, when flashing boxes in windows show

the performance of a supercluster, when plugging in cables or switching off the power

causes automated physical reactions, and when the supercluster with many independ¬

ent parts gains self-consciousness through using the management software, the same

amount of fun is provided as when watching a child growing up. This fully compensates

for all the pain and effort that was needed in the preceding process.
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The supercluster lifecycle presented in section 2.2 includes the simulation of the design

phase, where the potential performance of supercluster designs is calculated. This ap¬

pendix presents the two main estimation techniques, Amdahl's law and the calculation-

to-bandwidth ratio y.

A.I Extended Amdahl's Law

Amdahl's law [Amd67] describes how application execution time is reduced and calcu¬

lation performance is increased («speed-up») by using accelerating technologies. Am¬

dahl's law was introduced when vector supercomputers were established and the calcu¬

lation on vector-type data (vectors or matrices) could be accelerated using vector pipe¬

lines, registers and data units.

Amdahl's law divides the application code into the serial code that cannot be acceler¬

ated, and the vector code that can be accelerated using the accelerating technology. For

parallel supercomputers, the vector code is called parallel code that is divided between

the nodes - if an application has a loop that operates on 10 000 data items, the loop will

operate on 100 data items on 100 nodes.
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2 Processors
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Figure A.1: Amdahl's Law with serial and parallel code only

This serial code limits the maximum speed-up because it builds a socket of instructions

that cannot be parallelized.
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Amdahl's law remains correct for vector processors, because either there is no commu¬

nication overhead or it is part of the serial code. For parallel computers, Amdahl's law

must be corrected because the communication overhead usually increases when using

more nodes.
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Figure A.2. Amdahl's law with serial, parallel and communication code

The above illustration shows that the communication overhead compromises the gain

of parallel execution (same performance of 4 and 8 processors). The following figure

shows the speed-up behavior for various distributions of the serial, parallel and com¬

munication codes of an application.
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Number of Processors

384 448 512

Figure A.3. Speed-up over size with variable scalar, parallel and communication parts
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The above figure demonstrates dramatically, that the application performance and

speed-up is limited by the application itself and by the architectures of the used node

and network technologies:

The parallel application defines the shape of the speed-up curve and, depending on

the algorithm used, the communication patterns and application design. A good al¬

gorithm has a low serial content which moves the maximum speed-up upwards.

The node architecture defines the performance measured in FLOPS. Multiplied

by the expected speed-up, the performance can be estimated for a specific num¬

ber of processors.

The SAN architecture defines how much the communication code affects the

speed-up. A smart SAN architecture reduces the overhead and moves the speed¬

up maximum toward a higher node number, which allows a higher speed-up.

The speed-up can be calculated using the following equation, which also allows the

number of processors where the maximum speed-up is reached to be estimated.

s(p) =

c0+ — + c2f(p)
V

Equation A.l: Speed-up formula for parallel applications

The value p is the number of processors executing the application.

The value c0 (0 < c0 < 1) is the part of code that cannot be parallelized and must be

executed on each node separately, such as the application start-up code.

The value c1 (0 < c1 < 1) is the part of code that can be parallelized and that takes

(theoretically) no time even if executed on infinite nodes.

The value c2 (0 < c2 < 1, c1 + c2 + c3 = 1) is the part of code that contains the instruc¬

tions for the data transport between nodes and synchronization.

The formula f(p) describes the communication behavior of the application de¬

pending on the number of participating nodes - it can be fixed (if neighbor-to-

neighbor communication is used), linear (if global broadcasts are often used) or

have any other form.

This speed-up equation (or, to be more precise, its first derivative to the number of

processors) is used to estimate the optimal number of nodes for the application, where

the maximum speed-up is achieved. To simplify the calculation, the communication

behavior is assumed to be linear, described by f(p) = p.

-2

Equation A.2: Optimal number ofprocessors for parallel applications

If 99% of the code can be accelerated and l%o of the code is executed for communication

with each partner, the optimal number of processors is about 32. Reducing c2 to 0.1%o

leads to an optimal processor number of about 100. Increasing the number of proces¬

sors beyond this value will decrease the speed-up.
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A.2 Communication-to-Calculation Ratio y

Supercomputers in general (and superclusters in particular) are often limited in band¬

width; between the network and the memory, between the storage and the memory, be¬

tween the memory and the CPU and between the subsystems of the CPU (registers,

cache, functional units). The bandwidth is the most limiting factor in supercomputers,

since it has not increased to the same scale as the potential processing performance.

The data cannot be loaded or stored fast enough to efficiently fill the pipelines of the

CPUs, or the data cannot be moved fast enough through the SAN or storage subsystem

to keep the CPUs in the node busy.

The instructions of an application need to be able to load operators from memory for cal¬

culation and also store the results into memory. Some of the results are transferred to

storage devices, and some are communicated over the network to other nodes. Depending

on the application, the amount of data moved within the node and supercluster varies.

Bandwidth [Bytes/s]
Performance [instructions I s]

Equation A.3: Communication-to-calculation ratio y

The communication-to-calculation ratio y (measured in Bytes per instruction) describes

how much bandwidth is required - or available - per instruction, how much is needed

by the application, and how much is offered by the system. There are various y values,

describing the bandwidth at various places in the supercluster.

The value yA describes the need of the application, how many bytes of data are to be

moved per floating point instruction from or to the cache, memory, storage, LAN

and SAN). These values are given by the application architecture and design.

The value yM describes what the supercluster can offer to the application (how

many bytes of data the node can move between CPU and the cache, main memory,

storage, LAN and SAN). The values are given not only by the node and SAN archi¬

tectures, but also by the selected topology of the supercluster.

The following table shows the y values that need to be calculated for each application

and each product used in the supercluster designs. The ratio r = yM^yA shows what is

available compared to what is needed on each level.

Interface Machine Yiyi Application yn Ratio T = yM + YA

CPU /Cache Ym/c Ya/c rc

CPU / Memory Ym/m Ya/m rM

SAN / Memory Ym/n Ya/n rN

Storage/Memory Ym/s Ya« 1 Fs

LAN/Memory Ym/l Ya/l rL

Table A.l: The /values in supercluster and application
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_

Available in System

Needed by Application

Equation A.4: Comparison value Fshowing how much is available ofwhat is needed

After these y values have been calculated for every application and supercluster design,

the results show whether the calculation or the bandwidth is limiting the computation

performance. The least relation r = yM^yA of the respective values for the supercluster

and the application show the maximum performance that is achievable for the system.

The least value r is the limit for the performance, calculated as follows:

p = pxmin(i,rc,rM,rw,rs,rL)

Equation A. 5: Relation between performance, peak performance and F

The following example is based on the following supercluster and application algorithm:

The supercluster is an 8-node system of 8 COMPAQ AlphaServer DS20 nodes with 2

Alpha 21164 microprocessors (500 MHz, 1 GFLOPS, 4 GBytes/s cache bandwidth,

2 GBytes/s memory bandwidth) and a fully connected T-Net SAN with an average

bandwidth of 100 MBytes/s per node.

The application algorithm is a matrix-vector multiplication that is commonly used for

the iterative solution of linear equation systems. The vectors have a size of 1024 ele¬

ments and the matrix has a size of 1024x1024 elements.

xi+1=A-x;+b

Equation A.6: Iterative solution of linear equation systems

The supercluster-based y values are as follows:

The connection between CPU and cache is capable of transporting 4 GBytes/s and

the CPU can process 1 GFLOPS, resulting in a value yM/c of 4 Bytes/instruction.

The connection between both CPUs and memory transports 2 GBytes/s and both

CPUs process 2 GFLOPS, resulting in a value yWM of 1 Bytes/instruction.

The SAN NIC can transport 100 MBytes/s while both CPUs that share the SAN

NIC process 1 GFLOPS, leading to a value yWN of 0.05 Bytes/instruction.

The application-based y values are as follows:

The vector might match the cache size, but since external caches are usually di¬

rect-mapped and internal caches are usually too small, the vector trashes the ma¬

trix rows, making the data cache completely useless. The y^ value is therefore

identical to the y^ value.
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For each resulting vector element, 1024 multiplications and 1024 additions are

performed, needing 2048 operands read from memory. This results in a value y^

of 8 Bytes/instruction.

The resulting vector elements must be globally communicated. Each of the 16

CPUs calculates 64 elements and sends them to the other 15 CPUs, leading to a

value y^ of about 0.059 Bytes/instruction (64 elements x 8 Bytes/element x

15 repetitions= 7.5 kBytes, 64x2048 = 128k operations).

MachIneYM Application yn r

Interface Name Value Name Value Name Value

CPU / Cache Ym/c 4.000 Yac j °-500 rc 8.000

CPU/Memory Ym/m 1.000 Ya;m j °-125 r 8.000

SAN / Memory Ym/n 0.050 y«N | o-847 rN 0.059

Table A.2: The rvalues of the presented example

If the least r is 0.059 - only 6% of the required bandwidth between SAN NIC and mem¬

ory can be delivered - the maximum computation performance is 6% of the peak per¬

formance. There is no way to get faster with this algorithm and the selected compo¬

nents of the supercluster. The peak performance of this system is 6% of the theoretical

peak performance, in this case less than 1 GFLOPS of the 16 GFLOPS available. The

rest is wasted because the SAN cannot keep the memory subsystem busy.

This model is very simplified and holds for applications, where the communication

tasks are equally used and performed in parallel. If the application is highly optimized

for execution on the supercluster, it works on as much data as fits in the cache, later

accesses the memory only to fill the cache again, thus reducing the effect of bandwidth

bottlenecks. The real performance formula could look as follows, but further research

and work is required:

p = px X(w<xrJ
ie{C,MMS,L)

Equation A. 7: Corrected, weighted relation between performance, peak performance and F

In this formula, all r values are included with their relative weight.
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This appendix describes a sample management information base (MIB) for superclus¬

ter management software and the COSMOS MIB itself at the end. The tables not only

describe the data in the MIB, but also the source and cause of the data with codes. They

have the following meaning:

Configuration data (in column «C») defines the behavior of the component.

> The basic configuration («B») is loaded after start-up or reset and is entered by

the administrators. There may be multiple basic configurations depending on

the desired supercluster mode, selected by the administrators or the schedul¬

ing service.

> During operation, some configuration data is temporarily created («T») and

later removed from the devices (e.g. routing tables in SAN switches). This data

is also removed if the supercluster is restarted.

Monitoring data (in column «M») shows current performance.

> Some values are sampled slowly or only once after start-up («S»), since they do

not change rapidly (e.g. temperature) or not at all (e.g. serial number).

> Other values are sampled quickly («Q»), since they change quickly and are

used to check the current usage and performance (e.g. link bandwidth).

> Some values are stored as an event happens («E») (e.g. application start-up).

These values are saved with their context (e.g. causing application or user).

Monitored values can be protected through the trap mechanism (in column «T»).

If a trap is triggered, the associated action handling this trap is executed.

> Some values are protected using a pair of limits («L»). An action is triggered if the

limits are broken. Some values may even have two pairs of limits. Possible values

are node temperatures, where exceeding 40 °C may cause the air conditioning to

be increased and exceeding 50 °C may cause an emergency system shutdown.

> Some values are compared («C») with values of like components. The mecha¬

nism reacts if the difference between these values is too big. Possible values

are the CPU load of nodes running processes of the same application. If a

process consumes almost 100% of the CPU power and all others almost 0%, this

may indicate a hanging process and the application must be aborted to save

lost processing time.

The fault mechanism (in column «F») detects faults and unexpected changes, and

triggers the associated actions for handling the fault.

Since this appendix only covers a sample MIB for supercluster management, the list is

not intended to be complete, because the length and coverage depend on the intentions,

capabilities and requirements.
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B.I Structure of the MIB

The MIB data is organized as a tree of identifiers. Every identifier is a scalar value, an

array, a structured data type or again a tree of identifiers. The structure of the MIB is

similar to the structure of the SNMP MIB [Ros96]. Connected to the root identifier, the

subsystems are the next layer of identifiers, followed by the types of components (if

heterogeneous) followed by the instance number, followed by further identifiers.

MIB Root

Node LAN SAN Application

Figure B.l. The MIB structure - a tree of identifiers

Every value in the MIB is identified by a series of identifiers and numbers. The identifi¬

ers specify the value type of interest, and the numbers specify the respective entity.

The following EBNF notation describes this identification.

ManagementModule { ( "." Entity ) "." Identifier

The next illustration shows an example of how to access the output rate in Bytes/s of

link 4 of the SAN switch 2 of the SAN subsystem. The textual notation to identify this

value for this example is SAN. Switch. 2 .Link. 4
.
SendRateOut.

MIB Root

SAN(l)

Switch (1)

Link (5)

SendRateOut (2)

Figure B.2. MIB value identification example
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Of course the text identifiers are backed by numerical values, so in the above example

they can be accessed using the identifier 1.1.2.5.4.2 instead.

In the above example, the requested data is the current value. Monitored values are

usually stored in an array, which is implemented as a separate table of the database,

and contains all sampled values. To access a certain value, the access algorithm trans¬

lates a request of a value of a certain moment into the right index of the value array.

This means that the output rate of 20:14:55 hours from November 11th 2000 may be

translated as the 162734th value in the table.

To simplify these accesses, there are two strategies:

The administrators define a moment zero (e.g. January 1st 2000 at 00:00:00 hours)

and a heartbeat (e.g. one heartbeat per 5 seconds). Values are then stored in the

right index (e.g. January 1st 2002 at 00:00:05 hours in index 1, January 1st 2002 at

00:00:10 hours in index 2 etc.). The index is simple to calculate and the tables

contain explicit values, but this strategy creates huge tables, and any changes to

moment zero or heartbeat create problems.

Every value contains not only the value itself, but also the sampling moment. To

further compress the tables, no values are added if the change is too small com¬

pared to the value already stored. This strategy creates smaller tables, but index

calculation of a defined moment is hard.

The information which is stored in the MIB and managed by the center application can

be divided into the following three major groups:

Static information such as descriptions or serial numbers that is entered manually

by the administrators or by automated information retrieving mechanisms during

installation.

Configuration data which is loaded from configuration files and entered on-line

by administrators through the user interfaces or - for agents and proxies - sent

from the centers.

Dynamic information (called monitored data) generated by the agents such as

data rates, resource usage or temperature. This data is stored in a way that sup¬

ports the value retrieval of various moments in history.

The following data of managed components is stored in the MIB:

Information about the managed component, such as description, serial number,

contact information (IP address, TCP port) or location in the building.

Configuration data for the managed component, including limits for selected

monitored values for the trap mechanism.

Description of executed actions in case of traps and faults such as scripts.

Sampled monitoring data from the managed components as provided by the

agents such as temperature, data transfer rates or resource usage.

Statistical data from the monitoring data for instant access without calculation,

such as maximum, minimum and average values for each monitored value within

a timeframe.
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The application and resource management include the following data in the MIB:

Information about executed applications including the processes.

Information about applications waiting in queues scheduled for execution or al¬

ready being executed on the supercluster nodes.

Configuration of the application and resource management, including scripts exe¬

cuted before and after the application execution and actions executed in case of

traps and faults.

Configuration of the scheduling mechanism and job queues of the resource management.

Sampled monitoring data from the processes provided by the application and

node agents, as well as statistical data derived from the monitoring data such as

minimum, maximum and average values - after a certain time, the summaries are

stored and the sampled data can be deleted to save space and time.

Accounting information to enable users, projects and departments to be charged

at a later time.

Which values are stored in the MIB and how they are saved and represented depends

on the design and implementation of the management system as well as on the selected

platforms and products used in the supercluster.

B.2 Node Management

The node management stores the following information for each node in the MIB:

Name 1 Value Description Unit 1 Example C M T j F

Description j Description of the node 1 COMPAQ DS-20e

SerialNumber 1 Serial number of the node SN0815-42

HostName 1 Host name (alias) of the node cluster-01-001 B

Room 1 Room in supercomputing center 1AGD 23.0

Rack j Rack of the node in the room D3

Position 1 Position of node within rack 0

OsName j Name ofthenodeOS jOSFI S C j
OsVersion 1 Version of the node OS V5.1a S C

Status j Power status of the node j Ready E 1 x

Temperature 1 Max. temperature of all sensors °C 21 S L j
RamSize j Main memory size of the node MBytes 1024 E C j
MemorySize 1 Currently used virtual memory MBytes 2432 S C

CPU 1 Tree describing the CPUs

Storage j Tree describing the storage

LanNIC j Tree describing the LAN NICs

SanNIC 1 Tree describing the SAN NICs

Slot 1 Tree describing the slots

Table B.l: The MIB node values
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Every CPU of a node has its own record containing the following fields.

Name I Value Description

Description I Description of the CPU

Revision j Revision code of the CPU

Clock j Clock frequency of the CPU

Status (Current status of the CPU

Load j Current load of the CPU

AppLoad I Current application load

Table B.2: The MIB node values for the CPU tree

Unit 1 Example

Alpha EV67

2

C

MHz

%

%

|667
j Ready
75

12

M T

S C

Every storage device of a node has its own record which contains the following fields.

Name I Value Description Unit I Example C

Size j Size of the storage unit MBytes j 32123
Used j Currently used size MBytes j 12123

Table B.3: The MIB node values for the storage description tree

M T F

S j
S C

A slot of a node is a resource unit that can be consumed by application processes. Every

slot of a node has its own record which contains the following fields.

Value Name Value Description Unit

SanID j SAN ID of the associated NIC

ChannellD Associated SAN NIC channel

DevicelD j Associated SAN NIC device

AppID j Application ID of the process

Rank I Application rank of the process

Status I Status of the s lot

Table B.4: The MIB node values for the slot description tree

Exanîple C M

1 B

0 T

0 T

42 T S

0 S

Started Q C x

The field Status defines the current slot status. The slot status can be either Unused if

the slot is currently free, Reserved if an application is about to start, Started if the appli¬

cation has started and the process is running, Finalizing if the process has finished its

job and is about to end, or Aborting if the process or the application has detected a

problem and is about to be terminated.

Figure B.3: Slot states and transitions
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B.3 LAN Management Data

The LAN management stores the following information for each LAN switch in the MIB:

Value Name

Description

SerialNumber

SwitchName

HostName

HostPort

Rack

Position

Version

Status

Temperature

Port

UnitValue Description

j Description of the switch

I Serial number of the switch

j Switch name (alias) of the switch

I Host name of the switch

j TCP port to connect the switch

1 Rack of the switch in the room

I Position of switch within rack

I Version of the switch firmware

j Power status of the switch

I Max. temperature of all sensors

I Tree describing the port

Table B.5: The MIB LAN switch values

Example

Giga-Net Switch

123-2365-42

cluster-01-11

cluster-01-H.tl.ch

1059

E2

3

|V2.02
j Ready
21

M T F

Every port of a LAN switch has its own record which contains the following fields.

Value Name

Status

SndRateB

RcvRateB

Type

Partner

Port

Unit ExampleValue Description

I Status of the port

j Send rate of the port

j Receive rate of the port Bytes/s

I Type of the connection partner

I Number of the partner

I Number of the partner port

Table B.6: The MIB LAN switch port values

Up

Bytes/s 98123432

12765987

Switch

1

1

M T

E

The fields Type, Partner and Port describe which location this port is connected to.

Every LAN NIC of a node has its own record which contains the following fields.

Name I Value Description

Description j Description of the LAN NIC

LanID Tree descri bing the LAN NICIDs

Unit I Example

I COMPAQ DE500

T[ F

C I

Table B. 7: The MIB node values for the LAN NIC description tree
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Every LanID of a LAN NIC of a node has its own record which contains the following fields.

Value Name I Value Description Unit | Example
C

M T | F

IpN umber IP Number of the LAN NIC ID

HostName j Associated host name

Type j Type of the connection partner

Partner IN umber of the partner

Po rt j N umber of the partner port

Table B.8: The MIB node values for the LAN NIC ID description tree

Example

C

192.168.1.1 B

cluster-01-Ol.tl.ch B

Switch B

jl B

Il B

The fields Type, Partner and Port describe which location this port is connected to.

B.4 SAN Management Data

The SAN management stores the following information for each SAN switch in the MIB:

Value Name Value Description Unit

Description j Description of the switch

Seria IN u mber I Seria I n u mber of the switch

SwitchName I Switch name (alias) of the switch

SwitchNumber I Number of the switch

HostName j Host name of the switch

HostPort I TCP port to connect the switch

Rack I Rack of the switch in the room

Position j Position of switch within rack

Version j Version of the switch firmware

Status j Power status of the switch

Temperature j Max. temperature of all sensors °C

Port I Tree describing the port

Table B.9: The MIB SAN switch values

Example C M T F

SCS T-Net Switch

202-012-010-0001

cluster-01-s01 B

1 B

cluster-01-sl.tl.ch B

2001 B

D4

0

V23.12.1 S C j
Ready E 1 X
21 S L 1
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Every port of a SAN switch has its own record which contains the following fields.

Value Name I Value Description

Status j Status of the po rt

Fata I Errors I Number of fatal errors

SndRateB I Send rate of the port

RcvRateB I Receive rate of the port

ErrRate j Error rate of the port

SndRateP I Send rate of the port

RcvRateP j Receive rate of the port

Type I Type of the connection partner

Partner j Number of the partner

Po rt IN umber of the partner port

Table B.10: The MIB SAN switch port values

Unit 1 Example C M T j F

|Up E 1 x

1° E 1 X
'tes/s 198123432 Q C 1

'tes/s 112765987 Q C 1

rors/s |12 Q L 1

;t./s 1987234 Q C 1

;t./s 1123765 Q C |
1 Switch B S C 1

jl B S C j
M B S c 1

The fields Type, Partner and Port describe which location this port is connected to.

Every SAN NIC of a node has its own record which contains the following fields.

Value Name I Value Description Unit

Description j Description of the SAN NIC

Seria INumber I Seria I n umber of the SAN NIC

Version j Version of the SAN NIC firmware

BoardID Unique ID of the SAN NIC

Status j Power status of the SAN NIC

Port I Tree describing the ports j

Table B.ll: The MIB node values for the SAN NIC description tree

Example C M T

SCS T-Net 32/33 S C

202-011-010-0042 S

V5.42 S C

1 B

Ready E

Every port of a SAN NIC of a node has its own record which contains the following fields.

Value Name 1 Value Description Unit 1 Example C M T j F
Status (Status of the link |Up E 1 X
Fatal Errors 1 Number offatal errors 0 E 1 x
SndRateB 1 Send rate of the link Bytes/s 98123432 Q C

RcvRateB j Receive rate of the link Bytes/s 12765987 Q C j
ErrRate j Error rate of the link Errors/s 12 Q L

SndRateP 1 Send rate of the link Pkt./s j 987234 Q C j
RcvRateP 1 Receive rate of the link Pkt./s 123765 Q C

Type 1 Type of the connection partner 1 Switch B S C j
Partner j N umber of the partner 1 B S C j
Port 1 Number of the partner port 1 B S C

Table B.12: The MIB node values for t)wSANI\fIC link descriptiori tree

The fields Type, Partner and Port describe which location this port is connected to.
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B.5 Application Management Data

The application management stores the following data for each application in the MIB:

Value Name 1 Value Description Unit 1 Example C M T J F
AppID j Cluster-unique application ID j 42 (0/42)

AppName j Application name (command) j a.out

AppPath j Application path j/users/nemecek/
UserlD |User ID |10083
UserName 1 User name 1 nemecek

BarrierCount 1 Number of barriers |2
TimeCreated j Time stamp of creation j 01-04-01 18:00:01 E C 1

TimeStarted 1 Time stamp of application start 101-04-01 18:00:10 E C |
TimeLBarrier 1 Time stamp of last barrier 101-04-01 19:05:19 E c 1

TimeFinished 1 Time stamp of termination j 01-04-01 19:05:20 E c |
Status j Status of the application j Finalized E 1 x
Processes j Tree describing the processes | 1

Table B.13: The MIB application values

The field Status contains the current application status. After the application record has

been created, its status is Uninitialized. When all record entries have been initialized,

the status changes to Registered and waits until all processes connect to the node

agents. Once all the processes are ready, the status changes to Started. After the first

process has sent its finalize message, the status changes to Finalizing and later to Final¬

ized if all processes have finished. Troubled applications are aborted and their status is

changed to Aborting and later Aborted if all processes have stopped.

Figure B.4: Application states and transitions
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The field Processes contains an array which contains information about all the proc¬

esses belonging to this application. These process records contain the following fields.

Value Name

HostAlias

HostSlot

CpuLoad

MemSize

ProcessID

TimeRegistered

TimeLBarrier

TimeFinished

Status

AbortCause

Value Description

Node the process runs on

Slot the process runs in

CPU Load with this process

Memory usage of the process

Process ID on the node

Time stamp of registration

Time stamp of last barrier

Time stamp of termination

Status of the process

Cause of abortion (if aborted)

Unit I Example

|cluster-01-001
0

% 12

MBytes 123

135975

01-04-01 18:00:02

01-04-01 19:05:18

01-04-01 19:05:19

I Finalized

M T F

Table B.14: The MIB application process values

The field Status contains the current process status. After creation of the process, the

status is Uninitialized and it waits for the process to connect. After the process has con¬

nected and has sent the start-up message, its status changes to Registered. Once all the

processes are ready, the status changes to Started. When the process has finished its

operation, its status changes to Finalizing and after all application processes have fin¬

ished, it changes to Finalized. If the process detects a problem, its status changes to

Aborting, and after it has disconnected from the node agent, it changes to Aborted.

Figure B.5: Process states and transitions

If the application has been aborted, the field AbortCause will contain a description of

the reason why the process was terminated. The process that caused the abortion will

contain its reason; all other processes are aborted by the node agents. The following

table summarizes the possible values of this field.

Abort Cause

AbortCalled

Crashed

SignaLHUP

SignalJNT

SignaLQUIT

SignalJLL

SignaLTRAP

SignaLABORT

SignaLFPE

Description

The process detected a problem and called the abortion routine

The process has disconnected from the node agent (crashed)

The process received the signal HUP and terminated

The process received the signal INT (Ctrl-C) and terminated

The process received the signal QUIT and terminated

The process received the signal ILL (illegal instruction) and terminated

The process received the signal TRAP and terminated

The process received the signal ABRT and terminated

The process received the signal FPE (FP exception) and terminated
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Abort Cause Description

Signal_BUS

SignaLSEGV

SignaLPIPE

SignaLALRM

SignaLTERM

SignaLXCPU

Signal_XFSZ

SignaLVTALRM

Signal_PROF

SignaLUSRl

Signal

Died

Killed

TimedOut

The process received the signal BUS (bus error) and terminated

The process received the signal SEGV (access violation) and terminated

The process received the signal PIPE (broken pipe)

The process received the signal ALRM (timer alarm) and terminated

The process received the signal TERM and terminated immediately

The process received the signal XCPU (time is up) and terminated

The process received the signal XFSZ and terminated

The process received the signal VTALRM and terminated

The process received the signal PROF (profiler) and terminated

The process received the signal USR1 (user signal 1) and terminated

The process received an unidentified signal and terminated

The process has terminated before starting up correctly

The application has been killed manually by the administrator

The process has timed out in sending a message

Table B.15: The MIB abort causes of a process

B.6 User Management Data

The user management stores the following information for each user in the MIB:

Value Name 1 Value Description Unit 1 Example

UserlD j ID of the user (used by OS) 10083

UserName 1 Username (used by OS) 1 nemecek

LastName j Last name of the User j Nemecek
FirstName j First name of the user j Josef

Department j Department of the user j Development
eMail 1 e-Mail address 1 nemecek@epfl.ch

Address 1 Business Address CAPA H5, EPFL

Phone 1 Phone number 24527

Pager j Pager number 324527

AvCredits j Available credits CRE 424

UsedCredits 1 Consumed credits CRE 201

BurnedCredits 1 «Burned» (wasted) credits CRE 10

CreditAddRate j Credits to add per week CRE/w 20

CreditBurnRate j Credits wasted this week CRE/w 0

Quota j Allowed storage consumption MBytes 2048

SubApps 1 Applications submitted 225

AbortedApps j Applications aborted 2

Permissions j User Permissions

M T F

S L

S L

S L

Table B.16: The MIB user values
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This sample user MIB is based on the assumption, that the resource management uses

credits to charge the resource usage. The usage history can be stored separately for sta¬

tistical purposes.

B.7 Resource Management Data

The resource management stores the following values for each queue in the MIB:

Value Name Value Description Unit Example C

QName 1 Queue name 1 Weekday B

Users j Users allowed to submit B

Availability j Queue Availability Mo-Fr0600-1800 B

Credit 1 Credits cost per CPU and hour CRE/C/h |1 B

Status

Queue

Active

1 Current queue status

1 Tree with queued applications

j Tree with running applications

jOpen

Finished 1 Tree with finished applications |
Table B.17: The Mil3 queue values

M T F

For each application, the data as described in the application management is stored in

the MIB.

B.8 COSMOS MIB

The COSMOS MIB described next has the same structure as the MIB presented in this

appendix, but the coverage is not as complete: Some MIB values are reserved, but not

implemented in COSMOS and they are written in the following tables using italic letters.

B.8.1 COSMOS MIB Branches

COSMOS only covers three management modules, described by three main branches in the MIB:

Name MIB Main Branch

0 I Node Management

1 I SAN Management

2 I Application Management

Table B.18: Main branches of the COSMOS MIB

Further names are reserved, but not used by COSMOS.
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B.8.2 COSMOS Node Management MIB Branch

The node management branch of the MIB is identified by names starting with «0». Re¬

questing the value for «0» returns the number of nodes in the supercluster. The second

value «n» in the name is the node number (e.g. «0.4» for the node number 4). The third

value in the name represents information about the node. Some names have sub-trees

(such as CPUs or LAN NICs) with the same logic as sketched here.

Name Description Unit 1 Example C|M T| F

0 Number of Nodes J 32 B |
0.n.0 Node Name COMPAQ DS-20e

0.n.1 Serial Number JSN08 75-42

0.n.2 Host Name (Alias) Swiss-Tl Node 12 B|
0.n.3 Room Number \AGD23.0
0.n.4 Rack Number \42

0.n.5 Position In Rack 4

0.n.6 OS Name JOSF1 1 S C j
0.n.7 OS Version V5.0 S C

0.n.8 Status j Ready j E 1 x
0.n.9 Temperature °c 35 S L

O.n.10 RAM Size MBytes j 7024 I5 C

O.n.U RAM Used MBytes \744 |S L j
0.n.12 Processors (separate tree) 2

O.n.U.c.O CPUName \AlphaEV67 j S Ci
O.n.U.cJ Revision 2 s C

O.n.U.c.2 Clock Frequency MHz j 667 Is Ci
0.n.l2.c.3 Load % 75 Q Cl

O.n. 12.C.4 Productive Application Load % 73 Q C

O.n.13 Storage Devices (separate tree) 2

0.n.l3.s.0 Capacity MBytes 30000 S c

0,n.13,s,1 Used Space MBytes j12345 I5 c

0.n.14 LAN NICs (separate tree) 1

O.n.14.1.0 NIC Description j DE-500E l5 cl
O.n.14.1.1 LAN Identities (separate trees) 1

0.n.14.l.1.i.0 IP Number 192.168.100.102

0.n.14.l.1.i.1 Host Name t1-12.epfl.ch

O.n.15 SAN NICs (separate tree) 2

0.n.15.s.0 NIC Description jSCSr-A/ef
0.n.15.s.l Serial Number \202-PCI-0ri-0042 S

O.nAS.s.2 Version j 2.54 Is
0.n.15.s.3 Board ID 42 1s
0.n.15.s.4 Status 1 Ready E 1 x
0.n.15.s.5 Links (separate tree) 1

0.n.l5.s.5.l.0 Status \Up E I x
0.n.15.s.5.l.1 Fatal Errors 0 E X
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Name

0.n.l5.s.5.l.2

O.n.15.S.5.I.3

Q.n.15.S.5.I.4

0.n.15.s.5.l.5

Description

MIA Status

Send Rate

Receive Rate

Error Rate

Unit Example C M T F

\N/A

MB/s 72

MB/S 10

Errors/s 140

E

Q\C\
Q\C\
Q\c\

Table B.19: Node management branches and sub-trees

SAN NIC monitoring was not implemented in COSMOS, because the T-Net SAN NIC had no

monitoring registers implemented. The space of the FPGA chips on the NIC was completely con¬

sumed by the logic for productive work. COSMOS was only able to retrieve the static information

from a PROM chip, provided by the SAN NIC driver, which had been extended with custom

PROM programming code provided by the author.

B.8.3 COSMOS SAN Switch Management MIB Branch

The SAN switch management branch of the MIB is identified by names starting with «1». Re¬

questing the value for «1» returns the number of SAN switches in the supercluster. The second

value «s» in the name is the switch number (e.g. «1.4» for the switch number 4). The third value

in the name represents information about the switch. One name has a sub-tree (SAN links) with

the same logic as sketched here.

Value Description Unit Example C M T F

1 Number of SAN Switches 8

1.S.0 Description SCST-A/efSw/fc/i

1.S.1 Serial Number 202-SWI-011-00001 S C

l.s.2 Switch Name (Alias) Swiss-Tl Switch 1 B

l.s.3 Switch Number 1 B

7.S.4 Room Number AGD23.0

7.S.5 Rack Number 42

1.S.6 Position in Rack 4

1.S.7 Version V23.12.1 S C

l.s.8 Status Ready E x

l.s.9 Temperature °C 35 S L

l.s.10 Links (separate tree) 12

1.s.10.1.0 Status Up E X

1.S.10.I.1 Fatal Errors 0 E X

7.s. 70./.2 MIA Status N/A E X

7.s. 10.1.3 Send Rate MBytes/s 12 Q c

1.s.10.1.4 Receive Rate MBytes/s 10 Q C

1.s.10.1.5 Error Rate Errors/s 40 Q C

Table B.20: SAN management branches and sub-trees

The monitoring capabilities of the SAN switch were limited, because the development

and production of the T-Net switch ran out of time and space (as the T-Net SAN NIC).

The developers of the T-Net NIC and switch were busy fixing bugs and had no time to

add monitoring functionality as required for reliable system management software.
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B.8.4 COSMOS Application Management MIB Branch

The application management branch of the MIB is identified by names starting with

«2». Requesting the value for «2» returns the number of applications stored in the MIB.

The second value «a» in the name is the application number (e.g. «2.4» for the applica¬

tion 4), but not for the application ID, since the ID can be re-used after finalization or

abortion. The third value in the name represents information about the application.

One name has a sub-tree (processes) with the same logic as sketched here.

UnitValue Description

2 Number of Applications in MIB

2.a.0 Application ID

2.a.1 Name

2.a.2 Path

2.a.3 Owner

2.a.4 Creation Time

2.a.5 Start Time

2.a.9 Last Barrier Time

2.a.10 Barrier Count

2.a.6 End Time

2.a.7 Status

2.a.8 Processes (separate tree)

2.a.8.p.0 Node

2.a.8.p.1 Slot

2.a.8.p.2* Load

2.a.8.p.3* Memory Size

2.a.8.p.4 Process ID (PID)

2.a.8.p.5 Register Time

2.a.8.p.6 Current Barrier Time

2.a.8.p.7 Finish Time

2.a.8.p.8 Abort Cause

2.a.8.p.9 Status

2.a.11 Abort

MBytes

Example C|M T F

200

42 (0/42) S C

a.out 1 S C

/u s r/epfl/test/ S c

100 (nemecek) j S c

01.08.0012:34:56 j S c

01.08.0012:35:00 S c

01.08.0012:35:00 I S c

1 S c

00.00.0000:00:00 I S c

2 (Started) E c X

Swiss-Tl Node 1 1 S c

0 S c

75 1 S c

756 1 S c

4212 1 S
01.08.0012:34:56 S

00.00.0000:00:00 S

00.00.0000:00:00 1 S
0 (Normal) E X

2 (Started) 1 S
X

Table B.21: Application management branches and sub-trees

The application management MIB branch is of course the most developed part of the

MIB, since it is the novelty in system management.

The name «2.a. 11» is the only name that represents an action in the COSMOS MIB:

When the user interfaces write the application ID into this name, COSMOS triggers an

immediate abortion of the application, which takes about 1 second. This functionality

was implemented after some problems had arisen, where the resource management

software GRD started new applications while processes of a previously lost application

blocked the reserved resources. With this feature, the application could be wiped out

from the system and GRD was thus able to work correctly again.





C Management Functionality

This appendix contains the functionality of the supercluster management. The func¬

tionality is grouped into management areas and subsystems. The functionality de¬

scribed here is referenced first in section 2.3. The tables also contain the distribution of

the functionality between the components center, proxy and agents - as described in

section 3.4.

C.I Configuration

The configuration functionality has a direct effect on the MIB: These actions change the

component status, the behavior and configuration of the component.

C.1.1 Node Subsystem

Functionality

Power Control

OS / Firmware Image Control

Application / Service Control

Covered by

Center Proxy

Power-On/Off, Boot I Power-On/Off, Boot

Creation, Distribution Distribution

Decision, Distribution Distribution

Agent

Reset, Shutdown

Installation

Execution

Table C.l: Node Subsystem Configuration Functionality

The Power Control functionality manages the node status. Current operating systems

only allow the node to be shut down or reset. Powering the node on and off or selecting

the right image to boot from is done using the console server. The centers or proxies

use the terminal server connections to perform these tasks.

Upgrades of the OS, libraries or software packages are performed through the OS /

Firmware Image Control functionality. The image that is installed on the nodes by the

node agent is created on the centers and distributed by the centers and proxies.

The execution of local applications or services is controlled by the Application / Service

Control functionality. All services and applications that are required on the nodes are

defined by the administrators, managed by the centers, distributed by the centers and

proxies, and executed on the nodes. These services include OS services (FTP, libraries

etc.) and the execution of applications (e.g. updates of local files or applications).

197
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Center Proxy Agent

Power-On/Off Power-On/Off Boot, Reset, Shutdown

Creation, Distribution Distribution Installation

Calc, Distribution Distribution Installation

Creation, Distribution Distribution Installation

C.I.2 SAN Subsystem

The SAN subsystem manages the SAN switches (managed by the SAN agent) and the

SAN NICs (managed by the node agent). There is therefore one table which describes

the functionality for the SAN switch and one which describes the SAN NICs.

Functionality

Power Control

Firmware Image Control

Routing Table Control

Basic Configuration Control

Table C.2: SAN Subsystem Configuration Functionality for SAN Switches

The Power Control functionality manages the SAN switch status. Under the assumption

that the SAN switch agent cannot power on or off the switch hardware, the centers or

proxies perform these tasks through terminal servers or remote power switches.

The SAN switch firmware, routing tables and individual basic configuration are all cre¬

ated by the centers, since they have the system knowledge to create the mandatory con¬

figuration data and files. This data is locally applied by the SAN switch agents.

The SAN switch agent can be run directly in the SAN switch using the management

protocol. If the SAN switch uses a different management protocol, the SAN switch

agent runs outside the switch, and translates the management protocols.

Functionality

Firmware Image Control

Routing Table Control

Basic Configuration Control

Covered by

Center Proxy Agent

Creation, Distribution Distribution Installation

Caleu lation, Di stri b. Distri button I n sta llation

Creation, Distribution Distribution Installation

Table C.3: SAN Subsystem Configuration Functionality for SAN NICs

The SAN NIC firmware, routing tables and individual basic configuration are all created

by the centers, since they have the system knowledge to create the mandatory configu¬

ration data. This data is locally applied by the node agents, using the SAN NIC driver.

C.I.3 LAN Subsystem

The LAN subsystem manages the LAN switches (managed by the LAN agent) and the

LAN NICs (managed by the node agent). There is therefore one table which describes

the functionality for the LAN switch and one which describes the LAN NICs.
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Center Proxy Agent

Power-On/Off Power-On/Off Boot, Reset, Shutdown

Creation, Distribution Distribution Installation

Calc, Distribution Distribution Installation

Creation, Distribution Distribution Installation

Functionality

Power Control

Firmware Image Control

Routing Table Control

Basic Configuration Control

Table C.4: LAN Subsystem Configuration Functionality for LAN Switches

The Power Control functionality manages the status of the LAN switch. Under the as¬

sumption that the LAN switch agent cannot power on or off the switch hardware, the

centers or proxies perform these tasks through terminal servers or power switches.

The LAN switch firmware, routing tables and individual basic configuration are all cre¬

ated by the centers, since they have the system knowledge to create the mandatory con¬

figuration data and files. This data is locally applied by the LAN switch agents.

Common LAN switches are usually managed with SNMP [Ros96]. The centers and

proxies can either communicate using SNMP with the LAN switches, or a switch-

external LAN agent translates the management protocol to SNMP.

Covered by

Center Proxy Agent

Firmware Image Control Creation, Distribution Distribution Installation

Routing Table Control Calc, Distribution Distribution Installation

Basic Configuration Control Creation, Distribution Distribution Installation

Table C.5: LAN Subsystem Configuration Functionality for LAN NICs

The LAN NIC firmware, routing tables and individual basic configuration are all cre¬

ated by the centers, since they have the system knowledge to create the mandatory con¬

figuration data and files. This data is locally applied by the node agents, using the LAN

NIC management functionality of the OS.

C.I.4 Storage Subsystem

Functionality
Center

Covered by

Proxy Agent

Power Control

OS / Firmware Image Control

Basic Configuration Control

Power-On/Off, Boot Power-On/Off, Boot

Creation, Distribution Distribution

Creation, Distribution Distribution

Reset, Shutdown

Installation

Installation

Table C.6: Storage Subsystem Configuration Functionality

The storage subsystem can be implemented as a separate subsystem with dedicated

computers and towers of storage devices, connected via LAN or SAN to the supercluster

components. Another approach is to integrate the storage subsystem into the nodes.
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Therefore the Power Control functionality only makes sense if dedicated hardware is

used for the storage subsystem.

As for the nodes, the centers decide the basic configuration and OS or firmware of the stor¬

age devices. They and the proxies then distribute this data which is enforced by the agents.

C.I.5 Application Subsystem

Functionality
Center

Distribution

Distribution

Creation, Distribution

Decision

Spawning /Application Start

Signal / Application Control

Basic Configuration Control

Checkpointing

Table C. 7: Application Subsystem Configuration Functionality

Covered by

Proxy

Distribution

Distribution

Distribution

Distribution

Agent

Spawn («fork»)

Execution

Installation

Execution

The application is started using the Spawning mechanism. The simplest implementation of

this is the creation of named pipes for input/output redirection (stdin, stdout, stderr) and man¬

agement information exchange (communication channel for the application management li¬

brary described in 3.1.5), forking away a child process (duplication of a process) that is closing

any unused connections, changing the user, and overloading itself with the application image.

The application management requires signals to be sent to the application: A signal to indi¬

cate when the reserved resources have been consumed (XCPU), a signal that aborts the

application (TERM), a signal that suspends or resumes the application and many more.

Applications can also request abortions (if an application-internal fault has been detected).

The application management also associates each application process with node resources.

The slot (usually one slot per CPU, one SAN NIC channel per slot and one process per slot) is

either configured statically, or the resources are assigned dynamically at application startup.

The checkpointing mechanism regularly stores synchronized images of all processes to

persistent storage. These images allow the application to be restarted from this synchro¬

nized point in the case where one or more processes need to be migrated to another node.

C.I.6 Resource Subsystem

The resource subsystem only consists of the center module, since it is the «planning

unit» that manages the application subsystem and consumes monitoring data and

fault/trap messages of all the other subsystems.

Functionality
Center

Covered by

Proxy Agent

Queue Handling

System Configuration

Management

Management

Table C.8: Resource Subsystem Configuration Functionality
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The users enter requests to start applications into queues. Scheduling mechanisms de¬

cide which applications are to start as soon as enough resources become available. The

selected applications are passed to the application management module in the center.

Each queue has a profile that includes the following:

Open to certain users, projects, or departments (e.g. queue for students)

Open to applications of a certain size or type (e.g. queue for batch-type applica¬

tions of at most 16 CPUs or queue for debugging applications of at most 32 nodes)

Scheduling of applications only during certain hours (e.g. night queue, where ap¬

plications are only scheduled for startup between 1800 and 0800 hours)

Scheduling on nodes of a certain type (e.g. interactive nodes with fast network

and specialized graphics hardware or nodes of specially protected partitions)

Besides the queues, the resource management also includes the system configuration

planning which in turn includes the following jobs:

System (or partition) power-on, boot, reset, shutdown and power-off

Application of a set of basic configurations (e.g. red/black partitioning of the ASCI Red)

Queue opening or closing

All these jobs are performed on behalf of the administrators, using the functionality of

all other subsystem management modules available.

C.I.7 Management Subsystem

Functionality

Power Control (Center)

Power Control (Proxy)

Basic Configuration Control

Center

Reset, Shutdown

Power-On/Off, Boot

Creation, Distribution,

Installation

Covered by

Proxy

Reset, Shutdown

Distribution, Installa¬

tion

Agent

Installation

Table C.9: Management Subsystem Configuration Functionality

Also the management subsystem needs to be managed. Booting the management is the

trickiest process, since the centers are not working. The administrators have to start

one of the centers, which in turn starts the other centers, which turn on the proxies. If

the whole supercluster management is powered up, they power up all components.

Shutting down the management works in reverse order, where all components are

turned off, followed by the proxies, followed by centers. The last center is turned off by

the administrators.

The basic configuration is created by the administrators and stored in the MIB.

Changes in the management configuration are calculated by the centers and distributed

to the proxies, which then distribute the configuration on to the agents.



202 Management Functionality

C.2 Monitoring

Monitoring has the following tasks:

Deliver the current performance data at a convenient update rate.

Provide historical data at a convenient resolution.

Allow special monitoring data gathering for development and debugging

All tasks require some smart implementation ideas.

C.2.1 Gathering Current Performance Data

The current performance at a convenient update rate is limited by the available band¬

width between user interface applications (consumers) and the centers and proxies

(producers). The proxies hold the current (and historical) performance data, reducing

the network load in the management subsystem for the monitoring functionality.

Figure C.l: Connections for monitoring between GUI, centers and proxies

With this architecture, the monitoring data update rate only depends on the available

rate between the management (center and proxies) and the user interfaces.

A supercluster consisting of 10 000 nodes (1 CPU and 1 SAN port for one process) and

1 000 switches (16 ports, 1 switch per 10 nodes) produces about 1 MBytes of data per

monitoring data sample if not too many additional monitoring features are needed.

One of these «additional monitoring features» may include separating SAN traffic into appli¬

cations and processes for debugging and profiling purposes. This can be achieved by using

«virtual channels» with one set of registers per channel. 49 channels for the separation (and

one for the rest) allow separation of the traffic into 3 applications of 16 processes each (or one

application with 49 processes). This functionality increases the sample size to 14 MBytes.

This rate saturates a fast Ethernet connection to the workstation running the GUI.

With 4 channels only, the sample size is 1 545 kBytes, saturating the LAN link at a rate of 10 Hz.
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C.2.2 Storing Historical and Statistical Data

Monitoring data cannot be stored forever - at least not in the initial full sampling rate.

The monitoring data from the proxies is statistically reduced and forwarded to the cen¬

ters. They reduce the monitoring data further as the data ages.

For statistical reasons, taking the average value for the history only is too coarse. It is

better to take the average value, plus the minimum and the maximum value per period.

The following table assumes a sample size of 1 MBytes (see above).

Stored Time 1 Storage Sampling Rate Est. Size Req. Bandwidth

1 Hour j Proxy 1 Second 10.5 GBytes 3 MBytes/s

1 Day j Proxy/Center 10 Seconds 25.3 GBytes 300 kBytes/s

1 Week j Center 1 Minute 29.5 GBytes 52 kBytes/s

1 Month 1 Center 5 Minutes 26.2 GBytes 10 kBytes/s

lYear j Center lHour 25.7 GBytes 1 kBytes/s

Total 117.2 GBytes

Table CIO: Required storage for archiving monitoring data for a 10 000 nodes system

The data amount handled by the center is still impressive. The rightmost column shows

the required network bandwidth if all data is sent to the center.

Statistical Data

QQQQ Full Monitoring Data

Figure C.2: Monitoring data in proxies and statistical data in center

A sampling rate of one second for the current performance data is usually high enough.

Higher rates are only required if detailed information is needed, e.g. for debugging or profiling.

C.2.3 Special Monitoring Features

Another point is the extended monitoring for debugging: The application developer

needs support in developing, debugging and testing parallel applications - print mes¬

sages and syslog entries are not precise enough. The following table summarizes some

debugging functionalities and the estimated required size for a 100-process job (with 10

SAN switches) running for one hour. The «amount» is the total number of all events of

all nodes during the entire execution time.
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Functionality Size Amount Estimated Size

MPI call logging with timestamp 6 Bytes 14400 000 90 MBytes

Debug prints with timestamp 40 Bytes 1 000000 40 MBytes

Message calls with timestamp 8 Bytes 3 600000 30 MBytes

Message trace logging with timestamp 10 Bytes 10 800 000 108 MBytes

Node load 2 Bytes 36 000 000 72 MBytes

SAN Switch load 160 Bytes 3 600000 576 MBytes

Total 916 MBytes

Table C.ll: Required data for detailed monitoring of a 100-process job for 1 hour

MPI call logging stores the command and timestamp of each MPI call (2 Bytes for the

function ID, 4 Bytes for the timestamp). In addition, MPI message calls take the infor¬

mation of the target process and tag (an additional Byte each). Each process calls 40

MPI commands and 10 MPI message calls per second.

The most common debugging method is to print supporting information at current program

positions. The printed line usually includes current variable values and status data (36 Bytes

for the string and 4 Bytes for the timestamp). Each process prints 3 lines per second.

The most interesting part is precise message tracing: Which message, from which source,

going to which target, with which tag, entered or left which component, through which

port at what time. A 100-nodes system has 10 switches with 16 ports each, leading to 260

ports (100 NIC ports and 160 switches ports). Tracing a unicast message passes 6 ports,

each of which generates one log entry (4 Bytes timestamp, 2 Bytes port, 4 Bytes

source/destination/tag information). Each node sends 5 MPI messages per second.

The node and SAN switch load is taken 100 times per second. The node delivers the

current CPU and memory usage in percent (each 1 Byte). The SAN switch delivers the

current bandwidth and error rate (1 Byte for errors and 4 Bytes for bandwidth per di¬

rection) for each of the 16 ports.

The total amount of data produced during this one hour task is 916 MBytes, which re¬

quires about 250 kBytes/s of bandwidth.

The result is a global log of all processes and debugging-relevant events.

C.3 Fault Handling

Murphy once said, that everything that can fail, will. And if there is a combination of fail¬

ures that lead to a disaster, this combination will happen when it is least welcome, e.g. dur¬

ing an official demonstration day with many governmental officials and journalists present8.

8

The most famous catastrophe of this nature was the baggage claim system inauguration day at Denver airport m December 1994,

where baggage was cut into pieces, and smashed by switches - everything observed by invited journalists and VIPs
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The fault handling needs definitions of faults and how to handle them. There are some

principal strategies in identifying faults and finding procedures to cure them:

Be precise in fault definitions, since the general cure may create too much over¬

head (e.g. turning off a SAN switch with bad SAN links instead of turning off the

bad ports only).

Do not over-specify faults if many of them are handled identically (e.g. if the NIC is

defective, you do not need to find out what is wrong, it will be replaced anyway).

Do not check for faults or handle them if it is easier for the personnel to fix the

problem (e.g. a broken LAN link between node and switch is replaced as it is de¬

tected by the personnel and there is no need for the management to try to contact

the node through other communication links such as terminal server or SAN).

The following tables list some faults, show by whom they are detected and how they can be

cured by the management or with human help. The lists are - of course - not complete.

C.3.1 Node Management

The node crash is simplest fault: The node simply disappears, and the LAN connection

(and often also all other communication channels) is just dropped. The node is taken out

of the pool of nodes that are available for processing and anything that was running on

this node needs to be restarted. Since the SAN may contain packets of or for this node,

these applications' packets need to be dropped before they block buffers and channels.

Fault Detected by Handling

Node crashed Proxy / Center Framework Remove node from pool
Power-off node effectively
Abort affected applications on nodes

Flush SAN from applications' messages
Restart applications on new pool

Node-internal fault Node Agent Framework As «node crashed»

Bad communication Proxy / Center Framework As «node crashed»

Table C.12: Faults of the node subsystem

Node-internal faults include faults of any subsystem that is not managed by a manage¬

ment module of the framework (CPU, CPU fan, power supply, power fan, system stor¬

age, memory, operating system) or the management itself (lost demon, shared memory

region etc.). The fault cannot usually be solved by the software and requires adminis¬

trative help. Until this help becomes available, the cause is stored in the MIB and the

node is turned off.

Bad communication is usually a sign of a crashed management agent that requires the

node agent to be restarted (and therefore the whole node).

Although the cure is always the same, the differentiation into these categories makes

sense, since the administrator must find the problem cause manually.
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C.3.2 SAN Management

The node has potentially more than one SAN NIC inserted into it and the SAN NIC may

have more than one port. If one of the ports (or one of the NICs) has failed, only the

associated slot is removed from the pool and the applications are aborted and restarted.

If the only port (or the last remaining port) has failed, the node consequently becomes

useless and requires power-off.

Fault

Switch crashed

Port fault (node)

Port fault (switch)

Switch-internal fault

Bad communication

Detected by

Proxy / Center Framework

SAN Agent Framework

SAN Agent Framework

SAN Agent Framework

Proxy / Center Framework

Handling

Remove connected nodes from pool

Distribute new routing tables

Power-off nodes and switch

Abort affected applications on nodes

Flush SAN from messages to switch

Restart applications on new pool

Remove node from pool

Power-off node

Abort affected applications on nodes

Flush SAN from applications' messages
Restart applications on new pool

Distribute new routing tables

Re-route existing messages

As «switch crashed»

As «switch crashed»

Table C.13: Faults of the SAN subsystem (SAN switch)

Fault

Port or NIC fault

(one NIC / port per node)

Port or NIC fault

(more than one NIC / port

per node)

Bad message received

Detected by

SAN Module (Node Agent)

SAN Module (Node Agent)

SAN Module (Node Agent)

Handling

Remove node from pool
Power-off node

Abort affected applications on nodes

Flush SAN from applications' messages
Restart applications on new pool

Remove slot from pool

Abort affected applications on nodes

Flush SAN from applications' messages
Restart applications on new pool

Send report to center (firmware bug?)
Check/ update routing tables

Abort source application

Flush SAN from application's messages
Restart application

Table C.14: Faults of the SAN subsystem (SAN NIC)

If a SAN switch crashes, all connected nodes become unavailable, are taken out of the

pool and powered off. The crashed switch is powered off and all switches (at least the

surrounding ones) receive new routing tables. The applications currently running on

those nodes are aborted and restarted on a new set of nodes.
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If only one port breaks (hardware defect, broken cable), the reaction depends on the

nature of its connected partner. A connected node becomes unavailable and must be

removed from the pool (as in «node crashed» in table C.12), whereas a disconnected

SAN switch only requires new routing tables and re-routing packets in port buffers.

Switch-internal faults and bad communication is handled as in the node fault handling.

Modern SAN technologies use per-link retransmission protocols. Invalid messages are

sent again automatically if not acknowledged by the receiver, which simplifies the im¬

plementation of parallel environments (e.g. MPI) and management software.

If a message that is not expected is received for one of the currently running processes

(bad application ID or process rank, invalid tag etc.), the message header will be sent to

the center which then decides what to do. The center usually checks and re-distributes

the routing tables and aborts the source application (or sends the message to the wait¬

ing destination process and keeps the application running - as long as there are not too

many misrouted messages).

C.3.3 LAN Management

Fault Detected by Handling

Switch crashed Proxy / Center Framework Remove connected nodes from pool
Distribute new routing tables

Power-off nodes and switch

Abort affected applications on nodes

Restart applications on new pool

Port fault (node) LAN Agent Framework Remove node from pool

Power-off node

Abort affected applications on nodes

Restart applications on new pool

Port fault (switch) LAN Agent Framework Distribute new routing tables

Switch-internal fault LAN Agent Framework As «switch crashed»

Bad communication Proxy / Center Framework As «switch crashed»

Table C.15: Faults of the LAN subsystem (LAN switch)

The node has potentially more than one LAN NIC inserted into it and the LAN NIC may

have more than one port. If one of the ports (or one of the NICs) has failed, only the

routing tables need to be adapted to use alternative LAN connections for the same jobs.

If the only port (or the last remaining port) has failed, the node becomes useless and

requires power-off.

Because of the similar structures of SAN and LAN, the faults and their cures are also

similar, except for the different routing behaviors (automatic retransmissions after

timeout, dropped messages after exceeding the message-internal TTL (time to live)).
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Fault Detected by Handling

Port or NIC fault LAN Module (Node Agent) Remove node from pool

(one NIC / port per node) Power-off node

Abort affected applications on nodes

Restart applications on new pool

Port or NIC fault LAN Module (Node Agent) Distribute new routing tables

(more than one NIC / port

per node)

Table C.16: Faults of the LAN subsystem (LAN NIC)

Besides standard Ethernet-based communication, terminal server communication is

also found in the LAN subsystem. Since there is no way to handle faults of terminal

servers, only the administrator is notified.

C.3.4 Storage Management

Full storage devices quickly block the entire supercluster operation. The trap mecha¬

nism should prevent this situation by sending warning messages to the administrators

when the capacity has almost been used. If the storage devices are filled with data, the

oldest data will be moved onto slower storage space (e.g. tape devices, reserve storage)

and the operation will continue. If this is not possible, the applications of users that

have accounts on these devices will be suspended or not scheduled, since they consume

and produce data on these storage devices.

Fault Detected by Handling

Storage crashed Proxy / Center Framework Remove devices from pool

Suspend / Disable applications of users

that have accounts on affected devices

Disk full Storage Module (Agent) Move old data to slower storage

Notify administrators and users

Stop scheduling or suspend applica¬
tions of users on affected devices

Read/Writeerror Storage Module (Agent) Repeat access

Remove disk from storage pool

Suspend / Disable applications of users

that have accounts on affected disk

Table C.17: Faults of the storage subsystem

With current technology, read/write errors are seldom and always an indicator for re¬

placing storage devices. The access is usually repeated, and if the problem persists, the

device is considered defective and taken out of the pool. Applications of users that have

accounts on this device are stopped from being scheduled or suspended.

If the storage subsystem (or parts of it) becomes unavailable, operation must be (partially)

suspended as application input cannot be gathered and output cannot be stored. At least

those applications of users that have accounts on the affected devices must be stopped.
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C.3.5 Application Management

The application is aborted in three cases: One of the processes has failed and just «dis¬

appeared», one of the processes encountered an error and requested an abortion, or

one of the processes performed an illegal operation and has been aborted by the man¬

agement. The abortion is followed by the removal of all messages of this application in

the SAN. If the fault was not caused by the application itself, it can be restarted from

the last checkpoint.

Fault

Process abortion

Process abort request

Spawn failure

Illegal operation

Detected by

Node Agent Framework

Application Module (Node

Agent)

Node Agent Framework

Application Module (Node

Agent or Center)

Handling

Abort application globally
Flush SAN of application's messages

Eventually restart application

Same as «Process abortion»

Repeat once

Abortion in case of failure

Same as «Process abortion»

Table C.18: Faults of the application subsystem

The application can be aborted before it has been started. If one of the processes failed

to spawn, all other processes must be aborted before the application has started.

C.3.6 Supercluster Management

The management subsystem can also be hit by a fault. Minor faults can be prevented

using redundancy, resulting in performance degradation during the healing phase.

Some fatal faults may still remain which cannot be resolved automatically and require

administrative interaction.

Fault

Center crashed

Proxy crashed

Node Agent crashed

SAN Agent crashed

LAN Agent crashed

Storage Agent crashed

MIB storage unavailable

Module malfunction

Detected by

Other Frameworks

Other Frameworks

Proxy / Center Framework

Proxy / Center Framework

Proxy / Center Framework

Proxy / Center Framework

Center / Proxy Framework

Framework

Handling

Wait until center has been restarted or

re-distribute work to remaining centers

Wait until proxy has been restarted or

re-distribute work to remaining proxies

Same as «Node crashed»

Same as «Switch crashed»

Same as «Switch crashed»

Same as «Storage crashed»

Use mirrored storage

Suspend operation

Restart module (if possible)
Restart framework

Table C.19: Faults of the management subsystem
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The effect of a proxy or center crash depends on the availability mechanism. In a reli¬

able cluster, the workload will be distributed over the remaining cluster members (as

long as the quorum is reached). If there is no high-availability mechanism present (or

the quorum has been lost), the management service of the affected supercluster part

will be suspended.

A crashed agent (Node, SAN, LAN, and Storage) is handled in the same way as if the

component had crashed. The resource is removed from the pool, and applications are

aborted or suspended, and components are re-configured or powered off.

The database that holds the MIB is essential for the operation. For high availability, it

makes sense to mirror this database storage. If the storage is unavailable, the operation

will be suspended and the database must be recovered by the administrators.

If the module of an agent, a proxy or a center malfunctions, the framework tries to reset

the module (if possible - this depends on the design and implementation). If this fails,

the framework will reset itself. If this fails as well, the framework will shut itself down

that triggers the respective fault mechanism.

C.4 Trap Handling

The monitored values are observed by the management software. If the value breaks

administrator-set limits, management actions are triggered automatically. Every moni¬

tored value can be protected by using a mechanism with two limits - a lower and an up¬

per limit. These define the bandwidth in which the value is expected to be. A second

pair of limits can be used to trigger further, more extreme actions. This situation is ex¬

plained in Figure 2.17.

Not only the value itself is checked, but also the other components' values are checked.

If the temperature of a node is 10 °C higher than its neighboring node (but lower than

the limit), something might be wrong as well. If such a difference is found, an adminis¬

trative message is sent, but no action is taken.

The idea of the trap management is to enable the detection of faults before they actually

occur. Suspicious components can be replaced during scheduled downtime, before they

cause a fatal fault resulting in unscheduled downtime that consumes time and money.

The following tables define the monitoring values that are usually protected by the trap

handling mechanism, together with the actions that are usually triggered if a limit is broken.

C.4.1 Node Management

If the node temperature exceeds the first limit, the management tries to decrease the

temperature by increasing fan speeds or air conditioning power. If the second limit is

exceeded, the node is powered off to protect the hardware.
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Value Sample Limit(s) Sample Actions

Node temperature 40 °C Increase / decrease air conditioning
60 °C Switch off node

ECC memory error rate 1 Correction / s Administrative alert

Storage error rate 1 Correction / s Administrative alert

CPU usage Idle: 1%/10%

Busy: 40%/100%

Administrative alert

Memory usage Idle: 5%/20%

Busy: 30%/100%

Administrative alert

Storage usage 80% Administrative alert

Table C.20: Node monitoring values protected by trap handling

Some node-internal subsystems have error correction mechanisms, such as the main

memory or storage devices. The management must have access to the monitoring val¬

ues of the error correction mechanisms, because the device must be replaced during

scheduled downtime if the error rate is too high (compared to the other nodes' values).

The CPU and memory usage must not exceed certain limits when idle: There is some¬

thing wrong if one idle node is busier (or less busy) than other idle nodes (virus, defect,

crashed service). Also a different memory usage shows that there is a problem. Also

differences between busy nodes can indicate problems on the node.

If local storage becomes full, the node must suspend operation. To prevent this situa¬

tion, the administrator receives an alert and unused data can be cleaned up.

C.4.2 SAN Management

As with the nodes, the SAN switch hardware must also be protected if the temperature

exceeds the predefined limits. The air conditioning performance is increased, the per¬

formance of the SAN switch is decreased or - if all else fails - the switch is powered off.

Value Sample Limit(s) Sample Actions

Switch temperature 40 °C Increase / decrease air conditioning
60 °C Switch off SAN switch

«Soft» memory error rate 1 Correction / s Administrative alert

Port error rate 1% Administrative alert

15% Disable port

Table C.21: SAN monitoring values protected by trap handling (SAN switch)

Recoverable errors can also occur in the SAN NIC and switch, where error-correcting mecha¬

nisms hide «soft errors» and increase reliability. These non-fatal errors must be detected and -

if they are too high - the component must be replaced during the next scheduled downtime.

High-speed networking technologies usually work close to their physical limits. Errors

occur repeatedly, but are corrected by the hardware and software. If the error rate of a

port is higher than the rate of other ports, the administrator receives a message that
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allows him to replace the cable (usually the reason for bad communication perform¬

ance) or other components. If the error rate is too high, the port is disabled.

Value

Misrouted messages

«Soft» memory error rate

Port error rate

Sample Li mit(s)

10/hour

1 Correction / s

1%

15%

Sample Actions

Administrative alert

Administrative alert

Administrative alert

Disable port

Table C.22: SAN monitoring values protected by trap handling (SAN NIC)

C.4.3 LAN Subsystem

The LAN subsystem has the same trap mechanisms as the SAN subsystem.

Value

Switch temperature

«Soft» memory error rate

Port error rate

Sample Limit(s)

10°C/40°C

0°C/60°C

1 Correction / s

1%

15%

Sample Actions

Increase / decrease air conditioning
Switch off LAN switch

Administrative alert

Administrative alert

Disable port

Table C.23: LAN monitoring values protected by trap handling (LAN switch)

Value

Misrouted messages

«Soft» memory error rate

Port error rate

Sample Limit(s)

10/hour

1 Correction / s

1%

15%

Sample Actions

Administrative alert

Administrative alert

Administrative alert

Disable port

Table C.24: LAN monitoring values protected by trap handling (LAN NIC)

C.4.4 Storage Subsystem

Also the storage subsystem hardware is protected by the temperature trap, which in¬

creases the air conditioning or powers off the storage devices.

Value Sample Li mit(s) Sample Actions

Storage temperature 40 °C Increase / decrease air conditioning
60 °C Switch off node

Storage error rate 1 Correction / s Administrative alert

Storage usage 80% Administrative alert

Quota 80% User alert

100% Stop scheduling user's applications

Table C.25: Storage monitoring values protected by trap handling
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If non-fatal errors are detected at a higher rate than those of other devices, the admin¬

istrator receives an alert identifying the device and can replace it during the next

scheduled downtime.

If the storage usage exceeds a limit, the administrator receives an alert to archive old

data or add more storage capacity as soon as possible.

Users with accounts on the storage subsystems have limited capacities reserved. If this

quota is close to being consumed, the user receives an alert to clean up his account or

request more space. If the quota is exceeded, the management stops scheduling the

user's applications.

C.4.5 Application Management

The life of an application is the spawning (distribution of all processes to nodes), some

barriers for global synchronization, and finalization (or abortion) at the end. Depending

on the application and system size, spawning should not take more than 5 minutes - if it

does, something has gone wrong and the application will be aborted. Barriers are used

for global synchronization and all processes should enter this barrier in about the same

time - if the processes have to wait for more than 5 minutes to continue, one process

might be left hanging and the application will be aborted. If the application is still run¬

ning five minutes after the first process has entered the finalization phase, some proc¬

esses will be hanging and the application may be aborted. And finally, if the abortion of

an application takes more than 5 minutes, the application is swept out of the slots.

Value

Spawning time

Barrier time

Finalization time

Abortion time

CPU utilization

Memory utilization

Processing time

Sample Limit(s)

1 min

5 min

1 min

5 min

1 min

5 min

1 min

5 min

<50%for5min

<5%for5 min

> 100% of reserved space

> 125% of reserved space

> 100% of reserved time

> 125% of reserved time

Sample Actions

Administrative & user alert

Abortion

Administrative & user alert

Abortion

Administrative & user alert

Abortion

Administrative & user alert

Forced sweep

User alert

Abortion

User alert

Abortion

User alert

Abortion

Table C.26: Application monitoring values protected by trap handling

The processes are expected to use the available processing power. If the CPU usage

drops below 50% for more than 5 minutes, the efficiency is too low and something might

be wrong and the user is alerted. If the CPU usage is less than 5% for more than 5 min¬

utes, the application seems to be blocked and is aborted.
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Each application process receives a certain CPU time and main memory amount. If the

memory consumption reaches 100% or no more CPU time is left, the user receives an

alert. If the memory usage or CPU time reaches 125% of the reserved amount, the appli¬

cation is aborted.

C.4.6 Management Subsystem

Reliable clusters only operate if a quorum (50% + 1 member) is available. Only members

within this quorum are allowed to operate, all others must stop. If the quorum is lost,

operation must be suspended until either another member joins the cluster, or the ad¬

ministrator manually enables the minority to continue with the operation.

Value Sample Limit(s) Sample Actions

Quorum

Channel Quality

50% +1 member

1 Error/minute

1 Error/second

Administrative alert

Administrative alert

Disconnection & restart

Table C.27: Application monitoring values protected by trap handling

Communication channels between management components should be secured, since

invalid messages can disturb the operation. If there is one invalid message per minute,

the administrator will receive an alert. If there one bad message per second, the con¬

nection is closed and the error-generating partner is asked to reset.

C.4.7 User Subsystem

Users connect the management applications using usernames and passwords from

trusted workstations. If the authentication mechanism rejects a user, one try per user

per day is accepted, but if a user continues to use the wrong username and password,

he will be blocked until the administrator re-enables the account after checking the

reason for the rejection (intruder, bad memory).

Value

Authentication Failed

Aborted Applications due to

Programming Errors

Credit Consumption

GUI Resource Consumption

Sample Li mit(s)

1 try/day
10th try of the day

1 Abort/day
10 Aborts/day

90%

100%

20%

50%

Sample Actions

Administrative alert

Block user

Administrative alert

Stop scheduling user's applications

Administrative & user alert

Stop scheduling user's applications

Administrative & user alert

Reject further GUI applications of user

Table C.28: User monitoring values protected by trap handling

Applications can abort for various reasons. The most unwanted reason for abortions are

application bugs (dangling pointers, infinite loops, deadlocks). Applications are usually

tested on small superclusters before they are allowed to run on the productive system.

If applications continue to abort and are continuously queued by their users, scheduling



Management Functionality 215

of their applications will be stopped. The administrator can address the problem by in¬

sisting that the users take some programming courses or requiring a programming ex¬

pert to debug his applications.

Users consume resources, which may be counted with credits. If 90% of his daily or

weekly credits have been consumed, the user receives an alert. When 100% of his cred¬

its have been used, his applications are suspended and scheduling of new applications

for this user is stopped.

User interfaces consume bandwidth within the management LAN. If too many user in¬

terfaces are connected to the management, the management functionality may be com¬

promised. The amount of data communicated between the management computers and

the user interface is limited. If the limit is reached, the user interfaces receive data at a

slower rate and connection requests of new user interfaces are blocked.
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The CLI is a command-line-based application that accepts commands with a specified

syntax. The executable cosmos_cli starts the COSMOS CLI application.

Synopsis

cosmos_cli [ -c center ] [ -p port ]

The COSMOS CLI connects to the center. If none is given, the local host is taken. The

COSMOS CLI connects to the port. If none is given, the default port 4242 is used.

Application Commands

Entering the sole command app returns the number of applications stored in the MIB.

COSMOS : app

Number of applications: 42

Entering the command app followed by a number returns the application information.

COSMOS: app 0

Application 0

Application 0

application 0

application 0

application 0

application 0

application 0

application 0

ID 180388626474 (42/42)

Name ./mpitestS
Owner 11067 (nemecek)

Created 13,03,01 16

Started 13.03.01 16

Finished —. —.—
—

Status 2 (Started)

Size 2

23

24

Entering app followed by a number and overview and a number returns an overview,

beginning from the specified application, containing the number of applications.

COSMOS: app 0 overview 2

Number of applications: 2 (from 0)

app# Created Started Finished

0 13,03,01 16:44:23 13,03,01 16:44:24 --,--,-- --;--;-

1 13.03.01 16:44:34 13.03.01 16:44:34 -—.-—.-— -—:--:-

Status Size User

Started 2 11067

Started 2 11067

Entering the command app followed by a number and abort and another two numbers

aborts the application specified by the first number. The latter two numbers are needed

for security and must be the two parts of the application number.

COSMOS: app 0 abort 42 42

application aborted successfully
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Node Commands

Entering the sole command node returns the number of nodes stored in the MIB.

COSMOS: node

Number of nodes: 16

Entering the command node followed by a number returns either the information about

the node or an error message if the node does not exist.

COSMOS : node 2

Node 2: alias gs3
Node 2: Status Ready
Node 2: Number of slots 2

Node 2 Slot SaN ID Status Rank

Node 2 0 2 Used 0

Node 2 1 3 used 0

application ID

180388626474 (42/42)

180388626475 (42/43)

SAN Commands

Entering the sole command san returns the number of SAN switches stored in the MIB.

COSMOS: san

Number of SaN Switches: 2

Entering the command san followed by a number and static returns the static infor¬

mation of the SAN switch.

COSMOS : san 0 static

Switch 0 alias scs- 0

Switch 0 Name tonebtsO
. SCS . ch

Switch 0 Port 2001

Switch 0 Serial 202- swi-011-002-00007

Switch 0 Status np

Switch 0 Link Type Partner Number

Switch 0 0 Node 9 0

Switch 0 1 Node 9 1

Switch 0 2 Node 2 2

Switch 0 3 Node 2 3

Switch 0 4 Node 4 4

Switch 0 5 Node 5 5

Switch 0 6 Node 6 6

Switch 0 7 Node 7 7

Switch 0 8 Node 8 8

Switch 0 9 Switch 1 9

Switch 0 10 Switch 1 10

Switch 0 11 - 0 0

Entering the command san followed by a number and dynamic returns the dynamic

information of the SAN switch.

COSMOS : san 0 dynamic

Switch 0: Temperature 35

Switch 0: Uptime 1735 sec

Switch 0: Status Op

Switch 0 Link P/s m P/s out Byte/s out Ret/s Status

Switch 0 0 519741 420055 53761192 60 0

Switch 0 1 478735 465218 59543524 58 0

Switch 0 2 420049 519743 66522048 60 0

Switch 0 3 465218 478740 61273785 59 0

Switch 0 4 0 0 0 0 1

Switch 0 5 0 0 0 0 1

Switch 0 6 0 0 0 0 1
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«War is Peace», «Freedom is Slavery», «Ignorance is Strength».

George Orwell, «Inner Party» slogans from the novel «1984»

The following is an alphabetical list of the technical terms used throughout this docu¬

ment plus a brief explanation of their meanings.

Adaptive Routing

Routing algorithm, where multiple ports for the same destination can be used,

depending on current link load, status or other dynamic values. Opposite:

Static routing.

Agent

Software run on a managed component, managing that component.

API

Application Programming Interface. Description and definition of calls pro¬

vided by an application or library allowing modular programming.

Application (or Parallel Application)

An application for superclusters is a set of exécutables that are distributed

over the nodes. Every executable (called Process) knows the application to

which it belongs (through the Application ID) and which Rank it has within the

application. The processes exchange information through the SAN or LAN. All

exécutables are handled as one entity that are started and stopped simultane¬

ously on the supercluster.

Application ID

The Application ID identifies the application within the supercluster.

ASCI Project

Advanced Simulation and Computing Initiative. US-founded project to accel¬

erate the computation performance of supercomputers thus allowing simula¬

tions of nuclear warhead arsenal.

ASIC (Application-Specific Integrated Circuit)

Electronic chips in computers that perform specialized actions, the opposite of

discrete parts. ASICs are used for microprocessors, I/O device controllers etc.
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Authentication

Authentication is a part of the Security. It guarantees other communication en¬

tities the correctness and reliability of the presented identity. Authentication

can be achieved as username/password mechanisms or as knowledge mecha¬

nisms, where a correct answer to a question must be found.

Availability

Availability is the percentage of time a specific service is fully available to a

consumer. An availability of 100% electrical power for a computer can be

achieved using uninterruptible power supplies (UPS) that hold the power for a

certain time. A high availability of services can be achieved using Redundancy.

Barrier Synchronization

Synchronization mechanism, where all participating members are required to

be present. This mechanism is used between iterations of an algorithm, after

(or before) the results are distributed to all other nodes.

BLACS (Basic Linear Algebra Communication Subprograms)

Software package for linear algebra. The library is portable and available for

parallel supercomputer architectures.

Blade Server

Computer architecture, where the computer parts (CPU, memory, some I/O)

and the supporting parts (power, LAN, storage) are separated into blades

(computers) and case backplane (supporting parts), For supercomputing, the

blades can be interpreted as processing elements (PE), the backplane with the

blades inserted as node.

Broadcast

Network communication pattern, where a message is multiplied (either by the

network or by the source node) and sent to all possible destinations.

Center

Software running on a central computer, managing the agents on the managed

component, potentially through proxies.

CLI (Command Line Interface)

User interface application, where information is shown as text and entered

over the keyboard. Opposite of GUI.

Commodity [parts-based] Supercomputers

Supercomputers that are built from commodity off-the-shelf parts, designed for

non-supercomputing use. These parts include processors, memories, I/O devices

and many others. The opposite is Custom [parts-based] Supercomputers.

COW (Cluster of Workstations)

A COW system consists of a number of standard workstations that are intercon¬

nected by a fast network (such as T-Net or MyriNet). Special software enables the

COW to be used as a supercomputer (job queue, inter-process communication,

math libraries). Only dedicated computers can act as a node of a supercomputer.
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Custom Supercomputers (or Full-Custom Supercomputers)

Supercomputers that are built from custom parts, only designed for supercom¬

puting use. These parts include processors, memories, I/O devices and many

others. The opposite is Commodity [parts-based] Supercomputers.

Debugging

Removing programming errors from applications.

EFLOPS

Short for Exa FLOPS (Floating Point Operations per Second), equal to one

quintillion (1 000 000 000 000 000 000 = 1018) operations per second.

Encryption

Encryption is a part of the Security. Data in encrypted into unreadable data

that can only be decrypted back into readable data by the other communication

entity. This is achieved by encryption algorithms that are either symmetric

(encryption and decryption use the same keys and algorithms) or asymmetric

(encryption and decryption use different keys and/or algorithms).

Event Synchronization

Synchronization mechanism, where one member indicates to all other mem¬

bers that something happened. This mechanism is used in algorithms, where

all members search for a result and the first member to find the result stops

the search.

FLOPS

Short for Floating Point Operations per Second.

GFLOPS

Short for Giga FLOPS (Floating Point Operations per Second), equal to one bil¬

lion (1 000 000 000 = 10") operations per second.

GRID Computing

A supercomputing philosophy, where computing resources are decoupled from

their consumers, and compared to water or electrical power. Computing plants

provide their services to users, no matter where they are. The consumption is

measured and accounted.

GUI (Graphical User Interface)

User interface application, where information is shown and entered graphi¬

cally, using graphs, gauges, meters and many more. Opposite of CLL

Integrity

Integrity is part of the Security. It guarantees the receiving communication en¬

tity that the data it has received is identical to the data that was sent - no data

has been modified, deleted or added to the data during transmission. This is

achieved by using an algorithm that adds some kind of checksum that is cre¬

ated by the sender and afterwards checked by the receiver.
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LAN (Local Area Network)

The Local Area Network (LAN) interconnects all components of the superclus¬

ter and is used for socket-based communication such as NFS, FTP, Telnet and

more. The commonly used technologies are Ethernet and Token Ring.

LINPACK

Software package for linear algebra, created by Jack Dongarra [Don94]. The li¬

brary is portable and available for various supercomputer architectures, no

matter whether scalar, parallel or vector-type.

Master/Backup System

Reliability mechanism, where the master system is in operation and a backup

system takes over the operation as soon as an arbiter decides that the master

system is unavailable.

MFLOPS

Short for Mega FLOPS (Floating Point Operations per Second), equal to one

million (1 000 000 = 106) operations per second.

MIB (Management Information Base)

The MIB contains a hierarchical representation of management values that

can be read, written and created. Most network hardware allows access to the

MIB using the Simple Network Management Protocol (SNMP).

MIMD (Multiple Instruction [Streams], Multiple Data [Streams])

Architecture for processors or computers [Fly72]. The processing unit executes

instructions from multiple instruction streams and operates on data from mul¬

tiple data streams. This architecture is used in multiprocessor architectures.

MISD (Multiple Instruction [Streams], Single Data [Stream])

Architecture for processors or computers [Fly72]. The processing unit executes

instructions from multiple instruction streams and operates on data from one data

stream. This architecture is used in architectures for audiovisual processing.

MPI (Message Passing Interface)

Standardized library for communication between processes of parallel applica¬

tions. The current version with many hundred calls supports - besides simple

message passing - parallel I/O and storage access.

MPICH

MPI implementation available for various platforms, e.g. Windows using

Ethernet. Very portable but not very efficient on high-speed SAN products.

MPP (Massive Parallel Processing)

Computing architecture where a huge amount of processors participate.

MTBI (Mean Time Between Interruptions)

The Mean Time Between Interruptions (MTBI) is the average time that elapses be¬

fore a component or system fails or requires repair. If a device has an MTBI of 1000

hours, the device will, on average, operate for 1000 hours before a failure occurs.
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Multicast

Network communication pattern, where a message is multiplied (either by the

network or by the source node) and sent to multiple destinations. Multicasts

are used for group-internal broadcast messages.

Multicomputer

Parallel supercomputer architecture with many independent computers that

are interconnected with a fast network. Usual architecture of NOW and COW

systems.

Multiprocessor

Parallel supercomputer architecture with a fast network that interconnects

memory, I/O, and processors. Usual architecture for SMP and NUMA systems.

Mutual Exclusion

Mechanism that allows for multiple processes using shared resources, e.g. for

exclusive access or reader/writer algorithms.

NIC (Network Interface Card)

The Network Interface Card (NIC) connects the computer to a network. The

NIC sends and receives data to and from the network. The driver and operat¬

ing systems allow applications to exchange data between computers.

Node

Computer containing hardware and software for participating in parallel su¬

percomputing applications. A node contains one or more processing elements,

storage devices and network interfaces.

NOW (Network of Workstations)

A NOW system consists of a number of standard workstations that are inter¬

connected with a standard network (such as Ethernet). Special software en¬

ables the NOW to be used as a supercomputer (job queue, inter-process com¬

munication, math libraries). Every computer in a LAN can be used as a node of

a supercomputer.

NUMA (Non-Uniform Memory Access)

In NUMA-based computers, every processor has its own memory that is ac¬

cessed directly. Every processor can also access the memory of all other proc¬

essors, but this access is handled by special hardware, using a network. Ac¬

cessing distant memory takes more time and has a lower bandwidth than ac¬

cessing the own memory.

PE (Processing Element)

Physical unit for calculation, including one processor and memory. A node can

contain multiple processing elements.

Peak Performance

Performance level which the manufacturer guarantees cannot be exceeded.
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PFLOPS

Short for Peta FLOPS (Floating Point Operations per Second), equal to one

quadrillion (1 000 000 000 000 000 = 1015) operations per second.

Process

A Process is a part of a (parallel) Application started on the Supercluster. It is

identified by its Application ID, its individual Rank within the application, and

the executable and user information. The process is started on a node, it then

allocates resources and communicates to other processes of the same applica¬

tion. If a process fails, the other processes of the same application will also be

terminated.

Profiling

Analyzing (parallel) applications to enable faster execution.

Proxy

Software running on computers, and managing the agents on the managed

components on behalf of the centers. Behaves as agent toward centers and as a

center toward agents.

PVM (Parallel Virtual Machine)

Standardized communication library that creates a virtual parallel machine.

The communication between computers of various platforms is simplified,

from Windows-based laptops up to supercomputers. The result is a heteroge¬

neous supercomputer.

Queue

List of applications that are consequently being executed.

Rank

The Rank identifies the process within the same (parallel) application. If the

size of the application is 16 nodes (16 Processes belong to the application), the

processes receive individual rank numbers from 0 to 15. Every process knows

its individual rank.

Redundancy

Redundancy means that a service or component that is mission-critical is

backed by additional components that are activated in case of break-down.

Redundancy is used to achieve high reliability and availability of services.

Reliability

Reliability means that a consumer can depend on the service because it always re¬

acts in the same way and produces feedback in every case or demonstrates how

the goods or services may be obtained in case of a system or component failure.

Reliable Cluster

Reliability mechanism, where the entities of the cluster solve a problem to¬

gether. The cluster is allowed to operate as long as a quorum of all members is

available (usually one more than half of them). The workload is distributed to

all present members.
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Resource Matrix

Matrix with two dimensions «processing element» and «time». Applications are

rectangular blocks in this matrix. Parallel version of the Queue.

RISC (Reduced Instruction Set Computer)

Processor with a reduced set of instruction and addressing modes. The reduc¬

tion allows simpler silicon implementations and higher clock rates, leading to

higher performance.

SAN (System Area Network)

The System Area Network (SAN) interconnects the nodes of a supercluster

and is used for fast communication between distributed processes on the

nodes. The key features of the SAN are high bandwidth and low latency, com¬

bined with a rich set of functionality such as multicast and broadcast mecha¬

nisms. The commonly used technologies are Myricom MyriNet, SCS T-Net or

Quadrics QNet.

Scalability

Scalability is the behavior of output values of a function when the input values

are increased or decreased. A function where the output values change in, at

most, a linear relationship to the input values is called «to scale well». Func¬

tions where the output values change in more than a linear relationship to the

input values are called «not to scale».

Security

Security is the combination of Authentication, Encryption and Integrity. The

combination of these three areas allows reliable communication between two

entities.

SHMEM (Shared Memory)

Standardized communication library that allows shared-memory-like comput¬

ing in multicomputer environments.

SIMD (Single Instruction [Stream], Multiple Data [Streams])

Architecture for processors or computers [Fly72]. The processing unit executes

instructions from one instruction stream and operates on data from multiple

data streams. This architecture is used in vector-processor architectures.

SISD (Single Instruction [Stream], Single Data [Stream])

Architecture for processors or computers [Fly72]. The processing unit executes

instructions from one instruction stream and operates on data from one data

stream. This architecture is used in microprocessor architectures.

SMP (Symmetrical Multiprocessing, Shared Memory Processing)

In SMP-based computers, all processors are connected to a shared memory.

All processors can access this memory with the same time lapse. The connec¬

tion between the processors and the memory is usually the bottleneck, since

the available bandwidth is limited and divided by the number of processors.
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SNMP (Simple Network Management Protocol)

The SNMP allows the network nodes to be managed using a simple de-facto

standard created by Marshall T. Rose and Jeffrey D. Case. SNMP allows net¬

work nodes to be configured and enough freedom to be given to the network

hardware manufacturers to implement the access only to the most vital parts

or to all parts of the hardware. Besides SNMP, a MIB needs to be implemented

which the SNMP has access to.

Speed-Up

Gain factor of an accelerated system (e.g. parallel computer) over the original system.

Static Routing

Routing algorithm, where only one port is defined for a destination. The rout¬

ing algorithm must re-calculate the routing tables of all network routers and

distribute those tables to all routers. Opposite: Adaptive routing.

Supercluster

Cluster-based supercomputer, commonly used for commodity supercomputers.

TCP/IP (Transmission Control Protocol / Internet Protocol)

The TCP/IP allows «reliable» transmission between two communicating part¬

ners. Connections are actively created and closed, data is transmitted using an

acknowledged mechanism and timeouts allow the detection of failures. TCP/IP

only allows the creation of point-to-point connections between an accepting

server and a connecting client. TCP/IP connections are used for applications

using standardized sockets interface.

TFLOPS

Short for Tera FLOPS (Floating Point Operations per Second), equal to one

trillion (1 000 000 000 000 = 1012) operations per second.

Top500

Ranking list of the fastest supercomputers of the world, updated twice a year

in June and November during supercomputing conferences in Germany and

the US [Top500].

Vector Processor

Processor that does not calculate on single («scalar») values, but on multiple

values concurrently. These values are structured in arrays of identical data

type, called «vectors».
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