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Zusammenfassung

Diese Doktorarbeit behandelt die Beeinflussung von Elektronenspins in einem GaAs/
InGaAs Quantentopf. Die hier beschriebenen Experimente wurden im Rahmen eines
gemeinsamen Forschungsprojekts zwischen dem IBM Forschungslaboratorium in
Rüschlikon und der Gruppe für Nanophysik am Laboratorium für Festkörperphysik
der ETH Zürich durchgeführt. Alle optischen Experimente wurden im IBM–Labor
ausgeführt, Transportmessungen und die Probenherstellung an der ETH.

Die Arbeit beginnt mit einer Einführung in das Gebiet der ‘Spintronik’ und
einer kurzen Übersicht über bisherige Erkenntnisse (Kapitel 1). In Kapitel 2 wird
der experimentelle Aufbau samt dessen physikalischen Grundlagen sowie die Proben-
herstellung erläutert. Die Resultate sind aufgeteilt in drei Kapitel: Elektronenspin-
manipulation mit magnetischen Feldern (Kapitel 3), mit magnetischen und elek-
trischen Feldern (Kapitel 4) und mit ausschliesslich elektrischen Feldern (Kapitel 5).

Kapitel 3 beschreibt die kohärente Präzession von Elektronenspins im magneti-
schen Streufeld unter einem Gitter aus Eisenstreifen in einem veränderlichen, ex-
ternen Magnetfeld. Verglichen mit unter Streifen aus nichtmagnetischem Gold ist
die Präzessionsfrequenz proportional zur Magnetisierung des Eisens erhöht, was wir
auf das magnetische Streufeld der Eisenstreifen zurückführen. Indem wir benach-
barte Eisenstreifen auf ein gegensätzliches elektrisches Potential setzen, bewegen wir
die Elektronen im inhomogenen magnetischen Streufeld und können dadurch deren
Präzessionsfrequenz verändern. Die Abstimmbarkeit beträgt ungefähr 0.5 GHz/V.
Wenn wir die Spannung mit Gigahertz-Frequenzen modulieren, können wir die
Spinpräzessionsfrequenz auf der Zeitskala von einer Nanosekunde beeinflussen.

In Kapitel 5 stellen wir eine neue Methode vor, welche die separate Bestimmung
der Rashba- und Dresselhaus-Beiträge zum Spin-Bahn-Magnetfeld ermöglicht. Mit-
tels eines externen elektrischen Wechselfeldes bringen wir die Elektronen in eine
oszillierende Bewegung in der Ebene des Quantentopfs. Das Spin-Bahn-Magnetfeld,
welches die Elektronen aufgrund ihrer Bewegung erfahren, hängt vom Winkel zwi-
schen dieser Bewegung und dem Kristallgitter ab. Indem wir die Elektronenspin-
präzessionsfrequenz als Funktion dieses Winkels messen, können wir das Spin-Bahn-
Feld und dessen Rashba- und Dresselhaus-Komponenten ermitteln. In einem wei-
teren Experiment verwenden wir Spin-Bahn-Felder, um Elektronenspinresonanz mit
ausschliesslich elektrischen Feldern zu erzeugen.
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Abstract

This thesis reports on the manipulation of electron spins confined in a GaAs/InGaAs
quantum well. The experiments were performed in the frame of a joint–research
project between the IBM Zurich Research Laboratory and the nanophysics group at
the Laboratory for Solid State Physics at ETH Zürich. All optical experiments were
conducted at the IBM lab, while transport measurements and sample processing
were done at ETH.

After a general introduction into the field of spintronics and an overview on
previous achievements (chapter 1), the experimental set-up including the underlying
physical principles of the measurement techniques and the fabrication of the samples
are described in chapter 2. The results of this thesis are split into three chapters,
describing electron spin manipulation with only magnetic fields (chapter 3), with
magnetic and electric fields (chapter 4) and with solely electric fields (chapter 5).

In chapter 3, the coherent precession of electron spins in the magnetic stray field
below an array of Fe stripes is measured for varying external magnetic fields and
stripe sizes. Comparing with reference stripes made of non-magnetic Au, we find an
enhancement of the spin precession frequency proportional to the Fe magnetization,
which we can attribute to the effect of the magnetic stray field emanating from the
magnetized Fe bars. By applying a gate voltage to an interdigitated grating of Fe
stripes (chapter 4), the electrons are moved within the inhomogeneous magnetic
stray field and we achieve electrical control of the spin precession frequency, with
a tunability on the order of 0.5 GHz/V. Modulating the gate voltage at gigahertz
frequencies allows the spin precession to be controlled on a nanosecond timescale.

In chapter 5, we present a novel method that allows the separate determination
of both Rasbha and Dresselhaus contributions to the effective spin-orbit magnetic
field. We use an external a.c. electric field to bring the electrons into an in-plane
oscillatory motion. Depending on the orientation of this motion with respect to the
crystal lattice, the electrons are subject to a varying spin-orbit magnetic field. By
investigating the electron spin precession frequency as a function of their movement
direction, the strength of the Rashba and Dresselhaus spin-orbit magnetic fields,
and their coupling constants, can be extracted. In another experiment, we use these
spin-orbit fields to trigger electron spin resonance with solely electric fields, in this
context referred to as ‘electric–dipole–induced spin resonance’.
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α Rashba coupling constant
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γ Dresselhaus cubic coupling constant
B magnetic field

Bext external magnetic field
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Bs magnetic stray field
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g effective Landé g-factor (-0.44 in GaAs)

h = 2π~ Planck’s constant (6.6261 ×10−19 Js)
I current
λ (laser) wavelength
m electron mass (9.1094 ×10−31 kg)
m? effective electron mass in GaAs (0.067m)
µ electron mobility
µB Bohr magneton (927.40 ×10−26 J/T)
n refractive index
P power
R resistance
t time
T temperature
T1 (longitudinal) spin lifetime
T2 spin coherence time
T ∗

2 spin coherence time of a spin ensemble
∆τ pump-probe delay

τr (τh) electron (hole) recombination time
τs spin lifetime (T1 or T2)
θF Faraday rotation angle
Vg gate voltage
ν spin precession frequency

vii



Chapter 1

Introduction

This introductory chapter presents major achievements and future visions within the field
of spin electronics (Sect. 1.1) and it introduces important methods for the manipulation
of electron spins, such as spin polarization (Sect. 1.2) and spin detection (Sect. 1.3).
The processes leading to spin relaxation are described in Sect. 1.4, and the two basic
concepts for spin manipulation pursued in this thesis are introduced in Sect. 1.5.

1.1 Spintronics

In present computers, information is processed by the use of charge currents. Usu-
ally, electrons carry this charge. An additional quantum–mechanical property of
the electron, the spin, remains unused, since the computation relies only on classical
physics. With the ongoing miniaturization of integrated circuits in the semiconduc-
tor industry [1], the need for alternative technologies is obvious, if the progress in
computational power and reduction in size, often illustrated by Moore’s law [2], is
to be continued in the upcoming decades.

Since the discovery of the electron spin, first mentioned by Pauli in the formu-
lation of his exclusion principle [3] in 1925, physicists have been fascinated by this
quantum–mechanical property of particles, in particular of electrons. The prospect
of potential applications in future quantum computers [4, 5] has lead to exciting
research, predominantly of fundamental nature. The term ‘spintronics’ has evolved
from the words ‘spin’ and ‘electronics’ and describes the use of the electron spin
degree of freedom in a solid–state environment. While most experiments still deal
with spin ensembles of 103 to 105 electrons, electrical [6–8] and optical [9, 10] access
to single electron spins confined in quantum dots has recently been reported.

Already today, spintronic devices are widely employed in read–heads of hard–
disk drives. The discovery of the giant magnetoresistance effect (GMR) [11–13] in
1988 has lead to an increase of the information storage density in hard-disk drives by
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Chapter 1. Introduction

more than one order of magnitude. In a GMR–device, a non-magnetic, conducting
layer is embedded between two magnetized layers. The in-plane resistance depends
on whether the two magnetic layers are magnetized in a parallel or an anti-parallel
configuration. A difference of up to a factor 2 has been found. If the magnetic layers
have different coercive fields, an external magnetic field, e.g. from a magnetized
domain on the hard disk, can switch the device into the parallel or anti–parallel
state. This operation is also referred to as ‘spin valve’. Another readily available
application is the ‘magneto-resistive random access memory’ (MRAM) that uses
the tunneling magnetoresistance effect (TMR) [14, 15], which is similar to GMR,
except that the middle layer is non-conducting. In that case, a current is passed
perpendicularly trough the layers, and quantum-mechanical tunneling through the
non-conducting layer occurs. Also here, the tunneling resistance changes if the
magnetic layers are aligned parallel or anti-parallel.

Future applications of spintronic devices include the use of single electron spins
as quantum–bits (qubits) for a quantum-computer [16]. Such a computer could
perform certain operations exponentially faster than a classical computer, like the
factorization of integer numbers [17]. Because of their potentially long coherence
times [18], much larger than the charge (orbital) coherence time, such qubits could
fulfill the requirement of retaining their coherence over at least 104 computation
cycles [19]. At the same time, this is also their Achilles’ heel: interacting only
weakly with the environment, the manipulation and state–preparation of a spin–
qubit is difficult.

In the following sections, we give a short introduction on how to polarize, ma-
nipulate, and detect electron spins. More detailed reviews can be found in [20–22].

1.2 Spin polarization

In ferromagnetic materials, an equilibrium spin polarization exists. Spintronic ap-
plications, however, often require the generation of a non–equilibrium spin polar-
ization. Historically, such a spin pumping was achieved with optical techniques.
For solid–state applications, however, electrical spin injection without the need for
optics might be advantageous.

1.2.1 Optical spin orientation

The first experimental proof of optical spin orientation in a semiconductor (Si) was
reported in 1968 by Lampel [23]. Since then, this process has been extensively
studied and is well understood [24]. In the process of optical excitation, a photon
creates an electron in the conduction band and leaves a hole in the valence band.
What kind of optical polarization is needed and which amount of spin polarization

2



1.2. Spin polarization
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k

Figure 1.1: Band structure of GaAs
with simplified parabolic bands near
the Γ–point. HH, LH and SO de-
note the heavy–hole, light–hole and
split–off bands. Eg is the band gap,
∆0 the spin–orbit splitting.

can be achieved is governed by the semiconductor’s band structure and the selection
rules. In a GaAs system as studied in this thesis, a spin polarization of 50% (100%
if the system is two–dimensional) can be achieved using circularly polarized light.
Since the electric field of the photon does not interact directly with the spin but with
the electron’s orbital motion, spin polarization is only possible with the help of spin–
orbit coupling. From the band structure of GaAs in Fig. 1.1 this coupling is visible in
the valence band. Contrary to the conduction band, which has s–orbital symmetry,
the orbital momentum of the p–type valence band is L = 1. Together with the spin
S = 1/2, the total angular momentum is J = 3/2 in the light– (LH) and heavy–hole
(HH) bands and J = 1/2 in the split-off (SO) band. Electrons are preferably excited
from the HH band to the conduction band with circularly polarized light tuned to
the band-gap energy Eg. Since HH and LH bands are degenerate at k = 0 (this
degeneracy is lifted in reduced dimensions), electrons from both bands are excited,
resulting in a spin polarization of less than 100% (see Sect. 2.1.1). If the energy of
the exciting radiation exceeds Eg + ∆0, also electrons from the SO band contribute.
These transitions lead to a spin polarization opposite in sign of the HH transition
and therefore, the spin polarization in the conduction band vanishes.

Optically excited carriers have a finite lifetime, also called recombination time,
τr. The number of recombining electron-hole pairs per time is given by

Ṅ(t) =
dN(t)

dt
= −N(t)

τr

, (1.1)

where N(t) is the total number of optically excited electrons at time t and N0 =
N(t = 0). Then, N(t) decays exponentially

N(t) = N0 exp

(
− t

τr

)
. (1.2)

A spin polarized population Ns decays in a similar way, but now there are two decay
channels available. A spin can either recombine to ‘leave’ the ensemble Ns, or it can

3



Chapter 1. Introduction

lose its spin orientation after a spin relaxation time τs. Both losses add up to yield

dNs(t)

dt
= −

(
Ns(t)

τr

+
Ns(t)

τs

)
, (1.3)

and

Ns(t) = Ns,0 exp

(
−
(

1

τr

+
1

τs

)
t

)
= Ns,0 exp

(
− t

τ

)
, (1.4)

with Ns,0 = Ns(t = 0) the number of spin polarized electrons at t = 0 and the new
lifetime

τ =

(
1

τr

+
1

τs

)−1

. (1.5)

In an undoped semiconductor, the measurement of spin dynamics is thus limited by
the recombination time τr.

This limitation can be overcome by using n–doped samples, where an equilib-
rium electron concentration Nd is present in the conduction band. Up to now, we
have only considered spin–polarized electrons. However, for every optically excited
electron, a spin–polarized hole with opposite spin is created in the valence band.
As explained in [25], the hole spin relaxes quickly on the time scale of the momen-
tum relaxation time, due to the strong spin–orbit coupling in the valence band1.
Therefore, we can safely assume that electron–hole recombination is independent of
the electron spin. Assuming 100% electron polarization by the optical excitation, at
t = 0, Nh,0 = Ns,0 holes are created and their decay is solely governed by τr, such
that Nh(t) = Ns,0 exp (−t/τr). We split the population of the conductance band in
unpolarized electrons Nu and spin-polarized electrons Ns. At t = 0, Nu = Nd, and
Ns is determined by the pump-pulse power and wavelength according to Eq. (2.7)
below. The decay rates are then given by

Ṅs(t) =
Ns(t)

Ns(t) + Nu(t)
Ṅh(t)−

Ns(t)

τs

, and

Ṅu(t) =
Nu(t)

Ns(t) + Nu(t)
Ṅh(t) +

Ns(t)

τs

.

(1.6)

We have assumed that polarized and unpolarized electrons recombine proportionally
to their occurrence in the conduction band and that the polarized electrons addition-
ally decay with their spin relaxation rate – in which case they become unpolarized
and have to be added to Nu. Additionally, charge has to be conserved,

Nu(t) + Ns(t)−Nh(t) = Nd. (1.7)

By solving Eq. (1.7) for Nu(t) and substituting it into either expression of Eq. (1.6),

1This relaxation can be suppressed in deformed GaAs crystals.
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1.3. Spin detection

we obtain together with the exponential decay of Nh given above,

Ṅs(t) =
Ns(t)

Nd + Nh(t)
Ṅh(t)−

Ns(t)

τs

= −Ns(t)

τr

(
1 +

Nd

Ns,0

exp

(
t

τr

))−1

− Ns(t)

τs

.

(1.8)

Comparing with Eq. (1.3), the relaxation rate due to recombination is effectively
reduced by a factor 1 + exp (t/τr)Nd/Ns,0 > 1. In our experiments, Nd/Ns,0 =
102 . . . 103 and the spin relaxation is not limited by the recombination time τr ≈
400 ps (see appendix A).

1.2.2 Electrical spin injection

In a ferromagnet, electrons are partially spin–polarized. Therefore, a ferromagnetic
contact could serve as a spin injector into a semiconductor, as proposed in 1976 [26].

The most straight–forward approach might be spin–injection via an Ohmic con-
tact. This, however, has proven difficult. Polarizations of only a few percent have
been observed [27], which was attributed to spin–flip scattering at the interface [28].

As a solution to this, a magnetic semiconductor layer was introduced as spin
aligner between the Ohmic contact to a metal and the semiconductor. Magnetic
semiconductors are usually grown by a diluted doping (a few percent) of II-VI–
semiconductors (e.g., CdTe or ZnSe) with Mn. This results in a large Zeeman–
splitting due to a high electron g–factor (up to ≈ 100) and leads to spin–polarization
in the conductance band already at small external magnetic fields. With this ap-
proach, much higher injection efficiencies were reported [29, 30]. A similar approach
has also been realized [31] with GaMnAs, a ferromagnetic p–type semiconductor [32].

The most efficient spin injection today, however, has been achieved by tunneling.
Already in 1992, spin injection from a ferromagnetic STM–tip into GaAs has been
observed [33]. Today, injection efficiencies of up to 70% have been reported by
tunneling from a ferromagnet (CoFe) via a MgO tunnel barrier into GaAs [34, 35].

1.3 Spin detection

As a means of reading out the spin state of a qubit or in order to verify the amount
of injected spin polarization, a spin detection scheme has to be implemented. Again,
both optical and electrical detection mechanisms can be adopted. Optical detection
relies on the analysis of the polarization state of the radiation emitted by recombin-
ing electrons. If a recombining electron is spin–polarized, the radiation in general is
circularly polarized. Such an optical detection, however, requires the recombination

5



Chapter 1. Introduction

time to be shorter than the spin relaxation time. Otherwise (e.g. in indirect-band
semiconductors), the spin has already relaxed at the time the radiation is emitted.
Optical detection can be combined with electrical injection, as demonstrated in a
‘spin-LED’ [30]. Such a light-emitting diode produces circularly polarized light. An-
other method of optical spin detection is the Hanle effect, where the spins precess in
a magnetic field transverse to their orientation (first semiconductor measurement in
1969 on GaSb [36]). This method has the advantage that also τs can be determined.

Electrical spin detection relies on the TMR principle mentioned above in Sect. 1.1 [37].

Of course, there are many other paths that lead to the detection of polarized
electrons. In the pioneering work by Lampel [23], the optically induced electron
polarization was revealed by nuclear magnetic resonance (NMR). As explained below
(Sect. 3.4.4), the interaction between polarized electrons and nuclear spins can lead
to polarization of the nuclei, which in turn can generate large nuclear magnetic
fields.

1.4 Spin relaxation mechanisms

Spin manipulation has to occur within a time when the spin is still oriented. There-
fore, before introducing spin manipulation techniques, we briefly discuss the main
spin relaxation mechanisms. Detailed calculations can be found in [24], a well com-
prehensible overview in [38]. Spin relaxation and decoherence are complex processes,
but for most applications, they can be summarized by the two parameters T1 and T2,
which appear in the phenomenological Bloch equations, Eq. (5.19). T1 is the time
it takes for the spin to reach thermal equilibrium by aligning with the longitudinal
magnetization. In this process, energy is exchanged with the lattice. In contrast, T2

is the transverse spin relaxation or spin coherence time and describes the time over
which the phase of a superposition of two states |0〉 and |1〉, usually spin-up and
spin-down, is well defined and the off-diagonal matrix elements in the density matrix
are non-zero. When measuring spin ensembles, T2 is further reduced by averaging ef-
fects, such as fluctuating microscopic magnetic fields from nuclei or from spin-orbit
coupling, that can all be summarized in a distribution of g–factors with nonzero
width ∆g. The additional decoherence is on the order of τ−1 ≈ ∆gµBB/~. The ob-
served spin coherence time of an ensemble is often denoted by T ?

2 , with T ?
2 ≤ T2 and

T2 ≤ 2T1 [39]. In the following, we will denote the spin relaxation by τs. Depending
on the experiment and the geometry, τs corresponds to T1 or (in most cases) T2.

1.4.1 Elliott–Yafet (EY)

The Elliott–Yafet relaxation mechanism was pointed out by Elliott in 1954 [40] and
Yafet in 1963 [39]. It was shown that spin-orbit interaction in crystals causes a
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1.4. Spin relaxation mechanisms

mixing of wave functions with spin-up and spin-down orientations, i.e. that the
wave function for a spin-up electron also contains (usually small) contributions of a
spin-down wave function. Therefore, spin-independent momentum scattering with
impurities (at low T ), interfaces and phonons (at high T ) can also lead to spin
relaxation. The spin relaxation rate τ−1

s due to the EY–mechanism is therefore
proportional to the momentum relaxation rate τ−1

p ,

1

τs

∝ 1

τp

.

1.4.2 D’yakonov–Perel’ (DP)

Another spin relaxation mechanism was discovered by D’Yakonov and Perel’ in
1971 [41]. Due to spin-orbit coupling in the conduction band (see Sect. 5.1), in
crystals without an inversion center (for example in GaAs), the spin degeneracy at
k 6= 0 is lifted, since the electrons feel a k–dependent magnetic field, which couples
to their spin. The spin starts to precess about a k-dependent axis Ω(k). Both the
direction and the magnitude of Ω depend on the electron momentum k, as described
later in Eq. (5.4). Because k changes after the momentum scattering time τp, also
Ω(k) will be modified and we consider two limiting cases.

If the average spin precession Ωavg about Ω is faster than the momentum scat-
tering, i.e. 1/Ωavg < τp, the transverse spin component of a spin ensemble vanishes
before the first momentum scattering event, since all electron spins precess about
different Ω, due to randomly distributed k in the ensemble. In this case, the spin
relaxation rate is proportional to the width ∆Ω of the distribution, τ−1

s ≈ ∆Ω.

The opposite limit 1/Ωavg > τp considers the case that momentum scattering oc-
curs faster than spin precession. In general, this is the important limit for GaAs. In
this case, the spins start to precess about Ω(k), but before having rotated consider-
ably (Ωavgτp < 1), the electron scatters into a new momentum state k′ and the spin
precesses about a new Ω(k′). This is equivalent to a random walk in two dimensions,
with step size δφ = Ωavgτp. After a time t and t/τp steps, ∆φrms(t) ≈ δφ

√
t/τp, like

in a diffusive process. With the usual definition ∆φrms(τs) = 1, we find τ−1
s = Ω2

avgτp.
This effect is also called ‘motional narrowing’. In summary, the spin relaxation by
the D’yakonov–Perel’ mechanism is inversely proportional to the momentum relax-
ation rate,

1

τs

∝ τp.
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1.4.3 Bir–Aronov–Pikus (BAP)

The Bir–Aronov–Pikus relaxation mechanism [42] (1975) is important in semicon-
ductors where electron and hole wave functions have large overlap. Due to the
exchange interaction between electron and hole, the electron spin perceives an ef-
fective magnetic field about which it starts to precess. As mentioned above, hole
spins relax much faster than electron spins and therefore, the electron spin feels a
fluctuating field and again the effect of ‘motional narrowing’ reduces the relaxation
rate induced by this mechanism, and the spin relaxation rate is proportional to the
hole relaxation time, τ−1

s ∝ τh.

1.4.4 Hyperfine interaction

Electron and nuclear spins interact via the contact hyperfine interaction, which
leads to an effective magnetic field Bn proportional to the magnitude squared of the
electron wave function at the positions of the nuclei. While this interaction is too
weak to cause considerable relaxation of free electrons in bulk semiconductors, it
is important for localized electrons confined in quantum dots. In GaAs, where the
nuclei carry a spin of 3/2, these electrons typically interact with 104−106 nuclei [20].
Fluctuations of Bn in space and time lead to decoherence of both spin ensembles
and single spins.

1.4.5 Spin relaxation in GaAs

In bulk n–type GaAs, it is agreed that EY and DP are the dominant spin relaxation
mechanisms. Since their relaxation efficiencies are proportional to τ−1

p for EY and
to τp for DP, their contributions can be distinguished in the experiment by deriving
τp from, for example, mobility measurements. It was found [43] that EY is dominant
at low T and DP at high T , with a transition around T = 30 K. Moreover, a strong
dependence of the spin lifetime on doping density and magnetic field was reported.
The lifetime was found to be largest for doping densities between 3 × 1015 and
2× 1016 cm−3, the upper limit was associated with a metal–insulator transition [44].
The BAP relaxation mechanism is only relevant in p–type GaAs.

In quantum wells, the situation is more complicated due to higher mobilities,
smaller electron–hole separation and a more complicated band structure. Generally,
the spin relaxation time is lower than in bulk GaAs [45], but theoretical explanations
are controversial (see [38] for an overview). Long τs on the order of nanoseconds
were observed up to room temperature [46] in (110)–grown GaAs. This was ascribed
to a suppression of the DP–mechanism in this geometry.
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1.5. Spin manipulation

source

Vs Vd
Vg

draingate

(a)
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Figure 1.2: A spin transistor is
thought to work similarly to a field–
effect transistor. A spin–polarized
current is injected via the source
electrode. Below the gate, the spin
polarization remains (a) unchanged
or is (b) rotated. Only the spin-up
orientation can pass the drain con-
tact, spin-down is reflected back.

1.5 Spin manipulation

By the term ‘spin manipulation’ we name the intentional change of the orientation
of one or several spins. Figure 1.2 shows a ‘spin transistor’, proposed by Datta
and Das (1990) [47] and yet unrealized. An electron spin is polarized and injected
from a ferromagnetic source contact into a one–dimensional channel. In the channel,
the spin is manipulated and at the drain contact, the spin is detected by another
ferromagnet. Only one spin orientation can pass the interface to the contact, the
other orientation is reflected back into the channel (analogous to a TMR–device).
In the original proposal, the spin orientation in the channel was manipulated using
spin-orbit fields. Besides spin-orbit effects, other approaches for spin manipulation
are considered, as described in the next section.

In the following, we give short introductions to spin manipulation, for example
in the channel of a spin transistor, using magnetic and electric fields. We focus on
magnetic stray fields and on spin-orbit interaction. In both cases, the aim is to
control the electron spin by electric fields, since they are easy to apply locally using
gate electrodes.

1.5.1 Spin manipulation with local magnetic fields

The most straight–forward approach to manipulate an electron spin is the use of a
magnetic field, since the magnetic moment of a spin, µ = gµBS couples directly to
the magnetic field B via a Zeemann–term S ·B in the Hamiltonian. With g–factor-
engineered heterostructures [48, 49], spins can be selectively transferred into an area
of high g–factor and manipulated there.

If the magnetic field B is a local field, for example confined to the size of a
quantum dot, only the spin(s) in this dot are influenced by B. This is the case for
magnetic stray fields of, for example, ferromagnetic gate electrodes. This approach
has the advantage of rather high magnetic fields (up to ≈ 1 T), which are confined
to small length scales, since the stray field is strongly inhomogeneous and decays
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Chapter 1. Introduction

on the length scale of the magnetized gate electrode. In chapter 3, we present
investigations on the magnitude and spatial distribution of magnetic stray fields
and on their influence on the electron spin precession. By spatially displacing the
electrons within the inhomogeneous stray field, the spin precession frequency changes
and electrical control on the spin precession is achieved. This is demonstrated in
the chapter 4.

1.5.2 Spin manipulation with electric fields

It is even possible to manipulate electron spins without the use of magnetic fields.
Owing to a relativistic effect, magnetic and electric fields transform into each other
by the Lorentz transformation. In the frame of an observer at rest, a moving charge
will generate a magnetic field. If, however, the observer moves together with the
charge, only an electric field is measured. For a charge moving at a velocity v, an
electric field E will transform into a magnetic field [50]

B = v × 1

c2
E (1.9)

In a semiconductor, the electric field E either originates from the asymmetric ar-
rangement of atoms in the crystal (Dresselhaus term [51]) or from the interface of
heterostructures and externally applied fields perpendicular to the layers (Rashba
term [52, 53]). The interaction of the resulting magnetic field with a spin is called
spin-orbit interaction. The magnetic fields resulting from Dresselhaus and Rashba
terms have a different dependence on v and are usually different in magnitude. De-
pending on the direction of v with respect to the crystal lattice, both fields add
up to a total field and the Dresselhaus and Rashba components can be extracted,
as shown in chapter 5. Due to their similar magnitude in the samples used, both
spin-orbit fields virtually cancel for some directions of v, allowing for spin manip-
ulation by controlling the electron direction of movement [54]. If the movement is
oscillatory, also the spin-orbit magnetic fields oscillate and can be used to induce
spin resonance, see Sect. 5.4.
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Chapter 2

Experimental techniques

This chapter describes the experimental techniques and the samples used in the exper-
iments. We start with an introduction to time-resolved Faraday rotation (Sect. 2.1)
and continue with a detailed description of the optical setup (Sect. 2.2). In Sect. 2.3
we describe the electronic devices that were built to perform the measurements and
in Sect. 2.4 we introduce the cryogenic equipment. The chapter ends with a detailed
description and characterization of the samples that were grown in the course of this
work (Sect. 2.5) and the clean–room processes used (Sect. 2.6).

2.1 Time-resolved Faraday rotation

The ‘working horse’ used in most of the experiments presented in this thesis is the
technique of time-resolved Faraday rotation (TRFR). This pump-probe tool allows
the observation of spin dynamics in semiconductors. Most of the time, we use it
in the Voigt geometry, where an external magnetic field Bext is in-plane with the
probed quantum well (QW), and perpendicular to the laser beam. If the laser is
parallel to the magnetic field and perpendicular to the sample surface, this is called
the Faraday geometry (see Sect. 5.4).

2.1.1 Pumping the spins

Optically generating a spin polarization in the conduction band of a semiconductor
is simple, as long as optical selection rules allow the addressing of spin polarized
states by polarized light. In GaAs, the band structure is well known (Fig. 1.1): a
s–type conduction band and a p–type valence band. The latter consists of three (in
the vicinity of the Γ–point parabolic) subbands, the heavy- and light-hole bands,
which are degenerate at k = 0 and the split-off band, which is lowered in energy by
the spin-orbit splitting ∆0.
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Figure 2.1: Simplified QW band structure with the transitions induced by right-
(σ+) and left- (σ−) circularly polarized light, allowed by optical selection rules. Eg

denotes the band gap, jz the projection of the total angular momentum J on the
z–axis. HH = heavy-hole band, LH = light-hole band. The transitions indicated by
thin arrows are 3 times less likely than those shown by bold arrows.

In a GaAs QW, even light and heavy hole states are split (Fig. 2.1). For the
heavy-hole band, the projection of the angular momentum on the z–direction is
jz = ±3/2. Since the valence band is p–type, the orbital angular momentum is L = 1
and in the heavy-hole subband, spin (Sz = ±1/2) and orbital angular momentum
(m = ±1) are parallel. The optical selection rules demand ∆m = ±1 (for the
circular polarizations σ−,+) so that the jz = ±1/2 states in the conduction band
can be populated by exciting carriers from the heavy-hole band with right- or left
circularly polarized light. The spin polarization amounts to 100% and is ‘spin up’
(Sz = jz = 1/2) for left circularly polarized light and ‘spin down’ (Sz = jz = −1/2)
for right circularly polarized light.

Even in bulk samples, an optically induced spin polarization is possible. However,
since light- and heavy-hole states at zero wave vector are degenerate, also electrons
from the light-hole band with jz = ±1/2 are excited. These states are each a
superposition of the two states (m, Sz) = (0,±1/2) and (±1,∓1/2), and therefore,
a σ−–excitation also reaches the jz = −1/2 state in the conduction band (and σ+

the jz = 1/2 state). However, these transitions are by a factor 3 less likely than the
transitions from the heavy-hole band and a spin polarization of (3−1)/(3+1) = 50 %
can be achieved.

2.1.2 Probing the spins

If an additional electron-spin of the majority spin orientation (spin-up in Fig. 2.2)
is added to a polarized spin ensemble, it has to be added to a state higher in energy
than an additional electron spin belonging to the minority spin-orientation, because
of the Pauli principle. Hence, two Fermi energies exist for spin-up and spin-down
electrons, also called ‘selective state-filling’. Therefore, the absorption edge for an
incoming photon is split in energy for σ+ and σ−–polarizations [55] (Fig. 2.3a), and
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ergies originate from the fact that
free states are available at different
energies for spin-up and spin-down
electrons. Hence, σ−–polarized
light, which excites a spin-up elec-
tron, experiences a higher absorp-
tion edge than σ+–polarized light,
whose excited spin-down electrons
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ferent refractive index. (c) The
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Figure 2.4: Faraday rotation measurement in the Voigt geometry on a
GaAs/InGaAs QW with and without an in-plane magnetic field. Solid and dashed
lines are fits to the data.

with it also the refractive index1 (Fig. 2.3b). Linearly polarized light can be written
as a superposition of σ+ and σ−, and therefore each component acquires a different
phase shift due to this circular birefringence, resulting in elliptically polarized light.
For small phase shifts, the ellipticity is small and the polarization plane of the
linearly polarized light is rotated [56]. The rotation angle θF is proportional to the
spin polarization along the laser direction.

2.1.3 Time-resolved technique

With a pulsed laser, the pumping and probing of the spins can be performed in a
repetitive measurement, where the delay between pump- and probe-pulse is varied.
A first, circularly polarized pump pulse creates a spin polarization Sz in the conduc-
tance band, perpendicular to the sample surface and in direction of the laser beam.
A second, linearly polarized probe pulse arrives with a time delay ∆τ on the sample
and is rotated by θF ∝ Sz. Monitoring θF (∆τ) reveals two essential properties of
the spin polarized electron ensemble:

• In the Voigt geometry, the spin coherence time T ∗
2 (also called transverse spin

lifetime) or the longitudinal spin lifetime T1 in Faraday geometry. For B = 0,
also T1 is measured.

• The spin precession frequency ν in a magnetic field perpendicular to the spin
polarization.

Both numbers can be extracted by fitting θF (∆τ) to

θF (∆τ) = θ0e
−∆τ/τs cos (2πν∆τ), (2.1)

1Absorption and refractive index are connected by the Kramers-Kronig relation [50].
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Figure 2.5: Optical setup, see text for details. LP = linear polarizer, PEM =
photoelastic modulator, SB = Soleil-Babinet circular polarizer, ch = chopper at
frequency f1 or f2, WP = Wollastone prism.

where τs stands for T ∗
2 or T1, depending on the geometry and the oscillatory term is

only included in the Voigt geometry at B 6= 0. Figure 2.4 shows two TRFR scans
with and without magnetic field and the corresponding fits to Eq. (2.1). From ν,
the magnitude of the magnetic field can be extracted via

ν =
gµBB

h
, (2.2)

where g is the (effective) electron g–factor, µB Bohr’s magneton and h = 2π~
Planck’s constant.

2.2 Optical setup

A simplified view from above on our optical table is shown in Figure 2.5. The laser
beam from a Ti:Sapphire laser (see Sect. 2.2.1) is directed trough two beam splitters
that branch off parts of the beam for dumping and for beam analysis. The remaining
beam is ‘purified’ by two lenses and a pinhole and then splits up into two paths,
the pump and the probe beam. In the pump path, a variable delay is introduced by
a mechanical delay line. Using mechanical choppers, both beams can be switched
on and off at frequencies f1 and f2. The pump (probe) beam is circularly (linearly)
polarized, and both beams are focused onto the same spot on the sample. After
the sample, the pump pulse is blocked and the probe pulse is either reflected (r) or
transmitted (t) into the detection, where the angle of the linear polarization plane
is determined.
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2.2.1 Laser system

We use a commercial pulsed Ti:Saphhire laser system (Coherent Mira). It consists
of a diode laser array that pumps a solid state laser (Nd:YVO4), whose output at
λ = 532 nm and a power of 10 W in turn pumps the Ti:Sapphire laser. This laser’s
wavelength is tunable between 700 and 1000 nm and it can be pulsed in the pico- or
femtosecond regime with a repetition rate of 80 MHz. Shorter pulses mean a wider
spread in the wavelength domain. As the Faraday rotation signal changes sign when
changing the excitation energy (Fig. 2.3c), a large spread in laser wavelength will
reduce the signal. Therefore, we mainly use the laser in ps-mode, where the pulse
width is less than 1 nm.

The output power of the laser is between 1 and 2 W, but since only powers of
the order of 1 mW are needed on the sample, most of the power is dumped directly
after the laser, also to minimize noise from scattered laser light. Further reductions
in laser power are achieved using a polarizer-analyzer pair and metallic absorptive
filters (ND filters, not shown in Fig. 2.5).

A diagnose system is available to monitor the pulse width in time using auto-
correlation techniques and a spectrometer to adjust the laser wavelength.

Additionally, the laser’s repetition rate can be locked with a variable phase delay
to a reference signal at 80 MHz, which can originate from another laser or from an
electronic function generator.

2.2.2 Delay line

The laser beam is split up into a pump and a probe beam. To introduce a time delay
between the pump and the probe pulse, we use a linear stage (Schneeberger, later
Aerotech) that can move a retroreflector over a distance of d = 50 cm. Since the light
has to pass this path twice, the maximum delay introduced is ∆τmax = 2d/c = 3.3 ns.
In our setup, instead of delaying the probe pulse, we reduce the path traveled by
the pump pulse.

2.2.3 Obtaining the polarizations

The laser beam from the Mira is already linearly polarized, therefore a linear po-
larizer for the probe pulse is not necessary. It can, however, reduce deviations from
perfect linear polarization.

The circular polarization is obtained either with a Soleil-Babinet compensator
(a wavelength tunable λ/4–plate) or a photoelastic modulator (PEM) that switches
between right- and left circularly polarized light at a frequency of 50 kHz.
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2.2.4 Detecting the rotated polarization

Balanced photodiode bridge

The linear polarization of the probe beam is expected to be rotated by an angle θF

on the order of µrad to mrad.

A simple method of measuring the rotation angle of the polarization plane of
linearly polarized light is to use a polarization analyzer oriented at an angle 90◦ +ϕ
to the non-rotated polarization plane, ϕ being small. With a photodiode, the amount
of light that can pass the analyzer is measured. The power reaching the photodiode
is given by (assuming θF � ϕ)

PPD = P0 sin2 (ϕ + θF ) ≈ P0(2ϕθF + ϕ2). (2.3)

With P0 = 10 µW, ϕ = 1◦ and θF = 1 µrad, we measure a background signal
on the photodiode of Pϕ

PD = 3 × 10−9 W and a signal due to the rotation θF of
P θF

PD = 3 × 10−13 W. Such a small power is hard to measure with a photodiode.
In fact, the shot noise power of the background signal Pϕ

PD already amounts to
PNEP =

√
2hcPϕ

PD/λ ≈ 4× 10−14 W/
√

Hz at λ = 870 nm. The maximal bandwidth
would thus be on the order of 10 Hz.

A more sophisticated method is the use of a balanced photodiode bridge. Here,
the initially vertical polarization of the probe beam is rotated by an angle of 45◦

using a λ/2–plate and then passed through a Wollastone prism. This bi-refringent
prism has two different refractive indices for vertically and horizontally polarized
light, resulting in two separate beams. Each beam is focused onto a photodiode
whose output currents are proportional to the power of the vertical and horizontal
polarization component Pv and Ph. We find for their ratio

Pv

Ph

= tan2 (θF + 45◦)

=
sin2 (θF + 45◦)

cos2 (θF + 45◦)

=
2

1− sin (2θF )
− 1,

(2.4)

and from this the angle

θF =
1

2
arcsin

(
Pv − Ph

Pv + Ph

)
∝ Pv − Ph. (2.5)

For small angles, θF is thus directly proportional to the difference of the photodiode
currents ∆I. Comparing with Eq. (2.3), the measured quantity ∆I ∝ Pv − Ph is
proportional to θF and no background signal is present. With the same assumptions
as above, we have to detect Pv − Ph = 10−11 W, a value almost two orders of
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Figure 2.6: Photodiode difference current ∆I as a function of time. The pump
beam is chopped at a frequency f1, the probe beam at a frequency f2.

magnitude larger than when using a polarization analyzer and within reach using
the photodiodes described later in Sect. 2.3.1.

For most measurements, it is sufficient to know the angle in arbitrary units and
therefore, Pv + Ph need not be measured. A description of the photodiodes and the
electronics is given later in Sect. 2.3.1.

Cascaded lock-in technique

Pump modulation

The balanced photodiode bridge is very sensitive to changes in the linear polariza-
tion plane, but it is not sensitive to where those changes originate from. To ensure
that the rotation θF is only ascribed to effects induced by the pump pulse, the pump
beam is chopped at a frequency f1 ≈ 2 kHz, and changes in ∆I are detected by
a lock-in amplifier on that frequency. If using a PEM instead of a Soleil-Babinet
circular polarizer, the beam is not chopped but the PEM’s internal frequency of
50 kHz is used as a reference frequency.

Probe modulation

The scattering of pump pulses into the probe detection is a serious problem in pump-
probe experiments. There are a variety of reasons, why pump light can end up on
the detector photodiodes: scattering on lenses and mirrors, scattering on the sample
or at the iris, where the pump beam is blocked. As long as the circular polarization
of the pump pulse is maintained during these scattering events, the measurement is
not disturbed, because the Wollastone prism will rout half of the scattered power
onto each photodiode and the contributions cancel in ∆I. As soon as the circular
polarization is altered, however, pump scatter can make an experiment impossible,
since pump powers usually are an order of magnitude higher than probe powers and
already a small fraction of scattered light on one photodiode easily induces a current
larger than the one induced by θF . While the pinhole in the detection line already
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Figure 2.7: Schematics of the circuit converting the photodiode currents to voltages.
The output voltage V∆ is proportional to the difference of the photodiode currents
∆I, the output VΣ is proportional to their sum. With a variable resistance, the
photodiodes can be reverse biased to speed up their response. Feedback resistors
RF of 330 kΩ, 1 MΩ or 3.3 MΩ are used.

filters out a good amount of pump scatter, on most samples another method needs
to be applied for measuring low-noise Faraday rotation.

By chopping the probe pulse at a frequency f2 ≈ 300 Hz � f1, it is possible to
remove virtually all pump scatter from the signal ∆I. The principle is illustrated
in Fig. 2.6. Note that for a perfectly balanced bridge (see Sect. 2.3.2), the averaged
∆I and with it Ibal will be zero. The difference photodiode current is first fed into
a lock-in amplifier with reference frequency f1. Its output will periodically oscillate
between A1 and A2. When the probe beam is off, A2 is measured due to pump
scatter. When the probe beam is on, A1 is the pump-induced signal on the sample
superimposed on pump scatter. The desired signal thus is A1 −A2, which a second
lock-in amplifier with reference frequency f2 can readily detect.

The only requirement for this technique to work is the use of a lock-in amplifier
that is capable of providing an analog output signal faster than f2. We use a Signal
Recovery 7265 device, which updates its fast output at 166 kHz, thus fulfilling this
requirement easily.

19



Chapter 2. Experimental techniques

2.3 Electronics

2.3.1 Phododiode box

To measure θF with ample precision, care has to be taken also when converting
the optical into an electric signal. We use photodiodes (Hamamatsu S7836-01) to
transform the intensity of the laser beam into an electric current. Even though this
current could be measured directly using the current input of a lock-in amplifier, we
convert it into a voltage with an operational-amplifier-based I/V–converter. With
this approach, we can produce a voltage signal V∆, proportional to the difference
photodiode current ∆I and a signal VΣ, proportional to the sum of the photodiode
currents. Secondly, the signal can be amplified to voltages on the order of some
ten millivolts, reducing the influence of noise that is picked up from electromagnetic
interference on the way to the lock-in. A sketch of the electronics of our photodiode
box is shown in Fig. 2.7.

The noise-sensitive high-impedance part of the circuit is restricted to both pho-
todiodes and their connections to an opamp each, including its feedback resistor,
all shielded inside a grounded metal case. The photo diodes have a noise-equivalent
power PNEP = 3.9 × 10−15 W/

√
Hz, which corresponds to the shot noise level at

an optical power of Popt = P 2
NEPλ/2hc ≈ 3 × 10−11 W (λ = 870 nm). The pho-

todiode converts this optical power to a current Iopt = aPopt ≈ 20 pA with a
responsivity a ≈ 0.65 A/W. At the output of the opamp, Iopt translates to a volt-
age Vopt = RF Iopt ≈ 14 µV (with RF = 1 MΩ). The Johnson noise from RF ,
Vj =

√
4kBTR ≈ 0.12 µV/

√
Hz, is small compared to Vopt. Neglecting the opamp

input voltage noise, measurements above Popt are shot-noise limited.

2.3.2 Auto-balancing the bridge

The λ/2–plate should rotate the linear polarization plane of the probe beam to
exactly 45◦ with respect to the optical axes of the Wollastone prism. This can be
done manually by rotating the λ/2–plate. However, when automatically scanning
the laser spot over a sample area of several mm2, background effects of the sample
substrate and/or the surface can induce a polarization rotation of the probe beam
that is independent of the pump beam. Theoretically, the cascaded lock-in technique
presented in Sect. 2.2.4 can cope with a non-balanced bridge (Ibal > 0 in Fig. 2.6),
however, the first lock-in amplifier at frequency f1 will have to be set to a high input
voltage range, thereby losing sensitivity.

To be able to operate this lock-in amplifier in an optimal range, the bridge can be
balanced automatically with the circuit shown in Fig. 2.8. This device incorporates
a controller that aims at zeroing the averaged ∆I by rotating a motor-driven λ/2–
plate. It consists of three circuits:
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Figure 2.8: Schematics of the electronics that drive a d.c. motor which rotates
the λ/2–plate such that the time averaged signal Vin vanishes, using a PI controller.
Since the d.c. motor requires a minimum voltage to start rotating, a 3-point con-
troller compensating for this offset is implemented and its output is added to the PI
controller.

low-pass filter The incoming voltage Vin = V∆ ∼ ∆I is buffered and low-pass
filtered (cutoff frequency 1 Hz)

PI controller A proportional plus integral controller monitors the deviation of Vin

from zero and multiplies it by a value of ≈ 50.

3-point controller To compensate for the offset of around 3 V that is needed to
start the motor, a 3-point controller outputs ±2.6 V as soon as the Vin exceeds
a tolerance of ≈ ±8 mV.

The outputs of the PI controller and the 3-point controller are added, buffered by an
opamp capable of delivering a few 100 mA, and drive the motor, a Newport rotation
stage SR50 CC.
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2.4 Cryogenics

2.4.1 Cryostat

All experiments are performed below room temperature in an optical continuous
flow cryostat (‘Janis Research Supertran System’). Liquid helium (T = 4.2 K) flows
from a dewar through an isolated transfer tube and then through the cryostat, where
it cools the cold finger, a Cu block on which the sample is mounted in a chip socket.
The cold part of the cryostat is in vacuum and protected by a metallic radiation
shield. Four holes in this shield and four quartz windows give access to the sample
from all four directions in the plane of the table. In addition, the cold finger can
be rotated around the vertical y–axis. The cryostat itself can be moved in all three
dimensions with three linear motors. Two motors can be used for scanning the
laser beam over the sample surface in the x/y–plane, the third motor is used to
adjust the sample surface into the focal plane of the focusing lens in z–direction. A
heater and a temperature sensor are attached to the cold finger and connected to a
PID-controller (LakeShore Model 331), allowing for measurements at temperatures
between 4.2 and 325 K.

The samples are glued with silver epoxy into a ceramic chip carrier. Electrical
contacts to the samples are bonded with Al or Au wires from the sample pad to the
Au chip carrier pad. In the cryostat, two coax cables (LakeShore Type C) connect
to two external BNC connectors, enabling measurements up to frequencies around
2 GHz. Additionally, 12 twisted-pair wires are available, whereof one suitable for
applying up to at least 250 Volts.

Before cool–down, the cryostat is pumped to a vacuum on the order of 10−6 mbar.
An electromagnet can be used to apply ‘horizontal’ magnetic fields along the x–axis
up to 1.2 T.

2.4.2 Auto-centering the sample

Many experiments presented in the following chapters took several hours to several
days of measurement time. Nevertheless, it was necessary that the laser focus spot
remains at the same location on the sample during this time. In a cold-finger
cryostat, the sample position changes with time as the cryostat cools down and the
cold finger contracts. During cool-down, this leads to a sample movement (mainly)
in y–direction of around 100-200 µm lasting for a few hours, even if the cryostat has
reached base temperature already after around one hour. During the measurement,
fluctuations in He flow or heater power change the sample position on the order of
10 µm.

Therefore, the laser spot is realigned periodically using the motorized x– and
y–stages. Figure 2.9a shows the transmitted laser power through a sample used in
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Figure 2.9: (a) Transmission through the sample as a function of y. Two horizontal
gates (see Fig. 5.2 for an image of the sample used here) lead to two minima in the
transmission, indicated by dashed circles. (b) Center position y0 as a function of
measurement time. The two peaks result from a change in He flow through the
cryostat. (c) Transmission as a function of y and measurement time. During the
measurements, the laser spot is always centered at y = 0.

chapter 5 as a function of y. The laser has to be centered between the two horizontal
gates that each lead to a minimum in transmission. These minima are automatically
determined and a new center position y0 is calculated (Fig. 2.9b). This way, the
laser spot stays centered over the whole measurement, as visible in Fig. 2.9c.

2.5 Quantum well samples

In the course of this work it became clear that carefully designed QW samples were
crucial for the project. While the very first sample was grown by Danny Driscoll
in the group of Art Gossard at the University of California in Santa Barbara, sub-
sequent samples could be obtained from Emilio Gini’s MOCVD and Silke Schön’s
MBE at the ETH cleanroom (‘FIRST’).

Requirements for the GaAs/InGaAs/GaAs QW samples were

• Spin coherence times on the order of a few nanoseconds to be able to determine
the spin precession frequency with good accuracy.

• A sharp absorption edge that assures a high Faraday signal (Fig. 2.3).

• The possibility to contact the QW electrically to determine carrier density and
mobility via Hall measurements, and to gate the QW.

• A ‘high’ g-factor to be able to measure many spin oscillations within the spin
lifetime and a given magnetic field range.
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Figure 2.10: General structure of
the GaAs/InGaAs QW samples.

• A laterally homogeneous g–factor over the wafer.

2.5.1 Basic wafer layer sequence

All wafers were grown in (001)–direction according to the scheme shown in Fig. 2.10:
a GaAs buffer layer on the substrate with a n–doped layer incorporated, then a
InGaAs QW layer n–doped over the whole width (In content between 7 and 10%)
and finally a GaAs cap layer, again with a n–doping layer included.

Long spin coherence times in bulk GaAs have been found at doping densities
around 3× 1016cm−3 [43], therefore we aim the doping in the QW n0 at this value.
For a filled QW, the spin coherence time is not limited by the carrier recombination
time (Sect. 1.2.1), therefore we introduce n–doping layers in the GaAs cap n1 and
in the GaAs buffer layer n2 below the QW.

Band structure simulations for different doping densities n0,1,2 are shown in
Fig. 2.11. While the doping density in the QW n0 has only limited influence on
the band structure (Fig. 2.11a), variations in n1 on the order of 10% can already
lead to an empty QW, or, if the conduction band lies below EF , to occupied states
in the doping layer (Fig. 2.11b). When annealing Ohmic contacts, these states lead
to parallel conductance and make the measurement of mobility and carrier density
in the QW impossible. By adding a background doping n2 below the QW, the range
of acceptable cap dopings is increased and variations on the order of 20% become
tolerable (Fig. 2.11c).

2.5.2 MOCVD–samples

On the MOCVD, the samples in the following table were grown. Italic print indicates
that the values are design values which were not verified by another experimental
technique.
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Figure 2.11: Band structure simulations with the Poisson-Schrödinger solver by
Greg Snider. All doping densities are per cm3. We show only the conduction band
with the Fermi energy EF set to 0. (a) Changing the doping in the QW has only very
little influence on the band structure. (b) Already small variations of the doping in
the cap can lead to parallel conductivity in the doping layer or to a depleted QW.
(c) A background doping below the QW can extend the cap doping range within
which the QW is filled and no parallel conductivity occurs.
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Figure 2.12: Optical characterization of the MOCVD samples. Spin coherence time
(left), electron g–factor (right), and absorption edge wavelength (inset) as a function
of temperature.

Wafer number P765 P805 P838 P919 P1108

In content (%) 8.8 8.8 8.6 8.5 10
QW thickness (nm) 41 43 27 20 20
Cap thickness (nm) 21 19 20 20 30
QW doping n0 (cm−3) 1e16 5e16 2e17 5e16 5e16
Cap doping n1 (cm−3) 5e18 5e18 5e18 5e18 3.5e18
Background doping n2 (cm−3) 0 0 0 0 3e17

Max. spin coherence time (ps) 1700 2500 1200 1500 500
Max. |g|–factor 0.55 0.53 0.40 0.52 0.48

To calibrate the doping densities, two n–doped GaAs epilayers were grown and
characterized at T = 4.2 K:

A strongly doped layer (P1088, 277 nm thick) aimed at a doping density 5.0 ×
1018 cm−3. Hall measurements yielded n = 3.9 × 1018 cm−3 and a mobility
µ = 1760 cm2/Vs.

A weakly doped layer (P1107, 1980 nm thick) aimed at 5.0 × 1016 cm−3. Hall
measurements showed n = 5.1× 1016 cm−3.

With this calibration, wafer P1108 was grown. However, optical measurements
on this sample showed a short spin coherence time of less than 500 ps. An optical
characterization of all MOCVD grown wafers is shown in Fig. 2.12. Spin coherence
times of the QW samples decreased rapidly with increasing temperature, only the
weakly doped epilayer (P1107) allowed measurement of the spin precession up to
room temperature.

Note that the g-factor is expected to be negative, but since the sign cannot be
determined by TRFR, we plot |g|. Assuming a negative g, the g-factor increases
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Figure 2.13: Optical characterization of wafer P919. (a) Photoluminescence (PL)
and Faraday rotation (FR) as a function of wavelength. For the PL–measurements,
the excitation was at 750 nm. Two GaAs–peaks are visible around 820 nm, the
QW–peak is centered around 880 nm. (b) Dependence of the g–factor, and, (c) the
spin coherence time T ∗

2 on the pump power in a TRFR–measurement. (d) FR signal
as a function of probe power measured at different pump powers. (e) FR signal as
a function of pump power measured at different probe powers. Dashed lines in both
(d) and (e) indicate a linear relation between FR signal and pump/probe power.

towards the free electron value of g ≈ +2 when increasing the temperature, consis-
tent with findings in [57]. In Fig. 2.13a, the photoluminescence (PL) and Faraday
rotation (FR) signal are plotted as a function of wavelength for wafer P919. As
seen in Fig. 2.3, the FR signal is highest on the rising edge of the absorption edge
(corresponding to the rising flank of the PL peak). In Fig. 2.13b and c, the g–factor
and T ∗

2 –dependence on the pump power are given. Both quantities change slightly,
which we attribute to the occupation of higher states in k–space with increasing
power. Those states do not necessarily have the same g–factor and lifetime as the
lower states [20].
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The FR signal θF as a function of pump and probe power is shown in Fig. 2.13d
and e. In a simple picture, it is expected to increase linearly with each the pump and
the probe power, as indicated by the dashed lines. In the experiment, the increase
is less pronounced especially for large pump powers. This can be explained by the
optically excited electrons, which raise the absorption peak and move it out of the
energy window accessible by the pump pulse. The number of electrons N per area
A is given by

N

A
=

∫ E

E0

g(E)dE, (2.6)

where g(E) = m?/π~2 is the density of states, in two dimensions independent of
the energy. E0 is the energy at which the first of the N electrons is filled in, E the
energy of the state that accommodates the Nth electron. As long as the laser pulse
(≈ 2 ps) is short compared to the recombination time τr of the excited electrons
(τr ≈ 300 ps, see appendix A) and the laser repetition rate slow compared to τr,
we can assume that a constant number of photons per laser pulse each excites
one electron. Then, the number N is determined by the laser power P , the laser’s
repetition rate frep = 80 MHz, the laser wavelength λ = 870 nm and a dimensionless
parameter p that describes the probability for a photon to be absorbed in the QW:

N = p
P

frep

λ

hc
. (2.7)

Solving Eq. (2.6) for E − E0 we obtain together with Eq. (2.7)

E − E0 =
N

A m
π~2

= p
P

frep

~λ

2Acm?
. (2.8)

With p between 10−2 and 10−3 [58], P = 1 mW and the size of the laser focus spot
A = (10 µm)2 we find E−E0 = 2 . . . 20 meV, which is larger than the laser spectral
width of ∆E ≈ 1 meV. Thus at high pump powers, the excited electrons increase
the position in energy of the QW’s absorption edge by an amount larger than the
laser’s pulse width ∆E, resulting in a flattening of the FR signal as a function of
pump power, as well observed in Fig. 2.13e

On every wafer, we tried to determine the mobility and carrier density in the
QW, either by the Van-der-Pauw method (see Sect. 2.5.4) or by etching a Hall
bar. Ohmic contacts were either In or a AuGe alloy. Unfortunately, none of the
experiments yielded satisfying results. The Hall density amounted to values on
the order of 1016 m−2 and varied only little when increasing n1 by factors of 5 and
25. This suggests that the Hall effect is dominated by a parallel conductivity in
the doping layer. The doping layer is characterized by strongly localized states and
inhomogeneities that could account for the non-vanishing Rxy at B = 0 in Fig. 2.14a.
Also, no Shubnikov–de-Haas (SdH) oscillations were observed in Rxx and a top gate
could not substantially tune the electron density in the QW (see Fig. 2.14b).
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Rxx yielded a density of 5.6 ×
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2.5.3 MBE–samples

On the search for sample substrates that were suitable for both optical and transport
measurements, Silke Schön was kind enough to provide us with QW samples grown
on the MBE. While the first sample, ES823, could not be contacted with In or AuGe
contacts, Hall measurements could be performed on all subsequent MBE samples.
SdH–oscillations were observed in Rxx and densities on the order of 5× 1015 m−2 as
well as mobilities of around µ = 10 000 cm2/Vs could be determined. The densities
extracted from SdH and from classical Hall effect were in good agreement, indicating
that no parallel conductivity influenced the QW transport propierties (Fig. 2.15).
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Figure 2.16: Optical characterization of the MBE samples. (a) Spin coherence time,
(b) electron g–factor, and (c) FR peak wavelength as a function of temperature.
In (d), a 2D–scan on two samples from wafer ES887 shows that the g-factor is
homogeneous with deviations on the order of a few percent. Sample 2 is rotated by
90◦ with respect to sample 1.

The optical experiments, however, were less promising: As seen from Fig. 2.16,
the spin coherence time was on the order of only a few 100 ps, and the g-factor, except
for ES823, reduced to values between 0.2 and 0.3. Even tough both spin coherence
time and g-factor could be slightly enhanced when applying a negative voltage to a
transparent top gate (Fig. 2.17), both values stayed below the corresponding values
of the MOCVD–samples.

An overview of all MBE–samples is given in the following table:
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Figure 2.17: Spin coherence time and g-factor as a function of the voltage applied
between QW and a transparent top gate (3 nm Ti + 7 nm Au) for three tempera-
tures, wafer ES866.

Wafer number ES823 ES8651 ES866 ES8872

In content (%) 10 10 10 10
QW thickness (nm) 20 20 20 20
Cap thickness (nm) 30 30 30 30
QW doping n0 (cm−3) 3e16 3e16 3e16 3e16
Cap doping n1 (cm−3) 3.5e18 4e18 4e18 4e18
Background doping n2 (cm−3) 1.5e17 1.5e17 1.5e17 1.5e17

Max. spin coherence time (ps) 250 150 400 400
Max. |g|–factor 0.5 0.2 0.28 0.28
Density from Hall (m−2) 4.2e15 5.0e15 6.0e15
Density from SdH (m−2) 4.0e15 5.3e15 5.6e15
Mobility (cm2/Vs) 10’100 9’700 10’600

1 For ES865, the lower 25 nm of the 30 nm cap were AlGaAs with 10% Al content
in order to prevent parallel conductivity.
2 ES887 was a replica of ES866, which was contaminated with dirt during growth.

2.5.4 Van der Pauw technique

A convenient technique to determine the carrier density and mobility without the
need for etching Hall bar structures was described 50 years ago by van der Pauw [59].
In principle, an arbitrarily shaped sample can be used, as long as no non-conducting
islands are enclosed. We used rectangularly shaped samples (approximately 4 by
4 mm) with one small In Ohmic contact in each corner, circularly numbered from 1
to 4, see the inset of Fig. 2.15.
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First, the carrier density is determined by the following two measurements: a
current I12 is passed from contact 1 to 2 and the voltage V43 over the opposite edge
is measured, giving RA = V43/I12. A similar measurement yields RB = V14/I23. The
van der Pauw equation

e−πRA/RS + e−πRB/RS = 1 (2.9)

can be numerically solved for the 2D sheet resistance RS.

Secondly, a Hall measurement is performed by applying a diagonal current I13

and measuring V24 in a perpendicular magnetic field B. Now, the 2D density n and
the mobility µ can be calculated from

n =
I13

eV24

B, and

µ =
1

enRS

.

2.6 Sample processing

In the following short overview, the main clean-room processing steps are described.
Almost all samples feature evaporated top gate structures that were fabricated using
electron beam lithography.

2.6.1 Electron beam lithography

Sample cleaning

Samples were cleaned in an ultrasonic bath (42 kHz) with 7/9 power, during 3
minutes in first acetone, then isopropanol (also called isopropyl alcohol, IPA) and
finally water. At the end, samples were dried by blowing N2 onto them.

Resist deposition

After drying the samples at 180◦ C for about one minute, two layers of e-beam resist
were spinned on:

A first ‘soft’ layer of P(MMA/MAA) in ethyl lactate 2:1.

A second ‘hard’ layer of PMMA 950K in chlorobenzene 1:1.

Both layers were spinned on at a speed of 6000 rpm during 60 seconds and then
baked on the hotplate during 2 minutes at a temperature of 180◦C.
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Figure 2.18: Scanning electron micrograph
of the two-layer resist used with e-beam
lithography. The horizontal bar of the ‘T’
is 500 nm wide. Sample is tilted by 30◦ and
has been sputtered with 5 nm Pt for better
contrast.

The first, soft layer is exposed and modified by the electron beam more easily
than the second, hard layer. Therefore, an ‘undercut’ is created, well visible in
Fig. 2.18. The first layer has a thickness of about 200 nm, the second layer of about
100 nm. When evaporating metals with a thickness smaller than that of the first
layer, the lift-off process is eased, since the acetone that dissolves the resist can more
easily creep below the metallization layer.

Samples are exposed on a Raith 150 electron–beam–lithography system. Espe-
cially for the small gratings with 1 µm period presented in chapter 3 (see Fig. 3.4
for an SEM–image of a grating), extensive dose test runs were necessary. For such
large structures (100× 100 µm), proximity effects have to be accounted for, i.e. the
dose inside the grating far away from an edge has to be reduced. Doses around
100 µC/cm2 were used and already variations on the order of 5 % could either short
a grating or interrupt an originally conducting metal bar.

After exposure, the samples were developed in IPA:MiBK 3:1 during 60 seconds
and rinsed in IPA.

2.6.2 Gate evaporation

For non-magnetic gates, 80 nm of Au was evaporated on a 10 nm Ti adhesion layer.
For magnetic gates, Fe was used instead of Au and in addition, a 10 nm Al layer was
added on top in order to prevent oxidation of the Fe. The lift-off process especially
for Fe gratings was often rather delicate, since only very weak ultrasonic power (1-
2/9, 42 kHz) could be used. If too much ultrasonic power was applied, the Fe bars
started to fall off. As a solution to this, the following steps were taken

• Increased adhesion layer thickness. The initially only 2 nm thick Ti layer was
changed to 10 nm.

• Short oxygen plasma ash before evaporation (∼ 30 seconds / 200 W).

• Inspection of the sample while in acetone with the microscope. This way, the
sample was only taken out of the acetone bath if the lift-off was successful.
Otherwise, the ultrasonic power was increased.
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Chapter 2. Experimental techniques

The magnetic quality of the evaporated Fe was verified by measuring its magneti-
zation in an external magnetic field, see appendix D.

2.6.3 Etching

To increase the magnetic stray field and to reduce effects of optical diffraction de-
scribed in chapter 3, we put the Fe grating originally evaporated on top of the
sample inside the QW by etching away stripes of GaAs/InGaAs. The task was
thus to find a process capable of etching a PMMA–defined pattern into GaAs and
subsequently evaporate Fe into the etched structure. While a wet etch with H2O
+ H2SO4 + H2O2 (100:3:1) did not harm the PMMA–mask, it was unsuitable for
our purpose due to the homogeneous nature of a wet etching process (Fig. 2.19a).
Reactive ion etching (RIE) is a direction-sensitive technique. However, in the Ox-
ford RIE76, the temperature of the sample could not be controlled satisfactorily and
the PMMA–mask degraded (Fig. 2.19b). Adapting the RIE-process on the Oxford
ICP180 yielded already a much better result (Fig. 2.19c). The addition of Ar and
Cl2 to the originally CH4/H2–based process further improved the result (Fig. 2.19d).
To etch to a depth of 100 nm, the following process was found to work best (sccm
= standard cubic centimeters per minute):

CH4 H2 Ar Cl2 Temperature RF Power Time
7 sccm 50 sccm 5 sccm 3 sccm 95◦ C 135 W 25 s

This process step was repeated twice, with 5 minutes N2 flushing in between.

A more detailed description of the process can be found in [60].
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Figure 2.19: Scanning electron micrograph of etched bars by (a) wet etching with
sulfuric acid and hydrogen peroxide, (b) RIE, (c) ICP, and (d) ICP with an op-
timized process. In a, c, and d, the ‘T’-shaped PMMA and the underlying, etched
GaAs is well visible. In b, the sample was not cleaved and only the (damaged)
PMMA mask is visible. Samples are tilted by 30◦.
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Chapter 3

Spin manipulation with magnetic
fields

This chapter reports on the stray–field–induced manipulation of electron spins. In
Sect. 3.1, the use of magnetic stray fields for spin manipulation is motivated, followed
by a brief review of previous achievements in the field (Sect. 3.2). In Sect. 3.3, the mag-
nitude and geometrical dependence of magnetic stray fields are discussed. Section 3.4
describes the measurement of electron spins precessing in the magnetic stray field of
ferromagnetic gratings, evaporated on top of the QW samples. These measurements are
extended to etched gratings in Sect. 3.5.1

3.1 Introduction and motivation

Since the electron spin couples directly to the magnetic field, spin manipulation with
magnetic fields is the most straight-forward approach. Classically, the interaction
of a spin S (or in general a magnetic moment) with a magnetic field B is governed
by the Bloch equations,

d

dt
S =

gµB

~
S×B. (3.1)

Note that spin relaxation has been neglected for the moment. If a static magnetic
field is applied in the direction of the spin polarization and an oscillating field in the
plane perpendicular to this direction, electron spin resonance (ESR) is observed, if
the frequency of the oscillating field matches the Larmor precession frequency of the
static field. In this case, the spin can be flipped from a parallel alignment with the
static field to an antiparallel orientation. More details on the calculation of the spin
motion in this configuration with Bloch equations are given in Sect. 5.4.2.

1Parts of this chapter have been published in L. Meier et al., Appl. Phys. Lett. 88, 172501
(2006)
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3.1. Introduction and motivation
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Figure 3.1: (a) An electron spin in a local magnetic stray field can be brought
into resonance with a globally oscillating magnetic field. (b) By applying an a.c.
voltage to the ferromagnetic gates, the confined electron oscillates in space and feels
an oscillating magnetic field.

Here, we just want to point out the problem associated with this method when
dealing with spin qubits: when the static field as well as the oscillating field are
global, they act equally on all qubits. In a practical application, however, one would
like to selectively prepare spin states in one particular qubit, for example a single
electron spin in a quantum dot [16]. One possibility of being able to address a single
spin would be the use of a slanting static field, so that the resonance condition with
the oscillating field is only met at one particular location.

Another approach is the use of magnetic stray fields. Any magnetized piece
of material exhibits a stray field that originates from the finite divergence of the
magnetization at its boundary (see, e.g., [50] and [61]). For a given magnetization
M(x), the scalar magnetostatic potential

ΦM(x) = − 1

4π
∇ ·
∫

M(x′)

|x− x′|
d3x′ (3.2)

is calculated. From ΦM(x), the magnetic (stray) field is obtained analogously to the
electric field from the electric potential

H(x) = −∇ΦM(x). (3.3)

The length scale on which we expect a non-vanishing stray field is thus deter-
mined by M(x). Indeed, as shown later in Fig. 3.3, the magnetic stray fields of a
‘small’ and a ‘large’ piece of Fe look similar and decay on the length scale of the
magnetized sample.

By bringing ferromagnetic gates close to a quantum dot, their stray field provides
a static magnetic field. By changing the dimensions of the gates, the magnitude of
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Chapter 3. Spin manipulation with magnetic fields

this static magnetic field is modified and could be individually tuned for each dot,
enabling an external oscillating field to address a single spin, as schematically shown
in Fig. 3.1a. A more elaborate scheme is shown in Fig. 3.1b, where no external
magnetic field is needed. An a.c. gate voltage applied to the ferromagnetic gates
brings the electron in the quantum dot into an oscillatory movement. Since the
stray field is inhomogeneous, the spin feels an oscillating magnetic field. Combining
this with a static stray field from other ferromagnetic gates could in principle allow
for ESR solely with magnetic stray fields.

In this chapter, the interaction of magnetic stray fields from ferromagnetic gates
with electron spins is studied. Since the investigation of single electrons in quantum
dots is rather sophisticated, the manipulation of quantum well electrons below fer-
romagnetic gates is studied. The gates are evaporated (see Sect. 2.6.2) on the QW
samples described in Sect. 2.5.

3.2 Previous work on magnetic stray fields

3.2.1 Detection of magnetic stray fields

Different approaches have been taken to characterize and detect magnetic stray
fields. Magnetic-force microscopes [62] or scanning Hall probes [63] provide spatially
mapped field distributions. The influence of stray fields on nearby semiconductor
spin-states has been investigated by photoluminescence [64, 65], spin-flip light scat-
tering [66] and cathodoluminescence [67] in semiconductor QWs. Since the Zeeman
splitting in a QW is typically much smaller than the photoluminescence linewidth,
experiments have focused on diluted magnetic semiconductors that exhibit a very
large electron g-factor and correspondingly a large Zeeman splitting. The spatially
varying Zeeman-splitting induced by a magnetic stray field has also been consid-
ered for spin-selective confinement of electrons [68]. Attempts to directly monitor
the influence of stray fields on the dynamics of electron-spins have so far remained
elusive [69].

3.2.2 Electrical control of spin dynamics

To address individual spins in an array of localized spins, either an a.c. magnetic field
has to be applied locally, or the array has to be exposed to a magnetic-field gradient,
whereby individual spins are addressed by changing the frequency of a global a.c.
field. The latter approach might be facilitated by locally tuning the electron g-factor
with an electric field [48, 49]. Also, effective a.c. magnetic fields can be provided
locally using electric gates, as has been demonstrated for systems with anisotropic
g-factor tensors [70] and for systems with strain-induced spin-orbit coupling [71].
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3.3. Numerical field simulations

The use of magnetic stray fields to manipulate single electron spins in a quantum
dot [72] via a spatial displacement in the large and inhomogeneous magnetic field
has been suggested. Such a spatial displacement can be induced by applying an
electric field to metallic gates, which is technically easier to achieve than providing
an a.c. magnetic field at the high frequencies (GHz) involved. Experiments that
spatially displace electron spins within an inhomogeneous stray field are presented
in the following chapter 4.

3.3 Numerical field simulations

To estimate the magnetic stray field that emanates from a magnetized structure,
we use the numerical simulation tool OOMMF v1.2.0.3 (‘Object Oriented Micro-
Magnetic Framework’) [73]. This tool requires Tcl/Tk, which is freely available for
Windows as ‘ActiveTcl’ [74]. It numerically solves the Landau-Lifshitz Equation [75]

∂M(r, t)

∂t
= −γM(r, t)×Heff(r, t)−

αγ

Ms

[M(r, t)× (M(r, t)×Heff(r, t))] , (3.4)

where M is the magnetization, γ the gyromagnetic ratio, Ms the saturation magne-
tization and Heff an effective magnetic field including contributions from anisotropy,
exchange and demagnetization fields. The parameter α describes how fast the mag-
netic moments dissipate energy and relax into an equilibrium state. For our calcula-
tions, α = 0.5. OOMMF integrates Eq. (3.4) and tries to find an equilibrium where
∂M/∂t = 0.

For the simulation of a magnetic stray field, two steps are necessary:

1. Calculate the magnetization of a Fe bar in an external magnetic field Bext by
finding an equilibrium magnetization M(r, t) with Eq. (3.4).

2. Calculate the stray field induced by this magnetization with Eq. (3.2) and
(3.3).

The simulations are all in 3D. Yet, our structures are often much larger in y–direction
than in x and z and we are mostly interested in the stray field in the x/z–plane.

An analytical solution of the 3D stray field of a homogeneously magnetized bar
has been presented in [61]. These predictions agree well with the results of our simu-
lations, however, they cannot account for effects of non-homogeneous magnetization
in a sample, neither can they simulate the magnetization build-up at low magnetic
fields.
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Figure 3.2: Numerical simulation of the magnetization of a Fe bar 80 nm thick,
100 µm long and b = 0.5 and 3 µm wide, in an external magnetic field of 900, 500,
200 and 50 mT along x. (a) shows the magnetization in the x/z–plane close to an
edge of a cross-section trough the middle of a bar, (b) illustrates the magnetization
in the x/y–plane in the center of a bar. The red color indicates the y–component of
the magnetization.
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3.3. Numerical field simulations

3.3.1 Magnetization simulations

Figure 3.2 shows a numerical simulation of the magnetization of two Fe bars, 80 nm
thick, 100 µm long and b = 0.5 or 3 µm wide. The simulation started at an initial
external magnetic field Bext = 1 T in x–direction. To minimize numerical artefacts,
Bext was slightly rotated and had components of some milliteslas also in y– and z–
direction. During the simulation, Bext was reduced stepwise by 25 mT, and during
each step the magnetization of the Fe bar was calculated. One cell was 10×200×5 nm
large for b = 0.5 µm and 10 × 200 × 10 nm for the wider bar with b = 3µm. The
simulation time amounted to approx. 12 hours on a 3 GHz Pentium 4 processor
with 1 GB RAM.

At Bext = 900 mT, both bars are magnetized along x. However, not all magnetic
moments are aligned along x. While in the center of an x/z–cross-section of a
bar, the magnetization is aligned along x, it slightly turns ‘outside’ close to an edge,
visible in Fig. 3.2a. By this, the magnetization tries to reduce the energy of the stray
field. Compared to simulations with (forced) full magnetization, this changes the
stray field by 10% at most, depending on the position (see Figs. 3.6a and 3.18 later
on). When reducing Bext, the magnetization starts to rotate in direction of y, the
component along y is indicated by shades of red. The narrower the bar, the higher
is Bext where this rotation occurs. At Bext = 50 mT, the narrower bar is magnetized
almost only along y, while for the wider bar, the magnetization is still partly aligned
along x, as visible in Fig. 3.2b. At Bext = 0, both bars are magnetized along y, which
is therefore called the easy axis of the bar. In this configuration, the energy of the
magnetic moments in their own demagnetization field E ∝ M · B = NM2/2 is
minimal. Here, N is the ‘demagnetizing factor’, which accounts for the geometry of
the sample [76].

3.3.2 Stray field simulations

Three numerical stray field simulations are shown in Fig. 3.3. In Fig. 3.3a, a simula-
tion of both the magnetization and the stray field of a 0.5 µm wide and 80 nm thick
bar is shown. The microscopic example presented in Fig. 3.3b is a 1 µm wide and
80 nm thick Fe bar used in the experiments presented later on. Its magnetization
has been determined with a simulation as described above. In Fig. 3.3c, the stray
field of a macroscopic object is shown, an iron block that could serve as a kitchen
magnet, 1× 2× 1 cm large.

Close to a face perpendicular to the magnetization, where the divergence of the
magnetization is highest, stray fields of 4πMs = 2.1 T are expected (see the next
section for a measurement of the saturation magnetization Ms). The stray field
decays rapidly on the length scale of the magnetized sample, one length (1 µm or
2 cm) away, the stray field is less than 20 mT.

41



Chapter 3. Spin manipulation with magnetic fields

1

1

2

3

4

5
2

1

0
0 1 2 3 2 3 4 5

x (cm)x (µm)

500 nm

z
(c

m
)

z
(µ

m
)

8
0

n
m

6 7 8 9

10 mT10 mT
20 mT20 mT

50 mT
50 mT 100 mT

(b)

(a)

(c)

50

100
200500

Figure 3.3: Magnetic stray field simulations. (a) Magnetization of a Fe bar (red
arrows inside the bar) and the induced stray field outside the bar. Lines indicate
constant fields and are labeled in millitesla. (b,c) Stray field of a magnetized mi-
croscopic (b) and a fully magnetized macroscopic (c) iron sample. Equi-field lines
are at (counting from the inside) 500, 200, 100, 50, 20, and 10 mT.

42



3.4. Stray field measurements on ferromagnetic gratings

Figure 3.4: Scanning electron mi-
crograph of a Fe grating. The grat-
ing is 100 by 100 µm large, each bar
and each gap 1 µm wide.

3.4 Stray field measurements on ferromagnetic grat-

ings

3.4.1 Measurement setup

On the surface of samples from wafer P805, Fe and Au gratings have been fabricated
using electron beam lithography and lift-off techniques as described in Sect. 2.6.1 and
Sect. 2.6.2. Figure 3.4 shows an SEM–image of such a grating with interdigitated
gate electrodes, i.e. with separate electrical connections to odd and even bars. The
gratings consist of 100 µm long bars with a thickness of 80 nm. As an adhesion layer
between GaAs and the metal, we use 10 nm Ti. The Fe bars were capped with 10 nm
Al to prevent oxidation. We vary the width of the bars as well as their spacing. The
bar spacing (i.e. the gap) is always equal to the bar width. We have fabricated bars
with widths 3 µm, 2 µm, 1 µm, and 0.5 µm and refer to the corresponding gratings
as 3-3, 2-2, 1-1 and 0.5-0.5, meaning (bar width)-(gap width).

TRFR is measured in the Voigt geometry with an external magnetic field Bext

applied along x (in the QW plane and perpendicular to the long axis of the bars).
Electron spins are polarized along z (perpendicular to the QW) by a circularly
polarized pump pulse. The helicity of the circular polarization is modulated with
a photo-elastic modulator at a frequency of 50 kHz, allowing the use of lock-in
amplifiers. We measure the Faraday rotation angle θF (∆τ) of a linearly polarized
probe pulse that is delayed by a time ∆τ with respect to the pump pulse, as described
in detail in Sect. 2.1. The laser is tuned to the absorption edge of the QW at 870 nm
and focused to a spot of about 15 µm in diameter. The pump (probe) beam has
a power of 500 (60) µW. From the oscillating θ(∆τ) we extract the spin coherence
time T ∗

2 and

ν = gµBBtot/h (3.5)
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Figure 3.5: (a) Faraday rotation measured at T = 40 K on a Fe and a Au grating
with the dimensions 1-1. Due to the magnetic stray field of the Fe grating, the
electrons precess faster and their lifetime is reduced. Inset: SEM-picture of a 1-1
Au grating. (b) Calculated magnetic stray field of two magnetized Fe bars: x–
component (top), direction and magnitude (bottom). Each bar is 1 µm wide and
80 nm thick. Lines indicate constant magnetic fields of 500 mT, 200 mT, 100 mT,
50 mT and 20 mT (moving away from a bar). The shaded area shows the location
of the QW.
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3.4. Stray field measurements on ferromagnetic gratings

by fitting it to Eq. (2.1). The total local magnetic field

Btot = Bext + Bs + Bn (3.6)

includes Bext, the magnetic stray field of the ferromagnetic grating Bs, and an
effective magnetic field Bn resulting from hyperfine interaction of the electron spins
with polarized nuclear spins. Within a good approximation, all magnetic fields point
along the x–axis.

3.4.2 Expectations from numerical simulations

Stray field of two bars

A numerical simulation of the magnetic stray field of two Fe bars at Bext = 1 T
obtained as described above (Sect. 3.3) is shown in Fig. 3.5b. Here, the stray field
of two separate, spatially displaced bars is superimposed, interactions between the
bars are not taken into account. This is reasonable, since the stray field decays
rapidly in space.

Magnetization build–up

At Bext = 0, both bars are magnetized along their long (easy) axis in direction of y,
and no stray field is expected along x. As Bext is increased, the bars are magnetized
in x–direction. Magnetization saturates at Bext of 100-400 mT, depending on the
bar width (Fig. 3.2a). We find good agreement with the experimental data presented
in Sect. 3.4.3.

Average stray field

A numerically simulated stray field, homogeneously averaged over the gap width,
is shown in Fig. 3.6a as a function of Bext. The left scale indicates the average
value of the stray field, the right scale the corresponding change in ν, assuming
g = 0.5. The horizontal lines in Fig. 3.6a show the average stray field expected if
the grating is fully magnetized. It is slightly lower than for the calculations assuming
an inhomogeneous magnetization discussed in Sect. 3.3.1. This is because, as seen
from Fig. 3.2, the magnetization at the edges points outwards and increases the stray
field in the QW below the grating. When studying the stray field between the bars
of a grating, the non-homogeneous magnetization reduces the stray field compared
to fully magnetized bars (see Fig. 3.18 below in Sect. 3.5 on etched gratings).
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Figure 3.6: (a) Numerically calculated stray field as a function of Bext. The stray
field was homogeneously averaged over the gap width, the left scale indicates the
averaged value, the right scale the corresponding change in precession frequency,
∆ν = gµB〈Bs〉/h, with g=0.5. Horizontal lines indicate 〈Bs〉 for homogeneously
magnetized bars. (b) Stray-field-induced change in precession frequency ∆ν at
Bext = 1 T as expected from the simulations in (a), and as measured. Dashed line:
Measured relative reduction in spin coherence time T ∗

2,Au/T ∗
2,Fe at Bext = 1 T.

Average electron precession frequency

To verify whether the averaged stray field can be directly converted into a change
in precession frequency ∆ν = gµB〈Bs〉/h, we uniformly distributed electron spins
in the QW between two Fe bars, all pointing along z at ∆τ = 0. For ∆τ > 0, the
spins precess around a spatially varying Btot(x, z) = Bext + Bs(x, z). The averaged
z–component of these spins was calculated as a function of ∆τ and fitted with
Eq. (2.1) to provide νFe. The results obtained with this more sophisticated method
correspond well to the findings obtained by simple averaging.

Expectations for different geometries

From these simulations, we expect ∆ν to be between 0.05 and 0.5 GHz depending
on the size of the gap between the bars. Larger gaps exhibit a lower ∆ν than small
gaps. For one individual Fe bar, Bs does not depend on the bar width, as it relies
on the divergence of the magnetization [Eq. (3.2) and (3.3)], which only depends on
the boundaries of the bar. In the gap, Bs decays quickly, and thus for larger gaps
the averaged ∆ν decreases. However, in the experiment, we find a non-monotonous
dependence of ∆ν on the gap size, see Fig. 3.6b and later Sect. 3.4.3.
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3.4.3 Measurement of stray–field–induced modification of
spin dynamics

Fits to the experimental data shown in Fig. 3.5a yield precession frequencies of
νFe = 7.82 GHz and νAu = 7.68 GHz on the Fe and Au grating, respectively. As
there is no magnetic stray field originating from the Au grating and provided Bn = 0
(see below Sect. 3.4.4), we can determine the stray field averaged over the gap from

〈Bs〉 = h(νFe − νAu)/gµB = h∆ν/gµB (3.7)

to be 21 mT. The same fits also yield T ∗
2 = 1510 ps in the QW below the Au grating

and 590 ps below the Fe grating, which is reduced due to averaging effects in the
inhomogeneous stray field. Such an effect is confirmed by a simulation shown in
Fig. 3.7. We average over n0 = 1000 spins that precess according to Eq. (2.1), but
with a Gaussian–distributed ensemble of frequencies νi

θF (∆τ) =
1

n0

n0∑
i=1

θ0e
−∆τ/T2 cos (2πνi∆τ). (3.8)

Assuming a spin coherence time of T2 = 2 ns for a single spin, the ensemble
lifetime is reduced with an increasing frequency–spread νs, but not with a change
in the center frequency ν0. The same result is obtained by assuming that νs > 0
introduces a new decoherence rate. After a time τ , defined by ωsτ = 2πνsτ = 1,
the spins in the ensemble are out of phase. Combining the two rates determined by
T−1

2 and τ−1, we obtain for the lifetime of the ensemble

T ?
2 =

(
1

T2

+
1

τ

)−1

, (3.9)

shown by a dashed line in Fig. 3.7.
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These findings are confirmed in the measurements. As soon as the bar magne-
tization is saturated, a further increase of Bext increases ν, but does not influence
T ∗

2 (see Fig. 3.9 below). The observed reduction of T ∗
2 by a factor of ≈ 2.5 corre-

sponds to νs ≈ 0.2 GHz in Fig. 3.7, which agrees well with the observed increase
∆ν = 0.14 GHz due to the stray field.

Dependence on Bext

A more systematic study of the dependence on Bext is presented in Fig. 3.8a, showing
νFe,Au − ν0, with ν0 = gµBBext/h, where g = 0.520 has been determined from a fit
to νAu. While νAu is clearly linear in Bext, the electrons precess faster below the
Fe grating by an amount that is proportional to the bar magnetization. The latter
has been measured independently with magneto-optical Kerr effect measurements
(MOKE), using a continuous-wave laser at a wavelength of 633 nm (bold line in
Fig. 3.8a). We suspect that the small linear increase in νFe after magnetization
saturation is due to a slightly enhanced g–factor in the QW below the Fe grating
resulting from unequal strain exerted by the Au and the Fe grating. Assuming
different g–factors gFe and gAu on Fe and Au gratings, the difference in precession
frequency ∆ν can be expressed as

h∆ν = gFeµB〈Bs〉+ (gFe − gAu)µBBext. (3.10)

For a saturated Bs, ∆ν increases with Bext with a slope that is proportional to the
difference in g–factors. The slope is larger for wide than for narrow bars, as visible in
Fig. 3.8b. A large bar exerts more strain than a small bar and the already enhanced
gFe is further increased.

Dependence on grating geometry

Comparing the different geometries, we verify that a larger Bext is required to fully
magnetize the narrow bars compared to the wide bars (Fig. 3.8b), in agreement
with room-temperature MOKE measurements (Fig. 3.8c) and numerical simulations
(Fig. 3.6a).

In contrast to the expectations from the simulations, we experimentally find the
value of ∆ν to depend non-monotonically on the gap-size, as visible from Fig. 3.8b
and summarized Fig. 3.6b. This was reproduced on two additional samples, and
might be explained by non-perfect magnetization of the Fe grating or, as discussed
in the next two paragraphs, by an additional field due to nuclear polarization
(Sect. 3.4.4), or by inhomogeneous averaging over the gap due to optical/electronic
effects (Sect. 3.4.5).

Figure 3.9 shows the spin coherence time T ∗
2 as a function of Bext. Below the

Au–gratings (dashed lines), T ∗
2 is largely independent of the grating geometry and
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Figure 3.8: (a) Electron precession frequency ν in the QW below the 1-1 Au grating
(dots) and below the 1-1 Fe grating (open circles) as a function of Bext. A linear fit to
the Au data, ν0(Bext), has been subtracted. Electron precession in negative Bext is
assigned a negative ν. Bold line: MOKE measurement of the Fe bar magnetization,
scaled to fit the y-scale. (b) Precession frequency difference ∆ν = νFe − νAu for all
geometries (T = 40 K). (c) MOKE measurements for all geometries (T = 295 K,
background removed and normalized).
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Figure 3.9: Spin lifetime as a function of the external magnetic field Bext for different
Au and Fe gratings.

Bext, except around Bext = 0, where the lifetime is reduced. Here, we measure T1,
and in these samples, T1 < T ∗

2 (generally, T2 ≤ 2T1 [39]). Below the Fe–gratings,
a reduced lifetime around Bext = 0 is also visible, but it is superimposed on the
effect of an increased lifetime, as the stray field along x decreases with the decaying
magnetization at low Bext, and the reduced stray-field becomes more homogeneous.
As mentioned above, as soon as the magnetization is saturated, T ∗

2 stays constant.
Again, for the small gratings, this happens at higher Bext than for large gratings,
because a stronger Bext is needed to align the magnetization along x and to fully
build up the stray field.

The relative reduction in lifetime below a Fe–grating compared to below an Au–
grating T ∗

2,Au/T
∗
2,Fe is plotted in Fig. 3.6b. Its dependence on grating geometry is

consistent with the argument given in Sect. 3.4.3 and the measured 〈Bs〉 ∝ ∆ν.

3.4.4 Effects of nuclear polarization and nuclear imprinting

In Eq. (3.6) we have included a contribution from polarized nuclei Bn to the total
magnetic field Btot. In the following, we quantify Bn and conclude that the observed
increase in ν below the Fe gratings is not caused by nuclear magnetic fields.

Generation of nuclear polarization

Electron and nuclear spins are coupled via the hyperfine interaction. This interaction
is also called ‘contact interaction’, because it is proportional to the electron wave
function squared at the position of the nuclei. Polarized nuclear spins result in
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Figure 3.10: (a) Decay of nuclear polarization. The sample was illuminated during
10 mins with σ− or σ+–light (red and blue traces). At t=0, ν was measured, this
time using the PEM. The sample is tilted by ≈ 10◦ with respect to Bext = 1 T.
The solid line is a fit to an exponential decay. (b) Temperature dependence of the
nuclear polarization at Bext = 1 T. Here, the non-tilted sample was in the dark for
10 mins. At t=0, ν(t) was measured using the PEM.

an effective magnetic field acting on electron spins2. On the other hand, optically
polarized electron spins can polarize nuclei by the following two processes [25].

Dynamic nuclear polarization (DNP) When pumping the electron spins into
a non–equilibrium (i.e. polarized) state, the contact interaction leads to a
polarization of nuclear spins. In our geometry, the electron spins and therewith
also the nuclear spins are polarized along z (see Sect. 3.4.1). Our measurement
setup, however, is only sensitive to magnetic fields along x (or y). Therefore,
DNP manifests only when the sample is tilted (10◦ around y in Fig. 3.10a).

Overhauser effect When electrons are artificially maintained in a disordered state,
they try to align according to their thermal equilibrium by flipping spins with
nuclei. Such a disordered state is achieved in our experiment by polarizing the
electron spins along z, while in thermal equilibrium, they would (partly) be
polarized along Bext, i.e. along x.

Common to both effects is the appearance of nuclear time scales. Nuclear polar-
ization in bulk and QW systems builds up and relaxes within seconds to minutes,
remarkably different to electron spin polarization. By observing the electron spin
precession over minutes, we attribute long-time changes in ν to a nuclear magnetic
field Bn.

2Of course, also polarized electrons exert an effective magnetic field on the nuclei. Such a field
leads to a shift in nuclear magnetic resonance, called ‘Knight shift’. The corresponding effect in
electron spin resonance is called ‘Overhauser shift’.
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Measurements of nuclear fields

To polarize the nuclear spins we first illuminated the tilted sample with light (P =
1 mW) of constant helicity (either σ− or σ+) over a time of 10 minutes. During this
time, a nuclear polarization builds up due to DNP, and the precession frequency is
enhanced or reduced, depending on the helicity and the direction of the external
magnetic field. Then, at t = 0, the σ± light was switched off, and we started a
series of fast TRFR sweeps with a PEM, which is expected to influence the nuclear
polarization only weakly (see below). The observed ν(t) is plotted in Fig. 3.10a. On
the timescale of minutes, ν relaxes to a value of ν(t →∞) = 7.81 GHz, independent
of the helicity of the light initially used. We ascribe this to the decay of a nuclear
polarization that was built up when optically pumping the sample with circularly
polarized light [77, 78]. Again assuming that the PEM does not influence the nuclear
polarization (see below), we argue that at t →∞ no nuclear polarization is present
anymore. Then, the magnetic field Bn induced by the nuclear polarization present
at t = 0 changed ν by ±130 MHz. This corresponds to Bn = ±19 mT or a nuclear
polarization of 0.35% if taking Bn = 5.3 T as a maximum nuclear field [79].

Preventing nuclear polarization

Since the frequency of 50 kHz, at which the PEM switches between σ+ and σ−,
is much faster than the timescale of the nuclear polarization, we expect Bn ≈ 0
when measuring TRFR with the PEM. This is verified in Fig. 3.10b with a non-
tilted sample. After the sample has been in the dark for at least 10 minutes, fast
TRFR–scans were performed. Electron precession becomes faster on a time scale
of minutes, which we attribute to an increasing nuclear polarization due to the
Overhauser effect. However, the increase is on the order of 5 MHz, thus greatly
reduced compared to the case of constant helicity. Additionally, this value can be
almost zeroed by increasing the temperature to 40 K. In order to minimize effects of
nuclear polarization, we performed all measurements shown here at a temperature
of 40 K and using a PEM, modulating the photon helicity at 50 kHz.

Nuclear imprinting

We can further exclude effects of ferromagnetic imprinting [80–82] to account for
the observed difference: a transparent, 7 nm thick Fe film evaporated on our sample
with the same technique as used for the gratings did not affect ν in the QW (not
shown). This is not surprising, since ferromagnetic imprinting can only occur at a
ferromagnet-semiconductor junction [83, 84], and is not expected to happen through
the 20 nm GaAs cap separating the QW from the ferromagnetic gate.

Also, we have measured curves similar to the one in Fig. 3.8b at temperatures
between 10 K and 80 K and found a maximum relative variation of ∆ν of 10%,
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as visible in Fig. 3.11. If nuclear effects influenced ∆ν, a strong dependence on
temperature would be expected.

3.4.5 Optical diffraction at the grating

In the simulation presented in Sect. 3.4.2, the stray field is sampled uniformly in the
gap between the Fe bars. In the experiment, diffraction and near–field optical effects
including surface plasmons [85, 86] may lead to a non-uniform intensity distribution
of pump and probe pulses in the gap.

As a consequence, the excitation of electrons in the gap by the pump pulse may
be inhomogeneous, possibly also due to an inhomogeneous circular polarization. In-
between the pump and the probe pulse, in-plane electric fields originating from the
strain or contact potential of the metallic bars may lead to a lateral redistribution
of the electrons on a picosecond time scale. And lastly, the Faraday rotation of the
transmitted probe beam may probe the electron spin distribution in an inhomoge-
neous way.

These deviations are most important at the boundary of the Fe bars where
the stray field is strongly non-uniform, and where the x–component even changes
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sign, which could explain the discrepancy between the experimental results and the
simplified simulation, previously shown in Fig. 3.6b.

In Fig. 3.12, we show ∆ν measured in different set-ups, where optical diffraction
might manifest differently. In addition to TRFR, we measured the spin dynamics
in Kerr geometry, where the reflected instead of the transmitted probe beam is
analyzed. The ∆ν obtained this way looks very similar to the data presented in
Fig. 3.8b. Surprisingly, also TRFR from the backside, where the beams first pass
the QW before they are diffracted by the grating, gives similar results.

Simulations of the QW illumination below a grating

In order to further investigate the role of probe diffraction, we measured ν in differ-
ent geometries and polarization configurations. A numerical simulation (obtained
with the ‘finite-difference time-domain’ method) assuming a vanishing electric field
of the radiation on the metallic bar is shown in Fig. 3.13. Below the metallic gates
(indicated in gray) of the 0.5-0.5 and 1-1–gratings, the light intensity does not im-
mediately vanish, and especially for the probe beam polarization perpendicular to
the bars, a substantial part of the QW covered by a gate is illuminated. The simu-
lations predict pronounced differences in the illumination of these areas depending
on the probe beam polarization.

Below the 2-2 and the 3-3–grating, the light intensity distribution is enhanced
close to a bar edge, where the stray field is high, independent of the polarization.
Those regions are thus probed more in the optical average by the probe pulse, and
the measured 〈Bs〉 is expected to be larger than the homogeneous average performed
in Sect. 3.4.2. So far, this explains the ‘too large’ 〈Bs〉 measured for the 2-2 and
3-3–gratings.

We did, however, not observe a different 〈Bs〉 for the probe beam polarized
parallel or perpendicular to the bars, as suggested by the simulations for the small
0.5-0.5 and 1-1–gratings. Further investigations with gated gratings presented later
in Sect. 4.1 suggest that the QW area probed below the bars of a small grating
is larger than indicated by the simulations shown here, possibly due to surface
plasmonic effects leading to an enhanced transmission. The stray field pointing in
negative x–direction in these areas reduces the average stray field considerably.

3.4.6 Gratings with larger gap than bar size

In the simulations in Sect. 3.4.2, we have already discussed that the average stray
field should decrease with increasing gap width. However, we found a non-monotonic
relationship between bar/gap width and the measured stray field for gratings with
equal bar width b and gap width a. For small b = 0.5 and 1 µm, the stray field
measured was smaller than expected, for large b = 2 and 3 µm, it was larger. The
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the bars, the more QW is illuminated below the bars. The shaded areas indicate
the parts of the quantum well that are covered by a gate.

latter could be explained by simulations of the light intensity distribution below a
grating.

Figure 3.14 shows measurements of the stray-field-induced change in spin pre-
cession frequency ∆ν for gratings with twice (a = 2b) or three times (a = 3b) larger
gap than bar width. For comparison, we also plot ∆ν for equal gap and bar width
(a = b).

In the non-saturated regime, ∆ν builds up similarly for all geometries and reaches
its saturation value at the same external magnetic field Bext. This is not surprising,
since the magnetization build-up depends only on b and not on a.
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entation of the external magnetic field Bext to the bars’ easy axis. The electron
precession frequency beside a grating νoff has been subtracted. The data points
measured are indicated on the ‘Fe vertical’ curve.

For b = 3 µm and for b = 2 µm, ∆ν is reduced for a = 2b and a = 3b. Assuming
an intensity distribution as previously calculated, we expect a ‘too high’ 〈Bs〉 for
b = 2 and 3 µm and a reduction of the saturated ∆ν by a factor of 2 for the a = 2b–
grating and by a factor of 3 for the a = 3b–grating compared to the a = b–grating.
This is also observed in the measured data.

For b = 1 µm and for b = 0.5 µm, however, ∆ν is only slightly reduced (b = 1 µm)
or does not change at all (b = 0.5 µm) with wider gaps. For those small bars,
again, we suggest the presence of enhanced transmission leading to illumination of
regions below the bars and a reduction of 〈Bs〉 as mentioned earlier. With larger
a, these effects are expected to diminish, since they are only present when the
spatial dimensions involved are on the order of (or smaller than) the laser wavelength
(870 nm). This would lead to a larger ∆ν with increasing a, but at the same time,
due to the larger gap proportion with vanishing stray field included in the average, a
larger a also leads to a decrease of ∆ν, as explained for the b = 3 and 2 µm gratings
above. The two effects seem to cancel exactly for b = 0.5 µm.

We further note that the strain-induced increase of the g–factor (see Sect. 3.4.3),
visible from the slope of ∆ν in the saturated regime, is more pronounced for small
gaps a = b. This seems reasonable, since strain emerges from the bars and is
expected to decline with distance.

3.4.7 Horizontal and vertical gratings

In the measurements presented up to now, we have always compared ν on a Fe
grating with ν on a non-magnetic Au grating, in order to measure the stray-field-
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induced change in ν. It is also possible to measure this ∆ν by comparing ν on two
Fe gratings, one oriented perpendicular to Bext, the other with the bars’ easy axis
parallel to Bext. Since our Bext is horizontal, we call the latter gratings ‘horizontal’,
and the former ‘vertical’.

For the horizontal gratings, virtually no stray field is induced in the gap and
we do not expect to see any change in ν due to the magnetization. The measured
νon is plotted in Fig. 3.15. An offset νoff, the precession frequency beside a grating,
has been subtracted. While νon− νoff for horizontal and vertical Au gratings is very
similar, the effect of the stray field is well visible for the vertical Fe grating. Again,
slightly modified g–factors due to strain are visible, gFe > gAu > goff.

This measurement was not performed with the 1-1 and the 05-05 gratings, since
due to the vertically offset alignment of our pump and probe beams, the diffraction
occurring at the horizontal gratings leads to scattering of the pump beam into the
probe detection. This scattering and where the pump beam is deflected to depends
on the grating period.

3.4.8 Spatially resolved measurements

To get an impression of the spatial distribution of the stray field, we performed two-
dimensional scans over a grating and its surroundings. Since the focus diameter of
our laser beam (15 µm) is much larger than the grating periodicity of 1 – 6µm, we
do not expect to see the individual bars in our measurements. This is only possible
for larger grating periods, as shown later for a gated 3-9–grating in Fig. 4.6.

In Fig. 3.16, we show images representing the spin precession frequency ν, the
spin coherence time T ∗

2 and the transmitted probe power in the x/y plane around
a 3-3 Fe and Au grating. In the transmitted power plot (bottom row), the location
of the gratings is visible, including two wire-gates. In the top row, ν is shown to be
very homogeneous on both the Fe and the Au grating. Again, a slightly enhanced
gAu is observed when comparing ν on the Au grating and in its surroundings. In the
middle row, the spin coherence time is plotted. As already mentioned previously, it
is reduced on the Fe grating due to averaging effects (see Sect. 3.4.3).

3.5 Stray field measurements on etched gratings

To eliminate the probing of ‘negative’ stray fields below the Fe bars, we etched the
gates down to the QW. In this configuration, the stray field is probed in the plane
of the gratings and not below the gratings, as previously illustrated by the shaded
region in Fig. 3.5b. From the same figure it is also visible that the stray field is now
almost perfectly aligned along x and the z–components virtually vanish. Besides
these advantages, the average field is enhanced by a factor of between 2 and 3 on an
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Figure 3.16: Two-dimensional scans over a 3-3 Fe (left column) and Au (right
column) grating at Bext = 1 T. On the Fe grating, the electron precession frequency
ν is enhanced due to the magnetic stray field, on the corresponding Au grating,
ν is only slightly higher compared to beside the grating, presumably because of a
modified g–factor due to strain. The spin coherence time is reduced by a factor of
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laser power shows the position of the gratings. For a SEM–image of a similar grating,
see Fig. 3.4.

59



Chapter 3. Spin manipulation with magnetic fields

-1.0 -0.5 0 0.5 1.0

-1.0

-0.5

0

0.5

1.0

3-3

2-2

1-1

1-1

2-2 2.11 µm

1.08 µm

2.11 µm

1.84 µm

0.88 µm

1.84 µm
B (T)ext

�
�

(G
H

z
)

Figure 3.17: Stray field effect on the electron spin precession frequency for grat-
ings etched down to the QW. For the measurements represented by solid lines, the
gratings had slightly too wide bars and too small gaps, as shown in the insets. The
dashed line shows the data for a grating, where the widths of the bars has been
corrected for the widening influence of the etching process. Dots on the 3-3–curve
indicate the magnetic field steps.

etched compared to a non-etched grating, see the simulations in Figs. 3.18 (etched)
and 3.6 (non-etched).

Using the etching process described in Sect. 2.6.3, we etched away ≈ 80 nm of
GaAs prior to evaporating the metal. That way, the bars are buried in the GaAs
and centered in the QW layer.

The stray–field–induced change in spin precession frequency ∆ν is shown in
Fig. 3.17. Now, the smallest grating (1-1) exhibits the largest stray-field effect, and
the largest grating (3-3) the lowest. The magnetization builds up as expected, for
1-1 the largest Bext is needed to saturate the bar magnetization.

When comparing with simulations (Fig. 3.18), the agreement is satisfactory.
Only the absolute magnitude of the stray field appears too high in the measurement.
This can partly be attributed to the Fe bars, which are slightly too wide and the gaps,
which are too narrow (inset in Fig. 3.17). During the etching process, the upper layer
of the two-layer PMMA–resist gets slightly etched laterally, resulting in a widened
bar. Measurements of ∆ν for a 1-1 grating with improved mask geometry (smaller
bars were written) are shown by the dashed line in Fig. 3.17. For this sample, the
predicted and the measured value differ by about 20%. Such an enhancement of
∆ν can again be attributed to similar effects as on the non-etched structures, where
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the light intensity is enhanced close to the metal bars due to diffraction and surface
plasmonic effects.
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Chapter 4

Spin manipulation with magnetic
and electric fields

The experiments presented in chapter 3 were static, and the stray-field-induced elec-
tron spin precession could not be influenced externally. In this chapter, gate voltages
are applied to the ferromagnetic gratings and the electrons are spatially moved in the
inhomogeneous stray field, resulting in electrical control on the electron spin precession.
First, measurements with static gate voltages are presented (Sect. 4.1). Secondly, the
gate voltages are modulated on a nanosecond timescale (Sect. 4.2)1

4.1 Gated gratings

4.1.1 Overview

In this section, we extend the experiments presented in Sect. 3.4 by applying gate
voltages to the Fe bars. Thereby we move the electrons in the inhomogeneous stray
field and gain electrical control of the electron spin precession.

By employing TRFR, we track the electron spin precession in the QW below an
array of ferromagnetic bars made of Fe. In an external magnetic field of sufficient
strength to magnetize the Fe bars, the magnetic stray field Bs makes the electron
spins precess faster than below an identical grating made out of non-magnetic Au,
as shown in the previous Sect. 3.4. By applying a ‘symmetric’ gate voltage Vg with
opposite sign to neighboring bars of an interdigitated grating (see Fig. 3.4 for an
SEM–image), the electron distribution in the QW is moved within the inhomoge-
neous stray field, and precesses in a higher or lower mean stray field. The application
of a voltage of Vg = ±1 V to a grating with a period of 1 µm leads to an increase in
the electron spin precession frequency ν by up to 0.5 GHz, corresponding to a mag-

1Parts of this chapter have been published in L. Meier et al., Phys. Rev. B 74, 245318 (2006)
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netic field of ≈ 70 mT. By modulating the gate voltage with gigahertz frequencies,
we achieve control of the electron precession frequency on the nanosecond timescale,
see the following Sect. 4.2.

We use the samples presented in Sect. 3.4, with substrate P805 (see Sect. 2.5)
and arrays of 80 nm thick Fe (Au) bars evaporated on the surface by electron-beam
lithography and standard lift-off processes (see Sect. 2.6.2). Neighboring bars have
separate electrical connections, so that they can be put on different potentials. We
have fabricated interdigitated gratings 100 µm × 100 µm in size having periods p
of 1, 2, and 4 µm and a bar width of half the period (called 0.5-0.5, 1-1 and 2-2
gratings in chapter c3).

We use TRFR at T = 40 K to trace the electron spin precession in the QW
(c.f. Sect. 2.1). As our laser focus (15 µm in diameter) is much larger than the
grating period, we measure the electron spin precession averaged over an ensemble
of spins which precess in an inhomogeneous magnetic field. This spatial average
is determined by the laser field distribution below the grating, which acts as an
optical mask, as well as by the electron distribution within the illuminated regions
of the QW (see Sect. 3.4.5). 〈Bs〉 is the spatially averaged Bs that results from these
optical and electronic effects.

4.1.2 Sweeps of Bext at different gate voltages

A numerical simulation of Bs (obtained as described in Sect. 3.3) is shown in
Fig. 4.1a, similar to Fig. 3.5b but for half the bar/gap size. The stray field in
the center of the QW is expected to be ≈ 200 mT close to a Fe bar and ≈ 50 mT
in the middle of the gap. The x–component, which our measurement geometry is
most sensitive to, changes sign at the edge of a bar. It is parallel to Bext between
the bars and antiparallel below a bar.

Figure 4.1b shows for different Vg the dependence of ν on Bext with a linear
background ν0 = gFe,AuµBBext subtracted (gAu = 0.5179, gFe = 0.5163). We first
focus on the data for Vg = 0 V. While on the sample with the Au grating, ν−ν0 ≈ 0
independent of Bext, ν− ν0 on the Fe sample increases linearly up to |Bext| ≈ 0.3 T.
For |Bext| > 0.3 T, ν − ν0 remains constant at about 0.05 GHz, corresponding to an
average stray field of ≈ 7 mT. Magneto-optical Kerr measurements confirm that at
this external field, the magnetization of the Fe grating (and with it the stray field)
saturates, as previously shown in Fig. 3.8. Simulations assuming a homogeneous
electron distribution and illumination between the bars and no illumination below
the bars predict 〈Bs〉 on the order of 100 mT. We ascribe the difference to the
probing of negative stray fields antiparallel to Bext below the Fe bars owing to
optical diffraction and surface plasmonic effects at the grating (as p ∼ λ) and to
non-perfect magnetization of the Fe bars due to edge roughness (see Sect. 3.4).

When applying a voltage of ± 1 V (± 2 V) to neighboring bars, the electrons
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Figure 4.1: (a) Micro-magnetic simulation of the magnetic stray field of a grating
with period 1 µm. The solid lines of constant field indicate magnetic fields of 500,
200, 100, and 50 mT. The QW is shaded gray. (b) Electron precession frequency
ν in the QW below the 1 µm grating for different gate voltages as a function of
Bext. A linear fit ν0 = gFe,AuµBBext to the data has been subtracted (for Fe the fit
only included the saturated region |Bext| > 0.3 T). Inset: sketch of an interdigitated
grating, gated with a ‘symmetric’ gate voltage Vg.
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precess 0.15 GHz (0.25 GHz) faster on the Fe sample than on the Au sample in the
saturated region, corresponding to 〈Bs〉 = 20 mT (34 mT). Note that ν − ν0 builds
up similarly for all voltage traces. In particular it saturates at the same value of Bext.
This indicates that the same stray field is probed with a different spatial averaging
for different gate voltages. The spin lifetime T ∗

2 decreases slightly with an applied
gate voltage (see later Fig. 4.3c), also indicating a change in spatial averaging and
a larger spread in ν, as mentioned above in Sect. 3.4.3.

4.1.3 Gate sweeps at constant magnetic field

Overview

To study the tunability of ν with Vg, we set Bext to 1.05 T, where the magnetization
of the Fe bars is saturated, and vary Vg in small steps. Figure 4.2a shows ν(Vg) for
Fe and Au gratings and three different geometries. On samples with Fe gratings, ν is
enhanced by a few tenths of a gigahertz as |Vg| is increased. The steepest slope for the
p = 1–grating around Vg = 0.7 V corresponds to a tunability ∂ν/∂Vg ≈ 0.5 GHz/V.
In samples with Au gratings, ν changes little with Vg, the small offsets in νAu for
different p are ascribed to small variations in g due to strain from the grating. Fits
yield g1,2,4µm

Au = 0.5211, 0.5225, and 0.5253.

Probing a single gap

When probing a single 2 µm wide gap between two large, electrically contacted Fe
(Au) gates (data not shown), we find a very similar behavior in ν(Vg) as in the
case of the Fe (Au) grating with p = 4 µm (i.e., 2 µm bar and 2 µm gap). Hence,
measuring a grating is equivalent to measuring a single gap, but the grating enhances
the signal-to-noise ratio considerably. Specifically, in both cases, the sign of the x–
component of the electric field is not of importance: in a single gap the electric field
always points in one direction, whereas on a grating, we average over fields pointing
in the x– and in the −x–direction.

Origin of the tunability on Fe gratings

In Fe samples, the increase in ν with Vg is more pronounced for gratings with smaller
p, whereas the stray-field effect on ν at Vg = 0 is larger for gratings with large p.
The latter was discussed in detail in Sect. 3.4.

The understanding of these two observations is facilitated by investigating a
mixed Fe/Au grating, in which every other Fe bar has been replaced by a Au bar.
As long as a negative Vg is applied to the Fe bars, ν(Vg) obtained is similar to ν(Vg)
of the pure Fe sample, see Fig. 4.2b. However, a positive voltage applied to the Fe
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bars leads to a decrease of ν on the mixed Fe/Au sample below the value on the
reference Au sample, indicating that the stray field effectively reduces Btot. Thus,
the contribution to the stray–field–average of regions below a positively charged
Fe bar is in fact (slightly) negative. The ‘negative’ stray field below the positively
charged bar, directed along −x, is weighed more than the ‘positive’ stray field beside
the bar (see Fig. 4.1a above for a sketch of the stray field). In contrast, below a
negatively charged Fe bar, contributions from the positive stray field beside the bar
dominate. This dependence of the probed regions on the gate voltage is explained
by the depletion of electrons below the negatively charged Fe bar, as explained in
the next paragraph.

TRFR dependence on the electron density

TRFR relies on the circular birefringence at the absorption edge of the QW (see
Sect. 2.1.2). Spin polarization leads to different Fermi energies for spin-up and spin-
down electrons E↑,↓

F (Fig. 2.2). The TRFR signal is proportional to ∆EF = E↑
F −E↓

F

(here ∆EF ≈ 0.05EF ≈ 2 meV), i.e. to the optically excited, polarized electrons
and not to the total electron density.

A positively charged bar leads to an accumulation of electrons below the bar,
but as just stated, the resulting higher electron density does not enhance the TRFR
signal. However, when a bar is negatively charged and all electrons are depleted
from below the bar, then no electrons from this region will contribute anymore to
the TRFR signal and to the averaged ν [see Fig. 4.2d and e].

The smaller p, the more diffraction and surface plasmonic effects lead to a probing
of negative stray fields below a Fe bar, resulting in a smaller ν, as discussed in
Sect. 3.4.5. Returning to the pure Fe grating, applying ±Vg to a pair of neighboring
bars has no effect on the sampling of the stray field close to the bar at +Vg, but
removes contributions from electron spins in the negative stray field below the bar at
−Vg, which results in an overall increase of ν. The larger the sampled region below
a bar (i.e., the smaller p), the larger the increase in ν when this region is depleted
below the negatively charged bar. This explains the larger tunability ∂ν/∂Vg for
smaller p.

More data on the mixed Fe/Au–grating

More data supporting this explanation is shown in Fig. 4.3. In Fig. 4.3a we show for
a mixed Fe/Au–grating (periodicity p = 1), as a function of Bext, that the change ∆ν
in precession frequency (compared with a pure Au–grating) can become negative,
if large positive Vg are applied to the Fe bars. Data similar to Fig. 4.2b (p = 1)
is shown in Fig. 4.3b, but this time for a p = 2–grating. Also here, on the mixed
Fe/Au–grating (solid line), ν decreases with a positive Vg applied to the Fe bars.
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However, ν does not fall below ν on the Au–grating (dashed red line), since the
sampling of ‘negative’ stray fields is less pronounced for p = 2 compared to p = 1.
The spin coherence time T ∗

2 as a function of Vg is shown in Fig. 4.2c. For a pure Fe
or Au grating, T ∗

2 is symmetric with respect to Vg = 0 (dashed lines). For a mixed
Fe/Au–grating, however, a negative Vg applied to the Fe bars increases T ∗

2 , while a
positive Vg on the Fe bars reduces T ∗

2 . In the latter case, the inhomogeneity of the
stray field is raised, since both positive and negative stray fields are probed. For
negative Vg applied to the Fe bars, only positive stray fields are probed, resulting
in a more homogeneous stray field and an increased T ∗

2 , as previously mentioned in
Sect. 3.4.3 and in Fig. 3.7.

Tunability for low |Vg| < V on
g

We return again to the pure Fe and Au–gratings and the data shown in Fig. 4.2. The
increase in ν (Fig. 4.2a) is not linear in Vg. The sensitivity ∂ν/∂Vg of ν to changes
in Vg for the p = 1 µm grating is plotted in Fig. 4.2c. For Vg < V on

g ≈ 500 mV
the increase is small and very similar for both the Fe and the Au (as well as the
mixed Fe/Au) grating. We suspect that in this regime, ν changes because of a
variation of the electron g–factor by about 0.001. Possible explanations for such an
electric-field-induced modification of spin dynamics include changes in the overlap
between electron and hole wavefunctions [87], band-structure effects [88, 89], and
strain-induced spin-orbit effects [45].
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+– Figure 4.4: Electric field between a
positively and a negatively charged
bar.

Tunability for high |Vg| > V on
g

For |Vg| > V on
g , ν increases strongly on the 1 µm Fe sample, whereas it remains

constant on the 1 µm Au sample. The tunability is highest around Vg ≈ 800 mV,
where a change of 1 V in Vg leads to a variation of about 0.5 GHz in ν, corresponding
to an effective stray field of ≈ 70 mT.

Dependence of V on
g on geometry

The on-set voltage V on
g is smaller for larger p. An analysis of the electric field between

and below the bars can explain this dependence on Vg. As mentioned above, the
relevant mechanism that increases ν is the depletion of the QW below the negatively
charged gate. In the center below a bar, far away from an edge, vertical electric fields
dominate. With a capacitor model we estimate the potential drop between gate and
QW needed to deplete the QW to be roughly 100 mV, which is lower than V on

g . For
voltages which are more negative than required for the depletion of the electron gas,
lateral electric fields between the bars become important, c.f. Fig. 4.4, similar to
the situation in quantum point contacts [90]. Close to the edge of a bar, where the
magnetic stray fields are highest, lateral electric fields dominate. Under illumination
(P = 500 µW) at Vg = 1 V, a considerable current of approx. 1 µA is measured
through a gated grating, yielding an estimated resistance of 2 MΩ. This resistance
can be seen as a series of three resistances: a forward-biased Schottky barrier Rf

s

from one bar to the QW, the resistance RQW of the QW itself, and a reverse-biased
Schottky barrier Rr

s from the QW to the other bar. The period p = dgate + dgap is
the sum of the gate and the gap width. The (lateral) electric field in the QW is

EQW =
VQW

dgap

=
RQW

dgap

2Vg

Rf
s + Rb

s + RQW

(4.1)

≈ Vg

dgap

RQW

Rf
s + Rb

s

,

where we have assumed Rb
s � RQW. Enlarging the channel length dgap increases its

resistance, i.e. RQW ∝ dgap, whereas enlarging dgate reduces the resistance of the
Schottky contact, as the area between gate and the sample surface is increased, thus
Rf,b

s ∝ 1/dgate. As a consequence, EQW ∝ dgateVg.

We assume that a critical (lateral) field Eon
QW is needed to significantly shift the
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depletion edge of the electron gas close to the bar edge and to move the electrons
towards the positively charged bar. Then, for larger dgate the onset voltage decreases:

V on
g ∝ Eon

QW/dgate (4.2)

This qualitatively explains the dependence of V on
g on the grating geometry. In

addition, we experimentally tested relation (4.2) by fabricating gratings with dgap =
adgate, a = 1, 2, and 3. Changing dgap did not significantly alter V on

g , whereas a
larger dgate reduced V on

g substantially. Further support for Eq. (4.2) was found in
time-resolved photoluminescence measurements (see appendix A).

4.1.4 Horizontal and vertical gratings

Instead of comparing the Vg–dependence on a Fe with an Au–grating, we can com-
pare ν(Vg) on a vertical grating (easy axis of the bars perpendicular to Bext) with
ν on a horizontal grating (easy axis parallel to Bext), similar to the experiments
presented in in Sect. 3.4.7 for sweeps of Bext.

Figure 4.5 shows a plot similar to Fig. 3.15, but this time at a constant field Bext

and for a varying gate voltage Vg. Again, the change in ν is largest for the vertical
Fe grating. For both Au gratings, ν changes as already shown in Fig. 4.2a, and
there is no relevant difference between horizontal and vertical grating orientation.
For the Fe grating, the vertical orientation shows what has already been presented
in Fig. 4.2a. The horizontal orientation exhibits also a small change of ν with Vg.
We attribute this to edge roughness of the Fe that locally induces small magnetic
stray fields. With a varying Vg, those stray fieds are probed differently.

4.1.5 Spatially resolved measurements on gated gratings

To verify the mechanism that leads to the observed dependence of ν on Vg below a
Fe grating (Sect. 4.1.3), we performed spatially resolved measurements with the 3-
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9–grating already introduced in Sect. 3.4.6. This grating has a period of p = 12 µm,
comparable to the laser focus diameter of d ≈ 15 µm. When the laser is centered
on a bar, we can expect ν to be dominated by the stray field induced by this bar,
since, on both sides, the next bar is 9 µm away. In Fig. 4.6a we present a scan along
the x–axis over this grating, centered in z–direction. We show two traces, one with
a gate voltage of Vg = +1 V, the other with Vg = −1 V. For the measurements with
pure Fe or Au gratings presented in Sect. 4.1.3 it was unimportant if the odd bars
were gated with +1 V and the even bars with −1 V, or vice versa. Because d � p,
we averaged over both odd and even bars and the sign did not matter, as illustrated
in the symmetric curves with respect to Vg = 0 in Fig. 4.2a.

In the experiment shown here, however, it does matter if the laser focus is cen-
tered on a bar that is put on a positive or on a negative potential. In Fig. 4.6b, the
minima in transmission indicate that the laser focus is centered on a bar, labeled
by the vertical dashed lines. In the lowest part of the figure, a sketch of the bars
with the voltages applied is shown for the two traces. In Fig. 4.6a, ν is shown as
a function of x. If the laser is centered on a positively charged bar (Vg > 0), then
ν increases slightly compared with ν in the middle of a gap. If the laser focus is
centered on a negatively charged bar (Vg < 0), ν increases considerably more than
in the case Vg > 0.

This is consistent with the argument given in Sect. 4.1.3: below a negatively
charged bar, the QW is depleted and a smaller or even no region with negative stray
field is probed, thus the increase in ν due to the stray field is larger than if the laser
is centered on a positively charged bar, where the probing of negative stray fields
below a bar reduces the increase in ν considerably. Note that the stray field in both
cases (Vg ≷ 0) is still positive. Only in the mixed Fe/Au–gratings with 0.5 µm wide
bars, diffraction and surface plasmonic effects were sufficiently strong to result in a
negative average stray field for positive Vg applied to a Fe bar (if at the same time,
no negatively charged Fe bars were probed, as in the mixed Fe/Au–grating).

From the spin coherence time T ∗
2 (Fig. 4.6c), conclusions about the inhomogene-

ity of the magnetic field perceived by the probed electron ensemble can be drawn: an
inhomogeneous field results in a decreased spin coherence time. Beside the grating,
the electrons feel the homogeneous Bext = 1.05 T and T ∗

2 ≈ 1200 ps. On the grating,
due to the stray field, T ∗

2 is reduced to ≈ 800 ps. Below a positively charged bar,
the inhomogeneity is larger, since both positive and negative stray fields are probed.
This manifests in T ∗

2 : if the laser is centered on a bar, T ∗
2 is slightly lower if this bar

is positively gated (Vg = +1 V) than if it is negatively charged.
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Figure 4.7: (a) The gate-controlled modification of ν below a Fe grating is most
efficient around a symmetric gate voltage of Vg = 1 V (corresponding to V ′

g = 2 V).
(b) Set-up for the measurements with oscillating gate voltages. A d.c. voltage
V ′

g and an a.c. voltage Va.c. are added using a bias-T. (c) The electron precession
frequency ν is measured at different times ti of the a.c. oscillating voltage. For
this, the phase shift between the laser pulse and the a.c. voltage is controlled
electronically. As long as the a.c. frequency f is slow compared to ν, a well defined
ν(ti) can be obtained.

4.2 Oscillating gate voltages

4.2.1 Introduction and electronic set-up

We now apply oscillating voltages to the interdigitated grating consisting of 0.5 µm
wide Fe stripes separated by 0.5 µm wide gaps, as described in the previous Sect. 4.1.
By modulating Vg on gigahertz frequencies, we expect the electrons to spatially
move within the inhomogeneous stray field and to precess about a magnetic field
that changes on a time scale of nanoseconds.

In Fig. 4.7a, we show again the ν(Vg) dependence for the p = 1–grating. For a
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symmetric gate voltage Vg of around 1 V, the tunability of ν is highest. With a d.c.
voltage, we can choose this as a working point and add an oscillating voltage Va.c.

with an amplitude of around 0.5 V. We expect then to see different ν, depending on
whether we probe the electron spins at a time where Va.c. is maximal or minimal.

The set-up for these measurements is shown in Fig. 4.7b. In contrast to the
experiments presented in Sect. 4.1, we use only one d.c. voltage source, i.e. the
bars are not gated symmetrically with respect to the grounded substrate anymore.
Therefore, we denote the gate voltages in this section by V ′

g (instead of Vg for the
symmetric case, c.f. Fig. 4.1b) and note that for the potential difference between
two neighboring bars, V ′

g = 2Vg. The d.c. voltage V ′
g is added to a sinusoidally

oscillating a.c. voltage Va.c.(t) = V 0
a.c. sin (2πft) using a bias-T. An r.f. power of

10 dBm was used, theoretically corresponding to a V 0
AC of about 0.7 V at low f .

With this configuration, including the cables in the cryostat, we are capable of
applying frequencies f up to a few GHz, as experimentally verified using an oscil-
loscope. However, since our gratings have capacitances on the order of 5 pF, the
a.c. amplitude arriving at the gates is damped already for f > 500 MHz. The gates
have a high impedance, and are not terminated by a 50 Ω resistance. This leads to
reflections, which are mostly absorbed by the 50 Ohms part of the system (bias-T
and a.c. voltage source). A measurement of the oscillating voltage on the gates
with a high-impedance probe did show nice sinusoidal oscillations with no signs of
reflections. The amplitude of the voltage at f = 480 MHz is reduced by ≈ 4 dBm by
the bias-T, cables and connectors. This seems little, but taking into account that an
effectively doubled amplitude would be expected since the gates are not terminated
by 50 Ω, an effective reduction of ≈ 10 dBm is measured.

Figure 4.7c illustrates the principle of our measurement: by scanning the phase
difference between the laser pump pulse and the a.c. modulation, we are able to
track the electron spin precession at different phases of the a.c. modulation. We call
this time difference the ‘laser-gate delay t’. It is known up to a constant t0, which
is unchanged throughout an experiment, as long as f is not changed (in which case
the function generator changes its relative phase). This is a consequence of the fact
that we do not know when exactly our laser pulse reaches the sample, but we can
precisely (with a precision of less than 10 ps) change this delay t.

At different laser-gate delays t, we perform TRFR sweeps and extract a spin
precession frequency ν(t). To determine ν with ample precision, about 3 spin oscil-
lations are required. In a total magnetic field of ≈ 1 T, one spin precession takes
the time of 125 ps, we therefore need ≈ 400 ps for the determination of ν. As long
as f is slow compared to this, ν(t) is well defined. Otherwise, the effects of Va.c.(t)
will start to average out and for f ≈ ν/3 ≈ 3 GHz, we expect ν(t) to be constant
in t.
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4.2.2 Electron precession frequency as a function of laser-
gate delay

In Fig. 4.8a we present results with a modulated gate voltage on the p = 1 µm
grating for four modulation frequencies of 160, 480, 960 and 1440 MHz and V ′

g =
2 V. ν(t) oscillates with the exciting frequency f and an oscillation amplitude ν1 of
between 0.02 and 0.5 GHz. (Note that the phase of the a.c. modulation has changed
between measurements on Fe and Au gratings and the four frequencies due to the
a.c. function generator.) This oscillation is explained by assuming that the electrons
in the QW follow the a.c. modulation. When t is such that the laser pulse coincides
with a minimum in Va.c., then the voltage below the even bars is minimal when we
measure the electron spin precession. Consequently, the electrons are depleted in
the QW below and, as found for the d.c. case, ν is maximal. A similar argument
explains the minima in ν.

However, this oscillation is observed not only on the Fe grating, where it is
expected following our expectations above. Also on the Au grating, a (weaker)
oscillation is visible. From the knowledge of ν(Vg) (Fig. 4.7a), we can estimate the
magnitude of ν1 to be

ν1 =
1

2

∂ν

∂Vg

∣∣∣∣
V ′

g

V 0
a.c.. (4.3)

Since below a Au grating, ∂ν/∂V ′
g ≈ 0, no oscillation is expected, contrary to the

measurement. As we will show in the next chapter 5, the oscillations below the
Au gratings are due to effects of spin-orbit-interaction, where the electrons feel a
magnetic field due to their motion induced by the a.c. electric field.

Here, we take this effect as a background acting on electrons below both Au and
Fe gratings. The linear fit in Fig. 4.8b matches the Au data points well. The addi-
tional effect below the Fe grating due to the influence of the stray field is described
by Eq. (4.3) and added to the linearly fitted background on the Au grating. We
further take into account the damping of our circuit at higher frequencies measured
with a high-impedance probe to obtain a corrected value for Va.c.. With this, we
obtain the dashed ‘expectation Fe’ line, which matches the measured data points
quite well.

4.2.3 Dependence on d.c. gate voltage

The dependence on the d.c. gate voltage V ′
g is also estimated by Eq. (4.3). At

V ′
g = 0, the derivative of ν with respect to Vg vanishes and no oscillation amplitude

ν1 is expected. For an inverted V ′
g , we also expect an inverted oscillation, i.e. a

phase shift by π, since the sign of the derivative changes. Such a measurement is
shown in the left panel of Fig. 4.9 for f = 960 MHz. Again, smaller oscillations are
detected on the Au grating but are not discussed in detail here.
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g = 2 V was added to the a.c.
modulation. (b) Amplitude ν1 of the oscillations in ν as a function of f . The phase
of each measurement is arbitrary.
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Figure 4.9: Left: The oscillations in ν as a function of laser-gate delay are modified
when adding a d.c. gate voltage V ′

g = −3, +3and 0 V. Right: f– (solid line) and
2f–component (dashed lines) of the ν–oscillations as a function of V ′

g . Data for the
p = 1 Fe and Au gratings, a r.f. power of 10 dBm and f = 960 MHz. Again, the
phase has changed between the measurement of the Fe and the Au gratings due to
the a.c. function generator.

The traces for V ′
g = ±3 V are shifted by π as expected. At V ′

g = 0, the oscil-
lations below the Fe grating are strongly reduced compared to |V ′

g | > 0. Instead,
oscillations with the double frequency 2f become visible. Such an effect can be ex-
plained when considering gate oscillations around V ′

g = 0 in the ν(V ′
g)–dependence

in Fig. 4.7a. ν increases for both negative and positive gate voltages compared to
ν(V ′

g = 0), therefore an enhanced ν(t) is expected twice per a.c. period, resulting in
2f–oscillations.

Such 2f–oscillations are also anticipated for the spin–orbit–induced magnetic
field (chapter 5), if this field is oriented perpendicularly to Bext. In fact, this effect
seems to dominate the V ′

g = 0 trace, since the oscillations on both Fe and Au grating
are of similar amplitude.

A plot of the amplitudes of both the f and 2f–components of the oscillations in
ν(t) is shown in the right panel of Fig. 4.9 for V ′

g = ±3, ±1.5 and 0 V (corresponding
to Vg = ±1.5, ±0.75 and 0 V). The 2f–components (dashed lines) are similar below
Fe and Au gratings and do not significantly change with V ′

g , supporting that they
both originate from spin-orbit effects. The f–component of the oscillation below the
Fe grating increases since also |∂ν/∂V ′

g(V
′
g)| increases with V ′

g in Eq. (4.3).

The fact that also the spin-orbit induced f–component below the Au grating
increases with V ′

g could be explained as follows: a higher V ′
g leads to higher currents

that flow through the Schottky-contacts between the gates and the QW. Since the
I/V–characteristics of a Schottky-contact is highly non-linear, the additional electric
field due to Va.c. leads to an additional current that is larger than just the ratio
of (V ′

g + Va.c.)/V
′
g . Therefore, Va.c.(t) leads to a faster electron movement when
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Chapter 4. Spin manipulation with magnetic and electric fields

superimposed on a d.c. voltage V ′
g and therefore to larger spin-orbit magnetic fields.

4.2.4 A.c. effects beside a grating

Figure 4.10b shows the oscillation amplitude ν1 on a two-dimensional scan over four
gratings, whereof the two gratings to the right (p = 1 Fe and Au) were applied
V ′

g = 3 V and an a.c. voltage at f = 480 MHz with a r.f. power of 10 dBm. A
microscope image of the region scanned is shown in Fig. 4.10a.

Clearly, the effect of the a.c. gate modulation is not restricted to the grating
itself. Although ν1 is largest on the p = 1 Fe grating, even beside the excited gratings
an oscillating behavior of ν(t) is measured. It spreads mainly in x–direction and
decays on a length scale of a few 100 µm as visible from the cut at z = 0 in Fig. 4.10c.

Beside a grating, the magnetic stray fields are negligible and therefore, the oscilla-
tion in ν(t) cannot be explained by the effects of magnetic stray fields. Furthermore,
these oscillations vanish when reducing the r.f. power. They are, again, explained
by magnetic fields induced by spin-orbit coupling. Close to an excited grating, due
to the grating itself as well as due to the wiring on the sample, oscillating electric
fields exist in the plane of the QW. These fields lead to an oscillatory motion of the
electrons and induce a spin-orbit magnetic field. The investigation of this field will
be the subject of the following chapter 5.
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Figure 4.10: (a) Microscope image of the scanned region. The two gratings to
the left are p = 2 Fe and Au. The two gratings to the right (p = 1, Fe and Au)
are excited with an a.c. gate voltage. (b) Oscillation amplitude ν1 on and beside
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Chapter 5

Spin manipulation with electric
fields

In this chapter, after an introduction into spin-orbit interaction (Sect. 5.1), we report on
a new method enabling the direct measurement of both Rashba and Dresselhaus spin-
orbit fields by probing the electron spin precession frequency as a function of the direction
of the electron motion with respect to the crystal lattice (Sect. 5.2). We then show,
in Sect. 5.3, how the spin-orbit interaction spatially depends on the local orientation of
an exciting electric field. In Sect. 5.4, we show that the spin-orbit fields can be used to
trigger spin resonance, also referred to as electric-dipole-induced spin resonance.1

5.1 Introduction to spin-orbit interaction

Not only magnetic fields can serve as a tool to manipulate electron spins, also electric
fields couple to the spin, via the spin-orbit (SO) interaction. This is a relativistic
effect, where electric fields in the moving frame of an electron appear as magnetic
fields (c.f. the Lorentz–transformation, Eq. 1.9).

Symmetry-breaking electric fields in semiconductors and externally applied gate
voltages induce a spin splitting, because electric fields appear to a moving electron
as magnetic fields, which interact with the electron spin and couple it with the
electron momentum, or wave vector, k. In zinc-blende-type crystals, such as GaAs,
the electric fields resulting from the lack of an inversion center lead to bulk inversion
asymmetry (BIA) and to the Dresselhaus term in the Hamiltonian [51]. In the
conduction band, its coupling is linear or cubic in k with proportionality constants
β and γ, respectively. In heterostructures, additional electric fields are introduced
owing to structure inversion asymmetry (SIA), giving rise to the Rashba term [53],
which for conduction-band electrons is linear in k with coupling constant α. Both

1Parts of this chapter have been published in L. Meier et al., Nature Physics (2007).
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5.1. Introduction to spin-orbit interaction

contributions have been extensively studied [91], since a potential use of electron
spins in future devices (e.g. a spin transistor [47]) requires precise control of the
spin’s environment and of the Dresselhaus and Rashba fields [54]. Spin-orbit fields
also contribute to spin decoherence [41], see Sect. 1.4.2.

In two-dimensional systems, such as quantum wells (QWs), usually α � β and
γ ≈ 0 [92–95]. Therefore, measurements of the spin-orbit coupling initially focused
on the Rashba term in QWs and concentrated on the study of beatings in Shubnikov–
de-Haas oscillations [93, 95–98], whose interpretation, however, is debated [99, 100].
More recent experiments include the investigation of antilocalization in magneto-
transport [101] or the analysis of photocurrents [102]. In the latter experiment,
the ratio α/β could be determined. A gate-induced transition from weak local-
ization to antilocalization allowed the discrimination between Rashba, as well as
linear and cubic Dresselhaus contributions to the spin-orbit field [103]. Tuning of
the Rashba coupling has been achieved by introducing additional electric fields from
gates [94, 104] or by changing the electron density [105, 106].

The influence of effective spin-orbit magnetic fields on optical measurements in
a heterostructure was already measured in 1990 [107], and the spin-orbit-induced
precession of spin packets was observed more than a decade later [71, 108]. Re-
markably, the in-plane spin-orbit fields in a QW can lead to an out-of-plane spin
polarization [109]. In ref. [110], it was pointed out that although spin-orbit and
external magnetic fields can be added to describe spin precession [107], a more
complicated concept has to be evoked when accounting for the generation of an
out-of-plane spin polarization.

5.1.1 Rashba spin-orbit term (SIA)

The Rashba spin-orbit coupling term originates from electric fields induced by inter-
faces in heterostructures or from electric fields from charged gates. For a QW, these
fields are always perpendicular to the QW plane, and since the electron motion v
is confined to the QW plane, it already follows from Eq. (1.9) that the resulting
magnetic field is in-plane of the QW and perpendicular to v, its magnitude propor-
tional to v. Indeed, the Rashba spin splitting is linear in the electron wave vector
k ∝ v [91, 111],

HSIA = α(σxky − σykx), (5.1)

independent of the (orthogonal) coordinate system. The proportionality constant α
is called the Rashba coefficient. In a heterojunction, it is given by [91, 112]

α ∝ ∆0

E3
g

∇V, (5.2)

where Eg and ∆0 are band gap and spin-orbit splitting (see Fig. 1.1), respectively,
and E = −∇V is the electric field induced by the interface. It can be tuned over
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Chapter 5. Spin manipulation with electric fields

one to two orders of magnitude by choosing materials with appropriate Eg and ∆0

and by engineering ∇V in a heterostructure.

For the following discussion, we denote the electric field in the conduction (va-
lence) band by Ec (Ev), and the expectation value for a wave function in the con-
duction or the valence band by 〈 〉c or 〈 〉v, respectively.

It has been argued that the expectation value of the electric field 〈Ec〉c for a wave
function in the conduction band of a QW vanishes, since, according to Ehrenfest’s
theorem, no force acts on a bound state. The electron wave function rearranges in
z–direction such that 〈Ec

z〉c vanishes. In this case, no Rashba spin-orbit coupling
would be expected. It has, however, been shown [113] that the spin-orbit coupling of
conduction–band electrons is determined by the expectation value of the electric field
in the valence band for the conduction–band wave function 〈Ev

z〉c (and vice-versa for
holes the electric field in the conduction band 〈Ec

z〉v) [91]. The expectation value of
〈Ev

z〉c can well be nonzero even if 〈Ec
z〉c vanishes, as illustrated later in appendix C

by Fig. C.3.

5.1.2 Dresselhaus spin-orbit term (BIA)

Dresselhaus term in bulk systems

The spin-orbit effect described by the Dresselhaus term originates from the lack of
an inversion center in zinc-blende-type semiconductors, like in GaAs. Following [24],
this results in the appearance of terms cubic in the electron wave vector k in the
Hamiltonian of conduction-band electrons

H =
~2k2

2m
+

~
2
σ ·Ω(k), (5.3)

where σ is a vector of Pauli matrices and Ω(k) is defined by

Ωx(k) = χ~2
(
m
√

2mEg

)−1

kx

(
k2

y − k2
z

)
, (5.4)

with cyclic permutation of the indices x, y, z and the coordinate axes along [100],
[010], [001].

Dresselhaus term in QWs

In the two-dimensional case of a QW, averaging over the cubic terms along the
quantization axis in the case of low subband filling gives rise to terms linear in k in
the Hamiltonian [111],

HBIA = β(σxky + σykx), (5.5)
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Figure 5.1: (a) Rashba and (b) Dresselhaus magnetic field for different orientations
of the k–vector on a unit circle.

for coordinates along the crystal’s [110] and [110] axes2. The proportionality is given
by the linear Dresselhaus coefficient [103]

β ∝ γ〈k2
z〉, (5.6)

where γ is the cubic Dresselhaus coefficient (see appendix B) that includes all pref-
actors in Eq. (5.4).

The Dresselhaus coupling is more difficult to tune, it depends not only on
Eg and ∆0, but also on the structure of higher conduction bands [91, 112]. In
a two-dimensional system, it depends on the extension of the wave function in
confinement–direction, 〈k2

z〉. For the lowest subband in an infinitely deep poten-
tial well with width `, kz = π/`.

In GaAs/AlGaAs 2DEGs, even cubic Dresselhaus terms have been observed [103]
on a magnitude similar to the linear terms. For our InGaAs/GaAs QWs, we did not
observe cubic Dresselhaus terms, as explained later.

5.2 Measurement of Rashba and Dresselhaus fields

5.2.1 Geometrical properties of Rashba and Dresselhaus spin-
orbit fields

In a two-dimensional QW, both the Rashba and Dresselhaus spin-orbit couplings
are linear in the electron wave vector k and can be deduced from Eq. (5.1) and (5.5)

2For coordinates along [100] and [010], HBIA = β(σxkx − σyky).
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to yield the effective magnetic fields

BSIA =
α

gµB

(
ky

−kx

)
, and BBIA =

β

gµB

(
ky

kx

)
, (5.7)

for a coordinate system with base vectors x̂ ‖ [110] and ŷ ‖ [110]. Here, g is the
electron’s g–factor and µB the Bohr magneton. Both fields are in-plane of the QW,
but whereas BSIA is always perpendicular to k (cf. Fig. 5.1a), BBIA is not (cf.
Fig. 5.1b). The overall magnetic field an electron is exposed to sums up to

Btot = Bext + BSIA + BBIA,

where Bext is an externally applied magnetic field, in-plane with the QW at an angle
θ with the x–axis. As mentioned before and as we will justify later, we neglect the
cubic Dresselhaus term here, its dependence on k is given by Eq. (B.1) in appendix B.

5.2.2 Measurement set-up

To access BSIA and BBIA (or α and β), we directly measure |Btot| by monitoring the
precession of optically polarized electron spins using TRFR. We impose an effective
(drift) momentum ~k on the QW electrons by applying an in-plane a.c. electric
field E = E0 sin (2πft) at an angle ϕ with the x–axis, see Fig. 5.2a. Unless stated
otherwise, f = 160 MHz. In the center of four top-gate electrodes, which enclose
a square with 150 µm side length (see Fig. 5.2b), the angle ϕ is determined by the
amplitudes Ex and Ey of two superposed fields along x̂ and ŷ, E0 = Exx̂+Eyŷ (see
Fig. 5.6). Ex and Ey are generated by two phase-locked oscillators, each driving two
opposite electrodes. In the diffusive regime, the scattering time of the electrons in
the QW is much smaller than 1/f and, therefore, their average drift wave vector
k(t) = k̂k(t) is given by

k(t) = m?µE(t)/~ = m?µE0 sin (2πft)/~ = k0 sin (2πft), (5.8)

with the unit vector k̂ pointing along the direction of E; m? is the electron effective
mass, µ the electron mobility in the QW, and ~ Planck’s constant.

Using TRFR, the electron spin precession is measured in the center of the elec-
trodes at different times t of the electric field oscillation as already described in
Sect. 4.2.1 and Fig. 4.7c. The TRFR scans are taken during a pump-probe delay
interval ∆τ = 0 . . . 700 ps which is much shorter than the a.c. electric field period
of 1/f = 6250 ps. Therefore, E(t) is roughly constant over the spin precession ob-
served and a well-defined precession frequency ν(t) can be obtained (c.f. Fig. 5.3a).
Figure 5.3b shows TRFR oscillations at different times t. It is clearly visible that
ν(t) changes periodically with t. From ν(t) we obtain |Btot(t)| = hν(t)/gµB. Theo-
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Figure 5.2: (a) Electric and magnetic fields involved in the experiment. (b) Optical
microscopy image of the sample and wiring of the gates.

retically, the magnitude of Btot(t) is obtained by the vector addition

Btot(t) = Bext + BSIA + BBIA

=

(
Bx

By

)
+

α

gµB

(
ky(t)

−kx(t)

)
+

β

gµB

(
ky(t)

kx(t)

)
= Bext

(
cos θ

sin θ

)
+

k(t)

gµB

(
α

(
sin ϕ

− cos ϕ

)
+ β

(
sin ϕ

cos ϕ

))
,

(5.9)

where we have used Eq. (5.7) with kx(t) = k(t) cos ϕ and ky(t) = k(t) sin ϕ. The
magnitude squared of Btot(t) is then given by

|Btot(t)|2 = |Bext|2 × (1

+
2k(t)

gµBBext

([α + β] cos θ sin ϕ + [β − α] sin θ cos ϕ)

+

(
k(t)

gµBBext

)2 (
α2 + β2 − 2αβ cos 2ϕ

)
),

(5.10)

and contains three terms that behave differently in time. A constant term, whose
magnitude is given by Bext, a term ‘first order’ in k(t)/Bext that oscillates with
k(t) ∝ E(t) ∝ sin (2πft), and a ‘second order’ term that oscillates with k2(t)/B2

ext ∝
sin2 (2πft), i.e. with twice the frequency f . If we include a cubic Dresselhaus
term in Eq. (5.9), additional terms proportional to k3(t), k4(t), and k6(t) appear
in Eq. (5.10), see the calculation in appendix B, Eq. (B.3). These terms lead to
oscillations with frequencies 3f , 4f , and 6f in |Btot|2(t). Such oscillations were not
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Chapter 5. Spin manipulation with electric fields

observed in the experiment, i.e. they were at least a factor 4 below the level of the
‘second order’ oscillations at 2f described below. We conclude that in our QWs, the
cubic Dresselhaus term is negligible compared to the Rashba and linear Dresselhaus
terms.

Assuming that |BSIA|, |BBIA| � Bext, we expand the square root of Eq. (5.10)
up to second order in k0/Bext, and obtain, using Eq. (5.7),

Btot(t) ≈ Bext + A(θ, ϕ) sin (2πft) + B(θ, ϕ) sin2 (2πft), (5.11)

with

A(θ, ϕ) = (BBIA + BSIA) cos θ sin ϕ + (BBIA −BSIA) sin θ cos ϕ, and

B(θ, ϕ) = [ (BBIA + BSIA) sin θ sin ϕ− (BBIA −BSIA) cos θ cos ϕ]2/Bext.

By measuring the oscillation amplitude of Btot(t) for varying angles θ and ϕ, we
can extract the Rashba and Dresselhaus contributions to the spin-orbit magnetic
field.

5.2.3 ν as a function of time

The fit of the experimental data to Eq. (5.11) with Bext, A(θ, ϕ), and B(θ, ϕ) as
fit parameters, matches the data points very well (Fig. 5.3d), with Bext = 0.958 T,
in agreement with Hall probe measurements of the external magnetic field. For
most ϕ, we find A � B. The quadratic term in k(t), B(θ, ϕ), which contributes
to oscillations with frequency 2f , is visible in the experiment only when rotating
E to an angle ϕ at which the k-linear term A(θ, ϕ) is weak, see Fig. 5.3e. Apart
from the geometrical dependence, the amplitude of B(θ, ϕ) is suppressed by a factor
(|BBIA| + |BSIA|)/Bext ≈ 0.03, i.e. by more than one order of magnitude compared
with A(θ, ϕ). Therefore, we restrict our analysis to the linear term A(θ, ϕ).

5.2.4 ν as a function of ϕ and θ

We now use relation (5.11) to determine the Rashba and Dresselhaus spin-orbit
fields BSIA ∝ α and BBIA ∝ β by rotating E and Bext for three GaAs/InGaAs QW
samples with the substrates mentioned in the table below (c.f. Sect. 2.5). Directly
from the TRFR oscillations in Fig. 5.3c we see that the electron precession frequency
ν changes with the angle ϕ of the electric field E.

For θ = 0 and 90◦, A(θ, ϕ) is given by (BSIA+BBIA) sin ϕ and (BBIA−BSIA) cos ϕ,
respectively. This dependence is observed in the experiment, as shown in Fig. 5.4a
and b. The measured data points clearly follow sin ϕ for θ = 0 and cos ϕ for θ = 90◦

(solid lines). From the two measurements at θ = 0 and 90◦, we can extract the spin-
orbit magnetic fields BSIA and BBIA. Normalized to a gate modulation amplitude
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Figure 5.3: TRFR signal measured at different times t and electric field angles ϕ, at
θ = 45◦. (a) Faraday rotation vs. pump-probe delay. (b) TRFR scans at different
times t, the dashed line indicates t = 0. (c) TRFR scans at different angles ϕ,
at t = 0. (d, e) Total magnetic field as a function of t for (d) ϕ = 45◦ and (e)
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BSIA sin (ϕ− π/4) with a linear dependence on the applied gate voltage. At ϕ = 45◦,
we directly measure BBIA, and at ϕ = −45◦, −BSIA.
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5.2. Measurement of Rashba and Dresselhaus fields

of V0 = 2 V (≈ 13 dBm), corresponding to an electric field of E0 ≈ 2900 V/m, we
find the following values for the spin-orbit magnetic fields:

sample number substrate BSIA (mT) BBIA (mT)
1 P919 −4.2 21.6
2 P805 −8.5 21.1
3 ES887 −17.6 15.7

Note that as t is known up to an offset t0, the sign of A(θ, ϕ) is arbitrary, leading to
an uncertainty in the absolute sign of BSIA and BBIA (the relative sign is obtained).
We choose BBIA > 0. As a function of the magnitude of the applied electric field E0,
BSIA and BBIA increase linearly (see Fig. 5.4c), as expected from the linear relation
between k(t) and E(t) and Eq. (5.7). We have conducted the same measurements
at different magnitudes of Bext = 0.55 and 0.82 T, and found similar values for the
spin-orbit fields.

As discussed above, measurements at two angles, θ = 0 and 90◦, were needed
to obtain BSIA and BBIA. At θ = 45◦ both BSIA and BBIA can be determined
simultaneously. This is because not only the amplitude, but also the phase of the
oscillation in ϕ contains information about the spin-orbit fields. The zero-crossing of
A(θ, ϕ) occurs at ϕ0 = arctan [(BSIA −BBIA)/(BSIA + BBIA)], compared with ϕ0 = θ
for θ = 0 and 90◦. For θ = ϕ = 0 and 90◦, BSIA and BBIA are perpendicular to
B0 (Fig. 5.1a and b) and A(θ, ϕ) vanishes, because it is equal to the component
of BSIA + BBIA along the direction of B0. If however θ = ϕ = 45◦, BSIA still is
perpendicular to B0, but BBIA is now parallel, and A(θ, ϕ) = BBIA.

The measurement at θ = 45◦ is shown in Fig. 5.4d, with a fit to Eq. (5.11). For
V0 = 2 V, we extract the spin-orbit fields BSIA = −2.4 mT and BBIA = 19.1 mT for
sample 1. These values correspond well to the values obtained from θ = 0 and 90◦.
Relative variations in BSIA of up to 50% (but far less in BBIA) occurred for different
cool-downs of the same sample, which we attribute to the freezing of electron states
in the QW interface or to strain.

Knowing the electron g-factor and drift wave vector k, we can calculate the
coupling constants α and β from BSIA and BBIA using Eq. (5.7). For sample 3,
where the mobility is known (µ = 10’600 cm2/Vs, see Sect. 2.5.3), we can extract
the values of α and β from BSIA and BBIA. Note that for this, we need to know the
electron drift wave vector k, which we obtain from the mobility µ and the in-plane
electric field from the gate electrodes E0 according to Eq. (5.8). While the mobility
can be measured in transport experiments, we have to rely on simulations for the
electric field E0, see the next Sect. 5.2.5. An error in the estimation of E0 linearly
transforms into an error in α or β, for which we obtain

α = ~gµBBSIA/m∗µE0 = 1.5× 10−13 eV ·m, and

β = ~gµBBBIA/m∗µE0 = −1.4× 10−13 eV ·m.
(5.12)
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Figure 5.5: (a) Gate geometry and coordinate system used for the calculation of
the electric field. (b) Electric field between two gates for gate potentials of +1 and
-1 V, simulated for L = ∞.

We have used g = −0.27, as independently measured by TRFR in a known external
magnetic field and assuming g < 0. Previous experiments report α ≈ 5 − 10 ×
10−12 eV·m on In0.53Ga0.47As/In0.52Al0.48As QWs or heterostructures [94, 98, 101]
and in InAs/AlSb QWs [105] and assume α � β. The Rashba coupling is pro-
portional to the average electric field in the valence band (Sect. 5.1.1), including
contributions from band discontinuities. We estimate the valence band offset in our
QWs to be on the order of 10 meV, which is much smaller than in those previ-
ously investigated structures, and explains our small value of α. Our α is about
four times larger than that reported in ref. [71], where an In0.07Ga0.93As epilayer (10
times thicker than our QW) was studied. There, the interfaces play a minor role
and strain-induced spin-orbit coupling predominates. The linear Dresselhaus term
is expected to scale with the extent of the wave function in the confinement direc-
tion, 〈k2

z〉, and β ∝ 1/`2. Assuming that samples 1 and 2 have similar mobilities, we
observed almost the same β, even though the QW in sample 2 is twice as wide as
that in sample 1. This could be attributed to inhomogeneous In deposition during
growth, leading to a triangular confinement potential, where the nominal QW width
has less influence on β.

5.2.5 Determination of the electric field between the gate
electrodes

To determine α and β from BSIA and BBIA, we needed to know the electron drift wave
vector (see Eq. 5.7). If we were dealing with ballistic electrons in an electric field
E, the electron wave vector would steadily increase with time, since the electrons
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5.2. Measurement of Rashba and Dresselhaus fields

would feel a constant force F = −|e|E, and in the non-relativistic limit,

k =
m?v

~
= −|e|E

~
t.

In the presence of scattering, however, the electron velocity is limited. In the Drude
model (see, e.g., [114]), the scattering is taken into account by introducing an average
drift velocity

〈v〉 = µE,

where the mobility µ = eτ/m? is related to the average time τ between two scattering
events. With µ = 10’600 cm2/Vs, taken from transport measurements, we obtain
τ ≈ 0.5 ps. This scattering time is much shorter than our a.c. modulation period
1/f ≈ 6 ns. Therefore, we can assume that the electron velocity is proportional to
E(t), as already implicated by Eq. (5.8).

For a precise knowledge of k, both µ and E need to be known. Assuming that
the two opposite gates are infinitely thin and infinitely long wires, separated by a
distance 2D and with a charge density ±λ [C/m], the electric field induced in the
plane of the two wires as a function of the distance x from the center (see Fig. 5.5a
with b = 0 and L = ∞) is

E∞(x) =
λ

2πεε0

(
1

x + D
− 1

x−D

)
. (5.13)

In GaAs, ε = 13. Taking into account the finite length L of the two gates, we can
still find an analytical expression for the electric field

EL(x) =
Q

4πεε0

(
1

(x + D)
√

(x + D)2 + (L/2)2

− 1

(x−D)
√

(x−D)2 + (L/2)2

)
,

(5.14)

where ±Q is the charge per gate. Both expressions require that the charge per
length or per gate is known3. Therefore, an integration of the electric field given in
Eq. (5.13) and (5.14) would be necessary. This is difficult, since E(x) diverges for
|x| → D and secondly, because close to |x| = ∓D ± b, the field E is determined by
the finite width b of the gates and is therefore incorrectly estimated by Eq. (5.13)
and (5.14). From the analytical calculations we note that at x = 0, the electric field
calculated for a finite L [Eq. (5.14)] is reduced compared to the case with L = ∞
[Eq. (5.13)] by a factor

r =
EL(x = 0)

E∞(x = 0)
=

√(2D

L

)2

+ 1

−1

≈ 0.55. (5.15)

3The charge could be determined from a capacitance measurement. However, in such a mea-
surement, stray-capacitances are also included, and the charge which is on the gates is difficult to
extract.
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To take into account the influence of the finite width b of the gates on the electric
field, we simulated the potential between both gates using a two-dimensional partial
differential equation solver (pdetool in Matlab). The electric field obtained this way
is plotted in Fig. 5.5b. Because this two-dimensional simulation again assumes
L = ∞, we reduce the electric field at x = 0 by the factor r obtained above. Then,
E(x = 0) = 2.9 kV/m for one gate on a potential of −1 V, the other on +1 V. This
corresponds to the situation with a ‘gate modulation amplitude’ of 1 V (13 dBm).
Since our system is only 50 Ohms on the generator side and not terminated on the
gate side, the modulation at the gates effectively is 2 V. Note that the samples here
have much smaller capacitances than the gratings in chapter 4 and at f = 160 MHz,
damping in the system is less pronounced than at higher frequencies (Sect. 4.2.1).
Between 1 and 2 dBm are lost between the a.c. generator and the chip socket, as
measured with a high-impedance probe.

The electric field at x = 0 is aligned almost perfectly along x, within |x| < 10 µm,
Ez < 50 V/m.

5.3 Spatially resolved measurements

5.3.1 Large-area scans

In the previous chapter, Sect. 4.2.4, we have observed an oscillating electron preces-
sion frequency ν as a function of the laser-gate delay t beside interdigitated gratings
that were biased with an a.c. gate voltage. We have attributed these oscillations to
the effect of a spin-orbit magnetic field. With the findings of the previous Sect. 5.2,
we are now able to determine the spin-orbit magnetic field acting on electrons that
oscillate in a local electric field induced by gate electrodes.

For the estimation of such a local spin-orbit magnetic field, we first need to
know the electric field in the scanned region. Figure 5.6 shows the electric potential
distribution simulated with pdetool for the sample used in Sect. 5.2 above. Different
gates have been set on a potential of Va.c. = 1 V, others have been grounded. This
again is a two-dimensional simulation, neglecting the fact that the QW is not exactly
in the plane of the gates, but rather 40 nm lower. However, since we are interested in
lateral distances from the gates on the order of 10 µm, the vertical offset is negligible
and we can assume that the gates and the QW are in the sample plane and that
out-of-plane components of the electric fields are negligible.

From the potential distribution in Fig. 5.6, we derive the electric field. With
Eq. (5.8), we then determine a local drift k–vector and, based on Eq. (5.10), the
magnitude of the spin-orbit magnetic field. Neglecting the term in (k/Bext)

2, we
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solve Eq. (5.10) for the absolute, observed value of the spin-orbit field

B?
so = |Btot| − |Bext|

= Bext

√
1 +

2k0

gµBBext

([α + β] cos θ sin ϕ + [β − α] sin θ cos ϕ)−Bext

≈ Bext

(
1 +

1

2

2k0

gµBBext

([α + β] cos θ sin ϕ + [β − α] sin θ cos ϕ)

)
−Bext

=
k0

gµB

([α + β] cos θ sin ϕ + [β − α] sin θ cos ϕ) .

(5.16)

This equation can further be simplified using Eq. (5.7) to

B?
so ≈ (BSIA + BBIA) cos θ sin ϕ + (BBIA −BSIA) sin θ cos ϕ. (5.17)

Note that there are three mechanisms that determine the observed magnitude B?
so:

firstly, the magnitude of the spin-orbit field is proportional to the local strength of
the electric field. Secondly, the local orientation ϕ of the electric field determines
how BSIA and BBIA add up to Bso, see Fig. 5.1. And thirdly, the orientation θ of
Bext decides, analogously to a projection, how much of |Bso| = |BSIA + BBIA| is
actually observed in the experiment. We denote this by a star in the quantity B?

so.

In the simulation, we can now use the values for BSIA and BBIA that were obtained
at E0 = 2900 V/m for the three samples above in Sect. 5.2 and scale them with the
magnitude of the local electric field. The angles ϕ and θ are determined by the local
orientation of the electric field an by the global orientation of Bext, respectively.
Equation (5.17) then provides the spatial variation of B?

so on the sample surface.
Figure 5.7b shows B?

so obtained in such a simulation over a sample area 250 ×
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250 µm with the gates on a potential as simulated in Fig. 5.6a. The corresponding
measurement is shown in Fig. 5.7a. The agreement with the simulation is good,
except for the values of B?

so measured close to a gate edge that are by a factor of ≈ 2
lower than in the simulation. There, the simulation assumes perfect edges leading
to very high electric fields. In reality, the edges are rough and round and the electric
field is lower. Secondly, the simulation is only two-dimensional and neglects the
finite extension of the gates perpendicular to the QW plane (see Sect. 5.2.5).

The two ‘horizontal’ (along x) wire-gates induce strong ‘vertical’ (along z) electric
fields. With the [110]–axis oriented vertically, these fields lead to a k–vector in
direction of this axis, and, as visible from the orientation of the spin-orbit fields in
Fig. 5.1, to a spin-orbit magnetic field pointing in the direction of Bext. If Bext and
Bso are parallel, the contribution of the latter to the total field Btot is not reduced
by a geometrical factor and therefore, we measure a large B?

so close to the horizontal
wire-gates. In contrast, the high horizontal electric fields close to the vertical wire-
gates also lead to large spin-orbit fields. However, since the resulting electron motion
is in [110]–direction, the spin-orbit fields are vertical (Fig. 5.1) and perpendicular
to Bext, leading to no first-order effect on Btot and therefore, B?

so = 0.

In Fig. 5.7d, a simulation of B?
so is shown for the gate potential in Fig. 5.6b,

and in Fig. 5.7c we present the corresponding measurement. Again, the qualitative
agreement, and away from the sharp edges of the gates also the quantitative agree-
ment, is good. Strong vertical electric fields in the lower left lead to a high value of
B?

so in the measurement, since, as mentioned above, Bext and Bso are parallel.

5.3.2 Scans with a rotating electric field

Two-dimensional scans of the spin-orbit field between the four gate electrodes are
shown in Fig. 5.8. Here, the angle ϕ of the electric field has been rotated by 30◦ in
each step, as in the experiments presented in Sect. 5.2. In those experiments, the
spin precession frequency was monitored in the center of the four gate electrodes.
Here, the whole area between the gates is scanned with the same method as already
described above. The electric field is rotated by applying variable gate voltages to
the bottom and the right gate electrodes, such that the electric field is oriented at
the desired angle in the center of the electrodes. This direction is indicated by an
arrow in Fig. 5.8 between the measurement (left column) and the simulation (right
columns).

The simulation again is in good agreement with the measurement, except close
to edges, where the simulated electric field and therefore, also B?

so is higher than
observed. This measurement confirms that the technique of rotating the electric
field, on which the results in Sect. 5.2 rely on, works and that the electric field, at
least at some distance from the electrodes, is simulated realistically.
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Figure 5.9: Setup for electric-
dipole-induced spin resonance. The
spins are polarized in the direction
of an external magnetic field Bext.
The exciting electric field and the
induced spin-orbit field are both in-
plane of the QW.

5.4 Electric-dipole-induced spin resonance

5.4.1 Introduction and results

In electron spin resonance (ESR) experiments, spins that are initially polarized along
the direction of a static magnetic field Bext = Bz perform Rabi oscillations between
the states parallel and anti-parallel to Bz, if an a.c. magnetic field (the tipping
field) is applied in the plane perpendicular to Bz and at the Larmor frequency
f = gµBBz/h. Instead of an a.c. magnetic field, we use an a.c. electric field Ex(t)
in the plane of the QW (see Fig. 5.9). It induces an oscillating spin-orbit field
By(t), which can serve as a tipping field for ESR, in this context referred to as
electric-dipole-induced spin resonance (EDSR) [115]. The measurements presented
in Fig. 5.10 have been conducted in Faraday geometry with sample 1. Here, the
external magnetic field Bz is parallel to the laser propagation and perpendicular
to the QW plane. The pump laser pulse polarizes the spins into an eigenstate,
in line with Bz, and the probe pulse monitors the spin polarization along z. In
Fig. 5.10a, the pump-probe delay ∆τ has been set to 3 ns, and the Faraday signal
is recorded while sweeping the frequency f of Ex(t) and Bz. On resonance, the
optically generated spin polarization precesses about the spin-orbit-induced tipping
field, and the TRFR signal at ∆τ = 3 ns becomes negative. We observe spin
resonance with |g| = 0.57, which is confirmed by TRFR measurements of sample 1.

In Fig. 5.10b and c, TRFR scans are collected for varying Bz, monitoring the
spin dynamics. At Bz = 120 mT, the Larmor frequency matches the electric field
frequency f = 960 MHz and resonance occurs. Note that the short spin relaxation
time of ≈ 1 ns strongly reduces the signal. At ∆τs ≈ 1800 ps, the spins have
performed a π/2 Rabi oscillation, yielding an estimate of the tipping field amplitude
By = 2h/gµB4∆τs ≈ 35 mT. Here, the factor 2 takes into account the linearly
(and not circularly) oscillating tipping field [116]. This value agrees well with the
measurements of |BSIA − BBIA| ≈ 33 mT at a gate modulation amplitude of V0 ≈
2.5 V (15 dBm) and ϕ = 0.
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5.4.2 Comparison with Bloch equations

In ESR, one assumes a tipping field that oscillates circularly in the x/y plane,
resulting in a monotonous decrease of the spin polarization along z during the first
π/2 Rabi oscillation. The spin dynamics can then be solved analytically in the
“rotating frame”. In EDSR, the Rabi oscillation on resonance is not steady with time
(Fig. 5.10b), because the tipping field oscillates linearly on the y-axis instead. The
precession of a spin is described by the Bloch equations (neglecting spin relaxation)

Ṡ =
gµB

~
B× S, (5.18)

from which we find Ṡz(t
′) = gµBBy(t

′)Sx(t
′)/~, where the dot denotes the time

derivative and t′ = ∆τ + t. The tipping field By(t
′) ∝ sin (2πft′) and with it Ṡz(t

′)
vanish twice per electric field period 1/f , resulting in a stepwise decrease of Sz (on
resonance, Sx(t

′) and By(t
′) vanish simultaneously). This is shown in Fig. 5.10d,

where the time derivative of the Faraday signal Θ̇F (t′) ∝ Ṡz(t
′) is plotted for different

∆τ and t and for Bz on resonance. Apart from decaying with time, it is periodic in
both ∆τ and t, with period 1/2f . The stepwise decrease of Sz can be reproduced
by a numerical solution of the Bloch equations including a spin-relaxation term

Ṡx = γ(SyBz − SzBy)− Sx/T2

Ṡy = γ(SzBx − SxBz)− Sy/T2

Ṡz = γ(SxBy − SyBx)− (Sx − S0)/T1,

(5.19)

where γ = gµB/~, T1 is the longitudinal, T2 the transverse spin lifetime, and S0

the equilibrium spin polarization in z–direction. With T1 = T2 = 1 ns, S0 = 0,
Bz = 120 mT, Bx = 0 and By(t) = 34 mT sin (2πft), we obtain good agreement
with the measured Ṡz, shown in Fig. 5.10e, together with the corresponding solution
with a rotating tipping field. For the latter, the tipping field magnitude has to be
reduced by a factor 2 [116].
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Chapter 6

Outlook

6.1 Summary

In chapter 3, we have discussed the possibility to influence electron spins with mag-
netic stray fields. We have measured the average electron spin precession frequency
ν of an ensemble of electron spins below arrays of ferromagnetic stripes. In a first
step, we found ν to be enhanced by the magnetic stray field. Later, in chapter 4,
we were able to tune this enhancement with an external gate voltage applied to the
stripes. This voltage could even be modulated on gigahertz frequencies to control ν
on a nanosecond timescale.

In chapter 5, we were able to separate the Rashba and Dresselhaus contributions
to the spin-orbit interaction. We further used the spin-orbit magnetic fields as
tipping field and were able to trigger electron spin resonance with electric fields.

6.2 Open questions

A spintronic device, like the Datta–Das spin–transistor ([47], c.f. Fig. 1.2), contains,
additionally to the spin–manipulation functionality, a spin injection (Sect. 1.2) and
a spin detection mechanism (Sect. 1.3). The purely optical spin polarization and
probing techniques used in our experiments could be replaced by or combined with
electrical spin injection and detection, possibly along with a reduction of the number
of probed spins, currently an ensemble of roughly 104 electron spins [c.f. Eq. (A.2)].

Furthermore, the spin is moved within a spintronic device from source to drain.
Spin packets drifting in an electric field have been investigated under the influence of
spin-orbit interaction [71] or fields resulting from strain [108]. Spatial interference of
spins has been demonstrated in an experiment where the spins travel through a ring
structure and a phase difference between the two arms is induced by the effective
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magnetic field from polarized nuclei in one arm [117]. Experiments that ‘follow’ an
ensemble of initially polarized electron spins in space, subjected to magnetic stray
fields or to spin-orbit coupling, would be a natural extension to the experiments
presented in this thesis.

There is plenty of theoretical literature about spin-orbit coupling and in many
experiments, spin-orbit coupling manifests in a rather indirect way (for example
in beatings of SdH–oscillations or in (anti-)localization peaks). Our method of
determining the Rasbha and Dresselhaus coupling constants (chapter 5) provides
direct access to the spin-orbit magnetic fields. Given that spin-orbit interaction is
of crucial importance for spintronic applications, other materials (n− and p−type)
with different Rashba and Dresselhaus coupling constants remain to be investigated,
leading to a better understanding of the importance of Rashba and Dresselhaus
couplings in different systems.

6.3 Suggestions for further experiments

6.3.1 Imaging magnetic stray fields

The influence of magnetic stray fields on the spin polarization of moving spins could
be observed on thin epilayers, by passing currents close by ferromagnetic gates.
Their magnetization and stray field can be changed by a small external magnetic
field. The initial spin polarization could be generated optically or by electrical spin
injection. The observation of the spin polarization would rely on a weak probe pulse,
as described in chapter 2. The optical detection of spins has the advantage of pro-
viding two-dimensional resolution, down to ≈ 1 µm by using microscope objectives.

Such experiments could also be performed in a ring structure, where one arm
is influenced by the stray field of a close-by ferromagnetic gate electrode, similar
to [117]. The stray field of a this electrode could be switched on or off with a
small external magnetic field and would change the spin-interference at the output
of the ring. In contrast to nuclear fields, magnetic stray fields remain unchanged at
room–temperature, and, provided that samples with spin lifetimes on the order of
nanoseconds at room temperature are available (e.g., GaAs(110) QWs [46]), could
allow for pioneering room-temperature spintronics experiments.

6.3.2 Spin-orbit-interaction-related experiments

Spin-orbit coupling in different materials

The method presented in Sect. 5.2 allows to unambiguously determine Rashba and
Dresselhaus magnetic fields with high precision. It can in principle be used on any
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semiconductor sample, even on insulating ones, where optical access to the electron
spin precession is provided. The samples used in chapter 5 exhibit rather weak
spin-orbit coupling. New samples could provide for much larger spin-orbit mag-
netic fields, especially by increasing the Rashba contribution according to Eq. (5.2).
In particular, this would lead to higher tipping–fields in the EDSR–measurements
(Sect. 5.4) and to the observation of several spin-flip cycles during the limited spin
lifetime.

Secondly, experiments with GaAs(110) QWs could allow the measurement of
spin-orbit coupling at room-temperature and give more insight in the suppression
of the spin-orbit-induced spin relaxation in the DP–mechanism.

Spin-orbit tuning by electric fields

Samples with a contactable back and front gate and a QW sandwiched in between
could exhibit a tunable Rashba spin-orbit field as a function of the voltage between
front and back gate, see Eq. (5.2). In order to achieve high electric fields, the
distance between front and back gate should be kept small, otherwise, the electric
fields applicable might be too weak (c.f. appendix C). At the same time, a small
distance will screen the lateral electric fields which induce the in-plane motion (and
drift wave vector k) of the electrons. Therefore, it might be advantageous to replace
the lateral gate electrodes by ohmic contacts and to induce a current in the QW.
It remains to be investigated whether this current can be applied at a well-defined
angle ϕ as the case for an in-plane electric field from gate electrodes.

k3–Dresselhaus term

As an extension to the measurements in Sect. 5.2, the cubic Dresselhaus term, see
appendix B, and in particular Eq. (B.3), could be measured in bulk samples, or
in a GaAs/AlGaAs 2DEG. The latter system was measured by Miller et al. [103].
In this work, Rashba, as well as linear and cubic Dresselhaus terms were estimated
from weak localization and antilocalization measurements. Application of our direct
measurement method could verify these estimates and give more precise values for
the coupling constants α, β and γ.

Rashba and Dresselhaus interplay for α = β

In Sect. 5.3, we have shown measurements that mapped the spin-orbit magnetic
field in a spatially inhomogeneous a.c. electric field. In a continuation of these
experiments, such two-dimensional scans could be performed on electron ensembles
moving in different directions. By engineering α and β, the k–dependence of the
spin-orbit magnetic field is influenced. Especially for α = β, see Fig. 6.1a, the
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6.3. Suggestions for further experiments
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k || [010]y

[110] [110]

k || [100]x k || [100]x

Figure 6.1: Orientation and magnitude of the sum of Rashba and Dresselhaus
magnetic fields as a function of the wave vector k for the cases (a) α = β, and (b)
α = 2β.

BSIA = – BBIA

Spin in

BSIA

Vg

= BBIA

Figure 6.2: A simple spintronic
device, exploiting the interplay be-
tween Rashba and Dresselhaus spin-
orbit fields for the case α = β.

Rashba and Dresselhaus fields cancel for k in the [110] and [110] directions. This
leads to interesting effects, like the suppression of spin relaxation for spins moving
along these directions. Additionally, the spin orbit field points along these two
directions for all other k, and therefore, this spin orientation is conserved. It has
recently been proposed [118] that in such a system, if inducing an in-plane electron
motion at a frequency f in resonance with an in-plane magnetic field, similar to the
setup in Sect. 5.2, a non-vanishing spin-polarization perpendicular to the QW plane
is expected. This Sz could be measured with TRFR.

A simple device

Such a k–dependent magnetic field could be used to built a simple spintronic–device,
analogous to a controlled NOT-gate (Fig. 6.2) for the case α = β. A polarized spin
enters this device, and a gate voltage Vg routs it into one of two paths, oriented at
an angle of 90◦ to each other. On the lower path, the spin-orbit fields cancel (cor-
responding to the [110]–direction in Fig. 6.1a), while on the upper path, a nonzero
spin-orbit field flips the spin orientation.
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Appendices

A Time-resolved photoluminescence measurements

In Fig. A.1, we present time-resolved photoluminescence (TRPL) measurements at
T = 40 K. The sample has been illuminated by a pulsed pump laser (repetition rate
80 MHz, pulse width 2 ps) at a wavelength of 750 nm, with a cw–power of 4 mW.
The laser is focused on a grating with focus diameter 15 µm. We collect the light
emitted by the sample and feed it through an optical fibre into a streak camera,
which monitors the energy of the photons as a function of time.

Figure A.1a shows the time- and energy-dependence of the PL. In the energy–
domain, two distinct peaks can be attributed to the PL of the QW at 1.42 eV and
the GaAs–substrate at 1.51 eV. When applying a gate voltage to the grating (right
panel), the intensity and the lifetime of the GaAs–peak does not change, but the
QW–peak is reduced in both intensity and lifetime.

The PL integrated over time as a function of applied symmetric gate voltage Vg

is shown in Fig. A.1b. As already mentioned, the intensity of the GaAs–peak below
a Fe or Au grating does not change when gating the grating. The GaAs–peak is
dominated by contributions from the GaAs–substrate and not the GaAs cap layer,
since the absorption length (several µm [58, 119]) exceeds the cap thickness (20 nm)
by far. Most of the probed substrate is thus far away from the electric field induced
by the grating and its luminescence is therefore expected not to change with Vg.

The QW–peak, however, is strongly reduced in PL intensity when applying a
gate voltage. The smaller the grating, the stronger this suppression: for p = 6, the
PL intensity at Vg = 2 V is reduced by 20 % compared to Vg = 0 V. For p = 1, the
suppression amounts to 80%.

We attribute this to an increased non-radiative recombination. Assuming no
non-radiative recombination at Vg = 0, we can calculate the radiative and the non-
radiative lifetime, see Fig. A.1c. The non-radiative lifetime τnon-rad decreases strongly
with Vg, whereas the radiative lifetime τrad increases slightly, especially for the small
gratings, however, to a much smaller extent than already observed on a similar
structure [120].
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Figure A.1: (a) Time-resolved photoluminescence measured with a streak camera.
PL of both the QW (1.42 eV) and the GaAs substrate (1.51 eV) are visible. (b) PL
intensity integrated over time as a function of gate voltage applied to four different
grating geometries. (c) Calculated radiative and non-radiative lifetimes below Fe
and Au gratings.
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750 nm and P = 4 mW. (c,d) Qualitative estimate of the non-radiative lifetime.

The increased non-radiative recombination is explained by the rather high cur-
rents I (on the order of 10 µA, see Fig. A.2a and b) that flow between the gates if
the grating is illuminated. Therefore, electrons disappear into the gates before they
recombine. If only optically excited electrons contributed to I, the non-radiative
recombination rate would be given by

τ−1
non-rad = I/e. (A.1)

This, however, is only valid for a non-doped QW. In a doped QW, the situation
is more complex and detailed knowledge about the fraction of optically excited
and equilibrium electrons that participate in the current I is necessary in order to
estimate τnon-rad. From Eq. (2.7), with P = 0.5 mW, p = 0.001 and from a rough
estimate of the sheet density n ≈ 2 × 1016 m−2 (c.f. Sect. 2.5.2), we obtain for the
optically excited electrons Nopt and the equilibrium electrons within the laser focus
Nd,

Nopt ≈ 104

Nd ≈ (15 µm)2n ≈ 5× 106.
(A.2)

The current through an illuminated grating is thus dominated by Nd. The fact
that a considerable current is only observed under illumination is attributed to the
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reverse-biased Schottky barrier between the negatively charged bar and the QW.
This barrier’s resistance is reduced under illumination.

Nevertheless, we can qualitatively estimate τnon-rad with Eq. (A.1). In Fig. A.2a
and b, we show the I/V–characteristics of illuminated Fe and Au gratings. The
resistance of a grating is on the order of 500 kΩ. In Fig. A.2c and d the qualitative
estimates of τnon-rad are given, obtained by Eq. (A.1) by assuming proportionality
instead of equality. The non-radiative lifetime looks similar to the one calculated
from optical measurements in Fig. A.1c. Note that the current through the gratings
in Fig. A.2a and b is reduced by about one order of magnitude when illuminating
the grating at a wavelength of 870 nm with a power P = 0.5 mW (as in TRFR–
measurements).

On the small gratings (p = 1, 2), higher gate voltages are necessary to reduce
τnon-rad than on the large gratings. Assuming that a higher electric field between the
bars leads to more electrons that recombine non-radiatively (since they are drawn
into the bars), this is consistent with the behavior of the on-set gate voltage V on

g

discussed in Sect. 4.1.3 and could again be explained by the dependence of the
electric field in the QW on the grating geometry, Eq. (4.2).

B Spin-orbit splitting with k3–dependence

Equation (5.10) described the total magnetic field including Rashba and Dressel-
haus spin-orbit contributions linear in k. In bulk samples, and sometimes even
in 2DEGs [103], cubic Dresselhaus terms (c.f. Eq. 5.4) are important. Here, we
give the equivalent expression for Eq. (5.10), including linear and cubic spin-orbit
contributions. The spin-orbit magnetic fields are given by

BSIA =
α

gµB

(
ky

−kx

)
BBIA,1 =

β

gµB

(
kx

−ky

)
BBIA,3 =

γ

gµB

(
kxk

2
y

−kyk2
x

)
.

(B.1)

The geometrical dependence of these fields on the direction of k is shown in Fig. 5.1
and Fig. B.1. Note that for consistency with literature about the k3–Dresselhaus
term, we chose x,y along [100], [010]. Analogously to the procedure in Sect. 5.2.2,
the total field is given by

Btot = Bext

(
cos θ

sin θ

)
+

1

gµB

(
αk(t)

(
sin ϕ

− cos ϕ

)
+βk(t)

(
cos ϕ

− sin ϕ

)
+γk3(t)

(
cos ϕ sin2 ϕ

− sin ϕ cos2 ϕ

))
,

(B.2)
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Figure B.1: k3–Dresselhaus mag-
netic field for different orientations
of the k–vector on a unit circle.

where ϕ and θ are now the angles included with the [100] axis. By rotating ϕ′ →
ϕ + 45◦, and equivalently for θ, we obtain angles ϕ′ and θ′ with the [11̄0]–axis,
corresponding to the angles used in chapter 5.

After somewhat lengthy calculations, we find

|Btot(t)|2 = B2
ext

+ k(t) 2Bext [β cos (θ + ϕ)− α sin (θ − ϕ)]

+ k2(t)
[
α2 + β2 + 2αβ sin (2ϕ)

]
+ k3(t)

1

2
Bextγ [cos (θ + ϕ)− cos (θ − 3ϕ)]

+ k4(t)

(
αγ sin (2ϕ) +

1

2
βγ [1− cos (4ϕ)]

)
+ k6(t)

1

8
γ2 [1− cos (4ϕ)] ,

(B.3)

where we have included the factor 1/gµB into the coupling constants, i.e. α →
α/gµB and equally for β and γ. Then, α and β are in units of T·m, and γ in
T·m3. In the experiment, each kn–term induces oscillations with a frequency n · f
in |Btot(t)|2. Those terms can be measured (provided they are large enough), by
sweeping the laser-gate delay t in small steps.

C Tunability of the spin-orbit interaction?

The Rasbha spin-orbit magnetic field is caused by electric fields that result from the
structural asymmetry in a heterostructure. These fields point along the direction
of growth, i.e. perpendicular to the QW plane in our samples. By applying an
external electric field in the same direction, it has been shown [94, 98, 104, 105] that
the Rashba coupling constant α, and with it BSIA, can be tuned.
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Figure C.1: Sketch of the back gate on sample 1. Voltages of around 100 V can be
applied between an annealed In contact on the surface and a transparent back gate
on the sample’s back side.

From the band structure of our QWs (Sect. 2.11) we estimate these ‘intrinsic’
electric fields in the interface of the QW (confinement EQW ≈ 50 meV, width d ≈
20 nm) to be on the order EQW/d, equal to a few MV/m. Using a back gate on our
sample, as shown in Fig. C.1, we are able to apply a voltage VBG on the order 100 V
between the transparent back gate (10 nm Au) and annealed In contacts on the
sample surface. As mentioned before in Sect. 2.5.2, for this sample, it is unclear if
only the QW, only the δ–doping layer or both are contacted with In ohmic contacts.
Still, we can assume that by applying a voltage the QW is subjected to an electric
field. The substrate P919 is 350 µm thick and therefore, an external electric field on
the order of 0.3 MV/m is expected, about one order of magnitude smaller than the
intrinsic electric field. On the one hand, a thinner sample would be advantageous
to achieve a larger electric field. On the other hand, the back gate has to be farther
away than the distance between the gate electrodes, since otherwise, the in-plane
electric field between the gate electrodes would get diverted to the back gate and
thereby screened.

Figure C.2a and b shows BSIA and BBIA as measured using the same technique
as described in Sect. 5.2 as a function of back gate voltage VBG. The three traces
represent three cool–downs. Clearly, both BSIA and BBIA change with VBG. The
unexpected change of BBIA with negative VBG is attributed to a background effect,
possibly originating from the changing electron density in the QW [104]. This back-
ground effect is expected to act on both spin-orbit fields and we therefore show their
ratio in Fig. C.2c. As discussed in Sect. 5.1.1, the Rashba spin-orbit coupling in
the conduction band is determined by the conduction band wave function’s expec-
tation value of the electric field 〈Ev

z〉c in the valence band. This is illustrated in
Fig. C.3. The electron wave function in the conduction band of the QW (Fig. C.3a)
has been placed in z–direction such that its expectation value of the electric field in
the conduction band 〈Ec

z〉c vanishes. The expectation value of the electric field in
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Figure C.2: (a) Rashba and (b) Dresselhaus magnetic fields and (c) their ratio as
a function of back gate voltage VBG. Data for three different cool-downs of the same
sample.

the valence band, however, does not vanish for the conduction–band wave function,
see Fig. C.3b, resulting in a finite Rashba coupling. By applying an external electric
field in z–direction, the wave function is moved within the QW to a new equilibrium
position, where 〈Ec

z〉c = 0. Again, 〈Ev
z〉c 6= 0. Figure C.3c shows the result of a

numerical simulation, where the external electric field was swept. We determined
the equilibrium position for a Gaussian-shaped wave function, defined by 〈Ec

z〉c = 0.
Then, 〈Ev

z〉c was calculated and plotted. Of course, the details depend on the shape
of the wave function, but in general a monotonic increase in 〈Ev

z〉c, and so also in
the Rashba spin-orbit magnetic field, was calculated.

In the normalized measurements (Fig C.2c), such a behavior was observed for
the blue trace ‘070208’, and possibly also for the green trace ‘070212’ between VBG =
−50 . . . + 50 V. The red trace ‘070202’ shows a non-monotonic dependence of the
Rashba term on the external electric field. This observation might be explained by
additional effects that stem from the doping layer, which, as mentioned, prohibits
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z . The electron wave function in
the conduction band arranges in z–
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z〉c = 0. In
general, the relevant electric field in
the valence band, however, 〈Ev
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fluence on 〈Ev
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that the QW is properly contacted.

In summary, the measurements presented in this section indicate that tuning
of the spin-orbit coupling with external gates is possible and can be measured.
However, better samples with proper contacts to the QW are needed for further
conclusions.

A further limitation of such measurements is the fact that the in-plane electric
fields that induce the in-plane motion of the electrons should not be shielded. This
requires the distance between a front and a back gate to be larger than the distance
between the in-plane gate electrodes and limits the electric field that can be applied.

D Verification of the sample magnetization

To verify that the evaporated Fe of the samples used in chapter 3 and 4 is of good
magnetic quality, we measured its magnetic moment in a Vibrating Sample Magne-
tometer. The magnetic sample is brought into sinusoidal motion in a homogeneous
external magnetic field Bext. Pick-up coils detect the change in magnetic flux that re-
sults from the sample’s motion. By varying Bext, the sample magnetization M(Bext)
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Figure D.4: (a) Sample used to measure the magnetization of evaporated Fe. (b)
Measured magnetic moment, proportional to the sample magnetization, as a function
of the applied external field.

can be measured.

Figure Da shows the sample, a 24.0 mm2 large piece from wafer P805, onto which
10 nm Ti, 80 nm Fe and 10 nm Al were evaporated. The dark upper region is caused
by the clamp that fixes the sample during the evaporation. In total, 21.8 mm2

have been covered by 80 nm Fe, resulting in a volume of V = 1.74 × 10−6 cm3.
The magnetization per volume is the measured magnetic moment MEMU, shown in
Fig. Db, divided by the volume. It amounts to Ms = 4πMEMU/V = 21.6 kGauss
and compares well to the value Ms = 21.4 kGauss found in literature.

The coercive field of the film of≈ 5 mT is rather high and attributed to impurities
on the substrate prior to the Fe evaporation. Such impurities can also lead to the
observed slight ‘bending’ of the magnetic moment close to Bext = 0 before the film
switches its magnetization. Some magnetic moments have already rotated their
orientation parallel to Bext, but a further increase in Bext is needed to make the
magnetization along Bext propagate through the film.
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E List of samples

Abbreviations:
id. interdigitated
std. gratings standard gratings: 3-3, 2-2, 1-1, 0.5-0.5
trans. transparent

Name Sub-
strate

Description Processed First
mea-
sured

Figures

4a bulk
n-GaAs

Gratings 3-1, 2-2, 2-1, 1-1;
10min RIE

13.09.04 15.09.04

4b 040513A Grating 1-1; 10min RIE 13.09.04 01.10.04
5a 040513A Gratings 2-1 Fe, 0.5-0.5 Au 05.11.04 13.12.04
6a 040513A Id. gratings, 7nm RIE 17.11.04 23.11.04
6b 040513A Id. gratings, 15nm RIE 17.11.04 06.12.04
6c 040513A Id. gratings, 50nm RIE 17.11.04 20.12.04
8a 040513A Id. gratings, partly ok 17.01.05 14.02.05
8b 040513A Id. gratings 17.01.05 18.01.05
9b P765 Id. gratings, non-polished

sample back side
17.01.05 17.01.05

10d P765 Id. gratings, no Al cap 14.03.05 24.03.05
14a P805 Std. id. gratings: 3-3, 2-2,

1-1, 0.5-0.5, 10nm Ti, 80nm
Fe or Au, 10nm Al

22.04.05 20.05.05 3.5, 3.6b, 3.8,
3.9, 3.12,
3.14, 3.16,
4.2, 4.3, A.1,
A.2

14b P805 Std. id. gratings 22.04.05 16.05.05 3.11, 4.1b
14c P805 Std. id. gratings, mixed

Fe/Au
22.04.05 06.06.05 4.2, 4.3

15a P805 Trans. pads (100 × 100 µm);
7nm Ti, 7nm Au

22.04.05 25.04.05

15b P805 Trans. pads (100 × 100 µm);
7nm Ti, 7nm Fe, 2nm Al

22.04.05 25.04.05

15c P805 Trans. pads (100 × 100 µm);
7nm Fe, 2nm Al

22.04.05 11.05.05

15d P805 Trans. pads (100 × 100 µm);
7nm Fe

22.04.05 11.05.05 3.10

16a P838 Std. id. gratings, partly ok 22.04.05
17b P838 Trans. pads (100 × 100 µm);

7nm Ti, 7nm Fe, 2nm Al
22.04.05

17c P838 Trans. pads (100 × 100 µm);
7nm Fe, 2nm Al

22.04.05

17d P838 Trans. pads (100 × 100 µm);
7nm Au

22.04.05
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18a P805 Id. gratings, a = 2b 29.06.05 08.08.05 3.14
18b P805 Id. gratings, a = 2b, mixed

FeAu
29.06.05

19a P805 Id. gratings, a = 3b 29.06.05 10.08.05 3.14, 4.6
19b P805 Id. gratings, a = 3b, mixed

FeAu
29.06.05

20d P805 Horizontal and vertical
gratings, all Fe, 3-3 and 2-2

29.06.05 03.08.05 3.15, 4.5

21a P919 Std. id. gratings 29.06.05 23.08.05 2.13, 4.8, 4.9,
4.10

23a P805 Horizontal and vertical gaps,
3, 2, 1, 0.5 µm, Fe

17.11.05 21.11.05

23b P805 Horizontal and vertical gaps,
3, 2, 1, 0.5 µm, Au

17.11.05

24a P805 Std. id. gratings, Ni instead
of Fe

23.11.05 23.11.05

25a P805 Std. id. gratings, 27min RIE
etch (90nm), NMP liftoff

13.01.06 23.01.06 3.17

25b P805 Std. id. gratings, 27min RIE
etch (90nm), Aceton liftoff

13.01.06 25.01.06

25c P805 Std. id. gratings, 27min RIE
etch (90nm), mixed FeAu

13.01.06 09.02.06

26a ES865 Trans. top gate (3nm Ti,
7nm Au) and ohmic contacts
to QW

14.06.06 22.06.06

26b ES866 Trans. top gate (3nm Ti,
7nm Au) and ohmic contacts
to QW

14.06.06 21.06.06 2.17

27e ES887 Std. id. gratings, only 2-2
working

18.10.06 01.11.06

27f ES887 Std. id. gratings, ICP
etched, partly ok

18.10.06 02.11.06

29b P805 Std. id. gratings, ICP
etched, partly ok

18.10.06 03.11.06 3.17

29g P919 SO 4 gates, distance 100 µm 18.10.06 20.10.06
30a P919 SO 4 gates, θ = 0, 90◦ 07.11.06 13.11.06 5.2, 5.4

(sample 1),
5.10

30b P919 SO 4 gates, θ = −45◦ 07.11.06 11.12.06
30c P919 SO 4 gates, θ = +45◦ 07.11.06 05.12.06 5.3, 5.8
30cBG P919 30c with back gate 31.01.07 01.02.07 C.3
31a ES887 SO 4 gates, θ = 180, 90◦ 20.11.06 27.11.06 5.4 (sample

3)
31b P919 SO 4 gates, θ = 180, 90◦ 20.11.06 24.11.06
31c P805 SO 4 gates, θ = 180, 90◦ 20.11.06 29.11.06 5.4 (sample

2), 5.7
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