mzuriCh ETH Library

Real-time fluid simulations with
wavelet turbulence

Master Thesis

Author(s):
Fierz, Basil

Publication date:
2008

Permanent link:
https://doi.org/10.3929/ethz-a-005669026

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005669026
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Real-time Fluid Simulations with
Wavelet Turbulence

Basil Fierz

Master’s Thesis
September 2008

Prof. Dr. Markus Gross
Dr. Nils Tharey

ETH &
Eidgendssische Technische Hochschule Ziirich Lt

Swiss Federal Institute of Technology Zurich mputer Graphics Laboratory ETH Zur

Abstract

This thesis discusses the realisation of real-time interactive fluid simulations with Wavelet Tur-
bulence. The Wavelet Turbulence approach uses Kolmogorov’s power distribution to synthesise
turbulence in fluid simulations, and separates the simulation of large and small scale details.

The large scale flow is simulated using a conventional fluid solver. The relevant fluid behaviour
is captured on a coarse grid. The calculations for this coarse simulation can be done with
consumer level CPUs. To synthesise interesting small scale details, we scale the coarse grid to
a higher resolution grid by adding Wavelet Turbulence. For this post-processing step we use
NVIDIA’s CUDA system to achieve real-time performance.

We first give an overview of the theory our implementation is based on. Next, we develop
different implementation approaches for Wavelet Turbulence and evaluate their performance.
An outlook to extensions of our implementation concludes the thesis.

il

Zusammenfassung

Diese Diplomarbeit beschreibt die Realisierung einer interaktiven Fluidsimulation mit Wavelet
Turbulenzen. Die Methode der Wavelet Turbulenzen verwendet Kolmogorovs Energieverteilung
um Turbulenzen in Fluidsimulationen zu synthetisieren. Sie trennt die Simulation der gross- und
kleinskaliger Details.

Die grossskaligen Details werden mit Hilfe iiblicher Fluidsolver simuliert. Um das relevante
Fluidverhalten zu beschreiben reicht ein grobes Gitter, welches auf handelsiiblichen Prozes-
soren simuliert werden kann. Um die interessanten kleinskaligen Details zu synthetisieren
skalieren wir das grobe Gitter auf ein hoheraufgelostes Gitter durch hinzufiigen von Wavelet
Turbulenzen hoch. Fiir diesen Nachbearbeitungsschritt verwenden wir NVIDIAs CUDA Sys-
tem, um ein Echtzeitverhalten zu erreichen.

Wir geben zuerst einen Uberblick iiber die Theorie, auf welcher unsere Umsetzung basiert. Als
nichstes verfolgen wir verschiedene Implementierungsansitze fiir Wavelet Turbulenzen und
beurteilen deren Laufzeit verhalten. Wir schliessen diese Diplomarbeit mit einem Ausblick auf
mogliche Erweiterungen ab.

il

v

Eidgenossische Technische Hochschule Ziirich o U il
Swiss Federal Institute of Technology Zurich : '

Master Thesis

Real-time Fluid Simulations with Wavelet Turbulence

Topic:

As physical simulations are a crucial part of many modern games, it is important to handle all necessary effects within the
engines. Fluids are necessary for a variety of effects, such as smoke, fire and explosions, but are highly costly to compute
with commonly used methods. Typically, the expensive computations for the iterative system to be solved for the pressure
correction step, and the high memory requirements prevent interesting real-time applications.

The goal of this thesis is to make use of the wavelet turbulence approach to compute detailed fluid motions in real-time. To
run the underlying coarse fluid simulation, the CPU is sufficient. The wavelet turbulence will be evaluated using a GPU with
CUDA. The nature of the wavelet turbulence approach make it very suitable for a parallel computation using the GPU, and a
good performance is expected. The first task of this thesis is to port the wavelet turbulence to the GPU and adapt it to the
GPU architecture. As a second step, a renderer for smoke and possibly fire effects, that computes lighted volumetric effects
for a realistic visual appearance, will be developed. While both steps can first be performed on fixed grids, they can also be
performed using particles for the detailed advection, which will reduce the required memory. The overall goal is to develop an
interactive program that can simulate realistic smoke and fire effects, and allows the user to place and move objects in the
flow.

Remarks:
e A written report and an oral presentation conclude the work.
e The thesis is overseen by Prof. Markus Gross and is supervised by Nils Thuerey.

Computer Graphics Laboratory , Master Thesis Topic 2008

Vi

Contents

List of Figures ix
List of Listings Xi
1. Introduction 1
2. Wavelet Noise 3
2.1. Fluid Simulation 3
2.1.1. Boundary Conditions, 5

2.1.2. Making The Fluid Incompressible 5

2.13. Smoke 5

2.2. Wavelet Turbulence 6
22.1. WaveletNoise 6

2.2.2. Vector WaveletNoise 7

223, Turbulence 7

2.2.4. Velocity Noise Generation 8

2.3, Advection e 9

3. CUDA - Compute Unified Device Architecture 11
3.1. Programming Model 11
3.1.1. Thread Organisation 12

3.1.2. MemoryModel 12

3.2. Hardware Implementation 13
3.3. Host-side Application Programming Interface 15
3.3.1. Device Management 15

3.3.2. Memory Management 15

vii

Contents

3.33. LaunchControl
3.3.4. OpenGL, DirectX Interoperability
3.4. Device-side Application Programming Interface
34.1. Primitive DataTypes
34.2. Built-in Variables L oo
343. Memory Locations
3.4.4. Texturing Unit Extensions

Real-time Algorithm
4.1. Simulation Pipeline o
4.2. CUDA Configuration vt
4.3. Wavelet Turbulence Generation
4.3.1. Wavelet Noise Evaluation
4.3.2. Vector Wavelet Noise Evaluation
4.3.3. Pre-Evaluated Noise
4.4, Advection e
45. Rendering e
4.6. VIBWET v v i i e e e e e e e
4.6.1. Examples Of User interaction

Results

5.1. Benchmark e

5.2. Performance
5.2.1. Noise Evaluation
5.22. Application

5.3. Memory requirements u e e e e e e e e

54. Visual Quality
5.4.1. Number Of Noise Octaves
542. NoiseTile Size
54.3. Pre-EvaluatedNoise.,
544, Advection e

Conclusion and Outlook

Source Code

A.1. Wavelet Decompostion e
A.2. Velocity Noise Generationot
A3, Advection e e
A4. VolumeRenderer

Bibliography

viii

45
45
47
50
51

54

List of Figures

2.1. One cell from a three dimensional staggered grid. 4
3.1. Thread blocks organisedinagrid. 12
3.2. Memory hierarchy 13
3.3. Hardware Model 14
34. Softwarestack 15
4.1. Difference between taking self shadowing into accountornot 29
42,0 VIBWET o o it e e e 30
4.3. Obstacles interacting withthe fluid 31
4.4. Adding custom smokeinlets oL 31
5.1. Comparison of the fluid simulation with the Wavelet turbulence method. 33
5.2. Benchmark scene (32x32x32 grid, 4x amplify, 2 noise octaves) 34
5.3. Noise evaluation speedup on the GPU compared tothe CPU 35
5.4. Noise evaluation performance: Amplification 35
5.5. Noise evaluation performance: Octaves 36
5.6. Application performance using the renderer with shadows enabled 37
5.7. Simulation Performance L 0oL 37
5.8. Rendering Performance 37
5.9. Benchmark scene with different number of noise octaves. 39
5.10. Benchmark scene using pre-evaluatednoise 40
5.11. Advection Methods 41
5.12. Advection Performanceo L Lo 41

iX

List of Figures

Listings

4.1.
4.2.
4.3.

ALl
A.2.
A3.
A4
AS.
A.6.
AT
A.8.
A9.

Noise Evaluation 23
Shader to render theeye buffer 29
Shader to render the shader buffer 29
Generic Downsampling Kernel 00 ... 45
Direction-specific Downsampling Kernels 45
Generic Upsampling Kernel 46
Direction-specific Upsampling Kernels 46
Vector noise evaluation oL oL 47
Wavelet turbulence generation L. 48
Semi-Lagrange Advection oL 50
MacCormack correction and clamping L. 50
Volume Rendering 51

xi

Listings

xii

Introduction

Ever since the advent of graphics co-processors (GPU) for consumer level hardware, people
tried to use these computing capacities for other things than rendering triangles. GPUs are
parallel architectures, mostly because of the nature of the problem they try to solve — rendering
huge amounts of independent elements (triangles, fragments). GPUs had and still have the
advantage that their price is surprisingly low compared to the amount of computing power they
provide.

The first generations of GPUs did not offer many possibilities. The programmer had to use the
fixed-function graphics pipeline to do calculations and the available amount of device mem-
ory limited the problem set, which could be solved. The first systems, which could be called
programmable in a modern sense, appeared in late 2000 with the introduction of Microsoft
DirectX 8.0. The hardwired vertex and pixel processors where replaced with programmable
shaders. This allowed computer game developers to port vertex operations to the GPU, which
had to be done on the host processor in the past. It also allowed for custom shading models,
which were not possible with the fixed function pipeline.

Although the computing capabilities were still quite primitive and the floating point number
precision was very low, game developers adopted the new programmable pipeline fast. Over the
next two generations of GPUs the capabilities were expanded. The computing power increased
and the precision improved. GPUs were used more and more for non graphical applications.

With the latest GPU generation NVIDIA provided, in addition to the graphics API (OpenGL,
DirectX), an alternative access path to the resources of their GPUs. Their CUDA system pro-
vides direct access to the GPU without the need to adhere to the structure of the 3D render-
ing pipeline. For a more complete overview of the history of GPU Computing, we recom-
mend [OHL"08].

Simulation of fluids is a long time topic in visual computing. After Joe Stam ([Sta99]) intro-

1. Introduction

duced grid based fluid simulations to computer graphics, many advances have been made. The
first simulations were far away from being real-time and details dissipated fast due to numerical
errors. Mostly these errors come from the Semi-Lagrange advection method, which was used
because it is cheap and reasonably correct. Different algorithms were developed to counter this
dissipation effect: Vorticity confinement [FSJO1], Vortex Particles [SRF05] and MacCormack
advection [SFKT07].

The best real-time implementations to date to simulate 3D fluids in real-time are [CLT08] using
standard graphic API and [MCPNO8] using a CUDA based multigrid Poisson solver. The main
problems are the high memory requirements and the need to solve large systems of equations
for high resolution simulations, which make real-time simulations using high resolution grids
very hard. Adding more details adds memory and computing effort with cubic complexity.

In this thesis, we take the approach to separate detail generation from the physically based sim-
ulation. Often we do not need an overly realistic simulation but are content with the behaviour
of a simple simulation. On the other hand the simpler the simulation is, the less appealing it
looks. Our goal is to show that the separation method of [KTJGOS] is usable under real-time
constraints. The main tool to achieve this goal is NVIDIAs CUDA technology.

Wavelet Noise

The fluid simulation method presented in [KTJGO8] separates the simulation of small and large
scale details. The large scale details are obtained using a standard simulation systems like the
one introduced by [Sta99]. The small scale details are added in a post processing step. This
additional step modifies the velocity field for a more detailed visualisation, but leaves the fluid
simulation itself untouched. The modifications to the velocity field depend only on the fluid
simulation and are smooth over time.

2.1. Fluid Simulation

Fluid Simulations in real-time computer visualisation are mostly based on the Navier-Stokes
equations for incompressible fluids. These are a set of equations that are valid on the whole
simulation domain. They describe the local velocity « as a function of position and time. The
first equation, Equation 2.1, is also called “momentum equation” and describes how the fluid
reacts to the forces acting on the it:

ou

1 -
— =—u-Vi—-Vp+ [, (2.1)
ot 0

where p is the pressure, p is the mass density, and f represents external forces. The second
equation, Equation 2.2, states that the fluid we consider has to be incompressible:

V.-u=0 (2.2)

2. Wavelet Noise

The complete Navier-Stokes equations contain an additional term to describe the viscosity of
the fluid. It is typically ignored for low viscous fluid behaviour, which we will use here. The
reason for this is very simple. Numerical simulations using floating point arithmetic typically
introduce rounding errors, which are similar to small viscosity values. For a complete derivation
of the equations in this section see [BMFO07] as very good introduction.

Simulating fluids means nothing else than keeping the equations valid over time. Solving these
partial differential equations requires us to discretise the simulation domain. We choose a pure
Eulerian approach, meaning that all simulation quantities are fixed to a distinct position in
space. The simulation domain is discretised as a regular volumetric staggered grid. Figure 2.1
shows one cell of the such a grid. Each of these cells store scalar and vector quantities (such as
pressure, temperature, density values and velocities).

Wijk+1/2

* —>
Piik Ui+112k

" Vijrzk

Figure 2.1.: One cell from a three dimensional staggered grid.

The staggered grid stores the scalar quantities (pressure, temperature and density) in the centre
of the cell, while the velocity is stored at the centre of the faces of a grid cell. The velocity
U = [k, Vijk, Wi k) is decomposed and each component is stored in its own face. The top
cell stores w; j 41,2, the front cell stores v; j1 1,2, and the right face ;12 1. The components
of the velocity at a grid node itself are the averages of the values of the six opposite faces. This
makes it easier to calculate the spatial derivatives we need.

To solve Equation 2.1 we apply a common trick. We split the equation into parts and solve them
sequentially.

1. Add the forces f to the velocities .

2. Make the velocity field incompressible, i.e. solve aa—f + %Vp s.t. V-u=0.

2.1. Fluid Simulation

3. Apply the advection operator A (see Section 2.3) to the velocity field .

2.1.1. Boundary Conditions

Correctly handling boundary conditions is tricky if we do not restrict the type of boundary. The
simplest case of obstacles are “solid walls”, where the fluid is not supposed to pass through.
Thus the velocity of the fluid has to be zero with respect to the normal of the boundary:

—

@-n=0 (2.3)

If the solid is not static but moving, the fluid has to move in the same direction as the solid:

—

U-n= ﬁsolid - (24)

The simplest boundary condition we can think of is called a “no slip” boundary, where the fluids
velocity at the boundary is @ = 0 for static boundaries, and & = ;4 for moving obstacles.
These boundary conditions have to be treated as additional constraints when making the velocity
field incompressible.

2.1.2. Making The Fluid Incompressible

The most expensive step in the simulation is keeping the fluid incompressible. Here is also a
convenient place to resolve the boundary conditions. Discretising the pressure equation with
respect to time and solving for the next time step’s velocity field u, we get:

1
a"t = a" — At=Vp (2.5)
P
We try to solve Equation 2.5 in a way that it satisfies the incompressibility:

V-a"tt=0 (2.6)

and the solid wall boundary condition:

T h = Tappia - 1 2.7)

The resulting system of equations leads to a sparse matrix, with a bandwidth of 7, and can be
solved with any appropriate solver e.g., a Conjugate Gradients solver.

2.1.3. Smoke

To test the algorithm we implemented a smoke simulation. Smoke like behaviour is achieved
by simulating smoke quantities and the surrounding air. Rising smoke is lighter than the sur-
rounding air, which we will capture through a buoyanesc external force. Buoyancy is a force

2. Wavelet Noise

that acts on mass that is less dense than its environment. The lighter material rises upwards,
which holds for smoke particles. The buoyancy is controlled by a diffusion algorithm, which
simulates ambient temperature.

To counter the phenomena of vortices dissipating to fast [FSJO1] introduced the vorticity con-
finement force. Dissipation of details is a side effect of applying the advection operator to the
simulation quantities. Vorticity confinement strengthens existing vortices by creating a force
field, which tries to counter this effect.

Vorticity is defined by
W=V xu. (2.8)

To strengthen a vortex we need the unit vector pointing to the center of the vortex by normalising
the gradient of |J|:

G_ V]
N = —. (2.9)
IV
The vorticity confinement force is defined as:
Foons = €Az(N x &), (2.10)

where € is a parameter to control the strength of the confinement and Ax is the grid spacing.
The vorticty confinement force will not generate new eddies. Adding details is discussed later
in Section 2.2.4.

2.2. Wavelet Turbulence

The Wavelet Turbulence algorithm is based on procedural noise to generate interesting details.
We use Wavelet Noise [CDO35] instead of Perlin Noise [Per85] because its properties fit our
needs better.

2.2.1. Wavelet Noise

The main properties, we are interested in, are incompressibility, easy generation of derivatives
and band-limitation, which are the main advantages over Perlin Noise. The goal is to create a
noise band N from a random image R:

1. Create an image R filled with random noise.

2. Downsample R to create a half size image R |.
3. Upsample R T to a full size image R | 1.

4. Subtract R |T from the original R to create /V.

N contains only the band-limited parts from R. It is used in the same way as Perlin Noise.

2.2. Wavelet Turbulence

Noise Evaluation

To evaluate the noise we use a weighted sum. We use the uniform quadratic B-spline basis
function B to reconstruct the noise value:

2
w(w:) =Y B(@i-14g)N(2i-144) 2.11)

q=0

To keep the runtime costs of the evaluation low [CDO0S5] use a small tile of pre-generated noise
instead of evaluating NV each time.

2.2.2. Vector Wavelet Noise

For the next step of the algorithm the scalar Wavelet Noise function w has to be extended to
a vector-valued function. [BHNO7] show how to derive a divergence-free vector field from a
scalar field by taking curl of a vector-valued potential field (wy, ws, w3):

o 8w1 aUJQ 8w3 6w1 8w2 821)3

¢_(8y_8z’8z_8$’8x_3y>

(2.12)

This requires us to use either three different noise tiles. To evaluate the derivatives we directly
take the partial derivatives of the noise function.

ow(x) = Ow;(x)
el D el AP (2.13)

The corresponding weights are [%, % +t—t2 % —t+ %} and [t, 1 — 2t,t — 1] for the deriva-

tives.

2.2.3. Turbulence

Based on Kolmogorov’s energy distribution [KTJGO08] developed a turbulence function:

W) = Y w(2E)2 s (2.14)

1=lmin

Through 4,,;, and ,,,, the spectral bands which apply to w,;(Z) can be controlled. With the
exception of the noise function w(Z) the turbulence function is the same as the one defined
in [Per85].

2. Wavelet Noise

2.2.4. Velocity Noise Generation

In fluid dynamics two things can happen to eddies. They can break up to eddies half of their
original size (forward scatter) or they can merge together to larger eddies (backward scatter).
As eddies break up they move into a higher frequency domain. The fluid simulation we looked
at in Section 2.1 produces a velocity field @, with the low resolution n®. The eddies in % can
only be scattered to the theoretical Nyquist limit of 7. With vorticity confinement we have
a method to prevent eddies to dissipate before reaching the limit. This section presents the
algorithm by [KTJGO8], which allows eddies to be scattered to higher frequencies than the
limit frequency of the simulation grid.

From the velocity field & we generate a high resolution velocity field U of size N 3. U is used
to advect the density field, which will be visualised later on. To generate U we use the function
I(1, X), which interpolates the velocity in U at the position X from the low resolution field «:

U(X)=1(a,X) (2.15)

U is a smoothed out version of i, but it does not contain new eddies. What we are interested
in is to produce new eddies in the spectral bands [n, §|. We use a simplified algorithm, which
omits the texture coordinate advection.

To generate eddies we add turbulence to the velocity field. We are only interested in details in
the newly created bands [n, %} . Thus we set 7,,;, = log, n and ,,,,, = log, %:

U(X) = I(@, X) + w,(X) (2.16)

The problem using this method is that eddies are created where we do not expect them to occur,
even if we use the total energy e; of « at the band ‘%’ as a weight. We only want to create new
eddies where an eddy in the spectral band 5 forward scatters to higher frequencies.

To find the correct places to add the eddies, we calculate the kinematic energy of the velocity
field:

e(#) = 5 [i(&)]” (2.17)
We use the spectral component é (f, g) of the energy field e as a weight. This spatial informa-
tion is obtained by a Wavelet decomposition of the energy of « and ensures that no unwanted
eddies are created. At obstacle boundaries special care has to be taken. The velocities in « are
set zero if the cell is marked as obstacle. This discontinuity causes jumps in the Wavelet decom-
position of the energy. To smooth the effect out the energy is extrapolated into the obstacles.
The final function to create the high resolution velocity field is:

U(X) = I(@,X) + 271 (é (f g) X) G (X). (2.18)

Compared to Equation 9 in [KTJGO08], Equation 2.18 omits advected texture coordinates, which
would add another level of animation to the simulation. Observations showed that their level
of animation is not important enough to consider them for this thesis. Additionally this method
showed to be very costly. Implementing texture coordinate advection is a topic for future work.

2.3. Advection
2.3. Advection

An overview of the state of the art of advection algorithms can be found in [SFK*07]. Further
they introduce a modified MacCormack advection, which is a modified Back and Forth Error
Compensation and Correction (BFECC) advection algorithm that is unconditionally stable. Al-
gorithm 2.1 summarises the unconditionally stable MacCormack advection. The idea behind it
is that after one step forward and one backward you should arrive at the starting point. The dif-
ference between the starting point and the estimated location is equal to double the error. This
error is then used to correct the forward step. To keep the simulation stable the result is clamped
to the minimum and maximum values of the origin. So its main parts are two Semi-Lagrange
advection steps and an error correcting.

Algorithm 2.1 MacCormack Advection
1: parameter: ¢" { Input field }
2: Apply the forward advection operator A to get ¢"+! = A(¢")
3: Apply the backward advection operator A% to get¢™ = AR(p"t1)
4: Adjust the advected property using the error estimate e = (o™ — ¢™)/2 to get " =
O A (" — ¢") /2
Clamp the result ¢""! between min(¢", ") and max (", ¢" 1)
6: return ¢"t

9,1

The Semi-Lagrange advection step applies only one forward advection operator A to get ¢" ! =

A(").

2. Wavelet Noise

10

CUDA - Compute Unified Device
Architecture

CUDA ([NVIO8]) is a parallel programming model and a development environment to ex-
pose the general purpose computing capabilities of the recent NVIDIA graphics hardware to
a broader audience. It uses an extended version of the C programming language to hide many
of the hardware details from the user. At its core CUDA uses a multi level approach to dis-
tribute the work load between CUDA devices and with each device. The user therefore has to
decompose his computations into suitable sub problems.

The user is not bound anymore to use graphics APIs (OpenGL, DirectX) to access the comput-
ing capabilities of the graphics hardware. CUDA applications can run side by side with graphics
applications. CUDA and graphics APIs can be used and interoperate within a single program.

3.1. Programming Model

CUDA exposes the GPU as a parallel coprocessor with a very high number of concurrent threads
to the host. It is ideal to offload data-parallel, compute-intensive algorithms from the host CPU
to the CUDA device. To program a device CUDA offers an extended version of the popular
programming language C. Code written for the CUDA device is organised in kernels. Each
kernel is run N times on N threads in parallel. To allow each kernel instance to do different
work it is provided with an ID.

11

3. CUDA - Compute Unified Device Architecture

3.1.1. Thread Organisation

Threads on a CUDA device are organised in two levels. Threads are grouped in blocks and
blocks are organised in a grid (Figure 3.1). CUDA allows threads within one block to commu-
nicate with each other through shared memory. It is possible to define barriers to synchronise
threads within a block. To allow an arbitrary amount of threads to be executed, blocks can be
grouped in a grid. Any two blocks in the grid are independent from each other.

Figure 3.1.: Thread blocks organised in a grid

CUDA executes a number of threads in parallel per block. This group is called a warp and
consists of two half-warps. The warp is the smallest granularity of parallelism in CUDA.

3.1.2. Memory Model

CUDA provides multiple memory spaces to store data. Figure 3.2 illustrates the memory hier-
archy. Each thread has its own, fast memory, which can only be accessed by the thread itself.
All threads in a block have access to a partition of shared memory, which is only available to
one block during its life time. Finally all threads can access global memory. The life time of
data in global memory space is controlled by the host.

The global memory space is shared between read/write uncached linear memory, a small parti-
tion of cached constant memory (read only) and cached texture memory (read only).

The CUDA memory model is optimised for coalesced memory access. Threads must access
memory in a linear sequence with respect to their ID. The k" thread in the half-warp must access
the k' word in memory. If threads of a half-warp do not meet this requirement separate memory
transactions have to be issued, which reduces the data throughput significantly. In graphics
random access is a frequent operation. It occurs when shaders read values from textures or
from the shader constant memory. These graphics specific features are open to use in CUDA.
Constant and texture memory enable high random access throughput for CUDA applications
through the caches they have.

12

3.2. Hardware Implementation

Thread Thread
Thread Thread

Thread Thread

Figure 3.2.: Memory hierarchy

3.2. Hardware Implementation

NVIDA introduced CUDA along with the G80 chip in November 2006. Figure 3.3 shows a
schematic figure of the G80. CUDA is an abstraction of this hardware design, which hasn’t
changed significantly up to the current GT200 chip. These chips are built around a scalable
array of multithreaded Streaming Multiprocessors (SMs). A SM contains eight scalar processor
cores (SP), two special function units (SFU), an instruction decoder and dispatcher, four texture
units (TU) and on-chip shared memory. The G80 contains 16 of these SMs, while the GT200
contains 30 SMs.

Each thread block of a computation grid is dispatched to a single SM. This way threads in a
block can communicate with each other through shared memory. Each SM manages hundreds
of threads. To allow fast switching between threads, all threads in a SM allocate their registers
at initialisation. The maximum number of threads and blocks a SM can manage is limited by
the amount of resources each thread needs to successfully complete its calculations.

An important thing to note is that the instruction decoder and dispatcher work only with a forth
of the speed of the SPs. Every 4 cycles a new instruction is issued. In that time the SPs can
execute the same instruction on four sets of threads. These 4 sets build a warp. From the
dispatcher’s point of view these 4 thread sets are executed in parallel.

Each SM contains a block of shared memory, caches for texture and constant memory and a
multi-banked register file. The registers are shared between all the threads hosted on a SM,
which allows to maximise the utilisation of the SM. Sharing resources and fast switching of
thread contexts is the key to help hiding memory latencies. Switching the set of executing
threads needs only one clock cycle. This way the SPs do not need to wait for data to arrive and
can work on other threads. Waiting for data from the global memory space takes hundreds of

13

3. CUDA - Compute Unified Device Architecture

Figure 3.3.: Hardware Model

cycles. Switching between running threads thus is important to keeping the chip busy.

14

3.3. Host-side Application Programming Intertace

3.3. Host-side Application Programming Interface

CUDA supports two different set of APIs — a high level and a low level API (also called runtime
and driver API). In this section we only focus on the runtime API. The feature set of both
varieties is almost the same. The low level API additionally supports more device management
functionalities and allows a more fine grain management of the CUDA kernel binaries. The
runtime API is built on top of the low level API as shown in Figure 3.4.

Figure 3.4.: Software stack

3.3.1. Device Management

Using the runtime API an explicit initialisation of a CUDA device is not necessary. Each CUDA
device has to be associated to its own host thread. The first device found by the runtime is
automatically assigned to the current host thread. Before any CUDA kernel is called the user
can call cudaSetDevice() to choose the device associated to the host thread. If more than one
CUDA device is present, the programmer may assign each device to its own thread and thus use
all the devices available.

3.3.2. Memory Management

Since CUDA 2.0 it is sufficient to know only three allocation functions. cudaMallocHost() can
be used to allocate page-locked memory in the host memory. To allocate memory on the CUDA
device there are cudaMalloc3D() for linear memory and cudaMalloc3DArray() for CUDA
arrays. There are other functions for memory allocation, but their functionality is perfectly
captured by the above three functions.

15

3. CUDA - Compute Unified Device Architecture

To move data from the host to the device, from the device to the host, and on the device itself, the
function cudaMemcpy3D() is sufficient. For memory transfers, there is also an asynchronous
version (cudaMemcpy3DAsync()), which does not block the host thread.

3.3.3. Launch Control

To launch a device kernel the environment has to be initialised correctly. Through cudaConfig-
ureCall() grid and block sizes are set and cudaSetupArgument() sets the kernel parameters.
Finally cudaLaunch() calls a kernel. The last function returns directly, even if the kernel is still
running. To wait the kernel to finish cuadaThreadSynchronize() can be used.

3.3.4. OpenGL, DirectX Interoperability

In its current version CUDA allows to use 1D and 2D OpenGL and DirectX resources as CUDA
memory. This allows for a direct cooperation of CUDA and the graphics APIs. OpenGL allows
binding Vertex Buffer Objects (VBO) and Pixel Buffer Objects (PBO), while DirectX allows
Vertex Buffers, Index Buffers, Surfaces and 1D and 2D textures.

3.4. Device-side Application Programming Interface

CUDA offers the developer an extended version of the C programming language. The set
of extensions includes constructs to allow the programmer to access the different parts of the
device that would otherwise not be accessible. The extensions include built-in variables to
identify the thread and obtain information about the device configuration, additional keywords
to specify the different memory locations, new primitive data types and built-in functions to
access the texture units.

3.4.1. Primitive Data Types

Besides the primitive data types available in C there are corresponding vector types. They
contain one, two, three or four elements. In our implementation we mostly use float3 and
float4. There is an additional type dim3, which is the same as uint3. It is special because
variables of this type are initialised to (1,1, 1).

3.4.2. Built-in Variables

Upon calling a kernel, the following variables are defined by CUDA:

gridDim This variable of type dim3 contains the size of the computation grid.

blockldx This variable of type uint3 contains the block index within the grid.

16

3.4. Device-side Application Programming Interface

blockDim This variable of type dim3 contains the dimensions of the block.
threadldx This variable of type uint3 contains the thread index within the block.

warpSize This variable is of type int and contains the warp size in number of threads.

All these variables are read-only and it is not allowed to use any address operators on them.

3.4.3. Memory Locations

When declaring variables there are three places they can be stored: In global, uncached device
memory (keyword: __device__), in constant memory (keyword: __constant__) or in shared
memory (keyword: __shared__). While the first two are accessible to all the threads running
on the device, variables in shared memory are only accessible to the threads of one block. Thus
shared memory variables have to be initialised in the kernel itself. Constant memory (since it is
read-only) has to be initialised by the host.

3.4.4. Texturing Unit Extensions

To access the content of a texture CUDA provides built-in functions tex1D, tex2D, tex3D.
These functions take a reference to globally specified textures. Such a texture is defined using
the keyword texture. Its content has to be allocated and defined by the host.

17

3. CUDA - Compute Unified Device Architecture

18

Real-time Algorithm

The application developed in this thesis implements a fully configurable smoke simulator. It
also contains an interactive viewer using our simulator. This section focuses on the small scale
detail generation (as discussed in Section 2.2) and the rendering of the simulated smoke.

4.1. Simulation Pipeline

The implemented simulation is a single threaded algorithm. It uses different multi-core archi-
tectures to parallelise parts of the simulation. To reduce the latencies produced by memory
transfers between the used devices, we use asynchronous memory transfers. The coarse fluid
simulation runs entirely on the host CPU. We use OpenMP to distribute the calculations to all
the processors available. To speed up the generation of the small scale eddies we use NVIDIA’s
CUDA architecture. Algorithm 4.1 gives an overview over the whole pipeline.

4.2. CUDA Configuration

We implemented the simulator using a pure Eulerian solution, thus all our algorithms have to
operate on three-dimensional arrays. The first and most important decision, which has to be
taken when implementing an algorithm using CUDA, is how to partition the work. The natural
decision in our case is to use a one-to-one mapping between CUDA threads and the grid nodes.
As explained in Section 3.1 threads are organised in blocks and sequential memory access
patterns are best.

Best performance is achieved if continuous blocks of 16 floats can be read or written at the

19

4. Real-time Algorithm

Algorithm 4.1 Overview of the implementation
1: Add a smoke inlet to the density field D

Start streaming D to the CUDA device

Fluid simulation step (velocity field)

Generate high resolution velocity field U from @

Wait for D to arrive t the CUDA device

Advect D

Start streaming D back to the host

Damp the coarse grid velocities @

Wait for D to arrive at the host memory

Use D to generate an OpenGL 3D texture T

: Render Tp

R N o

—_ =
- O

time. Because it is also easiest to implement, we decided to use blocks, where the elements
have sequential indices matching the position in memory. Each block is a sequential partition
of the work aligned to 16 elements. Because of resource limitations we can only support grid
sizes, which don’t exceed 256 elements in the first dimension and are a multiple of 16.

4.3. Wavelet Turbulence Generation

To determine where we need to generate turbulence we calculate the energy as explained in
Section 2.2.4 and do a wavelet decomposition of the field. Algorithm 4.2 outlines the imple-
mentation to compute the spectra components of the energy.

Implementing the down and up sampling methods with CUDA was straight forward using the
thread block and grid layout described in Section 4.2. In the down sampling step we reduce the
size of each dimension by a factor of 2, which means that we only need thread blocks of half
the size of each dimension. We had to take special care for the down- and up sampling kernels
for the x-direction. To optimise the memory access behaviour we used shared memory to cache
the work set of the active thread block. The work set is double the size of the thread block. The
CUDA kernels for down- and up sampling can be found in Appendix A.1.

The velocity field and the obstacle field of the coarse grid and the energy spectra computed with
Algorithm 4.2 serve as input to Algorithm 4.3, which generates the velocity field with the small
scale details.

20

4.3. Wavelet Turbulence Generation

Algorithm 4.2 Compute the spectral components of the velocity fields energy

1: { Compute the energy e of i with resolution n? }
for i = 1 ton® do
eli] = v2[i] + v} [i] + v2[i]
end for
{ Pseudo-march the energy into the obstacle. 4 iterations are enough because the Wavelet
up-sampler has a neighbourhood of 3x3x3. }
for:=1to4do
March the values from e by one field into the obstacles.
end for
{ Downsample the field in all three dimensions. }
10: e, |= Downsample,(e)
11: egy |= Downsample, (e, |)
12: ey, |= Downsample,(eyy, |)
13: { Upsample the field in all three dimensions. }
14: e,y | 1= Downsample, (€. |)
15: e, | T= Downsample, (e |)
16: e |T= Downsample, (e, |)
i; : { Calculatel %he spectral components ¢ of the energy field e in the spectral band 3 }
cé=e—e

R N

21

4. Real-time Algorithm

Algorithm 4.3 Compute the high resolution velocity field

1:

._.
e

11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

eI R

parameter:
parameter:
parameter:
parameter:
parameter:
parameter:
parameter:
parameter:
for all X do

u { Coarse scale velocity field }

o { Coarse scale obstacle field }

¢ { Spectral component field of the engery of « }

5 { Resolution of the result u }

S { Resolution of the result U , range of X }
threshold { Threshold, where to cull noise bands }
scale { Noise scale }

strength { Noise strengh }

{ Use the interpolation function [to create high resolution versions of the low resolution

feldy)
U(X)=1(u,X) { Velocity }

O(X) = I(o, X) { Obstacle }

E(X) = 1(é, X) { Energy |

a = scale-276 - /2 ‘E()?)‘

if @ > threshold and Inside(O(X)) then

amplify = §/§
t=2-X/(amplify * scale)

for i = i,,;,, t0 7,4, dO
U=U+a-N (t) { Evaluate the noise function N }
a=a-278
t=t-2
end for
end if
end for
return U

22

4.3. Wavelet Turbulence Generation

template<int N>

float wavelet_noise(float noise_tile [N]J[N][N], float3 p)

{
int3 mid (int3) ceil(p — float3 (0.5f, 0.5f, 0.5f));
float3 t (float3) mid — (p — float3 (0.5f, 0.5f, 0.5f));
mid —= int3(1, 1, 1);

float w[3][3];

w[0][0] = t.x * t.x x 0.5f;
w[O0][1] = 0.5f + t.x — t.Xx % t.x;
w[0][2] = 0.5f — t.x + 0.5f %« t.x *x t.Xx;
w[1][0] = t.y = t.y * 0.5f;
wll][1] = 0.5f + t.y — t.y %= t.y;
w[1][2] = 0.5f — t.y + 0.5f % t.y *x t.y;
w[2][0] = t.z x t.z x 0.5f;
w[2][1] = 0.5f + t.z — t.z % t.z;
w[2][2] = 0.5f — t.z + 0.5f x t.z x t.z;
float result = 0.0f;
for (int z = 0; z < 3; z++)
for (int y = 0; y < 3; y++)
for (int x = 0; x < 3; x++)
{

float n = noise_tile [mod(mid.x + x, N)]

[mod(mid.y + y, N)]

[mod(mid.z + z, N)]J;
float weight = w[0][x] * w[l][y] = w[2][z];

result += n * weight;

}

return result;

Listing 4.1: Noise Evaluation

4.3.1. Wavelet Noise Evaluation
Basic Algorithm

The basic version of the noise evaluation algorithm is an exact copy from [CDOS5]. It is illus-
trated in Listing 4.1. This sketch represents the starting point for the CUDA implementation
and optimisation.

Modified Algorithm

In the algorithm in Listing 4.1 there are 27 random accesses to the noise tile. For an implementa-
tion on the GPU this is not optimal. Each random access to memory is expensive. As explained
in Section 3.1.2 random access is best implemented using the texture unit of the GPU. The
next logical step is to exploit the interpolation unit included in the texture unit. It computes the
convex combination

Nx)=(1—-a) - N@@)+a-N(i+1), 4.1)

where ¢ = | x| is the integral part and o« = = — i is the fractional part of z. As derived by [SHO5]

23

4. Real-time Algorithm

cubic splines can be replaced, under certain circumstances, by a recursive application of linear
interpolations. The algorithm uses a general linear combination N (x) = a- N(i)+b- N(i+1)
where a,b € R. Aslong as 0 < b/(a + b) < 1 holds the equation can be rewritten as

N() = (a+b)-N (;ii) “.2)

Splitting the middle weight of the evaluation sum 2.11 we get a function to which we can apply
the reduction pattern:

wi(x) - N(2) +wy(x) - N(i + 1)

~N(i)+wlT(x)

N
N

B <w0(m) i 2) N (Z — QWO(;IYL1($)>

+ (wlz(‘r) + wQ(a:)> N (z + w“’—(x)) 4.3)

2 4 wy()

- N (i) + wy(z) - N(i + 1)

Using this evaluation scheme, the number of texture reads can be reduced from 3 to 2 reads. For
the whole noise evaluation, where 3 reads in each dimension are required, the new improved
algorithm needs only 8 instead of 27 texture reads. This improvement directly translates to an
improvement in the execution time by a factor of 3.

4.3.2. Vector Wavelet Noise Evaluation

How to evaluate the wavelet noise function is described in Listing 4.1. We have seen that it is
possible to modify the algorithm to better fit the GPU architectures. For the Wavelet Turbulence
algorithm we need the derivatives of the wavelet noise. As shown in Section 2.2.2 we can use
the same sum just with modified weights. Unfortunately these new weights do not fulfil the
properties needed for the convex combination. Thus we cannot use our modified evaluation
algorithm and have to use to the full evaluation with 27 accesses to the noise tile.

During the course of the project we evaluated different implementations. All variations of the
algorithm share two common characteristics. To get a high speedup it is necessary to use the tex-
ture unit since noise evaluation relies on random memory access. Second, the implementations
need many registers, which significantly reduces performance. None of the implementations
allows for more than one thread block to reside on a single Streaming Multiprocessor (SM),
which is bad regarding the device occupation. The following list describes the different imple-
mentations in detail. The paragraphs a to ¢ present the different approaches to optimise the our
solution. Paragraph d describes, which of the presented optimisation attempts we chose for our
implementation. The final CUDA source code ist listed in Appendix A.2.

a—Loop Unrolling The evaluation algorithm is a three level nested loop over a 3x3x3 cube
in the noise tile. In theory, the more work can be done between access to the noise tile and using

24

4.3. Wavelet Turbulence Generation

the accessed values, the better the algorithm should perform. In practice, this optimisation fails
completely because it uses more registers than affordable. Reducing register usage (and thus
maximising the CUDA device occupancy) is the main tool to achieve more performance in our
case.

b — Derivative evaluation The x, y, z-derivatives can either be evaluated separately in
sequence or all at the same time. Both variations need about the same amount of registers. The
later approach has the advantage that it needs to access the memory less often, which results
in a higher performance. This means the algorithm has to access the texture unit 27, 54, or 81
times. Because the ratio between the number of texture units and processors is less than one, it
is beneficial to access the texture units as few as possible.

c — Noise Tile Organisation To create a divergence free vector noise field we need three
different noise tiles; or as stated in [KTJGO8] we can also use different offsets to the same noise
tile. We implemented 4 different variations to test how the different memory access patterns
perform.

Three tiles, three textures Three different noise tiles match the theory exactly. It forms the
baseline where me measure all other approaches against.

One tile with offsets Using only one tile instead of three does not reduce the register pres-
sure nor does it reduce the number of accesses to the texture units. It needs less memory
and thus leaves more spare device memory for other parts of the application.

Three tiles, one texture To reduce the number of texture accesses we can pack all three
noise tiles in one four channel texture. CUDA only allows 1, 2 or 4 channel textures, so
we waste one channel using a 4 channel texture.

Three tiles, one texture, compression The key idea and the difference to the method
above is to pack and compress the noise tile. All three noise tiles used are packed in
one texture. CUDA devices allow three types of textures: 32 bit floating point textures,
8 bit or 16 bit integer textures. The last two can only represent values between 0 and
1, but are represented as integers. The values of the noise tiles thus need to be packed
to a integer range of [0, 2'® — 1]. The compression of the noise tile n(z,y, z) packs the
values of the floating point range from [—n,n| to the integer range [0,2!6 — 1], where
n = max|n(z,y, z)|. This compression scheme is lossy since no attempt to make it
lossless was undertaken. For the 16-bit version the errors are small and in the range of
10~* per tile entry. For the 8-bit version the error per element is 1072, which is signifi-
cantly higher. The 16-bit version is a good balance between saving bandwidth and paying
attention to compression errors.

d — Implemented combination: Three Nested Loops, Parallel Derivatives, 16-bit
Compressed Noise The implementation presented here (see Listing A.5) takes care of
some CUDA issues we ran into while adapting the algorithm. Depending on the problem,
algorithms can be optimised in different ways. As explained in Section 3.2, performance is
better the more threads can be hosted on a Streaming Multiprocessor to hide memory latencies.

25

4. Real-time Algorithm

This fact drove the need to reduce the maximum number of registers used in the evaluation
algorithm to a minimum. Most registers are allocated within that single subroutine. For this
reason we use three nested loops (one per dimension) and recalculate the cubic B-spline weights
each time they are needed. We tried using shared memory to store pre-calculated weights, but
it did not result in higher performance. To save memory bandwidth and to reduce the number
of accesses to the texture units we use the 16-bit compressed noise and evaluate all three partial
derivatives in the same loop body.

4.3.3. Pre-Evaluated Noise

A common scheme in the field in real-time graphics is the use pre-evaluated functions in the
form of lookup tables. Although lookup tables need more memory, reading a value from a
table is faster than evaluating complex functions. We applied this technique to our problem and
created a lookup table per noise octave. The method is essentially the same as in Listing 4.1. To
create the lookup table the noise function is evaluated on each node of a 642 grid, scaled by a
factor 2 per octave. This way we get a velocity noise function which can be used directly. If the
noise tiles for evaluating the noise function have the same size as the tiles for the pre-evaluated
noise, eddies created this way will look the same. This method is most probably not advisable
if animated texture coordinates for the lookup are used. The coordinates are less structured
organised. The necessary interpolation adds errors to the result.

4.4. Advection

Following Section 2.3 the implementation of both advection algorithms (Semi-Lagrange and
MacCormack) is straightforward. Appendix A.3 contains a full source code of the advection
operation. The most important design choice we had to make to implement the advection is to
decide if we favour speed or memory consumption. Section 3.1.2 explains the need for using
texture memory if we need to deal with random access.

Copying the density values from linear memory to texture memory and doing the advection
afterwards is about twice as fast as doing the advection with lookups from linear memory.
To get the highest speedup we need two additional memory buffers (textures). Algorithm 4.4
sketches the MacCormack advection implementation.

26

4.4. Advection

Algorithm 4.4 Implementation of the MacCormack advection

1:

R

10:
: { Copy the density field D" to a CUDA array (texture memory) 17. }
12:
13:

14:

15:
16:
17:
18:
19:

20:

21:
22:
23:
24:
25:

parameter: dt { Time step }
parameter: D" { Density field at current time step }
parameter: U { Velocity field }

—

parameter: X { Resolution of D" and U }
{ Copy the density field D" to a CUDA array (texture memory) 77. }
15 «— D"
for all X do { Forward advect the density. }
= PZ’ — At ﬁJ
D X) = tex3D(T}, 1)
end for

TBJA « pDrtt

for all X do { Backward advect the density. }
= P? + At- ﬁJ
D(X) = tex3D(THH 1)

end for

{ Correct the ZA)”'HAWith the error estimate. }

D+t = Dty (D — DY /2

for all X do { Clamp D™ to value ranges of D". }
= L)‘(’ — At (7J
min = min, j xeoq1y tex3D (T, t+{i,7,k})
mar = max; j keoq} ter3D (T, t+{i,75,k})
D"t = clamp(D", min, max)

end for

return D"+

27

4. Real-time Algorithm
4.5. Rendering

To display the results of our simulation we need a volume rendering algorithm, which is use-
able under real-time constraints. [IKLHO4] give a compact introduction to volume rendering
on modern consumer graphics hardware. Texture based volume rendering techniques are a
practical approach for real-time rendering, because texturing is well supported on commodity
graphics hardware. It is easy to implement and fits well into the graphics pipeline. The ren-
dering algorithm we employ is based on [KPHEO2]. They introduce a hardware accelerated
volume rendering algorithm and shading model for translucent and semi-transparent materials.

The renderer uses the smoke density values of the simulation to do the visualisation. For more
realism the obstacles in the simulation grid and a dynamic point light are included. The output
produced by the fluid simulation is a three dimensional scalar density field. Since the rendering
algorithm works with view dependent slices we use the density field directly as a 3D texture.

1. Bind the density volume texture and a frame buffer object — with to render targets— to the
rendering pipeline.

Render the scene (depth values only) to buffer 0.
Disable updating the z-buffer and enable blending.

Create slices of the simulation volume along the half vector of viewer and light.

ok wD

Loop through all slices from front to back.
a) Bind buffer 1 as shadow texture to the rendering pipeline.

b) Render and blend the slice to buffer O using the smoke density volume texture. To
render the slice, the pixel shader in Listing 4.2 is used. It interpolates the density
value at a given position in the volume and shades it using the shadow texture. An
arbitrary transfer function is used to assign a colour value to the density.

¢) Render and blend the slice to buffer 1 to determine the amount of light that is blocked
at a given point. Obstacles block the light completely. To render the slices the pixel
shader in Listing 4.3 is used. The shader looks up the density value at a given
position. If that position is within an obstacle, the opacity is set to the maximum
value to block the light completely.

6. Blend buffer O to the screen.

Ignoring shadowing simplifies the algorithm considerably. Switching buffers is not needed
anymore because buffer 1, which is needed to accumulate the shadow value, is not updated any-
more. However, shadows help to create a richer visual experience and are worth the additional
effort. Figure 4.1 shows the difference between rendering with and without shadows taken into
account.

Extending the algorithm to more than one light should be possible. An attempt worth to try
would be to render each light separately and then to blend the different images. If the lights are
close to each other it should be possible to render all of them to a single image.

28

4.5. Rendering

void fs_pass_one

(
in float3 density_pos : TEXCOORDO,
in float2 shadow_pos : TEXCOORDI1,
out floatd colour : COLOR

)

float density = tex3D(volume_data, density_pos);
float shadow = tex2D(shadow_texture , shadow_pos);

// Transfer function
float ¢ = saturate ((1.0f — density) * 0.8f + 0.2f);

// Pre—weighted colour
¢ x= density;

// Final colour
colour.xyz = float3(c, c, c¢) * saturate((1.0f — shadow * 0.75f) * 0.8f + 0.2f);
colour.w = density;

Listing 4.2: Shader to render the eye buffer

void fs_pass_two

(
in float3 texcoord : TEXCOORDO,
out floatd colour : COLOR
)
{
float density = tex3D(volume_data, texcoord);
float obstacle = tex3D(obstacles_texture , texcoord);

if (obstacle < 0.95f)

colour = float4 (density , density , density , density);
else

colour = float4(1.0f, 1.0f, 1.0f, 1.0f);

Listing 4.3: Shader to render the shader buffer

(a) With self shadowing (b) Without self shadowing

Figure 4.1.: Difference between taking self shadowing into account or not

29

4. Real-time Algorithm

4.6. Viewer

5] Wavelet Turbulence Fluid Viewer (=] E S

File Simulstion Demo

Settings
Simulation | Moise
Size X: 2 |
Size Y: 2 [
Size Z: 2 |5
Scale Grid: 4
Buoyancy: 0.100
Heat Diffusion: 2001000
Vorticity Eps: 2,000

Dissipation: 1.000

Smoke Simulation Memory Needs: 4000 KB

Noise Generation Memory Needs: 81920 KB

Change Simulation Settings

Figure 4.2.: Viewer

To test and demonstrate the interactive simulation pipeline we developed a simple viewer (Fig-
ure 4.2). It is platform independent and runs on Windows, Linux and MacOS X using Trolltechs
Qt framework. The viewer

e allows changing the simulation parameters.

e supports human interaction by letting the user place smoke inlets in the simulation vol-
ume.

e supports interaction of static and dynamic obstacles with the simulation.

e supports capturing image sequences of a running simulation.

30

4.6. Viewer

4.6.1. Examples Of User interaction

In this section we demonstrate two ways of user interaction with the simulation — dynamic
obstacles and drawing. Figure 4.3 shows a spherical obstacle, which is thrown in the simulation.
The smoke particles are pushed away from the obstacle as soon it is near enough.

Figure 4.3.: Obstacles interacting with the fluid

Figure 4.4 shows how the user can add smoke inlets into the simulation.

Figure 4.4.: Adding custom smoke inlets

31

4. Real-time Algorithm

32

Resulis

Figure 5.1 shows the difference between a standard fluid simulation (Figure 5.1(a)) using the
method of [FSJO1] and the Wavelet Turbulence (Figure 5.1(b)) method by [KTJGOS8]. In later
one much smaller eddies are visible. The grid in the rigth Figure is scaled by a factor of 4,
which allows two octaves of noise to be added.

(a) Standard Fluid Simulation (b) Wavelet Turbulence

Figure 5.1.: Comparison of the fluid simulation with the Wavelet turbulence method.

33

5. Results

5.1. Benchmark

The scene used for the benchmarks is shown in Figure 5.2. It shows a common scenario with a
smoke producer on the ground and an obstacle in the middle. No forces apart from the buoyancy
force act on the densities. If nothing else is stated the benchmark scene has a sphere in the
middle. The grid for the underlying simulation has 32% nodes and 128° nodes for the small
scale details. Two octaves of noise are added to create the small scale details.

Figure 5.2.: Benchmark scene (32x32x32 grid, 4x amplify, 2 noise octaves)

The system for the benchmark runs was equipped with an Intel Core2 Quad Q6600 running at
2.4 GHz and a NVIDIA 8800 GTX as graphics card. The computer was setup with Microsoft
Windows XP SP2 running the beta version of CUDA 2.0 with the experimental driver version
177.35. For comparison and demonstration purposes a second system was used; a HP 8510w
laptop equipped with a NVIDIA Quadro FX 570M graphics card and the Intel Core2 Duo T9300
running at 2.5 GHz. The system was running Microsoft Windows Vista using the experimental
driver version 177.35. Any further reference to these systems is done using either the graphics
chip name or the processor identifier. Table 5.1 lists the difference between the graphics chips.

Quadro FX 570M | 8800 GTX
Streaming Multiprocessors 4 16
Shader Core Speed 950 MHz 1350 MHz
Memory Interface 128 bit 384 bit
Memory Bandwidth 22.4 GB/s 86.4 GB/s

Table 5.1.: Comparison of CUDA devices

34

5.2. Performance
5.2. Performance

This section covers the performance characteristics of the different parts of the simulator and
the viewer. We show that the noise evaluation algorithm — our main target to optimisation —
uses only a small fraction of the whole simulation time. Later in this section we show how the
rest of the simulation pipeline performs.

5.2.1. Noise Evaluation

The whole application is more like a test suite and prototype for the noise evaluation, which can
be decoupled from the actual simulation and used easily in other applications. This section con-
tains the performance numbers of this core method. We mesured the performance of the noise
evalution algorithm optimised as described in Section 4.3.2. As [KTJGO8] showed that the al-
gorithm scales well with the number of CPUs that are used for the simulation. Figure 5.3 shows
the relative performance of the noise evaluation algorithm running on different hardware. The
base line is the CPU implementation running on the Intel Core2 Quad Q6600. It is interesting
to note that the performance scales well with the number of Streaming Multiprocessors.

FX570M

8800 GTX

1 6 11 16 21 26 31 36 41 46
Relative Speedup to Q6600

Figure 5.3.: Noise evaluation speedup on the GPU compared to the CPU

10000
1000

100

Frames per Second

0 50 100 150 200 250 300

Grid Nodes per Dimension

Figure 5.4.: Noise evaluation performance: Amplification

In Figure 5.4 the cubic trendline shows that the noise evaluation performs as expected with
respect to resolution. The setting is the same as in Figure 5.2 with the difference that the

35

5. Results

resolution generated velocity field varies. A 323 velocity field is scaled up and two noise octaves
are added. The vertical axis shows the number of generated fields per second. The scale is
logarithmic to keep the results of the higher resolutions visible.

From a practical point of view any resolution beyond 128? is not recommended for real-time
settings. Still the speed is adequate enough to enable high resolution fluid simulations in offline
contexts. The picture looks a lot different when we compare different number of noise octaves.
Depending on the amplification a the number of octaves that are meaningful is log, a (see
Section 2.2.4). To reduce the impact on the runtime we can choose not to use the maximum
number of octaves but a lower one. Figure 5.5 shows that the method scales linearly with the
number of octaves. This result is expected because the noise evaluation method has constant
running time.

0.06
0.05
0.04

0.03 —
0.02 _—

0.01 /
0 —

0 1 2 3

Time [s]

Number Noise Octaves

Figure 5.5.: Noise evaluation performance: Octaves

Pre-Evaluated Noise Using the pre-evaluation technique mentioned in Section 4.3.3 the
performance penalty for generating noise is almost zero. The algorithm reduces to scaling
up the velocity field and adding velocity noise from a lookup table. Pre-evaluation reduces
the runtime costs of the noise evaluation method by another factor of 12. For most real-time
environments this method is accurate and fast enough to generate the small scale details.

5.2.2. Application

Our initial goal was to create an interactive application using the proposed method. Speedup
in the noise evaluation allowed us to try to implement the whole pipeline in real-time. The
benchmark scene is running with 9 frames per second. Throughout this section we show how
much time is spent on the different parts of the simulation.

As can be seen from Figure 5.6 the simulation uses about 70% of the whole runtime. As will be
shown below the rendering costs are high because of technical limitations.

Simulation Following Figure 5.7 the simulation step can be decomposed into 4 steps. First
we need to add the new inlet and transfer the data to the GPU. Second we do a step in the fluid

36

5.2. Performance

m Simulation
m Rendering
0 0.02 0.04 0.06 0.08 0.1 0.12

Time [s]

Figure 5.6.: Application performance using the renderer with shadows enabled

simulation. In the third step we scale up the velocity field and create the Wavelet Turbulence.
In the fourth and last step we need to transfer the density values to the CPU memory to create
the volume texture for rendering.

P e e e e

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

®Add Inlet ®Fluid Simulation Wavelet Turbulence ® Transfer Data to Host

Figure 5.7.: Simulation Performance

With a better rendering pipeline steps 1 and 4 could be almost eliminated, because it would be
possible to keep the density values on the GPU only. This is a topic for future work.

Rendering The complexity of the rendering algorithm has two sources. After the simulation
step the density values are in host memory. The renderer first has to create a 3D texture from
the smoke density values. For it is not possbile to write to an OpenGL volume texture from
CUDA we have to take this detour through the host memory. For a visualisation grid of size
1283 creating the volume texture takes a significant amount of time.

Without Shadows
With Shadows

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

m Texture Creation

M Rendering

Time [s]

Figure 5.8.: Rendering Performance

Figure 5.8 show a result that is very difficult to explain. While the workload roughly doubles
when shadows are enabled the slowdown is much higher. The rendering is implemented using
off-screen buffers. With the recent release of OpenGL 2.0 [SWNDO35] it is possible to per-
form fast off-screen rendering. So called frame buffer objects (FBO) do not suffer from the
performance penalties of older approaches (like Copy-To-Texture, or Render-To-Pixel-Buffer-
Object).

Rendering to different buffers of one FBO is still very expensive, which makes the algorithm
in [IKLLHO4] not practical for real-time rendering setting other than this prototype. Removing
the rendering code completely and only leaving the buffer switches active, does not change the

37

5. Results

performance characteristics significantly. This leads to the conclusion that the buffer switches
themselves are the expensive part. Currently we know of no solution to this problem other than
hope for a better driver release by NVIDIA.

5.3. Memory requirements

The memory requirements can be split in three parts. The first set of memory fields is used to
store the noise tiles. Depending on the implementations we employ (the different versions were
explained in Section 4.3.2) the required amount of memory varies from 16 MB to 32 MB for a
1283 noise tile.

The second part consists of the fields required for generating the velocity field. The input to the
velocity generation algorithm and the energy calculation are 10 low resolution fields (6 - 4 bytes
per element, 2 - 16 bytes per element, 2 - 1 byte per element). This sums to a total of 58 bytes per
node in the low resolution grid. Our benchmark in Figure 5.2 has a 323 simulation grid, which
consumes 1.8 MB memory.

The third part contains the fields necessary for the density advection. They do not belong to the
noise evaluation itself, but are part of the rendering. The fields include the density field and the
high resolution velocity field. The velocity field needs 3-4 bytes per element. The MacCormack
advection needs 3 buffers, and 2 textures to speed up random memory access (5 - 4 bytes per
element). For a scene with 128° nodes this results in a memory consumption of 64 MB. If we
would only use a normal Semi-Lagrange advection we would only need 1 buffer and 1 texture,
thus cutting the memory requirements to one third for the advection.

38

5.4. Visual Quality

5.4. Visual Quality

This section looks at the results of our implementation from a pure optical perspective.

5.4.1. Number Of Noise Octaves

Section 2.2.4 describes how to determine the maximal number of noise octaves, which have an
effect on the simulation. Within the range [0, ¢,,q.] C Ny the user is free to apply any number of
octaves. The more noise octaves are applied to the velocity field the richer the visual experience
is. The most difference and thus the “cheapest” noise band with respect to quality improvement
is the first one. With every further octave eddies shrink in their size by a factor of two, thus the
costs per detail grow.

(a) 0 Octaves (b) 1 Octaves (c) 2 Octaves

Figure 5.9.: Benchmark scene with different number of noise octaves.

5.4.2. Noise Tile Size

To avoid repetitions in the generated noise a sufficiently large noise tile has to be used. We
have used a 1283 noise tile, which is oversized for most real-time applications. Considering the
memory and computation needs of the rest of the algorithms, the size of the fine grid is limited
to 128 or 256 elements per dimension. For this size it is sufficient to use a 643 noise tile, which
reduces the memory space needed by a factor of 8. If the scene is turbulent enough (through
obstacles) even smaller noise tiles are useable, because repetitions in the noise evaluation are
less visible.

5.4.3. Pre - Evaluated Noise

The simulation using pre-evaluated noise does not look the same as using noise evaluation (even
using the same noise tile). But it looks plausible enough to be a useful method. Figure 5.10
shows a side by side comparision of the benchmark scene using pre-evaluated noise. The top
row shows the simulation using runtime noise evalution while the bottom row uses pre-evaluated

39

5. Results

Figure 5.10.: Benchmark scene using pre-evaluated noise

noise. Comparing the runtime evaluation method and the pre-evalated noise, the average error
per element is in the order of 1073, which is acceptable for visual plausibility.

40

5.4. Visual Quality

5.4.4. Advection

(a) Semi Lagrange Advection (b) Mac Cormack Advection

Figure 5.11.: Advection Methods

Figure 5.11 shows the difference between using a simple Semi-Lagrange advection step (5.11(a))
and more expensive Mac Cormack advection step (5.11(b)). Semi-Lagrange advection blurs
out many of the interesting high frequency details. Thus if the resources are available, Mac
Cormack advection is preferable. As explained in 4.4 the Semi-Lagrange advection needs a
memory copy from linear memory to texture memory, which make the advection step expen-
sive. As can be seen in Figure 5.12 the advection performance is proportional to the number of
elements. The Mac Cormack advection is roughly about three times more expensive than the
Semi-Lagrange advection.

0.09
0.08)
0.07
0.06
Z 005 el
£ 0.04
=
0.03 //I’
0.02 _—
0.01 4.—_‘_.4_{:./7—/
0 - S T T T T T
32 64 96 128 160 192 224 256
Resolution
——Semi Lagrange -@-Mac Cormack

Figure 5.12.: Advection Performance

41

5. Results

42

Conclusion and Outlook

We have demonstrated that it is possible to perform highly detailed interactive smoke sim-
ulations using a modified version of the approach described in [KTJGO08] implemented with
CUDA. Although the simulation itself with high frame rates, the memory needs are too high
for most real-time environments at the moment. On the other hand the method is well suited to
enhance fluid simulations in movies, where the rendering time per frame is also a crucial part
of the whole production time.

Fluid simulations on a grid only basis have to update values on the whole simulation domain,
even if no density particles are present. Separating large and small scale detail enables us to
do a full grid only simulation on the large details. To track the density values and the small
scale details, it is also possible to use particles. Although a large quantity of particles is needed,
they could be beneficial with the current API. Dynamically creating 3D textures each frame
is very expensive because the interaction between CUDA and graphics APIs is limited to 2D
resources. For the particles, the interaction could use a 1D vertex buffer. Because the velocities
are recomputed each frame, we only need to store the position of each particle. Taking a 128°
grid as an example we can pack over 5 million particles into the same memory space.

In addition the implementation has some space for improvements. Most importantly, one part
of the algorithm (the animated texture coordinates) was not implemented. This additional ani-
mation would further enhance the visual appeal. The implementation involves two steps:

e Advect each dimension of the texture coordinates.
o Take the Jaccobian at each node (3x3 matrix) and calculate its Eigenvalues.

The advection is easy to do. Calculating the Eigenvalues should also be well suited for the GPU.
A 3x3 system can be solved directly and allows the GPU to well utilise the floating point math
performance.

43

6. Conclusion and Outlook

As easy as the simulation scales to multiple CPUs it should scale to multiple CUDA devices.
Using particles the method scales almost trivially, where each device updates a partition of the
particle buffer. With our method based on advected density fields it is more complex to use
multiple CUDA devices. Each device would contribute to a separate part of the simulation
volume. For the advection the density field has to be present on all of the devices. Limiting
the magnitude of the velocities though would allow us to synchronise only small portions of the
whole field and save expensive memory bandwidth.

44

Source Code

A.1. Wavelet Decompostion

This section contains the full source code listings of the CUDA code used for the Wavelet
decomposition.

__constant__ float aCoeffs[32] = {
0.000334f,—0.001528f, 0.000410f, 0.003545f,—0.000938f,—0.008233f, 0.002172f, 0.019120f,
—0.005040f, —0.044412f, 0.011655f, 0.103311f,—0.025936f,—0.243780f, 0.033979f, 0.655340f,
0.655340f, 0.033979f,—0.243780f,—0.025936f, 0.103311f, 0.011655f,—0.044412f, —0.005040f ,
0.019120f, 0.002172f,—0.008233f,—0.000938f, 0.003546f, 0.000410f,—0.001528f, 0.000334f

__device__ inline void cuda_energy_downsample(float* to, const floatx from, int i, int n, int stride)

{

const floatx const aCoCenter= &aCoeffs[16];

0.0f;

float result =
=2 % i— 16; k <2 % i+ 16; k++)

for (int k
{
// handle boundary
float fromval;

if (k<0) {

fromval = from[0];
} else if(k>n—1) {

fromval = from[(n—1) * stride];
} else {

fromval = from[k * stride];

}

result += aCoCenter[k — 2%i] * fromval;

}

to[i * stride] = result;
}
Listing A.1: Generic Downsampling Kernel
extern "C" __global__ void cuda_energy_downsample_x
(
floatx to,

const floatx from,
const dim3 res

__shared__ float cache[256];

45

A. Source Code

int x = threadldx.x;
int y = blockldx.xxblockDim.y+threadldx.y;
int z = blockldx.yxblockDim.z+threadldx.z;

const int index =y % res.X + z * res.Xx * res.y;
cache[threadldx.y * res.x + threadldx.x] = from[index + x];

cache[threadldx.y * res.x + res.x / 2 + threadldx.x] = from[index + res.x / 2 + x];
__syncthreads ();

cuda_energy_downsample(&to[index], &cache[threadIldx.y = res.x], x, res.x, 1):
}
extern "C" __global__ void cuda_energy_downsample_y
(
floatx to,
const floatx from,
const dim3 res
)
{
int x = threadldx.x;
int y = blockIdx.xxblockDim.y+threadldx.y;
int z = blocklIdx.yxblockDim.z+threadldx.z;
const int index = X + z * res.Xx x res.y;
cuda_energy_downsample(&to[index], &from[index], y, res.y, res.x);
}
extern "C" __global__ void cuda_energy_downsample_z
(

floatx to,
const floatx from,
const dim3 res

int x = threadldx.x;
int y = blockldx.xxblockDim.y+threadldx.y;
int z = blockldx.yxblockDim.z+threadldx.z;

const int index = X + y * res.x;
cuda_energy_downsample(&to[index], &from[index], z, res.z, res.x * res.y);

Listing A.2: Direction-specific Downsampling Kernels

__constant__ float pCoeffs[4] = { 0.25f, 0.75f, 0.75f, 0.25f };

__device__ void cuda_energy_upsample(float xto, const float xfrom, int i, int n, int stride)

{
const float xconst pCoCenter = &pCoeffs[2];

float result =
for (int k = i
{

0.0f;
/ 2, k<=1 / 2+ 1; k+4)
// handle boundary
float fromval;
if (k>n/2) {
fromval = from[(n/2) % stride];
} else {
fromval = from[k % stride];

}

result += pCoCenter[i — 2 % k] * fromval;

}

to[i * stride] = result;

}
Listing A.3: Generic Upsampling Kernel

extern "C" __global__ void cuda_energy_upsample_x
(

floatx to,

const floatx from,

const dim3 res
)

__shared__ float cache[128];

int x = threadldx.x:

int y = blockIdx.xx*blockDim.y+threadldx.y;
int z = blockIdx.yx*blockDim.z+threadldx.z;

const int index =y * res.Xx + z * res.x * res.y;

cache[threadldx.y = blockDim.x + threadldx.x] = from[index + x];
__syncthreads ();

cuda_energy_upsample(&to[index], &cache[threadldx.y x blockDim.x], x, res.x, 1);

46

A.2. Velocity Noise Generation

extern "C" __global__ void cuda_energy_upsample_y
(

floatx to,

const floatx from,

const dim3 res

)
{
int x = threadldx.x;
int y = blockIdx.xx*blockDim.y+threadldx.y;
int z = blockIdx.yx*blockDim.z+threadldx.z;
const int index = X + z * res.x * res.y;
cuda_energy_upsample(&to[index], &from[index], y, res.y, res.x);
}
extern "C" __global__ void cuda_energy_upsample_z
(
floatx to,
const floatx from,
const dim3 res
)

int x = threadldx.x;
int y = blockIdx.xxblockDim.y+threadldx.y;
int z = blockIdx.yx*blockDim.z+threadldx.z;

const int index = X + y * res.x;
cuda_energy_upsample(&to[index], &from[index], z, res.z, res.Xx * res.y);

Listing A.4: Direction-specific Upsampling Kernels

A.2. Velocity Noise Generation

This section contains the full source code listings of the CUDA code used for the vector noise
evaluation and the Wavelet Turbulence generation.

template<char X, int N, int M>

__device__ inline float vulcanus_noise_derivative_weight(const float t)
{
if (X=="x"&& N==20) Il X=="y &N==1) Il (X=="2" & N == 2))
{
if M == 0)
return t;
else if M == 1)
return 1.0f — 2.0f % t;
else
return t — 1.0f;
}
else
{
if M==0)

return t x t x 0.5f;
else if M == 1)
return 0.5f + t — txt;
else
return 0.5f — t + 0.5f * t % t;

}

template <typename T>

__device__ float3 vulcanus_vectornoise_evaluate

(
texture<T, 3, cudaReadModeNormalizedFloat> noise ,
const float p[3]

)

float ext = 1.0f / (float) NOISE_TILE_SIZE;

float midX
float t0

midX —= 1.0f;
midX *= ext;

ceil (p[0] — 0.5f);
midX — (p[0] — 0.5f);

float midY = ceil(p[1] — 0.5f);
float tl = midY — (p[l] — 0.5f);
midY —= 1.0f;

midY *= ext;

float midZ = ceil(p[2] — 0.5f);
float t2 = midZ — (p[2] — 0.5f);
midZ —= 1.0f;

midZ *= ext;

47

A. Source Code

float3 v;

v.x = 0.0f;
v.y = 0.0f;
v.z = 0.0f;

for (int k = 0; k < 3; k++, midZ += ext)
{

float w2_x = (k == 0) ? vulcanus_noise_derivative_weight<’x’, 2, 0>(t2)
(k == 1) ? vulcanus_noise_derivative_weight<’x’, 2, 1>(t2)
vulcanus_noise_derivative_weight<’x’, 2, 2>(t2);
float w2_y = w2_x;
float w2_z = (k == 0) ? vulcanus_noise_derivative_weight<’z’, 2, 0>(t2)
(k == 1) ? vulcanus_noise_derivative_weight<’z’, 2, 1>(t2)
vulcanus_noise_derivative_weight<’z’, 2, 2>(t2);
for (int j = 0; j < 3; j++, midY += ext)
{
float wi_x = (j == 0) ? vulcanus_noise_derivative_weight<’x’, 1, 0>(tl)
(j == 1) ? vulcanus_noise_derivative_weight<’x’, 1, 1>(tl)
vulcanus_noise_derivative_weight<’x’, 1, 2>(tl);
float wl_y = (j 0) ? vulcanus_noise_derivative_weight<’y’, 1, 0>(tl)
(j 1) ? vulcanus_noise_derivative_weight<’y’, 1, I>(tl)
vulcanus_noise_derivative_weight<’y’, 1, 2>(tl);
float wl_z = wl_x;
for (int i = 0; i < 3; i++, midX += ext)
{
// Read the noise texture
float4 n = tex3D(noise, midX, midY, midZ);
float wO_x = (i == 0) ? vulcanus_noise_derivative_weight<’x’, 0,
(i == 1) ? vulcanus_noise_derivative_weight<’x’, 0,
vulcanus_noise_derivative_weight<’x’, 0,
float wO_y = (i == 0) ? vulcanus_noise_derivative_weight<’y’, 0,
(i == 1) ? vulcanus_noise_derivative_weight<’y’, 0,
vulcanus_noise_derivative_weight<’y’, 0,

float w0_z = wl_y;

// Decompress noise
n.w= 1.0f / n.w;

n.x = (n.x — 0.5f) % n.w;
n.y = (n.y — 0.5f) * n.w;

n.z = (n.z — 0.5f) % n.w;

// Calculate the final weights
float w_x = wO_x * wl_x * w2_x;
float w_y = wO_y * wl_y % w2_y;
float w_z = wO_z *x wl_z x w2_z;

// Add the weighted noise
V.Z += n.y * W_X;

V.y —=N.zZ * W_X;
V.Z —= N.X * W_y;
V.X += N.Z * W_y;
V.Y += D.X * W_Z;
V.X —=n.y * W_z;

}
midX —= 3.0f * ext;

}
midY —= 3.0f * ext;

}

return v;

0>(t0)
1>(t0)
2>(t0);

0>(10)
1>(10)
25(10):

Listing A.5: Vector noise evaluation

// Vector noise input
texture<ushort4 , 3, cudaReadModeNormalizedFloat> tex_noise;

// Coarse input data

texture <float2 , 3, cudaReadModeElementType> tex_small_eigen;

texture <float4 , 3, cudaReadModeElementType> tex_small_velocity_energy;
texture <float4 , 3, cudaReadModeElementType> tex_small_tex_coord;

texture <unsigned char., 3, cudaReadModeNormalizedFloat> tex_small_obstacles;

extern "C" __global__ void cuda_noise_inject

(
float inv_amplify , // Inverse amplification (small to large grid)
float inv_noise_scale, // Noise scale factor (inverted)
int nr_octaves , // Number noise octaves to use
float noise_culling_threshold , // Threshold where to cull noise bands
float noise_strength , // Noise strengh
float persistence , // Magic constant
float3 noise_animation_offset, // Noise animation offset
floatx velocity_x , // Velocity field (x component)
floatx velocity_y , // Velocity field (y component)
floatx velocity_z , // Velocity field (z component)

48

dim3
dim3

const
const
const

it (0

A.2. Velocity Noise Generation

high_res , // Resolution of the fine grid
low_res // Resulution of the coarse grid
int i = threadldx.x;

int j = blocklIdx.xxblockDim.y+threadldx.y;

int k = blockIdx.yxblockDim.z+threadldx.z;

< i &% i < high_res.x — 1 && 0 < j & j < high_res.y — 1 && 0 < k && k < high_res.z — 1)

// Fetch the obstacle ,
const float obstacle =

velocity and energy from the coarse grid (linear interpolation)
tex3D (tex_small_obstacles ,
i % inv_amplify + 0.5f,
j = inv_amplify + 0.5f,
k * inv_amplify + 0.5f);
float4 velocity_energy = tex3D(tex_small_velocity_energy,
i * inv_amplify + 0.5f,
j = inv_amplify + 0.5f,
k * inv_amplify + 0.5f);
float3 velocity;
velocity .x = velocity_energy .x;
velocity .y = velocity_energy.y;
velocity .z = velocity_energy.z;

// Create the texture coordinates.
// Multiply the texture coordinate by 2 x low_res so that it creates
// vortices half the size of a coarse grid cell
float3 tex_coords = make_float3(
(float) i * inv_amplify = 2.0f % inv_noise ale ,
(float) j * inv_amplify * 2.0f x inv_noise_scale,
(float) k * inv_amplify = 2.0f % inv_noise_scale
)i

// Compute the Wavelet
float coefficient =

energy on the highest level
sqrtf (2.0f * fabs(velocity_energy.w));

// Base amplitude for octave 0
float amplitude = fabs(noise_strength % coefficient) % persistence;

if (amplitude > noise_culling_threshold && obstacle <= 0.95f)

{

for (int octave = 0; octave++)

{

octave < nr_octaves;

// Animated by shifting in space over time

tex_coords.x +
tex_coords.y +
tex_coords .z +

const float pos[3] = {

noise_animation_offset.x,
noise_animation_offset.y,
noise_animation_offset.z };

float3 noise_velocity = vulcanus_vectornoise_evaluate <ushort4 >(tex_noise , pos);
// Multiply the vector noise times the maximum allowed

// noise amplitude at this octave and add it to the total

velocity .x += noise_velocity .x % amplitude;

velocity .y += noise_velocity.y * amplitude;

velocity .z += noise_velocity.z % amplitude;

// scale coefficient for next octave
amplitude *= persistence;

// Double the texture coordinate scaling in
// for the next octave, effectively halving
// vortices that will be produced
tex_coords.x *= 2.0f;

tex_coords.y x= 2.0f;

tex_coords.z *= 2.0f;

preparation
the size of the

}

const unsigned int index = i + jxhigh_res.x + kxhigh_res.xxhigh_res.y;
velocity_x[index] = velocity.x;
velocity_y[index] = velocity.y;
velocity_z[index] = velocity.z;

Listing A.6: Wavelet turbulence generation

49

A. Source Code

A.3. Advection

This section contains the full source code listings of the CUDA code

step.

used for the advection

// Global data
texture <float , 3, cudaReadModeElementType> tex_old_field;

extern "C" __global__ void cuda_advect_semi_lagrange
(
const float dt,
const floatx velx, const floatx vely, const floatx velz,
floatx new_field ,
const dim3 res
)
{

int i = threadldx.x:

int j = blockldx.xxblockDim.y+threadldx.y;
int k = blockldx.yxblockDim.z+threadldx.z;
int index = i + jxres.x + kkres.xxres.y;

// Backtrace

float xTrace = i — dt x velx[index];
float yTrace = j — dt * vely[index];
float zTrace = k — dt % velz[index];

// Clamp backtrace to grid boundaries

xTrace = clamp(xTrace, 0.5f, res.x — 1.5f);
yTrace = clamp(yTrace, 0.5f, res.y — 1.5f);
zTrace = clamp(zTrace, 0.5f, res.z — 1.5f);

new_field[index] = tex3D(tex_old_field , xTrace + 0.5f, yTrace + 0.5f, zTrace + 0.5f);

Listing A.7: Semi-Lagrange Advection

// Global data
texture <float , 3, cudaReadModeElementType> tex_old_field;

extern "C" __global__

(

void cuda_advect_mac_cormack_merge_clamp

const float dt,

const floatx velx, const floatx vely, const floatx velz,

const floatx phiN, const floatx phiHatN, const floatx phiHatN1, floatx phiNIl,
const dim3 res

__shared__ float phi_hat_nl [MAX CUDA_THREADS];
__shared__ float phi_nl[MAX_CUDA_THREADS];

int x = threadldx.x;
int y = blockldx.xxblockDim.y+threadldx.y;
int z = blockldx.yxblockDim.z+threadldx.z;

// Index
const int index = X + y * res.X+ z * res.x*res.y;
const int tid = threadIdx.x + blockDim.xxthreadldx.y;

// phiNl = phiHatN1 + (phiN — phiHatN) / 2
phi_hat_nl1[tid] = phiHatN1[index];
phi_nl[tid] = phi_hat_nl[tid] + (phiN[index] — phiHatN[index]) = 0.5f;

if (0 <x&&x<res.x—1&&0<y&&y-<res.y—18&&0<7z&& z < res.z— 1)

{
// Velocities

const float vel_x = velx[index];
const float vel_y = vely[index];
const float vel_z = velz[index];

// Backtrace

float xTrace = x — dt * vel_x;
float yTrace — dt * vel_y;
float zTrace = z — dt * vel_z;

n
[

// See if it goes outside the boundaries
bool hasObstacle =

(zTrace < 1.0f) Il (zTrace > res.z — 2.0f) Il
(yTrace < 1.0f) Il (yTrace > res.y — 2.0f) Il
(xTrace < 1.0f) Il (xTrace > res.x — 2.0f);

float xBackward = x + dt * vel_x;
float yBackward = y + dt = vel_y;
float zBackward = z + dt = vel_z;

hasObstacle = hasObstacle |l
(zBackward < 1.0f) [l
(yBackward < 1.0f) Il
(xBackward < 1.0f) Il

(zBackward > res.z — 2.0f) |l
(yBackward > res.y — 2.0f) |l
(xBackward > res.x — 2.0f);

50

A.4. Volume Renderer

// Reuse old advection instead of doing another one...
if (hasObstacle) { phi_nl[tid] = phi_hat_nl[tid]; }
else
{
// Clamp backtrace to grid boundaries and locate neighbors to interpolate
const int x0 = (int) clamp(xTrace, 0.5f, res.x — 1.5f);
const int yO = (int) clamp(yTrace, 0.5f, res.y — 1.5f);
const int z0 = (int) clamp(zTrace, 0.5f, res.z — 1.5f);

float min_field
float max_field

3.402823466e+38F;
—3.402823466e+38F;

for (int k = 0; k < 2; k++)
for (int j = 0; j < 2: j++)
for (int i = 0; i < 2; i++)

{
const float value = tex3D(tex_old_field, x0 + i, yO + j, z0 + k);
min_field = min(value, min_field);
max_field = max(value, max_field);

}

phi_nl[tid] = clamp(phi_nl[tid], min_field, max_field);
}

phiN1[index] = phi_nl[tid];
}
else { phiNl[index] = 0.0f; }

Listing A.8: MacCormack correction and clamping

A.4. Volume Renderer

This section contains the source code for the volume renderer. The shaders used in the function
are listed in Listing 4.2 and 4.3.

void ViewAlignedSlices3D :: RenderWithShadows(const Scenex scene)
{

using namespace Unicorn:: Mathematics;

// Disable writing to the z—buffer
glDepthMask (GL_FALSE);

// Set the blend mode
glEnable (GL_BLEND);

// Bind the frame buffer

glBindFramebufferEXT (GL_FRAMEBUFFER_EXT, mFbo);
glPushAttrib (GL_VIEWPORT_BIT | GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 512, 512);

// Draw to the eye buffer
glDrawBuffer (GL_COLOR_ATTACHMENTO_EXT) ;

// Clear the buffer
glClearColor (0.0f, 0.0f, 0.0f, 0.0f);
glClear (GL_COLOR_BUFFER_BIT);

// Draw to the light buffer
glDrawBuffer (GL_COLOR_ATTACHMENTI_EXT) ;

// Clear the buffer
glClearColor (0.0f, 0.0f, 0.0f, 0.0f);
glClear (GL_COLOR_BUFFER_BIT) ;

// Create the matrix of for the light
const Camera& shadow_frustum = scene —>GetShadowFrustum ();
Matrix4x4f light_view_proj = shadow_frustum.Projection () * shadow_frustum. View ();

// Enable shader profiles
cgGLEnableProfile (CgProfileVertexShader ());
cgGLEnableProfile (CgProfileFragmentShader ());

// Create the sampling ray
AABB<float > aabb(mLower, mUpper);
bool front_to_back = true;
float cos_half_angle = 1.0f;
Ray<float> sampling_ray
= CreateSamplingRay (aabb, scene—>GetCamera (). Position (), scene—>GetLight (). Position, cos_half_angle, front_to_back);
Vector3f begin = sampling_ray.GetPointOnRay (sampling_ray.Min());
Vector3f end = sampling_ray.GetPointOnRay (sampling_ray .Max());

Vector3f plane_normal = (begin — end).Normalised ();
Vector3f view_ray = (end — begin).Normalised ();

51

A. Source Code

float length = (end — begin).Length();

// Render the slices
int nr_slices = length / (cos_half_angle % 0.01);
float slab = length / (float) (nr_slices — 1);

for (int i = 0; i < nr_slices; i++)

{
// Front to back compositing from the lights point of view
Vector3f point_on_plane = begin + view_ray = (float) i * slab;

Plane <float > plane (point_on_plane, plane_normal);

Vector3f corners[6];

int nr_corners;

if (aabb.Intersect(plane, corners, nr_corners))
{

Convex2D<float > conv(plane, corners, nr_corners);
// Pass one: Render the eye buffer

// Draw to the eye buffer
glDrawBuffer (GL_COLOR_ATTACHMENTO_EXT) ;

if (front_to_back)
{
// Front to back compositing
glBlendFunc (GL_ONE_MINUS_DST_ALPHA, GL_ONE);

// Back to front compositing
glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}

// Enable depth buffer tests
glEnable (GL_DEPTH_TEST);

// Setup the shader parameters

CGparameter param = cgGetNamedParameter (mPassOneFS, "volume_data");
cgGLSetTextureParameter (param, mVolumeTexture);

cgGLSetupSampler (param, mVolumeTexture);

param = cgGetNamedParameter (mPassOneFS, "shadow_texture");
cgGLSetTextureParameter (param, mShadowBuffer);
cgGLSetupSampler (param, mShadowBuffer);

param = cgGetNamedParameter (mPassOneVS, "eye_view_proj");
cgGLSetStateMatrixParameter (param , CG_GL_MODELVIEW_PROJECTION_MATRIX, CG_GL_MATRIX_IDENTITY);

param = cgGetNamedParameter (mPassOneVS, "light_view_proj");
cgGLSetMatrixParameterfr (param, &light_view_proj.mll);

param = cgGetNamedParameter (mPassOneVS, "aabb_min");
cgGLSetParameter3f(param, mLower.x, mLower.y, mLower.z);

param = cgGetNamedParameter (mPassOneVS, "aabb_max");
cgGLSetParameter3f(param, mUpper.x, mUpper.y, mUpper.z);

param = cgGetNamedParameter (mPassOneVS, "tex_ext");
cgGLSetParameter3f(param, mVolumeTextureExtent.x, mVolumeTextureExtent.y, mVolumeTextureExtent.z);

// Load the vertex shader
cgGLBindProgram (mPassOneVS);

// Load the fragment shader
cgGLBindProgram (mPassOneFS);

glBegin (GL_TRIANGLE_FAN);
{

glVertex3f(conv.mCenter.x, conv.mCenter.y, conv.mCenter.z);

for (int j = 0; j < nr_corners; j++)
{

glVertex3f(conv[j].x, conv[j].y, conv[j].z);

}

glVertex3f(conv[0].x, conv[O].y, conv[0].z);
}
glEnd ();
// Pass two: Update the light buffer

// Draw to the light buffer
glDrawBuffer (GL_COLOR_ATTACHMENTI_EXT) ;

// Front to back compositing
glBlendFunc (GL_ONE_MINUS_DST_ALPHA, GL_ONE);

// Enable depth buffer tests
glDisable (GL_DEPTH_TEST);

// Setup the shader parameters

param = cgGetNamedParameter (mPassTwoFS, "volume_data");
cgGLSetTextureParameter (param, mVolumeTexture);
cgGLSetupSampler (param, mVolumeTexture);

52

A.4. Volume Renderer

param = cgGetNamedParameter (mPassTwoFS, "obstacles_texture");
cgGLSetTextureParameter (param, mObstaclesTexture);
cgGLSetupSampler (param, mObstaclesTexture);

param = cgGetNamedParameter (mPassTwoVS, "light_view_proj");
cgGLSetMatrixParameterfr (param, &light_view_proj.mll);

param = cgGetNamedParameter (mPassTwoVS, "aabb_min");
cgGLSetParameter3f(param, mLower.x, mLower.y, mLower.z);

param = cgGetNamedParameter (mPassTwoVS, "aabb_max");
cgGLSetParameter3f(param, mUpper.x, mUpper.y, mUpper.z);

param = cgGetNamedParameter (mPassTwoVS, "tex_ext");
cgGLSetParameter3f(param, mVolumeTextureExtent.x, mVolumeTextureExtent.y, mVolumeTextureExtent.z);

// Load the vertex shader
cgGLBindProgram (mPassTwoVS);

// Load the fragment shader
cgGLBindProgram (mPassTwoFS);

// Render the slice
glBegin (GL_TRIANGLE_FAN) ;
{

glVertex3f(conv.mCenter.x, conv.mCenter.y, conv.mCenter.z);

for (int j = 0; j < nr_corners; j++)

{

}
glVertex3f(conv[0].x, conv[0].y, conv[0].z);

glVertex3f(conv[j].x, conv[j]l.y, conv[j]l.z);

)
glEnd ();
}

// Disable the fragment shader
cgGLDisableProfile (CgProfileFragmentShader ());

// Disable the vertex shader
cgGLDisableProfile (CgProfileVertexShader ());

// Release framebuffer
glPopAttrib ();
glBindFramebufferEXT (GL_FRAMEBUFFER_EXT, 0);

// Draw the framebuffer to the screen
glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

// Blend the volume with the screen
RenderTextureToScreen (mColourBuffer, 512, 512);

// Disable blending
glDisable (GL_BLEND);

// Enable writing to the z—buffer
glDepthMask (GL_TRUE);

Listing A.9: Volume Rendering

53

A. Source Code

54

Bibliography

[BHNO7]

[BMF07]

[CDO5]

[CLTO8]

[FSJO1]

[IKLHO04]

[KPHEO2]

[KTJGO8]

Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise for procedu-
ral fluid flow. ACM Trans. Graph., 26(3):46, 2007.

Robert Bridson and Matthias Muller-Fischer. Fluid simulation: Siggraph 2007
course notes. In SIGGRAPH ’07: ACM SIGGRAPH 2007 Courses, pages 1-81,
New York, NY, USA, 2007. ACM.

Robert L. Cook and Tony DeRose. Wavelet noise. ACM Trans. Graph., 24(3):803—
811, 2005.

Keenan Crane, Ignocio Llamas, and Sarah Tariq. Real-Time Simulation and Ren-
dering of 3D Fluids, volume GPU Gems 3, pages 633 — 675. Addison-Wesley
Professional, 2008.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke. In
SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 15-22, New York, NY, USA, 2001. ACM.

Milan Ikits, Joe Kniss, Aaron Lefohn, and Charles Hansen. Volume Rendering
Techniques, volume GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics, pages 667 — 692. Addison-Wesley Professional, 2004.

Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert. Interactive translu-
cent volume rendering and procedural modeling. In VIS ’02: Proceedings of the
conference on Visualization 02, pages 109—116, Washington, DC, USA, 2002.
IEEE Computer Society.

Theodore Kim, Nils Thiirey, Doug James, and Markus Gross. Wavelet turbulence
for fluid simulation. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages

Bibliography

[MCPNO8]

[NVIO8]

[OHL"08]

[Per85]

[SFK*07]

[SHOS]

[SRFO5]

[Sta99]

[SWNDO5]

56

1-6, New York, NY, USA, 2008. ACM.

Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and Jonyong Noh. Low vis-
cosity flow simulations for animation, 2008.

NVIDIA. Nvidia cuda compute unified device architecture programming
guide. version 2.0. http://developer.download.nvidia.com/compute/cuda/2.0-
Beta2/docs/Programming_Guide_2.0beta2.pdf, June 7 2008.

John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and
James C. Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879-899, May
2008.

Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287-296,
1985.

Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek
Rossignac. An unconditionally stable maccormack method. Journal of Scientific
Computing (in press), 2007.

Christian Sigg and Markus Hadwiger. Fast Third-Order Texture Filtering, vol-
ume GPU Gems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation (Gpu Gems), pages 313 — 317. Addison-Wesley
Professional, 2005.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle method for
smoke, water and explosions. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers,
pages 910-914, New York, NY, USA, 2005. ACM.

Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, pages 121-128, 1999.

Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL(R) Program-
ming Guide: The Official Guide to Learning OpenGL(R), Version 2 (5th Edition)
(OpenGL). Addison-Wesley Professional, 2005.

