
ETH Library

Motion Blur with point-based
rendering

Master Thesis

Author(s):
Wolf, Johanna

Publication date:
2008

Permanent link:
https://doi.org/10.3929/ethz-a-005729175

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005729175
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Motion Blur with Point-Based
Rendering

Johanna Wolf

Master Thesis
March - August 2008

Prof. Dr. Markus Gross

Analysis and Optimization of Spatial and
Appearance Encodings of Words and

Sentences

Christian Vögeli

Master Thesis
SS 2005

Prof. Dr. Markus Gross

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Master Thesis SS 2007

Dimension-Aware Ridge Detection

Introduction
Ridges are local maxima in a relaxed sense. According to Eberly, Height Ridges are the loci
with first derivative equal to zero and second derivative negative, in at least one direction
(which is per definition perpendicular to the ridge). Widely used in image analysis, e.g. in
medical imaging, there needs to be only one such direction with the mentioned condi-
tions, resulting in ridge curves. In the 3D domain, one usually chooses in advance if it is
looked for ridge surfaces (mentioned conditions in one direction) or ridge curves (men-
tioned conditions in two orthogonal directions). This decision is easily made if one knows
that the data contains only structures with circular cross-section (looking for ridge
curves) or longish cross-section (looking for ridge surfaces). However, data is often un-
known, exhibits structures that are intermediate, or exhibits both types. The goal of this
project is to develop a method that is capable of deciding automatically (with possible
parametrization by the user) which type has to be looked for at a given region.

Task / Work Packages
• Automatic decision based on eigenvalues of the Hessian, generation of the geometry
• Application of the method to synthetic test data and practical data
• Hysteresis-like mechanisms for avoiding ridges to oscillate between 1D and 2D
• Other (advanced) mechanisms for extraction control and filtering
• Possibly comparison of the results to those from Skeletonization/Medial Axis

Requirements
• C/C++ programming skills
• Sufficient mathematical skills

Remarks
A written report and an oral presentation conclude the work. The thesis is overseen by
Prof. Markus Gross and supervised by Filip Sadlo, Institute of Computational Science. For
further information or application to this project, please contact Filip Sadlo, IFW C27.1,
Tel. 632 71 44, sadlo@inf.ethz.ch.

Abstract

This thesis seeks to apply photo-realistic motion blur to point-based rendering. Its solution
is built upon EWA splatting, a technique for rendering point sampled geometry by elliptical
splat primitives with high-quality anisotropic antialiasing. We present a consistent extension of
the theoretical base in the time dimension and introduce ellipsoids with spatial and temporal
dimensionality as new rendering primitives. Specifically, the surface reconstruction kernels
are extended by a temporal dimension along the instantaneous velocity. Finally, we describe
an implementation of the entire adapted point rendering pipeline using vertex and fragment
programs of current GPUs.

i

ii

Zusammenfassung

Diese Arbeit nimmt sich zum Ziel, fotorealistisches Motion Blur auf punktbasiertes Rendering
anzuwenden. Die vorgestellte Lösung basiert auf EWA Splatting, einer Methode welche punkt-
basierte Objekte mittels elliptischer Splat Primitive rendert und hochqualitatives anisotropisches
Antialiasing erzielt. Wir stellen eine konsistente Erweiterung der zugrundeliegenden Theorie
in zeitlicher Dimension vor und führen Ellipsoide als Renderinprimitive ein, welche eine räum-
liche und zeitliche Dimension in sich vereinen. Spezifisch werden die Kernels zur Oberflächen-
rekonstruktion durch eine zeitliche Dimension entlang des Geschwindigkeitsvektors erweitert.
Desweiteren beschreiben wir eine Implementation der gesamten angepassten Punktrendering-
Pipeline unter Verwendung von Vertex- und Fragmentprogrammen gegenwärtiger GPUs.

iii

iv

Contents

List of Figures ix

List of Tables xi

1. Introduction 1
1.1. Contribution . 2

2. Related Work 5
2.1. EWA Splatting . 5
2.2. Temporal Antialiasing . 6
2.3. Commercial Software . 10

3. Core Theory 11
3.1. Screen space intensity of a motion blurred image 11
3.2. Computation of the continuous screen-time space signal 13
3.3. Representation of fc(u, t) . 14
3.4. Geometric Interpretation . 15
3.5. Extended EWA surface splatting . 16
3.6. Computation of the motion blurred screen signal 18

3.6.1. Temporal sampling of g′c(x, t) . 18
3.6.2. Temporal sampling of Pk(t) . 18
3.6.3. Continuous Temporal Reconstruction 20
3.6.4. Reference Implementation . 22

4. Rendering Algorithms 25
4.1. Multipass Algorithm . 25

v

Contents

4.1.1. 2D splats . 25
4.1.2. Volumetric kernels . 27

4.2. Kernel rasterization . 31
4.2.1. 2D splats . 32
4.2.2. Volumetric kernels . 32
4.2.3. EWA Approximation . 35

4.3. Temporal supersampling . 36
4.4. Time bucketing . 37
4.5. Reference implementation . 37
4.6. Animation framework . 38

5. Results 41

6. Conclusion and Outlook 45
6.1. Summary . 45
6.2. Future Work . 45

A. Accompanying CD Contents 47
A.1. Application executables . 47

A.1.1. Motion Blur Splatting . 47
A.1.2. Reference Implementation . 47

A.2. Implementation source code . 48
A.3. Thesis PDF . 48

B. Implementation Overview 49
B.1. Motion Blur Splatting . 49

B.1.1. Class: GLSplat . 49
B.1.2. Frame buffers . 50
B.1.3. Class: GLState . 50
B.1.4. Class: Spline . 50
B.1.5. Shaders . 50

B.2. Reference Implementation . 52
B.2.1. Class: MainApp . 52
B.2.2. Class: Scene . 52
B.2.3. Class: Animation . 52
B.2.4. Class: SceneObject . 53
B.2.5. Class: QMCSampler . 53

C. Ellipsoid axes computation 55
C.1. 3D Gaussian function . 56
C.2. General elliptical splats . 58
C.3. Simplified case: circular 2D splats . 60

C.3.1. Degenerate case: Velocity vector coincides with 2D surface splat plane 61
C.3.2. Degenerate case: Velocity vector length equals zero 62
C.3.3. Special case: Velocity vector parallel to splat normal 62

C.4. Footprint function of a volumetric kernel . 62
C.5. Attribute functions of a volumetric kernel projected to screen 64

vi

Contents

C.6. Source point on 2D splat . 65

Bibliography 66

vii

Contents

viii

List of Figures

2.1. Classification of previous work on temporal antialiasing 7

3.1. Temporal weighting function . 13
3.2. Sampling pulse field . 14
3.3. Continuous surface reconstruction . 15
3.4. Time-space volume of a surface reconstruction kernel 16
3.5. Temporal sampling of the screen-time volume 18
3.6. Temporal sampling of the space-time volume 19
3.7. Temporal change of the visibility function . 20
3.8. Volumetric kernel . 20

4.1. Coordinate system transformation sequence 25
4.2. Three pass algorithm for 2D splats . 26
4.3. Three pass algorithm for volumetric kernels 27
4.4. Deferred shading problem . 28
4.5. Depth test for volumetric kernels . 29
4.6. Attribute and visibility blending . 30
4.7. Visibility for volumetric kernels (same time instant) 31
4.8. Visibility for volumetric kernels (different time instant) 31
4.9. EWA antialiasing comparison . 36
4.10. EWA filter approximation . 37
4.11. Scene xml file . 39

5.1. Results: Wasp . 42
5.2. Results: Octopus . 43
5.3. Results: Ammonites . 44

ix

List of Figures

C.1. Computation of the orthogonal ellipsoid axes e0, e1 and e2. 55
C.2. Construction of the 3D Gaussian kernel . 56
C.3. Shortest ellipsoid axis . 60
C.4. Calculation of the minimum direction. 60
C.5. Intersection of the viewing ray with a 3D Gaussian 63
C.6. Determining the attribute function at a screen location 64
C.7. Source point calculation . 65

x

List of Tables

3.1. Notation . 12

5.1. Result measurements . 43

B.1. Visibility pass shaders . 50
B.2. Attribute pass shaders . 51
B.3. Normalization pass shaders . 51

C.1. Ellipsoid axes computation: Notation . 56

xi

List of Tables

xii

1
Introduction

Motion blur denotes the visual effect that appears in still images or film sequences when objects
moving with rapid velocity are captured. The image is perceived as smeared or blurred along
the direction of relative motion to the camera. The reason for this is that the image taken by
a camera does not represent a single instant of time, but in fact an integration of the incoming
light over the period of exposure. This appears natural because the human eye behaves in much
the same way.

In computer animation, however, each rendered frame displays a perfect instant in time. Due
to this, the motion in the image sequence will be perceived as staggered or even incorrect if
the frame rate falls below a certain number of frames per second. In other words, temporal
aliasing occurs if the temporal sampling rate does not meet the Nyquist frequency of the screen
space signal of the captured scene. If motion blur is applied on the other hand, these disturbing
artifacts are alleviated and the sequence will appear realistic and continuous at the same frame
rate. Similarly, in contrast to instantaneous still images, a motion blurred image gives the viewer
hints about the ongoing motion and adds a sensation of dynamicism.

Therefore, the simulation of motion blur effects results in a method for temporal antialiasing.
It seeks to reduce or completely remove the effects of insufficient temporal sampling by either
supersampling, that is, producing frames as a composite of many time instants which are sam-
pled below the displayed frame rate. Or - which is theoretically more rectified and therefore to
be preferred - the incoming signal is bandlimited before sampling to guarantee that its Nyquist
frequency is met. To the commonly used approximations of the motion blur effect count tech-
niques such as image space post-processing, geometric deformations or blending of temporal
supersamples.

On the other hand, because of their conceptual simplicity and superior flexibility, point-based
geometries have evolved into a valuable alternative to surface representations based on polygo-

1

1. Introduction

nal meshes. 3D scanning devices often produce huge volumes of point-sampled surface data that
are difficult to process, edit and visualize. Instead of reconstructing consistent triangle meshes
or higher order surface representations from the acquired data, point-based approaches work
directly with the sampled points without requiring the computation of connectivity information
or imposing topological manifold constraints or requirements on the sample distribution. Point
rendering is particularly interesting for highly complex models, whose triangle representation
requires millions of tiny primitives. The projected area of those triangles is often less than a
few pixels, resulting in inefficient rendering because of the overhead for triangle setup and the
rasterization stage becomes a bottle-neck. Point-based methods have proven to be efficient for
processing, editing and rendering such data [RL00].

Well-established among these methods is the technique of surface splatting [ZPvBG01] which
allows for rendering high-quality images of geometric objects that are given by a sufficiently
dense set of sample points. The idea is to approximate local regions of the surface by planar
ellipses in object space and then render the surface by accumulating and blending these ellipses
in image space. From the geometric point of view, the set of ellipses defines a piecewise lin-
ear approximation of the given geometry, and the size and aspect ratio of the ellipses depend
on the local principal curvatures (and the approximation tolerance prescribed by the user). To
achieve high-quality anti-aliasing capabilities surface splatting is in general applied with the
sophisticated elliptical weighted average (EWA) filtering which has been introduced by Heck-
bert [Hec89] in the context of texture mapping. The rendering algorithm basically represents
the surface splats by elliptical Gaussian kernels and projectively maps them to image space.
Before sampling at the pixel grid locations, the projected kernels are combined with a low-pass
filter such that most sampling artifacts such as holes or aliasing can be effectively avoided.

Since the publication of the original software-based EWA splatting [ZPvBG01], several authors
tried to map this technique to the GPU in order to exploit hardware acceleration. Due to the
lacking support for splat primitives, these methods always have to find a trade-off between ren-
dering quality and rendering performance. With the current generation of graphics processors,
however, it is now possible to control a large part of the rasterization process [BHZK05].

This thesis seeks to apply motion blur to point-based rendering and will be structured as follows:
First, Chapter 2 discusses previous work on related issues, Chapter 3 derives the theoretical basis
of our proposed method and Chapter 3.6.4 describes the applied rendering algorithms. Chapter
4.6 presents results and performance measurements and Chapter 5 concludes the thesis.

1.1. Contribution

We extend the conceptional basis of the EWA splatting framework in a consistent way to math-
ematically represent motion blurred images. We achieve this by replacing the 2-dimensional
Gaussian kernels which continuously reconstruct the point-sampled surface by 3-dimensional
Gaussian kernels which unify a spatial and temporal component. By use of these the scene can
be reconstructed continuously in space as well as time. The derived result naturally fits into
the EWA splatting algorithm such that the final image can be computed as a weighted sum of
warped and band-limited kernels. Accordingly, we implement the derived solution by means
of a 3-pass rendering algorithm with strong parallels to the original 2D splatting algorithm.

2

1.1. Contribution

We discuss the introduced approximations and their effect on image quality and rendering per-
formance. Furthermore, we compare the visual quality of these approaches with ground truth
images generated by ray-tracing and investigate on rendering performance.

3

1. Introduction

4

2
Related Work

In this chapter we briefly review the most essential work on EWA splatting and previous ap-
proaches to motion blur. For a more detailed discussion on point-based rendering topics the
reader is referred to [Poi07].

2.1. EWA Splatting

This thesis is based on the concept of resampling filters as introduced by Heckbert in his ground-
breaking work on texture mapping [Hec89]. Resampling filters unify a Gaussian reconstruction
filter with a low-pass filter which leads to rendering algorithms with high-quality anisotropic
antialiasing capabilities. Using an affine approximation of a general projective mapping, Heck-
bert derived a Gaussian resampling filter, known as the elliptical weighted average (EWA) filter,
which can be computed efficiently. While Heckbert originally developed resampling filters in
the context of texture mapping, the technique has been reformulated and applied to point ren-
dering by Zwicker et al. [ZPvBG01] in the so-called EWA splatting technique. Here, a Gaussian
filter kernel, also called a splat, is assigned to each point sample. Following Heckbert’s EWA
approach, each kernel is transformed to image space by an affine approximation of the pro-
jective mapping. The corresponding resampling filter is then computed by band-limiting the
projected kernel by an image space filter. Finally, the resampling filters of all points are raster-
ized and blended. Using resampling filters for point rendering, most sampling artifacts such as
holes or aliasing can be effectively avoided.

Building on this work, several point-based rendering approaches have been developed, the early
ones being implemented in software and therefore putting a high load on the CPU. To reduce the
computational complexity of EWA splatting, an approximation using look-up tables has been

5

2. Related Work

presented by Botsch et al. [BWK02].

[BSK04] and its follow-up work [ZPvBG01] present methods to interpolate normals between
the splat primitives and render high-quality Phong shaded images.

The paper [ZRB+04] implements perspectively exact EWA splatting and handles arbitrary el-
liptical reconstruction kernels, where in previous techniques the projection may be exact at the
ellipse center but the shape is only an affine approximation. Their method is based on the
formulation of the 2D projective mappings from local tangent frames to image space using
homogeneous coordinates. In contrast to the previous affine approximations of the projective
mapping, they choose the affine mapping such that it matches the projective mapping of a conic
isocontour of the Gaussian kernels. Since they choose an isovalue of the conic to correspond
with the cut-off value of the kernels, the shape of the truncated kernels is correct under pro-
jective mappings. This leads to more accurate reconstruction of surfaces in image space and
avoids holes even under extreme perspective projections. Although their method computes the
perspectively correct splat shape, the resampling kernel is still based on an affine approxima-
tion of the perspective projection. Furthermore, the authors describe a direct implementation
of their algorithm on GPU. Instead of rendering each splat as a quad or a triangle as proposed
before, they use OpenGL point primitives and fragment programs to rasterize the resampling
filters. Hence, they avoid the overhead of sending several vertices to the graphics processor for
each point. In the rasterization stage each pixel in the image plane is tested whether it is inside
or outside the resampling filter. To minimize the number of pixels that are tested a tight axis
aligned bounding box is computed.

Most of the above methods neglect the screen space filter of the EWA framework and restrict to
the Gaussian reconstruction filter in object space. While this leads to sufficient anti-aliasing in
magnified regions, it cannot prevent aliasing artifacts in minified areas. In contrast, the method
of [ZRB+04] implements the full EWA splatting approach on the GPU.

Botsch et al. [BHZK05] show how to exploit the increased capabilities of latest graphics hard-
ware at that time for GPU-based surface splatting, such that the trade-off between quality and ef-
ficiency is effectively minimized. The availability of multiple render targets with floating point
precision and blending capabilities enabled the implementation of all computations required
for high-quality surface splatting directly on the GPU. Hence, this paper does not introduce
genuinely new concepts, but focuses on the efficient implementation of a hardware-accelerated
deferred shading framework and a simple and effective approximations of the EWA prefilter to
achieve fast and high-quality surface splatting. Using per-pixel Phong shading and a simple but
effective approximation to the screen space filter, the approach presented in this paper provides
results comparable to the original EWA splatting. The algorithm which we propose in this thesis
is built upon this 3-pass algorithm.

2.2. Temporal Antialiasing

The only mathematically strict method for generating realistic motion blur is said to be temporal
supersampling, that is, to render the scene multiple times and then composite the rendering
results. However, rendering each image and averaging them can be a time-consuming affair.

6

2.2. Temporal Antialiasing

Getting around this and still maintaining accuracy is difficult since for each object instance
along the motion path both shading and visibility change. All existing techniques attempt to
simulate the effect by making certain assumptions and approximations.

A well-argued discussion on this is provided in the work of Sung et al. [SPW02]. The paper
presents the motion blur technique implemented by means of ray casting in the Maya Render-
ing system. The authors categorize previous work on motion blur based on the approaches to
solving the rendering equation

i(w, t) =
∑

l

∫
Ω

∫
T

r(w, t)gl(w, t)Ll(w, t)dtdw, (2.1)

where w denotes the solid angle of the viewing ray and T is the exposure time. The sum iterates
through all l objects in the scene to determine the visible object in the w solid angle direction at
time t and computing the incoming luminance of the visible object Ll(w, t). The gl(w, t) term
describes the visibility function, where it is 1 only for the visible geometry and 0 otherwise. Ω
denotes the total solid angle from the environment towards the pixel (x, y). The r(w, t) term
describes a reconstruction filter which may model the physical movement of the camera shutter
closing during the exposure time. Figure 2.1 summarizes the different classifications of previous
work on temporal antialiasing. See [SPW02] for further details. Apart from implementations
which utilize Monte Carlo integration, other approaches approximate the equation by making
assumptions about the visibility, g, and the luminance, L, terms.

Figure 2.1.: Classification of previous work on temporal antialiasing ([SPW02], Figure 1)

With the Distributed Raytracing method by Cook et al. [CPC84], Monte Carlo integration has
been proposed as an approximative solution to the image generation process. Because of the
generality of the underlying Monte Carlo approach, this is the only existing approach so far
that is capable of approximating Ll(w, t) in general. However, as in all Monte Carlo methods,
a large number of samples is usually required to generate images without excessive noise. For
this reason it is difficult to achieve real-time constant rendering rates. In this thesis, we will use
a Monte Carlo raytracer to generate ground truth images (see Sections 3.6.4 and 4.5).

Assuming constant shading within the interval where an object is visible, [KB83] and [Gra85]
solve for the visibility, that is, the geometry term. They may solve the temporal geometric

7

2. Related Work

aliasing problem for a spatial sample point, but do not address the temporal shading. As pointed
out by the authors of both articles, in general, spatial-temporal antialiasing problems (for both
geometric and shading) cannot be solved separately. That is, it is not possible to separate gl(w, t)
into gl(w)gl(t) or Ll(w, t) into Ll(w)gLl(t) and solve the visibility or shading problem in the
spatial and temporal domains separately. The authors of [SPW02] introduce a simplification by
separating the shading problem from the visibility problem which still generates high quality
images. However, since it requires adaptive super sampling, the rendering speed cannot be
guaranteed.

On the other hand, geometric morphing methods deform or introduce new geometry, such
as motion volumes, strategically placed with respect to the actual movements. All these ap-
proaches approximate motion effects by transforming gl(w, t)Ll(w, t) to gl′(w, t)L

′
l′(w, t). Since

the visible geometry and/or the luminance function must be altered, it is difficult for these ap-
proaches to adequately address issues involved in complicated motions and/or shadings. The
volumetric kernels solution presented in this thesis (see Sections 3.6.3 and 4.1.2) falls under the
geometric morphing category since we extend the 2-dimensional Gaussian kernels to volumetric
kernels and additionally place these along the motion trajectory of a point sample.

[NRS82] addresses the temporal shading problem by proposing an image space method that
interpolates between samples and provides a continuous transition from a sampled signal to
another signal. Their method can be naturally extended for motion blur generation, however,
the visibility is assumed to be constant. Our time bucketing method (see Sections 3.6.2 and 4.4)
is tangent to this category since it makes simplifying assumptions on visibility while solving for
the shading term.

Another field is constituted of post-processing techniques which operate on the synthesized im-
ages to simulate a motion blur effect and can be applied to any geometric representation. [PC83]
proposes an approach for producing motion blur images by time convolution of the normal im-
age with the motion function. However, in general, solutions to post-processing approaches
only address the 2D problem and therefore cannot adapt to local properties of the images, and
cannot address the situation where motion objects cannot be separated into non-overlapping
layers in depth. [ML85] and [Shi93] extend the problem to 2.5D.

Sung et al. [SPW02] build their work upon a simplified alternative formulation of the rendering
equation based on describing energy arriving at the screen image plane. The presented solution
is to integrate the object-time visible area, that is, the projection of the subpixel region where an
object is visible onto the moving object. They do this by means of the corresponding image-time
visible volume, which is the per-object visible volume in the image-time domain. Computing
spatial-temporal shading is solving the integration of the shading function over the object-time
visible areas. For each pixel, the results of a point sample in space are stored as a list of
continuous temporal coverage grouped according to the corresponding objects. Samples in
time are sampled stochastically. As such, this solution of the visibility function is analytic in
the temporal domain and stochastic in the spatial domain.

In the domain of volume splatting, [MMI+98] presents an antialiasing extension to the basic
splatting algorithm that mitigates the spatial aliasing for high-resolution volumes. It furthermore
outlines an analysis of the common approximation errors at that time in the splatting process for
perspective viewing and, what is of interest in this context, discusses current work on extensions
for temporal antialiasing. Specifically, it describes a framework for motion blur generation in

8

2.2. Temporal Antialiasing

the context of splatting-based volume rendering. For volume rendering, the geometric visibility
problem persists when semitransparent or opaque compositing is used. The method of Mueller
et al. [MMI+98] simplified the problem and did not address the visibility problem, but only the
integrated energy across the time domain. The elongated Gaussian kernel is constructed as a
rectangle that spans the motion vector of a voxel, with two half-spherical Gaussian splats at both
ends. This idea is similar to [WZ96] by creating a motion volume for each geometric elements.

The work by Mueller et al. has been extended by [GM04]. Since the method proposed in this
paper is tailored to point-based surface rendering it is situated closest to our work. In contrast
to [MMI+98], they only render a motion blurred isosurface of the volumetric object instead of
all object voxels and use point-based surface rendering instead of full volume splatting. Rather
than trying to create theoretically correct motion blur effects, their aim is to quickly provide
strong motion hints for the viewer. The method tries to mimic an effect in conventional pho-
tography art: First the picture is shot with dim light while the shutter is kept open for a long
enough time to capture the motion trail. Then the scene is given a strong flash for a very short
time interval to capture the geometric and material information of the object as if the object
stays still in that interval.

The approach accomplishes these effects by sending two primitives down the rendering pipeline:
One for a sharp, realistic rendering of the surface object and the other one to simulate the mo-
tion trail. They use a simplified version of EWA surface splatting as described in [ZPvBG02]:
The surface is composed of 2D round Gaussian splats and rendered as texture-mapped squares
in space. The corresponding motion volume is generated by low-pass filtering the object along
the time dimension. This makes some assumptions on the linearity of the motion path per prim-
itive. I.e., a Gaussian filter is applied to a splat for temporal blurring which produces a Gaussian
ellipse. The center is placed slightly behind to achieve the motion hint. Additionally, circular
splats are rendered at the start and end times of the frame. The screen space ellipse is obtained
by a projection transform. An alternative and more efficient method skips the 3D construction of
the motion ellipsoid entirely and instead constructs the 2D motion ellipse from a convolution of
the 2D Gaussian functions of the projected point and the projected motion vector. Conceptually
this would be equivalent to a post-processing method.

A downside of the approach is, that it does not handle the visibility function of the moving
objects properly because the point samples are first bucket-sorted with respect to their depth
and the corresponding ellipses are rendered in back-to-front order. simply rendered by depth-
sorting. Also, shading changes over time are not regarded. Currently it only handles small rota-
tions, where motion vectors can be approximated by a straight line. This approach is similar to
our volumetric kernels solution (see Sections 3.6.3 and 4.1.2) in a sense, that the 2-dimensional
surface reconstruction kernels are extended by a temporal dimension. The benefit of our method
is that we position several interpolating temporal supersamples along the trajectory of a point
sample and compute the motion blurred image as a composite of these. This means that the
rendered scene is continuously reconstructed in temporal dimension in a piece-wise linear way.
The method thus can handle changing shading and visibility over time and more complex mo-
tions and, therefore, enables a higher photo-realsim. Also, our proposed method leads to a
straight-forward adaption of the three-pass algorithm using GL point primitives which is com-
monly applied with EWA splatting (see Section 4.1.1). Motion hints can be achieved in our
case by choosing an appropriate temporal weighting function (see Section 3.1) which gives
more weight to later time instants.

9

2. Related Work

2.3. Commercial Software

In this section, we give some examples of commercial software which is able to create motion
blur effects and shortly describe their applied techniques.

The free open source 3D content creation suite Blender generates a motion blurred image by
accumulating multiple intermediate frames rendered inbetween the real frames at equidistant
time steps. In presence of fast motions, a high number of temporal samples is necessary to
achieve visually pleasing results.

ReelSmart Motion Blur is a plug-in for video editing software such as Adobe After Effects. It
works on image data and therefore implements motion blur by post-processing. A motion field
is computed by tracking the pixel motions between two frames and used for convolving the
respective frames.

The rendering software Mental Ray is the rendering component of many leading 3D content-
creation tools such as Maya. Its raytracer is able to create fuzzy effects like depth-of-field or
motion blur based on the concept of Distributed Raytracing [CPC84].

Pixar’s RenderMan first clamps the shading function frequency by interpolating between a dis-
crete set of temporal samples for each object. Then visibility is computed by stochastically
taking samples in space and time. Positions within a single frame are piecewise linearly inter-
polated.

10

3
Core Theory

In this chapter, we derive the theoretical basis to our motion blur algorithms.

3.1. Screen space intensity of a motion blurred image

We interpret an image as a 2D signal in screen space. For an instantaneous image at time t, the
intensity at screen space position x is given by the continuous screen-time space signal gc(x, t).
A motion blurred image which captures the scene over the period of exposure [t0, t1] is repre-
sented by Gc,t0,t1(x). The intensity value at position x is generated by a weighted integration of
incoming intensities over the exposure time:

Gc,t0,t1(x) =

∫ t1

t0

a(x, t)gc(x, t)dt, (3.1)

where the weighting function a is used to simulate the medium which captures the image (Figure
3.1). For simulating the behavior of a camera, the weights are only time-dependent. We restrict
our theory to this case.

a(x, t) := a(t). (3.2)

We model the rendering process of Gc,t0,t1(x) as a resampling problem of gc(x, t) in time and
space. If the sampling rate does not meet the Nyquist criterion of gc(x, t), spatial and temporal
aliasing artifacts occur. Two approaches to reduce aliasing problems exist: We can either sample
the continuous signal at a higher frequency, or we eliminate frequencies above the Nyquist limit

11

3. Core Theory

Quantity Notation

t Time

x Screen space

u Source space: Local object surface parametrization

{Pk(t)} Set of surface point samples with index k

rk(u, t) Reconstruction kernel

wk(t) (Normalizing) weight, surface attribute sample

m(u, t) Projective mapping from source to screen space:

R2 × T → R2

a(x, t) Intensity contribution of screen signal at time instant t

and screen position x to the motion blurred image

gc(x, t) The continuous screen-time space signal

h(x, t) The band limiting prefilter

g′c(x, t) The band limited continuous screen-time space signal

g(x, t) The band limited screen-time space signal discretized in

time and screen space

Gc,t0,t1(x) The motion blurred screen signal over exposure time [t0, t1]

[t0, t1] Exposure time

vk(x, t) Visibility of a surface splat in screen-time space

fc(u, t) The continuous surface attribute function

Table 3.1.: Notation.

12

3.2. Computation of the continuous screen-time space signal

Figure 3.1.: (a) A blue sphere moves in downward direction with constant velocity during the captured
time interval [t0 = 0, t1 = 1]. This picture displays the instantaneous screen space signals
gc(x, t0) and gc(x, t1), respectively. (b) The motion blurred image Gc,t0,t1(x) with constant
weighting a(x, t). (c) Here, the temporal weight decreases linearly with increasing distance
of the sampling time t to the weighting center tc := 1. (d) In this case, the weighting
function is chosen to decrease exponentially, that is, a(t) := 1.0 − exp(−|tc − t|). The
images are generated with raytracing. Per pixel 4 spatial and 100 temporal samples were
taken.

before sampling, which is called prefiltering or equivalently band limiting. The latter is realized
by convolving the signal with a spatio-temporal antialiasing filter h(x, t). This results in the
band limited continuous signal g′c(x, t):

g′c(x, t) = gc(x, t) � h(x, t) (3.3)

=

∫
T

∫
R2

gc(ξ, τ)h(x− ξ, t− τ)dξdτ. (3.4)

Then we convert the continuous signal to a discrete signal by evaluating g′c(x, t) at discrete
frames ti and pixel positions xj . Analytically this is expressed by multiplying the signal with a
spatio-temporal pulse field i(x, t) (Figure 3.2):

g(x, t) = g′c(x, t) · i(x, t). (3.5)

3.2. Computation of the continuous screen-time space
signal

We require that the scene objects can be represented by a continuous surface function fc(u, t).
This multidimensional function is defined on a local surface parametrization - the source space
- and describes object attributes such as surface textures or normals at time t. The continuous

13

3. Core Theory

Figure 3.2.: The sampling pulse field i(x, t) =
∑

i,j δ(x− i, t− j)

screen-time space signal gc(x, t) is then retrieved by perspective projection of fc(u, t) from
source to screen space.

The projective mapping depends on the possibly time-variant camera parameters and is denoted
by

mt(u) : R2 → R2. (3.6)

Note that this mapping is invertible for a fixed time instant t since it is defined over the 2D
domain of the local surface parametrization and not over 3D object space. This means by
definition that the inverted mapping at time t assigns to each screen position x the visible surface
point u.

Using this, the continuous screen-time space signal can be formulated as follows:

gc(x, t) = (fc ◦m−1)(x, t) (3.7)
= fc(m−1(x, t), t) (3.8)

3.3. Representation of fc(u, t)

In our framework, animated graphics models are represented as a set {Pk(t)} of time-dependent
irregularly spaced point samples in three dimensional object space without connectivity. A
point Pk(t) has a certain position uk(t) at time t. It is associated with a reconstruction kernel
rk(u − uk(t), t) centered at point position uk(t). Each point represents a scalar sample wk(t)
of the continuous surface attribute function fc(u, t). The kernels are chosen to be elliptical 2D
Gaussians. They interpolate the attribute samples between the points. Generally, they do not
guarantee a partition of unity. Therefore, an interpolated value has to be divided by the sum of
weights of the contributing kernels. In practice, the Gaussians are truncated to a finite support,
i.e., the reconstruction kernels are evaluated only within conic isocontours at a specified cutoff
value. (Figure 3.3).

14

3.4. Geometric Interpretation

Figure 3.3.: Defining a texture function on the surface of a point-based object ([ZPvBG01], Figure 2).

Under the assumption that the objects are non-deformable, that is, relative point locations do not
change over time, and surface attributes are constant over time, the weights and kernel functions
become time-independent. In the following, these assumptions are taken:

rk(u− uk(t), t) := rk(u− uk(t)) (3.9)

and

wk(t) := wk. (3.10)

Then, the continuous surface attribute function fc(u, t) at time t is reconstructed by the weighted
sum

fc(u, t) =
∑
k∈N

wkrk(u− uk(t)). (3.11)

We define the projective mapping m(u, t) individually for each reconstruction kernel as mk(u, t).

3.4. Geometric Interpretation

A reconstruction kernel rk(u − uk(t)) in form of an elliptical 2D Gaussian can be geometri-
cally interpreted as a splat primitive centered at point sample position uk(t) and with normal
orientation. We are now considering the geometric behavior of a single splat primitive over the
exposure time [t0, t1]. In object space, the volume which is defined by sweeping the silhouette
of the splat along the motion trajectory of uk(t) has a 3D tubular shape. At the ends, the tube
is closed up by the splats centered at uk(t0) and uk(t1) respectively. The resulting shape of a
perspective projection of this volume to screen space is a planar tube (Figure 3.4).

15

3. Core Theory

Figure 3.4.: The time-space volume of a single surface kernel and one time slice projected to the screen.

3.5. Extended EWA surface splatting

For each surface point u(t) a visibility value can be defined which denotes whether the point is
fully visible from the camera viewpoint or occluded by other surface parts. We formalize this
by introducing per point sample visibility functions vk(x, t) over the screen-time space domain.
For each u(t) = m−1

k (x, t) in the local parametrization plane of point sample Pk(t) they define
the visibility at time t. Since we do not consider transparency, the the visibility is binary, that
is, either fully opaque or completely occluded. Using this and inserting Equation (3.11) into
Equation (3.8) we arrive at the following equation for the continuous screen-time space signal
gc(x, t):

gc(x, t) = (fc ◦m−1)(x, t) (3.12)
= fc(m−1(x, t), t) (3.13)

=
∑
k∈N

wkvk(x, t)rk(m−1
k (x, t)− uk(t)) (3.14)

=
∑
k∈N

wkvk(x, t)r′k(x, t), (3.15)

where r′k(x, t) = rk(m−1
k (x, t)−uk(t)) are the reconstruction kernels projected to screen space.

An explicit expression for the band limited screen-time space signal of Equation (3.4) can then
be derived as follows:

16

3.5. Extended EWA surface splatting

g′c(x, t) = gc(x, t) � h(x, t) (3.16)

=

∫
T

∫
R2

∑
k∈N

wkvk(ξ, τ)rk(m−1
k (ξ, τ)− uk(τ))

h(x− ξ, t− τ)dξdτ (3.17)

=
∑
k∈N

wk

∫
T

∫
R2

vk(ξ, τ)rk(m−1
k (ξ, τ)− uk(τ))

h(x− ξ, t− τ)dξdτ. (3.18)

We approximate this equation by pulling the visibility function and kernels apart and filtering
them separately. This extremely simplifies computation since these two very different types of
functions can now be solved separately, probably in different ways. It can be exploited that
the attribute function is usually arbitrary while the visibility function is well-defined by the
geometry and associated motion.

g′c(x, t) ≈
∑
k∈N

wk∫
T

∫
R2

vk(ξ, τ)h(x− ξ, t− τ)dξdτ∫
T

∫
R2

rk(m−1
k (ξ, τ)− uk(τ))h(x− ξ, t− τ)dξdτ (3.19)

=
∑
k∈N

wkv
′
k(x, t)ρk(x, t) (3.20)

with the filtered visibility functions v′k(x, t) and ideal resampling kernels ρk(x, t).

v′k(x, t) =

∫
T

∫
R2

vk(ξ, τ)h(x− ξ, t− τ)dξdτ, (3.21)

ρk(x, t) =

∫
T

∫
R2

rk(m−1
k (ξ, τ)− uk(τ))h(x− ξ, t− τ)dξdτ. (3.22)

The above equations state that we can first project and filter each reconstruction kernel rk(u, t)
individually to derive the resampling kernels ρk(x, t) and then sum up the contributions of these
kernels in screen space where occluded parts are masked out by the filtered visibility function
v′k(x, t).

These derivations exactly match the original EWA splatting framework for an instantaneous
image at time t with the difference that visibility is formalized here and filtering band limits the
signal over time as well as space.

17

3. Core Theory

3.6. Computation of the motion blurred screen signal

Combining Equation (3.20) with Equation (3.1) results in:

Gc,t0,t1(x) ≈
∫ t1

t0

a(t)
∑
k∈N

wkv
′
k(x, t)ρk(x, t)dt. (3.23)

This section presents different solution approaches to approximate this equation.

3.6.1. Temporal sampling of g′c(x, t)

The time integral of Equation (3.23) is solved by Monte Carlo integration:

Gc,t0,t1(x) ≈ 1

t1 − t0
1

N

∑
j

a(tj)g
′
c(x, tj) (3.24)

where the time samples tj are chosen stochastically. If the temporal sampling is not sufficiently
dense, temporal artifacts appear. E.g., in presence of high velocity motion, the image appears
to be jagged. In other words, they will appear to be multiple exposures which is the case if the
same time samples ti apply to all pixels.

Figure 3.5.: Sampling the screen-time volume in the temporal dimension.

In other words, this approach is equivalent to averaging temporal samples of the filtered contin-
uous screen-time function g′c(x, t) weighted by a(t) (Figure 3.5).

3.6.2. Temporal sampling of Pk(t)

We insert Equation (3.20) into Equation (3.24) and apply the following reorganization:

18

3.6. Computation of the motion blurred screen signal

Gc,t0,t1(x) ≈ 1

Nj

∑
j

a(tj)
∑
k∈N

wkv
′
k(x, t)ρk(x, t) (3.25)

≈
∑
k∈N

1

Njk

∑
jk

a(tjk
)wkv

′
k(x, tjk

)ρk(x, tjk
) (3.26)

(3.27)

This means that the Monte Carlo integration is performed over the individual point sample
trajectories Pk(t) (Figure 3.4). The time samples tjk

differ and can be chosen adaptively.

Figure 3.6.: Approximation of the space-time volume by sampling along the motion trajectory.

While the filtered resampling kernels ρk(x, tjk
) are well-defined, we have to provide a compu-

tation method for the visibility function v′k(x, tjk
).

A very crude simplification is to evaluate visibility once in the exposure time [t0, t1] against all
generated time samples:

v′k(x, tjk
) = 0 if m−1

k (x, tk) is occluded by a 2D surface splat associated with any Pk(tjk
), else 1.
(3.28)

The temporal artifacts which arise due to this simplification are illustrated in Figure 3.7.

To alleviate this problem, we suggest to quantify visibility in time. That is, we subdivide [t0, t1]
into smaller subintervals [ti, ti+1] where v′k(x, tjk

) is evaluated separately:

v′k(x, tjk
) = 0 if m−1

k (x, tk) is occluded at any time within [ti, ti+1], else 1. (3.29)

As the subinterval sizes become infinitely small, v′k(x, tjk
) approaches the exact visibility func-

tion.

19

3. Core Theory

Figure 3.7.: Top: Within the time span [t0, t1], four temporal samples are taken of the green and red
surface splats respectively and are treated as new, separate splats. Bottom: Assume the
green splat at time step 4 is closest to the eye compared to all other splats. Splatting all
samples using the same z-Buffer then causes all other splats to be occluded. However,
splats from the other time steps 1, 2 and 4 should not be occluded, but blended. A correct
solution would be to use a separate z-Buffer for each time step and finally blend the results.

3.6.3. Continuous Temporal Reconstruction

Figure 3.8.: Construction of a volumetric kernel. (a) The 2D surface splat is moving downwards along
the instantaneous velocity vector which is indicated by the green arrow. The blue gradient
the splat is filled with represents the underlying elliptical Gaussian function. (b) Each point
on the 2D surface splat is convolved with a 1D Gaussian along the velocity vector which is
illustrated by the green gradient. (c) The resulting volumetric kernel.

In analogy to a spatial reconstruction of fc(u, t) by centering kernels at point samples, we
sample the motion trajectories of Pk(t) in time. Ellipsoidal 3D reconstruction kernels Rkt(u)
with time dimensionality are centered at the point sample positions ukt. The new kernelsRkt(u)

20

3.6. Computation of the motion blurred screen signal

are constructed based on the elliptical 2D Gaussian kernels rk(x, t) by convolution with a 1D
Gaussian along the velocity vector at the time t (Figure 3.8. The variance of the 1D Gaussian
is determined by the velocity magnitude and the sampling density. Since Gaussian kernels are
closed under convolution, this results in an ellipsoidal 3D Gaussian (see Appendix C) which
describes the linearized motion trail at time instant t. Thus, we assume the motion to be a
low-passing of the object location over time. The surface attribute function is now continuously
reconstructed as follows:

fc(u, t′) =
∑
k∈N

∑
tk

wkRktk(u− uktk). (3.30)

Inserting this into Equation (3.8) leads to the following equation for the continuous screen-time
space signal gc(x, t′):

gc(x, t′) = (fc ◦m−1)(x, t′) (3.31)
= fc(m−1(x, t′), t′) (3.32)

=
∑
k∈N

∑
tk

wkvktk(x, t′)Rktk(m−1
k (x, t′)− uktk) (3.33)

=
∑
k∈N

∑
tk

wkvktk(x, t′)R′ktk
(x), (3.34)

where R′ktk
(x) = Rktk(m−1

k (x, t′) − uktk) are the reconstruction kernels projected to screen
space.

An explicit expression for the band limited screen-time space signal of Equation (3.4) can then
be derived as follows:

g′c(x, t′) = gc(x, t′) � h(x, t′) (3.35)

=

∫
T

∫
R2

∑
k∈N

∑
tk

wkvktk(ξ, τ)Rktk(m−1
k (ξ, τ)− uktk)

h(x− ξ, t′ − τ)dξdτ (3.36)

=
∑
k∈N

∑
tk

wk

∫
T

∫
R2

vktk(ξ, τ)Rktk(m−1
k (ξ, τ)− uktk)

h(x− ξ, t′ − τ)dξdτ (3.37)

≈
∑
k∈N

∑
tk

wk∫
T

∫
R2

vktk(ξ, τ)h(x− ξ, t′ − τ)dξdτ∫
T

∫
R2

Rktk(m−1
k (ξ, τ)− uktk)h(x− ξ, t′ − τ)dξdτ (3.38)

=
∑
k∈N

∑
tk

wkv
′
ktk

(x, t′)ρktk(x). (3.39)

21

3. Core Theory

with the filtered visibility functions v′ktk
(x, t′) and ideal resampling kernels ρktk(x).

v′ktk
(x, t′) =

∫
T

∫
R2

vktk(ξ, τ)h(x− ξ, t′ − τ)dξdτ, (3.40)

ρktk(x) =

∫
T

∫
R2

Rktk(m−1
k (ξ, τ)− uktk)h(x− ξ, t′ − τ)dξdτ. (3.41)

In analogy to the 2D case (Equations (3.28) and (3.29)), visibility is defined as a per point
sample function vktk(x, t′).

Since Gaussians are closed under perspective projection and convolution with a Gaussian filter,
the projected filtered resampling kernels ρktk(x) represent elliptical 2D Gaussians.

With this approach, an approximation of Equation (3.23) is computed as follows:

Gc,t0,t1(x) ≈ 1

Nj

∑
j

a(tj)g
′
c(x, tj) (3.42)

=
1

Nj

∑
j

a(tj)
∑
k∈N

∑
tk

wkv
′
ktk

(x, tj)ρktk(x). (3.43)

We now choose the temporal samples tj to be equal to the times tk where the motion trajectories
were sampled, in other words, the kernel centers in time dimension. We then arrive at the
following equation:

Gc,t0,t1(x) ≈
∑
k∈N

∑
tk∈[t0,t1]

a(tk)wkv
′
ktk

(x)ρktk(x), (3.44)

where v′ktk
(x) = v′ktk

(x, tk) is the visibility function at the time tk where the ktk-th point sample
was taken.

We can approximate visibility by setting it constant per sample Pktk :

v′ktk
(x) := v′ktk

. (3.45)

In this case, the motion blurred image is simply a result of a weighted accumulation of the
resampling kernels ρktk(x) with tk ∈ [t0, t1].

To handle visibility more correctly, notice that the visibility v′ktk
(x) of a kernel is the result of

integrating its visibility along the viewing ray through the pixel x.

3.6.4. Reference Implementation

A general solution to the image generation problem is an approximation based on Monte Carlo
integration. I.e., the integral of Equation (3.1) is directly approximated by

22

3.6. Computation of the motion blurred screen signal

Gc,t0,t1(x) ≈ 1

t1 − t0
· 1

Nj

1

Nk

∑
j

∑
k

a(tk)gc(xj, tk). (3.46)

With this method visibility and shading is simultaneously approximated by point sampling.

23

3. Core Theory

24

4
Rendering Algorithms

This chapter will provide a detailed description of the algorithms underlying the temporal su-
persampling (Section 4.3), time bucketing (Section 4.4) and volumetric kernels (Section 4.2.2)
approaches, starting with a description of the basic multipass 2D splatting algorithm. Figure
4.1 gives an overview of the terminology concerning coordinate systems and transforms.

Figure 4.1.: The OpenGL vertex transformation sequence is preceded by an additional transformation
from parameter coordinates to object coordinates. In parameter coordinates, the conic ma-
trix defining the quadratic surface is a diagonal matrix. ([SWBG06], Figure 3)

4.1. Multipass Algorithm

This section describes the multipass algorithms for rendering 2D splats (Section 4.1.1) and the
modified version for volumetric kernels (Section 4.1.2).

4.1.1. 2D splats

For rendering 2D splats we follow the three pass algorithm (Figure 4.2) which is commonly used
for surface splatting and achieves correct blending of spatially overlapping kernels. An outline
of each pass is given in the following. For a more detailed discussion refer to [BHZK05].

25

4. Rendering Algorithms

Figure 4.2.: The deferred shading pipeline for GPU-based splatting. The visibility pass fills the z-buffer,
such that the attribute pass can correctly accumulate surface attributes, like color values
and normal vectors, in separate render targets. The final shading pass computes the actual
color value for each image pixel based on the information stored in these render targets
([BHZK05], Figure 1).

Visibility pass

In the first pass the object is rendered without lighting in order to fill the depth buffer only [RL00].
The object is slightly shifted away from the camera by a small ε value to achieve a Gouraud-like
blending of overlapping splats whose depths differ less than ε during the next pass. Still, this
leads to correct occlusions for splats with larger depth offsets.

Attribute pass

Having lighting and alpha blending options enabled, we use multiple render targets to splat and
accumulate normal vectors as well as material properties during this pass. The corresponding
pixel shader performs the rasterization computations outlined in Section 4.2, but instead of
shading each accepted pixel, its (weighted) normal vector and color values are output to the
two render targets. These buffers and the depth buffer are then used as textures for the final
normalization and shading pass, for which a window-size rectangle is drawn in order to send
each pixel through the rendering pipeline again [ZPvBG01].

Normalization and shading pass

In a final normalization pass each pixel is normalized by dividing the accumulated normal vec-
tor and material properties stored in its RGB components by the sum of weights stored in its
alpha component. From the depth texture, the corresponding 3D position can easily be de-
rived by inverting the viewing and projection mappings. Having position, normal and color
information at hand then enables deferred per-pixel shading computations. The resulting Phong
shading clearly improves the rendering quality over the Gouraud shading used by most previous
methods. Since lighting computations are performed only once for each pixel of the projected
object in the final image instead of for each object pixel, deferred shading also yields noticeable
performance improvements.

26

4.1. Multipass Algorithm

Figure 4.3.: The shading pipeline for GPU-based rendering of volumetric kernels. The visibility pass
fills the depth texture which is used as an input to the attribute pass, which computes the
depth of a fragment by tracing back its source point. Surface attributes, like color values,
and temporal alpha values can then be correctly accumulated in separate render targets.
The final shading pass blends the color value at a pixel with the background based on the
information stored in these render targets.

4.1.2. Volumetric kernels

The volumetric kernels approach basically follows the three-pass rendering algorithm with mod-
ifications on depth testing (Figure 4.3). Also, deferred shading cannot be applied anymore. The
reason for this is that the temporal samples interpolate the normals over the time interval which
causes incorrect results (see Figure 4.4). Furrhtermore,the lighting would eventually only be
evaluated once with deferred shading, that is, at the end of the interval. This means, that the
specular highlights are not blurred. A correct solution has to evaluate lighting for each temporal
sample separately.

Visibility pass

Notice that we can only perform occlusion testing for samples which have been taken at the
same time instant. Otherwise, artifacts like in the time bucketing approach occur (see Section
4.4). Therefore, it is necessary to perform a separate visibility pass for each time instant where
samples are generated. This can be achieved by using a layered depth buffer, however, since the
number of layers is limited, samples within a certain time interval have to be collected in the
same depth buffer layer. This causes the artifacts as observed in the time bucketing approach. In
our implementation, we perform a loop over the sampled time instants and clear the depth buffer
each time again. Also, depth testing has to be done based on the underlying 2D splats and not
on the ellipsoids since these represent not a single time instant but a range in time. Furthermore,
the modified attribute pass needs to access the depth buffer at arbitrary window coordinates as
described in Section 4.1.2. Therefore, instead of writing depth values to the frame z-buffer, we
add a depth texture which will be used as an input texture in the attribute pass. Apart from this,
the visibility pass works as described before. The 2D splats which belong to the volumetric
kernels are rendered with a slight offset for blending of spatially overlapping splats for small
depth differences.

27

4. Rendering Algorithms

Figure 4.4.: Problem with normal interpolation: Top: When the normals of temporal samples which are
spatially located very closely are interpolated on the sphere surface, the surface normal of
the swept volume points straight upwards. Middle: The light source is at the left and the
eye at the right corner. The image displays three temporal samples with the correct specular
reflection at the time instant. Bottom: In this case, the normals are interpolated between the
temporal samples. As a result, the surface normals of the swept volume are perpendicular
to the motion trail. This incorrectly causes the specular reflection to vanish at the beginning
and end of the interval of exposure.

Attribute pass

In the attribute pass material properties are rendered to the two render targets. The ellipsoidal
kernels are rasterized as described in Section 4.2.2. The major difference to the previous al-
gorithm is the way in which depth testing is performed which is illustrated in Figure 4.5. To
compute the depth value of a fragment which has been accepted because it is within the pro-
jected ellipsoid boundary, we have to determine its source on the 2D surface splat. In our
implementation, we use the midpoint of the viewing ray intersection points with the ellipsoid
surface. Along the direction of the velocity vector this point is traced back onto the 2D surface
splat. The resulting intersection point has depth value d and window coordinates (xw, yw). The
depth value now has to be compared at the location (xw, yw) and not at the fragment location as
in the fixed functionality pipeline. That is, a fragment passes the depth test if its source on the
2D splat is not occluded:

d ≤ depth_texture(xw, yw) (4.1)

where depth_texture(xw, yw) denotes the value stored at location (xw, yw) in the depth texture

28

4.1. Multipass Algorithm

Figure 4.5.: Depth test for volumetric kernels. The top rectangle displays the depth texture content after
the visibility pass. The bottom rectangle shows an ellipsoid in window space during the
fragment stage of the attribute pass. Within the ellipsoid, the original 2D splat is indicated.
The green arrow signifies the velocity vector. To compute the depth of a fragment (red
square) and perform depth testing, the source of the fragment is determined first. This is
done by following the midpoint of the ray intersection points back along the velocity vector
direction onto the 2D splat in eye space. The resulting point (blue square) determines the
depth d of the fragment. This value is now compared with the depth texture content at the
same pixel location (blue square).

which has been filled in the visibility pass. Figures 4.7 and 4.8 illustrate exemplary results of
this depth testing algorithm. Since ε depth testing is applied, a fragment is accepted if its source
point depth is within the ε depth offset and, as a result, spatial blending is performed. In contrast
to the depth texture, the material render targets are not cleared during the loop and samples of
different time instants are blended in the same buffer. To be able to finally blend the image
with the background, we write the blending weights to a further target texture which we call
alpha texture. In contrast to other material properties, these alpha values are not computed as
a weighted average, but as a weighted sum (see Figure 4.6). For 2D splatting, phong shading
calculations were done in the final normalization pass. Here however, a corresponding 3D
location of a pixel does not exist anymore, this is why we have to abandon deferred shading and
move all shading computations to the attribute pass. The color and alpha buffers are then used
as textures for the final normalization pass, as before.

The blending weight is a combination of spatial blending due to the continuous surface recon-
struction (ε depth testing) and temporal blending due to a continuous reconstruction over time.

29

4. Rendering Algorithms

Figure 4.6.: This picture displays the different behavior of spatial and temporal blending. a) The two
surface splats are sampled at the same time instant. They are overlapping with a distance
which is within the epsilon offset. Therefore, the color in the overlapping area is a weighted
average of red and blue. b) The surface splats have been sampled at two different time
instants. Even though they are spatially closely overlapping, there is no spatial blending due
to the time difference. However, there is a temporal blending which is handled differently
for material property and transparency. The color value is averaged with equal weight. The
transparency, however, is summed up.

The latter has to ensure that the intensity integral of a kernel is constant independent of the
length in time which the kernel represents. We calculate the blending weight of a fragment
by transforming the intersection midpoint to parameter space and insert it into a 3D Gaussian
function.

Normalization pass

In a final normalization pass each pixel is normalized by dividing the accumulated material
properties stored in its RGB components by the sum of weights stored in its alpha component.
The values in the alpha buffer are not normalized, but clamped to the range [0, 1]. Finally, the
resulting image is blended with the background by use of these alpha values.

30

4.2. Kernel rasterization

Figure 4.7.: This picture illustrates visibility for volumetric kernels for two point samples which are
sampled at the same time instant t. The underlying surface splats are outlined in the center
of each volumetric kernel. The motion is along the x-Axis direction, where it does not matter
whether it is in negative or positive direction. a) Here, the two surface splats are completely
visible. This means, that the visibility v′kt(x) for both volumetric kernels is constantly 1
and the overlapping parts are blended according to their weights wk. b) This case shows a
surface splat (yellow) in the back which is partly occluded by a surface splat (blue). As a
result, the front volumetric kernel will occlude the one located in the back.

Figure 4.8.: This picture illustrates visibility for volumetric kernels for two point samples which are sam-
pled at different times t0 (blue) and t1 (yellow). The underlying surface splats are outlined
in the center of each volumetric kernel. The motion is along the x-Axis direction, where
it does not matter whether it is in negative or positive direction. Since occlusion cannot
be tested against samples of different time instants, both volumetric kernels are completely
visible for both cases a) and b) and are blended according to their weights wk.

4.2. Kernel rasterization

In this section we shortly describe the perspectively correct rasterization of projected kernels
in the case of 2D splats (Section 4.2.1) and volumetric kernels (Section 4.2.2). Each projected
kernel is represented by one OpenGL vertex and pixel shaders are used for their rasteriza-

31

4. Rendering Algorithms

tion [BK03].

4.2.1. 2D splats

For rasterizing planar elliptical surface splats we follow the per-pixel projectively correct ray
casting approach as introduced by [BSK04]. Following the notation of [BSK04], a splat Sj is
defined by its center cj and two orthogonal tangent directions uj and vj . These tangent vectors
are scaled according to the principal radii of the elliptical splat such that an arbitrary point q in
the splat’s embedding plane lies in the interior of the splat if its local parameter values u and v
satisfy the condition

u2 + v2 = (uT
j (q− cj))

2 + (vT
j (q− cj))

2 ≤ 1. (4.2)

The rasterization of a splat Sj is performed by sending its center cj , tangent axes (uj, vj), and
optional material properties to OpenGL, which are then processed by custom shaders for both
the vertex and the pixel stage. The vertex shader conservatively estimates the size d of the
projected splat based on a perspective division of the larger of the ellipse radii by the eye-space
depth value cz of the splat center, followed by a window-to-viewport scaling.

This causes the single OpenGL vertex c to be rasterized as a d×d image space square, each pixel
(x, y) of which is then tested by a pixel shader to lie either inside or outside of the projected
elliptical splat contour. Local ray casting through the corresponding projected point qn on the
near plane yields the eye space point q on the splat’s supporting plane. From this projectively
exact 3D position the local parameter values, (u, v), can be determined and tested as shown
in Equation 4.2. While pixels corresponding to points outside the splat are discarded, pixels
belonging to the splat are accepted and processed further. If a pixel (x, y) is accepted, its
weighting factor is determined as

w(x, y) = h(
√
u2 + v2), (4.3)

where h(·) is typically chosen as a Gaussian. To allow for exact blending and occlusion the
pixel’s depth value has to be adjusted in order to correspond to the computed 3D position q.
This finally results in a per-pixel projectively correct rasterization of elliptical splats.

4.2.2. Volumetric kernels

For the rasterization of volumetric kernels which can be regarded as ellipsoid primitives, we fol-
low the computations described in the work of Sigg et al. [SWBG06]. They propose an efficient
perspective correct rendering technique for quadric primitives based on GPU-accelerated splat-
ting using per-pixel ray-casting. In the following, we will outline the necessary computation
steps.

In general, quadratic surfaces are defined as the set of roots of a polynomial of degree two:

32

4.2. Kernel rasterization

f(x, y, z) = Ax2 + 2Bxy + 2Cxz + 2Dx+Ey2 + 2Fyz +Gy +Hz2 + 2Iz + J = 0. (4.4)

The shape of the quadric is solely determined by the coefficients A through J . Using homo-
geneous coordinates x = (x, y, z, 1)T the quadric can compactly be written using the bilinear
form xT Qx = 0 with the conic matrix

Q =

A B C D

B E F G

C F H I

D G I J

 , (4.5)

which is invariant under perspective projections. Figure 4.1 illustrates the complete coordinate
system transformation pipeline. Due to the fact that this matrix is symmetric, it can be put into
a normalized diagonal form by a basis transformation T:

Q = T−T DT−1, (4.6)

with D diagonal, dii ∈ {0,±1}. Coefficient matching of Equation 4.4 with the polynomial
which defines an ellipsoid

x2 + y2 + z2 − 1 = 0 (4.7)

results in D being of the form

D =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (4.8)

The transformation matrix T, called variance matrix, expresses the basis of the parameter space
in object coordinates. The columns contain the axes u, v, w and center c of the quadric

T =

u v w c

0 0 0 1

 . (4.9)

The ellipsoid represents the bounding ellipsoid of the 2D splat axes and the velocity. As, in
general, the velocity vector is not perpendicular to the splat plane, the orthogonal ellipsoid axes

33

4. Rendering Algorithms

u, v and w need to be recomputed first. For a detailed description of the involved computations
see Appendix C.

In analogy to the case of 2D splats, the kernel center in clip coordinates and GL point primitive
size needs to be calculated in the vertex stage of the shader. The point size is determined
by the bounding box of the kernel projected to screen. A tight axis-aligned bounding box
[bx,1, bx,2] × [by,1, by,2] of the projected ellipsoid in clip coordinates is computed first, which
is defined by four intersecting half-spaces. Each half-space is given by an equation of the
following form:

nT
c xc ≤ 0. (4.10)

This condition can easily be enforced in parameter space, where the quadric is defined by the
normalized diagonal matrix D. In parameter space, the ellipsoid coincides with the S2 sphere
and each point on the sphere also corresponds to a normal of a tangent plane. Therefore, the
touching condition in parameter space becomes

nT
p Dnp = 0. (4.11)

This condition is then transformed to clip space and the resulting quadratic equation is solved for
the bounding box coordinates. Finally, the viewport transformation is applied to the bounding
box size and half of the larger value (width or height) is set as the GL point size. The vertex
position of the point primitive coincides with the center of the bounding box in clip coordinates.

The task of the fragment shader is to kill fragments that are not covered by the ellipsoid. For
the corresponding ray intersection problem, again the roots of a quadratic equation need to
be found. If the equation has no real solution, the ray does not intersect the quadric and the
fragment can be killed.

Finally, the weighting factor of the pixel (x, y) needs to be computed in analogy to Equation
4.3. The mathematically strict solution would be to integrate the volumetric kernel over the
ray segment between the intersection points. A further difficulty is added to this problem by
the fact that the volumetric kernel does not represent an exact 3D Gaussian unless the velocity
vector is perpendicular to the 2D splat plane. In our implementation, however, we approximate
this value based on the observation that the opaqueness has to grow with the length of the line
segment between the intersection points. To calculate the length of the intersecting ray segment
in parameter space, we transform the previously computed intersection points back to parameter
space and retrieve xp,1 and xp,2. Since the points are located on the S2 sphere, their distance lies
within the interval [0, 2]. The weight is then computed as

w(x, y) = h(
||xp,1 − xp,2||

2
), (4.12)

where h(·) is chosen as a Gaussian.

While normal vector and material properties of a fragment can simply be set as the underlying
2D splat’s normal and material properties since these are constant over the 2D splat, the depth
calculation is more involved. For this, we have to recapitulate that the volumetric kernel is

34

4.2. Kernel rasterization

generated by convolving the 2D Gaussian with a 1D Gaussian along the direction of motion.
This means, each point in the interior of the volumetric kernel lies on the motion trail of its
2D splat source point which can be found by tracing back along the instantaneous velocity
direction. The correct way of determining the fragment depth would be to take sample points
on the intersecting ray segment and average the depth values of their corresponding source
points. For simplicity, we resort to using the depth value of the intersection mid-point.

4.2.3. EWA Approximation

The complete EWA filter is composed of an object space reconstruction kernel and a band-
limiting screen space prefilter. As the required computations are quite involved, many rendering
approaches simply omit the screen space filter and use the reconstruction kernel only. However,
in the case of extreme minification, when the size of projected splats falls below one pixel, the
signal corresponding to the accumulated projected splats may have frequencies higher than the
Nyquist frequency of pixel sampling grid, resulting in the alias artifacts shown in the top image
of Figure 4.9.

The work of Swan et al. [JESMM+97] proposes a simple - and hence efficient - heuristic for
approximating the EWA screen-space filter which still provides high-quality anti-aliasing in
magnified and minified regions. By clamping the size of projected splats to be at least 2x2 pixels
it is guaranteed that enough fragments are generated for antialiasing purposes, even for splats
projecting to sub-pixel areas. This restriction on the minimum size can easily be incorporated
into the vertex shader.

Instead of computing the weight w(x, y) based only on the reconstruction filter, the pixel shader
is adjusted to compute two radii r3D := u2 + v2 (see Equation 4.12) and r2D := d(x, y)2/r2,
with d(x, y) being the 2D distance of the current fragment from the respective projected kernel
center and r =

√
2 being the band-limiting screen-space filter radius. A given fragment is then

accepted if it lies within the union of the low-pass and the reconstruction filter (Figure 4.10).

r̃(x, y) := min{r2D(x, y), r3D(x, y)} ≤ 1, (4.13)

i.e., either if it corresponds to a 3D point within the kernel’s interior, or if it lies within a certain
radius around the projected kernel center. The final weight corresponding to Equation 4.12 is
computed as w(x, y) = h(

√
r̃(x, y)).

Notice that the minimal splat size is only enforced in the attribute pass, but not in the visibility
pass. This means that the ε-depth test, which is simulated by the two rendering passes, is
not applied to those pixels which are additionally generated on silhouettes by the screen space
filter. In contrast, these pixels are blended with the surface parts behind them, which results in
a pseudo edge antialiasing for object silhouettes.

35

4. Rendering Algorithms

Figure 4.9.: Antialiasing Comparison. (top) Use of only a reconstruction filter. (middle) Full Screen
Anti-Aliasing using supersampling. (bottom) EWA approximation. [Botsch:2005:HSS],
Figure 4.

4.3. Temporal supersampling

For blending the temporal supersamples within the exposure interval, we added a further ac-
cumulation texture buffer. To generate an output image, we loop over the temporal samples,
transform the scene objects according to their current location and render the point model with
2D splats or volumetric kernels as described above. The corresponding temporal weighting
function value is passed to the shaders of the final normalization pass and written into the out-
put fragment alpha value. The output value is then blended with the accumulation texture color
by the blending function

36

4.4. Time bucketing

Figure 4.10.: (left) Three configurations with a reconstruction filter and a low-pass filter. (right) Com-
parison between the combined approximation and the EWA filter. [Botsch:2005:HSS],
Figure 4.

(Rd,Gd,Bd,Ad) = (As ∗Rs+Rd,As ∗Gs+Gd,As ∗Bs+Bd,As+ Ad), (4.14)

where (Rd,Gd,Bd,Ad) is the accumulation texture RGBA value at the fragment location, and
(Rs,Gs,Bs,As) is the shader output.

4.4. Time bucketing

The drawing procedure works in a similar way as for the accumulation of temporal samples.
The difference of this approach consists of first looping over the individual time buckets. When
performing the visibility and attribute pass, all temporal samples which fall into the current
bucket are rendered at once as if they were a single object. The normalization and shading pass
only needs to be performed once per time bucket. Thus, correctness of the visibility is sacrificed
to rendering speed.

4.5. Reference implementation

A motion blurred image Gc,t0,t1(x) is computed by means of Quasi Monte Carlo integration
and raytracing. We define the image as an array of pixels with screen coordinates (x, y) and
corresponding color values c(x, y). The number of spatial and temporal supersamples is denoted
by ss and st, respectively.

37

4. Rendering Algorithms

To compute the color value c(x, y), repeat ss times:

1. Choose a random spatial supersample position (x, y)i within the pixel area. To prevent an
aggregation of sample positions, the sampling distribution is based on a jittered 2D grid
as described in [KK].

2. Repeat st times:

a) Choose a random temporal supersample time t within the exposure interval [t0, t1].
In analogy to the spatial sampling, the temporal sampling distribution follows a
1D jittered grid. To control the trade-off between visual disturbing mach-banding
artifacts and noise, the jittered grid is sampled more densely and for each spatial
supersample, the temporal supersamples are chosen as a random set out of this finer
jittered grid.

b) Transform the objects of the scene to their positions at time t.

c) Shoot a ray from the viewpoint through the screen location (x, y)i and intersect the
object splats. Determine the intersection point which is closest to the viewpoint.
To perform ε-blending of the splats, determine all further intersection points within
ε distance from the closest intersection. To compute the color ci of the sample,
blend the color values of the intersection points. The respective alpha values are
determined by the underlying splat kernel functions.

d) Add ci to the final color c(x, y), weighted by the time weighting function a(t). Ac-
cumulate a(t) to the normalization value a.

3. Finally divide c(x, y) by the normalization value a.

With this sampling strategy, we do not exploit the whole advantages of jitterd grid sampling
since for each pixel grid location we sample at each time grid location. It would be better to
either jitter x, y and t together, choose one random t for each (xi, yi), or to use one of the
multisampling methods suggeseted in Chapter 3 of the book [SM03].

4.6. Animation framework

The scene to be rendered is described in a simple xml format where point model files (internal
bin file format or sfl file) are listed with their corresponding animation file (anim file format as
generated by the Maya animImportExport plug-in). An example scene xml is shown in Figure
4.11.

According to the user’s choice, the animation transforms inbetween the keyframes are either
linearly interpolated or calculated by cubic spline interpolation. For the latter, we use the code
of [Bur].

38

4.6. Animation framework

Figure 4.11.: An example scene xml file.

39

4. Rendering Algorithms

40

5
Results

In this chapter, we show results of the volumetric kernel approach for a varying number of
temporal samples per frame and compare their visual quality with images as generated by an
accumulation of temporal supersamples with original 2D surface splatting. The accompanying
Table 5.1 displays the corresponding framerates. All measurements were taken on a computer
with Pentium Intel Core2 Quad Q6700 CPU and NVidia GeForce 8800 Ultra GPU. In the
following, we are going to discuss the results.

Figure 5.1 illustrates that for volumetric kernels a very small number of temporal samples is
sufficient to create smoothly motion blurred images. Especially in the case of linear motion,
even a single temporal sample produces satisfactory results since a volumetric kernel represents
a piece-wise linear approximation of the motion trajectory. Sampling beyond one temporal
sample is in fact superfluous for this example since there are no visibility or shading changes
which would require a higher sampling rate. On the other hand, motion blur effects which
are generated by accumulating images taken at a higher frequency than the framerate require
a fairly large number of samples to alleviate disturbing staggering which severely presses the
framerate down. In Figure 5.2 (e), the lower left tentacle of the octopus has partly vanished.
This is due to the fact, that the instantaneous velocity vector of each of the three temporal
samples in this region differs relatively largely in direction and the volumetric kernels do not
overlap anymore. This implies that by adjusting the velocity vectors we have to make sure that
volumetric kernels of subsequent time instants overlap sufficiently such as to provide a smooth
interpolation over time. Figure 5.3 reveals a problem with the current solution on how to handle
transparency which is introduced by sweeping an object along its trajectory over time. Since
the 2D Gaussian surface kernels and therefore also the volumetric kernels do not guarantee
a partition of unity, we tend to get too small or too large values at areas where the kernels
overlap if we compute transparency by summing up the corresponding Gaussian alpha value.
For densely sampled models with a high ratio of overlapping area for a kernel as in the case of

41

5. Results

the shell model, the temporal transparency becomes too opaque.

Figure 5.1.: Wasp model (49604 points) moving in diagonal direction from the upper right to the lower
left corner. (a) Rendering without motion blur and 2D surface splats. (b)-(c) show motion
blurred images generated by accumulating (b) 10 and (c) 50 temporal supersamples, respec-
tively, and 2D surface splats. (d)-(e) are rendered with volumetric kernels and (d) 1 and (e)
3 temporal samples, respectively. Table 5.1 enlists the corresponding framerates.

42

Figure 5.2.: Octopus model (465878 points) rotating about its center. (a) Rendering without motion
blur and 2D surface splats. (b)-(c) show motion blurred images generated by accumulating
(b) 10 and (c) 50 temporal supersamples, respectively, and 2D surface splats. (d)-(e) are
rendered with volumetric kernels and (d) 1 and (e) 3 temporal samples, respectively. Table
5.1 enlists the corresponding framerates.

Image Temporal Kernel type Fps Fps Fps

samples Figure 5.1 Figure 5.2 Figure 5.3

(a) 1 2D splats 39.6 29.9 37.9

(b) 10 2D splats 7.9 4.7 10.3

(c) 50 2D splats 2.3 1.1 4.4

(d) 1 volumetric 3.5 7.0 0.8

(e) 3 volumetric 1.7 3.8 0.4

Table 5.1.: Framerates of the rendered images in Figures 5.1, 5.2 and 5.3

43

5. Results

Figure 5.3.: Ammonite and shell model (277269 and 168120 points, respectively). The ammonite is
moving towards the camera and rotating about its center while the shell is moving horizon-
tally from left to right. (a) Rendering without motion blur and 2D surface splats. (b)-(c)
show motion blurred images generated by accumulating (b) 10 and (c) 50 temporal super-
samples, respectively, and 2D surface splats. (d)-(e) are rendered with volumetric kernels
and (d) 1 and (e) 3 temporal samples, respectively. Table 5.1 enlists the corresponding
framerates.

44

6
Conclusion and Outlook

6.1. Summary

In this thesis, we have described a method for rendering point-based models with motion blur
effects. First, we presented an overview of related work on the topics of temporal antialiasing
and EWA splatting in Chapter 2. Chapter 3 derived the theoretical basis by extending EWA
surface splatting in the temporal dimension. As central idea of our approach, we introduced a
volumetric kernel which unifies a spatial and temporal component and allows for a continuous
reconstruction of the scene in space as well as time dimension. In the following Chapter 3.6.4,
we described the modified three-pass algorithm in contrast to the original 2D surface splatting.
Finally, result images and performance measurements were presented in Chapter 4.6.

6.2. Future Work

For the time being, when sampling at a certain time instant, we take a temporal sample at
the motion trajectory of every point of the model. However, since individual point motion
paths may differ strongly in length and shape, it would be very advantageous to choose the
sampling density for the individual point samples of the model adaptively. This would allow for
incorporating the stochastic sampling strategies of distributed raytracing [CPC84] and frameless
rendering [BFMZ94] [DWWL05]. While these are applied on a per-pixel level, our idea would
in contrast sample on the level of volumetric kernels. The problem which arises is, that the
evaluation of the visibility function has to be adjusted. One could think of grouping the temporal
samples as in the time bucketing solution.

Also, it is necessary to rethink the solution for computing the temporal alpha texture. As has

45

6. Conclusion and Outlook

been revealed in Figure 5.3, the result becomes incorrect if the kernels do not guarantee a
partition of unity. An option would be to move temporal alpha evaluation to the visibility pass.
That is, the texture would be computed separately for each sampled time instant or time bucket.
This would make it possible to guarantee a partition of unity by calculating the intermediate
result as a weighted average instead of a sum. In the attribute pass, the intermediate values for
a time instant could then be summed up in the final temporal alpha texture.

Since volumetric kernels tend to be elongated and thin, a rasterization process which exploits
the OpenGL point primitive becomes inefficient. Therefore it could make sense to resort to
rendering a textured quad for each volumetric kernel.

46

A
Accompanying CD Contents

This appendix gives an overview of the contents on the accompanying DVD. It contains the
executables for the motion blur splatting and the reference applications, the respective source
codes and the thesis PDF.

A.1. Application executables

A.1.1. Motion Blur Splatting

The application for motion blur splatting can be found in the folder \MotionBlurSplatting.
In order to install the application simply copy the folder to your hard disk. The application
executable requires Windows XP or Vista and an installation of .NET 3.2 or later versions.
Moreover, a NVidia GeForce GPU 8 or later series is required. To start the application, execute
splatting.exe.

A.1.2. Reference Implementation

The executable of the reference implementation is stored in the folder \ReferenceImplementation.
In order to install the application copy the folder to your hard disk. The application executable
requires Windows XP or Vista and an installation of .NET 3.2 or later versions. Since compu-
tations are performed completely on the CPU, there are no requirements on the GPU. Execute
ReferenceImplementation.exe to start the application.

47

A. Accompanying CD Contents

A.2. Implementation source code

The source code of the motion blur splatting and reference implementation projects can be found
in the folders \Source\MotionBlurSplatting and \Source\ReferenceImplementation,
respectively. The subfolders which separate different parts of the projects are organized in al-
most the same way for both applications. The source code files and Microsoft Visual Studio
9 projects are stored in the root folder in the case of the motion blur splatting application and
in the subfolder \Source\ReferenceImplementation for the reference implementa-
tion. The subfolder \scenes contains a collection of example scene xml files which refer
to point models in the subfolder \scenes\models and Maya .anim files in the subfolder
\scenes\animations (for details see Section 4.6).

A.3. Thesis PDF

The thesis PDF is located in the folder \Thesis.

48

B
Implementation Overview

In this appendix, we give a brief overview of the central classes in our C++ implementations of
the motion blur splatting application (Section B.1) and reference implementation (Section B.2).

B.1. Motion Blur Splatting

B.1.1. Class: GLSplat

The class GLSplat provides an interface to the class GLSplat2D for 2-dimensional sur-
face splat rendering which itself is the base class for GLSplat3D. The latter implements the
volumetric kernels rendering algorithm. Each class contains a version of the following main
functions:

void draw();

This is the function which is called on a redraw callback. It retrieves the input parameters from
the GUI, updates the scene and draws the current frame.

void draw_arrays(unsigned int shaderId);

For a drawing pass with the ID shaderID, this function loops over all models in the scene,
applies the corresponding animation transforms and sends the velocity and time weight param-
eters to the shader. Finally, it sends the range of vertices in the VBO which is occupied by the
current model down the drawing pipeline by calling glDrawArrays.

void normalization();

Here, the normalization pass is performed.

49

B. Implementation Overview

File Description

vp_pass1.glsl 2D surface splats: Vertex shader

fp_pass1.glsl 2D surface splats: Fragment shader

vp_pass1_quadsurf.glsl Volumetric kernels: Vertex shader

fp_pass1_quadsurf.glsl Volumetric kernels: Fragment shader

Table B.1.: Visibility pass shaders.

void update_shader_parameters(GLhandleARB program);

Being called once every time before drawing a frame, this function sends the viewing transform
parameters to a shader specified by program.

B.1.2. Frame buffers

For storing frame buffer data, we use two frame buffer objects (FBOS). The first one, fbo_,
holds textures which are updated for every temporal sample (or time bucket), that is, the depth
texture depth_tex_, the color texture color_tex_ and the normal texture normal_tex_.
The latter is used for storing the temporal alpha values in the case of volumetric kernel rendering
as deferred shading is not applied here and a normal texture becomes superfluous. The second
FBO, fbo_accum_, is used for accumulating the intermediate results of each temporal sample
(or time bucket).

B.1.3. Class: GLState

This class stores all relevant OpenGL states and can therefore provide some nice and efficient
functions like projecting, unprojecting, eye point or viewing direction. All state changes are
applied by using functions of this class instead of calling the OpenGL functions directly to
maintain consistency.

B.1.4. Class: Spline

The code for this class is taken from [Bur]. It provides different spline interpolation methods
which we use for interpolating data between animation keyframes.

B.1.5. Shaders

In this section, we shortly describe how the shaders are structured.

For the visibility pass (Table B.1), the shader code for the 2-dimensional surface splat and
volumetric kernel rendering algorithms differ only slightly. The earlier uses OpenGL fixed

50

B.1. Motion Blur Splatting

File Description

2D surface splats:

vp_pass2.glsl Vertex shader

fp_pass2_gouraud_accum.glsl Fragment shader (Gouraud shading)

fp_pass2_phong_accum.glsl Fragment shader (Phong shading)

Volumetric kernels:

vp_pass2_quadsurf.glsl Vertex shader

fp_pass2_quadsurf.glsl Fragment shader

Table B.2.: Attribute pass shaders.

File Description

2D surface splats:

fp_normalize_gouraud_accum.glsl Fragment shader (Gouraud shading)

fp_normalize_phong_accum.glsl Fragment shader (Phong shading)

fp_normalize_quadsurf.glsl Volumetric kernels: Fragment shader

fp_normalize_color_accum.glsl Fragment shader (color texture display)

fp_normalize_depth_accum.glsl Fragment shader (depth texture display)

fp_normalize_normal_accum.glsl Fragment shader (normal texture display)

fp_normalize_alpha_quadsurf.glsl Fragment shader (alpha texture display)

Table B.3.: Normalization pass shaders.

functionality depth testing in the attribute pass and, therefore, updates the values in the FBO
depth buffer. To make it possible to display the content of the depth buffer, the same values are
stored in the depth texture depth_tex_. This texture is used as an input to the attribute pass
in the case of volumetric kernels rendering.

In the attribute pass (Table B.2) for 2-dimensional surface splat rendering, two separate frag-
ment shaders implement Gouraud and Phong shading, respectively. For Gouraud shading, light-
ing computations are performed on the color values before storing them to the color texture. On
the other hand, the fragment shader for Phong shading does not yet evaluate lighting for the
current fragment, but accumulates the normal in the normal texture for deferred shading.

The last four enlisted shaders in Table B.3 display the content of the color, depth, normal and
temporal alpha textures, respectively, on the screen. As the volumetric kernels rendering does
not accumulate normal values, we reuse the normal texture for storing the temporal alpha values.

51

B. Implementation Overview

B.2. Reference Implementation

B.2.1. Class: MainApp

This is the central class of the application which controls the frame buffers, camera state, scene
and GUI and handles the drawing callback.

B.2.2. Class: Scene

This class contains the models of the scene and their animations and controls their state. The
most important function is

void TraceRay(Vec3f* cameraPos, Vec3f* ray, GLfloat time, ColorRGB*
resColor);,

which traces the viewing ray ray with eye position cameraPos at time t and returns the
resulting color in resColor.

B.2.3. Class: Animation

This class provides an interface to the derived classes StaticAnimation, LinearAnimation,
RotationalAnimation and KeyframeAnimation. The latter is defined by reading in
data from a Maya .anim file. The essential functions of the Animation interface are as fol-
lows.

void TransformRay(Vec3f* origin, Vec3f* ray, GLfloat time);

Instead of transforming the object itself which is very expensive for large point models, the
viewing ray ray and eye position origin are transformed by the inverse modelview trans-
form. The transform is determined by either linearly interpolating between the start and end
states of the object inbetween two frames or by cubic spline interpolation in the case of keyframed
animations. time denotes the time instant between the current two frames.

void TransformObjectIntersection(Vec3f* intersectionPoint, Vec3f*
intersectionNormal);

Since during the intersection computation the viewing ray and eye position have been trans-
formed instead of the object, the determined intersection point location intersectionPoint
and normal intersectionNormal have to be adjusted accordingly. This is done by apply-
ing the transforms which have been calculated during the call of the function TransformRay.

The animation sequence can be controlled by calling the functions

void NextFrame(void);
void PreviousFrame(void);
void Reset(void);

52

B.2. Reference Implementation

B.2.4. Class: SceneObject

This class represents an object of the scene. It provides an interface for the derived classes
Sphere for an ideal sphere and PointModel for a point model. The most important func-
tions of the interface are listed below.

GLfloat Intersect(Vec3f* origin, Vec3f* ray);

This function intersects a viewing ray ray with the object and returns the intersection depth
value. origin denotes the eye position. A bounding box tree over the point model splats
accelerates the computation. The normal and position of the last intersection point are set and
can be retrieved by the functions

Vec3f* GetLastIntersectionNormal(void); and
Vec3f* GetLastIntersectionPoint(void);.

B.2.5. Class: QMCSampler

Based on the sample code in [KK], the QMCSampler class implements a Quasi Monte Carlo
sampling algorithm.

53

B. Implementation Overview

54

C
Ellipsoid axes computation

This appendix will first derive the 3D Gaussian function which is created by convolving a 2D
Gaussian surface kernel with a 1D Gaussian along the direction of instantaneous velocity. Then,
it describes how to calculate the orthogonal axes s, t and u of the ellipsoid which represents this
3D Gaussian. Based on the surface splat axes a0 and a1 and the instantaneous velocity vector
v, we want to calculate a tight spanning ellipsoid (Figure C.1). Section C.2 concerns itself with
the case of general elliptical splats, whereas Section C.3 will state the calculation for the more
simple case of circular surface splats. Table C.1 provides an overview over the notation.

Figure C.1.: Computation of the orthogonal ellipsoid axes e0, e1 and e2.

The center of the kernel is chosen as the center of the original surface splat. It can be ignored
in the following calculations, that is, set to (0, 0, 0), without any loss of generality.

55

C. Ellipsoid axes computation

Quantity Notation

x = (x, y, z) An arbitrary point within the volumetric kernel

c := (0, 0, 0) Kernel center

a0, a1 Axes of the 2D surface splat

ai = (aix, aiy, aiz)

n Normal of the 2D surface splat

v Instantaneous velocity vector

v’ := v
||v|| Normalized instantaneous velocity vector

v’ = (v′x, v
′
y, v
′
z)

e0, e1, e2 Axes of the volumetric kernel

ei = (eix, eiy, eiz)

o Source point of point x on the 2D surface splat

Table C.1.: Notation.

Figure C.2.: Construction of the 3D Gaussian kernel. (a) Point x lies on the ellipse. (b) The ellipse
through point x which is shifted parallelly along the velocity vector v.

C.1. 3D Gaussian function

A point x = (x, y, z) lies on a 2D ellipse, if the segments x′ and y′ which are calculated
by normal projection to the ellipse axes a0 and a1 (see Figure C.2 (a)) fulfill the following
condition:

x′2

||a0||2
+

y′2

||a1||2
≤ 1. (C.1)

We can solve for x′ and y′ by calculating the normal projection of x to the splat axes:

56

C.1. 3D Gaussian function

cosα =
x′

||x||
(C.2)

x · a0 = ||x|| · ||a0|| · cosα (C.3)
= ||a0|| · x′ (C.4)

→ x′ =
x · a0

||a0||
(C.5)

y′ =
x · a1

||a1||
, (C.6)

where α denotes the angle which is enclosed by x and a0. Inserting Equation C.6 into Equation
C.7 gives us the following ellipse equation:

(x · a0)2

||a0||4
+

(x · a1)2

||a1||4
≤ 1. (C.7)

The 2D Gaussian kernel G2D which corresponds to this ellipse now has the following form:

G2D = Ae
−(

(x·a0)2

||a0||4
+

(x·a1)2

||a1||4
)
, (C.8)

where the parameter A ensures that the Gaussian integrates to 1.

As a next step, we derive the 3D Gaussian function of a volumetric kernel. For this, we consider
a point x which is located at a certain distance from the 2D ellipse (Figure C.2 (b)). The value
of the 3D Gaussian at x is calculated by convolving the source point on the ellipse with a 1D
Gaussian along the direction of velocity. The value of the 2D Gaussian at the source point can
be retrieved by placing an ellipse through x which is shifted parallely along the velocity vector.
The center c′ of this shifted ellipse is

c′ = s · v’ + c (C.9)
= s · v’ (C.10)
= (s · v′x, s · v′y, s · v′z), (C.11)

where s ∈ R is a scaling parameter. It can be determined by the fact that

s · v′z = z′ → s =
z′

v′z
, (C.12)

where z′ is the normal projection of x to the ellipse normal. The ellipse equation of the shifted
ellipse at x then becomes

((x− c′) · a0)2

||a0||4
+

((x− c′) · a1)2

||a1||4
≤ 1. (C.13)

57

C. Ellipsoid axes computation

and the corresponding 2D Gaussian function is

G2D∗ = Be
−(

((x−c′)·a0)2

||a0||4
+

((x−c′)·a1)2

||a1||4
)
, (C.14)

where the parameter B ensures that the Gaussian integrates to 1. The form of the 1D Gaussian
which takes the role of the temporal filter is

G1D = Ce
−(s2

||v||2
)

= Ce
−(z′2

v′z ·||v||2
)
. (C.15)

After combining Equation C.14 with Equation C.14, we arrive at the 3D Gaussian kernel G3D

G3D = G1D ·G2D = De
−(

((x−c′)·a0)2

||a0||4
+

((x−c′)·a1)2

||a1||4
+ s2

||v||2
) (C.16)

and the corresponding ellipsoid equation

((x− c′) · a0)2

||a0||4
+

((x− c′) · a1)2

||a1||4
+

s2

||v||2
≤ 1. (C.17)

Here, again, the parameter D has to normalize the Gaussian such that it integrates to 1. If
||v|| = 0 or v′z holds, that is, the velocity is zero or it coincides with the ellipse plane, the
ellipsoid degenerates to an ellipse.

C.2. General elliptical splats

Based on the 3D Gaussian kernel we have derived in the previous section, we can now proceed
to calculating the axes of the ellipsoid primitive which represents the kernel. We begin with
determining the conic matrix Q of the ellipsoid which appears in an alternative representation
of the ellipsoid equation, that is, a point x lies within the ellipsoid if the following condition
holds.

xTQx = Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz − 1 ≤ 0, (C.18)

where the components of the conic matrix are

Q =

A D E

D B F

E F C

 . (C.19)

The ellipsoid axes can now be easily calculated by principal component analysis, that is, we
have to perform an Eigenvalue decomposition of the conic matrix Q. Since this matrix is sym-

58

C.2. General elliptical splats

metric, we can rely on the properties that its Eigenvalues are real and the Eigenvectors form an
orthogonal basis. The Eigenvalue decomposition into the Eigenvector matrix V

V =

ev0 ev1 ev2

 (C.20)

with Eigenvectors evi and Eigenvalue matrix Λ

Λ = diagλ0, λ1, λ2 (C.21)

with the corresponding Eigenvalues λi is

Q = V ΛV −1 (C.22)
= T−TDT−1 (C.23)
= TT−1. (C.24)

In the last equation, the matrix D determines the type of quadric in the implicit representation.
Since we are working with ellipsoids, D equals the identity matrix. Furthermore, the matrix T
denotes the variance matrix of the ellipsoid whose columns consists of the ellipsoid axes

T =

e0 e1 e2

 . (C.25)

This implies that the ellipsoid axes are computed by scaling the Eigenvectors with the square
root of their corresponding Eigenvalues

ei =
√
λi · evi. (C.26)

Sections 2 and 3 in Chapter 11 of the book [PFTV88] provide source code for a numerical
computation of the Eigenvalue decomposition. First, the matrix Q is reduced to a tridiagonal
form by the Housholder algorithm. The resulting matrix is then used as an input to the QL
algorithm which computes the Eigenvalues and Eigenvectors. We ported the source code to
GLSL and limited the number of iterations in the Housholder algorithm to the 5 iterations which
are necessary for a three-by-three matrix. However, we could not achieve the expected results
and assume that the code overstrains the capabilities of the GPU. If we make the simplifying
assumption that the surface splats have circular shape, the ellipsoid axes computation is far
less involved and realizable on GPU. The necessary derivations are provided in the following
section.

59

C. Ellipsoid axes computation

C.3. Simplified case: circular 2D splats

Figure C.3.: The shortest ellipsoid axis lies in the plane which is spanned by the longest vector in the
configuration and the minimal direction in the plane of the other two vectors.

Figure C.4.: Calculation of the minimum direction.

In this section, we derive the calculation of the ellipsoid axes in the case of circular 2D surface
splats. Note that this derivation does not deliver the accurate shape since we assume that the
longest vector in the configuration of the 2D splat axes and the velocity vector equals the longest
ellipsoid axis. In fact, the longest ellipsoid axis may tend towards the direction of the longest
vector in the configuration, but they are not identical. Consider Figure C.3 where we show the
geometrical setting of the 2D surface splat, the velocity vector and the ellipsoid.

In the following derivation, a0, a1 and v are interchangeable and we consider the following
examplary configuration:

||a0|| = ||a1|| = r

||v|| > r, (C.27)

where r denotes the splat radius. In this case, the longest ellipsoid axis is chosen to be the
velocity vector:

e0 := v (C.28)

Next we assume that the shortest ellipsoid axis lies in the plane spanned by the velocity vector
v and the vector amin. The latter is planar to the 2D splat and has the smallest incident angle
with v. It can be determined by calculating the normal projection of the velocity vector to the
2D splat plane. In other words, the endpoint of amin is the point in the 2D splat plane which has

60

C.3. Simplified case: circular 2D splats

the shortest distance to the endpoint of v. Since amin is only used to define the plane in which
the shortest ellipsoid axis lies, its length is irrelevant. If we consider the 2D splat plane equation

Ax+By + Cz +D = 0

c := 0 → D = 0

(A,B,C)T := n, (C.29)

the shortest distance of endpoint of v = (vx, vy, vz)T to this plane is

dst =
Avx +Bvy + Cvz√
A2 +B2 + C2

(C.30)

→ amin = v− dst · n (C.31)

The remaining ellipsoid axes are then chosen as follows:

e1 := e1 · (v× amin)

e2 := e2 · (e0 × e1) (C.32)

The unknowns e1 and e0 can be calculated by inserting the splat axis enpoints a0 and a1 into the
ellipsoid equation . We still need to handle certain degenerate cases where the velocity vector
happens to coincide with the 2D splat plane or its length equals zero. This will be described in
the following.

C.3.1. Degenerate case: Velocity vector coincides with 2D surface
splat plane

If the velocity vector lies in the plane of the 2D surface splat, the ellipsoid degenerates to an
ellipse. One option tho handle this is to project the velocity vector to the 2D splat plane and
compute the spanning ellipse of this vector and the original 2D splat. The resulting ellipse could
then be rendered by switching back to the original EWA surface splatting. However, it would
be preferable to apply the same rendering algorithm as with ellipsoid axes. The difficulty which
arises here is the necessity of computing the inverse of the ellipsoid variance matrix T . If one
of the ellipsoid axes equals zero, this matrix cannot be inverted, however. Therefore, we have to
resort to an approximative solution which is described as follows. First, the normal projection
of v to the 2D splat plane is computed, which we denoted by v∗. Depending on the length of
v∗, two different cases have to be regarded. In the first case, the endpoint of v∗ lies within the
original 2D splat and the ellipsoid axes are chosen as

61

C. Ellipsoid axes computation

e0 := a0

e1 := a1

e2 := ε · n, (C.33)

where ε is a sufficiently small scaling parameter while ensuring that the inversion of the variance
matrix T is still stable. In the second case, the endpoint of v∗ lies outside of the original 2D
splat. This makes it necessary to calculate the spanning ellipse of v∗ and the original 2D splat.
For circular splats, this is straightforward.

e0 := v ∗

e1 := r · v ∗ ×n
||v ∗ ×n||

e2 := ε · n. (C.34)

C.3.2. Degenerate case: Velocity vector length equals zero

For this degenerate case, we choose the 2D surface splat axes and the small scaled splat normal
as the ellipsoid axes.

e0 := a0

e1 := a1

e2 := ε · n. (C.35)

C.3.3. Special case: Velocity vector parallel to splat normal

In this case, we can skip the computations of a general configuration as described in Section
C.3. The first two ellipsoid axes become the splat axes and the third one is the velocity vector
projected to the splat normal:

e0 := a0

e1 := a1

e2 := (n · v) · n. (C.36)

C.4. Footprint function of a volumetric kernel

Since Gaussian kernels are closed under projective transformations, the perspective projection
of a 3D Gaussian kernel G3D to screen results in a elliptical 2D Gaussian G2D which is denoted

62

C.4. Footprint function of a volumetric kernel

Figure C.5.: A 3D Gaussian kernel represented by an ellipsoid is intersected with the viewing ray.

by the term footprint function. To evaluate this function at a certain screen location x, we have
to calculate the integral along the viewing ray through the screen location (Figure C.5). The ray
equation is stated as

xx = eye + tdirx, (C.37)

where xx is a point on the viewing ray through the screen location x, eye is the ray origin, t ∈ R
is a scaling parameter and dirx denotes the viewing direction. Inserting the ray equation into the
Gaussian G3D and integrating over t then delivers the required value of the footprint function
G2D:

G2D(x) =

∫ lim inf

− lim inf

G3D(eye + tdirx). (C.38)

Because we work with Gaussians which have only a finite support, the integral reduces to the
range between the two intersection points x1 and x2 of the ray and the conic isosurface at
the cutoff value, that is, the ellipsoid. In our application, the screen space size of a single
footprint function is fairly small and exact gradient changes barely perceptible, which means
that an approximative value is sufficient. We exploit the fact that the Gaussian value increases
with the length of the ray segment between the intersection points. In detail, we transform the
intersection points back to parameter space and compute their distance:

d = ||(MT)−1x1 − (MT)−1x2||. (C.39)

Since the ellipsoid is a unit sphere in parameter space, this value lies in the range [0, 1] and is
plugged into a spherical Gaussian to compute the final value.

63

C. Ellipsoid axes computation

C.5. Attribute functions of a volumetric kernel
projected to screen

Figure C.6.: The attribute function value at a certain screen location is determined by sampling along
the viewing ray, tracing back the corresponding source points and averaging their attribute
values.

During the ellipsoid rasterization stage, it becomes necessary to evaluate the attribute function,
for example color, texture parameter, normal or visibility, at a certain screen location. However,
these functions are all defined over the 2D surface splat and not the volumetric kernel. To
determine the attribute value of an arbitrary point within the ellipsoid, we have to be aware of
the fact about how this point has been generated. That is, the stems from a point on the 2D
surface splat which has been convolved with a 1D Gaussian along the velocity vector. This
point, which we call the source point, can be calculated as explained in the next Section C.6 and
determines the attribute function value of all points along the direction of velocity. If we denote
by σ the operator which traces back a point xx to its source point, the attribute function value of
a volumetric kernel projected to screen becomes

h(x) =
1

tf − tc

∫ tf

tc

h(σ(eye + tdirx)), (C.40)

where tc and tf denote the scaling parameters corresponding to the closer and farther intersec-
tion point and h is a placeholder for the attribute function. Instead of computing the integral,
the intersection line segment can be sampled and the corresponding attribute values averaged
(Figure C.6).

h(x) ≈ 1

N

∑
tk

h(σ(eye + tkdirx)). (C.41)

Note that the visibility function, which is defined to be binary on the 2D surface splat, now
can have an arbitrary value within the interval [0, 1]. For our application, the evaluation of

64

C.6. Source point on 2D splat

the color function is particularly simple since we assume a constant color value for each 2D
surface splat. Visibility is in general not constant over the 2D surface splat area, however,
and we determine its value by sampling the intersection segment once at the midpoint of the
intersections. Resultingly, we cannot handle splat intersections.

C.6. Source point on 2D splat

Figure C.7.: Source point on the original 2D splat.

This section derives how the source point of a point x within the volumetric kernel is determined.
By the term of source point we denote a point on the 2D surface splat. In the process of sweeping
the 2D splat along the velocity vector by convolving the Gaussian kernel with a 1D Gaussian,
this point generates a line. The material properties and visibility of every point on this line is
defined by the corresponding value at the source point. In other words, the material properties
and visibility of a point within the volumetric kernel is determined by its generating source point
on the 2D surface splat. Therefore, we need a way to trace back a point x along the velocity
vector onto the 2D surface splat. The involved calculations are illustrated in Figure C.7 and
described in the remainder of this section.

The problem is posed as a intersection of the 2D splat plane with the line which runs through
the point x along the direction of the velocity vector v. The plane equation is

c · n = d

o · n = d. (C.42)

and the line equation

x + v · to = o (C.43)

To solve for t0, insert Equation C.42 into Equation C.43:

to =
d− x · n

v · n
. (C.44)

The required source point o is then calculated by evaluating Equation C.43.

65

C. Ellipsoid axes computation

66

Bibliography

[BFMZ94] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J. Scher Zagier.
Frameless rendering: double buffering considered harmful. In SIGGRAPH ’94:
Proceedings of the 21st annual conference on Computer graphics and interac-
tive techniques, pages 175–176, New York, NY, USA, 1994. ACM.

[BHZK05] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt. High-
quality surface splatting on today’s gpus. In Symposium on Point-Based Graph-
ics 2005, pages 17–24, jun 2005.

[BK03] Mario Botsch and Leif Kobbelt. High-quality point-based rendering on mod-
ern gpus. In PG ’03: Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications, page 335, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[BSK04] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting. In In Proc.
of symposium on Point-Based Graphics 04, 2004.

[Bur] John Burkardt. Spline - interpolation and approximation of data.

[BWK02] Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high quality
rendering of point sampled geometry. In EGRW ’02: Proceedings of the 13th
Eurographics workshop on Rendering, pages 53–64, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.
SIGGRAPH Comput. Graph., 18(3):137–145, 1984.

[DWWL05] Abhinav Dayal, Cliff Woolley, Benjamin Watson, and David Luebke. Adap-
tive frameless rendering. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses,

Bibliography

page 24, New York, NY, USA, 2005. ACM.

[GM04] Xin Guan and Klaus Mueller. Point-based surface rendering with motion blur.
In Eurographics Symposium on Point-based Graphics 2004, 2004.

[Gra85] Charles W. Grant. Integrated analytic spatial and temporal anti-aliasing for poly-
hedra in 4-space. SIGGRAPH Comput. Graph., 19(3):79–84, 1985.

[Hec89] Paul S. Heckbert. Fundamentals of texture mapping and image warping. Tech-
nical report, Berkeley, CA, USA, 1989.

[JESMM+97] II J. Edward Swan, Klaus Mueller, Torsten Möller, Naeem Shareef, Roger Craw-
fis, and Roni Yagel. An anti-aliasing technique for splatting. In VIS ’97: Pro-
ceedings of the 8th conference on Visualization ’97, pages 197–ff., Los Alami-
tos, CA, USA, 1997. IEEE Computer Society Press.

[KB83] Jonathan Korein and Norman Badler. Temporal anti-aliasing in computer gen-
erated animation. SIGGRAPH Comput. Graph., 17(3):377–388, 1983.

[KK] Thomas Kollig and Alexander Keller. Efficient multidimensional sampling.
pages 557–563.

[ML85] Nelson L. Max and Douglas M. Lerner. A two-and-a-half-d motion-blur algo-
rithm. SIGGRAPH Comput. Graph., 19(3):85–93, 1985.

[MMI+98] Klaus Mueller, Torsten Möller, J. Edward Swan II, Roger Crawfis, Naeem Sha-
reef, and Roni Yagel. Splatting errors and antialiasing. IEEE Transactions on
Visualization and Computer Graphics, 4(2):178–191, 1998.

[NRS82] Alan Norton, Alyn P. Rockwood, and Philip T. Skolmoski. Clamping: A method
of antialiasing textured surfaces by bandwidth limiting in object space. SIG-
GRAPH Comput. Graph., 16(3):1–8, 1982.

[PC83] Michael Potmesil and Indranil Chakravarty. Modeling motion blur in computer-
generated images. SIGGRAPH Comput. Graph., 17(3):389–399, 1983.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical recipes in C: the art of scientific computing. Cambridge
University Press, New York, NY, USA, 1988.

[Poi07] Point-Based Graphics. Morgan Kaufmann Series in Computer Graphics, jul
2007.

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: a multiresolution point render-
ing system for large meshes. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 343–352,
New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[Shi93] Mikio Shinya. Spatial anti-aliasing for animation sequences with spatio-
temporal filtering. In SIGGRAPH ’93: Proceedings of the 20th annual con-
ference on Computer graphics and interactive techniques, pages 289–296, New
York, NY, USA, 1993. ACM.

[SM03] Peter Shirley and R. Keith Morley. Realistic Ray Tracing. A. K. Peters, Ltd.,

68

Bibliography

Natick, MA, USA, 2003.

[SPW02] Kelvin Sung, Andrew Pearce, and Changyaw Wang. Spatial-temporal antialias-
ing. IEEE Transactions on Visualization and Computer Graphics, 8(2):144–153,
2002.

[SWBG06] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross. Gpu-based
ray-casting of quadratic surfaces. pages 59–65, Boston, 2006.

[WZ96] Matthias M. Wloka and Robert C. Zeleznik. Interactive real-time motion blur.
The Visual Computer, 12(6):283–295, 1996.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Sur-
face splatting. In SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 371–378, New York,
NY, USA, 2001. ACM.

[ZPvBG02] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross.
Ewa splatting. IEEE Transactions on Visualization and Computer Graphics,
08(3):223–238, 2002.

[ZRB+04] Matthias Zwicker, Jussi Räsänen, Mario Botsch, Carsten Dachsbacher, and
Mark Pauly. Perspective accurate splatting. In GI ’04: Proceedings of Graph-
ics Interface 2004, pages 247–254, School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, 2004. Canadian Human-Computer Com-
munications Society.

69

