
ETH Library

A particle-based volumetric
sculpting tool

Master Thesis

Author(s):
Seiler, Martin Ulrich

Publication date:
2009

Permanent link:
https://doi.org/10.3929/ethz-a-005791842

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005791842
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A Particle-Based Volumetric
Sculpting Tool

Martin Ulrich Seiler

Master Thesis
March 2009

Prof. Dr. Mark Pauly

Analysis and Optimization of Spatial and
Appearance Encodings of Words and

Sentences

Christian Vögeli

Master Thesis
SS 2005

Prof. Dr. Markus Gross

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Abstract

We rethink the early explorative design phase of today’s modeling pipeline. A
modeling tool based on a volumetric representation of material allows modeling
paradigms which are different from conventional, surface based approaches. By
using Governed Design in combination with classical sculpt and modeling tools,
we study a method which is based on well known physical concepts to ensure pre-
dictability, but is flexible enough to enable the creation of a variety of shapes in a
short time. We performed an evaluation of our ideas by implementing an experi-
mental modeling tool.

i

ii

Zusammenfassung

Wir überdenken die frühe Designphase der heutigen Modellierungspipeline. Ein
Modellierungstool, welches auf einer volumetrischen Repräsentation basiert, er-
laubt Modellierungsparadigmen, die sich von oberflächenbasierten Ansätzen un-
terscheiden. Wir kombinieren eine neue Methode, welche wir Governed Design
nennen, mit klassischen Modellierungstechniken und schlagen eine System vor,
welches auf bekannten physikalischen Konzepten aufbaut. Dadurch erreichen wir
Vorhersagbarkeit, sind aber gleichzeitig flexibel genug, um eine Vielzahl von For-
men in kurzer Zeit zu schaffen. Wir haben unsere Ideen in einem experimentellen
Modellierungstool implementiert und evaluiert.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Quiqshape . 1
1.3 Goals of the System . 1

1.3.1 Material Representation . 2
1.3.2 Extended Tool Intelligence: Governing Rules 2

1.4 System Overview . 3
1.4.1 Classic Modeling . 3
1.4.2 Governed Design . 3

1.5 Target Audience . 4

2 Related Work 5
2.1 Sketching . 5
2.2 Sculpting . 6
2.3 Design by Tool Design . 6
2.4 Tool Intelligence . 7

3 Material Simulation 8
3.1 Overview . 8
3.2 KNN optimization . 8

3.2.1 kD-Tree . 9
3.2.2 Adaptive Integration . 9

4 Visualization 10
4.1 Overview . 10
4.2 Rendering . 10

4.2.1 Deferred Shading . 10
4.2.2 Shadow Mapping . 10

4.3 Surface Extraction . 10
4.3.1 Screen Space Methods . 11
4.3.2 Sphere splatting . 11
4.3.3 Simple Normal and Depth Smoothing 12
4.3.4 Attribute Blending of Spheres 12
4.3.5 Shadow mapping combined with sphere blending 13

4.4 Managing Complexity . 13

5 Classic Modeling: Sculpting 17
5.1 Overview . 17

5.1.1 Related Work . 17
5.1.2 Material System . 18

5.2 Tools . 20
5.3 Selection . 20

5.3.1 Circle and Rectangle Based Selection 21

v

5.3.2 Sphere Based Selection . 21
5.4 Force . 21

5.4.1 Push tool . 21
5.4.2 Pull Tool . 22

5.5 Add and Remove Material . 22
5.5.1 Matter-subtraction tool . 22
5.5.2 Matter-addition tool . 22

5.6 Rotation, Scaling and Translation Tools 22
5.7 Auto Rotation . 22
5.8 Rigid Matter as Tool . 23

6 Governed Design 24
6.1 Overview . 24

7 Results 26
7.1 Humanoid characters . 26
7.2 Genus-8 Sculpture . 27
7.3 High Genus Shapes . 27
7.4 Canyon Landscape . 27

8 Implementation 32
8.1 System Overview . 32
8.2 OpenGL Issues . 32
8.3 Custom Preprocessor . 33
8.4 Save and Load . 33
8.5 Parameter Saving . 33
8.6 Auto-save . 33
8.7 Recording . 34
8.8 Marching Cubes . 34
8.9 Parallelization . 34

8.9.1 Simulation Code . 35
8.9.2 Rendering . 35
8.9.3 Marching Cubes . 36

8.10 Benchmarks . 36
8.10.1 Marching Cubes . 36
8.10.2 Updating Derivatives . 37

9 Summary and Conclusions 40
9.1 Classic Modeling . 40
9.2 Governed Design . 40
9.3 Future Work . 41

9.3.1 General Purpose Modeling 41
9.3.2 Input Devices . 41
9.3.3 Round Trip With Mesh-Based Tools 41
9.3.4 Surface Detail . 41
9.3.5 Automatic Inter-Object Collisions 42
9.3.6 Governing Global Properties 42

Appendix 43

Abbreviations 51

Bibliography 53

vi

LIST OF FIGURES

List of Figures

4.1 Volume rendering algorithms . 11
4.2 Simple sphere splatting . 12
4.3 Additional shadow mapping . 12
4.4 Sphere splatting . 15
4.5 Sphere blending: initialization . 15
4.6 Sphere blending: second step . 15
4.7 Sphere blending: weight computation explained 15
4.8 Sphere blending: weighting function quantities 16
4.9 Shadow mapping: no PCF, not smoothed 16
4.10 Shadow mapping: no PCF, smoothed 16
4.11 Shadow mapping: PCF, not smoothed 16
4.12 Shadow mapping: PCF, smoothed 16

5.1 Matter types: rigid, plastic, and fluid 19
5.2 Pushing of selected material . 21
5.3 Push tool, radial force . 21
5.4 Push tool, planar force . 21
5.5 Pull tool, planar force . 22
5.6 Pull tool, radial force . 22
5.7 Matter addition tool . 23
5.8 Customized tools example . 23

6.1 Governed Design examples . 25

7.1 Humanoid character example: time series 28
7.2 Humanoid character example: object in our tool 29
7.3 Humanoid character example: intermediate shape 29
7.4 Humanoid character example: final shape with surface detail 30
7.5 Genus-8 example: Complex topology 30
7.6 High genus shapes example: cutouts of the movie 31
7.7 Canyon example final image . 31

8.1 Sphere splatting, large sphere radius 35
8.2 Sphere splatting, small sphere radius 35
8.3 High quality surface extraction, large sphere radius 35
8.4 High quality surface extraction, small sphere radius 35
8.5 Low quality surface extraction, large sphere radius 36
8.6 Low quality surface extraction, small sphere radius 36
8.7 Multi core performance benchmark 38
8.8 Benchmark: multicore speedup . 39
8.9 Benchmark: complex numerical computation per particle 39

A-1 User Interface Screenshot . 43
A-2 Object hierarchy . 48

vii

LIST OF FIGURES

A-3 Tools hierarchy . 49
A-4 Update hierarchy . 50

viii

Acknowledgements

Special thanks to: My family for their tremendous support during my studies. My
supervisor, Prof. Mark Pauly, for his guidance and wisdom. Thanks to: Tahmineh,
for her love and patience. My fellow Urs, with whom I not only worked together
on this project, but also spent hours learning for exams and accomplishing a lot of
cool projects. Julian for his support and fruitful discussions. Thomas and Ruben
for helping me with the revision of my thesis.

ix

Chapter 1

Introduction

1.1 Motivation

Geometric modeling, a sub-category of Computer Aided Design (CAD), is the pro-
cess of creating three dimensional shapes on a computer. The myriad of shapes
that exist makes the creation of geometric modeling tools a task of managing com-
plexity. Our motivation is to advance this creative process and to increase produc-
tivity. If the benefits of CAD could be brought to the early design phase, which is
nowadays often done outside the digital domain, the increase in productivity would
be a real benefit. Professional designers that want to quickly visualize a shape or
artists who look for the next great idea would benefit from a tool which could be
used to rapidly explore different shapes. Ordinary users could benefit from a sys-
tem where they can easily define their idea of a shape, which then could be used
for shape retrieval [33]. Many existing three dimensional (3D) modeling systems
are rather complex and our motivation is to have a simple tool to reach a broad
audience.

1.2 Quiqshape

For this thesis we developed a 3D modeling tool called Quiqshape. The tool was
created in close collaboration with Urs Dönni, whose thesis [20] shares some parts
with this one, while complementing other parts. Both theses give a complete
overview of the system, but will go into more detail for selected topics.

1.3 Goals of the System

Our initial idea was to help artists and designers to find new shapes. Thus we
defined the central and most abstract goal of this project to be:

• We want to provide artists with methods for shape finding.

This goal serves as the guiding handrail during the development of our tool. We
want to support and improve the early explorative design phase of virtual objects.
In order to achieve this, we defined different, increasingly refined sets of goals our
system should meet and then made design decisions.

• We want to get closer to the behavior of real world objects since people have
a good intuition about the real world.

1

1.3. GOALS OF THE SYSTEM

• The system should be capable of representing as much detail as possible in
order to allow for the modeling of more complex objects.

• Real-time user interaction is desired to ensure a fluent work experience.

• Predictability and flexibility of the outcome should be in healthy balance in
order to gain maximum productivity.

• The form-finding process should be aided with intelligence/rules which gov-
ern the global properties of the shape being designed.

We believe that a design tool satisfying these goals would be a real benefit for
the early design phase. In order to achieve these goals, many decisions have to
be made regarding the technology to be used. Some of the goals are of competing
interest: The less detail there is, the faster data can be processed by a computer,
which in turn leads to faster user interaction.

1.3.1 Material Representation

Ordinary 3D content creation software only represents the surface of an object,
justified by the fact that only the surface is visible to human eyes. If one deletes tri-
angles from a triangle mesh, a hole to the empty interior is created. This is because
a triangle mesh is nothing more than a thin shell. This is clearly counterintuitive. In
order to reach our goal of a more realistic representation of virtual objects, our sys-
tem needed some sort of physically-based simulation. We found that the following
properties of real world objects would be desirable in our system. We expect to
achieve not only an increase in productivity from a more intuitive behavior, but also
the possibility to shift to a new modeling paradigm:

• Volumetric representation

• Mass and density

• Different material types

◦ rigid, elastic, plastic, and fluid

• Inter-object collisions

This allows certain operations to be more efficient. For example, the designer can
let such a system do some work for him, as it now has its own dynamics. Topolog-
ical changes should be particularly easy to achieve: one can simply delete matter
from the model to create a hole. New surface is implicitly generated and does not
have to be added explicitly by the user. The material can melt and freeze, be sen-
sitive to gravity, or not. We imagine that these properties yield a very dynamic and
creative playground for new ideas and explorations.

1.3.2 Extended Tool Intelligence: Governing Rules

Even though some artists are incredibly creative beings and can produce new art
simply out of the corners of their mind, the everyday reality proves to be different.
New shapes are created by experimenting, playing and combining existing con-
cepts. The creative process is supported with clay, plasticine and/or other tools.
Our system should allow an artist to express his general ideas about the shape to
be designed: What kind of symmetries should the shape have? How smooth is it?
Is there a hole in the middle? Which regions in space have to be covered by ma-
terial? Our tool should then enable the artist to find an appealing shape satisfying
his initial abstract design ideas and constraints.

2

1.4. SYSTEM OVERVIEW

1.4 System Overview

Now that we have defined our goals and provided a rough overview of the desired
features of our tool, it is a good time to give a first impression of how our specific
implementation looks. Unlike most tools in widespread use, our 3D modeling tool
Quiqshape operates on an approximation of real matter. The core of our system is
a physics simulation of deformable matter. We created a state of the art graphical
user interface which allows simple access to the different tools and operations that
can be applied to the 3D objects. A storage system ensures that during each
stage of the design process backups can be made and stored to disk. In order
to integrate our tool into an existing tool chain we added an exporter to a widely
known format used to store 3D triangle meshes. The set of tools one can use to
model a shape can be divided into two categories:

• Classic modeling tools

• Governing rules and constraints

The next two sections describe what we mean by this. A short description of the
user interface is given in the appendix, so that readers who have not seen the tool
yet get at least some idea of how it looks.

1.4.1 Classic Modeling

The artist is given a set of tools which are closely related to real-world tools one
would use for clay sculpturing. We implemented tools to add and remove material,
and others to push or pull the surface of the sculpture. All these actions are per-
formed by the artist with a clear intention. The shape to be modeled exists at least
roughly in his mind. To go one step further we enable the user to change the state
of matter between rigid, elastic, plastic and fluid. We have tools to add and remove
heat to objects and we implemented the underlying physical properties such as
heat diffusion and freezing/melting of matter.

1.4.2 Governed Design

In contrast to the classic modeling approach Governed Design is a totally different
approach to shape finding. This paradigm requires the artist to give the system
guidelines, design constraints and rules on what properties a final shape should
have. For a given setting the shape itself is then computed as a dynamic solution of
the defined rules. New material added to the system tries to satisfy the constraints
while the user is still allowed to interact. As this process is very dynamic, an ap-
pealing shape might exist only a limited amount of time. Therefore the user needs
to have control over time while the system evolves, meaning that he can stop time
and go to a previous state.

The guiding rules were implemented as actual objects which are part of the
scene: So called tool objects. Their position, orientation and scale control the
properties of the tools. One property very central to design is symmetry; therefore
we have a set of tools which govern the symmetry of the final shape. Other abstract
properties are global smoothness or the topology of an object. We also provide
tools to control these properties. For example we implemented a way to specify
where holes should be. The overall process of shape finding can be described
as putting a few rules in place which govern the macroscopic form of the shape
followed by the use of the classic tools (see section 1.4.1) to guide the material
into new shapes.

3

1.5. TARGET AUDIENCE

1.5 Target Audience

As stated earlier, we want to support the early form-finding process. Therefore our
target audience is artists and our tool can be seen as a creativity stimulator for
finding prototypes. Our tool is not geared towards the exact engineering type of
CAD but it is used to find new forms, to prototype an exciting shape, or to create
quickly the basic shape of sculptures and characters. As it is aimed at the early
design stages, we have ensured that our tool integrates well with other existing
methods which complement the work flow.

4

Chapter 2

Related Work

This section discusses work related to our main goal, which is to improve the early
explorative design phase by computer aided methods. We discuss the related work
of specific system components in the corresponding sections.

Methods to develop new shapes have existed for centuries. In recent years,
several virtual methods have tried to imitate and make improvement over real meth-
ods or to create a new way of design.

2.1 Sketching

A well established and still widely used method is (seemingly) pedestrian: Sketches
using pen and paper. To think about a shape and sketch it quickly, then think again,
refine, and improve is a very good method to spawn creativity as described in [31].
There Lipson and Shpitalni discuss the benefits of sketching in conceptual design
and analysis which is summarized as follows:

1. It is fast, suitable for the capacity of short term memory

2. It is implicit, i.e. describes form without a particular sequential structure

3. It serves for analysis, completeness check and simulation

4. It is inexact and abstract, avoiding the need to provide unnecessary details

5. It requires minimal commitment, is easy to discard and start anew

The attempt to design a digital tool which is as comfortable to use as pen
and paper and incorporates the advantage of the digital world is a very challeng-
ing one and interestingly has already been explored by Sutherland in the early
1960s [38]. Even though there are tools for 2D sketching, we will discuss mainly
three dimensional (3D) sketching tools. Such a tool should not only be a mere
clone of a real sketch board but should have logic to automatically transform the
user’s strokes into three dimensional shapes. One of the most widely known works
is the one described in [27]: This software called Teddy inflates user-drawn two
dimensional (2D) strokes into 3D shapes. Abstract and simple 3D shapes of or-
ganic form can be quickly created even by a novice. Our work partly aims to
achieve what Teddy does in terms of simple usage, but also aims to go further
in the sense that our underlying model will be a volumetric one providing physical
simulation of the material. Another more recent tool is iLoveSketch [12], which
is a 3D curve sketching system. One of the differences from our approach is

5

2.2. SCULPTING

again that we use a volumetric representation and that we use material simula-
tion to improve the surface quality. The main difficulty is to interpret a 2D stroke
and transform it into 3D spatial information. An interesting approach implemented
by [28] transforms wire frame sketches into actual 3D shapes by using a template
shape used to interpret the 2D strokes. Such tools dive deeply into the realm of
computer vision, where the task is to interpret 2D images and find corresponding
3D semantics. The aforementioned template shape, a 3D skeleton shape, has to
fit the drawn 2D sketch to a certain degree. This mesh is then transformed into a
shape that matches the drawing best. Our tool attempts to provide more of a uni-
fied approach. This means that the sketches are transformed to 3D from the very
beginning. This gives the user the possibility to follow a more spatially-oriented
work-flow as she is exposed to the third dimension right away.

2.2 Sculpting

Another method frequently used, besides pen and paper, is sculpting: Modeling a
piece of clay or plasticine is most common. Often the shape then has to be further
processed on a computer to get to a final product, be it digital or not. As one does
not want to lose the time already spent on clay modeling, one could use a shape
acquisition method to digitize the object, such as the one described in [18]. This
is often done even for non-explorative work as artists might be more comfortable
with real clay. The first reason is that they are used to model with their hands and
the second is that, in the past, the amount of detail which could be modeled on a
piece of clay exceeded what was commonly possible with digital volume modeling
tools by far. The associated field is called virtual sculpting and every state of the
art modeling package has support to sculpt surfaces in one way or another. Our
system implements sculpting related tools but their effects are different in some
cases, as we work on a volumetric representation. Related work regarding actual
algorithms is described in 5.1.1.

2.3 Design by Tool Design

Several factors, which are not immediately obvious, have an influence on today’s
zoo of shapes. Aspects like production cost or availability of manufacturing chains
have their respective influence on what kind of shapes are finally presented to a
consumer. If the shapes reside in the digital domain the mentioned factors cease
to have an immediate influence. However, as creativity is often a recombination
of impressions, they still play a role to some degree. This is where an approach
recently named Design by Tool Design [21] could step in to boost creativity.

The influence of the used tool on the appearance of the final shape should not
be underestimated. Depending on the available tools, certain shapes are easier to
achieve than others, leading to a monotony in design after a few years. This also
holds for non digital media: It is easy to draw two dimensional shapes with a pen
on paper but hard to draw even simple three dimensional ones in an unambiguous
way. One finds that it is particularly hard to model certain shapes by using an
ordinary surface-based mesh-modeling tool. A class of such hard-to-model shapes
is high-genus objects. The solution presents itself in the creation of a new tool
which simplifies the design process by narrowing the overwhelming size of the
original configuration space down to a smaller set that contains a larger density of
actual appealing shapes. One such tool is Topmod, which was used to create the
shapes presented in [11]. Our goal is to improve the early design phase of shapes,

6

2.4. TOOL INTELLIGENCE

and we want our tool to be able to create as many types of shapes as possible in
an intuitive way. This includes, in particular, topologically more complex shapes.

In order to create shapes which are hard to imagine, one can fall back to math-
ematics and use its generative power to create shapes. One recent example of
such an approach is presented in [24], where a tessellations of the Poincaré disc
is mapped into different spaces, yielding interesting sculptures with stunning com-
plexity and beauty. We explored and implemented the use of simple mathematics
to generate an initial shape.

2.4 Tool Intelligence

As mentioned, the underlying representation of a modeling tool, be it digital or not,
has an impact on the shapes commonly produced. In the real world it is nature
which defines the properties of the system and the forces shaping it. These proper-
ties, as well as macroscopic forces like gravity and other environmental influences
like wind, water or living creatures are all entities which participate in the shaping
of an object. In the digital world the programmer defines and models what influ-
ences the shape of an object. One particularly instructive approach is described
in [13], which demonstrates what is meant by tool intelligence: Intelligence is built
into a small cell. The cells interact with each other according to evolving rules.
Many cells emerge and aggregate into a macroscopic structure during an artificial
evolutionary process without user interaction. We apply the core idea of this work
which is to use some logic to create self-organizing geometric primitives. While
we do not reuse the cell approach directly, our shapes also emerge by a union of
many very simple primitives, namely points.

As an example of the exploitation of physically-inspired computer simulations
for shape finding see [29]. There, a mass-spring system represents the tool in-
telligence. The final form corresponds to an equilibrium state of the mass-spring
system under gravity. Afterwards, the model is taken, flipped around, and may
then serve as a building. Such a construction ensures an improved stability be-
cause the force distribution inside the structure is advantageous once the shape
has been flipped around, and gravity acts the other way round. Therefore in this
work the tool intelligence improves the likelihood of structurally stable shapes. The
basic modeling primitive of our tool is a point set, and there are many possibilities
to let tool intelligence shape the point cloud in order to produce shapes with certain
properties.

7

Chapter 3

Material Simulation

3.1 Overview

The basis of our shape modeling tool is the matter simulation subsystem. All fea-
tures and tools are built on top of it. We want to have real-time user interaction (see
1.3), hence we ensured that all our algorithms exploit multi-core architectures. The
matter representation in our system is a point cloud. This representation helps
us to reach our goals: for example, the absence of explicit connections between
primitives simplifies topology changes. The downside of points as primitives is
that neighborhood queries get more expensive compared to other data structures
which store the relation explicitly. However, for almost any task there are efficient
algorithms that work with point clouds.

As a point is the most simple geometric entity it can be easily understood by
users. Other modeling primitives, such as NURBS, are mathematically more so-
phisticated and the designer needs to know their properties in order to be able to
work with them.

Usually one calls points enhanced with additional properties, such as mass or
thermal energy, particles. Based on the particle’s information we compute how
the system evolves over time. Additionally, the point based representation has
several advantages when it comes to flexibility. It is rather easy to add algorithms
which perform operations on points. For example, one can transform points by
mathematical functions to generate interesting effects.

We implemented different methods defining material behavior. The most intu-
itive ones were derived from physical models. For more information regarding this
subject refer to [20]. In section 5.1.2 we explain how the three types of matter
interact with each other.

3.2 KNN optimization

In order to compute the next state of our system we need to solve a set of dif-
ferential equations. In particular, we need to know spatial derivatives of a certain
property P of the material at a given point ~x. Our algorithm is built on top of
Smoothed Particle Hydrodynamics (SPH), where a property is spread in space us-
ing superposition of kernel functions W . The used kernels have special properties.

In particular W is:

• radially symmetric

• finite in space

8

3.2. KNN OPTIMIZATION

• smooth

The central equation used to interpolate properties looks as follows:

P (~x) =
∑

i

Pi
mi

ρi
W (~x− ~xi, hi). (3.1)

Note that ρi has to be computed for each step by ρi =
∑
i

mi ∗W (~x− ~xi, hi) before

any property can be interpolated.
Since, the kernel’s influence is finite, we only need to consider all particles

inside the kernel’s cutoff radius 2 · hi to compute a property (or its derivative) at a
certain point. To speed this up, we need some fast algorithm to compute the set of
the k-nearest neighbors (KNN). And this is where our optimization kicks in.

3.2.1 kD-Tree

To speed up KNN queries, we rely on a kD-Tree [14]. The kD-Tree is able to
perform the task of a single query in O(log n). The construction needs to find the
median first to be able to use the median-split strategy. Therefore, the construction
time accounts with O(n log n), if a linear median-finding algorithm is used.

We decided to use a kd-Tree over a grid based approach because the kd-Tree is
not restricted to a certain domain size. However, our code could easily be adapted
to use a hash-grid for example.

The most time consuming task for solving an SPH system is the KNN search.
Therefore, we decided to parallelize the kd-Tree. This is pretty straight forward,
compared to a parallel construction, as querying the kd-Tree is a read-only opera-
tion and therefore no data races can occur. Our system spends about 30% of its
time performing KNN queries. The kd-Tree construction is not parallelized, it is not
worth the effort as only 3% of the time is used to reconstruct the kd-Tree at the
beginning of each computation step.

3.2.2 Adaptive Integration

We used the simple leap frog method [26] enhanced with an adaptive step-refinement
as described in [25] (page 427). This step-refinement algorithm is applied when-
ever a change in position would exceed half the kernel size and ensures that no
two particles can jump over each other without interacting. In Eulerian approaches,
the same concept occurs and is called the Courant-Friedrichs-Lewy (CFL) condi-
tion [17]. It is important to note that this condition can be circumvented by using an
implicit integration schema.

9

Chapter 4

Visualization

4.1 Overview

The visualization system is right next to the material simulation layer at the core
of our system. It has to provide a fast, appealing and accurate presentation of the
modeled objects on screen.

4.2 Rendering

Our rendering system is based on a hardware (GPU) accelerated rasterization
using OpenGL 2.1 [6] as basic Application Programming Interface (API).

4.2.1 Deferred Shading

In order to spend the precious fragment processing time on pixels that are actu-
ally visible, we implemented a renderer based on deferred shading. This enables
not only a cost efficient implementation of the sphere splatting algorithm, but also
reduces the shadow-map lookup costs as it is only evaluated for visible fragments.

4.2.2 Shadow Mapping

We visualize a 3D world on a 2D screen. We try to give the user many visual hints
in order to make a shape’s structure as clear as possible. Productivity depends
on how easy one can understand the actual shape from its projected appearance.
Shadows in combination with proper shading can help a great deal in understand-
ing otherwise ambiguous configurations. Figure 4.2 and figure 4.3 are a compelling
argument why modeling tools should support more advanced rendering than for
example simple Gouraud shading.

4.3 Surface Extraction

First of all one has to define what the surface is. This is not straight forward for our
SPH [19] based method. A common approach is to generate an iso-surface of a
certain threshold value from the objects smoothed density field. One uses radially
symmetric kernel functions which are positive and have a finite radius of influence.
Hence, using zero itself as a threshold value might seem a natural starting point.

10

4.3. SURFACE EXTRACTION

However, surface reconstruction done with zero-threshold yields a surface of a vol-
ume which is a union of spheres. Usually, this leads to a pretty bumpy surface,
depending on the average inter-particle distance. The usual practice is to use a
larger threshold value yielding more smooth interpolated surfaces. Such a sur-
face fits the actual particle positions better up to the point where individual particle
spheres start to appear. It is important to understand that the appearance of the
object varies with the selected iso-value and there is no one-size-fits all solution,
therefore this is a user controllable value in our system.

4.3.1 Screen Space Methods

The actual iso-surface extraction can be done in various ways. One being the fam-
ily of algorithms based on the well known marching cubes algorithm [32], which is
a view independent extraction of the whole surface. Another family are the view
dependent methods which extract only the visible surface for a given viewing posi-
tion. This family can be further subdivided into ray casting and splatting methods.

Volume rendering

Screen space Object space

Splatting Raycasting Marching cubes

Figure 4.1: Categorization of volume rendering algorithms.

We use the view independent marching cubes algorithm to extract an iso-
surface and export it as a triangle mesh. To visualize our scene on the screen
we decided to use a screen space based method. Since our goal is to have real-
time interaction, we do not rely on the well known marching cubes (MC) algorithm.
It would have been too slow for this task. Since our system can be very dynamic,
we need a fast algorithm, which can handle large changes in shape and topology
easily. It is also important that the algorithm does not rely on inter-frame coher-
ences, because we support large scale deletion and insertion of matter.

To render the objects to the screen we implemented a sphere splatting algo-
rithm 4.3.2, where an additional smoothing step makes it possible to interpolate
surface properties, like color or the surface normal. In contrast to other screen
space methods our selected algorithm has a straight forward implementation and
runs almost entirely on the Graphics Processing Unit (GPU), complementing very
well with the fact, that our physics simulation runs solely on the Central Processing
Unit (CPU).

4.3.2 Sphere splatting

For a simple first implementation we relied on sphere splatting which simply ren-
ders a sphere at each particle’s position.

11

4.3. SURFACE EXTRACTION

Figure 4.2: Simple sphere splatting al-
ready gives a quite good impression of
shape.

Figure 4.3: Additional shadow mapping.

The motivation of using spheres can be illustrated optimally by a correspon-
dence to the iso-surface of the smoothed density field: the volume enclosed by the
zero-level iso-surface corresponds directly to the union of spheres, centered at the
particle positions. This holds if the sphere radius is chosen to be the kernel size.

4.3.3 Simple Normal and Depth Smoothing

A smoothing pass of the depth and normal map of an extracted surface promises
to be a good solution to generate a visually smooth and appealing representation
on screen. [16] and [34] use a smoothing step to enhance visual quality of the
surface. Those algorithms generate a depth and a normal map and filter them in
an additional step with a smoothing kernel. We found that having a fixed kernel
size for the smoothing filter, which is applied in a non perspective aware manner,
does not live up to the expectations we had:

• Due to a fixed kernel size, viewing the surface from distance is not the same
as a close up shot.

• Since the kernel is in screen space, tilted surfaces are smoothed over a larger
distance in world space.

As long as the view position stays at the same distance to the visualized surface,
the mentioned effects are not as obvious. However, in a highly dynamic system
as ours such effects are quite troublesome. Though it would be possible to over-
come the limitations by adapting the kernel size and shape to cope with zooming
and perspective the prize would be a huge performance penalty for large kernels.
Hence, we decided to use the splatting algorithm described in the next section.

4.3.4 Attribute Blending of Spheres

To improve the visual quality we implemented the algorithm proposed in [10]. This
algorithm is able to smoothly blend between any kind of sphere property. We used
it to blend normals and colors which yields a surface that appears to be smoother
and has nice color gradients between spheres of different color. The algorithm
could also be used to additionally blend other properties like texture coordinates

The algorithms basic steps are:

1. Render spheres to obtain an initial depth buffer.

12

4.4. MANAGING COMPLEXITY

2. Shift the depth buffer back by ε. In our implementation we set ε equal to the
particles sphere radius. This has the effect that only particles contributing to
the front surface will be rendered in the next pass.

3. Render spheres again and accumulate properties and weights.

4. Normalize properties for all pixels by dividing the accumulated values by the
accumulated weights.

If a fragment lies in front of the shifted depth buffer its weighted property (nor-
mal, color, etc.) is accumulated using alpha blending. All properties along a view
ray (the dashed line in figure 4.6) sum up and are finally divided by the summed
up weights. In order obtain a smooth interpolation of properties the used weighting
function has to satisfy two constraints:

• Vanish towards border of the splatted spheres (i.e. the ellipse in screen
space).

• Vanish towards the shifted surface depth.

In our implementation we use a product of two weighting functions W 1 and W 2,
computed as follows:

W 1 = 1− rf
rp

(4.1)

W 2 =
zf − z

ε
(4.2)

Wi = W 1
i ∗W 2

i (4.3)

Figure 4.8 visualizes the used quantities in equation 4.2 and 4.1. The final weight
is the product of W 1 and W 2. Other functions could be used as well, as long
as the properties mentioned above are satisfied. The algorithm works quite well.
However, the silhouette of the shape corresponds exactly to the one produced by
simple sphere splatting 4.3.2. This is an issue which other approaches, like ray
casting of an iso-surface, do not have.

4.3.5 Shadow mapping combined with sphere blending

The art in computer graphics is to find a set of algorithms which work well together.
In our case this is the particle splatting method which has to work well with shadow
mapping. A straight forward combination of the two can lead to the artifacts shown
figure 4.10.

This is because the surface might appear very smooth after the spheres have
been blended, but the positions used to compute the shadows are still the ones
from the original bumpy surface. To solve this problem we implemented percentage
closer filtering (PCF) which samples the shadow map over a larger area, reducing
the impact of the artifacts. Figure 4.12 shows the final result.

4.4 Managing Complexity

As mentioned in our goals (see 1.3) we want to support as much complexity as
possible even though we focus on the early design phase where especially sur-
face detail is not yet of importance. The reason is that there are some shapes for
which already first prototypes can become rather complex. Despite the need for
complexity we also have to keep a convenient work flow and ensure a good user

13

4.4. MANAGING COMPLEXITY

experience. These two goals are of competing interests as more complex objects
require more computational resources and therefore reduce the interaction-rate.
Current hardware allows the simulation of up to 100k particles using our Smoothed
Particle Hydrodynamics (SPH) based algorithm. But our rendering system, lacking
an effective culling algorithm, quickly becomes the bottleneck, therefore we allow
to take material out of the simulation and let the user reduce the number of rep-
resentative particles visible on screen. This enables one to work on models with
more than the maximal number points that can be handled simultaneously by our
system.

14

4.4. MANAGING COMPLEXITY

W1 W2

Figure 4.4: A 2D projection of an exem-
plary setup. The material is in light green,
the camera frustum in light blue. The
camera and the image plane (dotted line)
are visualized at the bottom of the image.

W1 W2

Figure 4.5: The first render pass initial-
izes the depth buffer (thick black line).

W1 W2

A

B

C

Figure 4.6: The fragments which lie in
front of the shifted depth buffer (thick
black line) have an influence on the
blended properties. The fragments gen-
erated at point C are culled by the hard-
ware depth test and do not contribute.
Surface normals serve to illustrate prop-
erty blending: At point A and B nor-
mals are computed, weighted and accu-
mulated into the frame-buffer.

W1 W2

A

B

C

Figure 4.7: Weight Computation: The
function chosen is a product of two terms.
The first W 1 being a linear fall of propor-
tional to the projected radius. The second
weighting term W 2 smooths out disconti-
nuities otherwise introduced by spheres
which intersect the depth buffer.

15

4.4. MANAGING COMPLEXITY W1 W2

A

B

C

rp

rf

zf

z

Figure 4.8: Visualization of the quantities used to compute the weighting function.
Compare with equation 4.1 and 4.2

.

Figure 4.9: No PCF, not smoothed: the
lowest visual quality

Figure 4.10: No PCF, smoothed: un-
wanted shadows are still visible

Figure 4.11: PCF, not smoothed: shading
not continuous

Figure 4.12: PCF, smoothed: the best vi-
sual quality

16

Chapter 5

Classic Modeling: Sculpting

5.1 Overview

In this section, we present what we call the classic modeling approach. It is best
described as a volumetric sketching and sculpting process, which is in its nature
similar to actual real-world sketching and sculpting. However, porting this tech-
nique to a virtual world offers many opportunities to optimize the handling and to
increase the creative scope. One of the benefits of virtual worlds is that physical
laws are not predefined: they need to be explicitly modeled and can therefore be
twisted, tuned and adapted to one’s needs. The tricky part is to choose a suitable
approach for the actual implementation: What algorithms and data representa-
tions can provide an authentic behavior and still allow for the efficient simulation of
a sufficient amount of matter?

The concrete goals derived from the abstract ones (see 1.3) describe a system
which allows the following:

• Addition and subtraction of material.

• Topological changes of the shape.

• Plastic deformations for sculpting.

• Fast user interaction.

Besides the functional goals, the system should also be intuitive to use.

5.1.1 Related Work

During the past twenty years, there has been a lot of research on digital sculpting
and volumetric modeling systems. The difference between digital sculpting and
volumetric modeling is that the latter supports topological changes of the shape
without additional effort. While designers working mostly on genus-zero shapes
will not benefit directly from this advantage, it readily allows for the sketching of
more complex shapes in a simple way. And for this, the method does not have to
provide the detail that a mesh-based approach can provide for topologically trivial
shapes. To our knowledge [22] was the first attempt to implement many of the goals
defined for this project. This system uses a volumetric pixel (voxel) grid to repre-
sent volume. A simple boolean value at each position in the three dimensional (3D)
grid states whether matter is present or not. They also introduced a series of ma-
nipulation tools to add or subtract matter, as well as using the sandpaper tool to
smoothen the surface. In this work, we try to go one step further by incorporating

17

5.1. OVERVIEW

physically-based effects to the material. For the voxel-based methods there are
several ways to allow for elastic deformations of the system. One simple approach
proposed by [23] is to assume that the voxels are connected by springs. In our
case, a major drawback of the standard voxel-based methods is their domain limi-
tation. Even though this could be solved by using a spatially adaptive data structure
like an octree, we decided not to use such an approach, as the solution of the dif-
ferential equations on such structures becomes a lot more tricky and is not yet fully
researched.

Recently, a more popular approach chosen by several digital sculpting systems,
such as [36] and [39], has been the use of an adaptively sampled distance field
(ADF) to store the object’s shape. The distance field is a scalar function that relates
to each point in space its distance to the surface. If a signed distance field is used,
one can also perform inside/outside tests and therefore some implicit notion of
volume is present. However, the main incentive for using an ADF is its ability
to store a lot of surface detail while still supporting efficient operations, such as
carving out material from the surface with arbitrarily shaped tools. Unfortunately, so
far there are no straight forward implementation of algorithms to perform physically-
based deformations for ADFs. Therefore the ADF approach is not suitable for our
project either.

A similar approach to ours is found in [37]. This system is also a sculpting
solution based on particles with real-time deformations. The implementation re-
lies on the simulation of the Lennard-Jones potential [30] to compute and inte-
grate inter-particle forces. In order to maximize performance, particles are actually
only simulated in regions spatially close to the current position of the deformation
tools. Because all their tools have a short interaction range, they are able to model
objects with millions of particles and report that their marching cubes (MC) [32]
based rendering system is the bottle-neck. In contrast, some of our tools incorpo-
rate forces which act on a global scale – potentially on all particles of the scene.
Consequently, we need to be able to run the material simulation on all particles in
parallel in our project. [30] also noted the advantages of using spheres as the ba-
sic building blocks because it simplifies several of the involved data structures and
algorithms compared to systems allowing for more complex primitives. This is one
of the main reasons why we use a point-cloud for modeling. We also use a similar
approach to implement custom tools which are made out of particles themselves.
However, compared to [30], our tool goes further with regard to its features and the
complexity of the underlying simulation, as well as concerning the usability of its
tools.

An overview of existing pysically-inspired algorithms for shape manipulation
and a detailed description of our implementation can be found in the complement-
ing work of this thesis [20].

5.1.2 Material System

By using a point-cloud as our basic modeling primitive we benefit from the fact that
it is easy to implement algorithms operating on them. Many different methods are
possible to animate the material. Our first attempt was to create an exact copy of
a potters workbench, including physical friction between objects, heat transfer to
simulate change of matter state, real-time collisions, and of course gravity. The
basic idea behind this was to have an intuitive and powerful environment which
would enable new ways of shape modeling. For example, there might be shapes
which are particularly easy to achieve by adding gravity to the scene. We found
that most of the time our material would simply flow away and loose its shape - in
general it was hard to control. Thus we increased the stiffness of our material. This

18

5.1. OVERVIEW

lead to a numerically instable material simulation. We solved the stability problem
and noticed that material which is able to withstand gravity is not adequate for
shape modeling: it is too inflexible as the material yields only after high stresses
are applied. As we want to apply simple forces in order to deform the material,
these two goals are contradictory. It is also important to note here, that a perfectly
plastic material, that instantly yields under stress, is fluid. It is not able to keep
its shape against any force no matter how viscous the material is: if one exposes
the material long enough to gravity, it will eventually deform into a flat shape on
the floor. Therefore, at least some elasticity or even rigid material is needed if
we want to incorporate gravity. Another important insight we had is that elastic
behavior in general is not desired: after the user has deformed a shape she wants
it to stay in the deformed state. Elastic material would go back to its original rest
state. Therefore, we want plastic behavior at least for all user performed sculpting
operations. We found that it is hard to find a material simulation method which
provides all the desired properties out of the box:

• Ability to withstand gravity, which is of importance for our other design meth-
ods.

• Plastic material behavior, which is suitable for sculpting.

• Real-time simulation, enabling a convenient work flow.

These difficulties are not so surprising if one thinks about how many materials
actually exist in nature which provide the desired properties: for centuries there
was basically only natural clay which was up to the task. Natural clay is heavy,
which leads to a large contact friction and therefore the object does not move if the
modeler pushes his thumb into the object, but yields and deforms plastically at the
point where the thumb touched the surface.

After we explained to an architecture student what the goal of our system is,
he was really excited and told us that he enjoys designing on the computer as he
does not have to care about the buildings statics: there is no gravity in his design
tool. This triggered the idea of letting the user decide which parts of his model
are affected by gravity and which are not. We found that it solves most of the
issues related to numerical stability, matter plasticity and the amount of freedom
we want to give to the user. Finally, we implemented a slightly modified version of
this concept where we try to put everything into context that makes sense to the
user.

Rigid Plastic

Fluid

Figure 5.1: The three matter types are illustrated. The arrows state how they
influence each other if a collision occurs.

We introduced three types of matter state: Rigid, plastic and fluid. Rigid mate-
rial can only be moved by the user directly. It is not sensitive to any type of force.
It does collide with the two other matter types and deforms them. Plastic material
deforms fluid material when a collision happens. It is as if, from the perspective

19

5.2. TOOLS

of the fluid material, the plastic material would have infinite mass. If fluid matter
collides with an other matter type it does not exert any forces to them but it deforms
itself. So for fluid matter, the two other types look like rock. For plastic matter, only
rigid matter is solid.

The force based tools can be customized: one can select whether they have
an effect on fluid material, on plastic material, or on both. Rigid material is not
sensitive to forces at all and can only be moved by the user.

5.2 Tools

In order to implement tools, we rely on the following information:

• two dimensional (2D) mouse coordinates.

• 3D spatial coordinate of the surface point under the mouse cursor (if possi-
ble).

• Surface normal of the surface point (if possible).

If it is not possible to compute the spatial coordinates or the surface normal, we do
the following:

• The spatial coordinate lies on the plane which includes the last point touched
on the surface and is parallel to the screen plane.

• The surface normal is simply not updated anymore until the mouse is again
hovering over the surface.

Besides a few special selection tools, all tools use a sphere to implement their
behavior. Once a user understood this concept, she can immediately use all tools
as they behave very similar: the user activates the tool by pressing the left mouse
button. The mouse scroll wheel controls the sphere size which is mapped to a
suitable configurable quantity of the current tool. The standard behavior for all
tools using this sphere is, that the sphere automatically centers at the point of
the material which lies under the mouse cursor. The sphere attaches itself to the
surface where the mouse pointer is. This makes sense most of the time. If the user
wants to move away from the surface, she can do this in the following way:

1. Move the mouse cursor away from the material silhouette.

2. The sphere is now moved under the cursor in the a parallel plane to the
screen plane.

3. If the user enters the silhouette of an object the sphere will again attach to
the surface. This can be disabled by pressing the ALT -key on the keyboard.

5.3 Selection

Several operations in our system are performed on whole blocks of matter. This
includes translation, rotation, and deletion. Therefore we implemented a series
of selection tools, which allow one to select a subset of the material and, in a
second step, perform a desired operation such as moving or deleting the selected
objects. Similar to selection regions in 2D graphic packages, we allow to constrain
the effect of tools to the selected material. This behavior is enabled by pressing
the CTRL-key on the keyboard while using the tool. This is beneficial if work has to

20

5.4. FORCE

be done on material that is spatially close, but one wants to work only on a subset.
The user just selects the material she wants to work on and performs the action.
If the user holds down the Shift-key during the selection process, she can add
previously unselected material. If she holds down the CTRL-key, she can remove
material from the active selection.

5.3.1 Circle and Rectangle Based Selection

The first type consist of the circle and rectangle selection tools, which are not
aware of depth and simply select all matter that lies inside the world frustum of the
selection shape. Most users are very familiar with those types of tools and they are
useful for certain tasks. However, one has to keep in mind that back-projection of
the circle into the world space yields a cone and not a cylinder.

5.3.2 Sphere Based Selection

The sphere selection tool is surface aware, meaning the center of the sphere is
always on the surface where the mouse pointer is hovering over. This is, as already
mentioned, common behavior of most tools. By scrolling with the mouse wheel
one can increase or decrease the sphere’s size and therefore make selections
that go deeper into the material or ones that are more shallow. With the current
implementation there is no way to decouple the area of the selection and the depth
it enters into the material. We found that such a tool is not necessary, but it might
very well be implemented.

5.4 Force

The force tools are user activated and exert force in a specific way on the material.

Figure 5.2: The push tool is used while holding down the CTRL-key to only exert
force on the selected material.

5.4.1 Push tool

The push tool consists of a surface aware sphere and applies a force to surround-
ing matter pointing radially away from the sphere’s center. This tool can be used
to dig holes into the material or, with increasing sphere size, to push parts of the
object around. It also has a smoothing effect if applied to bumps. Small forces ap-
plied to the material can be used to carve small channels or to smooth out ridges.
Overall a very versatile tool.

5.4.2 Pull Tool

The pull tool is the counter part of the push tool : it is surface aware, apply-
ing force normal to the surface pointing away from the object. Due to the na-

21

5.5. ADD AND REMOVE MATERIAL

Figure 5.3: Push Tool: force normal to
surface tangent plane.

Figure 5.4: Push Tool: Force pointing ra-
dially outwards from sphere center.

ture of our underlying physics simulation, which is based on Smoothed Particle
Hydrodynamics (SPH), some undesired effects occur: holes inside the object. The
material separates easily since SPH has only a spatially limited elasticity. We tried
circumvent this issue by simultaneously adding material inside the object. The out-
come was too similar to the ordinary material-addition tool and thus we did not
incorporate this feature.

Figure 5.5: Pull Tool: Force normal to
surface tangent plane.

Figure 5.6: Pull Tool: Force pointing radi-
ally inwards from sphere center.

5.5 Add and Remove Material

The matter addition and subtraction tools are also implemented using surface
aware spheres. The user can again control the sphere size by scrolling the mouse
wheel.

5.5.1 Matter-subtraction tool

The subtraction tool simply removes the particle closest to the sphere center with a
given rate. The removal rate corresponds to the sphere size: the larger the sphere,
the faster it deletes material. We used it to vacuum unneeded material.

5.5.2 Matter-addition tool

This tool adds matter to the simulation randomly inside the sphere. The sphere
size corresponds to the rate of material addition. This is a very useful tool to draw
outlines of new shapes, to fill them with matter, or to connect parts of existing
shapes. Figure 5.7 shows the tool in action. It behaves a bit like a virtual pencil
and we found it to be one of the most useful tools to create shapes.

5.6 Rotation, Scaling and Translation Tools

Rotation, scaling and translation are standard tools in every 3D modeling pack-
age. Our system makes no exception and is modeled after the ones known from

22

5.7. AUTO ROTATION

commercial tools and is very similar to Blender [1].

Figure 5.7: The matter addition tool: notice how it adds material in a plane parallel
to the screen plane.

5.7 Auto Rotation

A well-known technique from clay work, where one places the object on a rotating
table to shape an axially symmetric object, was also implemented. The user can
enable a virtual rotation of the system. Now one can use all tools stationary while
the material moves. The analogy works quite well and it is a simple and easy to
understand tool, which can be handy at times.

5.8 Rigid Matter as Tool

Once matter has been transformed to the rigid state, it is fixed in space and not
sensitive to any type of forces anymore. The only way rigid matter can be moved
around is by using the positioning tools. This behavior encourages the creation of
customized tools, which are then used to further shape the object. Time can be
saved if the user creates a custom tool designed for a certain purpose. However,
the user interface to control a customized tool is not as intuitive as the one for the
built-in tools.

Figure 5.8: Customized tools: simply move rigid matter through plastic matter to
leave a footprint.

23

Chapter 6

Governed Design

6.1 Overview

Besides the classic modeling approach, we implemented a new design paradigm,
which we call Governed Design. With the classical approach the designer needs
to have a clear-cut idea of the object she wants to model. At this point Governed
Design assists the artist by allowing her to model and explore shapes by preparing
a scene and running a simulation on it.

The design process would look as follows: the artist starts with an empty scene
and lets material flow into it by using material generators or procedural shape cre-
ation. For example, one could start with a structure extracted from a 3D Perlin-
noise [35] cube. She then places some constraints into the scene. Symmetry
planes, attracting force points or material sources are just a few examples on what
she could add to the scene. After setting up the scene, she would start the simula-
tion and watch how the system evolves. We believe this method can substantially
stimulate creativity, since it provides the designer with a great deal of explorative
freedom.

Our software combines the classical approach with the method just described.
The system helps the user to create interesting shapes by providing tools that influ-
ence the material in the scene in a straightforward way. Now there are numerous
smart systems that could be used to shape material. The feature distinguishing
a usable system from a mere random generator is the predictability of the out-
come. The user needs to have an idea of how a certain change in the configura-
tion affects the outcome of the simulation process. Hence, the governing rules we
implemented model well known real world concepts, thus making the effect of a
configuration change predictable. The user of our software will still be surprised by
the shapes generated through her setup, however the behavior is predictable as
the material behaves according to physical laws. The results achieved are similar
to the real world where forces of nature shape interesting forms.

The above paragraph can only give a limited perspective on Governed Design.
For further explanation, we thus refer to [20] where the paradigms potential is ex-
plored and discussed in more detail.

24

6.1. OVERVIEW

Figure 6.1: A small subset of shapes we created by using our Governed Design
method.

25

Chapter 7

Results

To check the practicality of our tool, we modeled a wide variety of shapes using
it. In the following section we present the designs we built, using only our classic
tools and explain how we achieved the results shown and how long it took to model
the shape. After finishing a shape, its surface is usually exported from our tool to
create a nice rendering. In the following we describe how the tool is supposed to
be used:

1. Rough sketches and prototypes are modeled.

2. The surface is exported to a surface modeler, where surface quality is in-
creased and additional detail might be added.

3. An animation package of choice could be used in case the model has to be
animated.

If nothing else is stated we used Blender [1] to create the images. It is always
important to state what skill a modeler has because mostly mastery comes with
experience. Our modeling skills sums up to at most a few hundred hours of usage
of such tools. This experience comes partly from research we did during the inves-
tigation of related tools and the rest is from earlier experience acquired during the
years.

7.1 Humanoid characters

Characters are rather easy to create as a single stroke with the matter addition
tool is transformed to a long volumetric shape in space. Hence, creating animals,
aliens and other characters is rather easy and quick. For example, legs can be
made thicker by adding material to them using the material addition tool. If the
user needs a hole somewhere she can use the matter deletion tool and therefore
this task is a matter of seconds with our tool. In figure 7.1 we show the time series
of a character creation. Figure 7.2 shows this caracter from another perspective in
our tool.

After creating the basic shape of the character, we exported the surface (figure
7.3) and used the sculpting interface of Blender [1] to add further detail to it. The
two arm spikes and the tail spikes are modeled by simply displacing the triangles.
Not being able to model high frequencies directly in our tool might be regarded as
a drawback, but once an appealing basic shape is found, they can easily be added
during a later step. The final result is shown in figure 7.4.

26

7.2. GENUS-8 SCULPTURE

7.2 Genus-8 Sculpture

This sculpture (figure 7.5) was also created in less than a minute. A symmetry
plane was added to create order in the otherwise arbitrary drawn strokes. The
symmetry plane works wonders and the shape looks (at least to the authors) ap-
pealing.

The force-based push tool was used to punch a hole. A connection was added
with an additional stroke, creating another hole. A smoothing step was applied after
exporting the shape to reduce artifacts introduced by our iso-surface generation.
Subsequent re-meshing worked flawless, typical loss of detail for this method was
not an issue because there was no detail to be lost on this model.

7.3 High Genus Shapes

In this work (figure 7.6), the tool’s capability to model high genus shapes is taken
to the limits by using over 50k fully simulated particles. This model was created by
selecting a suitable starting point on the object’s surface and connecting it with a
smooth stroke to another part of the object. The matter addition tool feels a bit like
a three dimensional pencil. This procedure yielded a three dimensional (3D) spider
web structure. After the object was exported from our tool, a plane was added and
a movie was rendered where the camera flies between the branches and zooms
out. A few cutouts of the movie are presented in figure 7.6.

7.4 Canyon Landscape

This scene (figure 7.7) is different in the sense that canyon was not modeled di-
rectly, but by modeling the air.

After about 5 minutes, during which we were experimenting a bist, the shape
presented here, was on screen. After the iso-surface extraction, we simply flipped
the normals and rendered an image with a little fog to give a better impression of
distance. That is all there is to say about the creation process of this shape but
there are a few things to note here:

1. The natural bridges are really easy to model by punching a hole into the air.

2. Depending on the size of the spheres, high frequency can occur at the inter-
section segment of spheres.

While the approach of modeling the negative shape is in general useful, the way
high frequencies are created may only be beneficial for certain types of shapes. If
these high frequencies are not desired, larger spheres or post processing has to
be used to smooth them out.

27

7.4. CANYON LANDSCAPE

Figure 7.1: Humanoid alien character prototype: modeled in 3D in less than 5
minutes

28

7.4. CANYON LANDSCAPE

Figure 7.2: Humanoid alien character intermediate shape: the shape in our tool

Figure 7.3: Humanoid alien character intermediate shape: output from our tool in
Blender [1]

29

7.4. CANYON LANDSCAPE

Figure 7.4: Humanoid alien character final shape: surface detail added and ren-
dered

Figure 7.5: Complex topology can easily be modeled with our tool.

30

7.4. CANYON LANDSCAPE

Figure 7.6: Cutouts of the movie featuring our high genus object.

Figure 7.7: The canyon is created by modeling the air, not the canyon. High fre-
quency exists due to intersection of spheres.

31

Chapter 8

Implementation

8.1 System Overview

This chapter gives an overview of the high-level structure, design decisions and
technologies used for Quiqshape, the software developed in this master thesis.

The application is written from scratch. When we chose which technologies to
use, we put special emphasis on portability: All libraries we use are cross plat-
form. Even though we only tested Quiqshape on Linux and Windows, it should run
without code modifications on MacOS X and other Unix variants like FreeBSD. To
implement Quiqshape we used:

• C++ as the programming language. We chose this language for performance
reasons, and because libraries we wanted to use are written in C++.

• OpenGL for visualization. Shaders are written in OpenGL Shading Language
(GLSL).

• Qt [7] for the graphical user interface. Qt offers high portability and a simple
and productive API. It also allowed us to easily create a modern and flexible
user interface with menus, toolbars and a docking architecture. This allows
the user to customize the user interface as desired.

• OpenMP [8] is used for loop-level parallelization. OpenMP is not vendor spe-
cific and is supported by many compilers.

• Boost [2] for serialization of objects. As a highly optimized and portable C++
library, Boost is widely recognized.

• Design by Contract (DbC) [3] to properly specify interfaces and help debug
the program.

OpenMP and Boost are optional dependencies, Quiqshape can be compiled
and run without them. However, saving and loading features are disabled when
compiling without Boost. All used libraries are freely available as open-source
project.

8.2 OpenGL Issues

We wrote our own library to support DbC. The library supports pre- and postcon-
ditions as well as assertions. When breaking a contract at runtime, the developer

32

8.3. CUSTOM PREPROCESSOR

can either step into the code, ignore this time, or ignore forever. DbC was es-
pecially useful when working with the OpenGL state machine. OpenGL functions
often have many implicit preconditions. For example, before calling the function
that writes a uniform parameter of a shader, the shader has to be activated. While
developing, it is often hard and error prone to keep track of what the OpenGL state
machine looks like at a given time. This can easily lead to situations where a call
does not behave as expected, and debugging OpenGL is tedious. Using DbC, we
can specify in a precondition in what state OpenGL has to be before calling this
function. This makes it easier to develop and find bugs, and is a good specification
about how this function is to be used.

8.3 Custom Preprocessor

Quiqshape depends on several shaders read from GLSL files and simple objects
(like spheres and cubes) read from OBJ files. In order to be able to build a stan-
dalone binary we wrote a preprocessor that compiles all files into the application.

8.4 Save and Load

To save and load scenes created in Quiqshape. we are using the Boost serializa-
tion library. We do not serialize whole objects, but only the fields required to cor-
rectly load the entire scene again. We support serializing objects of type Object
and all its subtypes (see the class diagrams in the appendix). This allows us to
save all objects, including the symmetry plane, the matter generator and so on.
For particle systems, we only save arrays containing properties like positions,
velocity and temperature. Additionally, physics and visualization parameters are
saved. We have implemented two different types of formats:

• A binary format which allows efficient saving and loading using less space.

• An Extended Markup Language (XML) based format that is easy to under-
stand.

In addition to our Wavefront OBJ [9] exporter, the XML format ensures a good
integration into existing pipelines because one can easily write an custom loader
to import our format.

8.5 Parameter Saving

When saving a scene, physics and visualization parameters are also stored. Addi-
tionally, the user can store and load sets of parameters independently of the open
scene. The parameters are then stored in a hidden directory in the user’s home
directory.

8.6 Auto-save

The simulation in Governed Design is in general not real-time. To allow the user to
let the simulation run without the need to constantly keep an eye on it, we imple-
mented auto-save functionality. The function is accessible through the File menu,
and the user can select the interval, in minutes, in which the scene will be saved.

33

8.7. RECORDING

8.7 Recording

To capture the dynamic process of a Governed Design simulation that did not run in
real-time, we have implemented recording functionality where the user can select
to save every n-th frame.

8.8 Marching Cubes

Apart from the sphere splatting algorithm for real-time visualization of the Smoothed
Particle Hydrodynamics (SPH) simulation, we also have an iso surface extraction
using marching cubes (MC) [32]. The algorithm produces a triangle soup, which
we can export to Obj format [9].

Using MC we had two choices:

• Extract a level set of the smoothed density field in order to generate a nice
and smooth surface

• Approximate the iso surface with the union of spheres, yielding the same
surface as with sphere splatting.

We decided to do the later, with the advantage that what the user sees on the
screen is very close to what he exports. This results in a simple implementation to
calculate the iso value at a point in space: it is the distance to the closest particle.
The target value for the surface is then the user-defined sphere size, which is also
used for rendering.

Our MC implementation is based on a freely available C implementation by
Cory Bloyd [15]. We have adjusted and extended the implementation in several
ways:

• We switched from C to C++ and removed the GLUT [4] dependency.

• Instead of a cube, the algorithm works using an axis-aligned box. It also finds
the smallest enclosing box, which gives a significant performance boost over
the original implementation for most shapes.

• The cell size adaptively changes with the user defined sphere radius. The
minimum size of a cell is 2 ∗ radius√

2
. This guarantees that no particle can be

contained in a cell without touching any corner, which means that no particles
will be overlooked when extracting the surface.

• Before extracting the surface, the user can choose between quality levels low,
medium and high. Using low quality, the minimum cell size is used, giving
simply a octahedron for a single particle. When using high, 10*10*10 times
as many cells are used, giving a good approximation of a sphere.

• Parallelization of the code using OpenMP.

The time to extract the iso surface increases with decreasing sphere radius
and higher quality. Because this would lead to arbitrarily long computation time for
arbitrarily small sphere radius, there is a hard-coded limit for the maximum number
of cells (currently 128x128x128).

8.9 Parallelization

This section explains how we parallelized our code and demonstrates the speedup
achieved.

34

8.9. PARALLELIZATION

Figure 8.1: Scene rendered using sphere
splatting with large sphere radius

Figure 8.2: Scene rendered using sphere
splatting with small sphere radius

Figure 8.3: High quality surface extrac-
tion, 128x120x60 cells

Figure 8.4: High quality surface extrac-
tion, reaching the maximum cells limit of
128x128x128

8.9.1 Simulation Code

In order to speed up the actual simulation code, we exploited data parallelism
or loop-level parallelism inherent in our code. We used OpenMP [8] to generate
parallel code out of our main SPH loop. In order to avoid race conditions while
updating the computed derivatives we used thread local storage and an additional
reduce step at the end. The alternative would have been to use locking. The
benchmarks we made showed that locking was significantly slower than thread
local storage and merge (see section 8.10.2).

We added a small abstraction layer so that one could easily switch to other
similar implementations like Intel’s thread building blocks [5].

8.9.2 Rendering

Initially, rendering and simulation did not run in parallel. This resulted in a rather
bad CPU usage, because when rendering, only one core is active while all others
are idle. This was especially noticeable when using high quality rendering, which
takes a significant amount of time.

For this reason we introduced the usage of Qt’s threading infrastructure to run
the Graphical User Interface (GUI), the visualization and user input handling in
one thread, and the physics subsystem in another thread. The physics subsys-
tem still uses OpenMP. A rough measurement showed that using separate threads
for graphics and physics increased CPU usage on an 8-core machine with about
50’000 particles from about 40% to 80%. On future systems with more cores, this

35

8.10. BENCHMARKS

Figure 8.5: Low quality surface extrac-
tion, 15x12x6 cells

Figure 8.6: Low quality surface extrac-
tion, 54x44x20 cells

split will become even more significant.

8.9.3 Marching Cubes

The marching cubes algorithm was also parallelized. The queries to get the iso
surface run in parallel. However, when actually building the triangles for the mesh,
we use OpenMP’s critical section to make sure only one thread at a time adds
triangles and normals to our mesh data structure. See section 8.10.1 for some
benchmarks.

8.10 Benchmarks

8.10.1 Marching Cubes

For the marching cubes benchmark, the algorithm runs on the highest possible
grid resolution of 128x128x128 cells and 10’000 particles ordered in a sphere. The
benchmark was run five times and the average was taken. The results on two
different systems were as follows:

Configuration Intel Core 2 Quad CPU with 4 cores at 2.40GHz and
3.24GB RAM, running Windows XP

1 core 3:07min, average of 28% CPU usage
4 cores 0:55min, average of about 95% CPU usage (100%

for most of the time when 4 cores are running, drop-
ping to 75%, 50% and 25% towards the end when
one or more threads are finished)

Table 8.1: Speedup of about 3.4 for MC on a quad core

Configuration Two Intel Xeon CPUs with 4 cores each at 2.8GHz
and 2GB RAM, running Windows Vista

1 core 3:05min, average of of 13% CPU usage
8 cores 0:34min, average of about 95% CPU usage (same

pattern as with quad core)

Table 8.2: Speedup of about 5.4 for MC on an 8-core

36

8.10. BENCHMARKS

8.10.2 Updating Derivatives

During the computation of system properties data race conditions may occur. There
are several ways to solve the issue and different resources suggested different so-
lutions. Therefore we setup a set of synthetic benchmarks to base our decision
on empirical data. We chose a synthetic setting in order to reduce the side ef-
fects the system is exposed to and to make the benchmark more traceable. The
following benchmark compares different methods to update the same data using
several threads (in our case: several threads updating the derivatives in our main
simulation loop). The methods are:

• Thread local storage + reduce step: Each thread writes its own copy of the
data. At the end the data is merged. Each thread randomly accesses and
writes data.

• Thread local storage + reduce step, cache friendly : Same as above, with the
exception that data is only read from locally close data yielding better cache
access patterns.

• Particle locking: The data of a particle is locked before writing to it.

Those synthetic benchmarks were used to evaluate the best implementation
strategy. We wanted to know whether it is better to use locking or separate storage
per thread, and whether optimizing the memory access pattern would be worth the
effort.

The cache-friendly code in the benchmark accesses block sizes of 1024 parti-
cles, each of which has three doubles per vector, yielding an array that fits into the
L1 data cache of each core of our system (see table 8.3): 1024·sizeof(double)·
3 = 24KB.

If the cache friendly strategy gave a very high performance boost, this would
suggest that the algorithm should work on the kd-Tree directly and not on arrays of
the data, because the kd-Tree groups spatially close particles to the same memory
region. In order to check whether memory bandwidth or Central Processing Unit
(CPU) cycles are the limiting factor we implemented two versions of our algorithms:

• Memory bandwidth intensive, almost no computation per data element

• Computationally intensive, many floating point operations are performed per
data element

Then we compare how the performance scales with more cores between the two
algorithms. The gained insights help to better understand the behavior our real
system.

The benchmarks were done on this system shown in table 8.3.

Entity Specification
Name Intel Xeon E5462
Codename Harpertown
Lithography 45 nm
Socket 771 LGA
L1 Data Cache (per core) 32 KB, 8-way set associative, 64-byte line size
L1 Instruction Cache (per core) 32 KB, 8-way set associative, 64-byte line size
L2 Cache (two per processor) 6144 KB, 24-way set associative, 64-byte line size
Random Access Memory (RAM) 4 * 1024 MBytes, PC2-6400

Table 8.3: Used CPU for the following benchmarks

The setup for the benchmark is shown in table 8.4.

37

8.10. BENCHMARKS

Number of particles 100’000
Number of threads 8
Number of iterations (to reduce error) 100

Table 8.4: Benchmark attributes

8.10.2.1 Results

Algorithm Time in seconds
Thread local storage + reduce step 1.35
Thread local storage + reduce step,
cache friendly memory access

0.72

Particle locking 12.53

Table 8.5: 100 iterations, no cache flush
Algorithm Time in seconds
Thread local storage + reduce step 1.37
Thread local storage + reduce step 1.01
Particle locking 12.45

Table 8.6: 100 iterations, cache flushed between individual measurements

The benchmarks in tables 8.5 and 8.6 clearly show that thread local storage
with an additional reduce step afterward is better than particle locking. Therefore
we used thread local storage in our system. Even though a cache friendly access
pattern yields better results, we decided that it was not worth the effort. Figure 8.7
shows how these algorithms perform with increasing number of cores.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Multi core performance benchmark

thread local stor-
age + reduce step
cache friendly
access
particle locking

number of cores

tim
e

in
 s

ec
on

ds
 to

 fi
ni

sh
 ta

sk

Figure 8.7: Clearly thread local storage with an additional merge phase outper-
forms a locking based approach.

38

8.10. BENCHMARKS

With thread local storage we achieve a speedup of about 5.4 using 8 cores,
which is a bit disappointing. The probable cause of this behavior is illustrated in
the two benchmarks shown in figures 8.8 and 8.9. Most likely we use too much
memory per loop, which leads to a congestion of the memory bus and a pollution
of the data caches.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Speed-up factor

measured
speed up
factor
linear speed
up factor

number of cores

sp
ee

d-
up

 fa
ct

or

Figure 8.8: Only simple computations per
particle: a sub-linear scaling is typical for
bandwidth limited algorithms.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Computation intensive task per particle

Speed-up
factor

Figure 8.9: Complex numerical com-
putation per particle: This computation
intensive benchmark shows that linear
speedups are achievable. For less than
5 cores there is a super-linear scaling
which is probably due to implicit data pre-
fetching into the four L2 caches.

39

Chapter 9

Summary and Conclusions

We set out to improve the early design phase of geometric shapes. The benefits
of a modeling tool that uses a material simulation became obvious. It allows more
powerful modeling techniques and methods to be used. Our tool tries to channel
the augmented creativity found in the symbiosis of tool intelligence and human
guidance into uniquely new shapes.

9.1 Classic Modeling

The classic modeling approach based on volumetric models is not new. However,
few experiments are made where the underlying material is driven by physically
based algorithms to mimic real-world material. We believe that the approach is
helpful in modeling, as it gives a very intuitive way of how to create a model. Our
experience while working with Quiqshape has shown that many kinds of shapes
are indeed easy to model. The tool is also easy to use for newcomers, who can im-
mediately understand the concept of creating, deleting and pushing matter. Classic
modeling is very useful by itself, but also complements Governed Design, by al-
lowing the user to modify and tweak a generated shape. Classic modeling can be
compared to a pencil tool in a 2D drawing program, while Governed Design could
be compared to a filter, for example one that generates a Perlin Noise texture, from
which the user wants to create a height map.

We believe that many types of objects can be created faster using Quiqshape
than in a surface-based tool, and we think that the main reason preventing a
volume-based modeling tool from widespread usage is mainly the lack of enough
computation power. However, this will change in the near future.

9.2 Governed Design

The paradigm of Governed Design works well, and we have created a set of in-
teresting shapes. There are many more combinations of the tools we provided,
which would result in other kinds of shapes. It is up to artists to explore these
combinations. The shapes we have created have a rather organic look due to the
underlying representation.

Our experience has shown, however, that creating nice shapes is not trivial
in Governed Design. There is a chance that the resulting shapes brake apart or
do not look interesting at all. A user will therefore need some time to get used
to this method of designing shapes before she will be able to create interesting
shapes. Also, Governed Design is in general not real-time, which causes a rather

40

9.3. FUTURE WORK

slow process of creating a shape. We believe that Governed Design could greatly
benefit from being real-time.

9.3 Future Work

Many of the goals we defined have been reached. Some of the issues we tackled
are now a lot easier to solve, like the ability to prototype topologically complex
shapes. The overall amount of surface detail that can be represented in our system
currently is lower than what is possible with mesh based surface oriented tools.
However, as our tool is geared towards the support of early prototypes, which
usually do not need a lot of detail, this fact does not become a major show stopper.
We see our software as an improvement for the early design phase. It is not thought
to be used for the final polishing of an otherwise mostly defined shape.

In the following sections we describe what we believe would be the most promis-
ing ideas for further pursuit.

9.3.1 General Purpose Modeling

With about 100k particles we are already able to model some quite detailed shapes.
If our approach to geometric modeling is to be used for arbitrary complex shapes,
we would like to model with tens of millions of particles.

This could be achieved by running the material simulation only where significant
changes happen, for example where user interaction happens, and by using an
adaptive particle system to simulate large volumes. Also, the rendering would have
to be optimized to use culling algorithms, and to incorporate Level of Detail (LOD).

9.3.2 Input Devices

If the goal is to get closer to actual clay modeling, the usage of a three dimensional
(3D) input device, possibly with haptic feedback, could be explored. The tools
which are most usable in the current version are rotation-invariant: all built-in tools
are based on a sphere reducing the six degree of freedoms of a rigid body’s orien-
tation to only three. While two dimensions can be controlled by a mouse-like input
device, there remains only one which is determined by the system automatically.
However, as soon as one starts to use self-made tools, based on objects of rigid
material, control becomes inconvenient and cumbersome. Therefore, one could
either implement a better user interface for such tools or use a 3D input device
with six degrees of freedom.

9.3.3 Round Trip With Mesh-Based Tools

Even though our main goal was to improve the early design phase of an object, it
might be desirable to load existing triangle meshes and sample them with particles.
This would enable to have a full round trip integration with surface based modelers,
which usually are able to import and export triangle meshes.

9.3.4 Surface Detail

The ability to model detailed surface directly within the tool could also be desirable.
If one only slightly changes the shape, those details would be preserved as good
as possible. If large deformations occur, including potential topology changes, it is
understandable that some or all surface details might be lost.

41

9.3. FUTURE WORK

9.3.5 Automatic Inter-Object Collisions

We chose a Lagrangian (particle based) approach to matter simulation. We are
simulating material which can split itself up, yielding multiple objects, or which can
be combined to one new object. Given a particle pi, which object does it belong to?
Our formulas are currently not ware of this notion: we do not explicitly track objects.
To address this issue, we introduced rigid, plastic and fluid systems. However, with
a more general approach that tracks objects, more techniques for modeling could
be discovered. For example, it could become possible to take two plastic objects,
and throw them at each other. In our simulation, the objects would merge, which is
not real-world behavior.

9.3.6 Governing Global Properties

There could be more different kinds of governing properties besides symmetry
planes and grids. For example, one could place boxes in space and link them
together, inducing symmetrizing or anti-symmetrizing forces in certain regions.

42

Appendix

User interface

Figure A-1 shows a screenshot of our tool. The basic usage of the program can be
described as follows:

The tools in the classic modeling section can be used to select, add, remove,
push, pull, melt and freeze matter. Items can be selected by either clicking on
them or by using one of the selection tools. All items except the matter have a
small circle around them. This is to make them easily selectable, even if the item is
hidden behind something else. Items can either be simply dragged with the mouse,
or when they are selected one of the translate, rotate and scale tools can be used
on them.

The first three buttons in the Governed Design section convert matter between
plastic, rigid and fluid. The two buttons below these move matter to set 1 or set 2.
Those two sets can be independently shown or hidden by changing the visualiza-
tion settings.

Figure A-1: Screenshot of the user interface of Quiqshape, the software developed
in this master thesis. The marked elements are: Classic modeling tools (red),
governed modeling tools (green), 3d view (pink), Translate/Rotate/Scale (cyan),
scene control box (blue) and visualization settings (yellow)

The remaining tools add new items to the scene: gravity, matter generator, force

43

APPENDIX

point, symmetry plane and symmetry grid. Several of those items will present the
user with a dialog first, to specify some default values. In this dialog, the user can
also select to generate several matter generators and force points at once. The
scene contains a 3D cursor (white arrow) where newly created items are put.

To navigate in 3D space, the user can use the middle mouse button to rotate
around the center of rotation (green circle, can be placed arbitrarily) and the scroll
wheel to zoom. The camera can be translated using Shift+Middle Mouse and
rotated around its center using Ctrl+Middle Mouse.

Code Sample

For all physical processes in our simulation, whether they are simulating Smoothed
Particle Hydrodynamics (SPH), calculating collisions between fluid, elastic and
solid, to transferring heat, the same basic code is used:

• Loop through all particles

• For each particle, find its nearest neighbors

• For each neighbor, calculate something, usually depending on the distance
to the neighbor

The code for this looks as follows (including parallelization using OpenMP):

Code Listing 9.1: Usual loop through all particles

/ / Number o f neighbors quer ied
i n t num_of_neighbors = 20;

/ / Loop over a l l p a r t i c l e s ;
/ / P a r a l l e l i z e loop using OpenMP
#pragma omp p a r a l l e l for
for (i n t i = 0 ; i < s ize ; i ++) {

/ / Check i f the cu r ren t p a r t i c l e i s used
i f (used [i])
{

/ / Vector t h a t w i l l con ta in i nd i ces o f neighbors
s td : : vector < int > ne ighbor_ ind ices (num_of_neighbors) ;

/ / Query neighbors (maximum ’ num_of_neighbors ’)
/ / o f p a r t i c l e i a t p o s i t i o n p o s i t i o n [i] ,
/ / s to re neighbor i nd i ces i n ’ ne ighbor_ ind ices ’
nearestInRadiusQuery (p o s i t i o n [i] ,

rad ius ,
num_of_neighbors ,
ne ighbor_ ind ices) ;

/ / Loop through neighbor indexes
s td : : vector < int > : : i t e r a t o r i t e r ;
for (i t e r = ne ighbor_ ind ices . begin () ;

i t e r != ne ighbor_ ind ices . end () ;
i t e r ++)

{

44

APPENDIX

/ / Get p o s i t i o n o f neighbor
Vector3 ne ighbor_pos i t i on = p o s i t i o n [∗ i t e r] ;

/ / Find d is tance to neighbor
Vector3 o f f s e t = ne ighbor_pos i t i on − p o s i t i o n [i] ;

/ / Do something wi th the neighbor ing p a r t i c l e .
/ / Examples :
/ / − Calcu la te Lennard−Jones fo rces
/ / − Calcu la te SPH forces
/ / − Di f f use heat

YOUR CODE HERE
}

}
}

The array position is a large array, which usually is not fully used. For this
reason there is another array used which indicates whether a position is used or
not. The reason for this implementation was to be able to easily delete particles at
almost no cost, as well as to be able to easily keep neighbor indexes over several
timesteps. An alternative would be to have a compact array where particles are
rearranged when particles are deleted.

System overview

Objects

The most important GUI classes are MainWidget, which manages all menus,
buttons and keyboard input, and GLWidget, which shows the OpenGL content,
handles mouse input and initiates the physics calculation and the rendering.

All visible objects are of type Object. The inheritance structure can be seen
in figure A-2. The most important facts about the types of objects are:

• SystemObject: Objects of this type (for example, the lights, the grid, the
camera) are not saved with the scene, but created independently.
ParticleSystem is also a SystemObject, because we do not serialize it
as an object, but handle it in a custom way.

• WorldObject: All these objects can be serialized and saved. They include
symmetry planes, force points and so on.

• EasySelectObject: These objects have a small, always-visible circle around
them, which makes it easy to select them even if they are hidden behind other
objects or material.

Each object can have one or several identifiers (managed by the
NameObjectMapper), which are used for picking. Most objects only have one
identifier. Others, like the ParticleSystem, manage a set of objects, and are
in charge of a range of identifiers. Therefore, for all actions in our system (like
deleting and object and selecting and object), the command includes the object
the action should apply to as well as an identifier. The object can then determine
what to do with the action (for example: the ParticleSystem only deletes a
specific particle).

Objects can implement one or several of the following interfaces:
TranslationSupport, RotationSupport, ScaleSupport, SelectSupport,
TooltipSupport and ObjectDeleteSupport.

45

APPENDIX

Tools

Every tool in our system inherits from AbstractTool. A tool can be updated,
receives mouse and keyboard input, and has a draw function. Tools are managed
by the ToolManager. The inheritance structure of the tools can be seen in figure
A-3.

Updates

An object in our system can register itself for one or several actions, which can be
seen in figure A-4. The order in which these actions are executed is:

• IPreUpdateClient: Clients are notified before the actual update step.
This step is also called when the scene is paused.

• IUpdateClient: Theses objects have an update function, which gets called
at the beginning of every step of the simulation.
The AbstractMatterSystem (which is the actual implementation of the
particle system) also gets updated this way. The update does not get called
when the scene is paused.

• IPostUpdateClient: After the simulation and integration step, this step
can be used to directly reposition particles, but cannot be used to apply forces
on the system. The function gets called even if the scene is paused.

• IResetClient: Called by each particle system as the first thing in the up-
date function.

• IForceSource: After the simulation step of the particle system, but before
the integration, force sources are queried for external forces acting on the
systems. IForceSources are called from the particle systems.

• IParticleSource: At the end of of each update of each particle system,
clients can add particles in this step.

Global objects and functions

We have several globally available Objects and functions:

• x744Application: The main application. This object gives access to most
other classes.

• QMainWindow: The Main window.

• GLWidget: This widget shows the OpenGL output and initiates drawing and
updating.

• MainWidget: The widget that manages all buttons and keyboard input.

• AbstractCamera: Currently active camera, can be queried for various things
like position and viewing direction.

• Scene: The scene manages all Objects (SystemObject and WorldObject
are separate), and initiates save and load.

• PhysicsEngine: The physics engine is responsible for updating the simu-
lation.

46

APPENDIX

• Renderer: The renderer manages drawing of the Scene into the GLWidget.

• ObjectContainer: There are two ObjectContainers, one with
WorldObjects and one with SystemObjects. The scene only stores ob-
jects of type WorldObject when saving.

• SelectedObjectsManager: A list of the currently selected objects.

• Pointer3d: Object determining where new objects are placed in the world.

• CenterOfRotation: Object determining around which point the camera
rotates.

• PhysicsParameters: Parameters (target pressure, damping and so on)
used in the physics simulation.

• MatterVisualizerParameters: Visualization parameters (sphere size,
particle color and so on).

• FileDialogParameters: Paths that were previously used in the save,
open and export dialogs.

• object_from_key(ObjectName key): Function to find and object from
a unique identifier. ObjectName is the type of the unique identifier; in the
implementation this is an unsigned int.

• void set_progress(int percent): Function to set the progress of the
progress bar visible at the bottom of GLWidget.

47

APPENDIX

C
onstantForce

PositionPointer
IForceSource
IUpdate

Class
ForcePoint

SphereObject
IForceSource
IUpdate

Class
P
laneSym

m
etry…

Sym
m

etryPlane
IForceSource
IUpdate

Class

P
laneSym

m
etry…

PlaneSym
m

etryForce
IParticleSource
IResetClient

Class

Sym
m
etryG

rid

W
orldObject

RotationSupport
TranslationSupport
IForceSource

Class

A
b
stra

ctC
a
m
era

System
Object

Abstract Class

C
am
era

AbstractCam
era

Class

C
enterO

fR
otation

EasySelectSystem
Obj…

TranslationSupport

Class

Ea
sySelectO

b
ject

Object
SelectSupport
TooltipSupport

Abstract Class

G
ridSystem

Object
Class

M
atterG

enerator

W
orldObject

TranslationSupport
RotationSupport
IUpdate

Class

O
b
ject

Abstract Class

ParticleSystem

System
Object

SelectSupport
TooltipSupport
TranslationSupport
RotationSupport
ObjectDeleteSupport
ScaleSupport

Class

PositionPointer

W
orldObject

RotationSupport
TranslationSupport
ScaleSupport

Class
SphereO

bject

W
orldObject

RotationSupport
TranslationSupport
ScaleSupport

Class
Sym

m
etryPlane

W
orldObject

RotationSupport
TranslationSupport
IPlane

Class

System
O
bject

Object
Class

EasySelectSyste
…

System
Object

EasySelectObject

Class

W
orldO

bject

EasySelectObject
ObjectDeleteSupport

Class

C
ursorSphere

AttachableObject
System

Object

Class

Pointer3d

EasySelectSystem
Obj…

TranslationSupport
RotationSupport

Class

R
otateTool

ToolObject
Class

ScaleTool

ToolObject
Class

ToolO
b
ject

System
Object

Abstract Class

TranslateTool

ToolObject
Class

public
public

public

public

public

p…

public

public

public

public

virtual public

public

public

virtual public

public

public
public

public

public

public

public

public

public
public

public

r

Figure A-2: Object hierarchy

48

APPENDIX

A
bstractTool

QObject
Class

C
ircleTool

AbstractTool
Abstract Class

M
atterC

onverter

AbstractTool
Class

StandardTool

SelectionTool
ISetChangedListener

Class

SurfaceSensitiveTool

AbstractTool
Class

Su
rfa

ceSp
h
ereTool

SurfaceSensitiveTool
Abstract Class

C
reateM

atterTool

SurfaceSphereTool
Class

H
eatTool

SurfaceSphereTool
Class

PullTool

SurfaceSphereTool
Class

PushTool

SurfaceSphereTool
Class

R
em

oveM
atterTool

SurfaceSphereTool
Class

C
ircleSelectTool

CircleTool
SelectionTool

Class
R
ectangleSelectTool

SelectionTool
Class

SelectionTool

AbstractTool
Class

SurfaceSphereSelectTool

SurfaceSphereTool
SelectionTool

Class

virtual public

public

public

virtual public

p…

public

public

public
public

public

public
public

public

virtual public

public
public

Figure A-3: Tools hierarchy

49

APPENDIX

IU
pdate

Abstract Class

A
bstractM

atterSystem

IU
pdate

IPreU
pdate

Abstract Class

C
onstantForce

PositionPointer
IForceSource
IU

pdate

Class
ForcePoint

SphereO
bject

IForceSource
IU

pdate

Class

M
atterG

enerator

W
orldO

bject
TranslationSupport
RotationSupport
ScaleSupport
IU

pdate
IParticleSource

Class

PlaneSym
m
etryForce

Sym
m

etryPlane
IForceSource
IU

pdate

Class

IForceSource
Abstract Class

IParticleSource
Abstract Class

PlaneSym
m
etryW

arp

PlaneSym
m

etryForce
IParticleSource
IResetClient

Class

Tem
peratureA

w
areC

onverter

IPostU
pdate

Class
C
ollisionD

etector

IPostU
pdate

Class
SceneR

otator

IPostU
pdate

Class

IPostU
pdate

Abstract Class

IResetClient
Abstract Class

IPreU
pdate

Abstract Class

public
public

public
public

public
public

public

public

public
public

public

public

public
public

public

public

Figure A-4: Update hierarchy

50

Abbreviations

2D two dimensional
3D three dimensional
ADF adaptively sampled distance field
API Application Programming Interface
CAD Computer Aided Design
CFL Courant-Friedrichs-Lewy
CPU Central Processing Unit
DbC Design by Contract
GLSL OpenGL Shading Language
GPU Graphics Processing Unit
GUI Graphical User Interface
LOD Level of Detail
KNN k-nearest neighbors
MC marching cubes
PCF percentage closer filtering
RAM Random Access Memory
SPH Smoothed Particle Hydrodynamics
voxel volumetric pixel
XML Extended Markup Language

51

ABBREVIATIONS

52

Bibliography

[1] Blender 3D. http://www.blender.org.

[2] Boost C++ Libraries. http://www.boost.org.

[3] Design by Contract. http://www.eiffel.com.

[4] GLUT - The OpenGL Utility Toolkit. http://www.opengl.org/
resources/libraries/glut/.

[5] Intel Threading Building Blocks. http://www.
threadingbuildingblocks.org/.

[6] Kronos Group, OpenGL ARB. http://www.opengl.org.

[7] Qt Software. http://www.qtsoftware.com.

[8] The OpenMP API specification for parallel programming. http://openmp.
org/.

[9] Wavefront Technologies OBJ 3D Format. http://en.wikipedia.org/
wiki/Obj.

[10] ADAMS B., LENAERTS T., D. P. Particle splatting: Interactive rendering of
particle-based simulation data. Tech. rep., Katholieke Universiteit Leuven,
2006. Technical Report CW 453.

[11] AKLEMAN, E. Designing symmetric high-genus sculptures. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Sketches (New York, NY, USA, 2006), ACM, p. 73.

[12] BAE, S. H., BALAKRISHNAN, R., AND SINGH, K. Ilovesketch: as-natural-as-
possible sketching system for creating 3d curve models. In UIST ’08: Pro-
ceedings of the 21st annual ACM symposium on User interface software and
technology (New York, NY, USA, 2008), ACM, pp. 151–160.

[13] BAI, L., EYIYUREKLI, M., AND BREEN, D. E. Automated shape composi-
tion based on cell biology and distributed genetic programming. In GECCO
’08: Proceedings of the 10th annual conference on Genetic and evolutionary
computation (New York, NY, USA, 2008), ACM, pp. 1179–1186.

[14] BENTLEY, J. L. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509–517.

[15] BLOYD, C. Marching Cubes Implementation. http://astronomy.swin.
edu.au/pbourke/modelling/polygonise/.

[16] CORDS, H., AND STAADT, O. Instant liquids, July 2008.

53

http://www.blender.org
http://www.boost.org
http://www.eiffel.com
http://www.opengl.org/resources/libraries/glut/
http://www.opengl.org/resources/libraries/glut/
http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/
http://www.opengl.org
http://www.qtsoftware.com
http://openmp.org/
http://openmp.org/
http://en.wikipedia.org/wiki/Obj
http://en.wikipedia.org/wiki/Obj
http://astronomy.swin.edu.au/pbourke/modelling/polygonise/
http://astronomy.swin.edu.au/pbourke/modelling/polygonise/

BIBLIOGRAPHY

[17] COURANT, R., FRIEDRICHS, K., AND LEWY, H. ÃIJber die partiellen Differen-
zengleichungen der mathematischen Physik, vol. 100. Mathematische An-
nalen, 1928.

[18] CURLESS, B. From range scans to 3d models. SIGGRAPH Comput. Graph.
33, 4 (2000), 38–41.

[19] DESBRUN, M., AND PAULE GASCUEL, M. Smoothed particles: A new
paradigm for animating highly deformable bodies. In In Computer Animation
and Simulation ’96 (Proceedings of EG Workshop on Animation and Simula-
tion (1996), Springer-Verlag, pp. 61–76.

[20] DÖNNI, U. Governed design: A new paradigm to shape finding.

[21] FÜSSLER, U. Design by tool design. In Füssler Berlin (September, 2008).

[22] GALYEAN, T. A., AND HUGHES, J. F. Sculpting: an interactive volumetric mod-
eling technique. In SIGGRAPH ’91: Proceedings of the 18th annual confer-
ence on Computer graphics and interactive techniques (New York, NY, USA,
1991), ACM, pp. 267–274.

[23] GIBSON, S. F. F. Beyond volume rendering: Visualization, haptic exploration,
and physical modeling of voxel-based objects. In In Proc. Eurographics work-
shop on Visualization in Scientific Computing (1995), Springer-Verlag, pp. 10–
24.

[24] HART, G. Sculptural forms from hyperbolic tessellations. Shape Modeling and
Applications, 2008. SMI 2008. IEEE International Conference on (June 2008),
155–161.

[25] HERNQUIST, L., AND KATZ, N. Treesph: A unification of sph with hierarchical
tree method. Astrophysical Journal Supplement Series 70 (1989), 419–446.

[26] HUT, P., AND MAKINO, J. The art of computational science: Moving stars
around. http://www.artcompsci.org/vol_1/v1_web/node34.html,
January 2004.

[27] IGARASHI, T., MATSUOKA, S., AND TANAKA, H. Teddy: a sketching interface
for 3d freeform design. In SIGGRAPH ’99: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques (New York, NY,
USA, 1999), ACM Press/Addison-Wesley Publishing Co., pp. 409–416.

[28] KARA, L. B., D’ERAMO, C. M., AND SHIMADA, K. Pen-based styling design
of 3d geometry using concept sketches and template models. 149–160.

[29] KILIAN, A., AND OCHSENDORF, J. Particle-spring systems for structural form
finding. Journal for the international Association for shell and spatial struc-
tures: IASS, 2005.

[30] LENNARD-JONES, J. E. C. Lennard-jones, j. e. cohesion. In Proceedings of
the Physical Society (1931), no. 43, pp. 461–482.

[31] LIPSON, H., AND SHPITALNI, M. Conceptual design and analysis by sketch-
ing. In In AIDAM-97 (1997), pp. 391–401.

[32] LORENSEN, W. E., AND CLINE, H. E. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4 (1987),
163–169.

54

http://www.artcompsci.org/vol_1/v1_web/node34.html

BIBLIOGRAPHY

[33] MOUSTAKAS, K., NIKOLAKIS, G., TZOVARAS, D., CARBINI, S., BERNIER, O.,
AND VIALLET, J. E. 3d content-based search using sketches. Personal Ubiq-
uitous Comput. 13, 1 (2009), 59–67.

[34] MÜLLER, M., SCHIRM, S., AND DUTHALER, S. Screen space meshes. In
SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (Aire-la-Ville, Switzerland, Switzerland, 2007),
Eurographics Association, pp. 9–15.

[35] PERLIN, K. An image synthesizer. SIGGRAPH Comput. Graph. 19, 3 (1985),
287–296.

[36] PERRY, R. N., AND FRISKEN, S. F. Kizamu: a system for sculpting digital
characters. In SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques (New York, NY, USA, 2001),
ACM, pp. 47–56.

[37] S. CRISTIANO, M. FIORENTINO, G. M. A. E. U. Real-time particle based
virtual sculpturing.

[38] SUTHERLAND, I. E., AND EDWARD, I. Sketchpad: A man-machine graphi-
cal communication system. AFIPS Spring Joint Computer Conference (May
1963).

[39] TIMO BREMER, P., PORUMBESCU, S. D., KUESTER, F., HAMANN, B., JOY,
K. I., AND LIU MA, K. Virtual clay modeling using adaptive distance fields.
In in Proceedings of the 2002 International Conference on Imaging Science,
Systems, and Technology (CISST (2002).

55

