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Abstract

In a world full of mobile and smart devices, enabled to communicate with each other
over wireless channels, secure pairing of two devices is of prime importance. The main
threat is the so-called Man-in-the-Middle (MitM) attack, where an attacker inserts it-
self into the pairing protocol and impersonates one of the legitimate parties. Different
methods have been proposed, which do not rely on a common security infrastructure,
but exploit auxiliary channels instead, and typically involve the user in the pairing pro-
cess. The most common and minimal interface available on a wide variety of devices is
a single button. BEDA (Button-Enabled Device Association), a protocol suite for se-
cure pairing of devices with minimal user interfaces, can accommodate pairing scenarios
where one (or even both) devices only have a single button as their “user interface”.
This thesis provides an implementation of different button based auxiliary channels, as
well as demo applications for mobile phones (J2ME) and desktop computers (J2SE).
Additionally, these channels are evaluated with respect to ease-of-use in a comparative
user study.
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1 Introduction

Establishing a secure communication channel between two wireless devices is a challeng-
ing problem, especially if the two devices do not share any information a priori. This is
often the case for spontaneous communication between mobile and independent devices.
Today, we already encounter a large variety of mobile devices in our everyday life, most
prominently mobile phones and PDAs. As more and more smart devices and electronic
gadgets with wireless communication abilities get available, spontaneous interactions
between such devices will become much more frequent.

Those devices typically do not share a common security environment, like a globally
trusted public key infrastructure (PKI), and it is questionable whether such an infras-
tructure will be available in the future. Secure device pairing denotes the process of
establishing a shared secret key between two devices, previously unknown to each other.
Depending on the specific use case and its security requirements, this key can then be
used to build an authentic or secure communication channel through standard symmetric
cryptography.

1.1 Motivating Examples

Some motivating example use cases for secure device pairing may include:

- a laptop with peripheral devices like wireless mice or keyboards

- a mobile phone with a wireless headset

- a mobile device with a public WLAN router

- a digital camera or mobile phone with a public printer.

As well as some more exotic scenarios like

- a wrist watch with an mp3 player

- a key fob (electronic key) with a car or door

- a mobile device with a digital picture frame
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1 Introduction

- wireless game pads with a video game console.

1.2 Problem Description

Classic device pairing usually requires the user to enter a (short) PIN or password to
both devices. Several problems arise with this method: As users tend to choose weak
passwords (e.g. too short or simply guessable), it does not guarantee a high level of
security. On the other hand, it is cumbersome for a user to memorize long passwords
and therefore usability will suffer.

An alternative approach to device pairing is based on the Diffie-Hellman (DH) key
agreement protocol [9, p. 515–520] with manually authenticated DH public keys. The
term manual refers to the role of the user, who usually is actively involved in the pairing
process. This may include entering the same data to both devices, copying data from
one device to the other or comparing data output from both devices [2]. The main threat
to the DH key agreement protocol over an insecure channel is the so-called Man-in-the-
Middle (MitM) attack where a malicious third party “sits in the middle”, intercepts
all sent messages and inserts its own. By doing so, the attacker is able to masquerade
as both legitimate parties and establish its own shared key with either of them. See
figure 1.1 where the malicious third party M impersonates both legitimate parties A
and B and establishes two secret keys KA and KB with them while A and B believe to
have computed a secret shared key K with each other. To avoid the MitM attack, the
DH public keys must be sent over authentic channels, or, equivalently, authenticated
after the key agreement in an additional step. This additional authentication step does
not require to send the full length public keys over an authenticated channel, instead
it usually is sufficient to exchange shorter hash values thereof. For transmitting short
authenticated messages, so-called auxiliary or out-of-band channels can be exploited.
Depending on the specific input and output facilities of a given device and the security
assumptions on the used auxiliary channels, different authentication protocols may be
applied.

1.3 Contributions

Some of the use cases mentioned above involve devices with very restricted user in-
terfaces (as e.g. a wireless headset). Button-based auxiliary channels, as described in
“BEDA: Button-Enabled Device Association” [14], are able to transfer data by pressing
a single button and are therefore suited to securely pair such limited devices. The main
contributions of this thesis are:

8
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Public parameters: prime p, generator g of group Zp

A M B
choose x ∈r Zp choose z ∈r Zp choose y ∈r Zp

gx

−−−−−−−−−→
gz

←−−−−−−−−−
gz

−−−−−−−−−→
gy

←−−−−−−−−−
compute K = (gz)x compute KA = (gx)z compute K = (gz)y

and KB = (gy)z

Figure 1.1: MitM attack on the DH key agreement protocol over an insecure channel

- a real world implementation of the button channels mentioned in the BEDA paper,

- a proposal and implementation of three new button-based auxiliary channels for
enhanced usability,

- a more efficient (and therefore more user friendly) authentication method for the
input channel which relies on synchronous button presses on both devices

- and a comparative user study which has been conducted to evaluate the imple-
mented button channels with respect to ease-of-use.

1.4 Thesis Structure

Chapter 2 describes different out-of-band channels including the previously mentioned
button-based auxiliary channels in more detail and introduces the Unified Auxil-
iary Channel Authentication Protocol (UACAP).

Chapter 3 proposes three new button-based auxiliary channels and explains in detail
how arbitrary data can be transmitted between two devices through simple button
presses and how two devices can extract the same data from a series of synchronous
button presses independently of each other.

Chapter 4 shows how the different button channels have been implemented and what
design decisions have been taken. This chapter provides screenshots of the imple-
mented channels and of the demo applications.

Chapter 5 describes the user study which has been conducted to compare the usability
of the implemented button channels and discusses the results and findings.

Chapter 6 finally provides a summary and draws the conclusions of this thesis.
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2 Related Work

2.1 Auxiliary Channels

Depending on the hardware components of the used devices, many different out-of-band
channels have been proposed. Possibilities that arise if both devices provide a display
and a keypad include entering the same PIN to both devices, reading a PIN from one
device and typing it to the other, and comparing two PINs which are displayed on both
devices [16]. If the two devices only provide a display, a user can compare two hash
values visualized as a random art pattern [12] or as non-sensical English sentences [3].
Modern mobile phones typically are equipped with speakers and a microphone as well as
a camera, which can be exploited to transmit data between the two devices. One device
could play an audio tune while the other is recording it, or the user could compare
two melodies which are played by both devices in turn [15]. A device equipped with a
camera can take a picture of a 2D bar code which is displayed on another device [8].
Two devices which have built-in accelerometer sensors can derive the same data from a
common movement pattern [6].

From a user point of view, all auxiliary channels can be classified into three cate-
gories:

Input channels require the user to input the same data to both devices, for example
by manually entering the same PIN to both devices or by shaking two devices
together.

Transfer channels have a sending and a receiving device. The data may be transmitted
directly from one device to the other (e.g. by playing an audio sequence on one
device and recording it on the other) or by involving the user himself (e.g. reading
a data string from one device and entering it to the other).

Verification channels make use of a common output facility on the two devices and
let the user compare the emitted data. Examples include comparing two visual
random art patterns or comparing two melodies played by the devices.

10
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Public parameters: prime p, generator g of group Zp

Cryptographic hash function H

A B
choose x ∈r Zp choose y ∈r Zp

M1 := H(gx)
M1−−−−−−−−→
gy

←−−−−−−−
gx

−−−−−−−→
check if M1 = H(gx)

compute K = (gy)x then compute K = (gx)y

Figure 2.1: MA-DH key agreement protocol

2.2 Unified Auxiliary Channel Authentication
Protocol

The Unified Auxiliary Channel Authentication Protocol (UACAP) [7] aims to provide
a protocol specification which includes all different types of out-of-band channels. De-
pending on the type and the security properties of an auxiliary channel, the UACAP
supports the following authentication modes: long authentic transfer, short authentic
transfer, short confidential input, short non-confidential input and explicit user verifica-
tion.

A protocol run consists of two main phases: key agreement over an insecure channel and
subsequent verification based on an auxiliary channel. The key agreement step is the
same for all different UACAP modes. It uses the MA-DH protocol [4] (see figure 2.1)
which is a variant of the standard Diffie-Hellman key agreement protocol with an addi-
tional commitment step to prevent the most basic Man-in-the-Middle attacks. The key
agreement phase results in a shared key K between the two devices. This key becomes a
valid shared secret key through mutual authentication of the exchanged DH public keys
(gx and gy) in the second phase. This thesis makes use of the short authentic transfer
and the short confidential input modes of the UACAP. The term short refers to the
length l of the exchanged out-of-band messages which can be short (about 20 bits). The
UACAP ensures that any MitM attack must be performed online and reduces the at-
tacker to a single one-off chance of guessing the l-bit out-of-band message, which directly
results in an attack probability of 2−l.

In the short authentic transfer mode, one device sends the hash value of the concatenated
DH public keys over an authentic auxiliary channel to the other device. The receiving
device computes this hash value as well, compares it to the received out-of-band message
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Public data string D = (gx | gy)
Keyed hash function H, short shared secret R

Device identifiers IA, IB

A B
choose large random K1 choose large random K2

M1 := HK1(IA | D | R) M2 := HK2(IB | D | R)
M1−−−−−−−−→
M2←−−−−−−−−
K1−−−−−−−−→
K2←−−−−−−−−

if M2 = HK2(IB | D | R) if M1 = HK1(IA | D | R)
output OK output OK

Figure 2.2: MANAIII authentication protocol

and informs the user whether the two values match. The user must then report the
outcome of this comparison to the initially sending device, which corresponds to another
1-bit out-of-band message, sent in the opposite direction. For the short confidential input
mode, the UACAP relies on the MANAIII protocol [2] (see figure 2.2). It authenticates
the DH public keys based on a short shared secret value R which can be entered in
advance to both devices through a confidential input channel. Both devices choose large
random keys K1 and K2 and send a keyed hash of the concatenation of the secret value
and the DH public keys to the other device. After receiving these messages, they will
exchange the previously chosen keys as well. Both devices now can compute the same
keyed hash which was sent by the other device and compare the two values. Both devices
must report the outcome of this comparison to the user [17].

2.3 BEDA: Button-Enabled Device
Association

In the paper “BEDA: Button-Enabled Device Association” [14], the authors describe a
set of out-of-band channels which are suitable for devices with a minimal user interface,
namely a single button. However, it is necessary that one of the devices provides addi-
tional interfaces (e.g. a simple display) to let the user initiate and control the pairing
process and both devices should be able to signal a successful or failed pairing attempt
to the user (e.g. through a green or red LED).

There are two different types of channels that can be realized: input and transfer. In

12



2 Related Work

the input case, both devices require only a single button and the user will enter the
same data to both devices. More possibilities arise if one of the devices has additional
capabilities like vibration functionality or a larger display. In this case, one of the devices
can “send” signals and the other will receive them (through button presses). This type of
channel is referred to as a transfer channel. The amount of data that can be transmitted
over a button channel directly depends on the number of button presses. Since a large
number of button presses reduces the usability of this method, the capacity of these
button channels is quite limited, typically about 20 bits.

Virtually the only thing one can do with a button is to press it (and release it again, for
that matter). A general strategy to capture arbitrary data (e.g. as a bit string) through
a single button is to record the timestamps of multiple button events (press or release)
and compute the relative time differences between subsequent events. This results in a
sequence of time intervals which then can be processed further. Typically, the intervals
will be rounded to a given time unit and a few bits are then extracted from each interval
and concatenated to the final bit string. All button-based auxiliary channels discussed
here rely on this principle.

The following button channels are proposed in the BEDA paper:

Button-To-Button is a pure button channel. Both devices only require to have a sin-
gle button which will be pressed by the user synchronously on both devices. By
listening to those synchronous button presses (actually the intervals between sub-
sequent button presses) independently on both devices, they are able to derive the
same data from the recorded sequence of intervals. As the user is the source of the
captured data and both devices take the role of a receiver, this channel is of the
input type.

Display-To-Button requires one device to have a display. This device takes the role of
the sender: It emits visual signals (by painting the screen black for a short time)
to which the user reacts by pressing the button on the other device (the receiver).
Like this, arbitrary data can be transmitted from one device to the other. This
channel is therefore referred to as a transfer channel.

ShortVibration-To-Button requires one of the devices to have vibration functionality.
It is similar to the Display-To-Button channel, but instead of emitting visual sig-
nals, the sending device will give a signal by vibrating for a short time. The user
reacts to the vibration signals by pressing the button on the receiving device as
before. Like the Display-To-Button channel, this is a transfer channel.

LongVibration-To-Button is similar to the short vibration channel, but instead of emit-
ting short impulses, the sending device will alternatively vibrate and then pause
again for longer time intervals. The user will press the button on the receiving
device while the other one vibrates. The receiving device records both button
presses and releases. Again, as there is a sending and a receiving device, this
channel belongs to the transfer channels.

13
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In comparison to the original BEDA paper, this thesis proposes three new button-based
auxiliary channels and provides improvements to the existing ones. The improvements
are focused on the usability of the channels by emphazising the concepts of feedback
and visibility as described by Donald Norman in his book “The design of everyday
things” [10]. The three new channels aim to improve the existing Display-To-Button
channel by providing more intuitive visual signals. In addition, this thesis improves the
Input channel (Button to Button) by providing an efficient way to handle the indepen-
dently captured data by introducing so-called “candidate secrets”.

3.1 Additional Channels for Enhanced
Usability

It is important to give feedback to the user (e.g. on the display) to show the effect of
an action. All transfer channels (including the vibration channels) will rely on visual
feedback to enhance their usability. When invoking a transfer channel, both devices
briefly display an initial screen with an icon which depicts the current role: The receiving
device displays the icon of a button while the transmitting device shows the icon of a
mobile phone which is sending some data. During transmission, the sending device
displays a counter of the already sent signals, while the receiving device displays a
counter of the already processed button events. Like this, the user always can see how
many signals have been sent and how many are to come, and by comparing the counters
on the two phones, he can determine whether the two devices are still synchronous or if
he had missed a signal.

This thesis proposes three new button channels, all of them are of the transfer type and
they use the display to send signals to the user. The intention is that these new channels
provide better usability than the original Display-To-Button channel. The basic idea is
to let the user prepare to the actual visual signal by some kind of preparatory signal,
such that he does not have to react to a signal that appears all of a sudden. In contrast
to the Display-To-Button channel, the new channels have slightly higher requirements
regarding the display, as it should be able to show for example a colored picture in an
appropriate size. Current mobile phones are typically equipped with suitable displays.

14
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As all these channels involve the display, this thesis uses different names to distinguish
them. The original Display-To-Button channel will be referred to as the “Flash Display”
channel.

The following new visual button channels are proposed in this thesis:

Traffic Light is a channel that will display the picture of a traffic light on the sending
device. This traffic light can be in one of three states, either the red, yellow or
green light is active. Most of the time the red light will be lit, indicating to the
user to rest inactive. When the light turns yellow, the user can prepare and as
soon as it turns green, he reacts by pressing the button on the receiving device.
This channel is therefore similar to the Flash Display channel, but the simple black
screen is replaced by a well known symbol from everyday life with an intuitive color
scheme.

Progress Bar is a channel that follows a different concept. The sending device displays
a horizontal bar, divided into alternatively colored sections (for example gray and
green) which represent the different time intervals. A black progress bar grows
over the sections from left to right. The user will press and hold the button on
the receiving device while the black bar grows over a green section and release it
on gray sections. The user can see the whole interval pattern from the beginning
and he can prepare for every button event (press or release) in advance.

Power Bar is very similar to the Progress Bar channel. Instead of a single horizontal
bar, it displays multiple vertical “power bars”, consisting of a gray and green
section each. A black progress bar grows from bottom to top over each such bar.
Again, the user will press and hold the button on the receiving device while the
black bar runs over a green interval and release it on gray intervals. This channel
is better suited for displays which are higher than wide, while the Progress Bar
channel is preferred on wide screen displays which are wider than high.

3.2 Transmitting Data

All button channels are defined by three parameters: The capacity C (the message
length of a single invocation of a button channel), the smallest considered time unit
tmin and the number of bits b which are encoded by a single time interval. The three
values have implications on the security of the pairing process and the usability of the
channels. It is therefore crucial to find a good balance between ease-of-use and security
by carefully adjusting these parameters.

The capacity is fixed to C = 24 bits for all button channels in this thesis. As it cor-
responds to the length of the sent out-of-band message during the UACAP run, this
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directly leads to an attack probability of 2−24. The smallest time unit tmin differs from
channel to channel, but it is typically set to 1 second for a transfer channel. The param-
eter b is fixed for all channels and is set to b = 3 bits per interval. C must be a multiple
of b as the out-of-band message is encoded as a sequence of n = C/b intervals, which
should be an integral number. In this thesis n = 24/3 = 8 is fixed for all button-based
auxiliary channels.

In the transfer case, the sending device computes the message to transmit as the hash
value of the DH public keys and truncates it to the length of C bits. The message is
then split into chunks of b bits each, interpreted as binary encoded digits, increased by
1 and finally multiplied by tmin. This results in a list of n time intervals in milliseconds,
where every interval encodes b bits of the message. The sending device now emits a
total of n + 1 signals to the user where the idle time between the signals is determined
by the previously computed intervals. As a reaction to the emitted signals, the user
presses the button on the receiving device. It measures the time differences between
subsequent button presses and ends up with a list of n time intervals. Each interval is
then rounded to tmin, divided by tmin, and finally decreased by 1. The resulting b-bit
values are subsequently concatenated to the originally sent bit string. Whether the sent
and received bit strings are actually the same (i.e. the reliability of the button channel)
depends on the reaction delays of the user. As the receiving device rounds each interval
to the nearest multiple of tmin, reaction delays up to tmin/2 can be tolerated. Increasing
and decreasing the b-bit values by 1 is necessary, because the b-bit representation of 0
is a valid part of the message, but an interval of 0 ms can not be signaled to the user.
Every interval is a multiple of tmin and the smallest time interval exactly corresponds
to tmin.

The value of b has implications on the usability of the channel. A high value increases
the maximum length of an interval, computed as 2b · tmin, which corresponds to the
maximum time a user has to wait for a signal and should not be too high. A small value
would lead to shorter waiting times, but on the other hand it increases the number of
button presses needed to transmit the same amount of data. With the values of b = 3,
C = 24 bits and tmin = 1 second, the longest waiting time between subsequent signals
is 8 seconds and a user has to react to a total of 9 signals.

Compared to conventional pairing methods, the described setting with 9 button events
roughly provides the same level of security as a PIN consisting of 7 decimal digits or a
password of 4 characters (small and capital letters and digits).
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3.3 Handling Independent Input

In the input case, the parameter tmin has a slightly different interpretation. The au-
thentication protocol for the Input channel (Button to Button) relies on a short shared
secret value. This value is entered to the devices by the user through synchronous button
presses. As the devices are listening to these button events independently of each other,
they will end up with a similar list of intervals (measured in milliseconds). However, they
will not capture exactly the same intervals, because of the less than perfect synchrony be-
tween the two hands of an average user. The devices will perform similar steps to extract
a bit string from the measured intervals like in the transfer case: Round each interval
to tmin, divide it by tmin and finally reduce it modulo 2b. Again, each interval provides
b bits which are concatenated to the final bit string.

tmin corresponds to the time that two given intervals may differ at maximum. It does
not guarantee that two intervals that have a smaller difference will always be rounded
to the same value. For example, with tmin = 300 ms, if device 1 measured an interval of
449 ms and the corresponding interval on device 2 happens to be 450 ms, both devices
end up with different rounded intervals (300 ms on device 1 and 600 ms on device 2),
even though the user input was highly synchronous. Due to the rounding difference,
the devices finally end up with different secret values, which leads to the failure of the
authentication protocol. This is frustrating because the pairing process may fail even for
an experienced and trained user, without the possibility to predict the outcome. This
problem is independent of the used time unit and it can in particular not be solved by
simply increasing the smallest considered time unit tmin.

To address this issue, the following approach is taken in this thesis: Instead of extracting
a single secret value from a given sequence of intervals, multiple “candidate secrets”
are derived from the same measured data. The different candidate values are based
on different time units to which the captured intervals will be rounded. During the
authentication protocol run, the two devices try all available candidate secrets in turn.
The protocol run succeeds if a pair of candidate secrets, computed independently on
both devices, match (i.e. both devices computed the same candidate secret). In the
UACAP mode for confidential input, the attacker has a single one-off chance to guess
the pre-shared short secret. With multiple candidate secrets, it is sufficient to guess
one of them. This leads to an increased attack probability by the factor c, where c
is the number of supported candidate secrets. As a high number of candidate secrets
increases both the success rate, but the attack probability as well, it results in a trade-
off between usability and security. In this thesis, two candidate secrets are computed
from the captured interval sequence. The first candidate is received by rounding the
captured intervals to tmin = 400 ms, the second is based on a smallest time unit of
tmin = 300 ms.

Figure 3.1 depicts the situation for three actually performed protocol runs. It lists the
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measured intervals (in milliseconds) exactly as they were captured on both devices, as
well as after rounding to 400 ms and 300 ms respectively. Even though the differences
between the captured intervals on the two devices are small (< 100 ms), they may end up
with different interval lists after rounding. While protocol run 1 fails for tmin = 300 ms,
it succeeds when rounded to 400 ms. Protocol run 2 shows the opposite behavior, it
fails for 400 ms and succeeds for 300 ms. With the approach of two different candidate
secrets based on 400 ms and 300 ms, both protocol runs succeed as it suffices that one of
the candidate secrets matches on both devices. However, there are still cases where both
candidate secrets differ on the two devices (as in protocol run 3) and the authentication
protocol fails.

For security reasons it is crucial that the captured data and the derived candidate secrets
are random. The randomness depends on the average time that a user waits between
subsequent button presses and the values of b and tmin. The authors of the BEDA paper
noted that a user will wait about 3 to 4 seconds between button presses on average. As
this thesis uses 400 ms as the highest value for tmin and 2b · tmin = 8 ·400 ms = 3200 ms,
the input can be expected to be random.

3.4 Security Assumptions

In the BEDA paper, all channels are assumed to be secure, meaning both authentic
and confidential. The reason is that the used authentication protocol (a variant of
MANAIII) relies on a short secret value, shared by both devices. This assumption
does not necessarily hold for all transfer channels, especially a channel displaying visual
signals on the screen should not be assumed to be confidential. This thesis makes the
assumption that all button-based auxiliary channels of the transfer type are authentic.
This property is inherently given through the physical presence of the user. Since a
message is transported by the user himself (by pressing a button), he can always assure
that a message received by one device was actually sent by the other one. In this thesis
the short transfer mode of the UACAP is used as the authentication protocol, which
only relies on authentic channels.

The UACAP includes a mode for non confidential input, however, it is not suitable for
the BEDA input channel, as it requires the user to enter the same data twice, once to
each device, but at different points in time. Therefore the confidential input mode of
UACAP is used with the explicit assumption that the input channel (Button to Button)
is a confidential channel. This assumption can be justified, as an attacker would have
to be able to exactly measure the timestamps of occurring button presses solely from
the observation of the hardly visible finger movements.
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Figure 3.1: Example protocol runs for the Input channel
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All source code written during this thesis is available as part of the OpenUAT [5] project
at www.openuat.org [11] or through its SVN repository respectively1. In particular, it
includes the concrete implementations of the discussed button channels as well as two
demo applications which demonstrate secure device pairing based on those channels.
The two demo applications, a standard Java application and a Java MIDlet for mo-
bile devices, are compatible with each other and allow to pair for example a mobile
phone with a laptop, as long as both devices support wireless communication over Blue-
tooth.

All classes and their public and protected members are documented with Javadoc and
important parts of the code are covered by JUnit tests. As the J2ME standard roughly
corresponds to the Java language version 1.2, classes which run on both platforms re-
frain from using modern language constructs supported in later versions of the Java
language.

4.1 Implementation Framework

The OpenUAT is an open source project licensed under the GNU Lesser General Public
License (LGPL) and it aims to provide ready-to-use components for ubiquitous authenti-
cation applications. Large parts of the code are written in Java and run on J2SE as well
as on J2ME. The Java toolkit provides helper classes for Bluetooth communication and
service registration (BluetoothRFCOMMServer) as well as device discovery and service
search (BluetoothPeerManager). For key generation and cryptographic primitives, it
relies on the Java JSSE/JCE cryptographic extension or, if not available, on the Bouncy
Castle Crypto API2. Most importantly, the OpenUAT provides an implementation of
the UACAP through the HostProtocolHandler class.

This thesis provides an extension to the OpenUAT by adding support for button-based
auxiliary channels (as described in chapters 2 and 3). To integrate the new out-of-band

1https://www.gibraltar.at/svn/openuat
2www.bouncycastle.org
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channels with the existing framework, they must implement the OOBChannel interface
which defines the two methods transmit and capture.

4.2 Button Channel Class Hierarchy

Figure 4.1 shows the UML diagram of the button channel class hierarchy. It provides
an overview of the involved classes and depicts the relations between them. However, it
is not a definite specification of these classes, as some methods and attributes are left
out for simplicity. Some utility classes like the IntervalList are not shown explicitly
in the diagram either. The different button channels have been added iteratively to the
class hierarchy which started with the four original BEDA channels. As the channels
should run on two different platforms, J2SE and J2ME, a general goal is to encapsulate
all platform dependent code at a few points and to factor out the platform independent
code in order to avoid code duplication.

4.2.1 ButtonChannel

The abstract class ButtonChannel provides a common ancestor for all concrete button
channel classes. It extends the existing OOBChannel interface and defines important
attributes and constant values which are shared by all button-based auxiliary channels.
The capture method is basically the same for all button channels and is therefore
implemented in this class as well.

To allow the abstraction of different button channels to be independent of the supported
platform, the bridge pattern [1, p. 87–96] is applied. The ButtonChannel class delegates
its implementation to the abstract ButtonChannelImpl class which provides a broad
interface that allows to implement the concrete subclasses of the ButtonChannel class.
Every supported platform will provide its own subclass of ButtonChannelImpl, imple-
menting the specified interface and effectively encapsulating all platform dependent code
at a single point. If a certain method cannot be implemented on a specific platform (like
e.g. the vibrate method on J2SE), the method body should be left empty and an appli-
cation should not call the respective method. This allows to define the different button
channels in a platform independent manner and a new channel can be easily added
by extending the ButtonChannel class, provided the interface of ButtonChannelImpl

supports the needed functionality.

All button channels share two fundamental properties, the capacity and the number of
bits that can be extracted from a single interval. They are defined as the public constants
MESSAGE LENGTH and BITS PER INTERVAL within the ButtonChannel class. The capac-
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Figure 4.1: Class hierarchy of the button channels
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ity is set to 24 bits (3 bytes) and from each interval 3 bits will be extracted. These two
values are basically independent of each other, but the capacity should be a multiple of
the number of extracted bits. The reason is that the number of time intervals needed to
transmit a given message is computed as MESSAGE_LENGTH/BITS_PER_INTERVAL, which
should be an integral number. This leads to 24/3 = 8 intervals or, equivalently, 9 button
events (presses or releases) to transmit the whole message. This class defines other im-
portant attributes, like minTimeUnit or inputMode, which differ from channel to channel
and should be initialized in the concrete subclasses. The attribute inputMode takes one
of the values MODE PRESS or MODE PRESS RELEASE and defines whether a button channel
only considers button presses or button releases as well.

Most importantly, this class provides the complementary methods bytesToIntervals

and intervalsToBytes. The method bytesToIntervals is called by the sending device
to convert a given byte[] (the out-of-band message) to a list of time intervals which
then is signaled to the user. The method intervalsToBytes performs the reverse oper-
ation and extracts a byte[] from the recorded list of intervals on the receiving device.
Both methods take the minimum interval size as a parameter (minInterval) which cor-
responds to the smallest considered time unit minTimeUnit of the specific channel. The
behavior of the intervalsToBytes method can be a influenced through the boolean
parameters roundDown and useCarry. Every interval will be rounded to a multiple
of minInterval. If roundDown is set to true, an interval is rounded down, else it is
normally rounded to the nearest multiple of minInterval. The parameter useCarry

determines whether the rounding differences are propagated to the next interval. If set
to true, it assures that rounding differences are not cumulated over multiple intervals
and that the tolerated reaction delay is the same for all emitted signals. This parameter
is therefore set to true for all transfer channels.

4.2.2 ButtonChannelImpl

The ButtonChannelImpl class and its subclasses provide the functionality to interact
with native GUI elements on the respective platform. This includes listening to key
input events and painting to the screen (e.g. on a Canvas object, which is available
both on J2SE and J2ME with similar interfaces). The key events are not consumed
directly, but delegated to a ButtonInputHandler instance which can react to the input
events appropriately. For rendering graphical elements on the screen, e.g. giving visual
signals on the sending device, every ButtonChannelImpl instance keeps an internal state
which is represented on the screen. The methods provided to manipulate this internal
state, like the setSignal(boolean) or setProgress(float) methods, do not have an
immediate effect on the screen. Instead, all changes will become visible after the next
call to the repaint method.

As mobile phones and laptops typically provide a keypad with many keys, an imple-
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mentation for the respective platform must decide on a key which will represent the
“single button”. This decision is taken in the subclasses of the ButtonChannelImpl

class. The implementation for J2SE listens to key events of the space bar as it is one of
the most prominent keys on the keyboard and well suited to represent the single but-
ton. Every device which supports the J2ME standard provides a key which is denoted
as the “fire button”, due to its intended use in video games. It usually is prominently
placed on the phone, centered between the navigation keys, and is typically larger than
other keys. The “fire button” is therefore used as the single button for user input on
J2ME.

4.3 Handling Key Events

The instances of the ButtonChannelImpl class are responsible for listening to key events
during the capturing process. Whenever the user presses or releases a key, the operating
system delivers the corresponding key event to the running application. When a key is
pressed and held down, most operating systems generate and deliver additional virtual
key events at a user defined key repeat rate. An implementation of a button channel
should only react to user triggered key events and must ignore the artificially created
events from the operating system. J2ME supports a separate event type for these virtual
key events (keyRepeated) and an application can easily ignore them by simply listening
to the keyPressed and keyReleased events. However, on J2SE the virtual key events are
delivered as standard key press or key release events and different operating systems do
not deliver them in a consistent way. Figure 4.2 depicts the behavior on different systems.
Windows delivers a keyPressed event, keeps sending keyPressed events at the system’s
key repeat rate and finally delivers a keyReleased event. Linux delivers a keyPressed

event followed by a pair of keyReleased and keyPressed events (in that order, but
with identical internal timestamps), and finally sends a single keyReleased event. Most
operating systems have the key repeat feature enabled by default, but a user could turn it
off as well. In this case, no virtual key events are generated and a single keyPressed event
and a single keyReleased event are delivered to the application. The implementation
for J2SE (AWTButtonChannelImpl) can deal with these three different behaviors and
was tested on Linux (Ubuntu 8.10) and Windows XP.

4.4 Logging Framework

In the OpenUAT, logging statements are consequently used throughout the whole project
to log errors and warnings. Especially on mobile phones, the logging framework can be
used as a convenient debugging mechanism as well and, most importantly, logging state-
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Key Events

User

Windows

Linux −→ t

Figure 4.2: Key repeat behavior on different operating systems

ments which are written to a file can be used to collect statistical data (e.g. during a
user study). The OpenUAT uses different logging frameworks for the different plat-
forms, as there does not exist a mature logging framework which runs under both J2SE
and J2ME. The reason is that virtually all logging frameworks available on J2SE rely
on the Java Reflection API which is not supported on J2ME. This thesis provides a
thin wrapper around the existing logging frameworks and allows any class to retrieve a
suitable logger instance without referring explicitly to a platform dependent framework.
This is achieved by applying the abstract factory pattern [1, p. 151–162]. The single
product of the abstract factory represents a common abstraction of a “logger” and is
defined by the Log interface. The concrete products are defined by thin wrapper classes
around native logger instances of the supported logging frameworks. A concrete factory
class is provided for every logging framework which is responsible for the creation of the
respective logger instances. The LogFactory must be initialized at application startup
through the init method by providing an instance of a concrete factory. After initial-
ization, any class can retrieve a logger instance through the call to the static method
LogFactory.getLogger(String).

The used logging frameworks are log4j3 on J2SE and microlog4 on J2ME. Figure 4.3
shows the UML diagram of the factory pattern for the two mentioned logging frame-
works.

4.5 Input Channel

The ButtonToButtonChannel class provides the implementation of the input chan-
nel which listens to synchronous button presses and therefore does not implement the

3logging.apache.org/log4j
4microlog.sourceforge.net
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Figure 4.3: Factory pattern for the logging framework
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transmit method. This channel is considered to be confidential and must not leak any
information about the entered data. It does not give any feedback about the user input
on the screen and it does in particular not provide a counter which displays the remain-
ing number of button presses to the user. Figure 4.4 shows the screen which is presented
to the user during the capturing process, it is the same on both devices. This channel
only reacts to button presses and ignores button releases. From the captured data, two
candidate secret values are computed. This is achieved by initializing the attributes
minTimeUnit to 400 and minTimeUnit2 to 300 milliseconds. The capture method,
which is inherited from the ButtonChannel class, then takes care of computing the two
candidate secrets and delivers the concatenation of the values to the OOBInputHandler

instance.

Figure 4.4: Screenshot of the Button to Button channel on J2ME

4.6 Transfer Channels

4.6.1 Flash Display

This is a transfer channel which displays a simple visual signal on the sending device.
The signal is a black rectangle (see figure 4.5b) which is visible for 500 ms. This causes
a “flashing” effect on the screen, hence the name of the channel. The receiving device
only considers button presses and ignores button releases. The parameter minTimeUnit
is set to 1000 ms which tolerates a reaction delay of the user up to 500 ms. The basic
implementation of this channel does not provide any means to the user to prepare to the
actual signal, the black rectangle will appear all of a sudden on the screen. A variant of
this channel can be obtained by providing the boolean parameter usePrepareSignal to
the constructor of the class. This variant displays a preparatory signal before the actual
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signal on screen. The preparatory signal is again a simple rectangle, but in gray and
a bit smaller than the real signal (see figure 4.5a). This channel requires the sending
device to provide a display, but it may be quite limited regarding its size and the ability
to display colors.

Both the sending and the receiving device display a counter on the screen which informs
the user about the already sent signals and the number of processed button events
respectively. On the receiving device, this information is graphically represented as a
“wheel” of triangles as well (see figure 4.5c).

(a) Preparatory signal (b) Actual signal (c) Receiving device

Figure 4.5: Screenshots of the Flash Display channel on J2ME

4.6.2 Traffic Light

This channel aims to improve the usability of the Flash Display channel. It uses a traffic
light as a well known symbol with an intuitive color scheme on the sending device. The
traffic light may be in one of three states: red, yellow or green. If it is red, the user should
wait, when it turns yellow he can prepare and as soon as it turns green he should press
the button on the receiving device. Like the Flash Display channel, it considers only
button presses and ignores button releases. The yellow light is shown for 350 ms and the
green light is active for 500 ms. The minTimeUnit is set to 1000 ms to tolerate up to 500
milliseconds of reaction delay. It also correctly handles the case where the user presses the
button too early (e.g. already during the yellow phase). Figure 4.6 shows the three states
of the traffic light on the sending device. The screen on the receiving device looks similar
to the one of the Flash Display channel (see figure 4.5c).
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(a) Red: wait (b) Yellow: prepare (c) Green: react

Figure 4.6: Screenshots of the Traffic Light channel on J2ME

4.6.3 Progress Bar

The class ProgressBarToButtonChannel implements a different type of a transfer chan-
nel. The transmitting device draws a bicolored bar (gray and green) on the screen which
is a graphical representation of the time intervals to be transmitted. A black progress
bar constantly grows over the pattern from the left to the right (see Figure 4.7 for a
screenshot). The user will press and hold the button when the black bar grows over a
green interval and he releases it on gray intervals. The receiving device listens to both
button press and release events. The advantage of this channel is that the user sees
the whole pattern from the beginning and can prepare for every button event (press
or release). The smallest time unit (minTimeUnit) is set to 600 ms which tolerates
differences of 300 ms of either too early or too late button events. To work well, this
channel requires an appropriately sized color display and is suited for wide screens. Fig-
ure 4.7 shows a screenshot on a Nokia N95 mobile phone with a horizontally flipped
screen.

Figure 4.7: The Progress Bar channel on a horizontally flipped screen (J2ME)
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4.6.4 Power Bar

This channel is similar to the Progress Bar channel, but instead of representing the
time pattern as a single horizontal bar, it is split into multiple vertical “power bars”.
Each power bar represents two time intervals and consists of a gray and a green part
which correspond to those intervals (see figure 4.8a for an example). A black progress
bar grows over each vertical bar, from bottom to top, starting with the leftmost power
bar. Similarly to the Progress Bar channel, the user will press and hold the button on
the receiving device while the black bar grows over a green interval and he releases the
button on gray intervals. The receiving device has a press-release characteristic and
listens to both types of button events. The parameter minTimeUnit is set to 600 ms like
in the Progress Bar channel.

(a) Sending device (b) Receiving device

Figure 4.8: Screenshots of the Power Bar channel on J2ME

4.6.5 Vibration Channels

All transfer channels described so far make use of the display to emit signals to the
user. The two vibration channels instead rely on the vibration functionality of mobile
devices and are implemented in the two classes ShortVibrationToButtonChannel and
LongVibrationToButtonChannel. The Short Vibration channel emits short signals of
500 ms each at every interval boundary and the user reacts to them by pressing the
button on the receiving device. The capturing device only considers button presses and
ignores button releases. The Long Vibration channel alternates between vibrating and
idle intervals. The user will press and hold the button on the receiving device while the
sending device vibrates. This channel therefore has a press-release characteristic. Both
vibration channels have the smallest considered time unit (minTimeUnit) set to 1000 ms
and tolerate reaction delays of 500 ms.
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4.7 Demo Applications

There are two demo applications which demonstrate the usage of the implemented button
channels: A MIDlet for Java enabled mobile devices (BedaMIDlet) and a standard Java
application for desktop computers and laptops (BedaApp). Both applications provide
the same functionality and are fully compatible with each other. They rely on wireless
communication over Bluetooth for the key agreement and exploit the button-based aux-
iliary channels to authenticate their respective DH public keys. On application startup,
a Bluetooth server is launched which advertises the BEDA authentication service. The
device is then ready to accept incoming pairing requests from a remote device. The user
interface allows to search for nearby Bluetooth devices and to initiate the pairing process
with devices which are running a compatible application.

The BEDA MIDlet initially displays a start screen (see figure 4.9a). The menu item
“Start authentication” in the “Options” menu causes the device to scan for nearby
Bluetooth devices and listing them on the screen. The user selects the device he wishes
to pair with and then selects one of the available button channels (see figure 4.9b). The
two devices will then run the key agreement protocol in the background and invoke the
previously selected button channel to authenticate the DH public keys as specified by the
UACAP. For mutual authentication based on a transfer channel, it is important that the
application not only invokes the auxiliary channel to send the out-of-band message, but
also informs the user about the authentication success on the receiving device and let the
user report the result to the sending device. This in fact is another 1-bit out-of-band mes-
sage transmitted by the user, but in the opposite direction.

(a) Start screen (b) List of available button
channels

(c) Success information

Figure 4.9: Screenshots of the BEDA MIDlet

The desktop application provides the same functionality as the MIDlet. The GUI con-
sists of a single screen containing two lists, one for available Bluetooth devices and one
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for the implemented button channels (see figure 4.10a for a screenshot). The “Refresh
list” button can be used to initially populate the list of Bluetooth devices or to refresh it
later on. The list of channels is initially disabled (grayed out), double-clicking a device
from the list on the left enables it if the BEDA authentication service is running on the
selected device. The user can now choose one of the button channels by again double-
clicking on it. Figure 4.10b gives an example of how the Power Bar channel looks like
on the J2SE platform.

When invoking a transfer channel, there is always a sending device which emits the
out-of-band message to the user, and a receiving device which listens to button input
events. In the two demo applications, the sending device is always the device which
initiated the whole pairing process. This is important for those use cases where a mobile
phone or a laptop is paired with a potential single-button device where it is crucial that
the button is pressed on the responding device. Scenarios where this aspect might be
important include the pairing of a laptop with a Wi-Fi router or a mobile phone with a
Bluetooth headset.
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(a) Main screen

(b) Power Bar channel

Figure 4.10: Screenshots of the BEDA Application on J2SE
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In order to analyze the usability of different button-based device association methods,
a comparative user study [13] was conducted. The goal was to compare the different
button channels which have been implemented with respect to ease-of-use. The following
channels were tested in the user study: Input (Button to Button), Flash Display, Short
Vibration, Long Vibration, Traffic Light and Power Bar. The Progress Bar channels is
not included in the user study because of its similarity to the Power Bar channel and to
limit the number of tested channels.

5.1 Research Questions

In the user study, the following questions are addressed:

1. Is one of the general methods—input or transfer—favored over the other one (in-
dependent of the used transfer channel)?
From a user point of view, these two methods differ fundamentally: In the input
case, the user can decide himself when to press a button, he is acting instead of
reacting. He can influence the total duration of the protocol directly. But the in-
put channel suffers from the problem that it might fail, even though the user input
was highly synchronous on both devices. In the BEDA paper, the input channel
was rated as the hardest to use from all tested channels. Since we generate two
candidate secrets out of an interval list and the protocol run fails only if both
candidates fail, we expect the success rate to be higher, which may be reflected in
the user feedback.

Input Input (Button to Button)
Transfer Flash Display, Short Vibration, Long Vibration,

Traffic Light, Power Bar

2. How does ease-of-use compare between the original BEDA channels to the addi-
tionally implemented channels with improved graphical feedback on the GUI?
We expect the Traffic Light and Power Bar channels to be more user friendly than
the Flash Display channel. It is interesting to compare these two new “visual”
channels with the two vibration channels as well.
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Original BEDA Flash Display, Short Vibration, Long Vibration
New Traffic Light, Power Bar

3. How does ease-of-use compare between channels with a press-press characteristic
to those with a press-release characteristic?

Press-Press Flash Display, Short Vibration, Traffic Light
Press-Release Long Vibration, Power Bar

4. What is the preferred channel of a user?

5. What is the average number of pairing attempts needed to successfully pair two
devices for each channel?

6. What is the average overall time needed to pair two devices for each channel?

5.2 Location and Setup

The participants were recruited on the ETH campus (e.g. in the cafeteria) and from
within the authors own circle of acquaintances. The study was carried out on two
mobile devices (Nokia N95 mobile phones) with the BEDA demo application installed
on them. This allowed to run the test sessions right where the participants have been
recruited and it had the advantage that it took place in a real world environment.
The demo application on the phones was available with texts in English only, but the
questionnaire form of the study was in German, which was easier to understand for most
participants.

A total of 15 participants have been recruited for the study. Figure 5.1 shows an overview
of the participant characteristics. Most of the participants were students between 20
and 30 years old. However, two participants aged 50 years or older could be recruited
as well. In figure 5.1b, the term “basic education” corresponds to the German term
“obligatorische Schulbildung”. All participants owned a mobile phone and about two
thirds already had transferred data between two mobile devices. About half of those
people who have exchanged data between two devices had paired the devices beforehand
(e.g. by typing the same PIN to both devices).

5.3 Methodology

For each of the button channels mentioned above, the following task was defined: Try
to pair the two phones using the given out-of-band channel. If a pairing attempt is
successful, proceed with the next task. If a pairing attempt fails, retry to pair the
devices with the same channel. If the devices could not be successfully associated after
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(a) Experience with mobile devices

Age Gender Education
18-24 2 Male 9 Basic Education 3
25-29 10 Female 6 Gymnasium 3
30-34 0 Bachelor/Master 8
35-39 1 Doctorate 1
40-49 0
50+ 2

(b) Participant profile

Figure 5.1: Participant characteristics of the user study

four trials, proceed with the next task. This leads to a total of six different tasks which
could be performed by a participant. However, to reduce the duration of a test session,
one participant only tested four out of the six available channels. Since each participant
performed multiple tasks, the study followed a within-subjects design. It was therefore
important to counterbalance the order in which the different tasks were performed to
mitigate possible learning effects.

There are
(
6
4

)
= 15 different possibilities to combine 4 out of 6 channels. With 15 par-

ticipants, it was guaranteed that every channel was tested equally many times, namely
10 times. To perfectly balance out the task order, we would have needed much more
participants (exactly 360), which was not feasible. Therefore the order in which the
tasks were performed was chosen at random. Table A.1 defines the task order for
each of the 15 participants. The table is based on random permutations of the tasks
(computed with MATLAB) and then manually adjusted, such that each channel ap-
pears 2 to 3 times at each position. Each row is a unique combination of four chan-
nels.
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5.4 Session Outline and Timing

In total, a test session was about 20 minutes long.

Introduction 2 minutes
Each test session started with a short introduction to secure device pairing and
the BEDA channels, including some examples where these button channels might
be useful (e.g. pair a phone with headset, a key fob with a door or car, a mobile
device with a WLAN router, a wrist watch with an mp3 player etc.). After this
introduction, a participant was asked to fill in the background questionnaire (see
figure A.1).

Tasks 15 minutes
The participant performed four different tasks (i.e. pairing the devices with four
different button channels) in sequence. Before a candidate used a specific channel,
he received a short explanation on how to handle it and what it will look like.
For the transfer channels, the moderator assured that the participant knew the
following:

- which device will send the signals

- what kind of signal it is (e.g. vibration, green light, green bar etc.)

- on which device to press the button

- which button should be pressed

- whether the channel has a press-press or press-release characteristic

For the input channel, the moderator assured that the participant was aware of

- which button should be pressed

- that only button presses are considered (not button releases)

- that the input intervals should be random (not like a monotone rhythm)

Debriefing 3 minutes
After the tasks have been performed, the participant was asked to fill in the post-
test questionnaire (see figure A.2). Most of the participants gave some oral feed-
back in a short discussion as well.

5.5 Measurements

In order to answer the research questions, the following data was collected: Qualita-
tive information about usability and user feedback was collected through a post-test
questionnaire which all participants had to fill in after they finished their tasks. Addi-
tionally, quantitative information about each pairing attempt was logged on the mobile
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devices and written to a file. This data includes the duration of each pairing attempt
(in milliseconds) and whether the pairing was successful or not. The log also contains
the messages that were sent over the involved out-of-band channels, encoded as a list of
time intervals.

For security reasons, the verification protocol for the Input channel requires the user
input to be random. The logged data (especially the computed candidate secrets) allows
to analyze the user input with respect to its randomness. The average interval size (the
time a user waited between subsequent button presses), was 1.95 seconds with a sample
standard deviation of 1.39 seconds. During 11 protocol runs with the Input channel,
a total of 88 3-bit segments have been captured (one 3-bit segment for each captured
interval) which build the candidate secrets. The 3-bit values for candidate secret 1 were
derived by rounding the intervals to 400 ms, those for candidate secret 2 were derived
by rounding the intervals to 300 ms. To test whether the observed frequencies differ
significantly from the expected uniform distribution, a χ2-test is performed in section A.4
of the appendix. With 95% statistical significance, the randomness hypothesis cannot
be rejected.

5.6 Results and Findings

Figure 5.2 shows an overview of the user feedback regarding the usability of the tested
channels and Table 5.1 gives a summary of the logged data. In addition, figure 5.3 shows
the user preference of the tested channels. It is notable that none of the channels has
been rated “very hard” by any user. All participants have been able to pair the two
devices within a maximum of four trials for a given channel. The average completion
times range from 47 seconds (Button to Button) to 99 seconds (Flash Display). In
comparison to the user study in the original BEDA paper, the overal completion times
for the transfer channels are about ten to fifteen seconds higher. This had to be expected
as the channels in this thesis use a slightly higher capacity (24 instead of 21 bits). The
Input channel (Button to Button) was about six seconds faster than in the original study.
The denoted completion times do not only include the time for out-of-band transfer, but
also include the time needed for wireless communication over Bluetooth (about 1.5 to
2.5 seconds per protocol run) and for cryptographic processing (about 2 to 3 seconds
per protocol run).

A general conclusion from the discussions after the test sessions is that most users either
prefer the vibration channels over the visual channels or vice versa. Some people find it
hard to concentrate on the screen and react to visual signal while they find it convenient
to react to haptic signals. In contrast, other participants disliked the vibrations and
were much more comfortable with the visual signals.
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Figure 5.2: Usability of the tested button channels

Figure 5.3: User preference
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Method Average completion
time in seconds

Average number of re-
trials

Input 47.27 (sd = 27.23) 1.1 (sd = 0.32)
Flash Display 98.98 (sd = 52.04) 1.5 (sd = 0.71)
Traffic Light 69.66 (sd = 31.38) 1.1 (sd = 0.32)
Power Bar 86.27 (sd = 50.51) 1.9 (sd = 1.1)
Short Vibration 63.76 (sd = 7.42) 1 (sd = 0)
Long Vibration 65.62 (sd = 27.6) 1.2 (sd = 0.42)
sd = sample standard deviation

Table 5.1: Summary of the logged data

Vibration channels The Short Vibration channel performed best from all tested chan-
nels. It has the best usability rating (all participants found it “very easy” or “easy” to
use this channel) and has a high user preference as well. Furthermore, all participants
were able to pair the two devices in the very first pairing attempt when using the Short
Vibration channel. In contrast, the Long Vibration channel did not perform that well.
The general usability was rated lower (still, many people found it “easy” to use) and
the user preference is notably weak for this channel. During discussion, some people
mentioned that they disliked the long vibration durations of up to eight seconds. This
difference is interesting because these two channels were rated exactly the same in the
original user study in the BEDA paper.

Visual channels When comparing the “visual” channels, the Traffic Light channel
performed better than the Flash Display channel. It has better overall usability, a
higher success rate and a higher user preference as well. The Power Bar channel did not
perform that well and it has in particular the highest failure rate of all tested channels
(1.9 retrials until success). In comparison to the other transfer channels, the Power Bar
channel used a smaller time unit of 600 ms instead of 1000 ms. This choice was based
on the fact that the Power Bar channel has a different mode of operation than the other
transfer channels and on the positive experience with such a smaller time unit made
by the author of this thesis. However, it turned out that this small time unit did not
work well for all participants. About half of the participants were able to pair the two
devices in the first attempt with the Power Bar channel, others needed three or even
four trials. This leads to the high failure rate and average completion time shown in
Table 5.1 and is reflected in the usability feedback, where participants found it either
“very easy” or then “hard” to use this channel. Despite the relatively poor performance,
the Power Bar channel has the highest user preference of all channels. This leads to
the hypothesis that the Power Bar channel, with a higher “smallest considered time
unit” (e.g. 1000 ms), could perform equally well or even better than the Traffic Light
channel.
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Protocol run 1 2 3 4 5 6 7 8 9 10 11
Candidate secret 1 matched yes yes yes no yes no no no no yes yes
Candidate secret 2 matched yes yes yes yes yes yes yes yes no no no

Authentication successful yes yes yes yes yes yes yes yes no yes yes

Table 5.2: Candidate secrets for the Button to Button channel. Candidate secret 1 is
based on 400 ms, candidate secret 2 on 300 ms.

The high user preference towards the Traffic Light and Power Bar channels coincide
with the feedback given during the short discussion after a test session. Two users
explicitly mentioned the nice and intuitive color scheme of the Traffic Light channel,
others appreciated the preparation time or liked the traffic light as a common, well
known symbol from everyday life. One participant criticized the duration of the yellow
light as too short. For the Power Bar channel, participants positively mentioned the
fact that the total timing pattern is visible from beginning and that there is no need
for sudden reactions. A participant chose this channel as his favorite because it was the
most “interactive” channel, another mentioned the coloring scheme with gray and green
as an intuitive and appealing combination. One participant chose the Flash Display
channel as his favorite channel on the grounds that it is “easy to use but challenging as
well”.

Input channel The Input channel (Button to Button) performed quite well and has
a similar rating like the Traffic Light channel, even though it seems not to be most
user’s preferred channel. The performance of this channel is in particular notable when
comparing it to the initial user study in the BEDA paper. The average number of
retrials for success has been reduced from 2.45 in the BEDA paper to 1.1 in this thesis.
With the higher success rate, the overall usability has increased as well and, in contrast
to the BEDA paper, the Button to Button channel was rated more user friendly than
the Flash Display and Long Vibration channels. The higher success rate is a result of
the new concept of the so-called “candidate secrets”. Table 5.2 shows whether the two
devices computed the same candidate secrets for the eleven protocol runs of the Button
to Button channel during the user study. Only one protocol run failed (nr. 9), where
both devices derived different values for both candidate secrets. When looking more
closely at the captured data for this particular protocol run, it is interesting to note that
it was not the “user’s fault” that the authentication protocol failed. The user input was
highly synchronous (the maximum difference between two intervals on the two devices
was about 30 ms), the intervals just happened to fall on critical rounding boundaries for
both considered time units.

The current study was conducted on two mobile phones of the same type (Nokia N95),
while the study in the BEDA paper was performed on two different mobile phones.
Presumably it is easier to press the button on two devices simultaneously if they are
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both of the same type. It feels the same for both hands and the two buttons have the
same characteristics and need the same amount of pressure to be applied. However, it
is not clear how much (if at all), the good performance of the Button to Button channel
was influenced by this fact.

Transfer versus Input The Input channel (Button to Button) does not generally fall
behind the transfer channels when comparing their overall usability, but the user’s pref-
erences tend towards transfer channels like Short Vibration, Power Bar or Traffic Light.
It is certainly a valid option for use cases where none of the involved devices provides
a decent color display or vibration functionality. Two participants were irritated about
the missing visual feedback about the number of button presses when using the Input
channel. On the other hand, one participant found it generally hard to react to any
signal from the sending device and therefore preferred the Input channel where he could
choose himself when to press the button.

Press-Press versus Press-Release There seems to be no clear conclusion on this point.
While the Long Vibration channel performed worse than the Short Vibration channel,
the Power Bar channel could perform much better, probably equivalent to or better
than the Traffic Light channel. As none of the participants explicitly mentioned this
characteristic (i.e. whether only button presses were counted or button releases as well)
in the discussion, it seems not to be a crucial point which influences the usability of a
channel.
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This thesis provides an implementation of button-based auxiliary channels, suited for
spontaneous, secure pairing of devices with minimal interface capabilities. In the sim-
plest case, both devices only require to provide a single button. The button channels are
implemented as an extension to the OpenUAT project [11] and aim to provide reusable
components for ubiquitous authentication applications.

6.1 Discussion and Limitations

The user study showed that users prefer the three transfer channels Short Vibration,
Traffic Light and Power Bar. While the Short Vibration channel was already introduced
in the paper “BEDA: Button-Enabled Device Association” [14], the Traffic Light and
Power Bar channels have been developed during this thesis. The Input channel (Button
to Button) provides an interesting alternative for scenarios where none of the devices
provides an appropriate color display or vibration functionality. The concept of “candi-
date secrets” introduced in this thesis provides a higher reliability of the Input channel,
which directly leads to a higher success rate and better overall usability when compared
to the Input channel variant that was implemented in the original BEDA paper. How-
ever, as the results of the user study are based on a fairly small data set of only fifteen
participants, these conclusions should be interpreted more as a general tendency rather
than hard facts.

Different people have different natural preferences for the vibration or the visual button
channels. It is therefore important to provide different pairing methods and let the
user choose his favorite channel. On mobile phones which support all different types of
button channels, this could for example include the Short Vibration and Traffic Light
channels as well as the Input channel.

A general limitation of all button-based auxiliary channels is the quite long duration
of about 1 to 1.5 minutes for successful pairing. In comparison, other authentication
methods based on audio or visual (bar code and camera) channels only take about 20
to 40 seconds [7]. However, these methods are only applicable if the devices meet the
respective hardware requirements.
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6.2 Future Work

At the moment, the capacity of all button channels is fixed to three bytes and the
number of button events is fixed to nine events. With this setting, the pairing process
takes about 1 to 1.5 minutes and guarantees an attack probability as small as 2−24.
However, depending on the use case, a user might be unwilling to spend this amount
of time and might accept a higher attack probability instead. Some participants of the
user study mentioned in the post-test discussion that they either found the pairing time
too long or the number of button presses too high. It would therefore be an interesting
question how a user is willing to trade off security against usability. This could be
achieved by providing the possibility to the user to set the number of button presses
before using a given channel. Depending on the chosen number of button presses, he
would get an indication about the security level of the channel (like small, medium or
high).
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A.1 Task Order

Participant First Task Second Task Third Task Fourth Task
1 Power Bar Input Traffic Light Flash Display
2 Traffic Light Flash Display Input Short Vibration
3 Long Vibration Flash Display Traffic Light Input
4 Short Vibration Power Bar Long Vibration Traffic Light
5 Flash Display Input Short Vibration Power Bar
6 Long Vibration Power Bar Flash Display Input
7 Flash Display Long Vibration Input Short Vibration
8 Power Bar Traffic Light Short Vibration Input
9 Input Power Bar Traffic Light Long Vibration
10 Traffic Light Long Vibration Input Short Vibration
11 Input Short Vibration Long Vibration Power Bar
12 Power Bar Traffic Light Short Vibration Flash Display
13 Flash Display Traffic Light Power Bar Long Vibration
14 Long Vibration Short Vibration Flash Display Traffic Light
15 Short Vibration Long Vibration Power Bar Flash Display

Table A.1: Predefined task order for each of the 15 participants of the user study
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A.2 Background Questionnaire

Benutzerumfrage

Demografischer Hintergrund

Alter
□ 18-24 □ 25-29 □ 30-34 □ 35-39 □ 40-49 □ 50+

Geschlecht
□ männlich □ weiblich

Schulbildung
□ Obl. Schule □ Gymnasium □ Hochschulabschluss □ Doktorat

    (Bachelor / Master)

Erfahrung mit mobilen Geräten

Ich besitze ein mobiles Gerät wie z.B. ein Mobiltelefon, PDA oder Smartphone.
□ ja □ nein

Ich habe schon Daten (z.b. Fotos) zwischen zwei solchen Geräten (inkl. Laptop) mit Hilfe einer 
Bluetooth- oder Infrarotverbindung übertragen.
□ ja □ nein

Falls ja: Ich habe die Geräte zuvor gekoppelt (z.B. durch Eingabe eines PINs)
□ ja □ nein

Figure A.1: Background questionnaire in German
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A.3 Post-test Questionnaire

Bewertung der getesteten Kopplungs-Methoden

Ich fand, das Benutzen der Methode “gleichzeitig Drücken” war
□ sehr einfach
□ einfach
□ schwierig
□ sehr schwierig

Ich fand, das Benutzen der Methode “blinkender Bildschirm” war
□ sehr einfach
□ einfach
□ schwierig
□ sehr schwierig

Ich fand, das Benutzen der Methode “Verkehrsampel” war
□ sehr einfach
□ einfach
□ schwierig
□ sehr schwierig

Ich fand, das Benutzen der Methode “Fortschrittsbalken” war
□ sehr einfach
□ einfach
□ schwierig
□ sehr schwierig

Ich fand, das Benutzen der Methode “kurze Vibration” war
□ sehr einfach
□ einfach
□ schwierig
□ sehr schwierig

Ich fand, das Benutzen der Methode “lange Vibration” war
□ sehr einfach
□ einfach
□ schwierig
□ sehr schwierig

Von allen getesteten Methoden bevorzuge ich (mit Begründung):

____________________________________________________

Figure A.2: Post-test questionnaire in German
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A.4 Statistical Analysis

(a) Candidate secret 1 (based on tmin = 400 ms)

(b) Candidate secret 2 (based on tmin = 300 ms)

Figure A.3: Frequencies of the captured 3-bit values for the Input channel

During 11 protocol runs with the Input channel, a total of 88 3-bit values have been
measured (represented as octal values 0 to 7). The 3-bit values for candidate secret 1
were derived by rounding the captured intervals to 400 ms, those for candidate secret 2
were derived by rounding to 300 ms.
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χ2-test for candidate secret 1

Octal value i 0 1 2 3 4 5 6 7
Frequency fi 10 7 19 16 9 9 10 8

Null hypothesis H0: The sample set is uniformly distributed.
Alternative hypothesisH1: The sample set is not uniformly distributed.

Degrees of freedom df = 7
Expected frequency fe = 88

8
= 11

X2 =
7∑

i=0

(fi − fe)
2

fe

= 11.27

χ2
0.95(7) = 14.06 > 11.27

With 95% statistical confidence, H0 cannot be rejected.

χ2-test for candidate secret 2

Octal value i 0 1 2 3 4 5 6 7
Frequency fi 13 10 12 14 10 10 10 9

Null hypothesis H0: The sample set is uniformly distributed.
Alternative hypothesisH1: The sample set is not uniformly distributed.

Degrees of freedom df = 7
Expected frequency fe = 88

8
= 11

X2 =
7∑

i=0

(fi − fe)
2

fe

= 2.00

χ2
0.95(7) = 14.06 > 2.00

With 95% statistical confidence, H0 cannot be rejected.
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