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Abstract A new graph-based parameterization con-
cept aimed at the global optimization of laminated
structures by the means of evolutionary algorithms and
finite element analysis is introduced. The motivation to
develop this novel parameterization concept is twofold.
First, the entire design space is accessible to optimi-
zation down to the smallest entity, which is a single
finite element, and secondly, this concept guarantees
greatest flexibility in terms of laminate layer shape and
placement. The finite element mesh of a structure is
represented as a mathematical graph. Substructures of
this graph form fiber reinforced and possibly overlap-
ping patches and are affiliated to virtual graph vertices
representing their properties. Adapted genetic varia-
tion operators are directly applied on this graph. The
method allows for concurrent optimization of number,
size, shape, and position of the patches and an arbitrary
number of material related properties for each of them.
The novel concept overcomes the limits of traditional
geometry-based approaches, as it is able to represent
almost arbitrary patch shapes even on curved surfaces.
Two numerical examples demonstrate the efficiency of
the method.
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1 Introduction

Today laminated composites are very popular in
aerospace, marine, automotive, and sport applications
due to their excellent mechanical properties as well
as the adjustability of these through the combination
of different laminate. However, an optimal layout of
a composite structure is still hard to find: complex
geometries, different materials, and manufacturing as
well as economical limitations typically lead to highly
constrained problems with many parameters.

A lot of research has been done in the field of
composite optimization; for a thorough review, see
Venkataraman and Haftka (1999) and many refer-
ences therein. Furthermore, many publications treat
the optimization of composite plates with holes for
increased strength (Huang and Haftka 2005, and ref-
erences therein). The optimal orientation of ortho-
tropic materials is investigated by Pedersen and others
(Pedersen 1989, 1991, 2004; Hammer et al. 1997).

The parameterization is one of the most important
issues in computational structural optimization, as it
may strongly influence the quality of the optimized
structure. There are a few different approaches for the
parameterization of laminate optimization problems.
The most basic one is the representation of the stacking
sequence by a material and a ply angle parameter for
each layer (e.g., Le Riche et al. 1995 and Grosset et al.
2001). A further refinement considers the number of
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layers as an optimization parameter that leads to a
variable number of parameters for different design so-
lutions. Apparently, this parameterization suffers from
its global point of view in case a single stacking se-
quence holds for the entire laminate, i.e., the entire
mechanical structure. Most often, structural failure and
constraint violations are local effects; hence, an opti-
mal laminate representation should allow local rein-
forcements. A representation that divides the design
space into different regions (cells) with their individual
laminate properties overcomes this disadvantage. The
laminates of adjacent cells should have some com-
mon (i.e., global) layers to ensure the cohesion of
the whole structure. Thus, the problem is to encode
the stacking sequence and the shape of these regions
without introducing an unnecessary high number of
additional constraints.

The patch concept proposed by Zehnder and
Ermanni (2006) convinces with its manufacturing-
oriented approach. One global layer is called a patch,
and a variable number of these patches are arranged in
the design space finally building the laminates of the en-
tire mechanical structure. Such layers are called global,
as they can be positioned anywhere in the design space
without any limitations except the design space bound-
aries. Their positions, sizes, shapes, ply angles, and
materials are changed during optimization, whereas the
order of the patches in the parameter set (i.e., geno-
type) represents the stacking sequence of the lami-
nate in the analysis model. However, the shape of
the patches is somehow limited by the computer-aided
design-based encoding as parameterized sketches.
Prior knowledge is required to create associative patch
prototypes without unnecessarily narrowing the opti-
mization possibilities.

The inhomogeneous, variable length representation
claims certain capabilities of an optimization algorithm:

Material decision variables Patch materials are typi-
cally to be chosen out of an existing list. This list has
neither natural order nor norm. A material comes along
with a set of coupled parameters like Young’s modulus,
Poisson’s ratio, thickness, price, etc.

Continuous decision variables Geometry and pos-
sibly other material related parameters can be
continuous.

Discrete decision variables Manufacturing accuracy
possibly requires the ply angles to be discrete.

Multi-objective or multimodal Economical, manu-
facturing, and engineering constraints lead to multi-
modal and multi-objective problems, which can be
transformed to a single multimodal objective through
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introduction of penalty terms. Therefore, a global opti-
mization strategy is required.

Evolutionary algorithms are able to meet all these
requirements (e.g., Michalewicz and Schoenauer 1996
or Michalewicz et al. 1996). Two-dimensional topology
optimization problems are somehow similar to lami-
nate optimization, and evolutionary approaches pros-
per there as well, e.g., Kane and Schoenauer (1996).

Giger and Ermanni (2006) already use a graph-based
genotype for the representation of truss structures.
This work presents a similar graph-based patch para-
meterization concept for laminate optimization repre-
senting the finite element mesh with a mathematical
graph abstraction and allows for almost arbitrary patch
geometries. A single patch is represented by a subgraph
including only a subset of all finite elements, whereas
such a subgraph is connected to an additional virtual
vertex holding the properties (e.g., material, ply angle,
etc.) of the respective patch. As the optimization is
done with an evolutionary algorithm, a set of new
genetic variation operators is introduced to customize
the algorithm for the graph-based genotype.

First, the evolutionary algorithm used in this work is
presented in Section 2, and a brief introduction to the
basic graph terminology is given in Section 3. Then, the
graph-based parameterization concept is explained in
Section 4. Section 5 gives an overview over the evolu-
tionary operators particularly adapted to the presented
genotype, and Section 6 shortly discusses some imple-
mentation details. Finally, a rather academic as well as
an engineering problem illustrate the performance and
capabilities of the new method in Section 7 before the
paper is concluded with Section 8.

2 Evolutionary algorithm

The graph-based parameterization concept is devel-
oped for the paradigm presented in Fig. 1.

( Final populatlon Solution )

Termmatlon

Populatlon (Matmg selecuon)

Initialization

Reproduction

(Environmental selectlon)

( Evaluation ) ( Offspring )

Fig. 1 Evolutionary algorithm scheme
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After a first population of a predetermined size P is
randomly initialized, all individuals are evaluated, and
a fitness value is assigned to each of them. The fitness
value is a weighted sum of the design objective and
the given limit constraints as shown in the following
equation

F (@) =w,D, () + > w;Dj(i). (1)
J

Example fitness definition functions are shown in Fig. 2,
whereas the objective function is defined by the para-
meters Oiit, Oestim, and o« and the constraint functions
are defined by Ciimir and Cieas 101. Depending on the
optimization, these fitness functions have to be adjusted
to guide the optimization process toward superior solu-
tions. The complete mathematical definitions of these
functions can be found in Konig (2004).

40 60
Obijective value O’ [a.u.]

a Design objective

1.1

0.9
0.81
0.7F
0.6

05F - 0.6, 6

Cfeas,tol =

Fitness rating DJ.(C) [a.u]

! !

15 20

[ 1 S 4

Constraint value C [a.u.]

b Limit constraint

Fig. 2 Example fitness definition functions

With the initial population, the optimization loop is
entered. In the mating selection stage, the individuals
that are allowed to reproduce themselves are chosen
by a deterministic tournament selection procedure. In
this work, a tournament selection size of 2 is used. The
tailored genetic operators, i.e., crossover and mutation
operators presented in Section 5, recombine the genetic
material of the chosen individuals and introduce new
genetic material by mutating random parts of the geno-
types in the reproduction stage. The resulting offspring
solutions are then evaluated, and again, fitness values
are assigned. In the environmental selection stage, it
is determined which offspring solutions replace indi-
viduals of the current population. For the optimization
problems presented in this work, a generational ap-
proach is used, which replaces all the parents by off-
spring solutions; only the overall best solution is always
kept in the population; that is, a “weak elitism” mech-
anism is employed. This optimization loop is run until
a given termination criterion is met. Typically, the opti-
mization is stopped after a given number of generations
or evaluations.

3 Basic graph terminology

Mathematical graph theory is one of the most active
and complex fields of research. Therefore, it is prefer-
able to introduce only the terminology and the basic
concepts used within this work instead of presenting an
extensive overview at this point.

A graph is an abstract mathematical model: It is a
pair (V, E), where V is a finite set called vertex set and
E is a binary relation on V called edge set. Elements of
V are called vertices, elements of E edges. An edge is a
pair (u, v) with u, v € V (Siek et al. 2002).

In undirected graphs edges are unordered pairs,
therefore (u,v) and (v, u) represent the same edge.
As further restrictions self-loops, i.e., an edge with
identical source and target vertices (u, u), and parallel
edges connecting the same vertices are not allowed for
the graphs used in this work. The degree of a vertex
is the number of edges incident to it. In a regular
graph of degree r, every vertex must have a ver-
tex degree of r. Edges as well as vertices can take
representation-dependent properties, which allow to
adapt and extend graph concepts on many different
problems. Typical applications of graph theory can
be found in electric engineering, network and traffic
management as well as algorithms and data structures
for computation.
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4 The graph-based parameterization concept

A commonly used method for the numerical simulation
of the mechanical behavior of a mechanical structure
is the finite element method (FEM; e.g., Zienkiewicz
and Taylor 2000). FEM requires a discretization of the
mechanical structure into small (i.e., finite) elements.
This so-called mesh consists of elements and their as-
sociated nodes. Its structure, e.g., the number of nodes
per element or the shape of the elements, depends on
the element type(s) used.

4.1 Graph abstraction of finite element meshes

The information embodied in such a finite element
mesh can be transferred into different graph abstrac-
tions as it is illustrated on a basic two-dimensional
four-element mesh in Fig. 3. A node graph (Fig. 3a) rep-
resents the contiguity information of the mesh nodes (a
vertex represents a mesh node, and neighboring nodes
are connected with an edge). It may be used for node
reordering to minimize the bandwidth of the stiffness
matrix of the numerical model. For this purpose, infor-
mation on the exact geometric position of the nodes
is not required and would therefore not be part of
the graph abstraction. The second graph (Fig. 3b) rep-
resents the finite elements as additional vertices of a
special quality and introduces an adjacency information
between elements and their nodes. This model could
represent a data structure of a finite element implemen-
tation. The element graph (Fig. 3c) contains the element
adjacency information of the mesh. The laminate op-
timization method presented in this work operates on
this information. Three definitions are given to clarify
the concept of the element graph.

Definition 1 (Element vertex) An element vertex is an
abstraction of one finite element. It stores the nodes
and the properties of the underlying finite element.

Definition 2 (Element graph) The element graph of a
finite element mesh contains element vertices of all
finite elements. Two finite elements with more than one
coincident mesh node are connected with an edge.

Definition 3 (Adjacency set) The adjacency set of one
element vertex consists of its adjacent element vertices.
The adjacency set of an element vertex is named full if
there are as many adjacent element vertices as sides in
the respective element.

These very general definitions theoretically hold for
any kind of finite element model. In this paper, only
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node—node edge

node—element edge
element—element edge
e node vertex

o element vertex

Fig. 3 Graph abstraction of two-dimensional finite element
meshes: a direct interpretation of the finite element mesh as
a graph based on its nodes (node graph). b Additional virtual
element vertices. ¢ Connection of the virtual element vertices
(element graph)

the special case of laminated structures is considered.
Such composite structures are usually thin walled, three
dimensional, and in laminar shapes that can be mod-
elled with shell elements. Special types of these finite
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elements are able to model a layered laminate assembly
and are commonly used in a rectangular and a triangu-
lar implementation with eight or six nodes, respectively.
In general, vertices in the element graph have at most
four adjacent vertices in their rectangular representa-
tion and three for the triangular version. The element
graph of a laminated structure is typically not regular.
Not only vertices on the boundaries of the structure
have a lower degree, but often, there are differences
in degree due to the different element implementations
used to mesh a geometry.

The graph-based laminate optimization method is
limited to surfaces consisting of simply connected areas
(e.g., composite panels). More complex structures, e.g.,
beams with T-cross-sections, cannot be entirely opti-
mized yet, because two or more surfaces are connected
to each other along a common line. Depending on the
normal direction along which the stacking sequence is
evaluated, this could lead to intersecting layers that
is impossible from a manufacturing point of view.
However, such adjacent surfaces could be optimized
independently.

4.2 The graph-based laminate genotype

In evolutionary computation, the genotype represents
the information on which evolution acts. Before eval-
uation, it is mapped to the phenotype space, where
environmental pressure occurs. Therefore, the possi-
bilities, the efficiency, and also the compliance with
constraints of evolutionary computational optimization
highly depend on the characteristics of the genotype.
First, the parameterization of a single patch is pre-
sented, and the parameterization of the entire laminate
follows afterward.

4.2.1 Patch parameterization

Definition 4 (Patch) According to Zehnder and
Ermanni (2006), a patch is one global layer (one
constitutive component) of a laminated structure.

The following requirements should be fulfilled by the
genotype representation of one patch:

Discretization In the phenotype space, one finite el-
ement is the smallest inseparable building block of a
patch. This is a result of the discretization with layered
elements during evaluation. Once a finite element mesh
is regarded as fixed, a genotype that offers higher res-
olution than this mesh sacrifices efficiency. A flexible
mesh demands remeshing of the structure before every
evaluation, which increases the computational costs

for each evaluation. This work follows a fixed-mesh
approach. Therefore, a set of dedicated finite elements
incorporates the shape, the size, and the position of
one patch.

Properties One patch can take several properties that
can be considered as coupled or independent optimiza-
tion parameters: e.g., material, ply angle, thickness, etc.

Connectivity A patch is a connected region on the
shape of a mechanical structure. Its dimensions are
limited by the boundary of the mechanical struc-
ture and possibly by further constraints like a max-
imum number of finite elements belonging to the
respective patch.

These requirements can be satisfied with the follow-
ing approach: The genotype is based on the element
graph of the mechanical structure. This graph stays the
same during the optimization; that is, no remeshing
takes place. For every patch, a virtual patch vertex is
added to the graph.

Definition 5 (Patch vertex) A patch vertex is an ab-
stract entity representing the properties of one patch.

Thus, a patch vertex has special qualities. It takes a
heterogeneous set of representation-dependent genes
to encode the properties of its patch (e.g., material, ply
angle, etc.). The term gene in this context is used in the
sense of a single-valued parameter after the idea of the
universal gene introduced by Konig (2004).

Each finite element within the shape of one patch is
further connected by an edge with the newly introduced
patch vertex (Fig. 4). The connectivity of the patch
shape is not guaranteed; it has to be achieved with
functional refinements.

Patch Vertex

Patch

Element Graph

Design Space

Fig. 4 Graph-based representation of one patch
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Definition 6 (Patch graph) A subgraph including all
adjacent vertices of one patch vertex and their connect-
ing edges is called a patch graph.

Definition 7 (Patch gene) The information represented
by a patch vertex in conjunction with its affiliated genes
and its adjacent edges encodes one physical patch and
is further on called patch gene.

Generally, the laminate structure consists of a vari-
able number of patches, whereas the stacking sequence
of the laminate at a given point still needs to be defined.

4.2.2 Laminate parameterization

A laminated structure is represented as a set of patch
genes organized in a genotype vector. The genotype
vector shown in Fig. 5 consists of three patch vertices,
whereas each of these patch vertices belongs to exactly
one patch gene defining one physical patch. The order
of the patch vertices in the variable-length genotype
vector, i.e., the number of patches can be varied, en-
codes the stacking sequence of the laminate. As the
finite element mesh consists of layered shell elements,
the properties of the patches, namely material and
orientation, can be mapped to the finite elements that

are covered by the respective patches. Consequently,
the connectivity of different layers is ensured even if
a finite element is covered by only two layers that are
not adjacent in the genotype vector. Such a genotype
contains information on three levels:

Laminate level describes the set and the sequence of
the patches analogous to a global lamination plan. It is
represented by the variable-length genotype vector.

Patch level encodes the size, the shape, and the po-
sition of one patch. One patch gene incorporates this
information.

Patch property level contains properties of one patch.
They are encoded as genes in a patch vertex.

4.3 Patch structure manipulation

The structure of a patch needs to be changed to create
new design solutions during the optimization process.
All structural patch manipulations can be interpreted
as either removing or adding edges between a patch
vertex and some element vertices in the element graph.
Each modification changes the patch graph defining
one patch. The graph abstraction of the patch allows
to efficiently analyse the patch graph for connectivity,
size, shape, and position.

Fig. 5 Graph-based laminate
representation. The depicted
laminate consists of three

Material: A

Ply Angle: +45°

Material: B
Ply Angle: —45°

Material: C

Ply Angle: 0° Vertex Properties

patches, and the stacking
sequence is [45°/—45°/0°]

(the genotype vector is
processed from left to right)

Patch Vertex

where all three patches
overlap each other, but most
of the finite elements are
covered by less patches;
hence, their stacking
sequences are accordingly
reduced

Genotype Vector

Patch

Element Graph
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4.3.1 Regions of a patch

Adjacency information allows to specify different
regions of a patch as shown in Fig. 6:

Patch elements are all finite elements in the patch
graph.

Patch core elements are vertices in the patch graph
with a full adjacency set.

Boundary elements are patch members with a re-
duced set of adjacent patch elements: Design space
boundary elements have no adjacent elements outside
of the patch, cambium elements have adjacent elements
outside of the patch and, articulation elements connect
two regions of a patch graph. Removing one artic-
ulation element splits the patch graph into different
components.

Neighbor elements are not patch elements but are
adjacent to at least one patch element.

4.3.2 Basic growth and shrinking mechanisms

Growth and shrinking operations are elemental patch
variations. They are base components of the genetic
operators presented in Section 5, and their applica-
tion in stochastic search algorithms demands a random
behavior.

Engineering as well as manufacturing require a patch
shape to stay compact and connected. To ensure this,
growth mechanisms are limited to add neighbor ele-
ments, and shrinking mechanisms only remove bound-
ary elements (articulation elements are handled in a
special way).

The neighborhood size concept is introduced to de-
scribe the environment of element vertices.

Definition 8 (Neighborhood size) The neighborhood
size n(v;, w) of one element vertex v; in respect of the
patch = is the number of its adjacent patch elements.

Definition 9 (Relative neighborhood size) The relative
neighborhood size p(v;, ) of one element vertex v; in
respect of the patch = is its neighborhood size 7 (v;, )
divided by the number of possible adjacent elements p.

The number p only depends on the element type of
v;; it equals four for rectangular elements and three for
triangular elements.

As a selection criterion for elements to be re-
moved or added to a patch, the neighborhood size
concept promotes compact patch shapes. Growth and

Nlaman
WMDY,

O
(87K sk i N

(i

patch boundary

empty element

patch core element

%&% patch boundary element

7
N

AN

design space boundary element
cambium element
articulation element

neighbor element
Fig. 6 Illustration of different patch regions on a regular, rectan-

gular finite element mesh. “Empty elements” are finite elements
that are not covered by the patch
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shrinking mechanisms use a random weighted selection
procedure, where the weight factors depend on the
relative neighborhood size of the respective elements.

Parallel growth mechanism The parallel growth
mechanism resizes a patch by adding a certain pre-
defined number of edges between a patch’s neighbor
elements and its patch vertex. The method performs
a random weighted selection out of all neighbor ele-
ments, where the weight for each neighbor element is
equal to its relative neighborhood size.

Parallel shrinking mechanism The parallel shrinking
mechanism works analogously to the parallel growth
mechanism. It removes edges between a patch’s bound-
ary elements and its patch vertex. There are two varia-
tions of the method: The first one randomly selects out
of a pool of all boundary elements; the second one’s
pool contains all boundary elements except articulation
elements. The selection weight is one minus the rela-
tive neighborhood size of the respective element. The
first variation does not protect the connectivity of the
patch shape.

Recursive growth mechanism While the parallel
mechanisms perform variations on the whole shape of
a patch, the recursive methods work more locally:

1. Initialize a recursion counter i = 0.

2. Choose a random weighted cambium element v
(the weight is the relative neighborhood size of the
respective element).

3. Adjacency iteration:

(a) For each adjacent neighbor vertex v, of
v make a random choice with probability
P, (i, v,) for true out of [true, false].

(b) If the result is true, add an edge between the
patch vertex and v, and start a new instance
of the process with v =v, and i=i+1 at
step 3a.

In any case (true or false), continue the cur-
rent instance at step 3c.

(¢) Continue with the next adjacent neighbor ver-
tex v, of v at step 3a.

The probability P (i, v,) is defined as:
Py(i, vg) 1= ¢ Trnm @

where d, is a user-defined growth parameter. There is
no active termination criterion. Therefore, a patch can
theoretically grow until it reaches the boundary of the
design space. However, this is not very probable, as P,
diminishes fast with increasing recursion depth i. In reg-

@ Springer

ular unlimited graphs, this method creates semicircular
excrescences.

Recursive shrinking mechanism The recursive shrink-
ing mechanism works analogously to the recursive
growth method:

1. Initialize a recursion counter i = 0.

2. Choose a random weighted boundary element v
(the weight is the relative neighborhood size of the
respective element).

3. Edge removal:

(a) Remove the edge between the patch vertex
and v.

(b) If the patch size reaches a user-defined mini-
mal size stop the process.

4. Adjacency iteration:

(a) For each adjacent patch, vertex v, of v makes
a random choice with probability Ps(i, v,) for
true out of [true, false].

(b) If the result is true, start a new instance of the
process with v = v, and i = i + 1 at step 3a.
In any case (true or false), continue the cur-
rent instance at step 4c.

(c) Continue with the next adjacent vertex v, of v
at step 4a.

The probability P;(i, v,) is defined as:
Py(i, vy) := e mmm | 3)

where d; is a user-defined shrinking parameter. A vari-
ation of the method ensures the connectivity of the
patch graph by excluding articulation elements out of
the selection pool.

5 Genetic graph operators

In evolutionary computation, it is common practice to
divide variation operators into mutation and crossover
operators. Mutation operators are unary operators;
that is, they typically perform slight changes on the
genetic information of a single individual. Crossover
operators act on two or more individuals by exchang-
ing genetic information between them. As the geno-
type groups genetic information on different levels,
namely laminate, patch, and patch property level (see
Section 4.2.2), there are different types of operators for
each level.



A graph-based parameterization concept for global laminate optimization 297

5.1 Mutation operators
5.1.1 Laminate mutation operators

Remove and add patch mutation either remove a ran-
domly chosen patch gene or insert a new randomly
initialized patch gene at a random position in the
genotype.

Swap patch mutation swaps two patch genes in the
genotype. This changes the stacking sequence of
the laminate.

5.1.2 Patch mutation operators

Parallel resize mutation resizes a patch to a randomly
chosen size by either applying parallel growth or paral-
lel shrinking.

Recursive resize mutation resizes a patch by recursive
growth and shrinking mechanisms, whereas the final
number of elements in the patch results from the ran-
dom termination of the resizing mechanism.

Random walk mutation removes one random bound-
ary element v, from a patch and adds a random neigh-
bor element v, that is close to v, . vp, is randomly chosen
out of all boundary elements (uniform probability);
v, 1s the exit point of a random walk through the
patch graph.

Bobtail mutation renders a patch shape more com-
pact by removing one randomly chosen articulation
element and the smaller of the remaining components
from a patch.

5.1.3 Property mutation operators

Uniform mutation and Gauss mutation operate on
patch vertex properties. Typically, these patch vertex
properties are encoded with universal genes (Konig
2004) providing these standard mutation operators.

5.2 Crossover operators
5.2.1 Laminate crossover operators

Uniform crossover takes two parent individuals and
swaps two randomly chosen patch genes a predefined
number of times.

One point crossover takes two parent individuals and
selects one random crossover point for each. The head
of the first individual is recombined with the tail of the
second one and vice versa.

Parent A

A A

VNN

Fig. 7 Possible patch gene exchanges in intermediate crossover

Two point crossover takes two parent individuals and
selects two random crossover points for each. The
segments of each individual between the crossover
points are exchanged.

Intermediate crossover takes two parent individuals
and randomly exchanges patch genes with a given prob-
ability, but keeps the stacking sequence (Fig. 7).

5.2.2 Patch crossover operators

Marry crossover takes two parent individuals and cre-
ates one offspring that is based on the first parent. It
chooses two patch genes out of its parents at random
and searches for the shortest path between the two
patch vertices of the patch genes. Each element of the
second parent’s gene and on the connecting path are
added to the first parent. In a second step, a recursive
growth is started on each element on the path to create
a more compact shape, whereas the growth rate is a
user-defined parameter. The modified first parent be-
comes the offspring individual.

Position crossover takes two parent individuals and
creates one offspring that is based on the first parent. It
searches again for the shortest path from one randomly
chosen patch gene from the first parent to another one
from the second parent. From the middle of this path,
a new patch grows (recursive and parallel growth) to
a random size in between the size of the two parent
patches. This new patch replaces the original patch
from the first parent, which then becomes the off-
spring individual.

Overlap crossover selects three parent individuals and
creates three offspring (Fig. 8). The parent selection
searches for three parent individuals having overlap-
ping patches (A, B, C), whereas patch A belongs to the
first, patch B to the second, and patch C to the third
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Fig. 8 Overlap crossover: a Three overlapping parent patches b
offspring 1 ¢ offspring 2 d offspring 3

parent, respectively. The overlapping parts of patch B
and C are added to patch A, those of A and C to patch
B, and those of A and B to patch C. Afterward, the
modified parents become the offspring. This way, the
operator exchanges geometric subsets between patches
even on curved shapes and in irregular element graphs.

@ Springer

5.2.3 Property crossover operators

Segment crossover is an arithmetical crossover de-
termining new gene values a and b according to the
following rule:

a=A-y+B-(1—y) 4)
b=A-(1—y)+B-y, (5)

where A and B are the parent individual values and y is
a random proportional factor € [0, 1]. This operator is
defined for each universal gene type (Konig 2004), i.e.,
integer genes, double genes, etc.

6 Implementation

The method is implemented in C++. The evolution
engine is taken from the Evolving Objects' library.
This library provides generic functional objects re-
quired for evolutionary computation and allows for
optimization of almost any type of genotype. The
graph data structures and graph algorithms derive from
the Boost Graph Library?. The patch property genes
are a part from the eoUniGene library introduced by
Konig (2004). Finite element analysis is performed with
FELyX,? an open source finite element library that
is entirely written in C++. Therefore, it allows a di-
rect integration into the optimization environment that
speeds up mapping and evaluation operations.

7 Applications
7.1 Eigenfrequency optimization of a rectangular plate
7.1.1 Problem

This first application deals with a rectangular plate that
is clamped at all edges; that is, all boundary nodes can-
not move in x-, y-, and z-directions, but the rotations
are free. A mass is placed on it according to Fig. 9, and
the objective is to maximize the first eigenfrequency f;
by placing some fiber-reinforced patches on the plate.
All patches consist of the same unidirectional mate-
rial (UD) as specified in Table 1, and elements that
are not covered by patches take a very compliant fill-
material. Two variations of the problem are analyzed.
First, only a single patch is placed on the rectangular

http://eodev.sourceforge.net
Zhttp://www.boost.org
3http:/felyx.sourceforge.net
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Fig. 9 Rectangular plate with mass (dark). y is a possible fiber
orientation angle relative to the global x-direction. All dimen-
sions are in millimeters

plate to analyze the behavior of the applied genetic
operators (except the overlap crossover). Afterward,
this academic example is investigated with a maximum
number of 12 patches. For the first example, the global
mutation rate is set to 0.45, and the global crossover
rate is equal to 0.48. For the second example with 12
patches, the global mutation rate is slightly reduced
to 0.4, and the global crossover rate is decreased to
0.45. For both examples, the relative operator rates
for all the different mutation and crossover operators
presented in Section 5 are uniform.

7.1.2 Single patch optimization

In the first verification setup, the number of patches
is limited to one with a maximum size of 40% of
the rectangle area. The ply angle is represented as a
discrete optimization parameter that allows for values
in the range from —90° to +90° in steps of 5°. The
fitness definition is taken from Konig (2004) mapping
the objective, i.e., the first eigenfrequency, to a design
objective value in [0, 1]. Furthermore, the maximum
size of the patch is controlled with a limit constraint
value in [0, 1] keeping the maximum size below 40% of
the rectangle area. The overall fitness of an individual
is then calculated as the sum of the design objective and

Table 1 Materials of the rectangular plate optimization

the limit constraint value. Two different discretizations,
with 200 and 800 finite elements, are optimized in
populations of 100 individuals over 1,500 generations.
The optimization formulation can therefore be stated
as follows

maximize  fj

subjectto 7100 < 80

N pegoo < 320, (6)

where np.00 and np00 denote the number of finite
elements covered by the single patch.

Results Figure 11 depicts the convergence plots aver-
aged over 12 runs for both variations, whereas all the
runs reliably converge to similar final solutions. The so-
lution with the highest eigenfrequency found for the
200 element representation has a first eigenfrequency
of 1.36112 Hz (1.35624 Hz when evaluated with the
800 element finite element mesh); the one with 800
elements has a first eigenfrequency of 1.36387 Hz. The
shapes of the best patches are shown in Fig. 10, and they
have a fiber orientation of 90°. The 200 element dis-
cretization has the maximum allowed size of 40% of the
rectangle area, whereas the 800 element discretization
could have four more finite elements. If the optimiza-
tion process is continued for the 800 element model, it

Material UD Fill-material ~ Mass

E; 135 1 1 [GPa]

E, 10 1 1 [GPa]

v 0.3 0.3 0.3 [-]

G 5 0.5 0.5 [GPa] Fig. 10 Solutions with the highest first eigenfrequencies comply-
Thickness 0.00015  0.00015 0.01 [m] ing with the size constraint after 1,500 generations with popula-
Area density 0.237 0.237 158 [kg/m?] tion size 100 of the single patch rectangle problem for 200 and

800 finite elements. The fiber orientation is 90° for both solutions
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could be expected that additional four finite elements
would also be covered contributing to an increased first
eigenfrequency.

The method finds a partially similar solution for
both discretizations. The region where the stiff ma-
terial is placed, the size as well as the ply angle is
about what one would expect as an optimal layout.
Both solutions show compact patch shapes without any
thin branches, and they almost perfectly reflect the x-
symmetry (Fig. 9) of the problem. In the case of the
200 element discretization, a further improvement can
hardly be found. If the top left finite element would
be moved to the lower right (empty) corner of the
patch, this would lead to the same eigenfrequency up
to the fifth decimal place. Surprisingly, the 800 element
solution shows a hole in the region of the mass that
profits from the stiffness of the mass, see Table 1. There
is actually no variation operator that actively creates a
hole in a patch shape; hence, it is the result of a chain of
different variations. The global optimum solution can-
not be found for this example due to the relatively large
number of degrees of freedom and the applied genetic
operators incapable of slightly changing the boundary
regions of the patch. Nevertheless, this example shows
the capability of the patch concept to locally adapt to

Fig. 11 Convergence plots
for the single patch rectangle 0.35
optimization averaged over
12 runs
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the higher stiffness of the mass region by leaving these
finite elements blank. The convergence plots (Fig. 11)
show that this mesh-based approach looses efficiency
with an increasing number of elements. However, the
200 element discretization already finds fairly well
solutions after 200 evaluated generations, and the 800
element discretization finds near-optimum solutions
after 500 generations.

7.1.3 Constrained optimization

In a second setup, the number of patches is variable in
a range from 1 to 12. The fiber orientation is encoded
with the same discrete parameter like in Section 7.1.2.
Again, the first eigenfrequency f; is to be maximized
under consideration of a mass constraint for the entire
structure and a constraint limiting the number of empty
elements n, to zero.

maximize  fj
m < 0.48275 kg
n, =0. (7

subject to

A mass constraint violation of 0.05 kg is tolerated
but penalized in the fitness (maximal allowed mass:

Fitness

o
o

500 1000 1500
Generation

Objective

11L
n

Frequency [Hz]

rectangle 200 elements
----- rectangle 800 elements

0.9
0
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0.53275 kg). The number of elements with fill material
should be zero; 20 are tolerated but again penalized.

Results The optimization is done in populations of
50 individuals over 10,000 generations with the 200
element model. The convergence plots (Fig. 13) show
average fitness, objective, and constraint values of eight
runs. The best result reaches an eigenfrequency of
27.8534 Hz with a mass of 0.500909 kg and without
empty elements. The layers of the overall best solution
with the highest first eigenfrequency can be seen in
Fig. 12. Most of the material is concentrated around
the mass. With a very stiff region around the mass, the
first mode shape places higher amplitudes at the right
half of the rectangle. Apparently, the sixth layer should
avoid this effect by reinforcing the opposite of the mass
region. Again, the patch shapes and, in particular, the
ply angles do not clearly reflect the x-symmetry of
the problem. From a manufacturing point of view, this
solution is quite problematic, as a lot of complex patch
shapes occur. This is caused by the relatively small
discretization of the problem.

1 7
55° 80°
2 8
85° 85°
3 9
85° 75°
4 10
80° 75°
5 1
85° 75°
6 12
85° 75°

Fig. 12 Best result of the constrained rectangle optimization
problem: 12 layers in their stacking sequence from 1 to 12 with
their ply angles
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Fig. 13 Convergence plots of constrained rectangle optimization
averaged over eight runs

Figure 13 depicts a faster convergence for the first
1,000 generations than afterward. Only one of the
eight analyzed runs reaches an eigenfrequency above
25 Hz. The large number of degrees of freedom in
the parameterization combined with this type of fitness
definition probably renders the problem multimodal.
Therefore, it is assumed that most of the runs become
stuck close to local optima. For such a simple opti-
mization problem, there are obviously many degrees
of freedom leading to an extremely large space of
possible solutions. A possible improvement could be
to introduce operators simplifying the patch shapes
or grouping several finite elements to larger entities.
Nevertheless, an unpublished comparative study using
12 rectangular patches (organized in a variable-length
vector genotype) of the same UD material resulted in a
maximum eigenfrequency of 25.0574 Hz by a compara-
ble number of evaluations.

7.2 Minimal compliance design of an aircraft
vertical tail

7.2.1 Problem
Today’s airplane vertical tail structures are completely

made of composite material. Thus, the application of
the newly introduced optimization method on a vertical
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Fig.14 Vertical tail finite element model: a Model with boundary
conditions and shaded optimization area. y is an exemplary ply
angle. b Internal stringer and rip structure

tail allows to get an impression of its behavior on
real engineering problems. The symmetric vertical tail
(Fig. 14) is built of a stiff box containing 2 stringers
and 13 rips. The two box stringers are attached to the
fuselage. The rear part is formed of a less stiff rudder.

Four nodes of the box stringers connecting the tail-
fin with the fuselage are modeled as support points
(t,y,; = 0). A heavy side pressure load case of a turn
maneuver is analyzed: Uniformly distributed forces in
y-direction are applied on all nodes of the port side
(y <0). The bending and torsion of the structure lead
to a maximal deformation up.x at the top rear corner
of the rudder. A base laminate is applied to the whole
structure. Local reinforcements should be added to
increase the stiffness of the construction. The box and
nose area carry most of the loads. Therefore, fiber-
reinforced patches have to be placed there. The objec-
tive is to minimize the maximum deformation uy,,y at
the top rear corner of the structure under an upper limit
constraint for its mass my,x and a maximum number of
patches npax.

minimize Umax
subject to M < Mimax
n < Amax (8)

Again, the fitness formulation is implemented ac-
cording to Konig (2004) where the fitness of an individ-
ual is defined as a weighted sum of objective and mass
constraint penalty terms. For the objective and the mass
constraint, two mapping functions are used normalizing
the evaluated results for the maximum deformation and
the mass into an interval [0,1]. Thus, the weights of the
weighted sum only reflect the relative importance of
objective and constraint.
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Some customization of the graph-based parameter-
ization has to be done to meet the special needs of
the problem. As the structure should remain symmetric
to behave equally in right and left turns, patches are
arranged only on one side and are then mirrored to
the opposite side. Furthermore, the optimization region
covers not the complete surface but only the box and
the nose area as Fig. 14 depicts. These requirements
are transferred to the genotype space with a reduced
element graph that covers only the port side of the box
and nose surface.

Each element takes a base layer (base laminate)
before mapping. The optimization engine can choose
from two different unidirectional materials (HTUD
and HMUD) as shown in Table 2 to form additional
patch layers in the optimization region. These materials
are encoded with a discrete, unordered parameter
(string gene from the universal genotype by Konig
2004). Each patch has a discrete ply angle between —90°
and +90° in steps of 5° (const_float list gene).
A third integer parameter (int gene) between one
and 15 encodes the number of layers per patch. This pa-
rameter multiplies with the thickness of the respective
material. So every patch vertex contains a representa-
tion of these three patch genes.

The optimization is done with a population size of
100 individuals, the global mutation rate is set to 0.4,
and the global crossover rate is equal to 0.5, whereas the
relative operator rates for all mutation and crossover
operators are uniform. The maximum mass (#y,y) iS
set to 1,500 kg, and a variable number of patches in be-
tween one and eight (n,x) are allowed. The optimiza-
tion is stopped after 40 iterations without improvement.

7.2.2 Results

The convergence curves of one optimization run are
shown in Fig. 15. The best result after 250 generations
reaches a maximum deformation of 174.902 mm and a
mass of 1,509.77 kg. Figure 16 depicts the patches of
the best solution ever found. Although the optimization
is not fully converged, the result is quite convincing. It

Table 2 Materials in the vertical tail optimization problem

Material HTUD HMUD Base

E 135 220 55 [GPa]
E> 10 10 55 [GPa]
v 0.3 03 0.04 -]

G 38 2.9 48 [GPa]
Ga3 5.0 5.0 25 [GPa]
Thickness 0.00015 0.00015 0.003 [m]
Area density 0.24 0.24 473 [kg/m?]
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Fig. 15 Convergence plots of the constrained vertical tail opti-
mization problem

consists of eight layers of the material HMUD, which is
not very surprising, as the higher Young’s modulus of
HMUD leads to a stiffer vertical tail. In case a stress or
failure criteria constraint would be added to the opti-
mization formulation (8), the high tension fibers would
probably have been used as well. Figure 16 depicts a
gradual decrease of laminate thickness toward the top
of the vertical tail. All patch shapes completely fill the
lower region of the vertical tail where they influence the
maximum deformation the most. The top of the vertical
tail has only little influence on the maximum defor-
mation. Thus, only patch 2, which covers the entire
optimization region, reaches the top of the tailfin. The
patch thicknesses, i.e., their number of layers, reach
values between 6 and 14 layers. The maximum number
of 15 layers is not reached, but it seems to be more
efficient to have a larger number of patches instead of
a low number with the maximum number of layers.
Surprisingly, the ply angles cover a range from —70°
to 90°, which was not really expected, but this patch

— S}
Patch 7: -70°, 13 layers Patch 8: 5°, 14 layers
Fig. 16 Best solution found for the vertical tail optimization
problem

configuration seems to be superior to other stacking
sequences with a dominating orientation direction.
Finally, the patch concept proves to be working for
more complex optimization problems, although the de-
grees of freedom of the patch shapes are very large.
Therefore, the optimization is quite expensive, maybe
too expensive, as it is probably not necessary to allow
completely arbitrary patch shapes. A further devel-
opment of this method should therefore investigate a
grouping of several finite elements to zones, where all
finite elements within such a zone have the same stack-
ing sequence. Moreover, the definition of these zones
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should be used to introduce manufacturing knowledge
and experience into the optimization setup.

8 Conclusion and outlook

A new graph-based parameterization for the evolu-
tionary optimization of laminated composites struc-
tures is introduced. It is able to concurrently optimize
size, shape, position, number, ply angle, and any other
material-related property of fiber-reinforced patches.
The applications demonstrate the methods ability to
find good quality results in constrained optimization
problems and on curved shells.

According to Goldberg (1989), a representation
concept for evolutionary search should be complete,
nonredundant, feasible, and preserving locality. These
attributes are shortly discussed for the proposed rep-
resentation: The presented representation concept is
complete for composite structures consisting of simply
connected areas; that is, for each phenotype solution,
there exists at least one genotype solution. Further-
more, it is also nonredundant, so that, for each geno-
type solution, exactly one phenotype solution exists.
The constraint-handling is discussed in terms of le-
gality and feasibility. Illegal genotype configurations
may represent noncohesive patches. These genotype
solutions are avoided by initialization and variation
operators preserving legality; that is, no illegal design
solutions can occur. Infeasibility concerning external
constraints implied by the fitness definition of the op-
timization task at hand cannot be directly incorporated
into the representation concept but they are handled
by a penalty method. This ensures the applicability of
the method on a large range of optimization problems.
Obviously, the feasible region of an optimization task
is problem dependent and, in particular, dependent on
the fitness formulation. It is therefore difficult to esti-
mate the feasible region in the presented applications.
However, it should be pointed out that, due to the
variable dimensionality of the search space within one
optimization run and even within a single generation,
the commonly used methods to investigate and ensure
feasibility, e.g., Michalewicz and Schoenauer (1996), do
not apply to this approach; hence, further research is re-
quired. Finally, the variation operators are all designed
to preserve locality.

The presented method requires further develop-
ment. It turns out that the large number of degrees
of freedom in the genotype space leads, when ap-
plied to engineering problems, to rough, multimodal
fitness topologies. Adaptive fitness definitions that
smooth constraint penalties out at the beginning of an
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optimization run as well as selective simplifications of
the patch shapes during optimization in form of further
developed variation operators could possibly speed up
the convergence behavior. To reduce the number of
degrees of freedom, one may think of grouping several
finite elements to zones, whereas all these finite ele-
ments are assigned with identical properties. The num-
ber of discontinuities of orientations and thicknesses
leading to stress risers could be reduced by introducing
such zones. Furthermore, a stress/strain or failure cri-
teria constraint should be included into the optimiza-
tion formulation to eliminate highly stressed regions.
Toward the optimal solution of laminate optimization
problems, improvements seem to be influenced only by
a small subset of variation operators that are able to
perform slight and local changes. An adaption mecha-
nism for operator rates that promotes successful vari-
ations could help to increase the performance of the
method. Drapery problems are not yet discussed and
require extensions of the method.

Following the concept of graph-based parameter-
izations on truss topologies by Giger and Ermanni
(2006) and this new approach in laminate optimiza-
tion, one may think of further applications of graph
theory in computational structural optimization. The
kind of laminate optimization bears a resemblance to
mesh-based topology optimization where graph theory
could give novel inputs as well.
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