
ETH Library

Outage analysis of asynchronous
OFDM non-orthogonal DF
cooperative networks

Conference Paper

Author(s):
Torbatian, Mehdi; Damen, Mohamed Oussama

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-a-006001013

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006001013
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Outage Analysis of Asynchronous OFDM
Non-orthogonal DF Cooperative Networks

Mehdi Torbatian and Mohamed Oussama Damen

Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, Ontario, Canada

Email: {m2torbat, modamen}@uwaterloo.ca

Abstract—Outage behavior of non-orthogonal1 selection
decode-and-forward (NSDF) relaying protocol over an asyn-
chronous cooperative network is examined when orthogonal
frequency division multiplexing (OFDM) is used to combat
synchronization error among the transmitting nodes. It is proved
that the asynchronous protocol provides diversity gain greater
than or equal to the one of the corresponding synchronous
counterpart, synchronous NSDF, in the limit of code word length
and throughout the range of multiplexing gain.

I. INTRODUCTION

Cooperative diversity was first proposed as a synchronous
technique [1], [2] to provide spacial diversity with the help of
surrounding terminals; however, because relays are at different
locations (i.e., different propagation delays) and they have their
own local oscillators with no common timing reference, it is
an asynchronous technique in nature.

To combat the synchronization error, two major approaches
have been proposed: delay tolerant space-time schemes (see
[3], [4] and references therein), and OFDM [5]. While it is
usually assumed in the former schemes that asynchronous
delays are integer factor of the symbol interval, OFDM al-
lows the delays to be any real number. In [6], the effect
of the synchronization error on diversity multiplexing gain
tradeoff (DMT) [7] of an orthogonal decode-and-forward (DF)
cooperative network with two relays is examined when the
maximum possible relative delay between the relays is less
than a symbol interval. In [8], authors show that by allowing
the source and the relays to transmit over proper portions of
a cooperative frame, the better diversity gain can be achieved
for each multiplexing gain.

In this paper, we analyze the outage behavior of NSDF
protocol over a general two-hop relay network when OFDM
is used to offset the synchronization error among transmitting
nodes. In contrast to [6], we do not restrict the relative delays
to be less than a symbol interval. In addition, we let the source
and the relays to transmit over non-symmetric portions of
a cooperative frame to maximize the diversity gain at each
multiplexing gain. It is proved that the asynchronous protocol
outperforms the synchronous counterpart in the limit of code
word length and throughout the range of the multiplexing gain.

1A relaying protocol is called orthogonal if the source and relays transmit
in two non-overlapping intervals; otherwise, it is called non-orthogonal.

In the following, the system model and the required back-
ground are presented. DMT analysis of the asynchronous
OFDM NSDF relaying protocol is detailed afterward. The
paper is concluded at the end.

II. PRELIMINARIES

A. Notations, Assumptions, and Definitions

In this work, letters with underline x,X denote vectors, and
boldface uppercase letters X denote matrices. The superscripts
(·)T and (·)† denote the transpose and conjugate transpose
of the corresponding vector or matrix, respectively. In is the
identity matrix of dimension n. diag{·} indicates a diagonal or
a block diagonal matrix of its arguments. The symbol ⊗ indi-
cates the Kronecher product.

.
= is used to show the exponential

equality. For example, f(ρ)
.
= ρb if limρ→∞

log f(ρ)
log ρ = b. (x)+

is considered as max{0, x}.
We assume half-duplex signal transmission. All channels

are assumed to be quasi-static. They are independent and
identically distributed (i.i.d.) complex Gaussian random vari-
ables with zero mean and unit variance CN (0, 1). Each node
knows channel state information (CSI) of its incoming links.
The destination also knows the asynchronous delays of its
incoming links.

Define {C(ρ)} as a family of variable rate codes each of
them is used at the corresponding signal to noise ratio ρ. This
family of codes is said to achieve the multiplexing gain r and
the diversity gain d(r) if

lim
ρ→∞

R(ρ)

log ρ
= r, lim

ρ→∞
logPe(ρ)

log ρ
= −d(r), (1)

where R(ρ) is the rate and Pe(ρ) is the average error prob-
ability of the code C(ρ). The outage diversity is obtained by
replacing Pe(ρ) with the outage probability PO in the above
formula. It is proved that the outage diversity is a tight upper
bound for the diversity gain of a coding scheme [7].

B. System Model

We consider a network containing one source node, one
destination node, and M relay nodes as shown in Fig. 1. hi

and gi are fading coefficients represent the links from the i-
th transmitting node to the destination and from the source to
the i-th relay, respectively. Communication between the source
and the destination is carried out in two phases. First, the
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Fig. 1. System structure

source broadcasts its message to relays and the destination in
p channel uses. Second, those relays that can fully decode the
source message retransmit it to the destination in q channel
uses. Assuming � is the length of a cooperative frame, � =
p + q. The cooperation is avoided whenever it is beneficial
to do so. In this case, the source transmits to the destination
without help of the relays. Each node is supported by an i.i.d.
Gaussian random code book which is independent from the
other nodes’ code books. The source’s transmitted signal in
the first phase is given by

x′
0(t) =

p−1∑
i=0

x′
0(i)g0(t− iTs), (2)

where x′
0 = [x′

0(0), x
′
0(1), . . . , x

′
0(p− 1)]

T is the transmitted
code word corresponding to the source message, Ts is the
symbol interval, and g0(t) is a unit energy shaping waveform
with non-zero duration Ts over t ∈ [0, Ts]. The received
signals at the destination and the i-th relay are modeled by

yd(t) = h0x
′
0(t) + zd(t), 0 ≤ t ≤ pTs, (3)

yri(t) = gix
′
0(t) + zri(t), 0 ≤ t ≤ pTs, (4)

where zd(t) and zri(t) are additive noises at the destination
and the i-th relay modeled by white Gaussian noises with zero
mean and variances σ2d and σ2r , respectively.

Let D be a set containing index of the nodes participating in
the second phase (not in outage). As the relaying protocol is
non-orthogonal, D contains 0, index of the source. Similarly,
the i-th relay, i ∈ D, uses a unit energy shaping waveform
gi(t) with nonzero duration Ts to transmit its code words
of length q in the second phase. This signal is received at
the destination by τi second delay with reference to the first
received signal. τis are finite values less than or equal to τmax

which is the maximum amount of asynchronous delay. Without
loss of generality, we assume that the source signal is the
earliest received signal at the destination, and the delays of
the other received signals are measured with reference to this
signal, i.e., τ0 = 0.

Let xi(t) be the transmitted signal by the i-th node. The
received signal at the destination is modeled by

yd(t) =
∑
i∈D

hixi(t− τi) + zd(t), (5)

yd(t) is processed through parallel matched filters correspond-
ing to the transmitting links. The output of the i-th matched
filter sampled at t = (k + 1)Ts + τi, is given by

ydi(k) =

∫ (k+1)Ts+τi

kTs+τi

yd(t)g
∗
i (t− kTs − τi)dt. (6)

C. Asynchronous OFDM Space-Time Codes

In our work, OFDM is used to combat the synchronization
error. Assume that the i-th node participates in the second
phase, i.e., i ∈ D. Its code word of length n, xi, is first passed
through an inverse discrete Fourier Transform (IDFT) filter,
IDFT{xi} = X i, and then supported by a cyclic prefix (CP)
of length u = � τmax

Ts
�, where �x� denotes the smallest integer

greater than x, to produce Xcp
i of length q = n + u. The

received signal at the destination is given by

Yd(t) =
∑
i∈D

hi

q−1∑
j=0

Xcp
i (j)gi(t− jTs − τi) + Zd(t), (7)

where Xcp
i (j) is the j-th entry of Xcp

i . For i ≥ j, i, j ∈ D,
define the relative delay τij as

τij � τi − τj . (8)

As i ≥ j, then τi,j ≥ 0. The fractional delay τ̃ij is defined as

τ̃ij � τij − aijTs, (9)

where aij = � τijTS
� ≥ 0, with �x� denoting the largest integer

smaller than or equal to x, and 0 ≤ τ̃ij < Ts.

III. ASYNCHRONOUS OFDM NSDF PROTOCOL

A. Signal Model

Let Em, the event of any m relays participates in the second
phase, occurs. E0 corresponds to the case that only the source
node transmits in the second phase. D = {0, 1, 2, . . . ,m} is
the index set pointing out to participating nodes in the second
phase. Without loss of generality, we assume that 0 = τ0 ≤
τ1 ≤ τ2 ≤ . . . ≤ τm. The sampled signal at the output of the
i-th matched filter (i = 0, 1, . . . ,m) is modeled by [9]

Y d,i(k) = hiX
cp
i (k) + Zd,i(k)+

i−1∑
j=0

hj [X
cp
j (k + aij + 1)B∗

ij +Xcp
j (k + aij)C

∗
ij ]+

m∑
j=i+1

hj [X
cp
j (k − aji − 1)Bji +Xcp

j (k − aji)Cji], (10)

where Yd,i(k) is the k-th entry of the output of the i-th
matched filter, and for i ≥ j, Bij =

∫ Ts

0
gi(t+Ts−τ̃ij)g∗j (t)dt,

Cij =
∫ Ts

0 gi(t− τ̃ij)g
∗
j (t)dt. Define

αij(k) � [Cij +Bije
−j 2π

n k]ej
2π
n kãij , (11)

where ãij = 0 when τ̃i0 ≥ τ̃j0, and ãij = 1 when τ̃i0 <
τ̃j0. It can be checked that, for j > i, αij(k) = α∗

ji(k), k =
0, 1, . . . , n− 1 and i, j = 0, 1, . . . ,m. Let

Dij = diag{αij(0), αij(1), . . . , αij(n− 1)}, (12)

Ei = diag{1, e−j 2π
n i, . . . , e−j 2π

n (n−1)i}. (13)

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010

79



At the output of each matched filter CP is discarded. The
result is then passed through a Discrete Fourier Transform
(DFT) filter. The outputs can be written in a matrix form as

y = Hx+ z, (14)

where

x =
[
xT
0 xT

1 . . . xT
m

]T
y =

[
yT
d,0

(
E†
1yd,1

)T
. . .

(
E†
1yd,m

)T]T
,

z =

[
zTd,0

(
E†
1zd,1

)T
. . .

(
E†
1zd,m

)T]T
,

H = Ξ(In ⊗ Ĥ)U. (15)

U = diag{In,Ea10 , . . . ,Eam0}, Ĥ = diag{h0, h1, . . . , hm},
and

Ξ =

⎡⎢⎢⎢⎣
In D10 D20 . . . Dm0

D†
10 In D21 . . . Dm1

...
...

...
...

D†
m0 D†

m1 D†
m2 . . . In

⎤⎥⎥⎥⎦ . (16)

Equation (14) represents a simple multiple-input multiple-
output (MIMO) channel model with correlated noise vector
z for the underlying system. The covariance matrix of z is
calculated as [9]

Φ = nσ2d Ξ. (17)

Clearly, Φ−1 exists if and only if Ξ−1 exists.
Proposition 1: Ξ is semi-positive definite. i.e., detΞ ≥ 0.

The equality holds if and only if ∃ c ∈ C1×m, ∃ k ∈
{0, . . . , n− 1} such that [9].(

1∑
i=0

g(t+ iT s)e−j 2π
n ki

)
c† = 0, ∀t ∈ [0, Ts], (18)

where g(t) � [g0(t), g1(t− τ̃10), g2(t− τ̃20), . . . , gm(t− τ̃m0)],
and C is the field of complex numbers.

B. DMT Analysis

The outage probability PO is calculated as follows.

PO =

M∑
m=0

Pr(IEm < R | Em)Pr(Em),

where IEm is the mutual information between the source and
the destination when Em occurs.
Lemma 1: Pr(Em) is given by [9]

Pr(Em)
.
=

⎧⎨⎩ ρ−(1−
�r
p )(M−m), 0 ≤ r ≤ p

� ,
0, p

� < r ≤ 1, 1 ≤ m ≤M
1, p

� < r ≤ 1, m = 0.
(19)

When Em occurs, the mutual information between the source
and the destination is given by [9]

IEm =
p

�
log(1 + ρ|h0|2) +

1

�
log det

(
I(m+1)n + nEHH†Φ−1) , (20)

where the first and the second terms on the right hand side
are the resulted mutual information between the transmitting
nodes and the destination, respectively, in the first and the
second phases. Define A � I(m+1)n + nEHH†Φ−1. By
substituting (15) and (17) into (20) and considering the fact
that U is a Hermitian matrix, we have

detA = det
(
I(m+1)n + ρΞ(In ⊗ ĤĤ†)

)
. (21)

Ξ can be decomposed as Ξ = VΛV†, where V is a unitary
matrix and Λ is a diagonal matrix containing eigenvalues of
Ξ on its main diagonal. By assuming proper design of the
shaping waveforms, all eigenvalues of Ξ are finite positive
values bounded from zero. Hence, their ρ exponents at high
SNR regime is zero. By replacing all the eigenvalues by the
smallest one, say ξ, the mutual information between the source
and the destination is lower bounded. Since the ρ exponent of
ξ is zero, this bound is tight. We have,

detA .
= det

(
I(m+1)n + ρξ(In ⊗ ĤĤ†)

)
.
=

m∏
i=0

(1 + ρ|hi|2)n.

Define γi � − log |hi|2
log ρ . For large values of ρ, (1 + ρ|hi|2)  

ρ(1−γi)
+

. After some mathematical manipulation, we obtain

IEm =

[
p+ n

�
(1− γ0)

+ +
n

�

m∑
i=1

(1− γi)
+

]
log ρ. (22)

As can be seen, the resulted mutual information among the
transmitting nodes and the destination behaves similar to the
one of a parallel channel with (m+1) independent links. PO|Em

is obtained as follows [9].

PO|Em
= P (IEm < R)

.
= ρ−dEm(r)

where

dEm(r) = inf
p+n

� (1−γ0)++
n
�

∑
m

i=1
(1−γi)+<r

m∑
i=0

γi. (23)

By solving the above optimization problem, we have [9]
Lemma 2:

dEm(r) =

{
1 +m− �

nr, 0 ≤ r ≤ mn
� ,

1 + mn
p+n − �

p+nr,
mn
� < r ≤ p+n

� .

Define κ � p
n . When m ≥ κ+ 1, then mn

� ≥ p+n
� . Hence,

dEm(r) = 1 +m− �

n
r, 0 ≤ r ≤ p+ n

�
.

For the single relay network, theorem 1 concludes the results.
Theorem 1: DMT of the asynchronous OFDM NSDF pro-

tocol over the single relay cooperative network for a fix κ ≥ 1
is as follows [9].

If 1 ≤ κ ≤ κ̂

d(r) =

{
(1− �

pr) + (1− �
p+nr), 0 ≤ r ≤ η1

1− r, η1 ≤ r ≤ 1,

else if κ ≥ κ̂
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d(r) =

⎧⎪⎪⎨⎪⎪⎩
2(1− �

2nr), 0 ≤ r ≤ η2
1 + n

p+n − �
p+nr, η2 ≤ r ≤ η3

(1− �
pr) + (1− �

p+nr), η3 ≤ r ≤ η1
1− r, η1 ≤ r ≤ 1,

where κ̂ = 1+
√
5

2 , η1 = (p+n)p
(2p+n)�−(p+n)p , η2 = n

� , and η3 =
p2

(p+n)� . For the case that κ varies to maximize the diversity
gain, for large length code words we have

d(r) =

{
[1− (1 + 1

κ̂)r] + (1− r), 0 ≤ r ≤ 1
κ̂+1

(1−√r) + (1− r), 1
κ̂+1 ≤ r ≤ 1.

The optimum κ corresponding to each r is given by

κ =

{
κ̂, 0 ≤ r ≤ 1

κ̂+1√
r

1−√
r
, 1

κ̂+1 ≤ r ≤ 1.

Fig. 2 depicts the DMT curves of the asynchronous OFDM
NSDF and the corresponding synchronous protocol over a
single relay network when κ varies to maximize the diversity
gain at each multiplexing gain r. As can be seen, the DMT
performance of the asynchronous protocol performs is the
same as that of the synchronous one in low multiplexing gains
and is better than that in high multiplexing gains.

Calculating DMT in a general network with any number of
relays, say M , is straightforward. However, because too many
regions for r and κ should be considered, it is cumbersome.
Alternatively, this procedure is easier if we assume that DMT
of a simpler network containing (M − 1) relays is known.
Let dM (r) be the DMT of an M relay cooperative network
when the cooperation is not avoided throughout the range of
the multiplexing gain. We have,
Theorem 2: DMT of the asynchronous OFDM NSDF re-

laying protocol over a general two-hop cooperative network
with M relays for a fix κ ≥ 1 is as follows [9].

If κ ≤ M +
√
M2 + 4M

2

dM (r) =

{
(1− �

pr) + dM−1(r), 0 ≤ r ≤ p
�

1− �
p+nr,

p
� ≤ r ≤ p+n

� ,

else if κ >
M +

√
M2 + 4M

2

dM (r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1− �
pr) + dM−1(r), 0 ≤ r ≤ η1

1 +M − �
nr, η1 ≤ r ≤ η2

1 + Mn
p+n − �

p+nr, η2 ≤ r ≤ η3
M(1− �

pr) + 1− �
p+nr, η3 ≤ r ≤ η4

1− �
p+nr, η4 ≤ r ≤ η5,

where η1 = (M−1)p2n
�(p2−np−n2) , η2 = Mn

� , η3 = p2

�(p+n) , η4 = p
� ,

and η5 = p+n
� . The resulted DMT is compared to (1 − r)

to determine wether or not avoiding the cooperation. When
κ is allowed to vary to maximize the diversity gain at each
multiplexing gain r, for large length code words we have

d(r) =

{
M [1− (1 + 1

κ̂ )r] + (1− r), 0 ≤ r ≤ 1
1+κ̂

M(1−√r) + (1 − r), 1
1+κ̂ ≤ r ≤ 1.
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Fig. 2. DMT of the asynchronous OFDM NSDF and the synchronous NSDF
protocols over a single relay network with optimum values of κ.

where κ̂ = 1+
√
5

2 . The corresponding optimum κ is the same
as that of the single relay network.

For M ≥ 2 the resulted DMT is always better than
that of the corresponding synchronous protocol. DMT of
the asynchronous orthogonal selection DF (OSDF) relaying
protocol is calculated in a similar manner [9].

IV. CONCLUSION

DMT of the asynchronous OFDM NSDF protocol over a
general one-hop cooperative network was examined. It was
shown that asynchronous delays among transmitting nodes
not only decrease the diversity gain, but also increase it
particularly at high multiplexing gains for large length code
words.
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