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Abstract

Micro-blogging is an emerging form of communication and became
very popular in recent years. Micro-blogging services allow users to pub-
lish updates as short text messages that are broadcasted to the followers
of users in real-time. Twitter is currently the most popular micro-blogging
service. It is a rich and real-time information source and a good way to
discover interesting content or to follow recent developments. However,
the service is fairly simple, and rely on the concept of following other
users. With the lack of classification or filtering tools, the user receives all
messages posted by the users she follows. In most cases, the user receive
a noisy stream of updates. In this paper, an information filtering system
for Twitter is introduced. The system focuses on one kind of feeds on
Twitter: Lists which are a manually selected group of users on Twitter.
List feeds tend to be focused on specific topics, however it is still noisy due
to irrelevant messages. Therefore, we propose an online filtering system,
which extracts the niche topics in a list, filtering out irrelevant messages.
To classify messages as relevant or irrelevant, next to text-based features,
we utilize the social network of Twitter and different aspects of messages
such as the temporal properties and the links included in the text. We
evaluate our approach on a labeled dataset of lists and with the help of
these novel features, we achieve accuracies between 85% and 95%. Finally,
we present the online prototype of the system.
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1 Introduction

1.1 Motivation

Micro-blogging is an emerging form of communication and it became very pop-
ular in recent years. Micro-blogging services allow users to publish short text
messages. These messages are broadcasted to followers of the users in real-time.
Twitter, Jaiku, Pownce, Yahoo Meme are some examples of micro-blogging ser-
vices.

In this paper, we will be focusing on Twitter1 which is the most popular
micro-blogging service with more than 100 million users by April 2010[8]. Next
to micro-blogging features, Twitter is also a social networking site. Users may
subscribe to other author’s updates which is known as following. The users who
follows a user is called followers, and the users a user is following is called friends
in Twitter. This social network model is different from most social networks:
the relations between users are not necessarily reciprocal, i.e. a user can follow a
user without being followed. Messages posted by all friends of a user is received
by the user as one feed. This feed can also be described as an information
stream[17].

With the wide usage of Twitter, it quickly became a rich, real-time informa-
tion source. With its large user base, Twitter can act as a real-time news source.
The social network model of Twitter also helps fast diffusion of information[28].
In recent events such as US Airways jetliner crashing into Hudson River[7], the
death of Michael Jackson and terrorist attacks in Mumbai[6], Twitter was faster
in providing news than mainstream media. Twitter is also a good source for
discovering recent and interesting content on the Internet. A good percentage
of messages sent on Twitter refer to external content such as news and blogs.
Furthermore, with its increasing popularity, influential and important people on
a wide variety of topics is using Twitter for communication. Therefore, for any
possible topic, Twitter became a medium for informal discussion, exchange of
ideas or following recent developments.

While Twitter is a great source of information, retrieval of information on
a specific topic is difficult. There are two main reasons for this problem. The
first reason is that each user posts messages through one channel. A user can
post messages with different intentions, such as conversation with other users,
daily chatter, jokes, sharing or referring to information. A user may be following
another user because he is posting about a specific topic, however as there is
no mechanism to send messages through different channels, he has to receive all
messages posted by that user. Therefore a portion of the feed he receives will
be irrelevant for him. Second reason is that messages posted by friends of a user
is collected in one feed. A user may follow different users as he has different
interests. Receiving posts from a large group of people through one channel will
lead to information overload, and will make it harder to notice posts related to
a specific topic.

For the second problem described above, Twitter provides a feature called
Lists. With this feature, a user can create a list of users which is a subset of
the users he is following. Lists are created manually by Twitter users and they
can contain people interested in specific topics such as databases or indepen-
dent films, but can be also groups of colleagues, family, people in a specific

1http://www.twitter.com
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location(such as people in Zurich). Lists have their own feeds, and a list feed
contains all messages posted by users in that list. Lists can also be followed by
other users, therefore ”good” lists can be used as information sources by the
Twitter community.

Lists can be used in order to follow messages about specific topics by group-
ing a number of users related to them. However we still identify two kinds of
noise in lists. One kind of noise is the result of the problem we stated earlier:
users in the list may post with different intentions and some messages can be
irrelevant to the topic of the list. Second kind of noise we observe is globally
popular topics: some topics can get very popular in Twitter community and
all lists contains them as every user is posting about them. Posts related to
these popular topics can be ubiquitous and overwhelm the users. Some exam-
ples are popular products such as iPad or iPhone or box-office movies. These
topics are widely discussed by Twitter community. Another recent example is
the ash cloud of Eyjafjallajokull volcano which closed the European air space
and affected millions of people. During that time, posts related to ash cloud
flooded any kind of lists.

As the Twitter grows in number of users and number of messages posted per
day, it is getting harder for users to cope with rate of messages and the noise in
feeds[13]. Therefore a information filtering mechanism is needed in Twitter.

1.2 Challenges

There are different challenges in information filtering on micro-blogging envi-
ronment. Below, we list the challenges:

Short texts One challenge is the limitation on text length. In Twitter, the
text of a post is limited to 140 characters. In terms of text classification,
short texts contain sparse data, therefore it is a challenge to classify them.

Identifying topics It is necessary to identify topics of messages, so that posts
with irrelevant topics can be filtered out. Relevant topics can be very
general(e.g., Information Technology), less general(e.g., Databases) or very
specific(e.g., NoSQL databases).

Informal language Another problem is the informal structure of the language
on micro-blogging services. It is less structured, it can contain abbrevia-
tions due to text length limitation and slang; and users modify words to
emphasize or show emotions. Therefore the vocabulary is very large and
any external source such as Wikipedia or WordNet will not be sufficient
to get more information about the text. Also it is necessary to identify
which words are very common and which are keywords and useful for text
classification. Due to the informal language, a simple stop word list won’t
be enough, common words on Twitter should be identified.

Constantly changing vocabulary The vocabulary on Twitter is constantly
changing with new words and phrases. For instance, new movie or product
names, event names can suddenly appear in the language and become
very popular. Therefore the text classification system can not be static,
it should react to the change in the language.
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Different Languages Twitter is used by users from all over the world, there-
fore many languages are used in posts.

Therefore, an information filtering system on Twitter should be dynamic
and it should track Twitter and react to changes. For text classification, it
should overcome the challenge of text length limit, and extract keywords in an
informal and multilingual text collection. Finally, the system should be able to
accurately identify topics and filter irrelevant ones.

1.3 Our Approach

Our aim is to develop an information filtering system for Twitter. For this
purpose, we are focusing on one kind of feeds: lists. Many lists on Twitter
are created by selecting a group of people related to a specific topic(or topics).
Hence by filtering out irrelevant messages from a list feed, it is possible to
receive messages only related to the main topic of the list. In a recent study on
Twitter lists, it is shown that words extracted from list feeds are representative
of characteristics of users in these lists, confirming that the lists are created to
gather users with similar interests[27].

First of all, we focus on extracting the main topic of each list. As users
related to a topic is gathered in a list, it is expected that words related to that
topic is frequent. However, some topics such as globally popular ones and some
words that are common in the language can be also frequent as the words related
to key topic in the list. To solve this problem, we propose a scoring function
that compares the frequencies in the list and frequencies on the whole Twitter
community. With this scoring system, we are able to distinguish keywords
related to each list’s key topic, and we can measure how relevant a post is
to the a list’s key topic. The frequencies are retrieved in a real-time fashion,
therefore our system tracks changes on Twitter. For the problem of short texts
in text classification, we utilize the links that are added in posts. With the
contents retrieved from these URLs, we manage to improve the accuracy of text
classification.

For the filtering task, classifiers are used to decide the relevance of each post
in a feed. Classifiers are built using feedback from the users of the system. We
extract different kinds of features from each post. One text-based feature is the
result of the scoring function. Furthermore, we benefit from social network of
Twitter users and use community based features of each post’s author. The rest
of the features are the temporal features and the link feature. With combination
of features from different sources, we are able to build highly accurate classifiers
for each individual list. Also with the dynamic nature of our system, we are
able to dynamically react to changes on Twitter.

In the following section, related work will be discussed. The third section is
about classification, where we discuss different types of features and how they are
extracted. The fourth section is on the system architecture. We have developed
a prototype of our information system which users can register any list on it and
then view the feeds of lists through a web interface with filtering capabilities.
The architecture of the system is described in this section, including the web
interface and the backend of the system. Next, the results of experiments on the
system is presented. With a manually labeled data on selected Twitter lists, we
evaluate our system. We especially focus on the learning speed and the accuracy
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of the system, as these are directly effective on the user experience. Further,
each feature is evaluated, and their benefit on the classification task is discussed.
In the last section, conclusion is given and the future work is discussed.
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2 Related Work

There are two main areas of research related to our work. First one is text
classification and filtering. In this section, we give an overview of text classifica-
tion and filtering systems. Furthermore, research on short text classification is
reviewed as short texts is an important challenge in classifying micro-blogging
messages. In the second part, an overview of Twitter related research is pre-
sented.

2.1 Text Classification and Filtering

A survey on text filtering is given in [30]. In this paper, a distinction is made be-
tween two types of text filtering systems: content-based and social-filtering sys-
tems. In content-based systems, filtering is done by exploiting the information
extracted from the text of documents. In social filtering systems, documents are
filtered based on annotations made by prior readers of the documents. With re-
spect to this framework, our system is closer to content-based filtering systems,
however we utilize other sources of information next to the text of documents.
We use social features of the users to identify the ones who are more likely to
post relevant content, however it is different from the social filtering systems
where other users’ feedbacks are used.

Text filtering can be seen as an application of text classification where doc-
uments are classified into two disjoint categories: relevant and irrelevant. [40]
gives an overview of machine learning for automated text classification and de-
scribes how classifiers for text classification can be built and evaluated.

Limitation on text size in micro-blogging services result in sparseness of data
for text classification. This problem also exists in different domains such as web
search snippets, forum and chat messages. Different approaches are proposed
for this problem, such as using Wikipedia as an external source[11][39], or using
web search engine results[1]. Another approach[31] is using topic models. In
this approach, a topic model using Latent Dirichlet Allocation[15] on an uni-
versal corpus is built and then this topic model is used to classify short texts.
Another work focusing on short texts is [34], where a method for measuring the
semantic similarity of texts, using corpus-based and knowledge-based measures
of similarity is proposed.

2.2 Twitter Related

In the last years, social networks and micro-blogging services became very pop-
ular research topics. Twitter is the most popular micro-blogging service, but it
is especially interesting to researchers due to the accessibility of data. Unlike
most social networks, posts by most of the users are publicly accessible and these
posts can be retrieved in real-time through Twitter API. Also the social network
relations can be retrieved. Therefore Twitter became an appealing platform for
researchers.

[28] is an extensive study of Twitter. The entire Twitter is crawled and social
network, ranking of users, trends and information diffusion on social network
is studied. [25] studies why users are using Twitter and how communities are
formed. In this paper, it is argued that daily chatter, conversations, sharing
information/URLs and reporting news are the main intentions of users. [48] is
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a similar study on the usage of Twitter, exploring its benefits and impacts on
informal communication.

Most research on Twitter is focused on analyzing, summarizing and min-
ing real-time data. [42] and [41] study the collection and evaluation of related
real-time debates on Twitter during events. In [23], a system is proposed for
searching the history of activity for a given query. The system identifies ac-
tivity bursts for the given query string and also selects the message that best
describes a burst. [10] and [12] describe systems for collection and indexing of
large amounts of streaming text data such as new posts on blogs, messages on
Twitter as well as news articles. These systems allow online analysis of these
large amount of data such as extraction of popular trends, bursts, spacial and
temporal aspects of data. [38] proposes a system for discovering news related
posts on Twitter and clustering these messages based on their location.

Another line of research on Twitter is on ranking users and identifying in-
fluential ones. Unlike most social networks, Twitter relations are one way: i.e.
a user can follow another user without being followed by that user. In this
regard, Twitter user graph is similar to the graph of pages in World Wide Web.
Therefore research on Twitter social graph follows the idea of PageRank. In
[46] follow relations between users is examined and TwitterRank, an extension
of PageRank algorithm for social networks, is proposed. TwitterRank takes
into account the topical similarity between users as well as the follow relations
between users. Another influence metric proposed is TunkRank[44]. The basic
ideas of this ranking algorithm are: The amount of attention a user can give
is spread among all users she is following; and the influence of a user depends
on the amount of attention the user’s followers can give. It is also similar to
PageRank algorithm, in terms of calculating authority of a node based on the
nodes referring to it. In [22] a survey of different ranking methods is done and
TunkRank is evaluated against different ranking methods including Twitter-
Rank and PageRank. Results show that TunkRank is the best ranking scheme
in penalizing spammers and marketers.

As a real-time system, Twitter is a good source for fresh content. Therefore
the real-time stream of Twitter can be used for discovering fresh webpages.
Major search engines uses Twitter stream to provide recent webpages in their
results. In [20] and [19], real-time micro-blogging is used to detect fresh URLs
and improve recency ranking in search engines.

While processing and analyze of large collections of data on Twitter is a
very popular topic, limited work is focusing on individual feeds that users are
receiving. [43] proposes a method to classify posts in feeds into one of the
following categories: news, events, opinions, deals, and private messages. Fea-
tures used in classification follows the description of categories(e.g., existence of
keyword ”deal” for deals category). In [37], each post is examined using topic
models[36][35] built on recent Twitter stream data. Each topic is labeled by
one of the categories(Substance, Social, Status, or Style). The system then can
evaluate each post and decide the ratio of each category in that post. In [17],
a recommendation system for URLs is introduced. In this system, social voting
and topical interests are used.

As a summary, the research on Twitter focuses on the big picture. The
papers that focuses on individual feeds are focusing on classifying posts into
fixed categories. Our approach differs from this line of research by focusing on
lists that are feeds on certain set of topics and automatic extraction of topics
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from each list. In this way, we are able to distinguish topics that are relevant to
a user. Furthermore, we use novel features beyond text-based and authorship
features.
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3 Filtering as a Classification Problem

Filtering irrelevant posts from a feed can be achieved by classifying each post
in a feed as relevant or irrelevant and removing the latter from the feed. For
this purpose, we propose a method to identify relevant topics in a feed and a
classification system which learns from user feedback. Users can view different
feeds and can give feedback to individual posts by marking them as relevant or
irrelevant. The classifier learns from the user feedback and makes a decision
(relevant/irrelevant) on each new post.

Classification is done based on a selected set of features. For each post in
the feed, we retrieve values for these features and create a feature vector. Each
post is represented by its feature vector. With user feedback, classifier learns
which features are good indicators of relevant posts. Therefore, extracting good
features is an important step in building an accurate classifier. Luckily, Twitter
provides various information about the post as well as its author and the social
network of users on Twitter.

We’ve extracted 10 different features in total which are grouped based on
their sources. The first feature is a text-based similarity score which measures
the similarity of a post’s text to a feed’s key topics. We propose a method to
remove noise and understand what are the key topics in a feed, and based on
this knowledge we compute the score. Further, we use the authorship feature
and additional features extracted from social network information. Another
group of features are the temporal features which are extracted from the create
timestamps of posts. The last feature is the link domain, which is extracted
from links that are included in the text of posts. In the following sections, these
different feature groups will be discussed.

3.1 Text Classification and Textual Features

As the aim of classification is to filter posts that have texts irrelevant to the
topic of a list, textual features are the main features in our system. The textual
features should represent how relevant the topic of the text is to the list. Each
list has a different topic(or topics), therefore we need a method to automatically
extract the key topics in a list feed and measure the similarity of a post’s text
to the topic of the feed.

In traditional approach, term frequency(tf) or term frequency-inverse docu-
ment frequency(tf-idf)2 measures are used in text classification. These measures
indicate how important a word is to a document in a corpus. In tf-idf, the impor-
tance of a word to a document is higher when it is used more in the document,
and it is lower when the word occurs more in the document collection. After
tf-idf weights are computed for each term in a document, a term vector is ob-
tained which each value represents the tf-idf weight of a term in the document.
Similarity of two documents then can be calculated by cosine similarity between
the term vectors of the documents. Also the vectors can be used in classification
algorithms as a vector of features, in this case the classification algorithm will
learn which attributes are useful to decide the class of an instance.

Tf-idf weighting is a popular weighting scheme and used in search engines
as well as different text classification tasks. With inverse document frequency

2http://en.wikipedia.org/wiki/Tf-idf
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measure, tf-idf gives lower weight to terms which occur more in the document
collection to eliminate common terms such as ”the” or ”and” in English. How-
ever, in the case where the document collection is more focused on one or more
topics, the frequent occurrence of a term might mean that this term is very rele-
vant for the list. On the other hand, the tf weighting doesn’t take the document
collection into account at all, therefore can’t distinguish common words. There-
fore these weighting schemes don’t utilize the existence of key topics through
the documents in a collection.

As these weighting schemes are not suitable for our classification task, we
propose a new method which basically scores the proximity of a text to the
key topics of a feed. The main challenge here is to distinguish which frequent
words are really related to the key topics of the feed, and which are frequent
because they are common in the language. This distinction is possible when we
observe the frequencies of words in a much more general feed. When a word’s
frequency in a very specific feed and in a ”global” feed where a large community
of users post messages are compared, it can be observed whether the word is
more frequently used in the feed. Comparison of these frequencies will give
insight about how specific a term is to a focused feed.

For instance, let’s assume there is a focused feed which consists of posts
from a list of database related users in Twitter and there is a global feed which
collects all posts by the users of Twitter. It is intuitive that MySQL word will
appear frequently in the focused feed as a result of users’ collective interest in
this database system. Unlike the focused feed, the global feed will contain users
which have variety of interests. There will be thousands of different topics in
this global feed and one of them will be also database systems. Therefore the
frequency of database topic in the global feed will be much lower, hence MySQL
word will appear less frequently. If we take a very common such as time, people
or today, it would be expected that these words are very common in both the
focused feed and the global feed. Today can be more frequent than MySQL
in the focused feed, however we will be able to distinguish these two words by
their frequencies in the global feed. It can be argued that words like and can be
removed by a stop words list, however words like time can still be a related term
for some feeds (e.g., Time magazine for a journalism feed). Also the vocabulary
used on Twitter is large and constantly changing, therefore this approach allow
us dynamically identify common words.

By using the idea of comparing a term’s frequency in a focused feed to a
general reference feed, we compute a score indicating how specific(or relevant)
the term is to the feed. While we call the focused feed ”local”, we will call the
reference feed as ”global”. While computing term frequencies, we treat a feed as
one document so we don’t distinguish posts in the feed as separate documents.
Therefore the text of the feed consist of texts of all posts in the feed. Then the
term frequencies of words in feeds are calculated as:

tfw,f =
nw,f∑
k nk,f

(1)

where nw,f is the number of occurrences of word w in feed f while the denomi-
nator is the sum of number of occurrences of all words in feed f.

The relevance score(RS) of word w is:
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RSw =
tfw,local

tfw,global
(2)

By using the relevance scores of individual terms in a post, we compute the
text relevance score(TRS) for post p as:

TRSp =
∑n

i=1 RSwi

n
(3)

where n is the number of words in post p and wi is the ith word in the text of
the post. This value is the average relevance score of words in the post.

Text size for each post is limited to 140 characters in Twitter which makes
the classification based on text more challenging. To overcome this problem,
we use the links that text contains. It is very common in Twitter to share an
URL by adding it to the text of the post. The contents of the URLs can be
very useful in text classification. We retrieve the text contents of URLs in posts
through an HTML text extraction service, and merge this text with the original
text of each post. Also in calculating term frequencies in list feeds, we use these
extended texts. We show the improvement by this approach in experiments
section.

To show how the scoring function works on real datasets, we collected 9 user-
created lists from Twitter. These lists will be also used in experiments section.
Table 1 shows these lists. In each list, term frequencies and term relevance
scores are computed. 30 words with highest term frequencies are listed in Table
2. 30 words with highest relevance scores are listed in Table 3. When the
first table is observed, we see that some of the words with high frequencies are
mostly related words to each list(such as baby in pregnancy-parenting and film
in film-people-to-follow). This result indicates that lists are focused on specific
topics as we have discussed. However, there are very common words which are
general and not list specific such as time, twitter, make. These are very general
words that appear in all feeds and they don’t contribute to the classification of
texts. On the second table, we observe more specific words. The highest scoring
words are mostly very specific to each list and there are no general words. Also
we start to observe words starting with a hash symbol(#). These special words
are user created tags which users mark their posts to indicate a topic. On the
other hand, there are some words which are made of multiple words. These
words also have high scores as they rarely appear in the global feed.

Id List name List creator Topics

1 pregnancy-parenting Disc Health Pregnancy and parenting
2 film-people-to-follow IndieFlix Independent movies
3 ecotweets RosieEmery Ecology
4 markets WSJMarkets Stock markets
5 dbpeople edward ribeiro Databases
6 apple-news huffingtonpost News related to Apple Inc.
7 comicscreators iFanboy Comic writers
8 mysql-co lucaolivari MySQL and related systems
9 database pcdinh Databases

Table 1: 9 lists on various topics
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By our method, we manage to identify specific words in each feed and based
on this information, we calculate a score measuring the relevance of a post to a
feed. The score has the lower limit as 0 but has no upper limit. In each feed, the
results of the scoring function may vary with the popularity of the feed’s topics
in the global feed. For instance, in a feed with a very niche topic would contain
posts with very high text relevance scores. We use the result of the scoring
function as a feature in classification. Therefore, classification algorithm learns
the threshold score above which the posts are relevant for each list.
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List name Top 30 words ordered by frequencies in list

Disc Health/
pregnancy-parenting

baby(0.00898) child(0.00806) parents(0.00675) time(0.00565) make(0.00561) read(0.00447) preg-
nancy(0.00429) women(0.00416) children(0.00342) find(0.00333) kids(0.00333) life(0.00329) feel(0.0032)
people(0.00316) back(0.00307) parenting(0.00285) pregnant(0.0028) dr(0.00272) day(0.00267)
home(0.00263) good(0.00263) im(0.00254) love(0.00245) week(0.00241) weeks(0.00237) parent(0.00232)
things(0.00232) mother(0.00232) learn(0.00228) matter(0.00223)

IndieFlix/ film-
people-to-follow

film(0.01583) films(0.00551) time(0.00402) movie(0.00397) cannes(0.00336) people(0.00306) festi-
val(0.0029) director(0.00249) work(0.00249) year(0.00241) years(0.00237) make(0.00233) story(0.0022)
world(0.00216) made(0.00213) im(0.00212) life(0.00212) day(0.00208) back(0.00204) good(0.00203)
man(0.00191) movies(0.0019) great(0.00178) love(0.00177) filmmakers(0.00165) filmmaker(0.00162)
show(0.0016) hes(0.00155) cinema(0.00146) set(0.00142)

RosieEmery/
ecotweets

de(0.00802) oil(0.00619) twitter(0.00561) para(0.0051) energy(0.00281) people(0.00281) ferra-
menta(0.00274) water(0.00256) time(0.00244) bp(0.00224) spill(0.00223) year(0.0022) solar(0.00219)
gulf(0.00218) green(0.00218) make(0.00211) years(0.00202) day(0.00196) environmental(0.0017)
world(0.00163) company(0.0015) work(0.00149) em(0.00147) climate(0.00145) site(0.00144) blog(0.00144)
food(0.00138) power(0.00133) change(0.00129) long(0.00128)

WSJMarkets/ mar-
kets

market(0.00687) year(0.00516) euro(0.00429) stock(0.00413) investors(0.00388) markets(0.00379)
stocks(0.00376) shares(0.00371) financial(0.00334) trading(0.00329) million(0.00328) billion(0.00324)
company(0.00311) week(0.00295) bank(0.00283) debt(0.00271) day(0.00255) oil(0.00255) banks(0.00249)
european(0.00249) time(0.00232) companies(0.00228) nyse(0.00225) dow(0.00218) government(0.00216)
nasdaq(0.00214) sales(0.0021) quotes(0.00206) points(0.002) quarter(0.00199)

edward ribeiro/
dbpeople

data(0.00847) sap(0.00486) time(0.00432) business(0.00335) software(0.0029) technology(0.00275)
work(0.0027) database(0.00265) people(0.00254) sybase(0.00245) engineering(0.00239) cloud(0.00219)
make(0.00218) company(0.002) code(0.00198) systems(0.00189) customers(0.00187) applications(0.00186)
based(0.00184) system(0.00182) good(0.00179) information(0.00176) problem(0.00174) web(0.00173)
world(0.00171) server(0.0017) open(0.00158) years(0.00157) back(0.00155) memory(0.00155)

huffingtonpost/
apple-news

apple(0.01564) iphone(0.01441) ipad(0.01223) app(0.00637) apples(0.0044) mac(0.00419) time(0.00393)
google(0.00341) users(0.00315) store(0.0029) video(0.00289) mobile(0.00263) apps(0.00263) com-
pany(0.00259) market(0.00253) os(0.00242) year(0.00239) device(0.00234) web(0.00232) flash(0.00225)
data(0.00224) free(0.00224) content(0.00221) ipod(0.0022) game(0.00216) make(0.00215) jobs(0.00198) de-
vices(0.00191) itunes(0.00189) touch(0.00186)

iFanboy/ comicscre-
ators

im(0.00513) time(0.00477) comics(0.00456) work(0.00389) book(0.00362) comic(0.00346) people(0.0034)
man(0.00311) story(0.00302) back(0.00286) good(0.0028) day(0.0028) make(0.0024) art(0.00232)
great(0.00221) world(0.00218) series(0.00215) love(0.00208) years(0.00204) read(0.0019) show(0.0019)
issue(0.00185) page(0.00175) today(0.0017) life(0.00167) year(0.00163) made(0.00163) marvel(0.00162)
thing(0.00161) books(0.00161)

lucaolivari/ mysql-co mysql(0.00886) de(0.00686) oracle(0.00456) sun(0.00433) time(0.00395) data(0.00382) la(0.00327)
open(0.00309) en(0.00289) netbeans(0.00283) server(0.00281) java(0.00255) source(0.00254) peo-
ple(0.00239) cloud(0.00239) web(0.00236) performance(0.00235) database(0.00229) work(0.00227) soft-
ware(0.00206) application(0.00205) system(0.00196) file(0.00195) make(0.00191) support(0.00191)
blog(0.00188) el(0.00187) business(0.00186) code(0.00181) page(0.00177)

pcdinh/ database server(0.01485) sql(0.01441) data(0.01202) database(0.00747) microsoft(0.0043) web(0.0042) busi-
ness(0.00364) time(0.00325) software(0.00298) ms(0.00278) center(0.0027) information(0.00258) win-
dows(0.00243) services(0.00238) system(0.00235) mysql(0.00234) work(0.00222) performance(0.00209) ap-
plication(0.00207) users(0.00205) applications(0.002) people(0.002) user(0.00198) management(0.00197)
development(0.00191) support(0.00189) code(0.00187) key(0.00187) access(0.00185) based(0.00184)

Table 2: Top words by term frequency
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List name Top 30 words ordered by relevance scores in list

Disc Health/
pregnancy-parenting

petrie(6547.96) swaim(2529.89) indicating(2232.26) recurrence(2083.44) futuretweets(1785.81) main-
tanance(1785.81) hormonal(1636.99) particulate(1636.99) mucus(1636.99) breech(1488.17) epidu-
ral(1488.17) shebang(1488.17) pediatrician(1413.76) obstetrician(1339.36) circumcision(1339.36)
lactation(1339.36) eddleman(1190.54) miscarriage(1140.93) prenatal(1140.93) chorpita(1041.72)
whoopie(1041.72) misbehavior(892.9) adoptive(892.9) midwife(892.9) amniocentesis(892.9) parent-
ingtoolbox(892.9) sensory(892.9) implantation(892.9) homosapien(892.9) 100e(892.9)

IndieFlix/ film-
people-to-follow

filmmakers(5594.18) indiewire(2856.6) cinematic(1089.54) godards(915.58) kohn(819.44) mubi(778.24) cin-
ematical(759.93) kiarostami(663.79) auteurs(604.28) binoche(567.66) apichatpong(558.5) berney(549.35)
biutiful(526.46) auteur(466.94) leighs(448.63) indiewires(444.06) palme(425.74) cinematographer(425.74)
croisette(416.59) #independent(398.28) gokustom(384.54) weerasethakul(384.54) indicating(384.54)
liman(375.39) boonmee(363.94) directorial(361.65) araki(352.5) kiarostamis(347.92) brolin(343.34)
panahis(343.34)

RosieEmery/
ecotweets

evergreen(2203.29) eslr(1306.87) beekeeping(1083.73) solfocus(1045.5) forests(988.38) ferramenta(774.85)
permaculture(690.22) evergreens(617.13) everq(609.87) ecosystems(546.47) whaling(541.87) estatsti-
cas(537.27) gerenciar(537.27) cpv(524.2) eslrs(522.75) devens(522.75) ecological(507.74) mammals(464.18)
suttles(435.62) contamination(425.46) preventer(393.51) photovoltaic(379.96) deforestation(363.02) indi-
cating(356.73) tweepml(338.33) cotweet(326.72) multiplas(322.36) possibilita(322.36) monitorar(322.36)
#ocean(318.01)

WSJMarkets/ mar-
kets

comstock(4269.63) nls(1118.4) treasurys(972.22) poors(877.04) reprints(795.46) schapiro(761.46)
jpm(754.66) securities(693.47) premarket(618.69) csco(605.09) nyse(588.88) cdos(530.3) monetary(526.9)
deficits(503.11) tightening(496.31) djia(496.31) bocvip(489.51) cramer(475.91) deflation(469.11) ku-
drna(469.11) typically(469.11) comply(460.62) ibd(457.78) exporters(428.32) dows(428.32) inter-
bank(421.52) composite(421.52) holdings(418.12) seasonally(407.93) paulson(401.13)

edward ribeiro/
dbpeople

voltdb(4040.81) #ensw(3211.54) algorithms(1929.94) dbms(1673.62) sybase(1664.57) vertica(1568.07)
hadoop(1226.31) sybases(1191.13) replication(1176.06) terrastore(1145.9) transactional(1085.59) post-
gres(1070.51) couchdb(1040.36) analytic(1025.28) scalability(1010.2) snabe(964.97) relational(964.97) ora-
cles(949.89) #sybase(904.66) hbase(904.66) mcdermott(874.5) sikka(859.43) mapreduce(829.27) nanotech-
nology(814.19) cluster(776.5) typically(768.96) riak(678.49) hasso(678.49) oltp(678.49) bydesign(648.34)

huffingtonpost/
apple-news

ballmer(1405.27) tipb(1400.68) adobes(1070.02) toget(757.74) tuaw(743.97) widgets(740.14) modify-
ing(734.78) affidavit(730.19) macrumors(727.89) macbooks(721) digitimes(610.79) teardown(606.19)
mywi(560.27) includingturningit(546.49) butyou(546.49) decidewhetherto(546.49) foxconns(495.98) con-
ductive(486.79) sweatshop(473.02) infrequent(468.42) shamma(463.83) frequencies(459.24) unregu-
lated(450.05) taoviet(445.46) totunein(440.87) proprietary(436.28) munster(404.13) turnarounds(394.94)
changewave(390.35) filemaker(390.35)

iFanboy/ comicscre-
ators

frazetta(2486.96) avengers(1560.91) frazettas(722.21) dredd(710.56) hawkeye(652.32) bendis(594.08)
colorist(500.89) marvels(477.59) witchblade(477.59) timegate(471.77) brubaker(460.12) nrama(454.29)
tcaf(436.82) eisner(436.82) malia(425.17) newsarama(401.87) hellboy(401.87) shadowland(401.87) daz-
zler(396.05) jeanty(396.05) comics(387.02) heroescon(366.93) parlov(366.93) niles(349.46) colorists(331.98)
thunderbolts(326.16) indicating(320.33) narrator(302.86) c2e2(297.04) palmiotti(297.04)

lucaolivari/ mysql-co glassfish(5909.87) opensolaris(2680.76) replication(2437.06) netbeans(2398.98) innodb(1949.65)
zfs(1888.72) asadmin(1705.94) helloworld(1584.09) eucalyptus(1523.16) javafx(1462.24) failfast(1462.24)
cluster(1454.62) scalability(1370.85) mysql(1368.08) workbench(1309.92) oracles(1279.46) iscsi(1279.46)
dtrace(1218.53) jtreg(1188.07) privileges(1005.29) maatkit(1005.29) interceptors(974.82) ejb(944.36)
propertychangesupport(944.36) dbas(913.9) typically(913.9) bleonard(913.9) clustering(852.97)
samevm(822.51) sendmail(822.51)

pcdinh/ database scala(1660.49) replication(1333.63) sql(1254.51) configure(1098.28) algorithms(993.68) relational(993.68)
dbcc(889.08) scalability(876.01) ssis(797.56) mdf(784.49) cursor(732.19) typically(706.04) coresite(706.04)
checkdb(666.81) scalable(653.74) workloads(653.74) concurrency(653.74) db2(627.59) etl(601.44) dexter-
ity(601.44) fabros(588.36) entities(588.36) rdbms(588.36) transactional(588.36) dbas(562.21) datacen-
ter(536.07) lambda(522.99) unlocker(522.99) trackback(522.99) zemanta(509.92)

Table 3: Top words by relevance scores
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3.2 Authorship and Social Network Features

Besides the text, the author of the post can also be a good indicator of relevance
of the post. By using the author id as a feature, the classifier can learn which
users are more likely to submit relevant content. However, authorship feature is
not useful when a post of an author which the classifier haven’t seen before will
be evaluated. In case no previous posts of an author is in the training dataset,
the author feature of that author’s posts won’t bring any information gain as
there is no information about that author. This means that author feature is
only useful with authors which there is training data on. In our classification
task, our aim is to filter feeds that may have hundreds of authors and we expect
to have good accuracy even with very few feedback from the user of the system.
Therefore we benefit from the social network of users in Twitter and extract
some features of users related to their positions in this social network. In this
way, we aim to extract features that are common for authors that post relevant
content.

Twitter users receive posts of other users by following them. The group of
users that follows a user is called the followers of that users, and the users that
a user follows are called friends of that user. A user receives all posts by her
friends. Lists are on the other hand, a subset of the friends of a user. When
we consider the social network as a graph, a user is a node whereas the follow
relation is a directed arc. Number of followers a user has will be the number of
incoming arcs to that user’s node. Similarly, number of friends of that user is the
number of outgoing arcs of that users node. Using that social graph properties,
and a special user ranking algorithm called TunkRank[44], we propose 5 social
features:

Number of followers in list Each list of users in Twitter can create a sub-
graph of users and user relations. While each user in a list is represented
as a node, follow relations are the arcs between these nodes. This fea-
ture represents the number of incoming arcs, i.e., the number of Twitter
users in a list that follows the user. For a user that is in different lists,
this attribute may have a different value in each list due to difference of
graphs in these lists. This is logical as a user can be more related to some
lists and submitting more relevant content regarding these lists. With this
feature, we try to take into account how authoritative a user is in that
community. A high number of followers in a list might indicate that the
user is followed by users related to the topics of the list, therefore the user
is also authoritative in the topic.

Number of friends in list Similar to the previous feature, this feature rep-
resents the number of Twitter users that are followed by the user. With
this feature, our aim is to understand how the user is related to the topics
in this list. Our assumption is that if the user is following a large number
of users from the list, he would be more interested in the topics of the list,
therefore also posting relevant content to these topics.

Number of followers For this feature, we take the number of Twitter users
that are following the user. We expect that a higher number of followers
would indicate that the user is relevant and trustworthy. Contrary to the
first two features, all Twitter users are taken into account.
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Number of friends This feature represents the number of Twitter users that
the user follows.

TunkRank score TunkRank is a social influence metric for users on Twitter
described in related work section. TunkRank can be good metric indicat-
ing the relevance/authority of the user, therefore we use it in our social
features set.

For each post, we use the id and social features of the post’s author as
features of the post. By author feature, the classifier learns about individual
users whereas by social features it learns about the features of a relevant author.
Therefore posts by unseen users can be classified utilizing social features. We
will evaluate these different features in experiments section and show that social
features are improving authorship feature.

3.3 Temporal Features

Another aspect of posts are their temporal properties. Each post sent on Twit-
ter contains also its create time. We use this information to extract temporal
features of posts. Our assumption is that there can be time periods where
users are posting relevant content while in some periods they submit irrelevant
content. For instance, a developer who is included in a software engineering
list might submit relevant content during work hours, however during nights or
weekends, he might submit post about food and travel. The patterns might be
user specific but users in a list might share a common pattern. To benefit from
a common pattern and to make the temporal features accurate, we convert the
GMT time of the post to local time of the author. For this, we use the time
zone of the user. This can be sometimes inaccurate as users are setting time
zones manually, however this is the only information about the local time of the
users on Twitter.

After we calculate the timestamp of the post adjusted to user’s local time,
we extract two features out of it:

Hour of the day This feature indicates the hour part of the time, i.e., 0-23.

Day of the week This feature indicates the day of the week, i.e., Monday,
Tuesday, ... , Sunday.

With hour of the day feature, we try to discover patterns during the day
such as work hours. On the other hand, with day of the week feature, we try to
distinguish days, such as weekend vs weekdays.

3.4 Link Domain Feature

A large percentage of posts on Twitter contains links. Links are added to posts
to refer to news articles, blogs, company web pages, other social networks, etc.
The URL of a link can provide information about the topic of a post. If the link
is referring to a website which is very related to a list, it is very likely that the
post is relevant. This is especially valuable in Twitter as texts in posts are very
limited in size and they may not be enough in deciding if the post is relevant.

As the number of possible URLs are infinite and it is not very likely that
each URL will be given feedback to by users, we use the domain of URLs as
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a feature. With the domain of a URL, it is possible to distinguish different
types of web sites, for instance news portals, blog pages, social networks. With
the feedback from the user, classifier learns which website domains are referred
when a post is relevant.

Due to the text length limit on Twitter, mosts links are shortened through
URL shortening services. These services provides short URLs which redirect to
original URLs. Therefore before extracting the domain of an URL, the original
URL is retrieved from the shortened version. Then the domain of the URL is
extracted from retrieving the portion of URL until the end of top level domain.
Therefore we also get the subdomain of an URL. Some examples are:

http : //www.nytimes.com/pages/technology/index.html→ www.nytimes.com
http : //movies.yahoo.com/→ movies.yahoo.com

http : //news.yahoo.com/→ news.yahoo.com
http : //www.techcrunch.com/2010/08/10/google− wave− death/→

www.techcrunch.com

For some web domains such as Yahoo, subdomain indicates different themes
such as movies, news, travel etc. In this case, our approach benefits from the
subdomains and can distinguish different themes in portal sites. In case there
is no link in a post, then the value is set as NO LINK. If there is more than one
link in a post, only the first one is used.

In text-based features, we retrieve the contents of URLs included in the post
and merge it with text of the post. However, still we use domain of the URL as
a separate feature. Therefore we utilize links in posts in two ways. One of the
reasons is that for some webpages, such as image hosting sites or social networks
which requires authentication, no text content can be retrieved from links. In
this case, domain of the URL becomes the only information about the link.
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4 System Architecture

In [30], a conceptual framework for information filtering is proposed. In this
framework, information filtering process is divided into three subtasks: collect-
ing the information sources, detecting useful information, and displaying the
useful information. We can also describe our system with three main modules
which are responsible for collection, detection and display tasks. The first mod-
ule processes the feeds which are added to the system and maintains them over
time. Second module stores related data about each feed as well as classifica-
tion structures for filtering task. Finally the third module is responsible for
presenting the filtered feeds as a webpage. In this section, each module will be
explained in detail.

Figure 1: Overview of the system
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4.1 Feed Retriever Module

This module is responsible for retrieving the feeds from Twitter and processing
them.

Twitter provides data to third party services through an Application Pro-
gramming Interface(API) [9]. The API consists of two parts: one is a Repre-
sentational State Transfer(REST) API by which different kinds of data such as
messages posted on feeds or social graph relations can be retrieved. Second part
of the API is a streaming API which allows users to create consistent connec-
tions and have realtime access to various subsets of messages posted on Twitter.
While requests on REST API are analogous to single queries, streaming API
connections are to long-lived queries.

The feed retriever module retrieves the messages posted into feeds from
Twitter by making requests to REST API. While many feeds can be registered
in the system, this module checks for new messages periodically for each feed.
In case a new feed is added to the system by one of its users, the feed retriever
module retrieves the history of the feed, i.e., a number of latest messages posted
to a feed. The history of feed is used in understanding the nature of the feed
and therefore filtering it. As there are access rate limits on the API, the module
watches the rate of the requests to the server. The responses are received from
the API in JavaScript Object Notation(JSON) format [5] and parsed with a
JSON parser.

After the latest posts in a feed is received, these posts are processed before
they are stored. The posts are processed to extract different features which then
will be used to decide if the post is relevant to a feed. First of all, the links in
each post is analyzed. As the text size is limited to 140 characters in each post,
it is very common to use URL shortening services on Twitter. While different
shortened URLs might redirect to the same end URL, it is necessary to replace
these URLs with the ones they redirect. After the real URLs are discovered,
we use an API service [2] for HTML text extraction which returns key contents
of the page in plain text. This service removes ads, links, comments and other
unrelated parts of a web page and returns the main text such as the text of
the article on a news portal. These two tasks are done in parallel with multiple
threads as waiting for the result of HTTP request takes time. It is possible
that same post exists in different feeds or different posts contains same links.
Therefore cache is used for recently expanded URLs and retrieved URL contents.
Least Recently Used(LRU) cache type is used and only a number of recent data
is kept in this cache. Utilizing this cache, number of URL connections and API
service calls for URL processing are reduced.

The next step of the processing is the text analysis. In text analysis, both
the text from the post and the text extracted from the URLs that the post
contains are taken into account. First the text is cleaned by removing ASCII
characters, URLs, punctuation, numbers and stop words. Also the mentions of
other Twitter users in posts are removed as well. Finally the text is converted
to lower case and tokenized. After the text is cleaned, each post receives a score
indicating its similarity to the feed history. In calculating the score, we take
into account the word frequency vector of the feed, the word frequency vector
of the post and frequency of these words in Twitter global stream history. The
latter is retrieved from a separate process which will be explained next. After
the score is calculated, the words in the post is also added to the word frequency
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vector of the feed.
Besides URL and text, there are different features used, such as the user

posting the message and social graph information as well as temporal features.
They are also extracted from the API response. After the processing is done,
the post data and its extracted features are stored in the system.

4.1.1 Word Frequency Vector for Twitter

As we also take into account the frequency of words in whole Twitter community
for the text analysis, we have a separate process for keeping track of word
frequencies. The Twitter API supplies a stream which returns a sample of
all messages posted on Twitter by users with public accounts. Currently the
sampling rate is 5%, however it is enough for maintaining a word frequency
vector. Our process keeps the word frequencies for the history(e.g., 1 week) of
data on Twitter global stream. Each post retrieved from the stream is processed
by cleaning the text and tokenizing, and then updating the word frequency
vector.

The word frequencies are kept in a sliding windowed fashion. The time
window consists of a number of time intervals and for each of them a word
frequency vector is kept. Also a larger frequency vector for the whole time
window is kept. When the time window is to slide, the oldest word frequency
vector is removed. The frequency values of words in this vector is subtracted
from the frequency vector which is kept for the whole time window. This process
runs continuously and keeps a real-time word frequency vector for the whole
Twitter. This data gives an insight about the popularity of each word in general
and is used for understanding how specific each word is to a feed. As it keeps
a time window in real time, it can track bursts, therefore can identify general
words that suddenly get popular, and filter them in local feeds.

The process runs standalone and it responses to word frequency lookups
through a socket connection. When the feed retriever module accesses this
process, it sends a list of words and the response is the word count of each
word plus the number of all words in the time window. With this data, word
frequencies are calculated.

4.2 Feed Storage and Filtering Module

The second module is responsible for storing the feed data, keeping classifica-
tion structures for filtering and finally responding the requests from the display
module. This module stores many feeds and these feeds are updated by the feed
retriever module.

For each feed, various data is stored in the module. These are:

• History of posts: For each feed, a history of latest posts are stored. For
each post, two kinds of data are kept. First group consists of data such as
text, user name, timestamp which are displayed to the user of the system.
The second kind of data consists of extracted features of the post which is
used internally by the filtering system. The number of posts to be stored
is limited in the history, after a certain threshold older posts are removed.
The posts are stored time-ordered.
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• Feedback: When a post receives feedback from a user, the post is copied
to a list consisting of posts with feedback. The list is kept separately
and is used as a dataset for decision tree. The feedback is also stored in
database. In case the system is restarted, the feedback is restored from
the database.

• Feed information: Each feed has some meta information such as name
and description. These information are kept so that users can get detailed
information about feeds registered in the system.

• Decision tree: The filtering in the system based on learning from user
feedback on the posts by using a decision tree. Therefore a decision tree
is kept for each feed in the system. The decision tree uses the posts with
feedback as training dataset. When a new feedback is given to a post
of a feed, the decision tree of the feed is rebuilt. For the decision tree
implementation, WEKA data mining library is used[24].

• Word frequency vector: Each feed has a word frequency vector for
the words seen in the feed history. As new posts are received from the
feed retriever module this vector is updated. Also when older posts are
removed from the history, the vector is updated again.

The feed storage and filtering module provides data about feeds to display
module. The data is formatted in JSON and sent through socket to the display
module. Below the different use cases will be described.

• Get posts from a feed: The posts in feeds can be accessed in pages
which contain 20 posts. The request contains the feed name and the
page or the maximum id of the post. The module returns the posts from
the feed history. Before sending the posts, each post is classified by the
decision tree of the feed and therefore gets a label which indicates if the
post is relevant or not. The label is also added in the response and is used
by the display module in filtering the irrelevant posts.

• Give feedback: After displaying the posts in a feed, user can mark
individual posts as relevant or irrelevant. When a feedback is received by
the system, feedback will be saved in feed data, and the decision tree will
be rebuilt.

• Add a new feed: The users can also add feeds that are not registered
in the system. In this case, the feed retriever module will fetch the data
from Twitter, and the new feed will be stored in feed storage module.

• Get the list of feeds: The users can request a list of all feeds in the
system. In this case, detailed information about the feeds is provided.

4.3 Display Module

The last module is responsible for displaying the feeds with filtering capabilities
to the users. This module consists of a Java Servlet running on Apache Tomcat
server[3] and a web page using JQuery[4].

The webpage contains a directory page for the feeds in the system and a
second page for showing filtered feeds. In the directory page, feeds are grouped
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under categories and users can add new feeds under these categories. When a
feed is selected, the feed is shown on a new page. Here posts which are labeled
as relevant are shown less visible or can be hidden by user preference. This page
is very similar to Twitter list pages except the filtering system.

Pages contains static HTML elements and JQuery code which is based on
JavaScript. When user presses a button for one of the user cases described
above, a request is sent to Java Servlet. Servlet page redirects the request to
feed storage module, which in turn returns a response in JSON format. This
data is passed back to JQuery script on the webpage. With the data, JQuery
modifies the webpage without reloading. In this way, user can give feedback to
posts or view the history of the feed without reloading the page. The relevant
and irrelevant posts in feeds are shown with different opacity values. Therefore
irrelevant posts still exist on the page so that users can give positive feedback
on them. Users can also choose to hide irrelevant posts.

Figure 2: Directory page
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Figure 3: Showing a feed with filtering
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5 Experiments

In this section, we evaluate various aspects of our classification approach. As
our approach requires user feedback, a dataset with user feedback has been
manually created. In the next section, this process will be described. Then we
will compare different classification algorithms which can be used for the clas-
sification task. In the following sections, we will evaluate how different features
affect the performance of the system and compare our approach with traditional
Bag-Of-Words text classification method in terms of: (1) accuracy, (2) learning
speed and (3) computation time necessary for building the classifiers.

5.1 Experiment Data

For the experiments, we retrieved 9 lists on various topics from Twitter. Each
list is manually created by Twitter users by selecting a group of other users.
The posts sent to these lists are collected between 7th May 2010 and 31st May
2010. Also during this period, a sample portion(5%) of all posts sent on Twitter
are collected from streaming API. Starting from 12th May 2010, posts on lists
are labeled through an interface. The posts between 7th and 12th are stored as
the history of each list which is used for calculating similarity of a post to a list.
The interface(Figure 4) fetches a random unlabeled post from the database and
displays the post and contents of the link in case the post contains an URL.
The user then labels the post as ”relevant to the list” or ”irrelevant to the list”
and also can pass the post in case no decision could be made (e.g., when the
post is in a foreign language).

The lists we have selected vary in terms of number of users they contain, the
number of posts they receive and the number of relevant posts. Also number of
feedback given to each list varies. The information about these lists are shown
in Table 4.

Id List name List creator # of users # positive labels # negative labels % of positive labels

1 pregnancy-parenting Disc Health 12 58 30 65%
2 film-people-to-follow IndieFlix 74 388 322 47%
3 ecotweets RosieEmery 461 74 36 67%
4 markets WSJMarkets 15 115 13 89%
5 dbpeople edward ribeiro 75 43 47 52%
6 apple-news huffingtonpost 29 227 78 74%
7 comicscreators iFanboy 292 43 37 54%
8 mysql-co lucaolivari 35 38 54 41%
9 database pcdinh 45 54 33 62%

Table 4: Labeled datasets of each list

5.2 Evaluation Metrics

While the experiment results are presented, accuracy, precision, recall and f-
score measures will be used. These measures are defined as:

Accuracy =
Number of true positives + Number of true negatives

Number of positives + Number of negatives
(4)
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Figure 4: Manual labeling interface

Precision =
Number of true positives

Number of true positives + Number of false positives
(5)

Recall =
Number of true positives

Number of true positives + Number of false negatives
(6)

F-Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)

Accuracy is the ratio of correctly classified posts to all posts in our case.
Precision measures the correct decision rate only in instances classified as pos-
itive(relevant in our system) and takes into account false positives(irrelevant
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post classified as relevant), recall takes into account the false negatives(relevant
post classified as irrelevant). We don’t make a distinction between false posi-
tives and false negatives, therefore we mainly focus on accuracy results in the
experiments. Still the precision and recall values are displayed to give additional
information. Other than accuracy, precision and recall, we also use f-score. This
is the harmonic mean of precision and recall, giving the two measurements equal
value.

5.3 Comparison of Classification Algorithms

The selection of classification algorithm can be very effective on classification
results. Therefore, we experimented with different classification algorithms to
find an algorithm which performs well for the classification task. We run sev-
eral classification algorithms from Weka library3 on each list in our dataset. As
our dataset contains nominal and numeric attributes, it is not possible to use
some types of classifiers such as Bayes classifiers. We use the following clas-
sification algorithms: Alternating decision tree(ADTree)[21], J48 which is an
implementation of C4.5 decision tree algorithm[33], Random forests[16], Lazy
K* algorithm[18], Decorate[29], MultiBoostAB[45] and SMO algorithm which
is sequential minimal optimization algorithm for training a support vector clas-
sifier(will be called SVM in the experiments)[32]. To describe shortly; ADTree,
J48, REPTree are different kinds of decision trees. K* is an instance based
classifier which decides on the class of a test instance based on the most similar
training instances in the dataset. As the parameters, in ADTree the number of
boosting iterations is set to 20 and in J48 pruning and binary splits are turned
off. For the rest of the algorithms, default settings are used. As the feature set,
text relevance score(TRS), authorship feature, social features, temporal features
and link domain feature are used.

Results are shown in Figures 5 to 13. Accuracy results vary from list to list
(Figure 5), and different classifiers perform the best in different lists. When we
look into average accuracy scores (Figure 6), ADTree, J48 and MultiBoost AB
are the top classification algorithms with the highest scores. Another important
aspect is the performance of classifiers through different datasets. It is a good
property that a classification algorithm performs well in different datasets. It
is especially important in our case, as our system should provide decent perfor-
mance for any list registered to it. Figure 7 shows the standard deviation of
accuracy of classifiers through 9 lists. Accuracies of ADTree, J48, Decorate and
MultiBoost AB through the set of lists have lower standard deviations which
means they better suit different datasets. SVM and K* algorithms are the worst
performing algorithms in general. They have low accuracy values in average and
also their performance varies with different datasets. For instance, K* performs
as the best algorithm in list 9 while it performs the worst in list 7 by a large
difference.

In precision results (Figure 9), ADTree and Decorate have highest results
while in recall results J48 and MultiBoost AB(Figure 11) have the highest.
Finally in f-score (Figure 13), ADTree, j48 and MultiBoost AB are again the
best 3 performing algorithms. These 3 algorithms provide good classification
results through different datasets. We have chosen ADTree to use in other

3http://www.cs.waikato.ac.nz/ml/weka/
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experiments as being one of the best algorithm in our comparison.

Figure 5: Accuracy results of the classification algorithms on the datasets of 9
lists

Figure 6: Average of accuracy results of 9 lists

Figure 7: Standard deviation of accuracy results of 9 lists
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Figure 8: Precision results of the classification algorithms on the datasets of 9
lists

Figure 9: Average of precision results of 9 lists
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Figure 10: Recall results of the classification algorithms on the datasets of 9
lists

Figure 11: Average of recall results of 9 lists
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Figure 12: F-Score results of the classification algorithms on the datasets of 9
lists

Figure 13: Average of F-Score results of 9 lists
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5.4 Feature Evaluation and Comparison with Traditional
Approach

In this section, the benefit from different features will be evaluated. Also we
will compare two different text-based features: Text Relevance Score(TRS) and
Bag-Of-Words(BOW). Bag-Of-Words approach is a traditional text classifica-
tion method. In this method, tf-idf(term frequency-inverse document frequency)
weight for each word of a post is calculated and used as a feature. Therefore
BOW is basically a feature set rather than one feature. As a result, BOW ap-
proach leads to a high dimensional feature vector as each word in the document
set represented by a feature. To deal with this high dimensional dataset, we use
Support Vector Machines as the classification algorithm when we use the BOW
approach as SVMs are well suited for this problem[26].

Next to text-based features, we evaluate 4 different groups of features: Au-
thor feature, social features, temporal features and link domain feature. We
grouped some features together to easily combine different types of features.
Social features contains 5 different features: followers count in list, friends count
in list, total followers count, total friends count and TunkRank score of the user.
Temporal features group contains two features: day of the week and hour of the
day. Therefore we have two text-based features and 9 other features grouped
into 4 groups. For each list, different feature groups combinations are evaluated
in terms of accuracy, precision, recall and f-score.

Results for each list are shown in Tables 5 to 13. In terms of accuracy,
feature combinations including TRS feature have the highest accuracy values
in 7 out of 9 lists when compared to feature combinations including BOW.

An important result is that using all features may lead to a lower accuracy.
The experiments show that TRS + Author + Soc + Lnk + Temp and BOW +
Author + Soc + Lnk + Temp feature combinations are providing the highest
accuracy values in only 3 lists. This means that the datasets of some lists are
noisy for some features and using these features decreases the accuracy. This is
expected as properties of each list is different and each feature works differently
in each list. Using feature selection methods on the dataset can be beneficial
to remove badly performing features before building the classifier. An overview
of different feature selection for text classification is given in [47]. However,
we are not using feature selection in our implementation, as finding the best
performing features subset is costly in an online setting.

Our experiments show that, besides text-based features, other features can
also be very discriminating. In result tables, it is shown how these features
are performing alone and also in combination with other features. Link do-
main(Lnk) feature is one of the best performing features. Except pcdinh/-
database and lucaolivari/mysql-co lists, this feature is the most discriminating
feature among non text-based features. This feature is especially helpful in fil-
tering automated messages, such as check-in messages automatically submitted
to Twitter by location based services like foursquare4.

Author feature and social features(Soc) are also discriminative features. In
almost all lists, both features are improving the accuracy when they are used
with text-based features compared to only using text-based features. In list
Disc Health/pregnancy-parenting (Table 5), accuracy is increased by 12.3% and

4http://foursquare.com/
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14.9% respectively. These results show that author information and social prop-
erties of authors can be good features in classifying posts in social networks. It
is also notable that social features are sometimes performing better than author
feature and the results are improved when they are used together. In lists Disc
Health/pregnancy-parenting, iFanboy/comicscreators and lucaolivari/mysql-co
social features are improving the results(Author vs. Author+Soc). This re-
sult is interesting due to the fact that social features are also properties of a
user which is indicated by the author feature. The improvement comes from
the fact that with these additional properties of the user, classifier can better
learn if a user is more likely to submit a relevant post. For instance, classifier
can learn that authors which have more than a certain number of followers are
very likely to submit relevant posts. Suppose a post is going to be evaluated by
the classifier but in the training set of the classifier there were no posts of the
author that submitted that post. In this case, author feature won’t provide any
information. However, the classifier may have learnt from the set of authors
in the training set that which social features indicates if the author is more
likely to submit relevant posts. When author feature and social features are
used alone, author feature works better than social features. The reason is that
the author feature is more granular. This feature can discriminate individual
authors whereas social features tend to group users(e.g., users with number of
followers < k and users with number of followers ≥ k). Therefore author fea-
ture works well in case there is enough amount of posts from different authors
in training data.

Temporal features(Temp) are not very discriminative when they are used
alone as expected. However when they are used together with author feature or
social features, they are useful. In lists Disc Health/pregnancy-parenting, huff-
ingtonpost/ apple-news, lucaolivari/mysql-co, it can be observed that temporal
features increases the accuracy of author and social features. The increase show
that users may be more likely to post relevant content in some periods, and
the time and the date of a post can be a good indicator of its relevance. It is
also interesting that temporal features can improve the results of social features.
This might suggest that there can be patterns shared by a group of users, for
instance submitting relevant content mostly during work hours or only in week-
days. We will evaluate social and temporal features separately to have a better
understanding of these features in the following sections.

In summary, although the text-based features are often the most discrimi-
nating ones, other features consisting of authorship, social features, link domain
and temporal features are also discriminating on our dataset and greatly im-
prove the performance of the classification task when used next to text-based
features. The experiments also indicates that each feature can perform differ-
ently in each list. While a feature can be very discriminating in a list, it can
perform poorly in one other. This result supports the claim that each list should
be classified separately. Furthermore, results also indicate that removing poorly
performing features can improve the performance of the classifier.
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Features Accuracy Precision Recall F-Score
Author .855 .895 .883 .889
Author+Soc .869 .906 .895 .9
Author+Temp .911 .917 .952 .934
Soc .88 .913 .903 .908
Temp .741 .795 .819 .806
Soc+Temp .933 .942 .957 .949
Lnk .709 .719 .917 .806
Author+Soc+Lnk+Temp .919 .935 .943 .939
TRS .659 .722 .784 .752
TRS+Author .782 .828 .845 .836
TRS+Soc .808 .855 .853 .854
TRS+Lnk .655 .729 .759 .743
TRS+Temp .715 .763 .822 .792
TRS+Author+Soc .8 .851 .845 .848
TRS+Author+Soc+Lnk+Temp .901 .919 .933 .926
BOW .818 .821 .926 .87
BOW+Author .883 .911 .912 .911
BOW+Soc .891 .908 .929 .918
BOW+Lnk .808 .805 .936 .865
BOW+Temp .832 .829 .938 .88
BOW+Author+Soc .89 .904 .933 .918
BOW+Author+Soc+Lnk+Temp .915 .929 .943 .936

Table 5: List Disc Health/pregnancy-parenting
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Features Accuracy Precision Recall F-Score
Author .792 .89 .709 .789
Author+Soc .822 .888 .771 .825
Author+Temp .76 .817 .724 .767
Soc .822 .885 .776 .827
Temp .558 .597 .596 .595
Soc+Temp .82 .868 .791 .828
Lnk .841 .896 .801 .846
Author+Soc+Lnk+Temp .834 .868 .822 .844
TRS .82 .811 .875 .842
TRS+Author .853 .864 .868 .866
TRS+Soc .858 .884 .853 .868
TRS+Lnk .846 .879 .834 .856
TRS+Temp .816 .821 .849 .835
TRS+Author+Soc .853 .874 .854 .864
TRS+Author+Soc+Lnk+Temp .853 .882 .843 .862
BOW .831 .877 .804 .839
BOW+Author .831 .875 .806 .839
BOW+Soc .832 .879 .803 .839
BOW+Lnk .832 .878 .803 .839
BOW+Temp .823 .865 .802 .832
BOW+Author+Soc .83 .874 .806 .838
BOW+Author+Soc+Lnk+Temp .827 .863 .813 .837

Table 6: List IndieFlix/film-people-to-follow
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Features Accuracy Precision Recall F-Score
Author .792 .787 .947 .86
Author+Soc .762 .809 .846 .827
Author+Temp .711 .745 .868 .801
Soc .745 .81 .812 .811
Temp .574 .658 .761 .705
Soc+Temp .703 .768 .8 .784
Lnk .815 .818 .932 .871
Author+Soc+Lnk+Temp .757 .814 .828 .821
TRS .852 .895 .884 .889
TRS+Author .875 .904 .912 .908
TRS+Soc .844 .877 .893 .885
TRS+Lnk .848 .888 .886 .887
TRS+Temp .844 .886 .881 .883
TRS+Author+Soc .862 .896 .899 .897
TRS+Author+Soc+Lnk+Temp .86 .891 .903 .897
BOW .768 .806 .864 .834
BOW+Author .821 .845 .899 .871
BOW+Soc .776 .82 .855 .837
BOW+Lnk .773 .795 .892 .841
BOW+Temp .73 .779 .835 .806
BOW+Author+Soc .818 .848 .889 .868
BOW+Author+Soc+Lnk+Temp .785 .811 .888 .848

Table 7: List RosieEmery/ecotweets
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Features Accuracy Precision Recall F-Score
Author .878 .896 .977 .935
Author+Soc .872 .896 .97 .931
Author+Temp .854 .903 .938 .92
Soc .876 .896 .975 .934
Temp .866 .895 .964 .928
Soc+Temp .871 .921 .937 .929
Lnk .902 .926 .968 .946
Author+Soc+Lnk+Temp .862 .915 .934 .924
TRS .925 .962 .954 .958
TRS+Author .953 .967 .981 .974
TRS+Soc .942 .965 .97 .968
TRS+Lnk .935 .95 .979 .964
TRS+Temp .928 .955 .966 .96
TRS+Author+Soc .948 .966 .977 .971
TRS+Author+Soc+Lnk+Temp .92 .948 .964 .956
BOW .912 .912 .999 .954
BOW+Author .93 .937 .989 .962
BOW+Soc .905 .917 .983 .949
BOW+Lnk .927 .927 .998 .961
BOW+Temp .902 .92 .976 .947
BOW+Author+Soc .915 .931 .978 .954
BOW+Author+Soc+Lnk+Temp .928 .933 .991 .961

Table 8: List WSJMarkets/markets
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Features Accuracy Precision Recall F-Score
Author .695 .722 .585 .646
Author+Soc .672 .663 .635 .648
Author+Temp .627 .609 .61 .608
Soc .671 .659 .642 .65
Temp .578 .549 .629 .585
Soc+Temp .693 .675 .685 .68
Lnk .737 .72 .729 .725
Author+Soc+Lnk+Temp .699 .681 .692 .685
TRS .922 .902 .938 .919
TRS+Author .938 .937 .931 .934
TRS+Soc .935 .924 .94 .932
TRS+Lnk .95 .939 .956 .947
TRS+Temp .941 .937 .938 .937
TRS+Author+Soc .939 .937 .933 .935
TRS+Author+Soc+Lnk+Temp .95 .939 .956 .947
BOW .846 .95 .712 .814
BOW+Author .868 .961 .754 .845
BOW+Soc .847 .943 .721 .817
BOW+Lnk .836 .943 .696 .801
BOW+Temp .841 .968 .688 .804
BOW+Author+Soc .874 .959 .769 .853
BOW+Author+Soc+Lnk+Temp .845 .92 .738 .818

Table 9: List edward ribeiro/dbpeople
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Features Accuracy Precision Recall F-Score
Author .791 .844 .882 .863
Author+Soc .782 .835 .881 .857
Author+Temp .809 .853 .898 .875
Soc .782 .831 .888 .858
Temp .721 .762 .909 .829
Soc+Temp .803 .857 .883 .87
Lnk .892 .906 .954 .929
Author+Soc+Lnk+Temp .89 .913 .942 .928
TRS .913 .928 .957 .942
TRS+Author .928 .936 .97 .952
TRS+Soc .922 .943 .953 .948
TRS+Lnk .911 .928 .955 .941
TRS+Temp .916 .933 .956 .944
TRS+Author+Soc .926 .944 .956 .95
TRS+Author+Soc+Lnk+Temp .915 .935 .952 .943
BOW .929 .958 .946 .952
BOW+Author .939 .968 .95 .959
BOW+Soc .928 .961 .941 .951
BOW+Lnk .931 .955 .952 .953
BOW+Temp .941 .964 .957 .96
BOW+Author+Soc .938 .968 .949 .958
BOW+Author+Soc+Lnk+Temp .941 .959 .962 .96

Table 10: List huffingtonpost/apple-news
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Features Accuracy Precision Recall F-Score
Author .462 .498 .572 .531
Author+Soc .494 .53 .523 .526
Author+Temp .472 .509 .519 .513
Soc .495 .53 .523 .525
Temp .501 .534 .56 .546
Soc+Temp .46 .499 .493 .495
Lnk .732 .856 .605 .709
Author+Soc+Lnk+Temp .566 .595 .605 .599
TRS .841 .852 .853 .852
TRS+Author .902 .93 .886 .907
TRS+Soc .884 .893 .891 .892
TRS+Lnk .902 .909 .909 .909
TRS+Temp .889 .909 .881 .895
TRS+Author+Soc .886 .896 .893 .894
TRS+Author+Soc+Lnk+Temp .88 .877 .905 .89
BOW .781 .91 .658 .764
BOW+Author .762 .887 .64 .743
BOW+Soc .776 .917 .642 .755
BOW+Lnk .794 .873 .721 .79
BOW+Temp .77 .842 .705 .767
BOW+Author+Soc .786 .906 .672 .771
BOW+Author+Soc+Lnk+Temp .8 .837 .781 .807

Table 11: List iFanboy/comicscreators
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Features Accuracy Precision Recall F-Score
Author .694 .684 .57 .621
Author+Soc .702 .7 .57 .628
Author+Temp .75 .758 .636 .691
Soc .704 .701 .575 .631
Temp .586 .536 .473 .499
Soc+Temp .748 .727 .686 .705
Lnk .724 .655 .786 .715
Author+Soc+Lnk+Temp .722 .692 .666 .678
TRS .847 .826 .827 .826
TRS+Author .884 .854 .889 .871
TRS+Soc .87 .848 .859 .853
TRS+Lnk .905 .859 .939 .897
TRS+Temp .862 .827 .868 .847
TRS+Author+Soc .884 .854 .889 .871
TRS+Author+Soc+Lnk+Temp .857 .835 .841 .838
BOW .866 .903 .78 .837
BOW+Author .836 .826 .795 .81
BOW+Soc .864 .896 .782 .835
BOW+Lnk .87 .877 .82 .847
BOW+Temp .866 .861 .83 .845
BOW+Author+Soc .852 .837 .825 .831
BOW+Author+Soc+Lnk+Temp .888 .882 .861 .871

Table 12: List lucaolivari/mysql-co
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Features Accuracy Precision Recall F-Score
Author .882 .923 .873 .897
Author+Soc .872 .906 .875 .89
Author+Temp .852 .875 .875 .875
Soc .865 .896 .873 .884
Temp .502 .573 .61 .59
Soc+Temp .849 .874 .869 .872
Lnk .78 .75 .941 .835
Author+Soc+Lnk+Temp .877 .905 .885 .894
TRS .899 .9 .932 .916
TRS+Author .922 .921 .949 .935
TRS+Soc .928 .938 .941 .939
TRS+Lnk .914 .917 .939 .928
TRS+Temp .916 .917 .942 .93
TRS+Author+Soc .927 .936 .941 .938
TRS+Author+Soc+Lnk+Temp .931 .947 .936 .941
BOW .92 .961 .902 .93
BOW+Author .921 .964 .9 .931
BOW+Soc .92 .961 .902 .93
BOW+Lnk .915 .931 .925 .928
BOW+Temp .911 .941 .907 .923
BOW+Author+Soc .915 .962 .892 .925
BOW+Author+Soc+Lnk+Temp .917 .952 .905 .928

Table 13: List pcdinh/database
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5.5 Comparison of Social Features

In the previous experiment, the features are grouped under social and temporal
feature groups. In this section, different social features we used will be com-
pared. For this purpose, we use Information Gain metric. Information gain
measures how much more organized the class values become when we divide
them up using a given feature[14]. This value is between 0 and 1, where 1
means the highest information gain. We have 5 different social features: num-
ber of followers of the author who are also in the list, number of friends who are
also in the list, number of total followers on Twitter, number of total friends
on Twitter and TunkRank of the author. The results are displayed in Figure
14 and Figure 15. While Figure 14 shows the results for each list separately,
Figure 15 shows the average information gain of each feature in 9 lists.

The results indicates that social features are performing differently in each
list. While social features are very discriminating in some lists(e.g., lists 1, 2
and 9), in some lists they provide almost no information gain(e.g., lists 4, 5 and
7). This means that lists have different properties: while in some lists more
popular users are more likely to submit related content, in others this is not the
case.

Out of the 5 features, TunkRank is the most discriminative feature. When
the other features are compared, it can be observed that number of followers is
a better indication than number of friends that author is more likely to submit
relevant content(# followers in list vs # friends in list and # total followers vs
# total friends).

Figure 14: Comparison of information gain of social features for each list
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Figure 15: Comparison of information gain of social features (Average of all
lists)

5.6 Comparison of Temporal Features

We have two different features in temporal features group: day of the week and
hour of the day. The results of the comparison is shown in Figures 16 and 17.
In all lists, hour of the day provides higher information gain then day of the
week feature. In average(Figure 17), hour of the day feature provides twice the
information gain then the day of the week feature brings.

In figures 18 and 19, the ratio of relevant posts to the all posts with respect
to hour of the day and day of the week are plotted. For this graphs, all labeled
dataset is used. During the week, the graph is more smoother, while ratio of
relevant posts are low at the beginning and at the end of the week, the ratio gets
high in wednesday and thursday. The graph indicates a pattern throughout the
week. On the other hand, the relevant posts ratio changes sharply during the
day and there is not a clear pattern. However, during some intervals(e.g., 2AM-
3AM and 4AM-5AM) the ratio of relevant posts to all posts goes up to 0.8. In
this case, the time of the day feature becomes highly discriminative. Therefore
these graphs explain why the time of the day feature has higher information
gain.

Temporal features were mostly the weakest features in our experiments.
However, the way they were retrieved can also have an effect in the result.
We calculated the time of the post in local time by retrieving the GMT of the
post and adjusting it to the time zone of the author of the post. However, users
in Twitter set their time zone manually and this may be set wrong or not set at
all by the user. Furthermore when the author travels to an another timezone,
local time will be inaccurate again. Therefore unlike other features, temporal
features may not be retrieved accurately. Although it is possible in Twitter to
add location information to messages, currently it is used by very few users. In
the future, location data can be used as a more accurate retrieval method if it
is widely adopted.
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Figure 16: Comparison of information gain of temporal features for each list

Figure 17: Comparison of information gain of temporal features (Average of all
lists)
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Figure 18: Ratio of relevant posts to all posts during the day

Figure 19: Ratio of relevant posts to all posts during the week
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5.7 Learning Curves

In an online filtering system where the user explicitly gives feedback, it should be
expected that the user will give very few feedbacks. Therefore the system should
perform well in filtering task even with very few number of feedbacks, otherwise
the user would stop using the system before it starts performing decently. In
this experiment, the learning performance of our classification system will be
evaluated by displaying accuracy of the classification by increasing the number
of training instances.

For this experiment, each list’s dataset is divided into 10 folds. While 9 folds
are used for training, 1 fold is used for testing. The test is run 10 times and
in each run, a different fold is used for testing. Learning curve is produced by
using a portion of the training data, starting from 5 instances and incrementing
by 5 instances until all data is used. For each training data size, accuracy is
calculated by the average of 10 runs.

In the experiment, two approaches are compared: TRS and BOW as text-
based features. In Figure 20, learning curves of only text-based features are
compared. In Figure 21, the rest of the features are included and TRS + Author
+ Soc + Lnk + Temp feature set is compared against BOW + Author + Soc
+ Lnk + Temp feature set. For the tests with TRS feature, we use ADTree
and for BOW feature, we use Support Vector Machine as classifier due to high
dimensionality of the data.

In Figure 20, we observe the learning performance with two different text-
based features. The charts show that generally TRS approach provides a
straight learning curve whereas the accuracy of BOW approach improves over
time. This result shows that even with very few training instances, TRS ap-
proach provides a decent performance. On the other hand, BOW approach gets
better after some amount of training data. This is due to the fact that TRS
is one nominal feature and classifier only needs to learn the threshold where
posts with values above is relevant. On the other hand BOW is a set of fea-
tures where each term in the dataset is represented by a feature. In 4 out of
9 lists, TRS performs better in every training dataset size. In RosieEmery/e-
cotweets, the accuracy of TRS is dramatically higher than BOW approach. On
the other hand, in list Disc Health/pregnancy-parenting, TRS approach is per-
forming poorly compared to BOW. The reason is that TRS is a frequency based
approach. In case there is a frequent topic in the list which is not frequent in
the whole Twitter, then posts related to this topic gets higher text relevance
score. But in case this topic is not related to the topic the user is interested
in, TRS approach can perform worse. In this list, topic health is also frequent
next to pregnancy and parenting topics mainly due to its proximity to these
topics. Posts related to health are marked as not relevant by judges but they
still get high text relevance score by our scoring function. This situation where
a non-relevant topic is highly frequent is only observed in this list.

In Figure 21, the learning performance of TRS + Author + Soc + Lnk +
Temp feature set and BOW + Author + Soc + Lnk + Temp feature set are
compared. In Disc Health/pregnancy-parenting, now two approaches perform
similar as the added features are very discriminative. Also in RosieEmery/e-
cotweets, the difference got smaller. In this experiment, TRS outperforms BOW
in 7 lists in learning performance aspect. In 5 lists, accuracy of TRS approach
is around 90% even with a training dataset of 5 instances.
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Learning curves show clearly that TRS approach learns faster. Furthermore,
the experiment shows that in some lists even 5 instances can be enough to
provide high accuracy values. Therefore we can conclude that TRS approach
can provide the learning performance that an online filtering system requires.

Figure 20: Learning curves for 9 lists. Only BOW and TRS features are used
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Figure 21: Learning curves for 9 lists. BOW and TRS are used with other
features
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5.8 Using Link Contents

The limitation of text sizes on Twitter is a drawback for text classification,
therefore we use an external API to fetch contents of the URLs which are in-
cluded in posts and add this text to the original text of the post. This approach
may work in two ways. The text of the posts are very short but this may also
mean that they are very condense. Webpages however include longer text with-
out length limit. Using only the text of the post can be better if the text is
mostly consist of keywords. On the other hand, in most posts, the text of the
post and the link are complementary. To get the topic or the meaning of a
post, the user should mostly follow the link. Therefore adding the contents of
an URL to text classification can have positive or negative effect.

In this experiment, we show how adding URL contents affects the text clas-
sification. The experiment is run using TRS feature and ADTree classifier.
Accuracy values are shown in Figure 22. Results indicate clearly that adding
link contents to text improves accuracy dramatically, more than 15% in some
cases.

Figure 22: Evaluation of using link contents in text relevance score

5.9 Comparison of Computation Time to Build Classifiers

In this section, we compare the computation time needed to build classifiers for
two approaches. ADTree decision tree is built with TRS + Author + Soc + Lnk
+ Temp feature set and Support Vector Machine is built with BOW + Author
+ Soc + Lnk + Temp feature set. We use ADTree and SVM implementations
of Weka library[24]. The whole labeled dataset is used for this experiment, and
computation time in milliseconds is displayed with respect to increasing number

52



of instances in the training dataset(Figure 23). Both classification algorithms
are not incremental, i.e., for each size of dataset the classifiers are built from
scratch. The performance may change in case other implementations are used or
incremental versions of the classifiers are used. Therefore the results are shown
to give an overall idea about the performance of two approaches.

The figure shows that ADTree+TRS approach is built a couple of times
faster than the SVM+BOW approach. This is mainly due to high number of
features in BOW approach while in TRS approach the number of features is only
10. Also as the number of instances increases, number of unique words seen in
the dataset increases, which makes the feature vector of BOW approach larger.
While TRS approach’s built time increases only due to number of instances,
BOW approach’s built time increases both due to increasing number of features
and number of instances. Therefore we observe that BOW approach’s built
time increases in a higher rate. The result indicates that with the advantage of
having lower number of features, TRS approach has lower complexity and more
suitable for online systems.

Figure 23: Computation time needed to build classifiers with respect to increas-
ing number of instances.
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6 Conclusion and Future Work

In this work, we have developed an information filtering system for Twitter. We
focused on list feeds which are collection of messages from a manually created
list of users and tend to be more focused on specific topics. Our system removes
irrelevant content from these feeds and provide clean information sources for
these topics. Although we focused on Twitter, our approach can be also applied
to other micro-blogging services.

As a contribution, we proposed a scoring function that uses the word fre-
quencies in lists and word frequencies in Twitter community as reference for
scoring the relevance of a post to a feed. In the classification section, we have
shown on a group of selected list that this score can accurately identify words
that are specific to each list and penalize common words.

We also used novel features extracted from different aspects of micro-blogging
messages. We used our scoring function as a text-based feature to identify rele-
vant posts in a feed. Additionally, we used authorship, social network features,
temporal features and link domain feature to increase the accuracy of classifiers.
The experiments have shown that each group of features improved the accuracy
of classification. Especially text relevance score, authorship and link domain fea-
tures are very discriminative in filtering out irrelevant messages. Social features
are useful in improving authorship feature, as they extract properties of users
that post relevant content. From social features, we found out that TunkRank
score is the best performing one. This result indicates that instead of numbers
of followers and friends, more complex scoring schemes such as TunkRank is
better at identifying authoritative users.

We have also shown that links included in messages are good sources of
information. We exploited links in two ways: we retrieved the contents of
a referenced URL and merged it with message text, and also we extracted the
domain of URLs as a separate feature. Experiments indicate that both methods
are improving the accuracy of the system even though most of the messages
don’t contain links.

With the experiments on 9 selected lists from Twitter, we reached accuracies
between 85% and 95%. Using only one text-based feature and a relatively small
number feature list, the classifiers were able to learn faster, for some lists even 5
training instances were enough for good accuracy results. Furthermore, we have
observed that each list has different properties and each feature works differently
for each list, therefore feature selection might be useful in improving results.

Finally, an online prototype is developed for the filtering system. By tracking
the stream of public messages on Twitter, the system is able to keep an up-to-
date word frequency vector. In this way, the system dynamically score a post’s
textual relevance to a feed and react to changes.

As a possible improvement, classifiers used in the system can be replaced by
incremental classifiers. We used classifiers which can’t be updated with a new
training instance due to unavailability of incremental ones. Therefore with each
new feedback, classifiers needs to be built from scratch. However, as we don’t
expect to have a high number of feedback from the user and the system works
well with limited number of feedback, building from scratch is also affordable.

In our prototype, all users can give feedback to any list. However, each user
may have different preferences on which messages to be filtered out. Therefore
the system can be extended to have different classifiers to each system. In
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this scenario, one feed might have different classifiers for each user that has
subscribed to it while there is one copy of feed data. Therefore for each user,
separate feedback histories and classifiers should be kept.

Our system is developed to work on one machine. Therefore the system
can only handle a limited amount of feeds and user requests. To be able to
scale with large numbers of feeds registered in the system and users, the system
should be extended to work on a cluster. In this case, it can be studied how to
place feeds on different machines.
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