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Abstract

The modeling of Brownian motion by Einstein and Langevin, at the beginning of
the past century, can be regarded as start point of the systematic use of stochastic
methods in physics and chemistry. Besides the theory of Brownian motion, stochastic
methods have been applied to countless applications, including the sampling of
canonical, constant-temperature ensemble in molecular dynamics simulations.

In the vast majority of cases, the stochastic differential equations which are used
as a physical model or as a computational tool are assumed to be Markovian, i.e. they
are able to predict the stochastic evolution of the system based on a knowledge of
its state at a single instant. On the other hand, many important developments can
be derived by removing this assumption. In the Mori-Zwanzig theory, for instance,
when one integrates out part of the dynamical variables from a Hamiltonian system,
a non-Markovian stochastic equation for the remaining degrees of freedom arises,
which contains finite-memory friction and noise.

By changing the properties of the memory in this generalized Langevin equation
(GLE), one can greatly influence the static and dynamic properties. In this thesis
we developed a robust and flexible framework for exploiting this class of stochastic
differential equations in order to enhance and modify almost at will the properties of
a molecular dynamics trajectory.

We begin by mapping the non-Markovian dynamics onto a Markovian one in an
extended phase-space, as this is more convenient for both simulations and analytical
derivations. We then show how a number of static and dynamic properties can be
computed exactly in the case of a harmonic oscillator and how the predictions in this
limit compare with the behavior of a real system. By performing a fitting procedure,
we can then generate sets of parameters that impart to the stochastic dynamics the
properties which are best suited to the sampling problem.

When a set of independent GLEs is applied to the Cartesian coordinates of an
ensemble of coupled oscillators, the response is as if the stochastic terms had been
applied in normal mode representation. This is a consequence of the linear nature
of the generalized Langevin equation we employ. This feature allows us to tune the
properties as a function of the vibrational frequency of the (quasi-)harmonic modes,
without the need to know any frequency and displacement pattern explicitly.

This property has allowed us to develop and demonstrate many different applica-
tions. For instance, one can either enhance or degrade the efficiency of sampling of
selected normal modes in constant-temperature simulations. One can then increase
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the efficiency of sampling for all the frequencies relevant to a given problem. There-
fore, an “optimal-sampling” thermostat is obtained which guarantees reliably low
correlation times and hence fast convergence of averages. Conversely, by enforcing a
long correlation time, one can ensure that the stochastic thermostat will not affect the
fast degrees of freedom in simulation methods based on adiabatic separation, such
as Car-Parrinello dynamics. This adiabatic decoupling would otherwise be disrupted
by the conventional, uncorrelated-noise Langevin equation. One can also predict the
extent to which the generalized Langevin equation affects the dynamical properties,
and tune it to preserve them on a selected range of frequencies. We present bench-
mark calculations on a flexible model of liquid water, and discuss the relevance of
optimal-sampling GLE in the challenging case of path-integral molecular dynamics.

A whole new set of possibilities opens up if one does not require the GLE to
obey the fluctuation-dissipation theorem. In this case a non-equilibrium dynamics
is obtained, which nonetheless reaches a stationary distribution with a frequency-
dependent effective temperature. By tuning the form of this dependence, dynamics
with unusual properties can be obtained. We demonstrate this idea by realizing a
δ-thermostat; namely, a GLE which is tuned to set the normal modes within a narrow
frequency to a finite temperature, and freeze all the others. We also prove that, by
enforcing a frequency dependence of the fluctuations of position and momentum
consistent with the finite-temperature density of a quantum harmonic oscillator,
one obtains a good approximation for the nuclear quantum effects of light ions.
Furthermore, this comes at a fraction of the computational effort that would be
required by conventional techniques. After having presented a number of diverse
one-dimensional examples and some benchmarks using simple classical forcefields,
we discuss an application of this latter method to ab-initio molecular dynamics of
lithium imide, a compound which is of interest as a medium for hydrogen storage.

The number and variety of methods we have presented within our framework
demonstrates the adaptability of the generalized Langevin equation, and its relevance
as a tool for improving significantly the efficiency and scope of molecular dynamics
simulations. Many applications of the techniques we present will follow, and we also
expect that other, completely different simulation schemes can be developed based
on this work.
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Riassunto

La modellizzazione del moto browniano messa in atto da Einstein e Langevin agli
inizi del ventesimo secolo può essere considerata il momento centrale a partire dal
quale i metodi stocastici sono stati impiegati in modo sistematico in fisica e chimica.
Oltre che nella teoria del moto browniano, tecniche stocastiche sono state utilizzate
in innumerevoli applicazioni, compreso il campionamento dell’ensemble canonico,
per mezzo di simulazioni di dinamica molecolare a temperatura finita.

Nella maggior parte dei casi si considera che le equazioni differenziali stocas-
tiche, utilizzate come modello fisico o come utile strumento computazionale, siano
markoviane: in altre parole, che siano in grado di predire l’evoluzione stocastica del
sistema a partire dalla conoscenza del suo stato ad un determinato istante. D’altra
parte, eliminando questo assunto si possono ottenere molti risultati di grande inter-
esse. Per esempio, quando nella teoria di Mori-Zwanzig si integrano le equazioni del
moto per una parte delle variabili dinamiche di un sistema hamiltoniano, si ottiene
un’equazione del moto non-markoviana per i gradi di libertà residui. Tale equazione
è caratterizzata da una forza stocastica e da un termine di attrito, entrambi con una
memoria finita.

Manipolando le proprietà di tali funzioni di memoria è possibile influenzare il
comportamento statico e dinamico di questa equazione di Langevin generalizzata.
In questa tesi abbiamo sviluppato un formalismo rigoroso e flessibile, che permette
di sfruttare questa classe di equazioni differenziali stocastiche per modificare libera-
mente le proprietà di una traiettoria di dinamica molecolare, ad esempio rendendo
più efficiente l’esplorazione di nuove configurazioni atomiche.

Il metodo che proponiamo prende spunto dall’isomorfismo esistente tra una
dinamica non-markoviana ed una più semplice dinamica markoviana in uno spazio
esteso. In questo modo diviene possibile calcolare analiticamente un gran numero
di proprietà statiche e dinamiche della traiettoria, in particolare quando l’equazione
di Langevin generalizzata (ELG) è applicata ad un oscillatore armonico. Per mezzo di
una procedura di ottimizzazione è quindi possibile generare molteplici di insiemi di
parametri in grado di modificare le proprietà della dinamica stocastica, rendendola
adatta al problema in esame. Oltre a discutere questi risultati, osserveremo come il
comportamento venga modificato nel caso di sistemi fortemente anarmonici.

La semplicità e l’efficacia del nostro approccio dipendono dal fatto che, in virtù
della linearità delle equazioni stocastiche che usiamo, quando un insieme di ELG
non correlate tra loro vengono applicate alle coordinate cartesiane di un insieme di
oscillatori accoppiati la risposta è la stessa che si avrebbe qualora le equazioni fossero
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state applicate direttamente nella base dei modi normali. Tale caratteristica permette
di regolare le proprietà del metodo in funzione della frequenza dei modi normali pre-
senti, senza conoscerne la frequenza esatta, né tanto meno gli spostamenti atomici a
cui corrispondono.

Questa proprietà ci ha permesso di sviluppare e applicare numerose strategie di-
verse. Ad esempio, è possibile incrementare o diminuire l’efficienza dell’esplorazione
configurazionale in funzione della frequenza. È quindi possibile migliorare
l’efficienza del campionamento su un ampio intervallo di frequenze, ottenendo
un termostato “ottimale” che assicura bassi tempi di correlazione per numerose
osservabili, e di conseguenza una rapida convergenza delle corrispondenti medie. Al
contrario, è anche possibile escludere dal campionamento un determinato intervallo
di frequenze, imponendo un lungo tempo di correlazione. Questo secondo approccio
è particolarmente utile nel caso di metodi basati sulla separazione adiabatica, quale
la dinamica Car-Parrinello. Infatti, la dinamica di Langevin convenzionale, basata su
un rumore bianco, provocherebbe la rottura del disaccoppiamento adiabatico ed il
fallimento della tecnica di simulazione. Infine, è possibile valutare quantitativamente
il grado di disturbo introdotto dall’ELG sulle proprietà dinamiche, e regolarlo in
modo tale da preservare la dinamica di alcune frequenze selezionate. Discuteremo
alcune simulazioni di prova, nel caso di un modello flessibile di acqua, discutendo
anche i meriti dell’ELG nel difficile caso della dinamica path integral.

È possibile sviluppare una nuova categoria di metodi, oltre a quelli finora de-
scritti, qualora non si richieda che l’ELG soddisfi il teorema fluttuazione-dissipazione.
Ne risulta in tal caso una dinamica fuori equilibrio, che d’altra parte comporta una
distribuzione stazionaria caratterizzata da una temperatura efficace dipendente
dalla frequenza. Modificando tale dipendenza è quindi possibile realizzare traiet-
torie con proprietà inusuali. Come primo esempio, presentiamo un “termostato
δ”, ovvero un’ELG costruita in modo tale da riscaldare esclusivamente i modi nor-
mali all’interno di un ristretto range di frequenze, congelando tutti gli altri. Con
un approccio simile è anche possibile imporre una dipendenza delle fluttuazioni
dalla frequenza compatibile con la distribuzione di equilibrio di un oscillatore ar-
monico quantistico, ottenendo di conseguenza una buona approssimazione degli
effetti quantistici legati ai nuclei leggeri. Il vantaggio principale di questa tecnica è
il suo costo computazionale contenuto, ai fini pratici pari a quello di una dinamica
convenzionale. Dopo aver dimostrato questo metodo in numerosi problemi monodi-
mensionali, esso sarà applicato alla dinamica molecolare da principi primi dell’imide
di litio, un composto di grande rilevanza per applicazioni di stoccaggio d’idrogeno.

Il numero e la varietà di metodi che abbiamo presentato nell’ambito del nostro
formalismo dimostrano l’adattabilità dell’ELG, e la sua importanza come strumento
per migliorare significativamente efficienza e campo di applicazione della dinamica
molecolare. Non solo ci aspettiamo che queste tecniche trovino applicazione in
numerosi casi concreti, ma riteniamo anche che sia possibile, basandosi sullo stesso
approccio, sviluppare schemi di simulazione completamente nuovi.
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Introduction

Stochastic differential equations have been used to model the time evolution of
processes characterized by random behavior, in fields as diverse as physics, chemistry
and economics. In particular, the Langevin equation has been regularly applied in
the study of Brownian motion in physical chemistry and has been used extensively
in molecular dynamics computer simulations, as a convenient and efficient tool to
obtain trajectories which sample the constant-temperature, canonical ensemble[1,
2].

In its original form, the Langevin equation is based on the assumption of instan-
taneous system-bath interactions, which corresponds to the values of the random
force being uncorrelated at different times. A non-Markovian, generalized version
of the Langevin equation arises in the context of Mori-Zwanzig theory[3–5]. When
one integrates out part of the dynamical variables from a Hamiltonian system, a
non-Markovian stochastic equation for the remaining degrees of freedom arises,
containing finite-memory friction and noise. A simple example of these history-
dependent stochastic equations, in the absence of an external potential, is

ẍ +
ˆ t

−∞
K (t − s) ẋ (s)ds −ζ= 0, (1)

where K (t ) is a positive real function which describes the friction, and ζ (t ) is a
Gaussian process, with time correlation function H (t ) = 〈ζ (t )ζ (0)〉. The fluctuation-
dissipation theorem, which ensures that configurations visited along the trajectory
are distributed according to canonical statistics, requires that H (t ) = kB T K (t ). The
conventional Langevin equation is recovered as an approximation, in the limit of a
clear separation between the characteristic time-scale of the system’s dynamics and
that of the system-bath interaction.

This class of non-Markovian stochastic differential equations has been extensively
used to model the dynamics of open systems interacting with a physically-relevant
bath (see e.g. Refs. [6–8]). In such cases, one wants to model how the dynamics of
the system is affected by the interaction with its surroundings, without having to
treat explicitly the dynamics of the full problem. While the effects of the system-bath
coupling can be very significant, they can be often modeled with reasonable accuracy
by reproducing their statistical properties by an appropriate colored-noise stochastic
differential equation (see Figure 1).

If one wants to compute equilibrium properties, the trajectory of the system is

13
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Figure 1: Trajectories of a particle in two dimensions, as described by the stochastic
differential equation (1). Three different choices of memory (we report the Fourier
transform of the friction kernel, K (ω)) lead to very different dynamics, despite having
the same diffusion coefficient. Panel (a) depicts the case of white-noise, where no time
correlation is present. In panels (b) and (c), instead, two different history-dependent
contribution are added on top of the same instantaneous friction used in (a). Each
trajectory is 2.5 ·105 time units long.
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irrelevant, as long as the configurations are sampled from the appropriate statistical
ensemble. Monte Carlo methods can be regarded as a limiting case of this line of
reasoning, where the procedure to generate new atomic configurations does not have
to bear any resemblance to Hamilton’s equations[9, 10]. However, it turns out that
in many cases Hamilton’s equations are a very natural and efficient way to generate
ensemble-preserving collective moves and extensive research has been performed -
and is still active - in the field of hybrid Monte Carlo methods, which try to combine
the best features of molecular dynamics and stochastic approaches[11].

Hamiltonian trajectories alone sample the constant-energy, microcanonical en-
semble, and they must be modified to allow energy fluctuations, if one wants to
sample the canonical, constant-temperature ensemble when the number of sim-
ulated particles is far away from the thermodynamic limit. White-noise Langevin
equation[1], or similar equations which employ uncorrelated noise[12, 13], have
been used to this aim for a long time. One is then led to consider how non-Markovian
Langevin dynamics can be used as a tool rather than as a physical model, i.e. whether
an appropriate colored-noise stochastic dynamics can extend the range of physical
observables accessible by molecular dynamics, and enhance the efficiency of conven-
tional methods. As demonstrated in Figure 1, a linear, Gaussian stochastic process
such as (1) can give rise to very different dynamical trajectories depending on the
characteristics of its memory kernels, without affecting the sampled ensemble. In
this thesis we will demonstrate that generalized Langevin equations can be used as
a powerful and flexible instrument to aid molecular dynamics simulations, which
can alter the sampling efficiency in a precise, targeted way, and even modify the
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properties of the statistical ensemble which is sampled by the trajectory.
After having reviewed briefly the mathematical foundations of the theory of

stochastic differential equations in chapter 1, we will introduce a comprehensive
framework to predict the effect of a given generalized Langevin equation on the
dynamical trajectory and on the stationary averages (chapter 2). This is based on the
isomorphism between a non-Markovian equation on the physical variables and on a
Markovian dynamics in an extended phase-space, and allows one to optimize the
parameters so as to obtain the desired effect.

We will then demonstrate the flexibility of the approach, presenting some of
the simulation techniques which can be developed within our GLE framework. We
will first discuss in chapter 3 a series of strategies to enhance the sampling of the
constant-temperature canonical ensemble, by making exploration of phase space
more effective, or to prevent the SDE from affecting the equilibration or the dynamical
properties of selected modes. In chapter 4 these ideas will be applied to the problem
of sampling in path-integral molecular dynamics.

In chapter 5 we will instead survey the consequences of breaking the fluctuation-
dissipation theorem and realize a non-equilibrium dynamics by which the effective
temperature of distinct vibrational modes can be adjusted independently. Exploiting
this concept we successfully obtain a stochastic method which can model to a good
approximation the quantum effects connected with the presence of light ions, such
as zero-point energy and non-constant specific heat. In chapter 6 this quantum ther-
mostat will be applied to ab-initio molecular dynamics of lithium imide, a material
which is being studied for hydrogen-storage applications. Finally, we will present our
conclusions.





Chapter 1

Theoretical background

Probabilistic concepts play a major role in modern physics, both in quantum me-
chanics and in statistical thermodynamics. Even Hamilton’s equations, which are
probably the prototype physical law for generating deterministic trajectories, can
equally well be treated by Liouville’s formalism, where the time evolution of a swarm
of trajectories is described in terms of their probability density.

In a number of situations one cannot - or does not want to - tackle a physical
problem based on a purely deterministic trajectory. Instead then from the beginning
a certain degree of randomness is inserted into the model, and an attempt is made to
understand the statistical properties of this stochastic contribution.

An archetypal example is Brownian motion, which is named after Robert Brown,
a Scottish botanist who observed in 1827 that pollen grains suspended in a liquid
droplet moved along irregular, unpredictable trajectories when observed under a
microscope. It was soon ruled out that this chaotic motion was a manifestation of
life, since it was demonstrated that inanimate particles also exhibit the very same
behavior. No suitable model for this phenomenon was found until the beginning of
20th century, when first Einstein[14] and later Langevin[15] proposed satisfactory,
quantitative explanations. The two approaches started from the same qualitative as-
sumption; namely, that particles in suspension undergo apparently random motion
due to fast, chaotic collisions with the molecules of the fluid. Therefore, a stochastic
description of the problem was needed, if one wanted to avoid treating the liquid
explicitly. The mathematical methods followed by the two authors were however very
different. Langevin’s argument introduced a stochastic equation for the trajectory,
which only later was developed into a fully rigorous mathematical framework. Ein-
stein’s derivation meanwhile was based on estimating the diffusion of the particles in
terms of their probability density. Both models gave results that agreed with the ex-
periments, and it was quite clear that a stochastic description in terms of trajectories
and one in terms of probability densities had a relationship much like that between
Hamilton’s and Liouville’s formalisms in classical mechanics.

A satisfactory mathematical treatment of Langevin equation had to wait 40 years
and the work of Kiyoshi Itō[16]. Even though we will not make heavy use of Itō
calculus in this thesis, we will summarize its development briefly for the simple case

17



Chapter 1 Theoretical background 18

of the one-dimensional Langevin equation, without any pretense of being exhaustive.
In the process we will encounter the fundamental ideas which are necessary for the
description of random processes. This brief examination will start with a few selected
concepts in probability theory, including the definition of the Fokker-Planck equation,
and then move on to then sketch how stochastic integrals can be constructed. We will
conclude by describing the Ornstein-Uhlenbeck stochastic process in some detail, as
this is the basis of our generalized Langevin thermostat.

1.1 Random processes

Consider a system whose state is described by the value of a vector x, which can
evolve in time according to an unknown law, possibly characterized by a degree of
random behavior. We now assume that we have collected several realizations of this
process. We will refer to each trajectory as a sample path x (t ). We letΩ be the set of
all such paths, and label each path according to some indexω. One can then describe
the random process in terms of the distribution of the points in phase space at a
given time, and hence construct a probability density1 (figure 1.1)

P (x, t ) ∝
ˆ
δ (xω (t )−x)dω.

This probability, however, does not characterize the random process completely,
since one only has knowledge on the “snapshots” of the collection of sample paths at
different times. No information regarding the identity of the paths in the different
snapshots has been collected. One could compute the joint probability for a sample
path to be at x1 at time t1, and at x2 at time t2,2

P (x1, t1;x2, t2) ∝
ˆ
δ (xω (t1)−x1)δ (xω (t2)−x2)dω. (1.1)

It would then be necessary to define a three-times probability, and proceed to
construct a hierarchy of joint probabilities and ultimately a probability functional
P [x (t )][17]. Summation rules of the form

P (x1, t1) =
ˆ

P (x1, t1;x2, t2)dx2 (1.2)

must hold, so that the information contained in the one-time probability density is
completely embedded into the two-times P ; in general, knowledge of the n-times
probability makes all the lower-order densities redundant.

This characterization of the stochastic process would be quite unpractical, even
though it is able to describe exhaustively its statistical properties. Fortunately, it
is often justified to make a number of assumptions on the form of the joint proba-
bility (1.1) so as to bring it in a more treatable form. A first simplification requires

1The integral here is just used to mean some “averaging” procedure to be performed over all the
realizations of the random process.

2We will assume times to be ordered according to t1 ≥ t2 ≥ . . ..
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Figure 1.1: A collection of sample paths for a random process. Also shown is how the
one-time probability density P (x, t ) can be constructed as the distribution of the points
of all the sample paths at a given time.

the process to be stationary in time, i.e. that the two-times joint probabilities only
depend on the time difference,

P (x1, t1;x2, t2) = P (x1, t1 − t2;x2,0) . (1.3)

1.1.1 Markovian processes and the Fokker-Planck equation

Let us now introduce the conditional probability P (x1, t1|x2, t2), which is defined as
the probability of the system being at x1 at a given time t1, given that it was as x2 at
time t2. Its relation to the joint probability is

P (x1, t1|x2, t2) = P (x1, t1;x2, t2)/P (x2, t2) . (1.4)

We will say that a process is Markovian if its joint conditional probabilities depend
only on the most recent time frame:

P (x1, t1; . . . ;xk , tk |xk+1, tk+1; . . . ;xn , tn) = P (x1, t1; . . . ;xk , tk |xk+1, tk+1) . (1.5)

This ansatz means that at each time the model has no memory of the past history,
and that further evolution is (probabilistically) determined uniquely by knowledge
of the status at a given instant3. The description of the stochastic process is thus
enormously simplified. Using the definition of conditional probability (1.4), one can
write

P (x1, t1;x2, t2;x3, t3) =P (x1, t1|x2, t2;x3, t3)P (x2, t2;x3, t3) =
=P (x1, t1|x2, t2)P (x2, t2|x3, t3)P (x3, t3) ,

i.e. any joint probability can be broken down to a product of the initial, single-time
distribution and a series of conditional probabilities. If the process is also stationary,
the conditional probability will depend only on the time difference, and hence its
evolution is completely determined by the initial probability distribution and by
the conditional probability P (x, t |x0,0). Combining Eqs. (1.2), (1.4) and the Markov

3This might seem to be a very crude assumption, but it holds true at least approximately for a large
number of physically-relevant problems.
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Figure 1.2: The terms which govern the evolution of a probability density according to
the differential Chapman-Kolmogorov equation (1.7) can be described as a deterministic
drift part, which depends on a vector field a (x, t ), a diffusion term controlled by the matrix
B (x, t ), and a discontinuous jump term which is described by the function W

(
x|x′, t

)
.

property (1.5) one arrives at the Chapman-Kolmogorov equation,

P (x1, t1|x3, t3) =
ˆ

P (x1, t1|x2, t2)P (x2, t2|x3, t3)dx2 (1.6)

Eq. (1.6) is a complex functional equation for the conditional probability density.
Under some mild conditions on the form of P , it is possible (see e.g. [16, p. 48ss]) to
derive a corresponding differential equation, which describes in the most general
form the evolution of a Markov process, that reads

∂
∂t P (x, t |x0, t0) = −∑

i
∂
∂xi

[ai (x, t )P (x, t |x0, t0)]+ ← drift

+ 1
2

∑
i j

∂2

∂xi ∂x j

[
Bi j (x, t )P (x, t |x0, t0)

]+ ← diffusion

+´ [
W

(
x|x′, t

)
P

(
x′, t |x0, t0

)− ←jump
W

(
x′|x, t

)
P (x, t |x0, t0)dx′

]
.

(1.7)

The differential Chapman-Kolmogorov equation can be split up in three terms, which
describe different elementary processes contributing to the evolution of P during an
infinitesimal time (figure 1.2).

Drift term The first term is dubbed the drift contribution as it corresponds, to
deterministic trajectories treated in a probabilistic framework. One can see that it
arises from taking the limit

lim
∆t→0

1

∆t

ˆ
|y−x|<ε

(
yi −xi

)
P

(
y, t +∆t |x, t

)
dy = ai (x, t )+O (ε) . (1.8)

A typical example of a FP equation containing the drift term only is the Liouville
form of Hamilton’s equations. In one dimension, with a potential V

(
q, t

)
and given

the boundary condition P
((

q, p
)

, t0|
(
q0, p0

)
, t0

) = δ
[(

q, p
)− (

q0, p0
)]

, the solution
in terms of a probability density is

P
((

q, p
)

, t |(q0, p0
)

, t0
)= δ[(

q, p
)− (

q (t ) , p (t )
)]

(1.9)
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where
(
q (t ) , p (t )

)
is the phase-space trajectory stemming from the ordinary Hamil-

ton’s equations
∂

∂t

(
q, p

)= a
((

q, p
)

, t
)= (

p,− ∂

∂q
V

(
q, t

))
with boundary condition

(
q (t0) , p (t0)

) = (
q0, p0

)
, as one can see substituting (1.9)

into
∂

∂t
P =−∇· [a

((
q, p

)
, t

)
P

]
.

Diffusion term The second term corresponds to diffusion, i.e. to a spread of the
probability density. This is closely connected with the random nature of the process,
just like the drift term is related to its deterministic behavior. It can be shown to
correspond to the second order analogue of Eq. (1.8):

lim
∆t→0

1

∆t

ˆ
|y−x|<ε

(
yi −xi

)(
y j −x j

)
P

(
y, t +∆t |x, t

)
dy = Bi j (x, t )+O (ε) . (1.10)

Note that all higher-order terms are O (ε) and can therefore be ignored. If only the
diffusion term is present, the differential Chapman-Kolmogorov equation reduces to
the same form obtained by Einstein for the diffusion of a Brownian particle. In one
dimension, and setting the diffusion matrix to the constant D , one has

∂

∂t
P (x, t |x0, t0) = 1

2
D
∂2

∂x2 P (x, t |x0, t0) . (1.11)

Its solution, subject to the boundary condition P (x,0|0,0) = δ (x), is P (x, t |0,0) ∝
e−x2/2Dt . One finds that the mean square displacement as a function of time is〈

x2
〉

(t ) = Dt , which correspond precisely to the behavior observed in Brownian
motion.

Jump term The very last term is a jump term, as the solution for ai = Bi j = 0
and the boundary condition P (x, t0|x0, t0) = δ (x−x0) corresponds to discontinuous
sample paths. It derives from the limit

lim
∆t→0

1

∆t
P

(
y, t +∆t |x, t

)=W
(
y|x, t

) [∣∣y−x
∣∣≥ ε] .

In this thesis we will consider only processes with continuous sample paths, and will
thus always set W = 0. In this limit the differential Chapman-Kolmogorov equation
is often called a Fokker-Planck equation.

1.1.2 The Wiener process

The solution to the one-dimensional diffusion equation (1.11), with unitary diffusion
coefficient and the initial condition P (w, t0|w0, t0) = δ (w −w0) is known as a Wiener
process, and it can be considered the prototype Markovian stochastic process. The
corresponding conditional probability density can be readily found, and checked by
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Figure 1.3: Representation of the probability density at different times for (a) the Wiener
process (1.12), and (b) an Ornstein-Uhlenbeck process (1.24) with a = b = 1 and u0 =−5.
In the second case, a well-defined, stationary probability density exists for t →∞.
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substitution. It reads

P (w, t |w0, t0) = 1p
2π (t − t0)

e−(w−w0)2/2(t−t0), (1.12)

which is simply a Gaussian spreading in time, out of the initial Dirac delta (see
figure 1.3(a)). This distribution can be as well defined in terms of its average w0 and
its variance which grows as (t − t0). Since P depends only on time differences, we
can consider for all purposes P (w, t − t0|w0,0).

In spite of its simplicity, the Wiener process has some rather disturbing properties.
First of all, the variance of its sample path grows without bounds in time, which
means that even if the average is equal to the position at time t0, the sample paths
will end up being very far from it at large times, and that no stationary probability
distribution exists.

The trajectory w (t ) is continuous, since

1

∆t

ˆ
|w−w0|>∆w

P (w,∆t |w0,0)dw = 1

∆t
erfc

(
∆wp
2∆t

)
=

=e−
∆w2
2∆t

(√
2π∆t

∆w2 +O
(
∆t 3/2))

tends to zero uniformly for small ∆t . However, the derivative of the sample path
is infinite almost everywhere. In fact, one can compute the probability of having
a displacement per infinitesimal unit time ∆t greater than a given value k. The
resulting expression reads

ˆ
|∆w |>k∆t

P (w0 +∆w,∆t |w0,0)d∆w = erfc
√
∆tk2/2, (1.13)

whose limit for ∆t → 0 is one, independent of k. Just as for Brownian motion, for
which it is a model, the Wiener process has continuous but otherwise irregular and
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chaotic sample paths.

Finally, let us derive a couple of results which will be useful in the develop-
ment of Itō’s stochastic integral. Consider the sample path at different time inter-
vals, and compute the joint probability of the increments. Since P (w2, t2|w1, t1) =
P (w2 −w1, t2 − t1|0,0) = P (∆w,∆t ), and since the process is Markovian one has4

P (∆w2,∆t2;∆w1,∆t1|w0,0) = P (∆w2,∆t2)P (∆w1,∆t1) ,

which means that the increments ∆wi are all independent of each other.

The correlation function for the Wiener process starting off at (w0, t0) is

〈w (t ) w (s) |w0, t0〉 =
ˆ

w1w2P (w1, t ; w2, s|w0, t0)dw1dw2 =

[t > s] =
ˆ
∆w1w2P (∆w1, t − s|0,0)P (w2, s|w0, t0)d∆w1dw2+

+
ˆ

w2
2 P (w2, s|w0, t0)dw2 =

=0+ s − t0 +w2
0

so that overall
〈w (t ) w (s) |w0, t0〉 = min(t − t0, s − t0)+w2

0 . (1.14)

1.2 Stochastic differential equations

1.2.1 The Langevin equation

So far, our discussion has dealt with the probability density associated with a given
random process x (t ). This is reminiscent of the treatment of the Brownian motion
developed by Einstein. As we mentioned at the beginning of this chapter, the al-
ternative approach followed by Langevin was based on an equation of motion for
the random process itself, which contained a “stochastic force” term. The Langevin
equation, in the form which was used to model Brownian motion, reads

mẍ +mγẋ −ξ= 0, (1.15)

where ξ (t ) is a Gaussian random force term which satisfies 〈ξ〉 = 0,
〈
ξ (t )ξ

(
t ′

)〉 =
δ

(
t − t ′

)
and 〈xξ〉 = 〈ẋξ〉 = 0, x and ẋ being the position and the velocity of the

Brownian particle respectively.

Langevin’s derivation considered the product of Eq. (1.15) with x, which leads to

mx
d 2

d t 2 x +mγx
d

d t
x −xξ= m

2

d 2

d t 2 x2 −m

(
d

d t
x

)2

+ mγ

2

d

d t
x2 −xξ.

4We are here considering P (∆w2,∆t2;∆w1,∆t1|w0,0) =P (w2, t2; w1, t1|w00) with w1 = w0 +∆w1,
w2 = w1 +∆w2, t1 =∆t1, t2 = t1 +∆t2.
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On averaging, the random force term disappears, since it is uncorrelated with the
position, and one can set m

〈
ẋ2

〉= kB T because the system is in thermal equilibrium.
Eventually, a differential equation for the mean square displacement

〈
x2

〉
is obtained,

m

2

d 2

d t 2

〈
x2〉+ mγ

2

d

d t

〈
x2〉−kB T = 0,

which can be solved to give

d

d t

〈
x2〉= 2kB T

γm
+C e−γt .

Considering the long time limit, one recovers the expression for the diffusion coef-
ficient d

d t

〈
x2

〉 = 2 kB T
γm , which is the same result obtained by solving the diffusion

equation (1.11) with the appropriate value for the diffusion coefficient D .

However, one might wonder about the mathematical consistency of Eq. (1.15),
and with good reasons: consider the simple case of γ= 0 and m = 1, and solve for
w = ẋ. We can tentatively write the corresponding integral

w (t ) =
ˆ t

0
ξ (s)ds, (1.16)

and leave a more rigorous discussion of its definition till later. For now, we require
only that w (t ) be continuous, and get as a consequence that w (t ) will be a Markovian
process. In fact,

w (t2) =
ˆ t2

0
ξ (s)ds =

ˆ t1

0
ξ (s)ds + lim

ε→0

ˆ t2

t1+ε
ξ (s)ds = w (t1)+ lim

ε→0

ˆ t2

t1+ε
ξ (s)ds,

i.e. the evolution of w (t ) from t1 onwards depends only on w (t1), since ξ (s) in the
last integral term is uncorrelated with ξ at previous times. Being a continuous Markov
process, one can therefore write a Fokker-Planck equation for w (t ), by computing
the drift and diffusion terms according to Eqs. (1.8) and (1.10):

a (w0, t ) = lim
∆t→0

1

∆t

ˆ w0+ε

w0−ε
(w −w0)P (w, t +∆t |w0, t )dw ∼

∼ lim
∆t→0

1

∆t
〈w (t +∆t )−w0〉 = lim

∆t→0

1

∆t

〈ˆ t+∆t

t
ξ (s)ds

〉
= 0

B (w0, t ) = lim
∆t→0

1

∆t

ˆ w+ε

w0−ε
(w −w0)2 P (w, t +∆t |w0, t )dw ∼

∼ lim
∆t→0

1

∆t

〈
(w (t +∆t )−w0)2〉= lim

∆t→0

1

∆t

ˆ t+∆t

t

ˆ t+∆t

t

〈
ξ (s)ξ

(
s′

)〉
dsds′ =

= lim
∆t→0

1

∆t

ˆ t+∆t

t

ˆ t+∆t

t
δ

(
s − s′

)
dsds′ = 1

Note that these results imply that w (t ) obeys the same FP equation as the Wiener
process, implying that it is a Wiener process! As a consequence, ξ (t ) is the derivative
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of a Wiener process, which we have shown (see Eq. (1.13)) to be infinite almost
everywhere.

To summarize, the Langevin equation (1.15) makes little sense as a differential
equation. This is a consequence of the extremely irregular behavior of the stochastic
force ξ (t ), which can have physical meaning only when thought of as the limiting
case of a physical process with a short but finite correlation time. On the other hand,
considering a noise with a finite correlation would break the Markovian assumption,
and make the treatment even more complex, so one should develop the mathematical
tools to give Eq. (1.15) a precise meaning.

1.2.2 Stochastic integrals

Generalizing Eq. (1.15), one can write a SDE of the form

ẋ = a (x, t )+b (x, t )ξ, (1.17)

which is a shorthand notation for the integral equation

x (t ) = x (0)+
ˆ t

0
a (x (s) , s)dt +

ˆ t

0
b (x (s) , s)ξ (s)ds.

To define
´ t

0 b (x (s) , s)ξ (s)ds, consider an arbitrary function of time g (t ). Since
the integral of ξ (s) alone is a Wiener process, we may write ξ (s)ds = dw (s) and, in
analogy with Riemann-Stieltjes integral5,

h (t ) =
ˆ t

t0

g (s)dw (s) = ms− lim
n→∞

n∑
i=1

g (τi ) [w (ti )−w (ti−1)] , (1.18)

where the ti ’s correspond to a subdivision of the [t0, t ] interval at n−1 points, ordered
as t0 ≤ t1 . . . ≤ ti ≤ . . . ≤ tn−1 ≤ t , and τi ’s are points taken within each interval, ti−1 ≤
τi ≤ ti (see figure 1.4). Given the random behavior of w (t ) and possibly g (t ), such a
definition poses larger problems than in the Riemann-Stieltjes case; for example, the
value of the limit can depend on the position of τi within each interval.

In fact, the precise meaning of the integral and ultimately of equation (1.17)
depends on the relative positions of the points at which g (t ) and w (t ) are evaluated.
Two schemes are commonly used to select these points. The first produces the Itō
integral, which is defined as

I

ˆ t

t0

g (s)dw (s) = ms− lim
n→∞

n∑
i=1

g (ti−1) [w (ti )−w (ti−1)] , (1.19)

5Since we are dealing with random processes, what we really imply is a mean-square limit, which is
defined as follows. Let fn be a sequence of random processes; fn is said to converge in a mean-square
sense to f if

lim
n→∞

〈(
fn − f

)2
〉
= 0,

and one can in such case write
ms− lim

n→∞ fn = f
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Figure 1.4: A possible subdivision of the [t0, t ] interval, to be used in the definition of
the stochastic integral

´
g (t )dw (t ). Since both w (t ) and g (t ) could be defined as a

random process, and at least w (t ) is an extremely irregular one, the fact that w and g
are evaluated at different points can lead to convergence problems for the partial sums
in (1.18).

i.e. g (t ) is evaluated precisely at the initial point of each interval. This choice makes
Itō’s integral very convenient from a mathematical point of view, as the value of
g (ti−1) is independent6 of [w (ti )−w (ti−1)]. For this reason, it is widely used in
analytical derivations.

The Stratonovich approach can be introduced with reference to the stochastic
differential equation (1.17) as

S

ˆ t

t0

b (x (s) , s)dw (s) = ms− lim
n→∞

n∑
i=1

b

(
x (ti−1)+x (ti )

2
, ti−1

)
[w (ti )−w (ti−1)] ,

where only the dependence on x (t ) is averaged in the mean-square limit procedure7.
The Stratonovich integral arises quite naturally when considering ξ as the limit
of a finite-memory noise, and has some nice properties. For instance, the same
rules of ordinary calculus hold formally. Unfortunately, however, it also involves
significant complications from a mathematical point of view, since the value of x (t )
is evaluated at time ti , which might be correlated with [w (ti )−w (ti−1)]. It is however
possible to find the Itō equivalent of a Stratonovich SDE, so that one can convert one
representations into the other as required[16].

A detailed discussion of the properties of the two flavors of stochastic integrals is
beyond the scope of this introductory survey. In fact, we will use only an extremely
simple form of Eq. (1.17), in which b is a constant. In this case, the two representations
are equivalent, and most of the complications of stochastic integration are not a
concern.

6Strictly speaking, this is true only if g (t ) is non-anticipating, a condition however which holds true in
most of the physically relevant cases.

7The Stratonovich integral is usually defined just as

S

ˆ t

t0

g (s)dw (s) = ms− lim
n→∞

n∑
i=1

g
(
ti−1

)+ g
(
ti

)
2

[
w

(
ti

)−w
(
ti−1

)]
.

Only with the definition given in the text, however, it is possible to draw a simple connection between
Stratonovich and Itō interpretations of Eq. (1.17). If b (x, t ) is a continuous function of t , the two definitions
are equivalent.
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Figure 1.5: Given a stochastic differential equation which generates trajectories in phase-
space x (t ) (a), the associated Fokker-Planck equation describes the evolution of a swarm
of trajectories whose initial configuration is distributed according to a the probability
density P (x,0) (b).

1.2.3 Stochastic differential equations and Fokker-Plank equation

Having examined the meaning of the stochastic differential equation (1.17), we can
move on to discuss the connections between the resulting random process and a
description in terms of a Fokker-Planck equation. In order to sketch a derivation, one
should know that, if x (t ) is the solution of the Itō SDE and f is an arbitrary function
of x (t ), f will obey

d

d t
f [x (t ) , t ] = ∂ f

∂x
[x (t ) , t ] (a (x, t )+b (x, t )ξ)+ 1

2
b (x, t )2 ∂

2 f

∂x2 [x (t ) , t ]+ ∂ f

∂t
[x (t ) , t ] .

(1.20)
Consider now a function with no explicit dependence on time. The equation for the
average of d f /d t will have the dependence on the stochastic force removed, since
ξ has zero average and is to be considered uncorrelated with any other part of the
stochastic process:〈

d

d t
f (x)

〉
=

〈
f ′ (x) a (x, t )+ 1

2
b (x, t )2 f ′′ (x)

〉
.

However, the averages can also be computed as an integral over the conditional
probability density, i.e.

〈
f (x (t ))

〉= ´ f (x)P (x, t |x0, t0)dx, so that

d

d t

〈
f (x)

〉=ˆ f (x)
d

d t
P (x, t |x0, t0)dx =

=
ˆ

P (x, t |x0, t0)

[
f ′ (x) a (x, t )+ 1

2
b (x, t )2 f ′′ (x)

]
dx.

This second integral can be integrated by parts. Then, by considering that - in order
to have a normalized probability density - P (x, t |x0, t0) must vanish at infinity, the
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boundary terms disappear8 and one is left with

ˆ
f (x)

d

d t
P (x, t |x0, t0)dx =
ˆ

f (x)

{
− ∂

∂x
[a (x, t )P (x, t |x0, t0)]+ 1

2

∂2

∂x2

[
b (x, t )2 P (x, t |x0, t0)

]}
dx.

Since f (x) is arbitrary, we have proof that the Itō SDE (1.17) corresponds to a condi-
tional probability density which satisfies the Fokker-Planck equation

d

d t
P (x, t |x0, t0) =− ∂

∂x
[a (x, t )P (x, t |x0, t0)]+ 1

2

∂2

∂x2

[
b (x, t )2 P (x, t |x0, t0)

]
. (1.21)

A similar derivation can also be performed in the case of the Stratonovich integral,
leading to a different form of the FP equation. Again, if b does not depend on x, as
will be the case for the SDEs treated in this thesis, there is no difference between the
two approaches.

1.3 The Ornstein-Uhlenbeck process

In the previous sections we have only scratched the surface of the mathematical
treatment of stochastic processes. We now have tools that are sufficient for the
treatment of a very simple, one-dimensional process. This is probably the simplest
SDE leading to a stationary probability distribution and the main ingredient behind
our generalized Langevin equation thermostat. The Ornstein-Uhlenbeck process is
characterized by the SDE9

u̇ =−au +bξ, (1.22)

i.e. there is a constant diffusion term b and a linear drift with a coefficient a. The
corresponding Fokker-Planck equation is obtained by (1.21), and reads

∂

∂t
P (u, t |u0,0) = ∂

∂u
(auP (u, t |u0,0))+ 1

2
d
∂2

∂u2 P (u, t |u0,0) ,

with d = b2.

The corresponding stationary probability P (u) = limt→∞ P (u, t |u0,0) is found by
solving

∂2

∂u2 P (u) =−2au

d

∂

∂u
P (u) , ⇒ ∂

∂u
P (u) =−2au

d
P (u)

8One obtains for the drift termˆ
f ′ (x) a (x, t )P (x, t |x0, t0)dx =

((((((((((([
f ′ (x) a (x, t )P (x, t |x0, t0)

]∞
−∞−

ˆ
f (x)

∂

∂x
[a (x, t )P (x, t |x0, t0)]dx

and for the diffusion part, integrating by parts twice,
ˆ

P (x, t |x0, t0)b (x, t )2 f ′′ (x) =
ˆ

f (x)
∂2

∂x2

[
b (x, t )2 P (x, t |x0, t0)

]
dx.

9In this case, the Itō and Stratonovich interpretations are equivalent
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Figure 1.6: Several realizations of the Ornstein-Uhlenbeck process with a = b = 1, starting
at u (0) = u0, are represented on the same plot. One of the trajectories is highlighted for
clarity. One can see how the swarm of trajectories corresponds to the evolution of the
probability density represented in figure 1.3(b).
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which yields

P (u) = 1p
2πc

e−u2/2c (1.23)

which is a Gaussian with variance c = d/2a. The solution for a generic time is still
a Gaussian, although its breadth and center are time dependent (see figure 1.3(b)),
which can be verified by substituting

P (u, t |u0,0) = 1√
2πc

(
1−e−2at

) exp

[
−

(
u −u0e−at

)2

c
(
1−e−2at

) ]
, (1.24)

into the FP equation.

The Ornstein-Uhlenbeck SDE (1.6) can also be solved using stochastic integration.
Consider the stochastic process y = ueat . According to the chain rule (1.20), the
corresponding SDE will be10

ẏ = eat u̇ + 1

2
b2 d 2 y

du2 +aueat = eat (−au +bξ)+aueat = beatξ

10One must also consider the explicit dependence of y on time, hence the term aueat .
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Which can be solved to give the correlation properties11

〈
y (t )

〉= y (0) ,
〈

y (t ) y (s)
〉= c

(
e2a min(t ,s) −1

)
from which

〈u (t )〉 = e−at u (0) , 〈(u (t )−〈u (t )〉) (u (s)−〈u (s)〉)〉 = c
(
e−a|t−s|−e−a(t+s))

(1.25)
At long times, the dependence on x (0) is exponentially damped, and one is left with〈

u (t )2
〉 → c, which is consistent with the stationary distribution (1.23). Note that

Eqs. (1.25) provide a recipe for generating sample paths consistent with the OU
stochastic differential equation (figure 1.6). If ξi are uncorrelated Gaussian numbers
with zero mean and unit variance, the points

u (0) = u0, u (i∆t ) = e−a∆t u ((i −1)∆t )+
√

c
(
1−e−2at

)
ξi

will be distributed in agreement with 1.24, and will hence correspond to points taken
from an OU sample path with spacing ∆t starting at u0.

1.3.1 The integral of the OU process

As a slightly more complicated example, let us consider the stochastic process de-
scribed by the pair of coupled SDEs

ẋ =u

u̇ =−au +bξ.
(1.26)

We consider this case for two reasons. Firstly, it allows us to introduce the ideas which
are necessary to extend the results of the previous section to arbitrary dimensions.
Secondly, the integrated OU process x is the solution of the Langevin equation
ẍ =−aẋ+bξ, which allows us to explicitly compare Einstein’s and Langevin’s solutions
for the Brownian motion problem.

One can proceed using the one-dimensional case as a guideline, considering a

11To compute the Itō integral of a deterministic function f (t ), h (t ) = h (t0)+´ t
t0

f (s)dw (s) one must

compute the partial sums, which read (with the shorthands f
(
ti

)= fi and w
(
ti

)= wi )

Sn =
n∑

i=1
fi−1

(
wi −wi−1

)
;

each ∆wi = wi − wi−1 is a Gaussian-distributed random variable with zero mean and whose spread
depends on the time interval ∆ti = ti − ti−1. To characterize the integral h (t ), we can compute its average,
which is h (t0), since all the terms have zero mean, and its variance, which (exploiting the independence
of intervals) reads

n∑
i=1

n∑
j=1

fi−1 f j−1

〈
∆wi∆w j

〉
=

n∑
i=1

(
fi−1

)2
〈
∆w2

i

〉
=

n∑
i=1

(
fi−1

)2
∆ti

which converges to the Riemann integral
´ t

t0
f (s)2 ds.
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Figure 1.7: Four sample paths of a Wiener process (red) and of an integrated Ornstein-
Uhlenbeck process with a = b = 1, starting at x (0) = u (0) = 0 (blue). They have the same
long-time behavior, but the integrated OU process is much more regular on a short time
scale. The time dependence of the root mean square deviation is also plotted, with thick,
dashed lines.
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state vector (x,u) and drift and diffusion matrices A and B , respectively:

A =
(

0 −1
0 a

)
, B =

(
0 0
0 b

)
Eventually, one obtains the 2-dimensional analogue of Eqs (1.25), which read〈(

x (t )
u (t )

)〉
=e−At

(
x (0)
u (0)

)
〈(

x (t )−〈x (t )〉
u (t )−〈u (t )〉

)(
x

(
t ′

)−〈
x

(
t ′

)〉
u

(
t ′

)−〈
u

(
t ′

)〉 )T 〉
=
ˆ min(t ,t ′)

0
e−(t−s)ABBT e−(t ′−s)AT

ds.

for the average and the two-times correlation matrix.

In this simple two dimensional case an analytical solution can be found, allowing
us to write down the correlation properties of x alone in a closed form:

〈x (t )〉 = x (0)+ 1−e−at

a
u (0) ,

〈
(x (t )−〈x (t )〉)2〉= c

a2

[
2at +4e−at −3−e−2at ] ,

which completely determine the statistical properties of the integrated OU process.

It is instructive to compare this solution with the naive (and much simpler)
derivation originally carried out by Langevin starting from (1.15). If x and u are
interpreted as the position and velocity of a Brownian particle respectively, one finds
that c = 〈

ẋ2
〉 = kB T /m, as limt→∞

〈
u (t )2

〉 = c. In addition, by comparing (1.15)
and (1.26), one recognizes that a = γ. Combining these results, one can eventually
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find that the long-time behavior of
〈

x (t )2
〉

is given by

d

d t

〈
x (t )2〉= D = 2c/a = 2

kB T

mγ
.

We have therefore recovered the Langevin’s original result with a more rigorous
approach. We can now juxtapose the actual trajectory of x (t ) with those of a Wiener
process with the same diffusion coefficient, and thus finally compare the trajectories
resulting from Langevin’s and Einstein’s models for Brownian motion. For large t the
two random processes have the same behavior, with a variance growing linearly with
time. Their short-time behavior is however very different, with the integrated OU
process having much smoother trajectories, since its derivative is continuous, and
finite almost everywhere (see figure 1.7).

1.3.2 The multivariate OU process

We will conclude this chapter by briefly describing how the Ornstein-Uhlenbeck
process can be extended to the cases with many variables. The calculation of the
integrated OU process was already an example of this problem. However, in that case
we had the additional complication of a drift matrix with a zero eigenvalue, leading to
a covariance growing without bounds. Instead, we now focus on a positive-definite
A matrix, which guarantees that the OU process will have a well-defined stationary
probability.

Let u be a vector in Rn which describes the state of the system, A,B ∈ Rn×n be
the drift and diffusion matrices respectively and ξ be a vector of n uncorrelated
Gaussian processes, such that 〈ξi 〉 = 0 and

〈
ξi (t )ξ j (t )

〉= δi jδ
(
t − t ′

)
. The SDE for

the multivariate OU process then reads

u̇ =−Au+Bξ, (1.27)

and the associated Fokker-Planck equation is

∂

∂t
P (u, t |u0,0) =

∑
i j

Ai j
∂

∂ui

[
u j P (u, t |u0,0)

]+ 1

2

∑
i j

Di j
∂2

∂ui∂u j
P (u, t |u0,0) , (1.28)

where D = BBT . Its solution can be found with conventional techniques, but the
derivation is lengthy (see e.g. Ref.[18, p. 153ss]). A simpler, neat solution can be
found by integration of (1.27) subject to the boundary condition u (0) = u0[16, p.
109ss]. Since u (t ) is generated as a superposition of Gaussian increments, it will have
a Gaussian distribution. Therefore, computing the average and covariance of u (t )
is sufficient for its characterization. These can be obtained in the spirit described
previously for the one-dimensional case:

〈u (t )〉 =e−At u0〈
(u (t )−〈u (t )〉)T (u (t )−〈u (t )〉)〉=e−tA

[ˆ t

0
e sADe sAT

ds

]
e−tAT

.
(1.29)
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Let us now define the static covariance matrix C, as the symmetric solution of the
linear equation

AC+CAT = D = BBT . (1.30)

One can then find an explicit solution for the integral in (1.29), and hence a closed
form for the finite-time covariance:〈

(u (t )−〈u (t )〉)T (u (t )−〈u (t )〉)〉= C−e−At Ce−AT t . (1.31)

Now, if one starts out from a deterministic initial configuration u0, which in prob-
abilistic terms would correspond to the boundary condition P (u,0|u0,0) = δ (u−u0),
at time t a Gaussian probability would be obtained, whose mean and covariance
are given in Eqs. (1.29) and (1.31). We can therefore write the solution to the Fokker-
Planck equation (1.28), which reads

P (u, t |u0,0) =
exp

[
− 1

2

(
u−e−tAu0

)T
(
C−e−tACe−tAT

)−1 (
u−e−tAu0

)]
√

(2π)n det
(
C−e−tACe−tAT ) . (1.32)

In the infinite-time limit, having taken A to be positive definite, P (u, t |u0,0) converges
to the stationary probability density

Ps (u) = e−
1
2 uT C−1u√

(2π)n det(C)
.

A number of other analytical results can be obtained for the multidimensional OU
process, including high-order time correlation functions (see appendix D). We will
sketch the derivations as needed, when we will discuss their use in the development
of the generalized Langevin equation thermostat, which is the subject of the next
chapter.





Chapter 2

The Generalized Langevin
Equation Thermostat

As discussed in the introduction, the aim of this thesis is to present our approach
for turning a generalized Langevin equation into a flexible and convenient tool for
enhancing the performances or extending the capabilities of molecular dynamics.
However, this far the only non-Markovian stochastic equation that has appeared is
Eq. (1). Despite its apparent simplicity, dealing with an integral-differential equation
such as (1) is a daunting task, both from the analytical and computational points of
view.

The program of this chapter and the recipe for our method consist of three main
points:

• expressing non-Markovian equations of motion in a Markovian form which is
easy to treat analytically and to implement on a computer

• predicting the properties of the resulting dynamics in an inexpensive way,
by using the exact, analytical results that can be obtained for a physically-
motivated model system

• fitting the parameters which characterize the GLE so as to enhance the desired
properties of the dynamics on the system of interest.

2.1 Markovian and non-Markovian formulations

A colored-noise Langevin dynamics for a particle with unit mass, position q and
momentum p, subject to a potential V

(
q
)

can be written in its non-Markovian form,

q̇ =p

ṗ =−V ′ (q
)−ˆ t

−∞
K (t − s) p (s)ds +ζ,

(2.1)

35
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Figure 2.1: A cartoon representing how a Markovian dynamics can turn to a non-
Markovian one when projected down to a lower-dimensionality phase space. The in-
formation contained in the s variable, which distinguishes between the red and the
blue trajectories at the marked point, is embedded into the past history of the dynamics
projected on the

(
q, p

)
subspace.

where K (t ) is a memory kernel describing the friction, and ζ (t ) is a Gaussian ran-
dom process whose time correlation function is H (t ) = 〈ζ (t )ζ (0)〉. Algorithms exist
that can be used to generate a sequence of random numbers with prescribed time
correlation efficiently[19, 20]. However, in order to introduce a history-dependent
friction kernel K (t ) in a straightforward manner, one would have to store the past
trajectory of the momenta, leading to a procedure which would be inefficient from a
computer time and memory requirements points of view.

On the other hand, it is known that integrating out some of the degrees of freedom
in a Markovian dynamics gives rise to a non-Markovian dynamics in the remaining
variables[3, 4] (see figure 2.1). Conversely, a Markovian dynamics in an extended
phase-space has often been used as a practical method to simplify the treatment
of non-Markovian problems[6, 21, 22]. In fact it has been proven that any non-
Markovian dynamics whose memory kernels can be represented as a continued-
fraction expansion can be expressed through a Markovian formalism[23].

Inspired by Mori-Zwanzig results, we supplement the dynamical variables
(
q, p

)
by a set of n additional momenta s, which will be bilinearly coupled to the physical
momentum p, so as to construct a Markovian Langevin equation:

q̇ =p(
ṗ
ṡ

)
=

( −V ′(q)
0

)
−

(
app aT

p

āp A

)(
p
s

)
+

(
bpp bT

p

b̄p B

)(
ξ

)
,

(2.2)

where ξ is a vector of n + 1, uncorrelated Gaussian numbers, i.e.
〈
ξi (t )ξ j (0)

〉 =
δi jδ (t ). This looks very similar to the multivariate Ornstein-Uhlenbeck SDE (1.27),
but for the possibly non-linear coupling between p and q . As such, we will use several
of the results listed in section 1.3.2. In Eqs. (2.2) we introduced a compact notation to
refer to the portions of the matrices which describe the coupling between different
parts of the state vector. Given the extended phase-space vector x = (

q, p,s
)
, we will

distinguish between a matrix acting on the full x and one connecting subsets of its
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components, according to the scheme

q p s

q mqq mqp mT
q

p m̄qp mpp mT
p

s m̄q m̄p M

}
Mp

Mqp
(2.3)

For example, in Eqs. (2.2) the assembly of app , ap , āp and A corresponds to the
deterministic drift matrix Ap , while the

(
p,s

)
diffusion matrix is designated Bp .

The connection between Eqs. (2.2) and (2.1) can be obtained in the same manner
as the classical application of the Mori-Zwanzig formalism to a harmonic bath[4]. The
additional degrees of freedom s can be integrated out easily, because the evolution
of the

(
p,s

)
variables in the free-particle limit of Eqs. (2.2) is described by a linear,

Markovian stochastic differential equation. For the sake of completeness, we sketch
the derivation in appendix A.

In the same appendix we also show that the memory kernel K (t ) and the noise
correlation H (t ) are related to the drift and diffusion matrices by

K (t ) =2appδ(t )−aT
p e−|t |Aāp

H(t ) =dppδ(t )+aT
p e−|t |A

[
Zap −dp

]
,

(2.4)

where we defined1 the matrices Dp = Bp BT
p and Z = ´∞0 e−At De−AT t dt . Therefore, the

Markovian equations (2.2) can generate a trajectory corresponding to finite-memory
kernels which are in principle an arbitrary combination of complex exponentials2.

2.1.1 Conditions for canonical sampling

In order to define the conditions which are required for Eqs. (2.2) to sample the
canonical, constant-temperature ensemble, it is useful to introduce also the static

covariance matrix for the free-particle dynamics of
(
p,s

)
, Cp =

〈(
p,s

)T (
p,s

)〉
, which

is related to the drift and diffusion matrices by

Ap Cp +Cp AT
p = Bp BT

p . (2.5)

1The careful reader may have recognized the same integral appearing in (1.29), and wonder why we
have not written ˆ ∞

0
e−At De−AT t dt = C, AC+CAT = D.

While this would be perfectly legitimate, we want to avoid confusion between the matrix Z (which is the
covariance matrix of a hypothetical OU process based on the s parts of the drift and diffusion matrices only)
and C which we will use below to refer to the s block of a larger covariance matrix Cp which corresponds
to the OU process built out of Ap and Bp . We chose the notation (2.3) as we deem it to be a reasonable
compromise that allows a concise labeling for the different bits of the large matrices we use. The overall
size of the phase space to be considered can be understood from the context.

2There are a number of mathematical and physical constraints imposed on the kernels, which are
discussed in section 2.3. Within those limits, any kernel can be represent approximately; clearly, it is not
possible to obtain exactly an asymptotic decay K (t ) ∼ t−n .
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Eq. (2.5) is nothing but the equivalent of Eq. (1.30) for the OU process generated by
Ap and Bp . Parts of Cp enter the expression for the Fourier transform of the memory
kernels (2.4):

K (ω) =2app −2aT
p

A

A2 +ω2 āp

H(ω) =K (ω)

(
cpp −aT

p
A

A2 +ω2 cp

)
+

+2ω2
(

aT
p

1

A2 +ω2 cp

)(
1+aT

p
1

A2 +ω2 āp

)
.

(2.6)

Eqs. (2.6) show clearly that, in order to fulfill the fluctuation-dissipation theorem[3,
24], which requires H (ω) = kB T K (ω), one must choose cpp = kB T and cp = 0. Since
the kernels - and therefore the dynamics of

(
q, p

)
- do not depend on the C block in

Cp , one can simply choose Cp = kB T , by which (2.5) simplifies to3

Dp = Bp BT
p = kB T

(
Ap +AT

p

)
. (2.7)

Together with Eq. (2.5), the fluctuation-dissipation theorem fixes Dp once Ap is
given. As we will see in chapter 5, a number of useful properties can be obtained if
the fluctuation-dissipation theorem is violated, and we will therefore consider the
general case throughout this chapter.

It is worth noting that one can also justify (2.7) and its connection to canonical
sampling based on a Fokker-Planck formalism. One can write the Fokker-Planck
equation associated with the Markovian GLE (2.2) as

∂

∂t
P = [LH AM +LGLE ]P,

where we define the operators

LH AM · =−p
∂

∂q
·+V ′ (q

) ∂

∂p
·,

LGLE · = ∂

∂p

[
app p ·+1

2
dpp

∂

∂p
·
]
+∑

i j

∂

∂si

[
(A)i j s j ·+1

2
(D)i j

∂

∂si
·
]
+

+ ∂

∂p

∑
i

[(
ap

)
i si ·+

(
dp

)
i

∂

∂si
·
]
+∑

i

∂

∂si

[(
āp

)
i p ·+(

dp
)

i

∂

∂p
·
]

.

(2.8)

Note that LH AM corresponds to the Liouville operator for a purely Hamiltonian
trajectory, while LGLE would describe an infinitesimal evolution of the marginal
probability of

(
p,s

)
in the absence of any coupling between p and q . Consider now a

3Note that Eq. (2.7) is a sufficient condition to have canonical sampling on the physical
(
q, p

)
variables,

but it is necessary to have a canonical-like distribution for s as well. Since we will always use Eq. (2.7) to
ensure that the fluctuation-dissipation theorem is satisfied, we will use “satisfies Eq. (2.7)” and “satisfies
the FDT” as equivalents, even if strictly speaking they are not. This issue is discussed further in the
introduction of chapter 5.
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tentative stationary probability distribution

P
(
q, p,s

)∝ exp

[
− 1

kB T

(
V

(
q
)+ 1

2
p2 + 1

2
s2

)]
. (2.9)

It is simple albeit tedious to verify that if (2.7) holds, both LH AM and LGLE leave P
unchanged4. A similar partitioning of the Liouville operator will be used in deriving a
strategy for numerical integration of Eqs. (2.2) (see section 2.5 below).

The case in which (2.7) does not hold is much more complex, and finding an
expression of the stationary probability distribution is exceedingly difficult. In fact,
we were not even able to prove rigorously that a stationary probability distribution
exists for an arbitrary potential. However, there are some clues that this is the case,
which are supported by an argument in the harmonic limit (see appendix B) and by
the empirical evidence of the many simulations we have performed (see chapter 5).
Firstly, we know that if Ap is positive definite the dynamics of

(
p,s

)
alone will have

a stationary distribution. An argument presented in Ref. [25] demonstrates that
K (ω) > 0 for all ω is a sufficient condition to guarantee that (2.1) with zero potential
is consistent with the second law of thermodynamics. Since - roughly speaking - this
means that any disturbance to the stable dynamics of the

(
p,s

)
will be dissipated

away, it seems that K (ω) > 0 is a desirable condition to require in order to have a
stable dynamics regardless of the details of the noise and of the potential.

Having discussed the relation between the non-Markovian Langevin equa-
tion (2.1) and its Markovian counterpart, let us now present a few simple examples,
to get a flavor of the flexibility of this GLE framework. As we will see in the next
chapters, some of these examples can also be used to demonstrate the concepts to
be used in different applications of the GLE thermostat.

2.1.2 Exponential correlations

The case in which K (t ) and/or H (t ) decay as a simple exponential can be obtained
easily, using a single auxiliary variable s. For example, to obtain a dynamics where
both K (t ) and H (t ) are exponentials, one may set

Ap =
(

0 −√
γ/τ√

γ/τ 1/τ

)
, Dp =

(
0 0
0 2kB T /τ

)
, (2.10)

which corresponds to K (t ) = γe−t/τ/τ and H (t ) = kB T K (t ). The fluctuation-
dissipation theorem is fulfilled, and the dynamics will sample the canonical
ensemble. We will return to the parameters (2.10) in section 3.2, where we will exploit

4We have gathered together terms in the LGLE part of the Fokker-Plank equation to make the derivation
more transparent. For example, the first term would generate(

app − dpp

2kB T

)
p·

which is zero if dpp = 2kB Tapp as implied by (2.7).
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the fact that the power spectrum of the corresponding noise is

H (ω) ∝ 1

1+τ2ω2 .

All the frequencies greater than 1/τ are damped, as if a low-pass filter had been
applied. Hence, we will use (2.10) as the prototype for a stochastic thermostat which
does not disturb the high-frequency modes.

Dynamics which break the fluctuation-dissipation theorem are readily obtained.
For instance, by taking

Ap =
(
γ −1/τ
0 1/τ

)
, Dp =

(
0 0
0 2γkB T

)
(2.11)

one can obtain an exponentially correlated noise, H (t ) = kB Tγe−t/τ/τ, and an in-
stantaneous friction K (t ) = 2γδ (t ). This dynamics has been used to compute ap-
proximate quantum corrections to specific heat[26].

Last of all the opposite case, with an exponential friction kernel K (t ) = γe−t/τ/τ
and uncorrelated noise H (t ) = 2γkB Tδ (t ), is obtained with the parameters

Ap =
(

0 −√
γ/τ√

γ/τ 1/τ

)
, Dp =

(
2γkB T 0

0 0

)
. (2.12)

2.1.3 δ-like memory kernels

Proceeding to a slightly more complex example, let us demonstrate how to construct
a generalized Langevin equation whose memory kernels’ Fourier transform has a
Dirac-δ-like shape. Consider the stochastic differential equation which derives from
the choice of parameters5

Ap =


0

√
γ

2π

√
γ

2π

−
√

γ
2π ∆ω ω0

−
√

γ
2π −ω0 ∆ω

 , (2.13)

Dp =kB T
(
Ap +AT

p

)
. (2.14)

5Also other choices are possible which lead to δ-like kernels[27], such as

Ap =
 0

√
γ/2π 0

−√
γ/2π ∆ω ω0
0 −ω0 0

 ,

which generates

K (ω) = 2γω2 (ω−ω0)2 +∆ω2(
ω2 −ω2

0

)2 +∆ω2ω2

1

π

∆ω

(ω−ω0)2 +∆ω2
.

This kernel has the nice feature of being zero for ω= 0 for finite ∆ω.
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Plugging these parameters into Eqs. (2.6), one readily obtains the Fourier transform
of the corresponding memory kernels:

K (ω) =2γ
∆ω2 +ω2

0 +ω2

(ω+ω0)2 +∆ω2

1

π

∆ω

(ω−ω0)2 +∆ω2
(2.15)

H(ω) =kB T K (ω). (2.16)

If∆ω is small K (ω) and H (ω) have aδ(ω−ω0)-like shape. Eqs. (2.14) and (2.16) express
the classical fluctuation-dissipation theorem. We note in passing that - together with
the combination rules to be discussed below in section 2.4 - a combination of δ-like
kernels centered on different frequencies can be used to construct a SDE which
approximates arbitrary memory functions.

2.2 The harmonic oscillator

In the previous section we have discussed the connections between the Markovian
and non-Markovian formulations of the generalized Langevin equation thermostat,
Eqs. (2.2) and (2.1). This relation, which is expressed by the connection between
the drift and diffusion matrices and the non-Markovian memory, holds regardless of
the potential V

(
q
)
. However, the actual properties of the trajectory will obviously

depend on the details of V
(
q
)
. Hence, if one wants to optimize a selected property

for a given problem, the behavior of the colored-noise thermostat in those specific
circumstances must be studied.

Typically, the thermostats used in molecular simulations have a few parameters,
that are chosen by trial and error. A thermostat based on Eqs. (2.2) depends on
a much larger number of parameters, and hence a purely empirical approach is
impractical. It is therefore important to find ways to compute a priori analytical
estimates which can be used to guide the tuning of the thermostat. To this end, we
examine the harmonic oscillator, which is commonly used to model physical and
chemical systems. By choosing V (q) = 1

2ω
2q2 the force term in (2.2) is linear, and the

dynamics of x = (q, p,s)T becomes the OU process ẋ =−Aqp x+Bqpξ. In Eqs. (2.2)
the s degrees of freedom are coupled to the momentum only. Therefore, most of the
additional entries in Aqp and Bqp are zero, and the equations for x read q̇

ṗ
ṡ

=−

 0 −1 0
ω2 app aT

p

0 āp A


 q

p
s

+
 0 0 0

0
Bp0


 ξ

 (2.17)

The exact finite-time propagator for Eqs. (2.17) can be computed, and it is there-
fore possible to obtain any ensemble average or time-correlation function analytically.
Of course, one is most interested in the expectation values which depend on the
physical variables q and p. In particular, one can obtain the fluctuations 〈q2〉 and
〈p2〉 and correlation functions of the form

〈
q2 (t ) q2 (0)

〉
, which can be used to mea-

sure the coupling between the thermostat and the system. We will discuss these and
other quantities in the following chapters, where we report the different applications
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Figure 2.2: The colored-noise dynamics of a 1D harmonic oscillator (a) can be described
by a linear stochastic differential equation (2.17). A system composed of several, coupled
oscillators, where each degree of freedom is thermostatted with an independent Langevin
equation with identical parameters (b) can be thought again as a linear, OU process, with
a large, sparse drift matrix. This matrix can be transformed in block-diagonal form by
writing the dynamics in normal-modes representation. Since the stochastic part is built
out of uncorrelated Gaussian processes, one can prove that each individual normal mode
(c) automatically behaves in the same way as if the generalized Langevin equation had
been applied in normal-modes representation.

we have developed so far. We refer the reader to appendix D for a complete list.

The estimates computed for an oscillator of frequency ω can be used to evaluate
and hence optimize the response of a normal mode of a similar frequency in the
system being studied. By performing such optimization for several frequencies at
the same time, one can achieve good performance over all the relevant phonon
frequencies. Furthermore, thanks to the properties of Eq. (2.17), one does not need to
perform a normal-modes analysis to turn this idea into a practical method. Consider
a perfect harmonic crystal, and apply an independent instance of the GLE thermostat
to the three Cartesian coordinates of each atom. It is easy to see that, since Eqs. (2.17)
are linear and contain Gaussian noise, the thermostatted equations of motion are
invariant under any orthogonal transformation of the coordinates. Therefore, the
resulting dynamics can be described on the basis of the normal modes just as in
ordinary Hamiltonian lattice dynamics (see figure 2.2). As a consequence, each
phonon will respond independently as a 1-D oscillator with its own characteristic
frequency.

The possibility of enforcing the desired, frequency-dependent behavior with-
out the need to know the exact vibrational frequency or the phonons’ displacement
patterns is the basis for the flexibility of our approach, and suggests countless applica-
tions which we have only now just begun to investigate. The amount of information
needed to tune a GLE thermostat on a complex system is minimal. In practice, one
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only needs to know a rough estimate of the range of frequencies spanned by its
vibrational spectrum. The analytical results in the one-dimensional case, can then
be evaluated for the relevant values of ω, and the parameters can be optimized to
obtain the desired behavior.

Fokker-Planck equation In passing, one can find the solution for the evolution
of the probability density (1.28) in the case of a harmonic potential of frequency ω,
project it on the x = (

q, p
)

subspace only, and average the initial configuration in the
s subspace over the stationary probability. In a sense, this would give the solution
for the time-dependent probability density under the equivalent, non-Markovian
equation (2.1)6.

The derivation is cumbersome, and is performed in appendix C. The resulting
probability evolves as a Gaussian

P (x, t |x0,0) ∝ exp

[
−1

2
(x−Uxx (t )x0)T W−1

xx (t ) (x−Uxx (t )x0)

]
.

The time-dependent matrices Uxx and Wxx are given in Eq. (C.3).

2.3 Fitting the GLE parameters

The last point in our strategy requires the fitting of the parameters in the generalized
Langevin thermostat to a set of desired properties. Just as for most optimization
schemes, three main ingredients enter the procedure. First, the definition of a merit
function which assesses quantitatively how close a set of parameters is to satisfying
the requirements of the user. The details of such a function depend on what property
one wants to optimize, and we will discuss them in chapters 3 and 5. Then, one
needs a parametrization of the drift and diffusion matrix, which possibly regularizes
the search space, and automatically enforces any existing constraints. Finally, an
optimization algorithm is needed that finds the extremal values of the merit function,
without getting trapped in local minima.

2.3.1 Designing a figure of merit for the fit

Since the number and type of properties to be optimized depends on the particular
application, we will discuss here the general principles we have used to design
a function χ whose minimum corresponds to the optimal parameters. We begin
identifying those properties of a GLE dynamics that depend only on Ap and Bp , and
those which also have a dependence on a frequency ω. Examples of the first kind
of properties (which we shall label as h

(
Ap ,Bp

)
) are the white-noise term app or

the free-particle diffusion coefficient (3.4), while the second category (which will
be labeled h

(
Ap ,Bp ,ω

)
) includes properties such as the Fourier transforms of the

6Since the status of the s variables encode the “memory” of the
(
q, p

)
degrees of freedom (see fig-

ure 2.1), what we are really computing is the evolution of the probability density according to (2.1), given
the boundary condition P

((
q, p

)
,0|(q0, p0

)
,0

) = δ
((

q, p
)− (

q0, p0
))

and averaged over all the possible
previous histories compatible with the equilibrium probability distribution.
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memory kernels, K (ω) and H (ω), and the properties of the dynamics in the harmonic
limit. We build the overall merit function as a weighted sum of terms stemming from
the different properties,

χ=∑
i

wiχi . (2.18)

Each term evaluates the distance of the actual values from the target. For frequency-
independent properties, it will simply read

χi = d
(
hi

(
Ap ,Bp

)
, h̃i

)
, (2.19)

while for frequency-dependent ones we take some representative frequencies ωi j

over the range relevant for the system being studied, and compute

χi =
[∑

j
wi j d

(
hi

(
Ap ,Bp ,ωi j

)
, h̃i

(
ωi j

))mi

]1/mi

. (2.20)

The form of (2.20) is chosen to mimic a p-norm. By tuning the exponent mi , one
can interpolate between a 1-norm behavior, where the discrepancies from individual
frequencies are simply summed, to an ∞-norm which singles out the term with the
maximum discrepancy. The latter is useful when one would like to have hi

(
Ap ,Bp ,ω

)
converge uniformly to the target h̃i (ω).

Finally, depending on the property being considered, we have chosen the
distance function to be simply d (x1, x2) = |x1 −x2|, or a logarithmic distance
d (x1, x2) = ∣∣log(x1/x2)

∣∣. In cases where an inequality target was desired (i.e. hi ≥ h̃i )
we have taken functions of the form d> (x1, x2) = max(x2 −x1,0) or d< (x1, x2) =
max

(
log(x1/x2) ,0

)
.

2.3.2 Parametrization of GLE matrices

As already discussed, a number of constraints must be enforced on the drift and
diffusion matrices in order to guarantee that the resulting stochastic differential
equation is well-behaved. It is therefore important to find a representation of the
matrices that ensures these conditions are automatically enforced during the fit, and
that the parameters space is efficiently explored. A first condition, required to yield
a memory kernel with exponential decay, is that all the eigenvalues of Ap have a
positive real part. A second requirement is that the kernel K (ω) is positive for all real
ω. This ensures that the stochastic process will be consistent with the second law of
thermodynamics[25].

Finding the general conditions for Ap to satisfy this second constraint is not
simple. However, we can state that a sufficient condition for K (ω) > 0 is that Ap +AT

p

is positive definite (see appendix B). For simplicity we shall assume such a positivity
condition to hold, since we found empirically that this modest loss of generality does
not significantly affect the accuracy or the flexibility of the fit. Moreover, in the case
of canonical sampling, Ap +AT

p > 0 is also required in order to obtain a real diffusion

matrix, since Bp BT
p = kB T

(
Ap +AT

p

)
according to Eq. (2.5).
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One would like to find a convenient parametrization, which automatically en-
forces these constraints. This is best done by writing Ap as the sum of a symmetric
and antisymmetric part, A(S)

p +A(A)
p . Since any orthogonal transform of the s degrees

of freedom will not change the dynamics (see appendix A), one can assume without
loss of generality that the A(S) block in A(S)

p is diagonal (see Eq. (2.3) for the naming
convention). Since in the general case the two components of Ap do not commute,
we will assume A(A)

p to be full, and write A(S)
p in the form

A(S)
p =



a a1 a2 · · · an

a1 α1 0 · · · 0

a2 0 α2
. . . 0

...
...

. . .
. . .

...
an 0 0 · · · αn


.

In order to enforce the positive-definiteness, one use an analytical Cholesky decom-
position A(S)

p = Qp QT
p , with

Qp =



q q1 q2 · · · qn

0 d1 0 · · · 0

0 0 d2
. . . 0

...
...

. . .
. . .

...
0 0 0 · · · dn


, (2.21)

αi = d 2
i , ai = di qi , and a = q2+∑

i q2
i . Such a parametrization guarantees that Ap will

generate a dynamics with a stationary probability distribution, and requires 2n +1
parameters for the symmetric part (the elements of Qp , Eq. (2.21)), and n(n+1)/2 for
the antisymmetric part A(A)

p . If we want the equilibrium distribution to be canonical
we must enforce the fluctuation-dissipation theorem. The matrix Bp BT

p is then
uniquely determined by (2.7).

If instead we aim at a generalized formulation, which allows for frequency-
dependent thermalization, there are no constraints on the choice of Bp other than
the fact that both Bp BT

p and the covariance Cp must be positive-definite. Clearly, a
real, lower-triangular Bp is the most general parametrization of a positive-definite
Bp BT

p , and amounts at introducing (n +1)(n +2)/2 extra parameters. Together with

the assumption that A(S)
p > 0, the condition Bp BT

p > 0 is sufficient to ensure that the
unique symmetric Cp which satisfies (2.5) is also positive-definite.

2.3.3 Minimization algorithm

We have developed a robust parametrization, which however does not solve all the
minimization problems associated with the highly nonlinear search space. The major
problems we encounter are the presence of local minima and, more specifically, the
existence of “degenerate” states when relatively large matrices are used (n & 4).
In these cases, the optimization does not exploit the full parameter space, which
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means that increasing n does not necessarily improve the accuracy. This issue can
be reduced by adding penalty terms which depend on the eigenvalue spectrum of A,
and enforce an even distribution of the eigenvalues over the range of interest7.

Since computing analytical estimates of GLE properties is inexpensive, we used
very simple, robust algorithms; namely, a combination of simulated annealing[28],
which we employed for an initial phase-space search, and downhill simplex[29] mini-
mization to refine the fit. As is often the case in complex non-linear optimizations,
having a good initial guess helps tremendously in improving the final outcome.

We used several heuristic strategies to obtain such initial configurations. A very
successful prescription is to gather several small matrices with known properties,
either by using an analytical form such as (2.13) or by performing a preliminary
fit, and then combining them using the rules of section 2.4, to generate the initial
parameters for further optimization at higher n.

2.4 Transformation rules for GLE dynamics

Given that fitting generalized Langevin thermostat parameters is not a straightfor-
ward task, it is useful to have some simple recipes to transform and combine existing
matrices, so as to adapt them to systems different from the one they had initially
been fitted for. A collection of optimized parameters is can also be obtained from an
online repository. 8

2.4.1 Matrix scaling

The colored-noise dynamics (2.2) has some invariance properties, which make it
possible to predict how the dynamics change when the Ap and Cp matrix are multi-
plied by a positive scalar. In fact, one can see that if the drift and covariance matrices
(Ap ,Cp ) correspond to the memory kernels K (ω) and H (ω), the scaled matrices
(αAp ,βCp ) yield the kernels αK

(
α−1ω

)
and αβH

(
α−1ω

)
. Furthermore, as we will

discuss later, most of the properties of the dynamics are then transformed by a simple
scaling (as a rule of thumb, quantities with the units of a frequency transform as
h (ω) ←αh

(
α−1ω

)
, and quantities with the units of an energy as h (ω) ←βh

(
α−1ω

)
).

2.4.2 Combination rules

We now discuss a set of combination rules which can be used to blend two generalized
Langevin equations into a new one, whose memory kernel is a weighted sum of those
of the original SDEs. At variance with matrix rescaling, which generates a dynamics
whose statistical properties can be obtained from the original ones, there is no simple
relationship between the static and dynamic properties of the mixture GLE and those
of its components.

7One can compute for instance the average and the spread of the spectrum, and pin them to the
desired values by a term of the form (2.19), whose weight in Eq. (2.18) is then reduced as the optimization
procedure approaches convergence.

8See http://gle4md.berlios.de, where sample routines in different programming languages are also
available.

http://gle4md.berlios.de
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Consider the Markovian stochastic equations(
ṗ
ṡ1

)
=−

(
1app

1aT
p

1āp
1A

)(
p
s1

)
+

(
1bpp

1bT
p

1b̄p
1B

)(
ξ1

)
(

ṗ
ṡ2

)
=−

(
2app

2aT
p

2āp
2A

)(
p
s2

)
+

(
2bpp

2bT
p

2b̄p
2B

)(
ξ2

)
,

(2.22)

which have the corresponding non-Markovian form

ṗ =−
ˆ t

−∞
K1(t − s)p(s)ds +ζ1(t )

ṗ =−
ˆ t

−∞
K2(t − s)p(s)ds +ζ2(t ).

(2.23)

For simplicity we have written down only the free-particle limit of Eqs. (2.2) and (2.1).
The position-momentum coupling can be introduced without changing the reason-
ing nor the final result. It is to be understood that 1Ap and 1Bp generate the memory
kernels K1(t ) and H1(t ) and so on.

It is simple to prove, by direct substitution into Eqs. (2.4), that the non-Markovian
SDE with memory kernels K (t ) = w1K1(t )+w2K2(t ) and H(t ) = w1H1(t )+w2H2(t )
can be obtained from a Markovian process whose matrices Ap and Dp = Bp BT

p are
built from the following combination of the parameters of Eqs. (2.22):

Ap =


1app w1 + 2app w2

1aT
p
p

w1
2aT

p
p

w2
1āp

p
w1

1A 0
2āp

p
w2 0 2A


Dp =


1dpp w1 + 2dpp w2

1dT
p
p

w1
2dT

p
p

w2
1dp

p
w1

1D 0
2dp

p
w2 0 2D


(2.24)

We note in passing that by combining this result with the possibility of having δ-
like kernels (2.15), one obtains a recipe to construct kernels of arbitrary shape. Let us
stress that this idea does not substitute the fitting procedure described in section 2.3,
since there is not a straightforward connection between the memory kernels and all
the properties of the dynamical trajectory. Moreover, an explicit fitting procedure
allows to obtain a better accuracy with the same number of additional degrees
of freedom, by exploiting the full dimensionality of the search space. However,
as we have discussed, mixing a few δ-like kernels can provide a suitable starting
configuration for the nonlinear optimization.

2.5 Implementation details

Having discussed how to derive, characterize and fit a set of parameters for a general-
ized Langevin equation thermostat, we must face the problem of implementing an
integrator for Eqs. (2.2) in a molecular-dynamics code. Thankfully, this is a straight-
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forward task. Here we consider the case of a velocity-Verlet integrator, which updates
positions and momenta by a time step ∆t , according to the scheme:

p ←p −V ′(q)∆t/2

q ←q +p∆t

p ←p −V ′(q)∆t/2.

(2.25)

Eqs. (2.25) can be obtained using Trotter splitting in a Liouville operator
formalism[30]. In the same spirit one can introduce our GLE thermostat by
performing two free-particle steps by ∆t/2 on the (p,s) variables[31] (with reference
to Eq. (2.8), the Verlet step corresponds to an approximation of the propagator
e∆tLH AM , and the

(
p,s

)
to e∆tLGLE /2):(

p,s
)←P

[(
p,s

)
,∆t/2

]
p ← p −V ′(q)∆t/2

q ← q +p∆t

p ← p −V ′(q)∆t/2.(
p,s

)←P
[(

p,s
)

,∆t/2
]

(2.26)

At variance with thermostats based on second-order equations of motion such as
Nosé-Hoover, where a multiple time-step approach is required to obtain accurate
trajectories[32, 33], this free-particle step can be performed without introducing
additional sampling errors. The exact finite-time propagator for (p,s) reads9:

P
[(

p,s
)

,∆t
]T = T(∆t )

(
p,s

)T +S(∆t )ξT (2.27)

where ξ is a vector of n +1 uncorrelated Gaussian numbers, and the matrices T and
S can be computed once, at the beginning of the simulation and for all degrees of
freedom[16, 34, 35]. The relations between T, S, Ap , Cp and ∆t read10

T = e−∆tAp , SST = Cp −e−∆tAp Cp e−∆tAT
p .

It is worth pointing out that when fluctuation-dissipation theorem holds, the
canonical distribution is invariant under the action of (2.27), whatever the size of
the time-step. A useful consequence of this property is that, in the rare cases where
applying (2.27) introduces a significant overhead over the force calculation, the
thermostat can be applied every m steps of dynamics, using a stride of m ∆t . This
will change the trajectory, but does not affect the accuracy of sampling.

The velocity-Verlet algorithm (2.25) introduces finite-∆t errors, whose effect

9Compare with Eq. (1.32). The finite-time propagator generates the new position in such a way to
fulfill the Fokker-Planck equation associated with the free-particle OU process, subject to the boundary
condition of being initially at point (p,s).

10So far we have simplified expressions by choosing a unit mass. In a real system, one has two choices:
either using mass-scaled momentum (p̃i =p

mi q̇i ) and the expressions derived for unit mass, or applying
Eq. (2.27) with S multiplied by

p
mi (if the integrator stores momenta) or by 1/

p
mi (if the integrator stores

velocities).
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needs to be monitored. In microcanonical simulations, this is routinely done by
checking conservation of the total energy H . Following the work of Bussi et al.[13] we
introduce a conserved quantity H̃ , which can be used to the same purpose:

H̃ = H −∑
i
∆Ki (2.28)

where ∆Ki is the change in kinetic energy due to the action of the thermostat at the
i -th time-step, and the sum is extended over the past trajectory. In cases where the
fluctuation-dissipation theorem holds, the drift of the effective energy quantitatively
measures the violation of detailed balance induced by the velocity-Verlet step, simi-
larly to Refs. [13, 31]. In the cases where the FDT does not hold, the conservation of
this quantity measures only the accuracy of the integration, similarly to Refs. [36, 37].

One of the major advantages of our approach is that, once Eqs. (2.26) are im-
plemented in a MD code, all the different applications that will be described in
the following chapters can be realized within the very same framework, by simply
changing the parameters of the GLE.





Chapter 3

Canonical sampling

After having described in detail how to define and tune a generalized Langevin
thermostat in the abstract, we now turn our attention to a first set of applications;
namely, various methods for enhancing and modifying the sampling of the constant-
temperature, canonical ensemble. The use of molecular dynamics as a means for
computing equilibrium averages is well established. This approach is based on the
assumption of ergodicity[10, 38], i.e. that one can compute an ensemble average by
performing a dynamical trajectory which visits points with a probability distribution
consistent with the ensemble,

1

Z

ˆ
dpdqA

(
q,p

)
e−H (q,p)/kB T = lim

τ→∞
1

τ

ˆ τ

0
A

(
q (t ) ,p (t )

)
dt .

Serious problems arise when different regions of phase space are separated by high
energetic barriers, which are seldom crossed during dynamical trajectories. These
activated, rare events are one of the major problems in computer simulation of many
important systems, and several techniques have been and are being developed to
deal with them1.

Even when these activated processes are not a concern, one would like to speed
up the convergence of the averaging procedure, which basically amounts to gen-
erating uncorrelated configurations in as few steps as possible. To this aim, many
different schemes, both stochastic and deterministic, have been developed which
modify Hamilton’s equations to allow for accurate and efficient constant-temperature
sampling. During this process, the real dynamical properties of the system are lost,
to an extent which depends to the details of the system and of the thermostatting
scheme (see figure 3.1 for a simple example).

So-called global thermostatting schemes[13, 39] act only on the total kinetic
energy K of the system, which is changed so as to sample the appropriate distribution

P (K )dK ∝ K
(
N f /2−1

)
e−K /kB T dK .

1We will briefly sketch one of these methods in section 3.5.

51
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Figure 3.1: Total energy (divided in its potential (blue) and kinetic (red) energy contribu-
tions) and position q of a one-dimensional harmonic oscillator of unitary ω and mass,
during microcanonical dynamics (a) and subject to a white-noise dynamics with friction
γ= 1 (b) and γ= 103 (c).
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The effect on the trajectory is small, since the perturbation on individual components
of the momentum becomes negligible as the number of degrees of freedom N f is
increased. Hence, in general, global thermostats will affect the dynamical properties
only slightly. However, there is a drawback with these approaches which can be
understood by considering the following: if half of the particles of the system are
initialized with zero temperature, and half at twice the target temperature, the system
would be in a massively non-equilibrium state, yet the overall kinetic temperature
would be correct (figure 3.2). Consequentially, a global thermostat would not help
the system to reach equilibrium, and instead one would be forced to rely on the
spontaneous heat flow which occurs because of anharmonic coupling between the
components of the system.

A local thermostat, such as white-noise Langevin or the massive version of Nosé-
Hoover thermostat[1, 40], couples to the individual atomic components of the mo-
mentum. As a result, it is able to detect and actively counterbalance uneven distribu-
tions of energy between the different parts of the system. This comes however at the
expense of a greater influence on the real-time dynamics.

The extreme example given in Figure 3.2 serves as a guide for understanding
the properties of the two classes of thermostats in more realistic situations. Global
schemes will perform well in anharmonic and homogeneous systems, where the
coupling between different particles or normal modes is strong. Meanwhile, local
schemes are better suited to situations where one wants to compute a local property,
and cannot rely on internal dissipation to ensure efficient loss of of memory. This
would be the case for harmonic or inhomogeneous systems[41].

Although it would be interesting to explore the effect of correlated noise on
the stochastic velocity rescaling[13] global thermostat, the generalized Langevin
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Figure 3.2: Comparison of the behavior of a global (a) and local (b) thermostats in the
case where part of the system is much hotter than the target temperature, while the
remainder is much cooler. The global thermostat only “feels” the total kinetic energy,
which has a reasonable value, while in the local scheme each degree of freedom is taken
care of independently, and hence the thermostat would actively counter the temperature
imbalance. Equilibrium will be reached eventually in the global case also, but only
because of internal coupling between components.

thermostat we present in this thesis is a local scheme. In this chapter we will discuss
how one can fine-tune the effect of the thermostat as a function of the characteristic
time of molecular motion, and thereby enhance or reduce the efficiency of sampling
in the constant-temperature ensemble, while maintaining a degree of control over
the degree of disturbance introduced to the dynamics.

3.1 Optimal sampling

As a first example application for the colored-noise framework we have introduced
in chapter 2, we will discuss how it is possible to construct a thermostat which aims
to sample the canonical ensemble as efficiently as possible. A precise measure of effi-
ciency would necessitate an in-depth knowledge of the details of the system and the
observables one wishes to compute. Instead, we endeavor to provide a “fool-proof”
scheme, which ensures a close-to-optimal efficiency for a broad spectrum of cases,
while allowing enough flexibility to be further tuned to more specific requirements.

3.1.1 White noise on the harmonic oscillator

Let us consider again the simple example in figure 3.1, where white-noise Langevin
dynamics is performed on a one-dimensional harmonic oscillator. Clearly, in the
microcanonical, zero-friction limit the position oscillates back and forth periodically
and total energy remains constant. In this case the canonical ensemble is not sampled
properly, and a high degree of correlation is present between the configurations
adopted at different times.

Introducing a friction and noisy force terms in the form of a white-noise Langevin
equation (1.15) causes fluctuations in the total energy, and guarantees that the canon-
ical ensemble will be sampled. However, the efficiency of sampling is not a monotonic
function of the intensity of the noise. Compare the panels in figure 3.1. In panel (b)
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a friction γ = ω is used: total energy fluctuates wildly, and both the potential and
kinetic energy components vary significantly over the time scale of few vibrational
periods. In panel (c), where a much higher friction γ= 103ω was chosen, we observe
that the kinetic energy fluctuates much faster than in panel (b). However, exploration
of configuration space is hampered significantly.

Sampling momentum space is easy, as the equilibrium probability distribution is
just e−p2/2mkB T , and hence one can pick a random, independent momentum at any
time. By contrast, configuration sampling is considerably more difficult, and is thus
our major concern 2.

To turn these observations into a quantitative assessment of the efficiency of
sampling, we define the correlation times of the potential, kinetic and total energies,
V (t ), K (t ) and H (t ) =V (t )+K (t ):

τV = 1〈
V 2

〉−〈V 〉2

ˆ ∞

0
〈(V (t )−〈V 〉) (V (0)−〈V 〉)〉dt ,

τK = 1〈
K 2

〉−〈K 〉2

ˆ ∞

0
〈(K (t )−〈K 〉) (K (0)−〈K 〉)〉dt ,

τH = 1〈
H 2

〉−〈H〉2

ˆ ∞

0
〈(H(t )−〈H〉) (H(0)−〈H〉)〉dt .

(3.1)

Our strategy is then to compute these correlation times for a harmonic oscillator
of frequency ω, and subsequently minimize their value as a function of the friction
coefficient γ.

In the case of white-noise, it is possible to obtain simple, closed expressions,
which read

τV (ω) = 1

2γ
+ γ

2ω2 ,

τK (ω) = 1

2γ
,

τH (ω) = 1

γ
+ γ

4ω2 .

(3.2)

While τK can be decreased without bound, an optimum value of the friction exists for
both potential and total energy which minimizes the corresponding correlation time
(see figure 3.3). These optimal values are γV =ω and γH = 2ω respectively. In a real
system, many different frequencies are present. Therefore, by selecting a friction one
chooses a particular frequency ωV = γ (ωH = γ/2) which will be optimally coupled
with the thermostat. The remaining normal modes will be sampled sub-optimally,
and we can define an efficiency parameter κV (H) =

[
τV (H) (ω)ω

]−1, which is equal to
one for ωV (H), and decreases for smaller and higher ω’s.

2A complete re-sampling of momenta at given intervals is the main idea behind the Andersen
thermostat[42]. In this simple harmonic model, because the exact Hessian is known, the position can be
randomized just as easily.
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Figure 3.3: Correlation times for the kinetic, potential and total energies (τK , τV and
τH respectively, see Eqs. (3.2)) of a harmonic oscillator of frequency ω, subject to a
white-noise Langevin equation with friction γ. As in figure 3.1, we can distinguish a low-
friction, underdamped regime (panel 3.1(a)) and a high-friction limit where the oscillator
is overdamped and diffusion within configuration space is hampered (panel 3.1(c)).
Between these two extremes, there is an intermediate range of values, for which the noisy
term disturbs the periodic dynamics without completely masking the inertial oscillations,
which help the sampling.
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3.1.2 A uniform-efficiency thermostat

The results in the previous section serve as a useful introduction to our strategy. They
also support the common wisdom, which is to choose a value of the friction which
is commensurate to the reciprocal of the characteristic time scale of the process
being monitored. Armed with the generalized-Langevin equation machinery we
have introduced in chapter 2 we can however attempt something more sophisticated;
namely, we can enhance the value of κV (H)(ω) over a broad frequency range that
encompasses all the relevant vibrational modes of the system being studied[43, 44].
This is possible because the generalized Langevin equation is linear, as discussed
in section 2.2. Consequentially, if an independent thermostat is applied to every
Cartesian component of a harmonic crystal, the resulting dynamics will behave as if
the thermostats had been applied on its normal modes. Deterministic thermostats
such as Nosé-Hoover[39, 45, 46] do not possess this rotational invariance, because
they are based on second-order equations of motion. In appendix E we present a
simple example in which this lack of invariance leads to significant deterioration of
the sampling properties.

There are several reasons why this kind of a “flat efficiency” thermostat is de-
sirable. Firstly, a particular observable could depend, in a complex manner, on a
number of different vibrational modes. This may well make a white-noise thermostat,
tuned on a specific frequency, a non-optimal choice. Secondly, in order to opti-
mize a conventional thermostat in an empirical way one has to perform very long
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preliminary runs and compute the relevant correlation times as a function of the
parameters; we refer the reader to chapter 4, where we compare different sampling
schemes in the challenging case of path-integral molecular dynamics, for a more
thorough discussion. Finally, in a number of situations (ab-initio dynamics to name
just one) one cannot afford to perform simulations just to optimize the sampling
parameters. It would be desirable therefore to have a “black-box” strategy in which
the sampling is guaranteed to be close to optimal regardless of the physical property
of interest.

The fitting procedure described in section 2.3 is readily adapted to this case.
Since we want to perform canonical sampling, the FDT has to hold, so that Cp = kB T .
This in turns fixes Bp by means of Eq. (2.5). Consequentially, the entries of Ap

are the only independent parameters. One then chooses a set of m frequencies
ωi =ωmi n(ωmax /ωmi n)i /(m−1), that are equally spaced on a logarithmic scale over
a broad range (ωmi n ,ωmax ). Finally, the function to be optimized is built using
the model given in Eq. (2.20) and a logarithmic distance between the actual values
κV (H) (ωi ) and the optimal value of 1:

χ=
[∑

i

∣∣logκV (H)(ωi )
∣∣m

]1/m

. (3.3)

A large value for the exponent m enforces a flat efficiency curve over the whole
frequency range. However as the exponent is increased the optimization procedure
gets stiffer. Therefore, starting off with a large value will almost certainly lead to
unsatisfactory local minima. To remedy this one can start the optimization with a low
value for m, and gradually increase it to higher valuer as the optimization progresses.

In Figure 3.4 we compare the optimized κ(ω) for different frequency ranges and
numbers of additional degrees of freedom. Although we could not obtain a rigorous
proof, we find empirically that κ(ω) = 1 is the best result which can be attained, and
that a nearly-optimal efficiency can be reached over a very broad range of frequencies.
However, this constant efficiency decreases slightly as the fitted range is extended.
We were not able to contrast this effect, neither by increasing the number n of si

employed. We found however that by using a larger n it is possible to make the
response flatter.

3.1.3 Diffusion and the free-particle limit

The scheme we have described so far works optimally in harmonic or quasi-harmonic
systems. Anharmonicity will introduce deviations from the predicted behavior so, in
the extreme case of diffusive systems such as liquids, one has to ask how much will dif-
fusion be affected by the thermostat? Not least because, for an overdamped Langevin
equation, the diffusive modes are slowed down considerably (see e.g. Ref. [41]). To
estimate the impact of the thermostat on the diffusion, we define the free-particle
diffusion coefficient D∗ as the diffusion constant in the absence of physical forces,
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Figure 3.4: Sampling efficiency as estimated from Eq. (3.1) for a harmonic oscillator,
plotted as a function of the frequency ω. The κ(ω) curve for a white-noise Langevin
thermostat optimized for ω=ω0 (black, dotted lines, Eq. (3.2)) is contrasted with those
for a set of optimized GLE thermostats. The panels, from bottom to top, contain the
results fitted over frequency ranges spanning two, four and six orders of magnitude
around ω = 1 respectively. Blue, continuous lines correspond to matrices with n = 4,
while the red, dashed lines are for n = 2.
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which, for a GLE thermostat, is given by:

mD∗

kB T
= 1〈

p2
〉 ˆ ∞

0
〈p(t )p(0)〉dt =

=
[

A−1
p

]
pp

=
(
app −aT

p A−1āp

)−1
,

(3.4)

if the FDT holds3. In practical cases, if an estimate of the unthermostated (intrinsic)
diffusion coefficient D is available, one should choose the matrix Ap such that D∗ À
D, as then the thermostat will not become an additional bottleneck for diffusion.
Equation (3.4) has the interesting consequence that D∗ can be enhanced either
by reducing the overall strength of the noise, as in white-noise LE, or by carefully
balancing the terms in the denominator.

3In the general case, Eq. (3.4) would read

mD∗
kB T

=
[

A−1
p Cp

]
pp

/
[
Cp

]
pp .
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We have found empirically that for an Ap matrix fitted to a set of harmonic modes
in the frequency range (ωmi n ,ωmax ), the diffusion coefficient computed using (3.4) is
about D∗ ≈ kB T /mωmi n . This expression therefore gives a useful recipe for choosing
the minimum frequency to be considered in the fit, when the diffusion coefficient
is known experimentally or can be estimated. We will return to the problem of
constant-temperature simulation of diffusive systems in section 3.4, where we will
apply these ideas to a practical example. Now instead we turn our attention to
achieving poor sampling for selected frequency ranges, which is precisely what is
required for simulation methods based on adiabatic separation.

3.2 A thermostat for Car-Parrinello dynamics

Car-Parrinello (CP)-like, extended Lagrangian schemes [47, 48] would greatly benefit
from the development of an improved, tunable thermostat. The idea behind this
approach is very general, and applies to any system where the forces are the result of
an expensive optimization procedure. Essentially, the minimization is circumvented
by extending the dynamical degrees of freedom so as to include the parameters
which would normally be optimized. An artificial dynamics is then introduced, which
allows these extra variables to be maintained close to the ground state, by adiabatic
decoupling from the remaining degrees of freedom. In the prototypical example of
CP molecular dynamics (CPMD) a fictitious mass is assigned to the electronic degrees
of freedom so that they can be evolved at the same time as the ions. If the fictitious
mass is small, the dynamics of the electrons are adiabatically separated from those
of the ions, so the electrons are kept close to the ground state while the nuclei are
evolved at the correct temperature. An extended Lagrangian scheme can also be used
in classical simulations that use polarizable force fields[49, 50]. In these cases, the
adiabatically-separated degrees of freedom describe the charge polarization. Similar
approaches have also been suggested in the field of rare-events sampling, to separate
the oscillations of the microscopic degrees of freedom from those of a few selected
slow reaction coordinates [51–53].

Controlling the temperature in these CP-like techniques requires separate treat-
ment of the ionic degrees of freedom, which must sample the correct canonical
ensemble, and the variational parameters, which must always remain at low tem-
perature so as to minimize the error in the forces [54]. One might think that only
applying the thermostat to the ionic degrees of freedom would be sufficient, since
the ions’ dynamics are adiabatically separated from those of the electrons. However,
if one applies a white-noise Langevin thermostat, the motion of the ions will be
disturbed, and high-frequency components will be introduced which will disrupt
adiabatic decoupling causing a fast increase in the temperature of the electrons (see
figure 3.8). For this reason, so far deterministic thermostats of the Nosé-Hoover (NH)
type [39, 45, 46] have been adopted, generally in the form of Nosé-Hoover chains
which circumvents the well-known ergodicity problems of the original version of
the algorithm[46]. However, this scheme introduces a large number of parameters,
whose effect on the ions’ dynamics is not easy to predict and control, and suffers
problems connected with the lack of rotational invariance in the Nosé-Hoover equa-
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Figure 3.5: The autocorrelation time of the total energy for harmonic oscillators of fre-
quency ω (Eq (3.2)) is plotted for different values of the thermostat parameters (2.10).
Namely, dark curves correspond to high friction (γ−1 = 20 fs) whereas light ones corre-
spond to a more gentle thermostat (γ−1 = 1 ps). Dotted lines correspond to white noise
(τ→ 0) and full ones to colored noise with τ = 2 fs. The curves are superimposed on
the vibrational spectrum, obtained from the Fourier transform of the velocity-velocity
autocorrelation function, for a simulation of calcium carbonate using a polarizable force-
field. The shell vibrational modes we report for reference are obtained from a run where
we artificially heated the shells to 300 K.
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tions of motion (see appendix E). The GLE thermostat approach, however, allows
one to design a Langevin equation where the noisy force does not contain the high-
frequency components that induce the high-frequency motion of the ions that are so
damaging to the adiabatic decoupling. We will show that this is a viable strategy for
obtaining a stochastic thermostat suitable for CPMD dynamics.

3.2.1 A low-pass filtered noise

As a first example, and to test our ideas, we consider the simple exponentially-
correlated noise generated by the parameters given by Eq. (2.10). The memory
kernel and its Fourier transform read

K (t ) = γ

τ
e−|t |/τ, K (ω) = γ

π

1

1+τ2ω2 ,

respectively. This corresponds to a low-pass filter which damps the components of
the power spectrum of the noise for ω greater than a cutoff frequency ωF = 1/τ. By
tuning τ one can reduce the frequencies which would otherwise couple with the
fast electronic modes (see figure 3.5). Initially, to perform extensive tests, we did not
apply this thermostat to ab-initio CPMD, but instead focused on classical molecular
dynamics, using a polarizable force field. In this approach the electronic DOF are
represented by charged shells, bound by a harmonic potential to their corresponding
atomic core. In particular, we consider the simulation of crystalline calcite[36], using
a force field in which the Ca2+ cores are treated as non-polarizable ions, while the
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Figure 3.6: Shells (TS ) and ions (TI ) temperature for calcite, as a function of the ther-
mostat parameters. Simulations have been performed for several values of thermostat
parameters, which are joined by continuous lines, for the sake of clarity. In all panels
we distinguish the strength of the ion thermostat by the line color. Blue and red curves
correspond to strong (γ−1 = 20 fs) or mild (γ−1 = 1 ps) frictions respectively. In panel
(a) and (c) we vary τ, and choose two extreme values of the shell friction, γ−1

S = 1 ps and

γ−1
S = 50 fs, which are represented with full and dashed lines respectively. In panel (b) and

(d), we vary γS instead. Here full and dashed lines correspond to a physically meaningful
filter (τ= 2 fs) and to white noise (τ= 0), while the red and blue lines correspond to the
same values of γ used in panels (a) and (c).
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polarizability of the CO2−
3 anions is described by a charged shell attached to each

oxygen. Thermostats are applied to the non-polarizable ions and, in the case of the
oxygens, to the center of mass of the system formed by the ion plus its shell.

A small drift of the electronic temperature is unavoidable even in a microcanon-
ical simulation due to imperfect decoupling. Since we aim to perform long sim-
ulations, it is necessary to apply a zero temperature, memory-less thermostat of
friction γS to the electrons so as to balance this leakage of kinetic energy from the
ionic degrees of freedom. This simulation scheme amounts to a non-equilibrium
dynamics, in which heat is injected into the ionic DOF and systematically subtracted
from the electronic ones. It would therefore be desirable to use a very small γS , since
a dynamics too far from equilibrium would raise serious concerns about the accuracy
of sampling.

We simulated a box containing 96 CaCO3 units, with a timestep of 1 fs. NVT runs
with target temperature T = 300 K were performed, and we systematically tested
what effects varying τ, γ and γS has (Fig. 3.6). Averages are computed from 1 ns-long
runs, where we discard the first 100 ps for equilibration.
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For a large range of parameters, the procedure performs as expected; namely,
the temperature of the shells remains below a few K, and the ions equilibrate to the
desired temperature. When τ is larger than zero the heat transferred to the electronic
DOF is reduced. Some care must be taken in choosing the friction γS , as the shell
thermostat induces a small drag on the ions. If, at the same time, a weak friction γ is
used for the ions their temperature sets to a lower value than the target. Moreover,
since τH decays rather slowly to zero for ω > τ−1, to prevent the thermostat from
heating up the shells one must choose a cutoff frequency much lower than the highest
ionic frequency. As a consequence, the relaxation time for high-frequency phonons is
increased, which makes the effects of shell-induced drag more pronounced. However,
the thermostat can be systematically improved by using more si ’s, so as to obtain a
filter which is more sharply defined.

3.2.2 Enhancing the CPMD thermostat

In order to improve the performance of the simple low-pass filter GLE (2.10) we can
introduce a fitting procedure, which is necessary if we wish move on to a larger pa-
rameter space. We can optimize the sampling efficiency by using (3.3) over the ionic
frequencies range, up to a cutoff frequency ωC P . We then introduce an additional
term so as to force a steep decrease of the effectiveness of the thermostat for higher
frequency modes,

χC P =
[ ∑
ωi>ωC P

max

[
logκ(ωi )−k log

ωC P

ωi
, 0

]m
]1/m

. (3.5)

The term above ensures a decrease of κ(ω) aboveωC P , with a slope k on a logarithmic
scale, and values of k as large as 9 can be used. Such a steep slope guarantees
an abrupt drop in thermalization efficiency, hence removing the high-frequency
components from the noise (see Figure 3.7).

3.2.3 Ab initio CPMD

Thermostatting an ab-initio CPMD is more challenging. Since wavefunctions are not
atom-centered, the coupling of the dynamics of the electronic degrees of freedom to
the ions is stronger than in the shell-model case, so the presence of high-frequency
components in the noise quickly heats up the electrons. In addition the considerable
computational effort involved in ab-initio CPMD makes speeding up equilibration
and sampling mandatory.

As a test example, we ran simulations of a single heavy water molecule in vacuum,
using a standard setup from the literature (see figure 3.9 and Ref. [56]). We ran sev-
eral independent trajectories for a total of 90 ps, starting from ionic configurations
equilibrated at 300 K and from wavefunctions quenched to the Born-Oppenheimer
surface [57]. We then take as a reference a massive Nosé-Hoover-chains simula-
tion [46, 58], and compare it with the GLE thermostat results. We used 5 additional
momenta and fitted the parameters using the prescriptions described above (the
resulting κH (ω) curve is reported in the inset of figure 3.9(b)).
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Figure 3.7: Thermostatting efficiency, as estimated from Eq. (3.1), for a colored-noise
thermostat optimized for Car-Parrinello dynamics. Sampling efficiency is optimized for
ω ∈ (10−3,1), and an abrupt drop in efficiency is enforced forω ∈ (1,10), using the penalty
function (3.5) in the fitting. The thick curve corresponds to k = 9, the thin curve to k = 6
and the dotted one to k = 3. The κ(ω) curve for a white-noise thermostat centered on the
optimized range is also reported for reference (dotted black curve).
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Figure 3.8: Temperature of the electronic degrees of freedom during the initial phases
of a Car-Parrinello dynamics of a heavy water molecule in vacuum. The huge drift for a
white-noise Langevin thermostat (with a rather strong friction γ−1 = 15 fs) (a) is in direct
contrast with the performance of a GLE thermostat (b) (see text and figure 3.9 for details
about the parameters) and a Nosé-Hoover chains thermostat of length four, and with
coupling frequency ωQ = 2000 cm−1 (c).
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Figure 3.9: Autocorrelation functions for the squared displacements along the symmetric
stretching (a) and the bending modes (b) of a heavy water molecule in vacuum, per-
formed in the NVT ensemble at T = 300 K. We used a fictitious mass µ= 200 a.u., and a
timestep of 4 a.u., in order to minimize the errors on the forces [55]. The Nosé-Hoover
thermostat with chain length 4 has been used, with its mass chosen so as to maximize
the coupling to the stretching mode. The NH correlation functions (blue) are highly
oscillating and decay very slowly (the shading highlights the curve’s envelope). In con-
trast using the new thermostat (red) we find a much sharper decay, which in the case
of the stretching requires display on an enlarged scale to be appreciated (inset of panel
(a)). In the inset of panel (b) we show the relation between κH and ω for our thermostat.
The parameters have been optimized so as to obtain a sharp decay of the response for
frequencies above the stretching mode.

0 2 4 6 8 10 12

t @psD

0

0.2

0.4

0.6

0.8

1

<
q2

H0
Lq

2
HtL

>

0

0.2

0.4

0.6

0.8

1

<
q2

H0
Lq

2
HtL

>

q

q

103 104 105

10-6

10-3

11

0 0.5 1

0

0.5

1

t @psD

Ω @cm-1 D

Κ H
@p

sD

aL

bL

With the present, very conservative choice of parameters the drift in electronic en-
ergy is negligible for both thermostats (see figure 3.8). The strength of the thermostats
is such that the underlying dynamics of the ions is severely altered. In Figure 3.9
we plot the autocorrelation function of the squares of the normal modes. The in-
tegral of these functions measures the time required to lose memory of the initial
configuration. It is evident that the use of an optimized colored-Langevin thermostat
dramatically reduces this time. Therefore, a thermostat tuned in this way helps to
reduce statistical uncertainty in ab initio molecular dynamics simulations, which is
particularly relevant given their high computational cost.

3.3 Preserving dynamical properties

Introducing a stochastic term on top of Hamilton’s equations will inevitably alter
the time-dependent properties of the resulting trajectory. When one is sampling
static averages, this is not a concern. Ideally, to compute dynamical properties
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one should perform several microcanonical simulations starting from independent
configurations at the desired temperature.

In this section we will explore the possibility of obtaining an a-priori estimate for
the extent of disturbance introduced to the dynamics by a given GLE. Then, extending
this concept, one could select which ranges of frequencies should be affected, and
which should be undisturbed.

To this end, we consider once more our harmonic oscillator model. The power
spectrum of a harmonic dynamics, as computed from the velocity-velocity corre-
lation function, is a Dirac δ-function, centered at the oscillator’s characteristic fre-
quency ω0. Any sort of dissipation will cause a broadening of this δ function and
leave it with a finite peak width, and/or a shift in the peak position. We can therefore
compute the power spectrum of the actual GLE dynamics and integrate it in a narrow
window of width ∆ω around ω0, and compare it with the total integral. Then, the
larger the intensity leaking out of the window, the larger the disturbance introduced
to the dynamics.

Let x (t ) = (
q (t ) , p (t ) ,s (t )

)
be the vector describing the position in the extended

phase space and Aqp and Cqp be the drift and static covariance matrix for a harmonic
oscillator of frequency ω0 (see section 2.2). The Fourier transform of the normalized
velocity-velocity correlation function reads (see Eq. (D.2))

Cpp (ω) = 1[
Cqp

]
pp

[
Aqp

A2
qp +ω2

Cqp

]
pp

.

The integral of Cpp (ω) between 0 and ∞ is π/2, therefore the fraction of the power
spectrum between two frequencies is

W (ω1,ω2) = 2

π

ˆ ω2

ω1

Cpp (ω)dω= 2

π

1[
Cqp

]
pp

{[
− tan−1

(
1

ω
Aqp

)
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We can thus define a simple measure of the disturbance introduced by the thermostat

η (ω0,∆) = 1−W (ω0 (1−∆/2) ,ω0 (1+∆/2)) , (3.6)

where∆ is the width of the integration window relative toω0. As usual, we construct a
target function modeled using Eq. (2.20) to define regions where we want to preserve
the dynamic properties, and then carry out a fitting procedure to obtain a set of
parameters for a thermostat that will preserve the dynamics in the specified region.

In the following we will use this idea to design a thermostat which seeks to
efficiently couple in the neighborhood of a selected frequency, while disturbing as
little as possible the dynamics of the other normal modes. This setup could be used to
guarantee efficient, local thermalization of high-frequency modes, without disturbing
the slow, diffusive dynamics, which is similar to to the use of a dissipative particle
dynamics thermostat in MD[12]. While we will not compare the two approaches here,
it is interesting to remark that our method has some computational advantage, as
one needs only couple individual particles, rather than particle pairs, to a stochastic
dynamics.
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Figure 3.10: The vibrational spectrum for a flexible water model[59] as computed from
the Fourier transform of the velocity-velocity correlation function of a microcanonical
dynamics (shaded) is compared with the spectrum measured from a thermostatted
simulation (red). We employed a GLE thermostat built so that the disturbance to the
dynamics is minimal outside a narrow frequency window. The parameters are then
adapted (see section 2.4) to center this disturbance on 530, 1650, 3600 cm−1 in panels
(a), (b), (c) respectively. The “disturbance” parameter (3.6) with ∆= 0.01 is shown as a
dashed line.
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In figure 3.10 we demonstrate the behavior of this thermostatting scheme on the
dynamics of a flexible-water model at 298 K. The dynamical properties, as estimated
from the vibrational density of states, are not perturbed unless ηÀ 0, in accordance
with the predictions performed in the harmonic limit. The disturbance is less ap-
parent but still present when the region with η 6= 0 overlaps with anharmonic, broad
features of the spectrum. Also the diffusion coefficient, which corresponds to the
ω→ 0 limit, is the same within statistical uncertainty in all the three cases and in the
microcanonical dynamics4.

3.4 Liquid water: a case study

We started this chapter comparing global and local thermostatting schemes. We
discussed how the former disturb the dynamics less, while the latter are more suitable
for dealing with the imbalance in the energies of different parts of the system, or

4As a side note, we remark that in order to compute the vibrational spectrum or the diffusion coefficient
from NVE dynamics, one must perform several independent simulations starting from configurations
equilibrated at the desired temperature as, if this is not done, one risks finding spurious effects due to the
infinitely long correlation time of total energy.



Chapter 3 Canonical sampling 66

more generally for enhancing the sampling when the natural lifetime of phonons is
very long.

When one is simulating a strongly anharmonic system such as a liquid, the dif-
fusive modes are the most challenging sampling problem. Molecular dynamics is
particularly successful in this respect, and for this reason global thermostats, which
have a negligible effect on the dynamics, are a very good for systems where diffusion
is important[13, 41]. We discussed in section 3.1.3 how the optimal sampling GLE
thermostat can address this problem in a local framework, since it automatically re-
duces the disturbance on long-time dynamics, when fitted to a very broad frequency
range.

We will conclude the present chapter by applying our GLE framework to a flexible
model of water[59]. This test is particularly challenging, since a broad range of
vibrational frequencies are present, ranging from localized and relatively harmonic
stretchings, to anharmonic hydrogen-bond network modes and eventually diffusive
motion. Note that the model was originally fitted for path-integral simulations.
Therefore, we do not expect to achieve quantitative agreement with experiments by
running purely classical dynamics. Our reason for choosing this force field was purely
pragmatic - it will be discussed also in a proper path-integral framework (chapter 4)
and in an application of the quantum thermostat (section 5.2). We will carry out a
similar comparison in chapter 4, where we further demonstrate the advantages of
the optimal-sampling GLE, which behaves as a “one-size-fits-all” thermostat, that is
able to provide satisfactory, robust results with minimal knowledge of the properties
of the system being studied.

3.4.1 Local and global schemes

We first perform a couple of benchmark calculations using conventional, white-noise
Langevin dynamics and stochastic velocity rescaling[13], which we take as examples
of a local a global thermostat respectively. This will allow us to set the standards
for comparison with GLE thermostatting, but also to highlight the strengths and
deficiencies of these two approaches.

For each choice of parameters5 we monitor the vibrational spectrum as computed
from the velocity-velocity correlation function. The deviation from the constant-
energy density of states then serves as a measure of the magnitude of the disturbance
introduced in the dynamics. We also compute the correlation properties of the total
potential and kinetic energies, and of the square modulus of the dipole moment of
the supercell. Finally, we also compute correlation properties for the projections of
the kinetic energy on the internal, rotational and translational motions of the water
molecules6. The first three quantities serve as examples of global properties. The

5The simulations have been performed with a modified version of the DL-POLY[60] MD code. A cubic
supercell containing 216 water molecules at the experimental room-temperature density have been used,
with a time-step of 0.5 fs. Velocity-velocity correlation functions were computed out of four independent
12.5 ps-long runs; the correlation function has been multiplied by a triangle windowing function before
being Fourier transformed. Other autocorrelation functions have been computed from 4 independent
runs, each 1 ns long.

6These three components are defined as follows. mO , mH and m = 2mH +mO are the masses of
oxygen, hydrogen and of a water molecule respectively, and vH1(2) and vO are the velocities of the
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Figure 3.11: Dynamical and correlation properties for the dynamics of a flexible water
force field[59], thermostatted at 298 K with a white-noise Langevin equation, with the
friction set to γ−1 = 1 fs. The NVE density of states (shaded) is compared with the actual
vibrational spectrum. Lower panels show the computed autocorrelation functions for
a number of observables. On the left, the total potential and kinetic energies (V and K
respectively), and the squared modulus of the total dipole moment are shown, while,
on the right, the kinetic temperature is decomposed into the contributions from center-
of-mass velocity of individual water molecules, Kcm , from hindered-rotational motion,
Kl i b and from internal vibrations (stretchings and bending) Ki n .
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fluctuations of the dipole moment (which can be related to the dielectric constant of
the liquid), in particular, are known to converge slowly. The decomposition of the
different components of the kinetic energy, instead, allows us to discuss the efficiency
in thermostatting “semi-local” properties, i.e. the ability of the thermostat to contrast
the unbalance between different portions of the system.

White-noise Langevin dynamics The first example calculation was done with a
white-noise, local Langevin thermostat with a very strong friction, γ−1 = 1 fs. The
results are shown in figure 3.11. Just as in the overdamped case of figure 3.1, the
dynamical properties are completely lost. All the components of the kinetic energy
are randomized very quickly, however the sampling of configuration space is slowed

two hydrogen atoms and of the oxygen. First, we compute the velocity of the center of mass as vcm =
m−1 (

mO vO +mH vH1 +mH vH2
)
, from which it is trivial to compute the kinetic energy of the center

of mass, Kcm = mv2
cm /2. The residual velocities, after subtraction of vcm , must be further processed.

To compute a (hindered-)rotational contribution Kl i b we compute the inertia tensor and total angular
momentum relative to the center of mass, I and l, and get Kl i b = lT I−1l/2. The remainder is the internal
(stretching and bending) contribution, Ki n = K −Kcm −Kl i b . These values are then summed over all
individual molecules to find the overall terms, whose autocorrelation functions are plotted in the figures
of this section.
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Figure 3.12: Dynamical and correlation properties for the dynamics of a flexible water
force field[59], thermostatted at 298 K with a white-noise Langevin equation. The friction
here is set to γ−1 = 1 ps. The caption of figure 3.11 provides a description of the quantities
shown.
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down considerably. In particular, relaxation time of the squared dipole moment of the
cell is extremely long, which would make converging the statistical error problematic.

The correlation properties are much better with a friction tuned to γ−1 = 1 ps (see
figure 3.12). The disturbance to dynamical properties is smaller, and the configura-
tion sampling is more efficient. Note however that the sampling of fast modes will be
much less efficient than that obtained in the overdamped case. This is not a major
concern, if one is interested only in equilibrium sampling of slow, diffusive modes.
On the other hand, during equilibration or when performing ab initio simulations
one may wish to apply more aggressive thermostatting. In summary, finding the best
γ for a white-noise LE requires a lot of trial and error, not least because the efficiency
of sampling depends strongly on the observable of interest.

Stochastic velocity rescaling Let us examine the effect of a global thermostat;
namely, stochastic velocity rescaling[13] with a very strong friction, γ−1 = 1 fs (fig-
ure 3.13). This method has only a marginal effect on the dynamics, as the sole total
kinetic energy is modified. Therefore, the effect on individual particles becomes
negligible for systems of moderate size. Hence, a strong coupling can be used with-
out affecting the sampling of the diffusive modes[13, 41]. The sampling of a difficult
quantity such as the squared dipole moment is very efficient and, at the same time,
the total kinetic energy is thermalized almost instantaneously. Note however that
the projection of the kinetic energy on the various types of molecular motion has a
relatively long correlation time, which reflects a similar, slow relaxation of the corre-
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Figure 3.13: Dynamical and correlation properties for the dynamics of a flexible water
force field[59], thermostatted at 298 K with a stochastic velocity rescale method[13].
The friction is set to γ−1 = 1 fs. The caption of figure 3.11 provides a description of the
quantities shown.

f=V
f=K
f=Èd 2

0 5 10 15 20
t@psD

0

0.2

0.4

0.6

0.8

1

<
fH

tLf
H0

L>

f=Kcm
f=Klib

f=Kin

0 1 2 3 4 5
t@psD

11 101 102 103

0

0.2

0.4

0.6

0.8

1

D
oS

@a
rb

.u
.D

Ω @cm-1D

sponding vibrational modes. This observation highlights the main drawback of global
thermostatting discussed in figure 3.2; namely because only the total kinetic energy is
taken into account, the relaxation time of different portions of the system is dictated
by their intrinsic dynamics. During equilibration, or when quasi-equilibrium dynam-
ics are performed (see section 3.5) this effect can lead to sampling of a significantly
distorted statistical ensemble. For this reason, one must be particularly careful and
monitor both global and local properties so as to ensure that equilibrium has been
reached.

3.4.2 Optimal sampling

We now undertake a practical test of the ideas discussed in section 3.1. We use a GLE
which satisfies the FDT, and whose parameters have been fitted to provide constant
efficiency over a broad frequency range that encompasses most of the vibrational
spectrum of liquid water. We measure the efficiency by the value of κV predicted in a
purely harmonic case (Eq. (3.1)). In figure 3.14 we report the relaxation properties of
the resulting dynamics. As predicted from the computed η (Eq. (3.6)) the dynamics
are heavily modified. However, the modifications are not nearly as severe as they are
in the overdamped case (figure 3.11). As the thermostat is tuned so as to be close to
critical damping conditions over the whole vibrational spectrum, we observed fast
relaxation of all the observables we compute. We underscore that the parameters
for the GLE thermostat have been chosen based on general arguments, and only
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Figure 3.14: Dynamical and correlation properties for the dynamics of a flexible water
force field[59], thermostatted at 298 K with a GLE thermostat fitted so as to provide
optimal sampling for harmonic modes spanning four order of magnitude in vibrational
frequencies, between 0.5 and 5000 cm−1 The theoretical predictions for κV (full line)
and η (dashed line) are also reported on top of the vibrational spectrum. In the lower
panels, we report the correlation functions for a number of observables (see the caption
of figure 3.11 for a description of the quantities shown).
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an order-of-magnitude estimate of the extent of relevant vibrational frequencies.
Thus, our fitting strategy turns a method with tens of parameters into a black-box
procedure, which enforces efficient sampling on very different properties without any
need for empirical testing. Moreover, as will be discussed in chapter 4, such broad-
band optimal-sampling noise is resilient to huge shifts in the optimized frequency
range, as opposed to the dramatic degradation of efficiency which is witnessed in the
case of uncorrelated noise.

One flaw is that the observed correlation time of the squared dipole moment
is significantly larger (even if not dramatically so) than in the case of stochastic
rescaling (figure 3.13). In fact, fluctuations in such observable depend on concerted
rearrangements of the hydrogen-bond network, which are completely anharmonic
and are disturbed by any aggressive thermostatting. However, the flexibility of GLE
framework even provides tools for tackling this problem, as described below.

3.4.3 A thermostat for water

The thorough testing and discussion performed above leads to a list of desiderata for
the thermostatting scheme. Ideally, we would like to achieve an efficient coupling
to the internal degrees of freedom and the to the stiffer librations, while leaving the
anharmonic, diffusive portion of the vibrational spectrum as undisturbed as possible.
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Figure 3.15: We designed a GLE thermostat to be used in simulations containing liquid
water. The efficiency of sampling for the potential energy κV is optimized over the
frequency range containing stretchings, bendings and hydrogen-bond network modes.
For frequencies below 300 cm−1, we require a reduced disturbance on the dynamics, as
measured by η (see Eq. (3.6)). These predictions in the harmonic limit are compared with
the actual vibrational spectrum computed from a thermostatted dynamics of a flexible
water model[59] at 298 K, and with the NVE density of states (shaded), which is drawn
as a reference. In the lower panels, we report the correlation functions for a number of
observables (see figure 3.11 for a description of the quantities shown).
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We can enforce the first requirement during fitting by using κV to measure sampling
efficiency of stiff modes. The disturbance on the low-frequency region meanwhile
can be gauged by monitoring η.

This is a difficult fitting problem, since we want to achieve somewhat contradic-
tory results; namely, we would like the colored noise to greatly disturb the dynamics
of the fast modes, while at the same time it should not harass the slower vibrations,
which will be particularly sensitive to the presence of the noise. To resolve this, it is
important to start with good initial parameter set. To this end, we use a superposition
of three δ-like contributions to the memory kernel (see section 2.1.3) centered on the
stretching, bending and libration peaks of the DOS. We then let the fitting algorithm
optimize the GLE properties.

The resulting κV (ω) and η (ω,0.1) are plotted in the upper panel of figure 3.15,
together with the vibrational spectrum computed from the thermostatted dynamics.
One can see that the high-frequency, localized modes are efficiently thermalized
(despite the coupling being far from the optimal κV = 1), while the diffusive modes
experience only a minor disturbance.

The relaxation properties computed for the flexible-water model conform with
expectations. Fast, internal modes are thermostatted efficiently, as are the hindered
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rotation motions corresponding to frequencies between 500 and 1000 cm−1. Slower,
diffusive behavior meanwhile is minimally affected, and we obtain a short correla-
tion time for the squared dipole moment, as desired. The price to pay is that the
thermostatting of Kcm is less effective than in the optimal-sampling case, and closer
to the behavior of a global thermostat. However, as discussed below, there are great
advantages in using a local thermostat whenever fast equilibration is required.

3.5 Thermostatting quasi-equilibrium dynamics

As a final example of the relevance of an efficient thermostat in the context of
molecular-dynamics simulations we turn to the problem of non-equilibrium
dynamics. Many techniques for estimating free-energy differences must be per-
formed at quasi-equilibrium conditions, either by slowly dragging the system
along a pre-defined reaction coordinate (e.g. steered MD[61]) or by introducing a
history-dependent bias potential (this is the case of metadynamics[62, 63]).

These methods share the common feature that energy is injected in the system
to artificially accelerate what would otherwise be rare, activated events. In order to
guarantee that quantitative estimates for the free-energy differences are computed,
one must assume that such energy supply will be dissipated quickly and that the
system will remain close to equilibrium under the imposed bias. This condition holds
true only in the limit of infinitely slow steering or infinitely slow addition of bias.
This is obviously in conflict with the user’s desire to reduce the computational effort.
However, an efficient, well-designed thermostat can help speed up equilibration, and
provide more accurate results in a given simulation time.

3.5.1 Metadynamics

While a critical discussion of the relative merits of different free-energy techniques
is beyond the scope of this section, we need to introduce the concepts and the
important parameters for one of those methods, as we will use it in the examples that
follow. Metadynamics aim is to reconstruct the free energy with respect to a set of
collective variables {si (x)}

F (s0) =−kB T ln

ˆ
e−βV (x)δ (s (x)−s0)dx

by performing a dynamical trajectory in which the physical potential is supplemented
by an history-dependent repulsive bias, constructed as a superposition of Gaussians
centered at points previously visited by the trajectory

Ṽ (x, t ) = w

ˆ t

0
e−(s(x)−s(x(t ′)))2/2σ2

dt ′. (3.7)

The relevant parameters here are the rate of deposition w and the width of the
Gaussian functions σ, which define the resolution at which the free-energy surface
can be reconstructed[62–66]. As the bias builds up, the system is discouraged from
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remaining in the same region of collective-variable space. It has been shown[67]
in a high-friction Langevin model that the negative of the bias, once the relevant
portion of the phase space has been explored, provides an unbiased estimator of the
underlying free energy.

However, we have observed that, when an overdamped Langevin equation is used,
the sampling of diffusive modes is hampered considerably. This could eventually
result in slower convergence of the bias to the correct free-energy profile. In the
previous section we have seen that a global thermostat, such as stochastic velocity
rescaling, works well to enforce a canonical distribution of the total kinetic energy,
while also ensuring minimal disturbance of the dynamical properties and of the
diffusive, collective modes of a liquid in particular. On the other hand, we have also
noticed that local properties are equilibrated slowly, as this equilibration is dependent
on internal anharmonic coupling between the different components of the system.
Intuitively, this drawback is particularly worrisome in a non-equilibrium simulation
such as the one stemming from the history-dependent bias (3.7). Energy is injected
into the system, often into a few degrees of freedom, as most collective variables
depend on the coordinates of few atoms. If quantitative results are to be obtained,
this additional energy must be dissipated quickly, and it is therefore questionable
whether one can rely on internal couplings only.

3.5.2 Alanine dipeptide in water

In order to discuss this issue in more detail, we present a realistic example, i.e. the
calculation of the free-energy profile for alanine dipeptide in explicit water, a classic
model system which, in spite of its simplicity, captures some of the features of more
complex - and computationally expensive - problems7.

The conformation of the backbone of the dipeptide is described by two dihedral
angles, and the energetic landscape is relatively complex, containing valleys and
mounds spanning a range of several tens of kJ/mol (see figure 3.16). The history-
dependent bias introduces forces on few atoms, and we can monitor the kinetic
temperature of the peptide atoms only. We note in passing that monitoring the
temperature of a small group of particles is not simple, since fluctuations are very
large and one needs to average several independent trajectories to observe a trend
which is statistically significant.

We ran several simulations with different values for the bias deposition rate, in
which the filling rate (the volume of bias deposited per unit time) was kept constant
by adjusting the Gaussian width σ. We performed two sets of simulations. In the
first case, we used a strong stochastic velocity rescaling thermostat, with friction

7We performed simulations using the GROMACS4[68] code, patched with the PLUMED[69] plug-in for
metadynamics and with custom routines to implement the GLE thermostat. We have used the TIP3P[70]
water potential and OPLS[71] force field for proteins. We prepared a simulation box containing 205 water
molecules together with the alanine dipeptide, and equilibrated it at constant temperature and ambient
pressure for 10 ns. No bonds or angle constraints have been used. For each set of parameters we then
performed 64 independent metadynamics runs at constant volume, each of which was 1 ns long. A
timestep of 0.5 fs has been chosen to integrate the equations of motion. As is customary in metadynamics
simulations, free-energy profiles have been constructed from the average of snapshots of the bias taken
from the point of first complete filling (about 0.5 ns) until the end of each trajectory.
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Figure 3.16: Free-energy surface for an alanine dipeptide molecule in water. Contour
lines are separated by 5 kJ/mol. The dihedral angles used as collective variables are also
illustrated.
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Figure 3.17: Average kinetic temperature of the alanine dipeptide atoms only, during a
metadynamics run with bias deposition rate w . In all cases, the average temperature of
the whole simulation box is within 1 K of the target of 300 K. Results from an optimized
GLE thermostat and from stochastic velocity rescaling[13] are compared.

GLE
SVR

101 102

w@kJ�psD

300

350

400

450

500

550

T
@K

D

γ−1 = 10 fs, while, in the second case, we resorted to a local GLE scheme, with the
parameters described in figure 3.15. As we discussed above, this choice of parameters
achieves concurrently the goals of a strong local coupling with minimal disturbance
of diffusive, collective modes.

We start with a relatively high deposition rate w = 5 kJ mol−1ps−1, and with
broad hills with σ= 0.40 radians. With these parameters, both thermostats succeed
in maintaining the kinetic temperature of the whole system and of the protein at
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Figure 3.18: Differences between the free-energy surface computed with the highest
deposition rate (80 kJ mol−1ps−1) and the converged result at low bias deposition rate.
Left panel shows the result with a global thermostat, while the rightmost panel shows
the GLE case, where we used the same parameters employed in figure 3.15. The thick
line corresponds to the zero, and contour lines are separated by 1 kJ/mol. Note that the
statistical uncertainty is about 1 kJ/mol, so the GLE result can be considered converged
within statistical accuracy.
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300 K, within the statistical error bar (< 1 K). The resulting free-energy surface is
identical to the one reported in figure 3.16 within the statistical error, which is around
1 kJ/mol. If the deposition rate is increased, and the width of the hills decreased (so
as to maintain a constant “volume”) the average kinetic temperature of the atoms of
the peptide deviates from the target value (figure 3.17). The local GLE thermostat -
despite using parameters far from optimal coupling (see section 3.4.3) - effectively
counterbalances this local deviation from equilibrium, even with a deposition rate as
high as 80 kJ mol−1ps−1 where the deviation from the target temperature is less than
10 %. The global thermostat is considerably less effective, and the dialanine reaches
a stationary temperature as high as 550 K.

One would expect to observe major systematic errors in the reconstructed FES,
when using such high values of w , especially given the large deviations in the local
temperature from the correct ensemble. Interestingly enough, this is not the case.
Even for the global thermostat, with w =80 kJ mol−1ps−1, the reconstructed free
energy is within 3 kJ/mol of the exact profile (figure 3.18). At lower deposition rate,
and even for w =80 kJ mol−1ps−1 when the GLE thermostat is used, the deviation is
not statistically significant.

This observation is reassuring, and confirms the reliability of metadynamics as a
free-energy technique. We must however underline the fact that alanine dipeptide is
a textbook example, where very effective collective variables are known, and that the
presence of an anharmonic liquid bath around the peptide mitigates the deficiencies
of the global thermostat. In other examples, with a more harmonic environment,
or in which there are transverse degrees of freedom that are not described within
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the space of CVs, the effects on the free-energy profile might be much more severe.
Whenever a high deposition rate is necessary - as it is generally the case in ab-initio
simulations, for instance - one should monitor the kinetic temperature of the degrees
of freedom directly affected by CVs, and opt for a local thermostat whenever possible.

An optimal-sampling GLE, as described in section 3.1, provides very strong cou-
pling over a broad range of frequencies, even if a moderate slow-down of diffusive
dynamics is introduced as a side effect. If one wishes to avoid such disturbances, a
different colored-noise setup can be obtained with little effort. By balancing the re-
quirements of an intense coupling to quasi-harmonic modes and minimal hindrance
of slow collective motion, we obtained the thermostat described in figure 3.15. We
have demonstrated in this section that this setup is capable of rapidly balancing local
deviations from the desired ensemble, despite being less intensely coupled than an
optimal-sampling GLE.



Chapter 4

A thermostat for path
integral dynamics

Having discussed how the GLE method can be used to enhance the exploration of
phase space in constant-temperature molecular dynamics, we now turn to an ap-
plication of our ideas to a more specific sampling problem. Path-integral methods
comprise a set of techniques which are useful for sampling quantum-mechanical,
finite-temperature probability distributions, without solving the Schrödinger equa-
tion explicitly. As we will discuss below, they require the evaluation of a modified
Hamiltonian, which contains some very stiff harmonic modes together with the vi-
brational modes characteristic of the system. The broad vibrational spectrum makes
path-integral methods a challenging sampling problem[32, 40]. At the same time,
it is possible to predict the approximate frequencies and displacement patterns for
many of the normal modes present, which makes this problem an ideal benchmark
for our method.

In this chapter we will examine the sampling of the path-integral probability
distribution in conjunction with white and colored-noise Langevin dynamics. We
will also introduce as a benchmark a new stochastic approach, which is based on
knowledge of the approximate vibrational frequencies of the ring polymer. We will
present correlation times for a number of different observables in two very different
condensed-phase problems; namely, liquid water at room temperature and the
diffusion of atomic hydrogen in noble metals.

4.1 Path-integral molecular dynamics

Before describing the sampling problems connected with path-integral molecular
dynamics (PIMD), we must briefly survey the foundations of this technique. In
particular, we must introduce a viable strategy to integrate the equations of motion
in the absence of any thermostat. To this end, consider a system of N distinguishable
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atoms described by a Hamiltonian of the form

H =
3N∑
i=1

p2
i

2mi
+V

(
q1, . . . , q3N

)
,

in which the potential energy V
(
q1, . . . , q3N

)
is such that the canonical quantum

mechanical partition function Z = Tre−H /kB T is well defined. After a standard Trotter
product factorization of the trace, and inserting a number of complete sets of states,
the partition function can be written as the configurational integral

Z =
ˆ

dq1 . . .dqP
〈

q1
∣∣e−H /PkB T ∣∣q2

〉
. . .

〈
qP

∣∣e−H /PkB T ∣∣q1
〉

.

For large values of P , one can make a high-temperature expansion of the density ma-
trix

〈
q1

∣∣e−H /PkB T
∣∣q2

〉
, and obtain an expression which is equivalent to the classical

partition function for a a fictitious ring polymer consisting of P copies of the system
connected by harmonic springs (figure 4.1). The error in this expansion is O

(
1/P 2

)
and so vanishes in the limit P →∞. In view of the analogy between this classical
partition function and that of a polymer with harmonic bonds, we will refer to the
ensemble of replicas as a ring polymer (RP) or necklace, and to individual instances
of the system as a bead. For each particle in the system we will refer to the center of
mass of the corresponding ring polymer as the centroid for that atom.

The sampling of this configurational partition function can be performed with
Monte Carlo methods[72, 73]. However, as pointed out by Parrinello and Rahman[74],
it is also possible, and often advantageous, to introduce momenta and use molecular
dynamics to facilitate the exploration of configuration space. The partition function
containing both positions and momenta can be written as

Z ∼ 1

(2π~)3N P

ˆ
d3N P p

ˆ
d3N P qe−HP (p,q)/PkB T . (4.1)

Here HP
(
p,q

)
is the classical ring polymer Hamiltonian which is given by

HP
(
p,q

)=H 0
P

(
p,q

)+VP
(
q
)

H 0
P

(
p,q

)= 3N∑
i=1

P∑
j=1


[

p( j)
i

]2

2mi
+ 1

2
miω

2
P

[
q( j)

i −q( j−1)
i

]2


VP

(
q
)= P∑

j=1
V

(
q( j)

1 , . . . , q( j)
3N

)
,

(4.2)

with ωP = PkB T /~ and closed-path boundaries q (0)
i ≡ q (P )

i (see figure 4.1)1. Super-
scripts label the different replicas. Path integral methods use this classical isomor-
phism as a computational tool for calculating quantum mechanical equilibrium

1As we have written it, the free ring polymer Hamiltonian H 0
P

(
p,q

)
corresponds to a particular choice

of the Parrinello-Rahman mass matrix, in which the physical particle mass is assigned to each ring polymer
bead. This choice is used in the ring polymer molecular dynamics approximation to the real-time quantum
correlation functions[75, 76].
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Figure 4.1: In path integral methods each particle is represented by a ring polymer, which
consists of several replicas connected by harmonic springs. The configuration of the
necklace can be described equally well in terms of the Cartesian coordinates of individual
beads (a), or on the basis of the normal modes of the free ring polymer (b).

properties of the form 〈A 〉 = Z−1Tr
[
e−H /kB T A

]
, in which the operator A can be

expressed in terms of the positions q only. In these cases, the quantum mechanical
expectation value can be recovered by an ensemble average performed on a set of
configurations consistent with the PI classical partition function (4.1)

〈A〉 ∼ Z−1

(2π~)3N P

ˆ
d3N P p

ˆ
d3N P qe−HP (p,q)/PkB T AP

(
q
)

(4.3)

where AP
(
q
)=∑P

j=1 A
(
q( j)

1 , . . . q( j)
3N

)
.

4.1.1 Normal-modes integrator for PIMD

Any method for exploring the canonical distribution by molecular dynamics can be
used in this context. However, the the robustness and the efficiency of sampling,
which can be measured by the correlation time of the observables of interest, as
discussed in chapter 3, should be considered when making this choice. Before
going on to describe the various strategies available for enforcing efficient canonical
sampling, let us first discuss an algorithm that can be used to integrate the set of
Hamilton’s equations that result from HP

(
p,q

)
,

q̇ = ∂

∂p
HP

(
p,q

)
, ṗ =− ∂

∂q
HP

(
p,q

)
.

This is in itself a difficult problem, as the free ring polymer dynamics contains fast
modes with frequencies

ωk = 2ωP sin
kπ

P
(4.4)

which arise from the harmonic springs between neighboring beads. Consequentially,
a very small time step is required to integrate these stiff vibrations properly. A conve-
nient way to circumvent this problem is based on splitting of the Hamiltonian (4.2)
into a sum of a free ring polymer part H 0

P

(
p,q

)
and a potential energy part VP

(
q
)
.

The evolution generated by these two parts can be combined using a simplectic
integration scheme in which the phase space density evolves under the influence of
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the symmetric split operator propagator[30]

e−∆tL ∼ e−
∆t
2 LV e−∆tL0 e−

∆t
2 LV , (4.5)

where L = L0 +LV is the Liouvillian associated with HP
(
p,q

)
, and L0 and LV

are those associated with H 0
P

(
p,q

)
and VP

(
q
)
. The exact evolution generated by

H 0
P

(
p,q

)
can be greatly simplified by transforming the ring polymer from the bead

representation into the normal mode representation (figure 4.1(b)),{
p̃(k)

}
←

{
p( j)

}
,

{
q̃(k)

}
←

{
q( j)

}
,

which can be done very efficiently using fast Fourier transform routines.

The first step in the algorithm is thus to evolve the momenta through a time
interval ∆t/2 under the influence of VP

(
q
)
. Then, one transforms to the normal

mode representation, and performs the exact evolution through a time interval ∆t
under the influence of the free ring polymer Hamiltonian H 0

P

(
p,q

)
. Coordinates and

momenta are then transformed back to the bead representation, forces are computed
and momenta are evolved again under the influence of the potential.

4.2 Constant-temperature PIMD

Constant-temperature sampling can be enforced in path integral dynamics based on
the same methods which are applied to conventional molecular dynamics, because
PIMD is simply classical MD in an extended phase space. In particular, the integrator
described in section 4.1.1 is a direct generalization of the velocity Verlet algorithm,
so it is therefore straightforward to adapt any stochastic thermostat to the present
context.

4.2.1 White-noise Langevin thermostat

As discussed in length in previous chapters, Langevin’s equation is a very convenient
method for including fluctuations of the total energy, consistent with the constant-
temperature canonical ensemble, in the context of molecular dynamics[1]. Once
the target temperature has been fixed, a white-noise Langevin equation (WNLE)
thermostat has a single parameter, the friction γ (see e.g. Eq. (1.15)). In what follows
we express the friction as the inverse of the characteristic relaxation time for the
Langevin equation, τ0 = 1/γ, so as to set a common scale for comparing different
strategies.

A convenient integrator can be obtained using a symmetric Trotter factorization[31],
where (4.5) is modified to

e−∆tL ∼ e−
∆t
2 Lγe−

∆t
2 LV e−∆tL0 e−

∆t
2 LV e−

∆t
2 Lγ ,

where Lγ is the part of the Liouvillian in the FP equation for the Langevin phase-
space density that introduces the friction and the thermal noise. From an algorithmic
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point of view, this splitting can be implemented by introducing the Langevin propa-
gator

p( j)
i ← e−γ∆t/2p( j)

i +
√

Pmi kB T
√

1−e−γ∆tξ
( j)
i (4.6)

before and after the steps described in section 4.1.1. Here ξ’s are uncorrelated Gaus-

sian processes,
〈
ξ

( j)
i (t )ξ( j ′)

i ′
(
t ′

)〉= δi i ′δ j j ′δ
(
t − t ′

)
.

4.2.2 A path integral Langevin thermostat

The stochastic part of the propagator (4.6) can be applied just as well in the normal-
modes representation

p̃(k)
i ← e−γk∆t/2p̃(k)

i +
√

Pmi kB T
√

1−e−γk∆tξ(k)
i .

However, the advantage of working in the normal mode representation is that one can
use different friction coefficients γk for each of the vibrational modes. This choice
can be performed so as to give an optimal sampling of the canonical distribution for
the free ring polymer. To this end, consider a ring polymer whose beads interact with
an external harmonic potential corresponding to the frequency ω0. In this simple
model the k-th normal mode in the necklace dynamics has a frequency given by

ω′
k =

√
ω2

0 +ω2
k , where the ωk ’s are the free ring-polymer normal mode frequencies,

given by Eq. (4.4). One can then assumeω′
k ≈ωk , as this is a very good approximation

for all but the softest necklace modes. When this approximation is valid, the choice
for the frictions γk = 2ωk gives the most efficient convergence of the Boltzmann-
weighted average total energy (see section 3.1, and equation (3.2) in particular).

The price paid for this simple and transferable choice is that the lowest-lying
eigenfrequencies may be shifted by interatomic forces to well above the free ring
polymer limit. In particular, this prescription cannot be used to thermostat the
centroid mode, as its spectrum corresponds roughly to the classical vibrations of the
system. Therefore consider the friction γ = 1/τ0 applied on the centroid as a free
parameter of this method, which we dub the local version of a path integral Langevin
equation thermostat (PILE-L).

One could also thermostat the centroid using a global scheme (PILE-G), and
so we used a stochastic velocity rescaling approach[13]. As discussed in Ref. [41],
there is a direct connection between the white-noise Langevin equation and this
global thermostatting strategy, which is made apparent if the relaxation time (see e.g.
Eq. (4) in Ref. [13]) is set to τ= 1/2γ= τ0/2. As was seen in the results discussed in
sections 3.4 and 3.5, this choice turns out to be very effective when measuring global
properties of a homogeneous, strongly anharmonic system. However care must be
taken as this approach fails when effective, local thermalization is needed, as is the
case for harmonic systems or for quasi-equilibrium simulation schemes.
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Figure 4.2: The vibrational spectrum for a path integral dynamics of a flexible water
model. In order to also include the modes of the necklace, the density of states has been
computed from the velocity autocorrelation of the beads. This vibrational spectrum
is compared to the harmonic-limit sampling efficiency κV for a white-noise Langevin
equation and an optimal-sampling GLE thermostat. The latter has been optimized so
as to give constant sampling efficiency over a frequency range four orders of magnitude
wide, geometrically centered on ω0 = 1/2τ0. The diffusion coefficient for the water
model, and that computed for the GLE dynamics in the free-particle limit, Eq. (3.4), are
also shown by means of the quantity ωD = kB T /mD .
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4.2.3 A generalized Langevin thermostat for PIMD

In chapter 3 we discussed how a generalized Langevin equation can be used to
enhance the sampling of the canonical ensemble by molecular dynamics. The same
concepts can be applied in the case of PIMD. In this context, we would like to tune
the colored noise so as to efficiently thermostat a very wide range of frequencies,
including both the physical vibrations of the system and the high frequency ring
polymer internal modes (see figure 4.2).

This approach has a number of advantages over the method described in sec-
tion 4.2.2. Not least, one can avoid going into the normal mode representation2.
Moreover, deviations of the lowest-lying necklace vibrations from the free ring poly-
mer limit are dealt with automatically. Finally, the problems associated with ther-
mostatting the centroid are also solved, as one can expect the same level of efficiency
obtained for the conventional MD simulations presented in section 3.4.

An additional advantage is that, for an optimal-sampling GLE, the sampling
efficiency κV can be optimized over the relevant frequency range, which can in turn
be chosen based on minimal amount of information, as discussed in section 3.1.
As a result, this approach can be considered parameterless. However, for the sake
of comparison, we will perform several simulations in which we vary the width of
the fitted range and its geometrical center ω0 = 1/2τ0. We will demonstrate that the

2In practice, going into normal mode representation is necessary to integrate the equations of motion,
and does not involve a dramatic computational overhead. A scenario in which one would like to reduce
the number of Fourier transforms to the minimum is when PI simulation is parallelized over several
processors, as each transformation requires all the nodes to share information about the coordinates and
velocities of all the beads.
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breadth of the optimally-sampled region means that the sampling efficiency is not
greatly affected when a wrong estimate is used for ω0.

4.3 Simulations of liquid water

Having outlined a number of different strategies, we now discuss two realistic ap-
plications, and demonstrate how, by using a good thermostat, one can increase the
speed at which ensemble averages in path integral molecular dynamics converge.
As a first benchmark we have chosen the simulation of a flexible classical force field
model of water[59]. This is an important example, in which path integral methods
should be used, as the nuclear quantum effects are large. Moreover, we used the
very same potential as a benchmark in section 3.4, and will use it in chapter 5 to
demonstrate some applications of non-equilibrium GLEs.

Among the many physical properties which exhibit a non-trivial dependence
on the friction γ we will discuss the virial estimator for the kinetic energy, which
depends strongly on the internal modes of the necklace, the potential energy which
depends mostly on the lowest frequency modes, and the squared dipole moment of
the supercell, which depends almost exclusively on the centroid and which, as shown
in section 3.4, converges slowly and is very sensitive to the details of the stochastic
dynamics. As we discussed above, we performed calculations using various strategies:
a simple white-noise local Langevin thermostat (WNLE), a white-noise Langevin
adapted to the free ring polymer normal modes, with both a local (PILE-L) and
global (PILE-G) thermostat applied to the centroid, and a colored noise, generalized
Langevin equation thermostat (GLE-n, where n designates the width of the frequency
range on which the sampling has been optimized, expressed in orders of magnitude
on a logarithmic scale). We performed an extensive set of simulations at the target
temperature T = 298 K, with the thermostat time constant τ0 ranging from 1 fs to
10 ps. For each choice of thermostat and parameters we have performed 8 statistically
independent runs, each of which was 1.5 ns long. A time step of 0.75 fs was employed
and the simulation box contained 216 water molecules, at the experimental room-
temperature density. The ring polymer contained 32 beads, which is necessary to
obtain converged nuclear quantum effects for water at ambient conditions3.

In figure 4.3 we report the correlation times for the quantities introduced above.
For an observable which depends strongly on internal modes of the necklace such
as the kinetic energy, PILE thermostats do an excellent job. The GLE thermostat
performs equally well, provided that the upper bound of the fitted range encompasses
the whole vibrational spectrum4. This is a clear demonstration of the power of the
optimal sampling GLE, especially considering that no explicit information on the
vibrations of the ring polymer was used.

3The simulations we performed would correspond to a total of 32×6×9×8×1.5 ∼ 20 µs of dynamics,
if performed with conventional PIMD methods. We have however used the ring-polymer contraction
scheme for the calculation of electrostatic interactions[77], with the Ewald summation evaluated on a
single, contracted mode and a radius of 5 Å for the calculation of short-range electrostatics. This reduces
the overhead with respect to a classical simulation to a number much smaller than 32 (typically 2-4) and
made simulations dramatically less time-consuming.

4Compare with figure 4.2, considering that ω0 = 300 cm−1 corresponds to a τ0 value of about 10 fs.
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Figure 4.3: The correlation time has been computed for the virial estimator to the kinetic
energy (τK ), the total potential energy (τV ) and the squared dipole moment of the cell
(τd 2 ) for a path integral MD simulation of liquid water. In the six panels we compare the
performance of the path integral Langevin thermostat - both using a (L)ocal and (G)lobal
thermostat on the centroid, and the optimal sampling GLE, fitted over a frequency range
which is 2, 3 and 4 orders of magnitude wide. A white-noise Langevin reference is also
shown.
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For the total potential energy, which depends strongly on the motion of the cen-
troid, the thermostatting of the internal modes is largely irrelevant. Consequentially,
much like in section 3.4, one must choose a small centroid friction in order to avoid
hampering diffusion and sampling. The local version of PILE shows an improvement
with respect to conventional white noise Langevin thermostat, but only for a very
large τ0. In contrast, PILE-G, which uses a global thermostat on the centroid, yields
small values for τV , particularly when the relaxation time is very small. These obser-
vations are equivalent to the results we obtained with conventional MD. They can be
explained by the fact that the global thermostat minimally hampers the collective
modes which are involved in the complex rearrangements of the hydrogen-bonding
network that characterize the dynamics of liquid water. Just as in the classical case,
the GLE yields a significant improvement over the white-noise Langevin for most
choices of τ0. It is interesting to note that, particularly for the broadest fitted range,
the results are insensitive to the choice of the central frequency, as in all cases signifi-
cant overlap between the optimally sampled region and the important part of the
vibrational spectrum of the centroid is guaranteed. However, the efficiency is not
as good as for the global thermostatting scheme. Most likely, further improvement
of the performance of the GLE can be obtained without sacrificing locality, using a
strategy analogous to that described in section 3.4.3. Similar arguments also apply to
τd 2 , which depends almost exclusively on the sampling of the centroid motion and
for which the advantage of a global thermostatting scheme is even clearer.

As we observed for classical MD, whenever an observable which converges very
slowly is to be computed, efficient sampling of other, faster quantities becomes
largely irrelevant. For example, by the time the squared dipole moment has been
properly sampled, the estimate for 〈K 〉 would have converged to a small statistical
uncertainty even if the least efficient WNLE with τ0 = 10 ps had been used. However,
in a different context one might want to focus solely on 〈V 〉 or 〈K 〉, and one can hardly
afford to perform such a detailed analysis for every single application. It is therefore
extremely valuable to have thermostats available which provide consistently efficient
sampling for a broad spectrum of observables and parameters.

4.4 Simulations of hydrogen in palladium

A radically different solid-state problem was chosen as a second benchmark; namely,
the diffusion of a hydrogen atom within the lattice of a palladium crystal, using an
embedded-atom potential[78] to compute interatomic forces. Contrary to liquid
water, this is a fairly harmonic system, and we decided to monitor local properties in
order to test the various methods in a different context. We computed the contribu-
tions to the virial kinetic energy estimator and to the potential energy coming from
the single hydrogen atom present5. We also computed the diffusion coefficient of the

5In this example, strong anticorrelations are present when the underdamped limit of the thermostats
are considered. Because of this, correlation times turn out to be quite small, even if the actual envelope
of the correlation function decays very slowly. To avoid this artifact, when speaking of correlation times
of a quantity A in the present chapter, what we really mean is the integral of the absolute value of the
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Figure 4.4: The correlation time has been computed for the virial estimator to the kinetic
energy (τK ) and the potential energy (τV ) for a path integral MD simulation of an individ-
ual hydrogen atom in a palladium crystal. Only the contributions for the hydrogen atoms
have been considered, in order to measure a local property. We also show the diffusion
constant D of H within the Pd lattice. In the six panels we compare the performance of
the path integral Langevin thermostat - both using a (L)ocal and (G)lobal thermostat on
the centroid, and the optimal sampling GLE, fitted over frequency ranges which are 2, 3
and 4 orders of magnitude wide respectively. A white-noise Langevin reference is also
shown.
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H atom, which can be used to gauge the disturbance introduced by the thermostat
on the most anharmonic motion present in this system.

We have used a supercell containing 256 palladium atoms and a single hydrogen.
Given their large mass, it is safe to treat Pd atoms as classical particles, whereas a 10
bead polymer was used for the hydrogen atom. The thermostatting of the classical

normalized correlation function,

τA = 1〈
A2

〉−〈A〉2

ˆ ∞

0
|〈(A(t )−〈A〉) (A(0)−〈A〉)〉|dt
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and PI dynamics has been performed separately and the same scheme has been used
for both palladium and the centroid of the necklace.

With this setup, the velocity rescaling on the centroid corresponds to only 3
degrees of freedom. Nevertheless, we will see that there are significant differences
from the case of a fully local method. For each choice of thermostat parameters, eight
independent 1 ns-long trajectories have been performed, with a time step of 0.5 fs.
The target temperature was set to 350 K, to ensure a significant diffusion during the
simulated time span.

Results are reported in figure 4.4, and tell a story which is quite different from
the case of liquid water. First of all, it is evident that global thermostats fail when the
aim is to compute local properties in a harmonic lattice. In this particular case the
rescaling was applied to the velocity of a single atom, but this problem can only be
exacerbated if more hydrogen atoms are included and thermostatted together. An
advantage of PILE-G is that, just as for water, it does not greatly disturb the diffusive
modes. In contrast, conventional Langevin equation in the overdamped limit slows
down diffusion by an order of magnitude.

As far as the local schemes are concerned, we first observe that, excepting the
virial kinetic energy which depends strongly on the fast modes of the necklace, there is
no clear advantage in using the local version of PILE over a plain white-noise Langevin
equation. It is also interesting to look at the plot of τV for the optimal-sampling GLE
thermostat. In this system very few normal modes contribute to the potential energy
of the hydrogen atom. As such, a carefully-tuned white noise Langevin (or a narrow-
range GLE) is advantageous because, as we discuss in figure 3.4, the price to pay for a
constant sampling efficiency over a broad range of frequencies is a small degradation
of the coupling with respect to a thermostat targeted on a single mode.

Concluding this chapter, and before discussing a class of non-equilibrium GLEs in
which ensembles different from the canonical one are sampled, let us summarize our
findings. The success of PILE when sampling the virial estimator of the kinetic tem-
perature demonstrates that the conventional LE can be very effective, as long as it is
applied directly to normal modes, and tuned to individual frequencies. This suggests
that when atomic nuclei with very different masses are present, different frictions
should be used to enhance the efficiency of sampling. However, this normal-modes
Langevin strategy fails when an inexpensive prediction of vibrational properties is
impossible, as is the case for the motion of the centroid in PIMD. We also confirmed
that - as discussed in section 3.4 - Hamiltonian dynamics is very efficient in sam-
pling diffusive modes, and global thermostatting schemes which do not disturb this
property are very effective in liquids and strongly anharmonic problems in general.

In the end, for the vast majority of cases, one would simply like to avoid the
hassle and the computational effort associated with fine-tuning the parameters of
the thermostat. From this point of view, the performance of the optimal-sampling
generalized Langevin equation is impressive. The same parameters we have used
in figure 3.14 to thermalize a classical MD simulation of liquid water have been
used successfully for a PI dynamics of the same model, and even for the radically
different example of a hydrogen atom diffusing in a Pd crystal. This approach has
delivered close-to-optimal sampling efficiency in all cases and for all observables
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tested, without any transformation to a normal mode representation.
If it is necessary - and worthwhile - to push the sampling efficiency further, our

framework provides the flexibility required to fine-tune the GLE, using the different
analytical estimates we introduced in chapter 3. One could imagine computing the
vibrational spectrum for the different species using the velocity-velocity correlation
function, and then fitting a narrow-band optimal sampling GLE to specifically target
those regions with a high density of states. If a region of strongly anharmonic modes
is present, the disturbance introduced by the thermostat can be minimized based on
the estimate of Eq. (3.6). However, it is our opinion that, for most cases, the consistent
performance on different observables, the transferability and the simplicity of the
optimal sampling GLE largely offset the slight reduction in sampling efficiency.



Chapter 5

Frequency-dependent
thermostats

In previous chapters we have demonstrated how a generalized Langevin equation
can be used to enhance the sampling in molecular dynamics. These enhancements
where achieved by fine-tuning the coupling with different vibrational modes. To
ensure that the configurations visited along the trajectories are consistent with a
canonical statistics, we enforced the fluctuation-dissipation theorem, by means of
the condition (2.7). In this chapter we will explore the possibilities which open up
when this constraint is relaxed. In particular we will see how sampling the resulting,
unusual statistical ensembles, provides tools for exciting selected normal modes and
for modeling nuclear quantum effects with negligible computational overhead.

The prototypical simulation which breaks fluctuation-dissipation theorem is
represented in figure 5.1. Here, two thermostats with different target temperatures,
T1 À T2 and different coupling curves κ (ω) are applied to an ensemble of harmonic
oscillators with different frequencies, ω1 and ω2. This is clearly a non-equilibrium
system, as energy will be constantly injected by the high-temperature bath, and
removed by the low-temperature one. However, a steady state will be reached, with
the different normal modes characterized by effective temperatures T? (ω1) and
T? (ω2), which will depend on the relative strength of the coupling of the system
with the two thermostats. To demonstrate that our framework can be adapted to this
circumstance, let the two GLEs in the setup represented in figure 5.1 be characterized
by the drift matrices 1Ap and 2Ap and the diffusion matrices 1Bp and 2Bp . Then, the
parameters of the overall GLE can be obtained using the combination rule given in
Eq. (2.24), with unit weights w1 = w2 = 1. If in addition the two initial thermostats
satisfy the fluctuation-dissipation theorem at temperatures T1 and T2 one can write

Dp =kB


2T1

1app +2T2
2app T1

(
1aT

p + 1āp

)
T2

(
2aT

p + 2āp

)
T1

(
1aT

p + 1āp

)
T1

(
1A+ 1AT

)
0

2T2

(
2aT

p + 2āp

)
0 T2

(
2A+ 2AT

)
.

If T1 6= T2 and the symmetric parts of 1Ap and 2Ap are non-zero, one cannot find

89
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Figure 5.1: A cartoon representing a two-thermostat setup, which we take as the simplest
example of a stochastic process violating the fluctuation-dissipation theorem. If the
relaxation time versus frequency curves for the two thermostats are different, a steady-
state will be reached in which the normal modes corresponding to different frequencies
will equilibrate at different effective temperatures.

a temperature T such that Dp = kB T
(
Ap +AT

p

)
. As a consequence, the stationary

distribution cannot be expressed in the simple form given by Eq. (2.9)1.

We will not discuss this two-thermostats example further, and instead consider
the general case where (2.7) is not satisfied, and an arbitrary, positive-definite Dp

is selected. In appendix B we demonstrate that the dynamics of a GLE coupled
with a harmonic potential with frequency ω has a stationary probability distribution
provided that the symmetric part of Ap is positive-definite. The resulting distribution
is Gaussian, and is fully determined by an ω-dependent covariance matrix Cqp (ω),
which can be obtained by inserting the Aqp (ω) and Bqp matrices, which describe the
Ornstein-Uhlenbeck process in the full

(
q, p,s

)
space, into Eq. (D.1) (see section 2.2).

The elements of the stationary covariance are rational functions of ω and of the
elements of Ap and Dp . Not much can be said in general about their properties,
besides the fact that cqp (ω) = 0, i.e. that p and q remain uncorrelated in the long-
time limit. It is not even granted that an equipartition property holds, i.e. ω2cqq (ω) 6=
cpp (ω). When speaking of an “effective kinetic temperature”, therefore, we refer to
T? (ω) = cpp (ω)/kB .

By tuning the parameters of the generalized Langevin equation it is possible
to change at will the ω-dependence of cqq (ω) and cpp (ω), and to fit them to the
desired target function by means of terms of the form (2.20). Before going on to
describe the useful properties which can be imbued into a MD simulation using
this strategy, a word of caution is necessary. The inevitable deviations from the
harmonic-limit predictions affect the efficiency of sampling and the properties of the
dynamics. When (2.7) holds the static properties at least are well-defined, since the

1It is also possible to consider this problem in the non-Markovian representation. In that case, one
can verify that the overall memory kernels will be K (t ) = K1 (t ) + K2 (t ) and H (t ) = H1 (t ) + H2 (t )=
kB (T1K1 (t )+T2K2 (t )). If K1 = K2, the resulting sampling for

(
q, p

)
will be canonical at temperature

(T1 +T2)/2, even if Eq. (2.7) does not hold. The s variables meanwhile will be distributed in a more
complicated manner than they are in Eq. (2.9).
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stationary distribution is (2.9) regardless of the potential. However, in the applications
discussed in the present chapter, we were not able to find an analytical expression
for the stationary distribution in the presence of an anharmonic potential. Therefore,
the static properties can deviate significantly from the predictions, which means that
one must be more careful and resort to empirical testing for assessing the reliability
of the results. We will demonstrate that, despite these caveats, non-equilibrium GLEs
can provide very useful applications, ranging from selective normal-modes excitation
to inexpensive simulation of nuclear quantum effects.

5.1 The δ-thermostat

In section 2.1.3 we discussed a strategy that can be used to obtain Dirac-δ-like
memory kernels, while in figure 3.10 we demonstrated how the disturbance on the
dynamics induced by a colored-noise thermostat can be restricted to a narrow range
of frequencies. The effectiveness of the thermostat in affecting few normal modes
in a highly selective way demonstrates the flexibility of our scheme. In addition, it
almost invariably implies that the frequency dependencies of the desired properties
can be made arbitrarily complex. Hence, as a first example of a non-equilibrium
GLE thermostat, we present an application in which the thermostat induces large
fluctuations for the modes within a narrow frequency range, while ensuring that all
the others remain cold.

In order to realize this δ-thermostat idea, we return to the δ-like memory kernels
described in section 2.1.3. The power spectrum of the noise will be dominated by
frequencies close toω0. Intuitively, the thermostat would be expected to couple more
strongly to the normal modes with a frequency close to ω0. If one imposes a constant
friction on top of the matrices in Eq. 2.13 (i.e. by changing the app element from zero
to a finite value γ′, without changing Dp )

Ap =

 γ′
√
γ/2π 0

−√
γ/2π ∆ω ω0

0 −ω0 0

 , Dp = kB T

 0 0 0
0 2∆ω 0
0 0 0

 , (5.1)

one would expect modes far away from the peak frequency to be affected by the
uniform friction, and to thus freeze almost completely. Modes close to ω0, instead,
would equilibrate at a much larger average temperature. Note that changing Ap

without performing the changes to Dp prescribed by Eq. (2.14) amounts to breaking
the classical FDT.

For a given peak frequency ω0 one is left with four parameters which can be opti-
mized (∆ω, γ, γ′, T ), so as to obtain the most convenient set of calculated response
parameters as a function of the oscillator frequency ω (see figure 5.2). Even with this
relatively simple model, satisfactory results can be achieved, with fluctuations in
positions and momenta which correspond to a desired effective temperature in a
neighborhood ofω0, and drop quickly to a very low value elsewhere. However, the de-
pendency of the temperature profile T?(ω) on the memory kernels is not trivial. For
example, reducing ∆ω is not sufficient to obtain a sharper peak in the normal-modes



Chapter 5 Frequency-dependent thermostats 92

Figure 5.2: Effective temperature T∗(ω) as a function of ω and ∆ω for three different
choices of the friction parameters γ and γ′ (see Eq. (5.1)). Note that as the coupling pa-
rameters are decreased, the sampling efficiency degrades. Therefore, it is wise to perform
a fitting procedure in which the profiles of cpp (ω) and κV (ω) are both monitored.
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for the dynamics of a harmonic oscillator of frequency ω coupled to a δ-thermostat with
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response.
One would like to find the best possible compromise between the sharpness of

the response T?(ω) and the efficiency of sampling in the neighborhood ofω0. For this
reason we resorted to a fitting procedure, in which we enforce T?(ω0) = T0 and that
T? (ω) is small elsewhere, while we aiming for a low τV (ω) in a neighborhood of ω0.
We have selected a satisfactory set of parameters, which has the response properties
described in figure 5.3, to be used for the examples discussed in this section.

By simply scaling the drift and diffusion matrix, the parameters depicted in
Figure 5.2 can be adapted to any peak frequency ω0 and any effective temperature
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Figure 5.4: The vibrational density of states for ice Ih at 10 K (thick line, fully-shaded in
red), as computed from the Fourier transform of the velocity-velocity correlation function
obtained from a molecular-dynamics simulation of a flexible-water model[59]. This is
compared to a stacked plot of a series of δ-thermostat runs, with different peak excitation
frequencies ω0.

T0 (see section 2.4). In fact, for a set of matrices Ap and Dp , which yield an effective
temperature versus frequency curve T?(ω) peaked around ω0 = 1, one can prove
that any GLE which uses the scaled drift matrix ω0Ap and an unscaled Dp matrix will
produce the response curve

T?(ω,ω0) = T?(ω/ω0)/ω0 (5.2)

which is peaked around ω0 and has the same peak integral for all values of ω0.

5.1.1 Selective phonon heating in ice Ih

As a first example of this δ-thermostat we describe its effect on the molecular dy-
namics of a solid. To this end, we performed simulations using a flexible water force
field[59], and ran several trajectories scaling the parameters of the thermostat to
different peak frequencies. Throughout, we have scaled the matrices so as to obtain
a constant peak temperature T0 = 10 K, which is sufficiently low enough to limit the
effects due to anharmonicities.

In Figure 5.4 we report the vibrational density of states computed from the Fourier
transform of the velocity-velocity correlation function for the different trajectories,
and compare it with the vibrational spectrum computed from constant-energy dy-
namics for a sample equilibrated at 10 K. The δ-thermostat succeeds in selectively
exciting a narrow band of normal modes. Interestingly, even at this low temperature,
anharmonic effects cause slight deviations from the expected behavior. In particular,
an excitation is also observed when the peak frequency falls within a vibrational gap
of the intrinsic phonon density of states for the ice model. However, this excitation is
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Figure 5.5: The eigenvalues density D(ε) as computed from a δ-thermostat dynamics, for
a matrix with uniformly-distributed eigenvalues between 1 and 10 (lower panel) and for
a matrix corresponding to a linear chain of masses connected by springs, with periodic
boundaries (upper panel). In both cases, a 1000×1000 matrix has been used for H, and
4 ·106 timesteps of 0.05 time units each have been performed for each run. The exact
DOS (dashed line) is compared with an analytical predictions for T̄ (ω0) (continuous line)
and with the average kinetic temperatures computed from actual runs (dots). For the
dots, the error bar is smaller than the size of the points.
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a couple of orders of magnitude smaller than the ones observed when proper normal
modes are present.

5.1.2 δ-thermostat dynamics as an eigenvalue solver

The possibility to excite normal modes within a narrow frequency band, without any
explicit knowledge of the vibrational spectrum of the system, suggests an application
of the δ-thermostat as a probe of the spectrum of a positive-definite matrix H of
size N . This would work treating H as the Hessian of a multi-dimensional harmonic
potential, on which a dynamics is to be performed. This method would be particularly
useful whenever matrix-vector multiplications are considerably less expensive than
explicit diagonalization. This is the case for sparse matrices, or when the Hamiltonian
has a favorable structure[47].

To demonstrate this method, we used H as the Hessian of a multidimensional,
harmonic potential, V (x) = 1

2 xT Hx, and implemented an artificial stochastic dynam-
ics based on the GLE parameters described in figure 5.3. Contrary to the ice case,
no anharmonicities are present here, so the equilibrium distribution will be the one
predicted analytically, except for negligible finite-timestep errors.

There are many possible applications for this technique. For instance, one could
search for eigenvalues within a preassigned frequency range[79]. Also, by performing
several runs with a different choice of ω0 it is possible to obtain an estimate of the
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whole density of states (DOS). With this in mind, we will assume that the eigenvalues
εi of H are known, and show how the overall average kinetic temperature, obtained
by a δ-thermostat trajectory, is related to the DOS.

The frequencies of the normal modes of the artificial dynamics will be ωi =p
εi ,

while the average temperature is just

T̄ (ω0) = 1

N

∑
i

T?(ωi ,ω0) (5.3)

where T?(ωi ,ω0) is the scaled temperature profile (5.2). By construction,
T?(ωi ,ω0) ∼ δ(ω0 − ωi ), which means that the connection between (5.3) and
the density of states (DOS) of the eigenvalue spectrum of H is readily found:

D(ε) =∑
i
δ(ε−εi ) ∼ T̄ (

p
ε)/

p
ε. (5.4)

We will now consider, as a simple illustration, how the spectrum of two simple
matrices can be analyzed. We considered a matrix with evenly-spaced eigenvalues
between 1 and 10, and one corresponding to the dynamical matrix of a linear chain
of masses connected by springs, with periodic boundary conditions and an on-site
term. In this second case, the eigenvalues are εi =α−2βcos(2πi /N ), where N is the
dimensionality of the Hessian and α and β are chosen so that the εi ’s lie between 1
and 10.

The results for these two problems are reported in Figure 5.5. The actual outcome
for the dynamics is identical to the predictions one can make using Eq. (5.3), which
demonstrates that the errors due to the finite time-step in the integration are negligi-
ble. The distribution of the eigenvalues is quantitatively reproduced, except for the
points where the actual DOS has features that are sharper than the resolution of the
δ-thermostat. It is worth noting that the scaling procedure we used to shift the fitted
parameters to different peak frequencies guarantees constant relative resolution,
i.e. it ensures the breadth of the peak is a constant fraction of ω0. This explains the
asymmetry between the two peaks of the DOS in the linear chain panel of Figure 5.5.

The resolution can be further improved, but this comes at the expense of a lower
sampling efficiency. The performance of this approach compared to traditional
methods depends on the size of the matrix, its condition number and the desired
resolution and accuracy. As is the case for any stochastic method, the statistical error
decreases slowly, with the square root of the sampling time. We can therefore expect
our approach to be more useful as a qualitative probe of the eigenvalue spectrum
than as a tool for obtaining very precise estimates of the density of states.

5.2 The quantum thermostat

The δ-thermostat we described in the previous section can be used in many ap-
plications, but in this thesis it has been presented mainly as a proof of concept
that demonstrates how a non-equilibrium GLE is capable to enforce a frequency-
dependent distribution in a quasi-harmonic system. In this section we will discuss
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another application of the GLE thermostat. This is probably the most exciting ap-
plication we have developed thus far, as it allows one to include an approximate
treatment of the quantum nature of ionic cores in conventional, classical molecular
dynamics with practically no additional computational overhead.

Nuclear quantum effects are extremely important in many condensed-phase
systems. For instance, zero-point fluctuations affect static correlations, while energy
quantization causes deviations from the classical value of the specific heat at low
temperatures. A quantum treatment of the ionic degrees of freedom is mandatory
for capturing these effects, which are particularly important when light atoms or
stiff vibrational modes are present. Conventional techniques for including quantum
effects are computationally demanding and for this reason the nuclei in molecular
simulations are often treated classically, even when the electronic degrees of freedom
are accounted for quantum-mechanically [48].

When exchange-symmetry effects are not relevant, the method of choice for study-
ing equilibrium expectation values is path-integrals molecular dynamics (PIMD)[80,
81], which was described in chapter 4. This approach involves a high computational
cost, as many replicas of the system must be simulated in parallel. Approximate
but less expensive methods such as Feynman-Hibbs effective potentials [72, 82] and
semiclassical approaches to treat zero-point energy (ZPE) have also been used [83–
85]. However, their range of validity is limited to weak quantum behavior and to
cases where the Hessian of the potential is available and cheap to compute. As a
result, the interest in methods to introduce quantum effects in classical trajectories
is still very high, see e.g. Ref. [7, 86].

A recently-developed, promising strategy to reduce the overhead of PI
calculations[77] works by computing the long-range contribution to the elec-
trostatic interactions on an appropriate contraction of the ring polymer, rather
than computing this term for each individual replica. For the majority of classical
force fields the evaluation of these terms is by far the most expensive part of the
calculation, and so this method leads to substantial computational savings. However,
these techniques are only helpful whenever if it is possible to separate an expensive,
long-range interaction from a simpler, short-ranged one. In density functional
simulations, for instance, this is not possible. Therefore, ab initio molecular
dynamics is beyond the scope of these optimized PI methods.

In this section we will present a radically different approach. We will show how,
by constructing an appropriate GLE thermostat, one can obtain an accurate approxi-
mation for nuclear quantum effects in a variety of systems, without any limitation on
the kind of potential energy surfaces which can be treated. The idea of using a non-
Markovian Langevin equation to model quantum systems can can be traced back to
the semiclassical approximation to the quantum Langevin equation [25, 87, 88]. This
equation has been used to describe quantum systems in contact with a quantum
harmonic bath. A similar idea has been recently used by Buyukdagli et. al. [26], in
order to compute quantum specific heat in harmonic systems. However, even for a
harmonic oscillator, Buyukdagli’s scheme is only qualitatively correct and neglects
ZPE completely. Our approach is more general, allowing us to obtain high accuracy
in reproducing quantum specific heats, and also to tackle the more challenging task
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of introducing zero-point motion effects[89]. We will also demonstrate how very an-
harmonic condensed-phase problems can be treated with good accuracy, by carefully
choosing the GLE parameters.

5.2.1 The quantum harmonic oscillator

To develop a robust approach for introducing nuclear quantum effects, by means
of an appropriate generalized Langevin equation, we first consider the harmonic
oscillator as an exact treatment is available in both the quantum-mechanical and
SDE frameworks. The finite-temperature density matrix for a quantum harmonic
oscillator of frequency ω at temperature T reads

ρ
(
q, q ′)∝∑

n
e−εn /kB Tψ?n

(
q
)
ψn

(
q ′)

∝exp

[
−ω2

( (
q +q ′)2 /4~ω

coth~ω/2kB T
+

(
q −q ′)2 /4~ω

tanh~ω/2kB T

)]
,

where εn and ψn are the eigenvalues and eigenvectors of the harmonic Hamiltonian.
For any temperature, the density is a Gaussian, whose width depends on ω and T

ρ
(
q
)= ρ (

q, q
)∝ exp

[
−1

2
ω2q2

(~ω
2

coth
~ω

2kB T

)−1]
.

For a classical oscillator the probability distribution of the displacement q is also
a Gaussian, P

(
q
) ∝ exp

(−ω2q2/2kB T
)
. It is therefore possible to reproduce the

stationary distribution of q , in a purely classical framework, by performing canonical
sampling using an ω-dependent target temperature

T? = ~ω
2kB

coth
~ω

2kB T
. (5.5)

The distribution of momenta, which can be obtained by writing the density matrix in
the momentum representation, is also Gaussian, and has a width consistent with the
classical distribution at the effective temperature T?.

In passing, it is interesting to note that this isomorphism has consequences
well beyond the marginal probabilities of the phase-space distribution. Consider
any observable which depends locally on positions only. Its finite-temperature
expectation value can be written in the position representation in terms of the one-
particle density

〈A 〉 =
∑

n e−εn /kB T
´

A
(
q
)∣∣ψn

(
q
)∣∣2 dq∑

n e−εn /kB T
=
ˆ

A
(
q
)
ρ

(
q
)

dq.

The same expectation value can be computed exactly as the ensemble average of
A

(
q
)

over a classical trajectory at the effective temperature (5.5).

Computing free-energy differences It is straightforward to show that quantum
free-energy differences can be computed with conventional methods, by simply
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performing classical trajectories with a frequency-dependent effective temperature.
For example, to compute these differences using thermodynamic integration[10],
one must introduce an order parameter λ, which when varied smoothly describes
the transformation between the initial and final states. The free-energy difference is
then obtained by integrating the thermodynamic force

∂F (λ)

∂λ
=−kB T

∂ logQ

∂λ
= Tr

(
e−βH ∂H /∂λ

)
Tre−βH

along λ. When H depends on λ by through the potential only, one can write the
thermodynamic force in terms of a Boltzmann-weighted combination of expectation
values computed on the eigenstates of the Hamiltonian

∂F (λ)

∂λ
=

∑
i e−εi /kB T

〈
ψi

∣∣∂H /∂λ
∣∣ψi

〉∑
i e−εi /kB T

=
ˆ

∂V (x,λ)

∂λ
ρ (x)dx.

This equation implies that ∂F (λ)/∂λ, and hence the correct free-energy difference,
can be computed without explicit knowledge of the eigenstates. It is instead sufficient
to reproduce the finite-temperature density only. Similar derivations can be carried
out for other free-energy methods.

Fitting a quantum thermostat To turn the isomorphism described above in a vi-
able method for computing nuclear quantum effects, one must be able to enforce the
ω-dependent effective temperature (5.5) simultaneously on different normal modes,
without any explicit knowledge of phonon spectrum and displacement patterns. We
know already that this goal can be achieved using a generalized Langevin equation,
provided that the fluctuations computed for an individual harmonic oscillator, as a
function of its frequency, are consistent with Eq. (5.5).

To enforce this behavior we compute the stationary distribution in the harmonic
limit, and fit the fluctuations cpp (ω) and cqq (ω) to the target functions c̃pp (ω) =
ω2c̃qq (ω) = ~ω

2 coth ~ω
2kB T . These conditions must be imposed separately, since there

is no guarantee that a non-equilibrium GLE will satisfy equipartition. Overall, the
two conditions result in a term

χqt =
[∑

i

∣∣∣∣log
cqq (ωi )

c̃qq (ωi )

∣∣∣∣m

+
∣∣∣∣log

cpp (ωi )

c̃pp (ωi )

∣∣∣∣m
]1/m

, (5.6)

that must be included in the merit function for the fit. The ω→ 0, classical limit
(cpp (ω) =ω2cqq (ω) = kB T ) can be proven to correspond to two conditions on the ele-
ments of the free-particle covariance matrix Cp ; namely, cpp = kB T and aT

p A−1cp = 0.
One could enforce these constraints exactly, by treating the entries of Cp as indepen-
dent fitting parameters and obtaining the diffusion matrix from Eq. (2.5). We found
however that this choice makes it difficult to obtain a positive-definite Bp BT

p , and
that the fitting becomes more complex and inefficient.

As an alternative, we decided to enforce the low-frequency limit with an appro-
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priate penalty function included in the fit

χcl = (cpp /kB T −1)2 +
(
aT

p A−1cp /kB T
)2

. (5.7)

Transferability of fitted parameters The terms discussed in the previous para-
graph must be included in the fit, along with others (which will be discussed in
section 5.2.3) that control the strength of coupling and the efficiency of sampling.
All these terms, must then be fitted over a range of frequencies which encompasses
all the relevant vibrational modes. This range should start at the onset of quantum
effects and finish with the largest frequency present, ωmax .

In practice one does not need to perform a separate fit for each system and
temperature. Instead, it is sufficient to prepare a library of matrices fitted using
ωmax = 1, kB T = 1 and a number of different values for the dimensionless parameter
ϕ = ~ωmax /kB T . The resulting GLE matrices Ap and Cp can then be adapted to
a simulation at temperature T by means of the transformation rules described in
section 2.4. In this case, the appropriate scalings read Ap ← Ap kB Tϕ/~ and Cp ←
Cp kB T . The transformed SDE will enforce quantum-corrected fluctuations up to
the frequency ωmax = kB Tϕ/~. Hence, a library of few matrices, optimized for
different values of ϕ, can be adapted to any ensemble of harmonic frequencies and
any temperature2.

5.2.2 One-dimensional anharmonic potentials

Besides negligible, finite-time step errors, the distribution of q and p, as well as
the average values for physically-relevant observables such as the potential and
kinetic energy will correspond to the analytical predictions for a given set of GLE
parameters. These parameters can in turn be fitted to quantum-mechanical results
within few percent. Many physical problems are well-described in terms of small
perturbations on top of a quadratic potential. Therefore we should first demonstrate
that our method can provide a reasonable approximation of quantum expectation
values for anharmonic potentials. Consequentially, our first benchmarks are some
one-dimensional examples - the stronger the anharmonicity, the more challenging
the test.

Quasi-harmonic potential The first case we consider is a one-dimensional, anhar-
monic potential of the form

V (x) = ω2

2
x2 1−e−kx

kx
(5.8)

For fixed values of k and the temperature T , this potential allows one to explore a
range of behaviors ranging from the highly anharmonic, classical limit at ω→ 0 to

2As we will discuss later, the larger the value of ϕ, the more difficult the fitting procedure, and the larger
the deviations from the expected behavior in anharmonic cases. In practice, values as high as ϕ= 50 and
even 100 can be obtained, with an error between a few percents and 10%, depending on the details of the
fit.
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Figure 5.6: In the left panel, the one-dimensional anharmonic potential (5.8) is plotted
for k = 1 Å−1 and different values of the frequency ω. To give physically-relevant condi-
tions, we considered the mass to be that of a hydrogen atom. For a target temperature
T = 100 K the system will, depending on the frequency, sample either a nearly classical
but highly anharmonic regime, a strongly quantum but nearly harmonic region for stiff
vibrations, or an intermediate situation where both anharmonic and quantum effects are
relevant. In the rightmost panel, we plot the characteristics of the GLE parameters used
in these one-dimensional examples. The dashed black line corresponds to the correlation
time of the kinetic energy (see section 5.2.3 for a discussion of its relevance), the blue and
red lines to the predicted fluctuations of position and momentum respectively.
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Figure 5.7: In the left panel, the average total (〈H〉), potential (〈V 〉) and kinetic (〈K 〉)
energies for a proton in the external potential of Eq. (5.8) are plotted as a function ofω, for
k = 1 Å−1 and T = 100 K. Dashed black lines correspond to the exact quantum solution,
the red series are results from quantum-thermostatted dynamics, using a set of param-
eters fitted over a frequency range from 2 to 2000 cm−1. Blue lines correspond to the
classical expectation values. In the right panel the Fourier transform of the momentum
distribution is reported for the fully quantum mechanical, classical and colored-noise
thermostat simulations at ω= 200 cm−1.
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a quantum, harmonic regime at high ω (see figure 5.6). In Figure 5.7 we compare
the exact, quantum solution with the averages obtained using our colored-noise
thermostat.

There is a remarkably good quantitative agreement not only in the asymptotic
ω→ 0 and ω→∞ limits, but also in the intermediate region, where both quantum-
mechanical and anharmonic effects are significant, which suggests that both effects
can be captured, albeit not fully. The momentum distribution is also in good agree-
ment with its quantum-mechanical counterpart. This is particularly appealing, since
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Figure 5.8: (a) Schematic representation of the energy levels for the double-well poten-
tial (5.9), using three different values of the barrier ∆. The distance between minima was
set to d = 1 Å−1 and a particle with the mass of a proton was used. Wavefunctions are
shaded according to their thermal occupation. (b) The average total (〈H〉), potential (〈V 〉)
and kinetic (〈K 〉) energies for a proton in the double-well potential as a function of ∆, for
d = 1 Å−1. Dashed black lines correspond to the exact quantum solution, while the red
series are the results from quantum-thermostatted dynamics, using a set of parameters
fitted over a frequency range from 2 to 2000 cm−1. Blue lines correspond to the classical
expectation values.
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conventional PIMD can only sample positions, and special procedures must be
introduced if momenta are to be sampled as well [73, 90, 91].

Double-well potential Moving on to a more challenging example, we considered a
quartic double well potential,

V (x) =∆
(
1+ x2

d 2

(
x2

d 2 −2

))
(5.9)

with a spacing of 2d between the two minima, and a barrier of height∆. This potential
is strongly anharmonic both for small ∆’s, when it reduces to a flat-bottom quartic
potential, and for intermediate values, where there is a significant coupling between
the bound states in the two wells (see figure 5.8(a)). For large ∆, the anharmonicity
depends on the distance between the minima as well as on the curvature of the
potential. Each of the two wells is locally quasi-harmonic, and hence the main
anharmonic effect is the splitting of the energy levels due to tunnelling. In spite of
this complex behavior, the results in figure 5.8(b) are in good agreement with exact,
quantum-mechanical expectation values, and capture their qualitative features,
including the crossover between 〈V 〉 and 〈K 〉.

Wavefunction-phase effects are completely absent in our model. Nonetheless
our model suffers no catastrophic failures even in cases for which tunneling through
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Figure 5.9: (a) Schematic representation of the energy levels for the double-well poten-
tial (5.9), using three different values of the barrier ∆, d = 0.25 Å−1 and a particle with the
mass of a proton. (b) The average total (〈H〉), potential (〈V 〉) and kinetic (〈K 〉) energies
for a proton in the double-well potential as a function of∆, for d = 0.25 Å−1. See figure 5.8
for an example with larger separation between the minima.
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the barrier would have a sizable effect on energetics. Transitions between the two
wells are more frequent than in purely classical dynamics at the same temperature
due to zero-point energy3. However, one cannot compute dynamical properties of
any sort, as they are heavily disturbed by the stochastic term.

In figure 5.8 we report analogous results for a much smaller distance between the
two minima. This results in a more pronounced coupling between the two wells, and
hence much stronger quantum effects. Here, the agreement between the results of
our method and the exact quantum-mechanical expectation values is less satisfactory,
particularly for the largest values of ∆. It is interesting to observe that there is a
cancellation of errors between the overestimation of 〈K 〉 and the underestimation of
〈V 〉, which leads to a good agreement for the total energy 〈H〉. This is a consequence
of our method’s poor description of tunneling. Quantum tunneling arises because the
system reduces its kinetic energy by smoothening the curvature of the wavefunction.
This in turn compensates for the penetration of probability density into regions
where the potential is large. In contrast, in the quantum thermostat simulation, the
particle is more confined. Therefore, it has a larger kinetic energy and, because it
does not penetrate the barrier, a smaller average for 〈V 〉.

So far, we were unable to develop a satisfactory formal treatment for the behavior
of non-equilibrium GLEs with anharmonic potentials. It is therefore difficult to
quantitatively explain the successes and failures of our approach. Based on the

3We recall, in passing, that in recent years several attempts have been made to exploit the properties
of quantum dynamics to enhance sampling in the context of simulated annealing minimization. This
has led to the development of so-called quantum annealing methods[28, 92–94]. In these cases it is not
necessary to reproduce quantum properties exactly, therefore it would be interesting to test whether or not
our quantum thermostat can be used in this context rather than more expensive path integral methods.



Chapter 5 Frequency-dependent thermostats 103

Figure 5.10: Average kinetic energy computed for an infinite square-well potential, as
a function of the dimensionless parameter h2/

(
8mL2kB T

)
(the ratio between the zero-

point and thermal energy). Dashed black lines correspond to the exact quantum solution,
the red series are results from quantum-thermostatted dynamics, using a set of param-
eters fitted over a frequency range from 2 to 2000 cm−1. Blue lines correspond to the
classical expectation values. The dashed red line corresponds to the result which would
be expected for an “effective” harmonic oscillator (see text).
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qualitative arguments discussed above, however, one can expect a good agreement
whenever the splitting between the levels in the two wells is smaller than either kB T
or the zero-point energy, as in these cases tunneling is weak, and hence its effect on
energetics is small.

Particle in a box As a final example, we tried to reproduce the motion of a particle
in an infinite square-well potential. This is an extreme anharmonic case, as locally
the particle experiences no force and hence the only “information” that can influence
the response of the SDE is the reversal of velocity which occurs when one of the
walls is reached. Despite these unfavorable conditions, the average kinetic energy is
reproduced to a decent accuracy up to strongly quantum conditions (figure 5.10)4.
It should be noted, however, that the histogram of positions is very different from
the exact finite-temperature density. On the plus side it is not constant, and the
probability of finding the particle is slightly higher at the center of the well. On the
down side, though, it does not get close to zero at the boundaries. We could not
expect much more from a method based on a harmonic reference, and note that
even path integral methods require special care in the presence of hard walls[95].

The fact that we observe some effect is remarkable in itself, if one considers
that other approximate techniques such as the Feynman-Hibbs method require
the local curvature of the potential energy surface explicitly, and would still fail to
realize that the particle is confined. One could speculate that the periodic reversal of
velocities leads the GLE to respond as if it were applied to an “effective” harmonic
oscillator, with a frequency equal to the average frequency of the reversal of velocity5.

4To give some physical reference, the parameter used on the x-axis in figure 5.10 takes on a value of
one for a proton in a 1 Å-wide box potential at T ≈ 240 K. We can therefore expect to be able to simulate
reliably a light molecule confined in a pore or a nanotube.

5One can compute this effective frequency ω̄ from the mean thermal velocity and the width L of the
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In actuality, the quantum thermostat performs better than it would be expected if
this argument were the case. This provides further indication that it can provide
a qualitative description of nuclear quantum effects even for strongly anharmonic
problems.

5.2.3 Zero-point energy leakage

We have demonstrated that a quantum thermostat can provide a reasonable estimate
of important physical observables also for very anharmonic, one-dimensional cases.
One would thus expect - given the rotational invariance properties described in
section 2.2 - that applications to quasi-harmonic multidimensional problems pose
only a little problem. While this is certainly true for perfectly harmonic systems, one
must be aware of the so-called zero-point energy (ZPE) leakage which plagues semi-
classical approaches to the computation of nuclear quantum effects[83, 96]. In these
techniques, particle momenta are initialized based on the quantum-mechanical
distribution consistent with the local curvature of the potential energy surface. The
system is then evolved by microcanonical dynamics. Unfortunately this means that,
from a classical viewpoint, large differences in the kinetic energies of soft and stiff
modes are introduced. Therefore, even a minute phonon-phonon coupling leads
to energy exchange and to equilibration of the whole system at an intermediate
temperature.

This effect is likely to affect our quantum thermostat, and any frequency-
dependent thermostat when it is applied to a multidimensional, quasi-harmonic
system. When this effect is included, the different modes will reach a steady-state
configuration with an effective temperature which is still frequency-dependent,
but which deviates significantly from the values predicted in the limit of perfect
decoupling. In order to examine the magnitude of this error, we tested the method
on a prototype quasi-harmonic problem.

Diamond: a test case The ultimate test for assessing the accuracy of the quantum
thermostat is a comparison with a path-integral calculation on a similar but compu-
tationally cheaper model, such as a smaller-size box or a simpler force field. However,
it would be desirable to obtain some qualitative measure of the quality of the fit, and
to gauge the transferability of a given set of parameters without having to perform a
time-consuming comparison with path-integral methods.

To this end, we first tested the quantum thermostat on a Tersoff model[97] of
diamond at a temperature T = 200 K. At this low temperature, slightly below 10% of
its Debye temperatureΘD , quantum effects are very strong, and we therefore expect
problems in maintaining the large difference in temperature between the stiff and
soft phonons. Using a harmonic system such as diamond is particularly useful, as
one can monitor directly the efficiency of the thermostat by projecting the atomic
velocities on a selection of normal modes. Hence, a projected kinetic temperature

well,

ω̄= 2π
〈v〉
L

=
√

8πkB T

mL2
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Figure 5.11: (a): ω-dependence of the kinetic energy correlation time τk (ω) (light, dotted
line), the ratio of the fitted fluctuations cpp (ω) (red line) and of ω2cqq (ω) (blue line) with
the exact, quantum-mechanical target function. (b): normal-mode-projected kinetic
temperature for a few, selected phonons. The dashed line is the value expected from the
fitting cpp (ω), while the full line is the exact, quantum-mechanical expectation value for
a harmonic oscillator of the same frequency.
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T ′(ω) can be computed and its value can be checked against the predictions in the
harmonic limit T? (ω) = cpp (ω)/kB .

We first performed a fit which takes into account only the terms (5.6) and (5.7). It
would be reasonable to also include a term that optimizes the efficiency of sampling,
but at this stage we only wanted to ensure that the predicted discrepancy from the
exact quantum result is as low as possible.

In Figure 5.11 we report the results with a matrix that was fitted taking into
account only Eqs. (5.6) and (5.7). Even in a harmonic system such as diamond
there are major errors due to ZPE leakage from the high-frequency modes to the
low-frequency modes, which are compensated for only partially by the thermostat.
Clearly, it makes little sense to obtain a very high accuracy on the fitting of cpp and
cqq , if anharmonicities then lead to discrepancies of more than 100 % between the
predicted and actual expectation values.

In principle one could fit a thermostat that explicitly takes into account the an-
harmonic cross-coupling between different normal modes, so as to compensate
exactly for energy leakage. However this solution is not very practical, as it results in a
thermostat that is specific to each particular system and because of the difficulties as-
sociated with computing all the relevant coupling terms. A simpler strategy is instead
to enhance the system-bath coupling, so as to actively counterbalance the transfer of
kinetic energy between different normal modes. This approach is transferable, and
therefore requires only information on the largest vibrational frequency.
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Figure 5.12: (a): ω-dependence of the kinetic energy correlation time τK (ω) (light,
dotted line), the ratio of the fitted fluctuations cpp (ω) (red line) and of ω2cqq (ω) (blue
line) with the exact, quantum-mechanical target function. (b): normal-mode-projected
kinetic temperature for a few, selected phonons. The dashed line is the value expected
from the fitting cpp (ω), while the full line is the exact, quantum-mechanical expectation
value for a harmonic oscillator.
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To test this idea, we performed another fit, where we tried to reduce the correla-
tion time of kinetic energy τK , which we took as an estimate of the intensity of the
system-bath coupling. In doing so, we had to sacrifice slightly the accuracy of fitting
for cpp and cqq . Fit data and results for Tersoff diamond are reported in figure 5.12.
The projected kinetic temperature now agrees almost perfectly with the analytical
predictions for the fluctuations cpp (ω) of most of the modes. The only ones display-
ing significant deviations are the fast ones, for which the value of τK (ω) is slightly
larger. The cpp (ω) curve deviates by nearly 10% from the exact, quantum-mechanical
expectation value. However, thanks to the more efficient coupling, the errors due
to anharmonicities are better compensated and so, in actuality, the overall error is
much smaller than for the parameters presented in figure 5.11.

To test whether these prescriptions work for less harmonic problems, we now
turn to a completely different system; namely, the structural properties of solid neon
at 20 K. At variance with diamond, quantum-ion effects are less pronounced, but
the system is close to its melting temperature and is thus significantly anharmonic.
As shown in figure 5.13, the agreement between our results and those of accurate
path-integral calculations[98] is almost perfect if the parameters of figure 5.12 are
used, scaled to the appropriate temperature. As expected, large errors are present if
those of figure 5.11 are chosen.
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Figure 5.13: Radial distribution function computed from fully-converged path-integral
calculations[98] (shaded curve), and from a quantum-thermostat MD trajectory for a
Lennard-Jones model of solid neon at T = 20 K. Distances are in reduced units. The full
line corresponds to the parameters of figure 5.12 and the dashed line to the set used in
figure 5.11. The outcome of a purely classical simulation is also reported, in blue.
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5.2.4 Liquid water

The results for solid neon at its melting point are very promising, as they agree nicely
with PI data in spite of the large anharmonicities present. We thus decided to attempt
the simulation of a flexible water model at liquid conditions, to push our method
to its limits. We used the TIP4P-like potential[59] we employed in section 3.4 and in
chapter 4, with the same set of GLE parameters described in figure 5.12, for which we
sacrificed the accuracy of the fitting of the the fluctuations of p and q to the quantum
expectation values in order to obtain a stronger system-bath coupling. As discussed
above, this feature is of paramount importance if we are to attempt the modeling of
an extremely anharmonic system such as a liquid.

We ran 2 ns of dynamics at constant volume, using a time step of 0.5 fs to guaran-
tee an accurate integration of the equations of motion. We simulated a box containing
216 water molecules, and computed the average kinetic temperature projected on
the various degrees of freedom. The results were encouraging, as the thermostat was
able to sustain a huge temperature gradient between modes. In the final stationary
distribution the internal modes equilibrated at T ′

i n = 1290 K, the hindered-rotations
equilibrated at T ′

l i b = 575 K and the center-of-mass motion had a mean temperature
of T ′

cm = 317 K, close to the classical limit. Recent PIMD results[96] yield a value of
T ′

cm = 320 K for the kinetic temperature of the molecular center of mass, in good
agreement with our result. To appreciate the strength of anharmonic coupling in this
system, consider that in the absence of the thermostat, and starting from velocities
obtained from the quantum distribution corresponding to the local Hessian, the
centers of mass would reach a temperature of 700 K within 1 ps, due to ZPE leakage
from internal modes[96].

Given these promising observations, we proceeded to evaluate the structural
properties of the liquid, and compared the different radial distribution functions with
those computed using purely classical and full path-integral calculations (figures 5.14
and 5.15). The agreement between PIMD and the quantum thermostat is very good.
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Figure 5.14: Oxygen-oxygen (left) and hydrogen-hydrogen (right) radial distribution
functions for a molecular dynamics simulation of a water model, at 298 K and experimen-
tal density. The shaded curve corresponds to a reference PIMD simulation, the blue curve
to a purely classical dynamics, and the red curve has been obtained with a GLE quantum
thermostat, with the parameters described in figure 5.12 scaled to the appropriate target
temperature.
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Figure 5.15: Oxygen-hydrogen radial distribution function for a molecular dynamics
simulation of a water model, at 298 K and experimental density.The shaded curve corre-
sponds to a reference PIMD simulation, the blue curve to a purely classical dynamics, and
the red curve has been obtained with a GLE quantum thermostat, with the parameters
described in figure 5.12 scaled to the appropriate target temperature. The rightmost
panel shows the intramolecular peak in detail.
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The intermolecular part of the radial distribution functions is described almost
perfectly, while for the intra-molecular peaks, where the quantum nature of the
proton is evident, the improvement over the classical result is impressive.

This satisfactory agreement in a strongly anharmonic system, which at the same
time exhibits large nuclear quantum effects, suggests that our method can be ap-
plied to almost any condensed-phase problem. However, as is apparent from the
significant deviation of the intra-molecular peak in gOH (r ) from PIMD results, a
residual error is present. We will discuss how these inaccuracies can be estimated in
the following section.

5.2.5 A discussion of the accuracy

The agreement between the structural properties of liquid water computed using
PIMD and quantum thermostat GLE dynamics is impressive, as discussed in the
previous section. The fact that similar, satisfactory agreement is obtained for dia-
mond and neon (figures 5.12 and 5.13), with the same set of parameters scaled to the
appropriate target temperature, is a convincing proof that our simulation strategy
can capture a significant portion of the nuclear quantum effects in many interest-
ing systems. However, one must be aware that this is an approximate scheme, and
that significant discrepancies might arise, which will depend on the property being
studied.

A possible strategy for obtaining an order-of-magnitude estimate of the uncer-
tainty in the results of a quantum thermostat calculation, that does not require one to
do an expensive path-integral reference calculations, is to perform two simulations
with two different sets of parameters, that are fitted to slightly different frequency
ranges, or with different coupling strengths. The difference between the two results
provides a lower bound on the inaccuracy in the treatment of quantum effects for
the observables of interest.

To test this strategy, let us return to the example of Tersoff diamond we discussed
in section 5.2.3. In Ref. [89] we have compared a number of properties calculated
using our quantum thermostat with those obtained using path-integral methods, and
obtained an excellent agreement down to a temperature of 0.1ΘD . To achieve these
results, we fitted five different matrices, which we then used for different temperature
ranges between 50 K and 3000 K, and we carefully balanced the accuracy of the
fitting of cpp and cqq (Eq. (5.6)) and the coupling strength, which does not need to
be very high in a harmonic system such as diamond. It is interesting to compare
these refined results with those which could be obtained by simply rescaling the
parameters used to create figure 5.12. Given that the fluctuations were fitted with an
error as large as 10%, we cannot expect a better accuracy for the kinetic temperature
and for corresponding properties.

Compare the temperature-dependence of the lattice parameter as obtained from
the two sets of GLE matrices (figure 5.16). The purpose-fit parameters give a nearly-
perfect agreement with the path-integral results [99] down to 10% of the Debye
temperature but are poorly transferable, since we sacrificed in part the coupling
strength. The general-purpose parameters meanwhile capture the main features of
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Figure 5.16: Lattice parameter as a function of temperature for an NPT simulations of a
Tersoff model of diamond. The black line corresponds to a set of path-integral results[99],
the blue line to a set of purely classical simulations and the red line to trajectories using
the quantum thermostat. In panel (a), parameters were fitted for five temperature win-
dows, and an accurate fit of fluctuations was required, together with mild requirements
on the coupling time. Panel (b) uses the general-purpose parameters used in figure 5.12
over the whole range of temperatures.
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the thermal expansion, and improve enormously with respect to a purely classical
simulation. However, they give less accurate results than could be obtained with a
more careful fit.

5.2.6 Prospective improvements

The level of accuracy of figure 5.16(b) is sufficient for most applications, and can
be improved by performing custom fits when the system is very harmonic and the
requirements of extremely strong coupling can be relaxed. We have also shown that
in more controlled, one-dimensional cases, the qualitative features stemming from
nuclear quantum effects can be captured even in extremely anharmonic cases, such
as the particle in a box.

Currently one cannot systematically increase the accuracy of our approach, not
even through higher computational expenditure. This possibility would make it
much easier to test the accuracy of results, and would increase its reliability. A
viable strategy for reaching this goal, which we are now beginning to explore, would
be to combine the quantum thermostat with a path-integral formulation. In this
approach a quantum-thermostat simulation could be seen as a modified one-bead
dynamics, in which a set of GLE parameters is used which enforces a strongly out-of-
equilibrium phase-space distribution. At the other end of the scale, a fully-converged
PIMD trajectory requires O (~ωmax /kB T ) replicas, on each of which a conventional
thermostat is applied to maintain the system at the appropriate temperature (see
chapter 4). One could then envisage that a PI simulation, with a small number of
beads, could be brought closer to convergence by enforcing a stationary phase-space
distribution intermediate between the canonical distribution and the one generated
by the bare quantum thermostat. Finding the form of this distribution, and verifying
the rate of convergence of the error will be the subject of further investigation.



Chapter 6

Nuclear quantum effects in
lithium imide

Lithium amide (LiNH2) and imide (Li2NH) have been extensively studied in recent
years as they are promising materials for hydrogen storage[100–103]. Hydrogen
release occurs in the mixture LiNH2 +LiH via a reversible solid-state decomposition
reaction into lithium imide and molecular hydrogen, LiNH2 +LiH −−→ Li2NH+H2.
The typical operating temperature for this system is around 280 ◦C. This is probably
too high for on-board applications. Nevertheless, the amide/imide system is under
deep scrutiny since it represents a prototypical, relatively simple system, which could
shed light on the mechanisms for reversible H-release in the more complex, and
technologically promising, reactive hydrides. In spite of a substantial amount of
experimental work, several issues on the basic properties of this system are still open,
including its structural properties.

Atomistic modeling has been proved to be very useful for obtaining insight into
the properties of Li2NH. However, to ensure reliable results, it is vitally important
to use an accurate, density-functional description of the interactions. In addition,
as this compound contains light atoms, it is also desirable to include a treatment
of nuclear quantum effects. In this chapter we will present the results we have
obtained by combining ab-initio molecular dynamics with the quantum thermostat.
We will demonstrate how a number of observables relevant for the interpretation
of experiments can be obtained with good accuracy and affordable computational
effort.

6.1 Crystal structure

Differential thermal analysis and NMR measurements[104, 105] in the late 60’s re-
vealed a reversible phase transition at 356 K between an unknown low temperature
(LT) structure and a high temperature antifluorite phase of Li2NH. Further structure
refinement from x-ray and neutron diffraction measurements of deuterated imide
(Li2ND)[106] has been published recently. The high temperature phase has a diffrac-
tion pattern consistent with an anti-fluorite structure, in which hydrogen atoms

111
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Figure 6.1: (a) Tetragonal unit cell consistent with the experimental diffraction pattern.
Atoms are arranged according to the F d 3̄m space group. Li2 and Li1 sites are fully
occupied, whereas Li3 positions have partial occupation. (b) A detail of the tetrahedral
arrangement of imide groups which surrounds constitutional Li+ vacancies. (c) A Li2
vacancy - Li3 interstitials cluster. We observed formation of this structure in ab initio
molecular dynamics trajectories starting from a realization of the structure in panel (a),
in which the Li interstitials were distributed according to Ref. [108]. These clusters are
the building blocks of the structure we propose.

occupy the 192l positions of the F m3̄m space group. At low temperature (100-300
K) the diffraction data were best fitted by a cubic crystal with F d 3̄m space group
(figure 6.1(a)). This LT crystal can be seen as a superstructure of the antifluorite phase
in which one out of every 8 Li atoms is displaced to an interstitial site. This gives
rise to an ordered arrangement of Li vacancies, which are tetrahedrally coordinated
to four NH groups (figure 6.1(b)). This structure is stabilized by an electrostatic in-
teraction between the formally negatively-charged Li+ vacancy and the H+ atoms
which points towards it. Similar tetrahedral arrangements of NH groups are present
in other imides, such as Li2Mg(NH)2[107].

In the LT phase the H and N atoms occupy the 32e sites. The Li atoms meanwhile
are distributed over three different sites: 48 f (Li1), 8a(Li2) and 32e(Li3). Structural
refinement yields a fractional occupation for the last of these positions of about 1/3
at low temperatures. This is well above the value required by stoichiometry (1/4 ),
which is only observed in experiments at room temperature.

The presence of sites which are partially occupied is a sign of static disorder. It
is necessary to resort to theoretical modeling to resolve the local structure and the
correlations between occupations. A structure obtained by populating a single Li3
site around each Li2 position has been proposed[108]. However, this arrangement is
unstable and upon local relaxation lithium interstitials move to occupy octahedral
sites, in contradiction with the diffraction pattern[106, 108, 109]. Moreover, the
calculated enthalpy of formation for this model is higher than that obtained in
experiments. In recent years, other structures have been suggested on the basis of
ab-initio calculations, which have lower formation energies than the one in Ref. [108].
However, these structures do not reproduce the experimental diffraction data[110,
111].

Based on a combination of ab-initio molecular dynamics and static optimization,
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Figure 6.2: Supercell corresponding to 3×1×1 tetragonal cells (figure 6.1(a)), where we
have distributed four lithium interstitials-vacancy clusters, so as to obtain the appropriate
stoichiometry. Other arrangements of tetrahedra exist with nearly degenerate energy.
However, the one in figure is the most stable, and so we used it as the starting point for
further simulations.

we have recently found a different pattern for the occupation of the F d 3̄m sites[112],
which is both more stable than the one in Ref. [108], and in excellent agreement
with all the experimental evidence. During a short ab-initio molecular dynamics
trajectory1, started from the configuration given in Ref. [108], we have observed fast
diffusion of the lithium interstitials, and the eventual formation of tetrahedral clusters
in which a vacancy in Li2 position is surrounded by four occupied Li3 sites (see fig-
ure 6.1(c)). A superstructure in which all the interstitials are arranged in this fashion
has a considerably lower enthalpy than the relaxed structure in Ref. [108]. Consid-
ering that various arrangements of the clusters have nearly degenerate energies, a
long-range disorder is predicted. This disordered structure has the experimental
space group with fractional occupations of the Li3 sites (1/3) and Li2 sites (2/3).

The symmetry-adapted average structure which can be inferred from our most
stable arrangement (figure 6.2) is in excellent agreement with experimental data. The
only discrepancy is the presence of fractional occupation for the Li2 sites, which
probably was not considered in the Rietveld refinement. In the simulations described
in the remainder of this chapter we used a representative supercell, based on the most
stable arrangement of lithium interstitial-vacancy clusters we found. We employed
the quantum thermostat to perform trajectories at 300 K, as will be discussed in the
following sections.

6.2 Quantum-thermostatted simulations

Li2NH is a challenging test for the quantum thermostat for several reasons. Being

1A
p

2×1×p
2, 128-atoms supercell corresponding to two tetragonal unit cells (cf. figure 6.1(a)) was

used. We performed Born-Oppenheimer molecular dynamics simulations within Density Functional
Theory with gradient corrected exchange and correlation functional[113] as implemented in the CPMD[57]
package. Ultrasoft[114] and Goedecker-type[115] pseudopotentials were used for N and H atoms and
for Li with three valence electrons, respectively. Kohn-Sham orbitals were expanded in plane waves up
to a kinetic-energy cutoff of 50 Ry. Brillouin Zone (BZ) integration was restricted to the Γ point only. A
time step of 0.6 fs was used and a constant temperature of 300 K was enforced by an optimal-sampling
generalized Langevin equation thermostat.
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Figure 6.3: Comparison of the fitted properties for the two set of parameters we used in
our simulations. In the two panels, the ratio between the fitted and exact fluctuations
(cfr. Eq. (5.6)) are reported, together with the correlation time of kinetic energy τK , for
ϕ = ~ωmax /kB T = 50 (left) and ϕ = 20 (right). The shaded region corresponds to the
range on which Eq. (5.6) has been enforced.
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composed exclusively of light nuclei, we expect its properties to be significantly
affected by nuclear quantum effects. Moreover, it is a relatively soft material, in
which anharmonicities are important. Last of all, we want to perform ab-initio
trajectories. This makes it hard to obtain a reliable reference to gauge the accuracy of
our method, as an ab-initio PIMD trajectory would be prohibitively expensive and,
to our knowledge, no good-quality classical force field is available.

We therefore applied the empirical strategy we described in section 5.2.5 to test
our approach. We prepared two sets of parameters using different fitting strate-
gies, and quantified inaccuracy by calculating the discrepancy between the results
obtained with the two choices. The highest frequencies present, which set the up-
per bound of the range to be included in the fit, can be ascribed to the NH bond
stretching. Consequentially, the same GLE parameters we used for water (fitted for
ϕ= ~ωmax /kB T = 20, see section 5.2.4) are sufficient to cover the relevant range of
frequencies at 300 K, and can be used as a first reference. As a second option we
prepared a pair of

{
Ap ,Cp

}
matrices with target ϕ = 50, as we know that ϕ > 20 is

required in the low-temperature simulations that we intend to perform in the future.

The properties of the two sets are represented in figure 6.3. For ϕ = 50 the
coupling is slightly less intense, since non-equilibrium, frequency-dependent ther-
malization has been enforced over a larger range. On the other hand, we obtained
a better fit of cpp (ω) and cqq (ω). While there are no compelling reasons to prefer
one choice over the other, there are arguments in favor of ϕ= 50 which has tighter
fit to the quantum fluctuations. If we consider that Li2NH, albeit anharmonic, is a
crystalline solid, we can safely assume that phonon-phonon coupling terms will be
less dramatic than in liquid water. Hence we can expect the results to be little affected
by the weaker coupling intensity. We therefore consider the ϕ = 50 parameters as
our best estimate, and use ϕ = 20 only to gauge the inaccuracies in the physical
observables. As we will demonstrate, the two choices yield similar results, which
makes our preference somewhat irrelevant.
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Figure 6.4: Comparison of the distribution of kinetic temperature, as computed sepa-
rately for individual atomic species, for a purely classical (blue line) and two quantum-
thermostatted simulations of Li2NH. The continuous red line corresponds to ϕ = 50,
while the dotted red line to ϕ= 20.
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6.2.1 Temperature of atomic species

A normal-modes analysis of the kind performed for diamond in section 5.2.3 would
not be very significant here, as it would be hard to tell apart the discrepancies due to
phonon-phonon coupling and those due to the fact that the vibrations are not strictly
harmonic. We can however compute the kinetic temperature of different elements
separately, and compare the outcome resulting from the different choices of GLE
parameters.

The results of this analysis are reported in figure 6.4, which shows that nuclear
quantum effects are very significant for hydrogen atoms. They are also sizable for
lithium and nitrogen, which both have an average effective temperature around 400 K.
In addition, it is worth noting that the discrepancy between the results at ϕ= 50 and
20 is small if not negligible. This gives us some confidence in the reliability of our
method when applied to Li2NH. We will return in more detail to the distribution of
the proton momentum in section 6.3, and will discuss the relevance of this result
with regards to experiment.

6.2.2 Structural properties of NH bonds

We now comment further on the accuracy of our results by considering the struc-
tural properties of NH groups. As discussed in section 6.1, the distinctive trait of
the low-temperature phase of Li2NH is the presence of Li+ vacancies in the lithium
antifluorite lattice which are coordinated by four protons, in a tetrahedral arrange-
ment (see figure 6.1(b)). The stability of this structure has been disputed, and other
arrangements of the bonds have been suggested[110, 116, 117]. For instance, if the
Li+ ions are pinned so that they fully occupy the antifluorite sublattice, the imide
groups can rotate freely even at room temperature. However, the resulting structure
is unstable, as Li+ Frenkel pairs form spontaneously if the lithium atoms are not
constrained.

It is therefore both useful and instructive to analyze in some detail the structural
properties of the imide groups, and the influence of quantum effects on their bond
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Figure 6.5: Short-range radial distribution function for the hydrogen-nitrogen pairs.
The result from a purely classical trajectory (blue line) is compared to the results from
quantum-thermostatted simulations (red lines). The continuous line corresponds to
ϕ= 50, and the dotted line to ϕ= 20.
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lengths and orientations. With this in mind, we first computed the NH radial distri-
bution function, so as to characterize the distribution of bond lengths. The resulting
curve is reported in figure 6.5, which demonstrates the importance of nuclear quan-
tum effects. Figure 6.5 also demonstrates the reliability of our method, as it shows
that the discrepancy betweenϕ= 50 andϕ= 20 is small, and minute when compared
with the difference from the classical estimate. The broadened peak is asymmetric,
which indicates a significant anharmonicity of the underlying potential. Indeed, the
average bond length predicted by the classical simulation is 1.041 Å. This increases
to 1.057 Å when the GLE thermostat is used.

As far as orientational order is concerned, we observed that the tetrahedral struc-
tures of figure 6.1(a) are very stable, but that imide groups undergo large vibrations
about the (111) and equivalent directions. In figure 6.6 we plot the three-dimensional
probability density for hydrogen atoms, symmetry-adapted to the F d 3̄m space group,
so as to provide a quantitative picture of the typical orientation of the bonds. It is
clear that in both classical and quantum-thermostatted dynamics the imide bonds do
not undergo free rotations, but can oscillate considerably around their equilibrium
position. The distribution in figure 6.6 is smeared by the vibrations of the entire
imide groups and by static disorder, as it is averaged over all the hydrogen atoms in
the supercell. This demonstrates that nuclear quantum effects are important, but
their effect on this averaged orientations is not not as evident as their effect on NH
bond length.
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Figure 6.6: Three-dimensional probability distribution of the proton. In panels (a) and (b)
we report the isoprobability contours enclosing 90% and 10% of the density, respectively.
Blue contours correspond to classical simulations, and red ones to the GLE thermostat
with ϕ= 50. The blue lines represent the tetrahedron formed by the symmetry-averaged
positions of the nitrogen atoms. In panel (c) we also report the plot of the density along
the A and B planes (see panel (a)). Contours are drawn every 0.1 Å−3.
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6.3 Proton momentum distribution

In a purely classical framework the constant-temperature probability distribution
of the momentum of any particle is rather uninteresting, as it depends only on the
temperature and the mass of the particle. In contrast, when significant quantum-
mechanical effects are present, the momentum distribution depends strongly on the
underlying potential. Consequentially, this quantity can be used as a powerful probe
of the local environment in materials which are disordered, or difficult to analyze
using conventional techniques.

In recent years the development of pulsed neutron sources has made it possible
to use inelastic neutron scattering to probe the momentum distribution of individual
atoms[118–120]. Hydrogen is an ideal target for these studies, because of its large
incoherent cross section and also because the scattered neutrons have a distribution
of energies that is well separated from those of neutrons scattered by other species.
Moreover, because of its small mass, the proton has a strong quantum behavior,
which makes its momentum distribution very sensitive to the local potential energy
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Figure 6.7: (a) Direction-resolved proton momentum distribution computed from a
molecular dynamics trajectory where we employed the GLE parameters ϕ = 50. The
orientation of a NH tetrahedron is also drawn, to give the orientation of the axes relative
to the crystal structure. Isosurfaces enclose (from the most external to the innermost
surface) 95%, 90% ,50% an 10% of the density. (b) A contour plot of the 2D PMD computed
on the xz plane. Contour lines are traced for n

(
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)= 5×10−3, 10−3, 5×10−4, 10−4,
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surface.

However, measuring and interpreting the proton momentum distribution (PMD)
is not a simple task and is a significant challenge also from the point of view of
simulation. For instance, conventional path-integral methods can only generate
statistically-representative configurations of positions - one must adopt more refined
open path methods to access the distribution of momenta[73, 80]. These techniques
are complex, and lead to slowly-converging averages. As a result, only ever in excep-
tional cases and with great computational effort[91], have they been applied together
with a first-principles computation of interatomic forces.

In contrast, for the quantum thermostat the distribution of velocities is an approx-
imation of the quantum-mechanical finite temperature distribution, by construction.
Hence, we can obtain the PMD easily, and compare it with experimental data which
have been gathered very recently at ISIS (Oxford) by A. Pietropaolo.

6.3.1 Anisotropic momentum distribution

Most of the experimental assessments of PMD to date have been collected on dis-
ordered materials or on powder samples. In these cases, a spherically-averaged
distribution is recovered, which we will discuss below. Whenever it is possible to
perform measurements on single-crystal samples, one can infer information on the
preferential orientation hydrogen atoms by observing the directional dependence of
the PMD n

(
p
)
[121, 122].

The anisotropy of the PMD is a purely quantum phenomenon, and is clearly
visible in the 3D and 2D distributions we have computed from our quantum-
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Figure 6.8: Spherical average of the proton momentum distribution, n
(
p

)
for Li2NH at

300 K. The classical Maxwell-Boltzmann distribution is shown for reference, together
with experimental data. We have computed the PMD by ab-initio calculations, both
from quantum-thermostatted dynamics and in the harmonic limit, using the phonons
obtained at the Γ point by diagonalization of the dynamical matrix. In the rightmost
panel, PMDs are shown on a logarithmic scale, to magnify the difference in the tail region.
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thermostatted trajectory (see figure 6.7). This anisotropy arises because the proton
momentum has larger fluctuations in the direction parallel to the stiffer bonds. As
discussed above, protons in Li2NH are oriented towards the centers of the tetrahedral
arrangements of four imide groups, and so the three-dimensional n

(
p
)

has cubic
symmetry. This is particularly evident in the tails of the distribution.

6.3.2 Spherically-averaged momentum distribution

When measurements are performed on powder samples, the orientational depen-
dence of n

(
p
)

is lost, and only the spherically-averaged n
(
p

)
can be recovered. How-

ever, a remnant of the original anisotropy is left, because, for a purely harmonic but
non-spherical potential, the shape of n

(
p

)
will not be a Gaussian (see appendix F).

We have been given some preliminary, unpublished experimental data recorded
on a powder sample of Li2NH at ISIS (Oxford), and we can thus perform a comparison
with our simulations (see figure 6.8).

As a further theoretical comparison, we also computed the proton momentum
distribution predicted by a purely harmonic model, based on normal modes com-
puted at the Γ point using finite displacements of the atoms. To compare this result
with quantum-thermostatted simulations and with experiments it would be nec-
essary to take into account anharmonic corrections to the potential. However, the
improvement over a classical simulation is impressive, and there is qualitative agree-
ment between the experimental and both theoretical curves. There are on the other
hand discrepancies which are significant compared to the error bar of the exper-
iments, and further analysis is being performed so we can obtain a quantitative
interpretation of the results.

In conclusion, we have demonstrated that in this challenging practical applica-
tion a non-equilibrium generalized Langevin equation, fitted to reproduce nuclear
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quantum effects in the harmonic limit, is capable of qualitatively capture the features
of the properties of anharmonic solids. An error of the order of 10% on the magnitude
of quantum-ions corrections is to be expected, given the discrepancy between the
results obtained with different sets of parameters. We would like to stress that the
computational effort required in our study was at least one and a half orders of mag-
nitude smaller than what would have been required in conventional PI techniques.
This makes our method particularly useful for performing preliminary studies, to
quantify the importance of quantum nuclei in the modeling of novel, cutting edge
applications. It also provides quantitative estimates which offer a significant improve-
ment over purely classical results, even if more accurate - and expensive - methods
are required if high-precision values are needed.



Conclusions

In this thesis the development and several applications of a generalized Langevin
framework for molecular dynamics simulations have been presented. Building on an
extended phase-space Markovian realization of a non-Markovian Langevin equation,
we have discussed the prediction of static and dynamic response properties of a
stochastic dynamics applied to a harmonic potential. We have then used these
predictions to tune the parameters of the thermostat. This allowed us to develop
new methods that extend the range of applications which can be examined using
molecular dynamics. The efficacy of these methods has then been demonstrated for
a number of applications that despite their apparent simplicity represent complex
sampling problems.

For instance, we have shown how the efficiency of sampling in constant-
temperature molecular dynamics can be improved, and how an optimal-sampling
GLE can be constructed. We have tested the reliability of our method for problems
as diverse as liquid water - both in classical and path integral dynamics - and for
examining the diffusion of hydrogen atoms in noble metals, where the H atoms are
treated using PIMD. In addition, we have shown how similar concepts can be used to
achieve the opposite effect; namely, GLE can be used to prevent the thermalization
of a range of frequencies. This is useful for Car-Parrinello MD and similar methods
based on adiabatic separation, where high-frequency components of the vibrational
spectrum should be undisturbed.

In passing we have also compared more traditional, uncorrelated-noise stochas-
tic thermostats, and have rationalized their positive and negative features using a
set of quantitative parameters we have developed for characterizing the behavior
of GLEs. During the course of this analysis we observed that, to efficiently sample
configurations in liquids, it is essential that the diffusive, concerted modes are undis-
turbed. To fulfill this aim we have devised an analytical estimate of such disturbance,
that can be used during the fit of the parameters of a GLE.

A radically different set of applications can be obtained if a class of non-
equilibrium generalized Langevin equations is employed. When used in this way the
effective temperature reached by different normal modes can be tuned as a function
of their frequency. We have shown how this frequency-dependent response can
be exploited to selectively excite a very narrow range of frequencies. We have then
applied this method to both molecular dynamics and to the more general problem of
spectral analysis of large matrices.

121
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Using a similar philosophy, we have demonstrated how a phase-space distribu-
tion for positions and momenta, which is consistent with the quantum-mechanical
finite-temperature density matrix, can be enforced in harmonic and quasi-harmonic
problems. We have shown that this approach yields satisfactory results for strongly
anharmonic, one-dimensional potentials, and have also discussed its application to
a series of condensed-phase problems, ranging from diamond to liquid water. In all
cases, we obtained good agreement with the exact, path integral approach, but at a
fraction of the computational cost.

The final system we examined was lithium imide, a compound which is relevant
for hydrogen storage. To model this correctly it is essential to include both nuclear
quantum effects and an ab initio treatment of the interatomic forces. A study of
this system with path integral methods would be prohibitively expensive. However,
using our quantum thermostat, we obtained results in qualitative agreement with
experiments, with a relatively small computational effort.

Our approach has been proved useful for performing both constant-temperature
sampling and for including nuclear quantum effects in expensive, ab initio simula-
tions. These ideas can be routinely used to gain insight in a number of important
simulation problems[123]. They are being implemented in CP2K[124], CPMD[57],
DLPOLY[60] and GROMACS[68]. Furthermore, we believe that we have only scratched
the surface of possible applications of stochastic concepts in molecular dynamics.
Many of the techniques we have employed lend themselves quite naturally to gener-
alizations and to usage in different contexts, and we are beginning to explore these
new possibilities. Moreover, our framework is based on a fairly simple form of a
stochastic differential equation. Many other, more complex classes of dynamics have
been explored by the mathematical community and could provide novel, useful tools
in the realm of molecular dynamics and atomistic simulations.



Appendices

A Dimensional reduction

Elimination of dynamical variables The connection between the Markovian (2.2)
and non-Markovian (2.1) formulations of the colored-noise Langevin equation can be
understood using techniques similar to those adopted in Mori-Zwanzig theory[4, 22].
Let us first consider a very general, multidimensional OU process, where we single
out some degrees of freedom (y) that we wish to integrate out, leaving only the
variables marked as x.(

ẋ
ẏ

)
=−

(
Axx Ax y

Ay x Ay y

)(
x
y

)
+

(
Bxξ

Byξ

)(
ξ

)
(A.1)

Assuming that the dynamics has finite memory, one can safely take y(−∞) = 0, and
the ansatz2

y(t ) =
ˆ t

−∞
e−(t−t ′)Ay y

[−Ay x x(t ′)+Byξξ(t ′)
]

dt ′. (A.2)

Substituting into (A.1), one sees that y can be eliminated from the dynamics of x, and
arrives at

ẋ(t ) =−
ˆ t

−∞
K(t − t ′)x(t ′)dt ′+ζ(t )

K(t ) =2Axxδ(t )−Ax y e−tAy y Ay x (t ≥ 0)

ζ(t ) =Bxξξ(t )−
ˆ t

−∞
Ax y e−(t−t ′)Ay y Byξξ(t ′)dt ′.

(A.3)

Incidentally, one can then verify that (A.3) are invariant under any orthogonal trans-
formation of the y dynamical variables, meaning that such a transformation leaves
the dynamics of the x’s unchanged.

The colored noise is better described in terms of its time-correlation function,
H(t ) = 〈ζ(t )ζ(0)T 〉. Let us first introduce the symmetric matrix D = BBT , whose parts
we shall label using the same scheme used for A in Eq. (A.1). We shall also need

2For brevity, we will write
´

f (s)ξi (s)ds meaning in fact an Itō integral
´

f (s)dwi (s).

123
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Zy y =
´∞

0 e−Ay y t Dy y e−AT
y y t dt . With these definitions in mind, one finds

H(t ) = δ(t )Dxx +Ax y e−tAy y
[

Zy y AT
x y −Dy x

]
(t ≥ 0) . (A.4)

Note that the value of H(t ) for t < 0 is determined by the constraint H(−t ) = H(t )T ; the
value of K(t ) instead, is irrelevant for negative times: we will assume K(−t ) = K(t )T

to hold, since this will simplify some algebra below.

Let’s now switch to the case of the free-particle counterpart of Eqs. (2.2), which
is relevant to the memory functions entering Eqs. (2.1). Here, we want to integrate
away all the s degrees of freedom, retaining only the momentum p. Hence, we can
transform Eqs. (A.3) and (A.4) to the less cumbersome form

K (t ) =2appδ(t )−aT
p e−|t |Aāp

H(t ) =dppδ(t )−aT
p e−|t |A

[
Zap −dp

] (A.5)

This compact notation hides certain relevant property of the memory kernels, which
are more apparent when the kernels are written in their Fourier representation. If
Dp = Bp BT

p is transformed according to Eq. (2.5). K (ω) and H(ω) read

K (ω) =2app −2aT
p

A

A2 +ω2 āp

H(ω) =K (ω)

(
cpp −aT

p
A

A2 +ω2 cp

)
+

+2ω2
(

aT
p

1

A2 +ω2 cp

)(
1+aT

p
1

A2 +ω2 āp

)
.

(A.6)

It is seen that the memory functions (hence the dynamical trajectory) are indepen-
dent of the value of C, the covariance of the fictitious degrees of freedom. Moreover,
a sufficient condition for the FDT to hold is readily found. By setting cpp = kB T and
cp = 0, one obtains H (ω) = kB T K (ω), which is precisely the FDT for a non-Markovian
Langevin equation. Since the value of C is irrelevant we can take Cp = kB T , which
simplifies the algebra and leads to numerically-stable trajectories.

Note that the same argument (with a slightly more cumbersome notation) can be
carried on when a potential is present in Eqs. (2.2), since the additional degrees of
freedom s are not coupled with the position q , and can be therefore integrated out in
the same way.

B Stability of the harmonic GLE

In chapter 2 we have discussed how condition (2.7) guarantees that the dynamics
generated by Eqs. (2.2) will sample the canonical ensemble. We have seen that it is
very difficult to treat the general case, where fluctuation-dissipation theorem does
not hold. However, we can prove that for an harmonic potential a positive-definite
Ap +AT

p guarantees a well-defined stationary distribution. Firstly, let us remark by
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transforming q ←ωq in (2.17) the rescaled Aqp and Dqp will be obtained:

A′
qp =

(
0 (−ω,0)

(ω,0)T Ap

)
, D′

qp =
(

0 0
0 Dp

)
.

We now want to prove that for Ap+AT
p > 0 and any positive-definite Dp , the symmetric

solution to
A′

qp C′
qp +C′

qp

(
A′

qp

)T = D′
qp (B.1)

will be positive-definite: in that case, a stationary solution to the Fokker-Planck
equation exists, which is a Gaussian with C′

qp as covariance.

Let x be an arbitrary vector of complex numbers, and ·† represent Hermitian
conjugation. Then3

0 ≤ x†D′
qp x = x†A′

qp C′
qp x+x†C′

qp

(
A′

qp

)T
x = 2Rex†A′

qp C′
qp x. (B.2)

Now, let us assume that C′
qp has a negative eigenvalue υ, and u is the corresponding

eigenvector. Then one would have

Reu†A′
qp C′

qp u = υReu†A′
qp u ≤ 0

since A′
qp +

(
A′

qp

)T
is positive semidefinite. This would be in contradiction with (B.2),

except for the case in which u = ũ = (1,0,0), which is the null eigenvector of D′
qp and

A′
qp +

(
A′

qp

)T
.

If we consider this case separately, we see that the only possibility to have a
negative υ is that ũ is also the associated eigenvector of C′

qp . On the other hand, this

would mean4 that υ= ũ†C′
qp ũ = cqq and cqp = cq = 0, which in turns implies5 that

the Cp part of C′
qp will be just the solution of Ap Cp +Cp AT

p = Dp , positive-definite
just by the argument above, without the nuisances of a zero eigenvalue. One also
finds that in this case the relation υ= cpp would hold, which means that indeed υ
must be positive since cpp is the diagonal element of a positive-definite matrix.

In passing, we can also prove that a positive-definite Ap +AT
p is a sufficient condi-

tion to have a positive Fourier transform of the memory kernel K (ω) for all ω. To this
aim, we consider that it is possible to write

1

2
K (ω)−1 = [

Ω−1]
pp =

[(
Ap +ω2

(
0 0
0 A−1

))−1]
pp

3Let us recall that if M is an arbitrary matrix in Cn×n ,[
∀x ∈Cn ,Re

(
x†Mx

)
> 0

]
⇔ M+M† is positive definite.

And that if M is Hermitian, x†Mx ∈R. Also, by taking x = êi = (0, . . .1, . . .0), one can see that if Re
(
x†Mx

)
> 0

all the diagonal elements of M must have a positive real part.
4For instance, cqp = (0,1,0)T C′

qp ũ = υ (0,1,0)T (1,0,0) = 0.
5Just write out all the separate parts of Eq. (B.1) in the case where cqp = cq = 0.
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and verify thatΩ is such that Re
(
x†Ωx

)> 0 for any x and ω. Then, one checks that
the same property holds forΩ−1, and hence its diagonal elements must be positive.

C Probability evolution in the harmonic limit

In the case of a harmonic potential it is possible to find an explicit solution for the
spread of the probability density out of a point in

(
q, p

)
space, integrating away the

dependence on the additional degrees of freedom. To this end, let us first review a
few results for multidimensional Gaussian probability densities.

Product of Gaussians Consider two normalized Gaussian distributions with di-
mensionality d , means x̄1 and x̄2 and covariances C1 and C2 respectively. Their
product will be a non-normalized Gaussian, with covariance C = (

C−1
1 +C−1

2

)−1
and

mean x̄ = C
(
C−1

1 x̄1 +C−2
2 x̄2

)
. The integral of such non-normalized gaussian is

Z = 1√
(2π)d det(C1 +C2)

exp−1

2
(x̄1 − x̄2)T (C1 +C2)−1 (x̄1 − x̄2)

Marginal probability It is possible to show that the marginal probability distri-
bution for a subset of the variables in a larger set, knowing that, as a whole, they
have a Gaussian distribution. Let again

(
x,y

)
be the full state vector, and y the vari-

ables one wants to eliminate. The overall covariance can be splitted into the parts
corresponding to the different sets of variables

C =
(

Cxx Cx y

CT
x y Cy y

)

and the overall probability distribution is P
(
x,y

)∝ exp
[
−(

x,y
)T C−1

(
x,y

)
/2

]
. One

wants then to perform an integration over the y’s to find6

P (x) =
ˆ

P
(
x,y

)
dy ∝ exp

[−xT (Cxx )−1 x/2
]

. (C.1)

Conditional probability As a final result, we recall that the conditional probability
which can be obtained fixing the values of some of the variables in a multivariate
Gaussian is still a Gaussian distribution. Using the same notation as above, and
considering also that x and y components have averages x̄ and ȳ respectively, one

6It is useful here to recall that given a set of data points
{

xi
}

which are normally distributed with mean
x̄ and covariance C, the data points

{
Sxi

}
will be distributed as a Gaussian with mean Sx̄ and covariance

SCST . Eq. (C.1) follows by taking

S =


1 0 0

0
. . . 0

0 0 1

0 . . . 0
0 . . . 0
0 . . . 0


which is a matrix with as many columns as the total number of variables, and as many rows as the x’s.
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finds that P
(
x|y)

has average x̄′ = x̄ + Cx y C−1
y y

(
y− ȳ

)
and covariance C′

xx = Cxx −
Cx y C−1

y y CT
x y =

[(
C−1

)
xx

]−1
.

One can then start from the solution of the Fokker-Planck equation Eq. (1.32). Let
us define the shorthands T = e−tA and R = C−e−tACe−tAT

. We also drop normaliza-
tions, and write

P
((

x,y
)

, t |(x0,y0
)

,0
)∝ exp

[
−1

2

((
x,y

)−T
(
x0,y0

))T R−1 ((
x,y

)−T
(
x0,y0

))]
.

A first step is to integrate out the dependence on y, to find the marginal probability

P
(
x, t |(x0,y0

)
,0

)∝ exp

[
−1

2

(
x− (

Txx x0 +Tx y y0
))T R−1

xx

(
x− (

Txx x0 +Tx y y0
))]

.

(C.2)

Since we aim at an expression which does not contain any reference to additional
momenta, we decide to consider them to be picked at random, in a way which is
consistent with the stationary distribution and the choice of x0:

P (x, t |x0,0) =
ˆ

dy0P
(
x, t |(x0,y0

)
,0

)
P

(
y0|x0

)
.

Based on the discussion above for the conditional probability of a multivariate Gaus-
sian, we find

P
(
y0|x0

)∝ exp

[
−1

2

(
y0 −Cy x C−1

xx x0
)T (

C−1)
y y

(
y0 −Cy x C−1

xx x0
)]

.

After straightforward albeit tedious calculations, one see that P (x, t |x0,0) can be
written as

P (x, t |x0,0) ∝ exp

[
−1

2
(x−Uxx (t )x0)T W−1

xx (t ) (x−Uxx (t )x0)

]
,

where the two matrices can be written as

W−1
xx =R−1

xx −R−1
xx Tx y

((
C−1)

y y +TT
x y R−1

xx Tx y

)−1 (
R−1

xx Tx y
)T

Uxx =Txx +Wxx R−1
xx Tx y

((
C−1)

y y +TT
x y R−1

xx Tx y

)−1 (
C−1)

y y Cy x C−1
xx .

(C.3)

One also sees that, in the limit as t → ∞, Wxx → Cxx and Uxx → 0, so that the
stationary distribution is recovered.

D Analytical results

We collect in this appendix a number of simple but cumbersome analytical results,
concerning the static and dynamical properties of a multivariate Ornstein-Uhlenbeck
process. Substituting A and C matrices (the drift term and the static covariance for
a generic OU process) with Ap and Cp or Aqp and Cqp for the various matrices, one
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can obtain the relevant quantities for the free-particle and the harmonic oscillator
cases of the GLE thermostat.

The diffusion matrix B can be obtained by an expression analogous to Eq. (2.5).
The same relation can be used to obtain the elements of C given the drift and diffu-
sion matrices, by solving the linear system. However, the covariance matrix can be
computed more efficiently by finding the eigendecomposition of A = O diag(αi ) O−1,
and computing

Ci j =
∑
kl

Oi k

[
O−1BBT O−1T

]
kl

O j l

αk +αl
. (D.1)

Since the equilibrium distribution for an OU process is a Gaussian, the covariance
C describes exhaustively the static properties. We then move on to compute the
dynamical properties, by means of the correlation functions.

Let x (t ) be the vector describing the trajectory of the OU process. The first non-
normalized correlation function is readily computed to be

Ci j (t ) = 〈
xi (t ) x j (0)

〉= [
e−|t |AC

]
i j (D.2)

and its integral to time t is

ˆ t

0
Ci j (s)ds = [

A−1 (
1−e−tA)

C
]

i j .

In order to compute τH or τV (Eq. (3.1)) for the harmonic oscillator, one needs
time correlation functions of the second order combinations of coordinates, of the
form xi (t ) x j (t ). It reads

Ci j kl (t ) = 〈
xi (t )x j (t )xk (0)xl (0)

〉−〈
xi x j

〉〈xk xl 〉 =
= [

e−|t |AC
]

i k

[
e−|t |AC

]
j l +

[
e−|t |AC

]
i l

[
e−|t |AC

]
j k

The corresponding, non-normalized integrals

τi j kl =
ˆ ∞

0
Ci j kl (s)ds

can be computed in terms of the tensorial quantity

Xi j kl =
∑
mn

Oi m
[
O−1C

]
ml

[
O−1C

]
nk O j n

αm +αn
(D.3)

as τi j kl = 1
4

(
Xi j kl +Xi j lk +Xkl i j +Xlki j

)
. For example - if we consider the full(

q, p,s
)

OU process in the harmonic case - one computes

τH = ω4τqqqq +2ω2τqqpp +τpppp

ω4c2
qq +2ω2c2

qp + c2
pp

, τV = τqqqq

c2
qq

(D.4)

where we use an obvious notation for the indexes in τi j kl .
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Figure 9: Correlation time for the potential energy of a 2-D harmonic oscillator, as a
function of the angle between the eigenmodes and the Cartesian axes. τV is computed
for different values of the condition number ωmax /ωmi n , from bottom to top 10, 31.6
and 100. Thin lines serve as an aid for the eye, connecting the results obtained in
the three cases using a massive NH chains thermostat, with four additional degrees
of freedom and Q = kB T /ω2

max . Error bars are also shown for individual data points.
Thick lines correspond to the (constant) result predicted for a GLE thermostat, using
respectively the thermostat parameters fitted to give a flat, optimal τV over a frequency
range between ωmi n and ωmax . The values obtained in actual GLE simulations agree
with the predictions within the statistical error bar, and are not reported.
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E Comparison with Nosé-Hoover thermostat

The most widespread techniques for canonical sampling in MD are probably white-
noise Langevin and Nosé-Hoover chains (NHC). White-noise Langevin can be con-
sidered as a limit case of the thermostatting method we describe in this work, but
NHC is based on a radically different philosophy. It is therefore worth performing a
brief comparison between the latter and the GLE thermostat.

In the “massive” version of the NH thermostat[39, 45], each component of the
physical momentum is coupled to an additional degree of freedom with a fictitious
mass Q, by means of a second-order equation of motion. The resulting dynam-
ics ensures that the physically-relevant degrees of freedom will sample the correct,
constant-temperature ensemble, with the advantage of having deterministic equa-
tions of motion, and a well-defined conserved quantity. However, in the harmonic
case, trajectories are poorly ergodic. This problem can be addressed by coupling the
fictitious momentum to a second bath variable with a similar equation of motion. By
repeating this process further a “Nosé-Hoover chain” can be formed, which ensures
that the dynamics is sufficiently chaotic to achieve efficient sampling[40, 46]

q̇ = p/m ṗ =−V ′ (q
)−p s1/Q ṡ1 =

[
p2/m −kB T

]− s1s2/Q
ṡi =

[
s2

i−1/Q −kB T
]− si si+1/Q ṡn = [

s2
n−1/Q −kB T

]
The drawback of this approach is that the thermostat equations are second-order

in momenta. It is therefore difficult to obtain analytical predictions for the properties
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of the dynamics, and the integration of the additional degrees of freedom must be
performed with a multiple time-step approach, which makes the thermostat more
expensive.

To examine the performances of NHC and GLE, one could envisage comparing
the sampling efficiency as defined by the correlation times (3.1). Obtaining such
estimates is not straightforward, not only because the the harmonic case cannot be
treated analytically, but also because in the multidimensional case the properties of
the trajectory will not be invariant under an orthogonal transformation of coordinates.
The simplest model we can conceive for comparing NHC and GLE is therefore a two-
dimensional harmonic oscillator, with different vibrational frequencies on the two
normal modes and adjustable relative orientations of the eigenvectors with respect
to the thermostatted coordinates.

The resulting τV is reported in Figure 9: in the highly anisotropic cases, the
efficiency of the NH chains depends dramatically on the orientation of the axes, while
for well-conditioned problems is almost constant. The linear stochastic thermostat,
on the other hand, has a predictable response, which is completely independent of
orthogonal transforms of the coordinates. In the one-dimensional case, or when
eigenvectors are perfectly aligned with axes, NH chains are very efficient for all modes

with frequency ω<ωQ =
√

kB T
Q . One should however consider that, in the absence

of an exact propagator, choosing a small Q implies that integration of the trajectory
for the chains will become more expensive.

Obviously, such a simple toy model does not give quantitative information on
the behavior in real-life cases, where modes of different frequencies coexist with
anharmonicity and diffusive behavior. However, it demonstrates that the colored-
noise Langevin thermostat performs almost as well as the axis-aligned NH chains.
Furthermore, unlike the NHC, there are no unpredictable failures for anisotropic
potentials.

F Momentum distribution in the harmonic limit

To recover an expression for the spherical average of the PMD in a harmonic solid,
let us first consider a three-dimensional harmonic oscillator, with different modes
oriented parallel to the Cartesian axes. For a start, we do not write the dependence of
the Gaussian spread along the axes on the frequencies, but consider the widths as
parameters, and write

n
(
p
)∝ e

− 1
2

(
p2

x
p̄2

x
+ p2

y

p̄2
y
+ p2

z
p̄2

z

)
.

With no loss of generality, we assume px ≤ p y ≤ pz , write p ′ = p/pz , px = p y /
p

1+α2,

p y = pz /
√

1+β2 and integrate away the angular dependence in polar coordinates,
so as to get

n
(
p

)
dp = p ′2

ˆ
dφdθe−

1
2 p ′2[cos2 θ+sin2 θ(1+β2)(1+α2 cos2φ)] sinθ p̄z dp ′ (F.1)
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For the cylindrical symmetric limit α= 0 we found a closed solution, and recovered
a working expression for small x y-plane anisotropy by writing the first terms of a
series expansion in terms of α2,

n
(
p

)≈ 1

pz
e−p ′2/2p ′ (I0

(
p ′)+α2I1

(
p ′)+α4I2

(
p ′))+O

(
α6)

where

I0 (x) = 2
1+β2

p
πβ

D
(
βx/

p
2
)

I1 (x) = 1+β2

2
p
πβ3

[(
1+β2)βx/

p
2−D

(
βx/

p
2
)(

1−β2 +β2 (
1+β2)x2)]

I2 (x) =
[

D
(
βx/

p
2
)(

9+10β2 −7β4 +2β2 (
1+β2)(3−β2)p2 +3β4 (

1+β2)2
p4

)
−(

1+β2)(9+β2 +3β2 (
1+β2)x2)βx/

p
2
] 1+β2

32
p
πβ5

and D (x) is the Dawson integral e−x2 ´ x
0 e y2

dy .

Quantum harmonic crystal We now move on to the treatment of the harmonic
crystal. At first, we observe that the quantum momentum distribution can be written
as a Gaussian, with frequency-dependent widths along the same normal modes
which can be obtained by classical lattice dynamics. Then, let the indexes i , k,
α label atoms, phonons and Cartesian coordinates respectively, and ωk and e(k)

iα
be the frequency and the components of the k-th normalized eigenvector of the
dynamical matrix. The covariance matrix which describes the multivariate-Gaussian
distribution of momenta at temperature T reads

〈
piαp jβ

〉= ~
√

mi m j
∑
k

e(k)?
iα e(k)

jβ

ωk

2
coth

~ωk

2kB T
.

In order to compute the spherically-averaged proton momentum distribution, one
should then consider each hydrogen atom in the structure individually, and diago-
nalize the 3×3 matrix

〈
piαpiβ

〉
. The eigenvalues must then be plugged into Eq. (F.1).

The overall PMD is finally recovered by averaging over the probability distribution
computed for all the protons.
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