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Abstract

This PhD thesis examines several ensembles of general circulation models from a statistical
point-of-view. These models not only play a central role in detection and attribution studies on
climate change, but also often serve as basis for projections and adaptation planning for policy
makers. While scientific consensus points to human activities as the primary cause of the ob-
served 20th century warming, the details of future climate change remain uncertain. Apart from
an agreement on the positive sign of future temperature change, all climate models disagree to
a certain extent, depending on the variable, time horizon and spatial scale considered. While
this disagreement is not a problem in itself, quantifying uncertainty from an ensemble of simu-
lations whose performance and model dependence are not well identified remains challenging.

Model evaluation is often performed on a grid-point basis despite the fact that models are
known to often be unreliable at such small spatial scales. A first study examines how different
spatial and temporal scales affect the robustness of temperature and precipitation projections.
One finding suggests that increasing the native resolution of a model does not substantially
improve the simulation of present-day global mean annual temperature. Another finding is the
preservation of small spatial scale model bias until the end of the century, when the deviations
from the observations are considered independently from the present-day global bias. This
justifies the common practice to focus on anomalies from a control simulation rather than
absolute values.

The second study investigates why the predicted amount of global warming by different
general circulation models is so difficult to constrain by the observations. The comparison
between these state-of-the-art climate models with another ensemble made of a single model
whose parameters have been perturbed suggests that parameter calibration plays an important
role. As model calibration might have used all the information contained in the observation,
then model climate sensitivity cannot be constrained a second time by the same observation.
Moreover, if model parameters are tuned, this might give a false impression of validity for
present-day while systematic biases could appear in the future.

The third study focuses on the relationships between general climate models from a sta-
tistical point of view. We find that models from the same institutions generally share similar
behavior even after significant development. As a consequence, considering the climate models
as independent is not justified and multi-model averages are probably biased towards certain
model designs.
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ii CHAPTER 0. ABSTRACT

Finally, a fourth study explores the risks associated with weighting climate models ac-
cording to their present-day performance. A conceptual experiment is constructed where two
hypothetical IPCC reports are created at the same time. The consistency of both climate pro-
jections depends on the ensemble size and how strongly parameters are calibrated to match the
observations.

Overall, this thesis has demonstrated the importance an appropriate spatial scale for model
evaluation and the crucial role played by model inter-dependence and calibration for the uncer-
tainty range sampled by future climate simulations.



Résumé

Cette thèse étudie divers ensembles de modèles climatiques d’un point de vue statistique.
L’importance de tels modèles numériques n’est plus à démontrer : détection et attribution
des changements climatiques ou études d’impact déstinées aux décideurs politiques sont des
exemples fréquemment cités. Bien qu’un large consensus attribue aux activités humaines le
réchauffement climatique observé durant le 20ème siècle, de larges incertitudes persistent sur
l’ampleur et la répartitions géographique des futurs changements. Si les modèles s’accordent
tous sur un réchauffement global, ils divergent en revanche plus ou moins dans les détails
selon la variable considérée, l’éloignement dans le futur ou l’échelle spatiale à laquelle on les
compare. Ce désaccord n’est pas problématique en soi ; le véritable enjeu consiste plutôt à
correctement estimer les incertitudes reflétant l’état de nos connaissances. Le défi est de taille
surtout lorsque des notions de performance ou d’inter-dépendence au sujet des modèles ne sont
pas clairement définies.

L’évaluation des modèles est fréquemment effectuée à la plus petite échelle spatiale possi-
ble, c’est à dire celle de la cellule élémentaire du maillage global, ceci en dépit du fait que les
simulations sont rarement fiables à une telle échelle. C’est ainsi que la première étude de cette
thèse s’applique à définir une échelle spatiale et temporelle optimale à laquelle les modèles
seraient consistants entre eux ou avec les observations. Il en ressort que l’accroissement de la
résolution native d’un modèle n’apporte pas d’avantages pour la simulation de la température à
l’échelle globale. Un autre résultat rend compte de la bonne préservation des erreurs à l’échelle
locale jusqu’à la fin ce siècle, abstraction faite de l’erreur à l’échelle globale pour la période
présente. Un tel résultat justifie une pratique répandue qui consiste à se focaliser sur les anoma-
lies d’une simulation par rapport à sa version de contrôle plutôt que d’en analyser les valeurs
absolues.

L’étude suivante consiste à comprendre pourquoi si peu de variables basées sur les observa-
tions sont à même de réduire l’incertitude sur la sensibilité climatique prédite par les modèles.
Une comparaison est établie avec, d’un coté un ensemble de modèles à l’état de l’art, et de
l’autre, un large ensemble de simulations générées par la perturbation des paramètres d’un seul
modèle. Cette comparaison suggère que la calibration des modèles joue un rôle important : si
toute les informations disponibles sont intégrées par les modèles au travers de la calibration,
il n’est pas étonnant que les observations ne peuvent fournir davantage de contraintes quant
à la réduction de l’incertitude touchant la sensibilité climatique. De surcroı̂t, il se peut que
les modèles compensent certains mécanismes afin de reproduire fidèlement les observations.
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iv CHAPITRE 0. RÉSUMÉ

Un tel réglage pourrait produire une spécieuse apparence de validité et causer des déviations
systématiques dans le futur.

Une troisième étude se focalise sur les similarités existantes entre les modèles d’un point
de vue statistique. Nous démontrons que des modèles différents mais provenant des mêmes
institutions produisent des simulations apparentées, ceci également au fil des développements
successifs des modèles. Ainsi, le fait de considérer tous les modèles comme autant d’approches
indépendantes ne reflète pas la réalité. En conséquence, l’incertitude des futures projections
climatiques est probablement biaisée par certains concepts redondants.

Enfin, l’idée de donner à chaque modèle un poids reflétant son habileté à reproduire les
observations est analysée dans une quatrième étude. Nous utilisons une expérience conceptuelle
qui tend à démontrer que l’usage de tels coefficients est risqué s’il n’existe pas de relation entre
la performance mesurée aujourd’hui et les projections climatiques futures. Le rôle du nombre
de modèle dans un ensemble ainsi que celui de la calibration est également pris en compte.

Globalement, cette thèse démontre de quelle manière l’incertitude relative aux futurs
changements climatiques est affectée par le choix de l’échelle spatiale, par la calibration des
paramètres régissant les modèles et par certaines interdépendances conceptuelles.



Chapter 1

Introduction

Certainty is the anomalous condition for humanity, not uncertainty.
(Mike Hulme)

1.1 Motivation

In 1996, the second assessment report of the Intergovernmental Panel on Climate Change
(IPCC) identified “a discernible human influence on global climate”. Eleven years later, the
IPCC Fourth Assessment Report (AR4) reinforced this claim and stated that “most of the ob-
served increase in global averaged temperatures (...) is very likely due to the observed increase
in anthropogenic greenhouse gas concentrations”. The progress made in detecting and attribut-
ing climate change is a remarkable scientific achievement that required the coordination of very
different fields.

Yet, even if a consensus exists that the Earth’s climate is changing as a response to anthro-
pogenic emissions from burning fossil fuels, the amplitude and the pattern of climate change
remain uncertain. Because societal, ecological and economical stakes would be very different
if 1 or 6 ◦C of global warming were to be expected, a single value representing the best estima-
tion of the projected climate change is almost useless if not accompanied by reliable uncertainty
estimates. The future is uncertain because many unknowns of different nature are combined:
how much more greenhouse gas is expected, how predictable is the natural climate variability,
what do we really know about the climate system processes? (See Cox and Stephenson, 2007;
Hawkins and Sutton, 2009, for more details).

The development of computer technology has allowed the exploration of several hypotheses
by using elaborated General Circulation Models (GCMs). As these numerical models digest
all relevant existing knowledge on the climate system, they play a central role in the projection
of future climate change. To give an idea, the typical size of a GCM project implies about
one million lines of source code across several hundreds of files. At the present day, only
about 20 general circulation models from various institution worldwide are able to simulate
the relevant climate processes over several decades, at the detailed spatial and time resolution
required to provide reasonably reliable future projections (see Edwards, 2010, for a history
of climate modeling). Although these models all disagree to a certain extent, a quantification
of uncertainty based on their divergence remains subject of many debates. The complexity

1



2 CHAPTER 1: INTRODUCTION

of this question is reflected by the amount of published studies on this topic (e.g. Stainforth
et al., 2007; Tebaldi and Knutti, 2007; Knutti, 2008a; Knutti et al., 2008b, 2010b). Still, no
consensus exists on the evaluation of climate models, neither on which statistical method to
apply nor on the nature of the available sample of climate simulations. This thesis aims to
get a better understanding of the ensemble of models used in the last IPCC AR4 report. More
specifically, we are interested in answering the following questions:

– What are the spatial and temporal scales at which models can provide robust information?
– Why are there so few observational constraints on climate sensitivity?
– Is the history of climate models relevant and how much diversity is really contained is an

ensemble of GCMs?
– Should GCMs be weighted according to their present-day performance?

1.2 Background

The representation of climate consists of several layers of complexity where mechanisms
of different kinds interact with each others. This section provides a glimpse into the general
background on which this thesis is built. We introduce basic understanding of the Earth system
via a simple energy balance model and illustrate how radiative forcing and feedbacks inevitably
affect uncertainty of future climate projections.

1.2.1 Simple energy-balance model

The Earth’s global mean temperature is a key variable driving the climate. As temperature
is directly related to energy, some fundamental notions of climate can be illustrated using a
zero dimensional energy-balance model. The Earth receives short-wave energy from the sun
and emits long-wave energy back to space. If the climate system is simplified to a thin atmo-
spheric layer surrounding the Globe, the first law of thermodynamics applied at the top of the
atmosphere is:

4πR2hρ · C · dT
dt

= πR2(1− α)S − 4πR2εσT 4 (1.1)

where the following terms are used:

T average temperature of the atmosphere layer
R = 6371 km Earth’s radius
h = 8.3 km height of the troposphere
ρ = 1.2 kg m−3 air density
C = 1000 J kg−1 K−1 air heat capacity
α = 0.3 planetary albedo
S = 1367 W m−2 Solar constant
ε = 0.6 emissivity
σ = 5.67 · 10−8 W m−2 K−4 Stefan-Boltzmann constant

The right-hand-side term (πR2 · S) represents the amount of short-wave energy received
at the Earth surface. About 30% of the incoming solar radiation is directly reflected by the
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planetary albedo (α) formed mostly by reflecting components such as clouds and snow. The
remaining portion is absorbed by the climate system and warms the oceans, the ground surface
and the atmosphere. The energy is re-emitted back to space in the infra-red part of the spectrum
according to the Stefan-Boltzmann law (∼ εσT 4). As long as the infrared energy emitted by the
top of the atmosphere does not exactly compensate the incoming solar energy, the atmosphere
temperature varies to restore equilibrium.

An external radiative forcing is the change in net (downward minus upward) radiation (in
W m−2) at the tropopause and after stratospheric adjustment (IPCC, 2007). Radiative forcing
can be caused by a change in solar activity, the natural cycle of the seasons, but also by the
change in aerosol concentrations e.g. due to volcanic eruption or greenhouse-gas emission due
to human activities. The simple equation (1.1) allows the estimation of the climate response
after a radiative forcing has been applied and leads to a solution of the form T (t) = T̄ + const ·
e−t/τ , with T̄ being the global equilibrium temperature before a forcing is applied, and τ is
the typical time scale needed to restore equilibrium. Without the natural greenhouse effect,
T̄ = −18.3 ◦C and τ ≈ 34.6 days after the external forcing has ceased. In reality, T̄ = +14 ◦C

and τ depends on the type of forcing applied to the climate system and ranges from months to
centuries due to different processes and heat capacities in the climate system (Stouffer, 2004;
Knutti et al., 2008a). In addition, the vast majority of the heat is taken up by the mixed layer
in the oceans, not by the air itself. In order to get a reliable picture of the climate system
and estimate of climate change, the entire atmosphere, hydrosphere, cryosphere, lithosphere
and biosphere need to be represented in comprehensive Atmospheric and Oceanic General
Circulation Models (AOGCMs).

1.2.2 Climate sensitivity

In the context of anthropogenic climate change, equilibrium climate sensitivity (S) is an
important number and is defined as the equilibrium global average temperature change for a
doubling of the atmospheric CO2 concentration. Reformulating equation (1.1) gives

∆Q = ∆F − λ∆T (1.2)

where ∆F is a radiative forcing (in W m−2) leading to a surface warming ∆T and an increased
heat flux ∆Q, mainly taken by the oceans (see Hansen et al., 1981; Levitus et al., 2000). The
constant λ is known as the climate feedback parameter. At thermal equilibrium, ∆Q is zero and
λ = ∆F/∆T . The inverse value 1/λ = ∆T/∆F is known as climate sensitivity parameter.
Because many aspects of climate change scale linearly with S, equilibrium climate sensitivity
is a central quantity in climate modeling. Unfortunately, some physical processes are poorly
understood and studies that have tried to estimate S have also found large uncertainties (see
Fig. 1.1). Although all results are consistent on the positive sign of temperature change, the
distribution is generally positively skewed and do not exclude large value. The state-of-the-art
GCMs run for the IPCC AR4 report predict a likely climate sensitivity range of 2 − 4.5 K

(IPCC, 2007, Box 10.2).
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Figure 1.1: Probability density functions for the equilibrium climate sensitivity from different studies based on
observational constraints. Also shown are the 5 to 95% approximate ranges with the points denoting the median
values. Reproduced from IPCC (2007), Fig. 9.20, where more details are given.

1.2.3 Why is climate sensitivity so uncertain?

The primary source of model disagreement concerning climate sensitivity is due to limited
knowledge about feedback processes, and particularly to the parameterization of cloudiness
and cloud-radiation interactions (IPCC, 2007). The concept of feedback can be understood as
processes amplifying or damping the initial blackbody response of ∆T0 = 1.2 K after doubling
CO2 concentration. The positive skewness of the climate sensitivity distribution is inherent to
the climate system if we measure the total feedback parameter f (Roe and Baker, 2007) and
can be phrased by

S = ∆T0/(1− f) (1.3)

Because f and S are non-linearly related, a symmetric distribution for f results in a skewed
distribution in S as shown in Fig. 1.2.

The climate sensitivity is therefore conditioned by the representation of feedback processes
in climate models. A more accurate classification makes a distinction between structural and
parametrical uncertainty. Strutural divergences among GCMs are the result of different choices
made for the numerical schemes, resolution, representation of the atmosphere, vegetation, but
also of different computer hard- and softwares (Stainforth et al., 2007; Knight et al., 2007;
Knutti, 2008a). A systematic sampling of the structural uncertainty is conceptually difficult
to achieve and the complexity of the GCMs makes them expensive to run several times even
for large institutions. Therefore, the structural uncertainty of the climate sensitivity is sampled
only by about twenty structurally different GCMs from various institutions that are gathered
in the CMIP3 project (Meehl et al., 2007a). The second kind of uncertainty is related to the
parametrization of physical and chemical processes and exists because of lack of knowledge or
because some direct dynamical calculations are computationally too expensive. As parameter



1.2 BACKGROUND 5

Figure 1.2: Relation between amplifying feedbacks f and climate sensitivity S (black line). A symmetric dis-
tribution of the total feedback parameter f (blue line) results in a skewed climate sensitivity distribution (red
line) with larger uncertainty for high climate sensitivity value. The dashed lines shows that reducing the feedback
uncertainty by 30% does not affect the skewness of climate sensitivity. Figure from Knutti and Hegerl (2008).
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Figure 1.3: Global annual mean temperature simulated by different perturbed physics ensemble. The three
different sequences correspond to the calibration, the control and the doubling of CO2 phases. Figure from
Sanderson (2010).

values are not alway well constrained by observations, the parametric uncertainty remains a
large source of model disagreement. In contrast to the structural uncertainty, the parametrical
uncertainty can be systematically explored by perturbed physics ensemble (PPE), i.e. by run-
ning several parameter combinations of the same GCM (Kennedy and O’Hagan, 2001; Murphy
et al., 2004). Fig. 1.3 shows some runs from the climateprediction.net and CAMcube perturbed
ensembles (Stainforth et al., 2005; Sanderson, 2010) where different perturbations result in dif-
ferent temperature projections.

1.3 Outline of the thesis

The next chapter is an introduction to specific statistical methods used in this thesis. Chap-
ters 3 to 5 form the main body of this dissertation and consist of studies submitted or in prepa-
ration for international peer-reviewed journals:

– Chapter 3, ”Spatial scale dependence of climate model performance in the CMIP3
ensemble” (published in Journal of Climate). Which are the spatial and temporal scales
where GCMs are able to provide reliable results? While small spatial scales are important
to determine specific climate impacts, inter-model disagreements at this scale suggest that
some form of spatial aggregation might improve model consistency.

– Chapter 4, ”Constraining climate sensitivity from interannual variability: an illus-
tration of tuning in climate model ensembles” (in revision in Journal of Climate). Why
is climate sensitivity so difficult to constrain from the observations? The role of model
calibration is highlighted.

– Chapter 5, ”Climate model genealogy” (published in Geophysical Research Letters).
While many studies consider the 24 GCMs gathered for the IPCC AR4 as independent,
some evidence suggests that the number of truly independent models is smaller. This
study focuses on climate model relationships from the statistical point-of-view.

– Chapter 6, ”Model weighting, ensemble size and tuning: a conceptual study”(not
published). This conceptual experiment explores the benefit and risk of weighting models
by present-day performance.



Chapter 2

Statistical methods

This thesis deals with large datasets, sometimes in range of several gigabytes. When a vast
amount of data needs interpretations, machine learning algorithms are often used to reveal pat-
terns and structures. The learning problems can be categorized into two classes: supervised
and unsupervised. In supervised learning, the goal is to predict an output from a configura-
tion of input parameters. Decision trees, random forests and neural networks belong to this
category and are presented in this chapter. Unsupervised learning includes empirical orthog-
onal functions and clustering techniques. These algorithms seek for organized patterns in the
input ensemble itself and no output is analyzed. The last section of this chapter describes the
Kullback-Leibler divergence for multivariate normal distributions and is also a short glimpse
on information theory. With increased computational power and shared database worldwide,
these techniques have become popular in various fields such as biostatistics, econometrics and
of course climate science.

2.1 Random forests

Random forests belong to pattern recognition algorithms whose task is the following: given
a set of N input variables x = (x1, x2, · · · , xN)t, predict a real-valued output y via the model
y = f(x)+ ε, where f is an underlying but unknown function describing the model and ε some
noise contaminating the data. A fit is particularly interesting when the relation f is complex and
non-linear. A pattern recognition algorithm constructs an estimate f̂ that minimizes the errors(
yi − f̂(xi)

)
between the original and the generated outputs. In the learning phase, only part

of the original data is used and is known as the training set. The performance of the fit f̂ is
estimated on the set of remaining data by predicting output values ŷ that are compared with
the true values y not used during the training phase. Typical supervised learning techniques are
neural networks, regression trees and random forests. We present random forest and regression
tree algorithms and compare their performance with those of a neural network on a specific
example in climate modeling.

Regression tree analysis is conceptually simple yet powerful. The idea behind is to fit a
multi-dimensional step function to a continuous function f . Let us first consider the result of
a regression tree analysis f̂(x1, x2) = ŷ which is represented in Fig. 2.1a. The input space is
divided into the five response partitions shown in Fig. 2.1b and ŷ takes fives possible response

7



8 CHAPTER 2: STATISTICAL METHODS

Figure 2.1: Illustration of a regression tree. (a) Perspective plot of the prediction surface as a function of the
input parameters X1 and X2. (b) The input space spanned by X1 and X2 is parted into five response regions
R1, . . . , R5. (c) Decision tree based on the partition R1, . . . , R5. Figures from Hastie et al. (2001).

values R1, . . . , R5 and the corresponding decision-tree shown in Fig. 2.1c. If a continuous
function f is fitted, the question is how small should we divide the partition of the input space?
A too detailed tree will start to fit the noise in the training set leading to inappropriate estimate
f̂ . This phenomenon is known as overfitting. Many techniques exist to avoid overfitting and
are referred to pruning. More details can be found in Hastie et al. (2001).

We illustrate this technique with a perturbed physics ensemble. The climateprediction.net
project perturbs the parameter values of the HadCM3L climate model and generates thousands
of simulations, each representing a possible evolution of the Earth’s climate (Stainforth et al.,
2005). The combination of the input parameters (x1, . . . , xN ) affects climate sensitivity (y) of
the simulated climate system considered as the output response. We are interested whether a
group of leading parameters exists. Another possible application is to save time by avoiding
the explicit simulation of the parameters by a climate model f(x) and to rely on the fit f̂(x) as
model surrogate instead. In this case, f̂(x) is often called an emulator.

The result of a decision tree analysis using 60% of the data for the training phase is shown
in Fig. 2.2. The input parameters affect the extent of cloud cover, precipitation, the convection
scheme, etc. For a more complete description of the parameters, see Sanderson et al. (2008).
Focusing on the left branch of the tree as an illustration, when the adjusted cloud fraction
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|eacf>=0.6579

ct< 0.00025

entcoef>=0.8

ct< 7.5e−05

vf1>=1.5

eacf>=0.5631

entcoef>=2

entcoef< 6

ct< 0.00025 vf1>=0.75

rhcrit< 0.6895

vf1>=0.75

1.624
n=425 3.149

n=145
5.161
n=144

1.721
n=172 1.689

n=25
4.224
n=177

2.981
n=237

3.955
n=521 3.863

n=74
6.741
n=179

4.319
n=206

7.083
n=38

7.289
n=509

Figure 2.2: Regression tree applied to the climateprediction.net simulations. The input is the parameters com-
bination and the output is the simulated climate sensitivity. See text for explanations. More details about the
parameters can be found in Sanderson et al. (2008)
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Figure 2.3: Predicting climate sensitivity using a regression tree algorithm. The performance is measured in
terms of linear correlation between the true climate sensitivity value versus the estimated value. Left panel:
training set representing 60% of the data. The correlation is equal to 0.95. Right panel: validation set with the
remaining 40% of the data. The correlation is equal to 0.75.

(eacf) is larger than 0.66 and the accretion constant (ct) smaller than 2.5 · 10−4, the tree-based
prediction of climate sensitivity is 1.62 K. The number n = 425 refers to the amount of models
in the training set that belong to this category. The efficiency of the fit can be measured by the
linear correlation between the predicted versus the true values in the validation set and is equal
to 0.75 in this case. Fig. 2.3 shows the correlation in the training and in the validation sets.
The correlation in the training set is higher and reaches 0.95 but a closer look shows that there
is still large uncertainties even during the training. (Note that other skill measures such as root
mean square errors can be used instead of the linear correlation. While systematic biases are
ignored in a linear correlation, the potential skill can be quantified.)

We continue with the random forest algorithm which is built on regression trees. The gen-
eral idea behind is to combine a large amount of different decision trees. A bootstrapping
of the predictor variables is done at every node to evaluate the performance of different tree
configurations. All trees get weighted and are finally recombined into the fit f̂ . The same
experiment done before on the climateprediction.net ensemble is repeated using the random
forest algorithm. The performance in the training set and in the validation set in shown in Fig.
2.4.

The learning is very efficient and is able to predict climate sensitivity almost perfectly.
This performance is reflected in validation set, though with more uncertainties. Nevertheless,
the correlation is 0.85 and clearly outperforms the fit done with a single regression tree. The
bootstrapping necessary to generate the forest is also useful to assess the variable importance
in relation to the output variable. In this example, Fig. 2.5.a reveals that the oceanic parameters
(four last parameters to the right) are almost irrelevant to climate sensitivity. This result is
expected because the ocean heat uptake in equilibrium is zero.

As a final comparison, a feed-forward single-hidden-layer neural network with 6 neurons
is used to fit climate sensitivity (more explanations on neural networks can be found in Hastie
et al., 2001). The performance is shown in Fig. 2.6. The correlation is 0.97 in the training set
and 0.78 in the validation set. Depending on the nature of the data analyzed, some algorithms
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Figure 2.4: Predicting climate sensitivity using a random forest algorithm. Left panel: training set representing
60% of the data. The correlation is equal to 0.99. Right panel: validation set with the remaining 40% of the data.
The correlation is equal to 0.85.
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Figure 2.5: Variable importance (in %) of the perturbed parameters in relation to climate sensitivity. This
estimation is done using random forest.
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Figure 2.6: Predicting climate sensitivity using a feed-forward single-hidden-layer neural network with 6 neu-
rons. Left panel: training set representing 60% of the data. The correlation is equal to 0.94. Right panel:
validation set with the remaining 40% of the data. The correlation is equal to 0.78.

can be more or less efficient. The climateprediction.net project typically samples only two
or three possible values per parameter. The example done above illustrates that while a step-
function-based algorithm as random-forest is more adapted to fit a discrete input space, some
other algorithms based on smoother functions as neural network are more likely to generate
errors. An application of random forests is given in chapter 4.

2.2 Empirical orthogonal functions

A typical problem in climate science is the large amount of data. Large phase spaces often
lead to computationally expensive calculations or singular matrices when the information is re-
dundant. A solution is to decompose the data according to typical patterns that explain most of
the variance, yet substantially reduce the dimensionality. In contrast to the Fourier decompo-
sition, the basis vectors are patterns constructed directly from the empirical data and not from
harmonical functions. This section starts with a general mathematical formulation of Empir-
ical Orthogonal Functions (EOFs). We then compare the EOFs technique with the Spherical
Harmonic Functions (SHFs) decomposition and show why EOFs are often more appropriate to
decompose climatological fields.

Let X(t) be an N-dimensional random vector, for example the global monthly temperatures
field. The main patterns of variability are computed from the N ×N covariance matrix S,

Sij =
1

T

T∑
t=1

(Xi(t)− X̄i) · (Xj(t)− X̄j)

using the singular value decomposition:

S = E ·Λ · ET

where Λ is a diagonal matrix. The N × N matrix E contains the orthonormal basis Ek (k =

1, . . . , N ), column-wise arranged, and represents the typical patterns of variability. The original
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Figure 2.7: Average temperature bias field (in K) between an observational dataset and a certain GCM for
boreal winter during the period 1980-1999.

field can be projected on the basis vectors, called Empirical Orthogonal Functions (EOFs), and
are reconstructed according to:

X(t) =

L≤N∑
k=1

Uk(t) · Ek (2.1)

U(t) is the representation of the data in the new coordinate system and the components are by
construction mutually uncorrelated. The reconstruction in equation (2.1) is perfect if L = N

and approximate otherwise. The quality of the compression is measured by R2:

R2(L) =
L∑
k=1

cov(Uk(t))

/
N∑
i=1

cov(Xi(t))

which is the cumulated fraction of variability explained by the typical patterns Ek=1,...,L.
EOFs techniques are often used in data mining to find typical patterns of variability (e.g.

the Northern Atlantic Oscillation), to filter redundancies and uninteresting noise from a dataset,
for data reconstruction, and to reduce the dimensionality. The last point is illustrated with an
example where EOFs are particularly efficient. Let us consider the average temperature bias
field between an observational dataset and a certain GCM for boreal winter during the period
1980-1999 as shown in Fig. 2.7. The size of this field is equal to the number of grid-points
N (8192 here). We would like to reduce this size while preserving the maximum quantity
of information. The average boreal winter temperature over the same period is simulated by
an ensemble of M = 24 different GCMs. The typical modes of variability from these M
temperature patterns are calculated using singular value decomposition and form a new basis
made ofN EOFs. More precisely, the singular value decomposition is performed on theN×N
covariance matrix S representing the covariance between all possible pairs of grid-points using
M temperature patterns X(m), m = 1, . . . , 24. The three leading EOFs are shown in Fig. 2.8
and explain 67% of the total variance. The first EOF (upper figure) reflects the typical model
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Figure 2.8: The three first EOFs describing the main modes of variability across an ensemble of 24 different
GCM simulations of boreal winter temperature (see text for more details). The EOFs have no unit. These three
patterns explain 67% of the total variance.



2.3 CLUSTER ANALYSIS 15

errors in the Arctic region. Note that the EOFs have no unit. The next EOF (figure in the
middle) is a dipole between the Norwegian Sea and the Antarctic continent. Finally, the third
EOF (lower figure) is related to sea-ice variations. While a total of N = 8192 EOFs exists,
only a small number carries a physical interpretation.

For most of the applications, EOFs are used to find the main modes of variability and to
relate them to physical processes (e.g. El Niño-Southern Oscillation or the North Atlantic
Oscillation). In addition to that, this example seeks for an appropriate basis in order to reduce
the number of coordinates needed to express the bias pattern shown in Fig. 2.7. Another
possible basis is provided by Spherical Harmonic Functions (see e.g., Jackson, 1998) that can
decompose any field on the sphere. Fig. 2.9 shows three possible basis functions from an
infinite set of SHFs. These functions can explain 11% of the total variance in the same ensemble
of 24 simulated boreal winter patterns. The final step is to compare the ability of the EOFs
versus the SHFs to reconstruct the bias patterns shown in Fig. 2.7. The performance depends
on two aspects: first, the quality of the reconstructed pattern in the new basis, measured in terms
of linear correlation between the original and the reconstructed pattern. The second aspect is
the reduction of the spatial dimension from N to a lower number of coordinates. If 8192 EOFs
are used, the reconstruction is perfect but the size of the data has not been reduced. If 23 EOFs
are used, the correlation between the original and the reconstructed field is 0.96, indicating that
a small number of EOFs are enough to reconstruct most of the original information (see middle
figure in Fig 2.10). If SHFs are used instead, even a large amount of 256 basis functions are
not enough to accurately reconstruct the original field and show a correlation of only 0.63 with
the original field (see bottom figure in Fig. 2.10). This example illustrates that a bias pattern
of size N = 8192 can be reduced to 23 components without significant loss of information.
Such techniques can be useful for computational purposes. As an example, certain applications
require the inversion of the covariance matrix S. However, the inversion is impossible when
N ≥ M . The solution is to express the covariance matrix S in a new basis in order to reduce
the spatial dimensionality. This technique is used in an application given in chapter 5.

2.3 Cluster analysis

Cluster analysis belongs to the class of unsupervised learning technique. The goal is to
structure a set of data according to the degree of similarity between individual objects. The
algorithm makes a partition of the data inK subgroups called clusters. The clustering algorithm
groups the data such that the pairwise dissimilarities between those data assigned to the same
cluster tend to be smaller than those in different clusters. Several clustering methods exist and
a delicate part is generally to determine the optimal number K of clusters. Popular techniques
are those algorithms that partitions the data with a specified number K of clusters and avoid (in
a first step) the difficulty of finding the optimal number K. More important than the algorithm,
the choice of the dissimilarity measure is decisive for the clustering outcome. It does not
need to be a distance in the sense of fulfilling the triangle inequality (i.e. Dij ≤ Dik + Dkj)
but can be any dissimilarity symmetric measure. In the absence of pre-existing dissimilarity
matrix, the squared Euclidian distance is by far the most common choice, but other options
such as the Manhattan distance or the linear correlation are possible. In those case, the K-
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Figure 2.9: Example of Spherical Harmonic Functions. These functions have no unit. These three patterns
are able to explain 11% of the total variance in an ensemble of 24 different GCM simulations of boreal winter
temperature (see text for more details).
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Figure 2.10: Top: original bias field (in K) for boreal winter temperature during the period 1980-1999. Middle:
Reconstructed field using 23 EOFs. The correlation between the original bias field and the EOFs reconstruction is
0.96. Bottom: Reconstructed field using 256 spheric harmonical functions. The correlation between the original
bias field and the SHFs reconstruction is 0.63.
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means clustering algorithm is generally used. Fig. 2.11a illustrates the clustering of a set of
data A, . . . , J characterized by the bi-dimensional Euclidian distance of their position in the
plane. The number of specified clusters is K = 3 and is indicated by the blue, green and
orange ensembles.

The algorithm first starts by randomly choosing K objects promoted to be the cluster cen-
troids. The data is then divided into K groups whose criterion is the distance to the cen-
troids. After this, the average positions of the nearest neighbors define K new centroids.
Finally, the last two steps are repeated until convergence has been reached. In the case of a
pre-existing symmetric dissimilarity matrix Dij = d(Xi, Xj) between the individual objects
X = (X1, X2, · · · , XN), the K-medoids algorithm is used instead of the K-means. In contrast
to the K-means algorithm, the K-medoids algorithm chooses data objects as cluster centroids.

An extension of cluster analysis is hierarchical clustering with dendrograms as graphical
representation. It produces a hierarchical representation of the data where the clusters at each
level are created by merging those of the next lower level. The lowest level contains as many
clusters as individual data and the highest level is a single cluster grouping all the data. The
dendrogram of the example cited above is shown in Fig. 2.11b. The height of each node
measures the intergroup dissimilarity between its two daughters. An application of hierarchical
clustering is given in chapter 5.

2.4 Kullback-Leibler divergence

Before the expression of Kullback-Leibler divergence is given, a glimpse on information
theory introduces some insightful concepts. The idea of information in statistics can be illus-
trated with the log-likelihood function. As a reminder, the expression of the log-likelihood for
a probability density function f(x|σ) parameterized by σ is:

l(σ) =

∫ ∞
−∞

log(f(x|σ)) dx

The maximum of the log-likelihood function defines the most probable parameter σ̂ML given
the observed data X . The Fisher-information is defined as the second derivative of the log-
likelihood:

I(σ) = −d
2l(σ)

dσ2

Evaluated at σ̂ML, the Fisher-information is known as the observed Fisher-information I(σ̂ML).
Intuitively, the amount of information contained in a probability density function (PDF) is
related to its concavity, i.e. how sharp the density is. As an example, the smaller the standard
deviation σ of a normal distribution N (µ, σ) is, the sharper and the more informative is the
PDF.

In the case of a discrete probability distribution P (xi), the expression log
(

1
P (xi)

)
is called

the surprise, as observing a highly improbable event is very surprising. Reciprocally, observing
a highly probable event with probability close to one provides almost no surprise. The use of
the logarithm makes the surprise additive for a product of several events.
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Figure 2.11: Illustration of clustering using randomly generated data. The points A, . . . , J are characterized
by their coordinates in the plane. (a) The data is clustered into three groups (green, blue and yellow). (b)
Corresponding dendrogram showing the complete hierarchical structure. The height of each nodes measures the
intergroup dissimilarity between its two daughters
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For a continuous PDF, the entropy is defined as the expected value of the surprise:

H = −
∫ ∞
−∞

f(x)log (f(x)) dx

and is a measure of uncertainty associated with a random variable. If the density function
carries no information, as in an uniform distribution u(x) = 1

c
for a bounded range of x and a

normalizing constant c, then the entropy H is maximal and the underlying random variable X
is unpredictable within the range of x.

Suppose we have two distribution functions f(x) and g(x). The hypothesis that the random
variable X is distributed among f (or g) is denoted by Hf (respectively Hg). The relative
entropy is defined as

I(g : f) =

∫ ∞
−∞

g(x)log

(
g(x)

f(x)

)
dx (2.2)

and is the mean information per observation for discrimination in favor of the hypothesis Hg

against Hf . A symmetric version of the relative entropy exists and is defined as the Kullback-
Leibler divergence J(f, g) = I(f : g) + I(g : f). It measures the divergence between the
hypotheses Hf and Hg, or the difficulty to discriminate between them. Even if J(f, g) is sym-
metric, it is not a distance measure since the triangle inequality is not fulfilled. From the sta-
tistical test point of view, the equation (2.2) expresses the divergence between two hypotheses
and can be used as a dissimilarity measure.

We finish this section by examining the case of multivariate normal population. For any
random vector X = (x1, . . . , xN)t with multivariate normal distribution

f(X) =
1

|2πΣ|1/2
exp

(
−1

2
(X− µ)tΣ−1(X− µ)

)
with µ the N -dimensional mean vector and Σ the N ×N covariance matrix, the expression of
Kullback-Leibler divergence becomes:

J(A,B) =
1

2
Tr
{

(ΣA − ΣB)(Σ−1
B − Σ−1

A )
}

+
1

2
Tr
{

(Σ−1
A + Σ−1

B )(µA − µB)(µA − µB)t
}

More details on this topic can be found in Kullback (1968). An application of the Kullback-
Leibler divergence is given in chapters 5 and 6.



Chapter 3

Spatial scale dependence of climate model
performance in the CMIP3 ensemble

21





3.1 INTRODUCTION 23

Spatial scale dependence
of

climate model performance in the CMIP3 ensemble

David Masson and Reto Knutti
Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland

(published in Journal of Climate)

Abstract

About twenty global climate models have been run for the IPCC Fourth Assessment Report
(AR4) in order to predict climate change due to anthropogenic activities. Evaluating these
models is an important step to establish confidence in climate projections. Model evaluation
however is often performed on a grid-point basis despite the fact that models are known to
often be unreliable at such small spatial scales. In this study, the annual mean values of surface
air temperature and precipitation are analyzed. Using a spatial smoothing technique with a
variable scale parameter it is shown that the intermodel spread as well as model errors from
observations are reduced as the characteristic smoothing scale increases. At the same time the
ability to reproduce small scale features is reduced and the simulated patterns become fuzzy.
Depending on the variable of interest, the location and the way data is aggregated, different
optimal smoothing scales from the grid-point size to about 2000 km are found to give good
agreement with present-day observation, yet retain most regional features of the climate signal.
Higher model resolution surprisingly does not imply much better agreement with temperature
observations, in particular with stronger smoothing, and resolving smaller scales therefore does
not necessarily seem to improve the simulation of large scale climate features. Similarities in
mean temperature and precipitation fields for a pair of models in the ensemble persist locally
for about a century into the future, providing some justification for subtracting control errors in
the models. Large scale to global errors however are not well preserved over time, consistent
with a poor constraint of the present day climate on the simulated global temperature and
precipitation response.

3.1 Introduction

In order to assess future climate changes and the anthropogenic contribution to global
warming, about twenty global climate models ran scenarios in a coordinated model intercom-
parison targeted for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment
Report (AR4). These models came from various institutions and differ in their structure. While
there is agreement between these models concerning the anthropogenic contribution to global
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warming and some agreement on the projected future changes, the uncertainty quantification
is still problematic and a consensus on performance metrics for models is lacking (Tebaldi and
Knutti, 2007; Knutti et al., 2010b). Some questions related to model evaluation have rarely
been asked. For example, what is the typical spatial scale at which models can provide re-
liable results? Climate scientists have an intuitive feeling for it and use it when interpreting
results. However, models are also often compared to observations or other models at the grid-
point scale, sometimes leading to the conclusion that models do not even agree on the sign of
predicted future changes over large areas on the globe. This is particularly true for variables
other than temperature, e.g., for precipitation (see Fig. 10.12 of Meehl et al. 2007b). Evalu-
ating the models directly on the smallest spatial scale can be misleading because resolving a
feature requires several grid-points at least. Therefore, errors on small spatial scales can be
large even if the models agree better on larger scales. Apart from this numerical aspect, natural
variability is also an important source of model disagreement. Aggregating changes over larger
regions reduces internal variability (Räisänen, 2001) and leads to more consistent projections
across models even for variables that are difficult to simulate, e.g., precipitation where zonal
averaging leads to a more consistent pattern across the models (Zhang et al., 2007).

While much of the community’s effort goes into improving the models (shown for example
by Reichler and Kim, 2008), it is unclear at what scale the models can provide useful informa-
tion and agreement with data, how that scale depends on the variable and projection lead time,
and whether higher model resolution leads to more useful information on a smaller spatial scale
(Stainforth et al., 2007). Between the grid-point scale where models are less reliable and the
global scale which is of limited use for local projections, a whole range of spatial scales exists
and can be explored. Climate projections were often aggregated regionally in order to reduce
model uncertainty (e.g. Tebaldi et al. 2005) but the regions were chosen in a rather ad hoc way.
In the present paper we attempt to estimate optimal spatial smoothing scales for temperature
and precipitation in a more formal way by minimizing a penalty function, which is a combina-
tion of the model’s error to a observation-based dataset and a measure of spatial information
that is lost through averaging. In simple words, the full local information is provided at every
grid-point without smoothing, but model errors and model spread may be large and confidence
in local projections is therefore low. On very large scales, errors are smaller and models are
more likely to agree, but the information for local impacts is lost and the projection is again
rather useless. Somewhere in between is a regional to continental aggregation or smoothing
(implicit for example in Christensen et al. 2007) where information is most likely to be useful
and robust against model assumptions.

We first test the agreement of present-day simulated climate with observations at different
spatial scales. Then we focus on how model resolution affects model errors for different areas
and scales. Next, we consider the ratio of the climate change signal to the model disagreement
and how smoothing the data affects when and where models agree on a predicted change.
Finally, we study the persistence of model errors of the initial period 1960-1979 (or equivalently
the similarity of two models in the ensemble) through time and for different spatial scales in
a perfect model approach. This is an important point, since past agreement with observations
is often used to support projections into the future (Stott and Kettleborough, 2002; Giorgi and
Mearns, 2002, 2003; Tebaldi et al., 2005; Knutti, 2008b,a), i.e. it is assumed that a model that is
close to observations in the past will be close to the real world in its simulated future response.
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3.2 Method

3.2.1 Data

This study uses a subset of the data produced for the World Climate Research Programme
(WCRP) Coupled Model Intercomparison Project Phase 3 (CMIP3) (Meehl et al., 2007a), a
coordinated model intercomparison for the AR4 report of the IPCC. One ensemble member for
each of the 24 Atmosphere Ocean General Circulation Models (AOGCMs) simulations under
the A1B emission scenario (Nakicenovic et al., 2000) is used.

The observation-based data sets are ERA-40 (Uppala et al., 2005) for surface temperature
and CMAP (Xie and Arkin, 1997) and GPCP (Adler et al., 2003) for precipitation. Each of
these observation-based datsets obviously has its limitations and errors, and they partly rely on
models as well, but still these are probably the best observation-based datasets available for
our purpose. Because individual models and observations come at different spatial resolutions,
the data is interpolated using bilinear interpolation to a common T42 grid (Gaussian grid as-
sociated with spectral truncation, 128 latitudinal by 64 longitudinal grid-points). The original
data contains monthly averaged fields from which climatological averages over periods of 20
years (annual means) have been extracted. For future periods where no observations exist, the
perfect model approach is used in some cases, i.e. each model is treated as reference once and
the results are averaged afterwards.

3.2.2 Field smoothing

In order to study uncertainty of models on different spatial scales, a field smoothing tech-
nique is used. Instead of evaluating models at the grid-point scale, the fields are smoothed by
weighted spatial averaging, whereby the weightwi,j of each point (i, j) decreases exponentially
with the squared distance di,j(k, l) from the original location (k, l):

wi,j(k, l, λ) = e−d
2
i,j(k,l)/2λ2

with λ being the parameter representing the characteristic smoothing length scale of the Gaus-
sian weighting. Therefore, the original data Vk,l is replaced by its smoothed value V̄k,l according
to:

V̄k,l(λ) =

∑I,J
i,j Vi,j · wi,j(k, l, λ)∑I,J

i,j wi,j(k, l, λ)

with I, J being the total number of longitude and latitude grid-points. To characterize how
smooth or homogeneous the climate signal is at a certain location, we introduce the spatial
variation σs(λ), which is essentially a standard deviation of all grid-points weighted by wi,j
defined above:

σsk,l(λ)2 =

∑I,J
i,j

(
Vi,j − V̄k,l(λ)

)2 · wi,j(k, l, λ)∑I,J
i,j wi,j(k, l, λ)

This characterizes the spatial heterogeneity in a region determined by an area proportional to
λ2. A large spatial variation σs indicates that the value at that location is not very informative
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Figure 3.1: Effect of (a) weak (λ = 100 km) and (b) medium (λ = 700 km) field smoothing on the average
magnitude of the temperature error of the CMIP3 ensemble for the period 1980-1999. With smoothing some
details are lost but the average error is smaller.

about the original spatial details, whereas a small spatial variation σs indicates that most points
within a distance of about λ are similar, such that not much of the spatial pattern is lost with
smoothing. The characteristic length λ was sampled logarithmically between 100 km and
10,000 km, since most variations in the field occur at small scales and tend to decrease towards
global scales. For illustration, the typical magnitude of the CMIP3 present-day temperature
errors are shown in Fig. 3.1 after a small (λ = 100 km) and a medium (λ = 700 km) smoothing.
As an alternative to the Gaussian smoothing, a simple average over grid-points is performed
using a step-function with weight 1 inside a circular region of radius λ and 0 elsewhere. The
difference between the Gaussian and the step-function smoothing is examined in the result
section.

3.2.3 Measures of uncertainty

Three sources of uncertainty have been considered: 1) the model error Ei,j(λ) at location
(i, j) after smoothing with a fixed scale parameter λ, defined as the absolute value of the dif-
ference between the simulation and a observation-based set, 2) the spatial variation σs, defined
as the spatial standard deviation of the variable in a given area (see definition above) and 3) the
intermodel spread σm, defined as the CMIP3 ensemble standard deviation for a grid-point or a
region. In a first part, the error and spatial variation σs are analyzed for the period 1980-1999
(termed present day here). For the error and this part only, we have subtracted the present day
global error from all simulated data to account for the fact that some models have a global
warm or cold error that is not obviously related to their ability to simulate patterns. In a second
part, the evolution of these quantities over all successive periods of 20 years between 1960 and
2100 is studied.

3.2.4 Optimal smoothing for present-day simulations

One possible way to define an optimal spatial scale for present day is to use a penalty func-
tion that accounts for both the error and the spatial variation. The optimal spatial scale should
consider the error magnitude E and the spatial variation σs as two independent components
of uncertainty. To give similar relative importance to both quantities, both components are
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normalized with Emax
i,j and σs,maxi,j , the local maximum values of Eij and σsij across all tested

spatial scales. We define the global penalty function U(λ) as

U(λ) =

√√√√Global Mean

[(
Ei,j(λ)

Emax
i,j

)2

+

(
σsi,j(λ)

σs,maxi,j

)2
]

The optimal spatial scale λopt,m for a given model m minimizes U(λ). The optimal spatial
length for the entire CMIP3 ensemble is obtained by computing the median value λopt over all
λopt,m. We interpret this optimal spatial scale as a typical scale on which the model errors E
are reasonably small yet a large portion of the spatial signal is preserved (small σs indicating
that the unsmoothed values of points nearby are similar to the smoothed value in the center
of the area). The resulting optimal scale depends on the choice of the normalization and the
definition of the penalty function which are both partly subjective, and as a consequence the
results should be interpreted as illustrative (see sections 3.3.2, 3.4.3).

3.2.5 Impact of resolution on model error

Larger computational capacities are often justified with the need for higher resolution. It is
assumed that a model run at a higher spatial resolution will provide more reliable information
than a model run at a lower resolution. We test this assumption by doing a regression of the
error against the resolution for different smoothing values. This is particularly interesting for
strong smoothing, as it answers whether higher resolution (in addition to resolving smaller
features) also improves the simulation of the large scale pattern. Resolution is defined here as
the typical edge length of a grid-cell, calculated as the square root of the Earth surface after
dividing by the number of grid-cells.

3.2.6 Robustness of climate change signal

In order to assess the strength of the predicted climate change signal compared to the inter-
model spread σm, the ensemble robustness ratio R is defined:

Rij(λ) =

∣∣∣∣∆V̄i,j(λ)

σmi,j(λ)

∣∣∣∣
This ratio is defined as a function of the location (i, j) and the smoothing scale λwith ∆V̄ being
either the smoothed field of temperature or precipitation change (based on the multi-model
mean value). As proposed by Murphy et al. (2004), the climate change signal is considered
robust if the absolute value of the ratio is larger than 2, i.e. the predicted climate change signal
is at least twice as large than the uncertainty across models.

3.2.7 Initial error preservation

Models are often evaluated and calibrated towards a observation-based dataset with the
hope that this would ensure skill for a prediction. But do the initial model errors in 1960-1979
also explain the errors in the future? Is a good model for present-day still good in the future,
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and on what spatial scale is this relationship strongest? We examine these questions with the
help of a perfect model approach. As the global error of the initial period 1960-1979 dominates
the future error signal at all spatial scales, we subtract it from the data. This is justified since the
focus lies rather on the spatial error pattern generated after 1960-1979. The relation between
initial and future errors and simulated change and the role of the spatial scale is studied by a
squared correlation index I(t, λ) as a function of smoothing scale and projection lead time. For
a given time period t and λ the following squares ρ2 of the correlation value are calculated at
each grid-point and then globally averaged:

I
(1)
i,j (t, λ) = ρ2

(
~Ei,j(1960− 1979, λ), ~Ei,j(t, λ)

)
I

(2)
i,j (t, λ) = ρ2

(
~Ei,j(1960− 1979, λ), ~Ci,j(t, λ)

)
with ~Ei,j being a vector of the 23 error values for a certain time, smoothing and grid-point (i, j).
The length of the vector is 23 and is equal to the number of CMIP3 models 24 minus one model
that serves as reference to calculate the error. This perfect model approach is repeated 24 times
so that each model is used as reference once. The 24 possible squared correlation indices I(t, λ)

are then averaged and return a single representative explained variance for a certain time period
and smoothing. ~Ci,j is the difference between the simulated variable change (temperature or
precipitation) of two models for a certain time, smoothing and grid-point. We assume the
relations to be linear. The squared correlation coefficient thus equals the explained variance
under the hypothesis that the predicted variable is normally distributed at any predicting value
(von Storch and Zwiers, 2004, section 8.2.4). This hypothesis is met by the distributions of the
projected error magnitudes among the 23 simulations. As the explained variance is an additive
value, I(1)

i,j and I(2)
i,j can be globally averaged for a given time t and smoothing scale λ. The

quantity I(1) therefore measures the fraction of future error in the variable that is explained by
the initial error in 1960-1979 (control error), while I(2) measures the fraction of error in the
variable change (i.e., the simulated difference rather than the variable itself) that is explained by
the initial error in the reference period 1960-1979. In other words, I(1) describes the persistence
of the initial errors over time, whereas I(2) describes the relation between initial errors and
trend errors. High explained variance values in I(2) indicate that the mean state climate for the
present day period is a good indicator for the model consistency in the future, i.e. two models
with a similar present day state will simulate similar changes, and therefore a model close to
the present day climate of the real world would hopefully produce an accurate prediction of the
changes of the real world.

3.3 Results

3.3.1 Field smoothing and measures of uncertainty

In a first step, the error and spatial variation σs (absolute values averaged over space)
are quantified for present-day simulations at various smoothing scales and for each model.
The largest errors compared to the observation-based dataset are found at the smallest tested
smoothing (λ = 100 km, essentially equivalent to no smoothing) for all models. As shown
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in Fig. 3.2 the errors decrease monotonically and all curves converge to zero as λ increases.
Note that the global error was initially subtracted. For precipitation the error reduces faster
than for temperature and even a weak smoothing significantly improves the agreement with
observation.

The ranking of the models (from the error point of view) depends on the spatial scale con-
sidered. In general, a model performing well on small scales tends to also perform well after
smoothing while the opposite is not necessarily true. Because the models get more and more
similar with increasing spatial scales, performing well at large scales does not guarantee good
agreement with the observation-based dataset at smaller scales. A more detailed study of how
such model rankings evolve over time is given later in section 3.3.5. Two observational datasets
(CMAP and GPCP) are available in the case of precipitation. If one reference is treated as the
true data and the other serves as an additional model, the best performing model at local scales
is the alternative observation-based dataset. However, that is not true at large scales. In the case
of CMAP being the reference, GPCP is even among the five worst models. Not surprisingly,
both datasets differ from all models on small scales, because the models are unable to resolve
some small scale patterns, while this does not seem to hold for large scales. Without judging
which observation-based dataset is more realistic, this analysis highlights that observational
uncertainty in variables other than temperature may be large and should be considered when
developing metrics for model evaluation.

In contrast to the error, the spatial variation σs is monotonically increasing, as shown in
Fig. 3.3. For the smallest smoothing, the spatial variation σs is near zero, because the standard
deviation over all points gives virtually no weight to neighboring points. At large scales, it
converges to a constant value representing the standard deviation across all grid-points. For
temperature data, the curves are approximately constant above 6000 km while for precipitation
they stabilize earlier at 4000 km.

Because different smoothing techniques are likely to produce different results, the Gaussian
smoothing and a simple average over neighboring grid-points using a step-function (see section
3.2.2) are compared. Fig. 3.4 shows the typical CMIP3 global average error magnitude E and
spatial variation σs as function of the spatial length. Booth techniques return the same values
at the grid-point and the global spatial scales. The largest difference is the rate of change which
is faster in case of the Gaussian smoothing. The step-function smoothing shows irregularities
between 0 and 1000 km as a hard threshold is more likely to create artifacts when moving
across mountain ranges or coastlines. The qualitative behavior however is similar.

The intermodel spread σm (measured as the standard deviation across all models after
smoothing and representing model dissimilarities) are larger at local scales and can be reduced
with a stronger smoothing, as in the case of the error (see Fig. 3.5a). At local scales, the inter-
model spread σm over time remains relatively constant. At large scales however, σm is smaller
but clearly increases with time. The reason is that global scale dissimilarities are related to the
transient temperature change and evolve with the same magnitude as the global error (Knutti
et al., 2008b). The local dissimilarities however are less related to global warming and dom-
inated by model errors, and thus almost time independent. The reduction of the intermodel
spread σm for precipitation occurs more rapidly than for temperature, similar to the case of the
error (see Fig. 3.5b). In contrast to temperature, the precipitation intermodel spread σm does
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a) b)

Figure 3.2: Global average of the absolute value of the error as function of the spatial scale λ, for each CMIP3
model. (a) Temperature (ERA-40 as reference) and (b) precipitation (CMAP as reference) for the period 1980-
1999. Smoothing the data reduces the error between simulation and observation.

a) b)

Figure 3.3: Global average of the spatial variation σs as function of the spatial scale λ, for each CMIP3 model
and for a) temperature and b) precipitation for the period 1980-1999. The spatial variation is defined as the
spatial standard deviation of the variable within a given spatial area. The larger the spatial scale, the larger the
standard deviation of the variable encompassed by the smoothing.

not change much over time at any of the tested scales because the precipitation trends are rather
small compared to the model dissimilarities.

3.3.2 Optimal smoothing for present-day simulations

The optimal smoothing that minimizes the root-mean-square value of the penalty function
Ui,j(λ) indicates an approximate scale where the error is reasonably small through spatial av-
eraging, yet most of the local climate pattern is preserved. The results for different regions
and smoothing techniques range between 185 km and 2080 km and are shown in Table 3.1.
The step-function smoothing produces optimal scales about two times larger than the Gaussian
smoothing but the results are qualitatively similar. The reason is that the step-function elim-
inates all influences from grid points further away that the distance λ, whereas the Gaussian
gives non-zero weight even to very remote points. In general, the temperature field allows a
larger smoothing than the precipitation field because the spatial variation for temperature is
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Figure 3.4: Gaussian (solid line) versus step-function (dashed line) smoothing for surface temperature (left
column) and precipitation (right column) applied to the typical CMIP3 global average error magnitude (first row)
and spatial variation (second row).
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a) b)

Figure 3.5: Intermodel spread σm representing the model dissimilarities, globally averaged and as a function
of the spatial scale λ for a) temperature and b) precipitation for different time periods from 1960 to 2080. Models
tend to show smaller dissimilarities at larger spatial scales.

smaller. This is even more pronounced in the tropics for convective precipitation, where the
spatial variation is much larger than the error magnitude, leading to an optimal smoothing close
to the grid-point scale. As the choice of the penalty function is partly subjective, we have in-
vestigated two other definitions. For example, if the error and the spatial variation are simply
added without normalization, σs quickly dominates E and the grid-point scale is the optimal
choice. Different applications may require different weighting in the penalty function. Rather
than defending any particular choice of a penalty function, the idea here is to demonstrate the
two opposing trends of model error and spatial variation. Trying to minimize both of these
components implies a typical length scale over which the model results should be aggregated.
That length scale is larger for temperature than for precipitation globally, larger in the tropics
for temperature, larger in the extratropics for precipitation, and larger over ocean than over land
for temperature. These general conclusions should be robust against different definitions of the
penalty function, provided that an optimal scale exists.

Table 3.1: Optimal smoothing length (in km) for surface air temperature (TAS) and precipitation (PR) for various
regions using the Gaussian or the step-function smoothing.

Gauss Step-function
Region TAS PR TAS PR
global 695 207 1280 428
tropics 1130 162 2340 428

extra-tropics 428 1130 886 2080
land only 428 207 886 428

ocean only 886 185 1440 428
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a) b)

Figure 3.6: (a) Relation between absolute value of the temperature error (globally averaged) at the grid-point
scale (λ = 100 km) and native model resolution. The linear regression is indicated by a red line (with the fgoals
model excluded). (b) Regression slope versus λ for land or ocean only and the entire globe. Whereas a higher
resolution improves performance at local scales, its impact at large scales is limited. In the case of precipitation
no relation between resolution and error could be established.

3.3.3 Impact of the resolution on model error

The correlation between error and model resolution (i.e., the original resolution at which
the model is run, not the smoothing scale) is an indication of the benefit of higher resolution
in representing current climate. In the case of precipitation, correlations between error and
resolution were lower than 0.5 and the regression slopes were never statistically significant
using the F-test with a 0.05 significance level, thus no clear relation seems to exist at least
within the relatively narrow range of resolutions covered by CMIP3. In Fig. 3.6a, a scatter plot
of the relation is shown for temperature at the grid-point scale (λ = 100 km), considering the
whole globe (land and oceans). At this scale, the error is reduced from about 1.5K to 1K from
the coarsest to the highest resolution. The slope of the regression line characterizes the strength
of the relation between the resolution and the error and is calculated for all spatial scales, global,
land and oceans. The fgoals model is a clear outlier and is excluded for this part of the analysis.
The linear regression slopes are displayed in Fig. 3.6b and are always statistically significant
using the same test as before. Not surprisingly, the benefit of high resolution is largest at the
smallest scales and over land, where the topography is more complex and higher resolution can
probably resolve more local processes. However, the benefit of the resolution quickly decreases
with smoothing approaching 500 km. At scales above about 500 km, the slope dependence on
λ is similar in all cases.

3.3.4 Robustness of climate change signal

The ensemble robustness R is the absolute value of the ratio of the climate change to the
intermodel spread σm. The geographic distribution of the robustness at the grid-point scale
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Figure 3.7: Ensemble robustness R for the 2080-2099 climate change signal since 1960-1979 at the grid-point
scale (λ = 100 km), for temperature (a) and precipitation (b). The climate change signal is said to be robust if R
is larger than 2.

0

1

2

3

4

5

6

1980 2000 2020 2040 2060

2000

4000

6000

8000

10000

Time

λλ 
[k

m
]

Te
m

pe
ra

tu
re

 ro
bu

st
ne

ss

0

1

2

3

4

5

6

1980 2000 2020 2040 2060

2000

4000

6000

8000

10000

Time

λλ 
[k

m
]

P
re

ci
pi

ta
tio

n 
ro

bu
st

ne
ss

a) b)

Figure 3.8: Ensemble robustness R for the climate change signal since 1960-1979 (globally averaged), for
temperature (a) and precipitation (b). R is defined to be robust above the dashed line where the signal is twice as
large as the standard deviation characterizing the intermodel spread. While temperature simulations are mostly
robust everywhere, precipitation only gets robust later and for continental or large scales.

(λ = 100 km) is first shown in the maps in Fig. 3.7 for the end of the century as an example.
A striking but well known feature is that temperature changes are clearly more robust than
precipitation (Räisänen, 2001). While temperature robustness is especially weak in the North
Atlantic and over the Southern Ocean where some models indicate cooling while most show
warming, the models agree for the rest of the globe. Precipitation simulations show good
agreement over high latitudes and the Mediterranean sea. The temporal and spatial behavior
of R is depicted in Fig. 3.8. Not unexpected and in agreement with detection/attribution and
future projection studies (Barnett et al., 2005; Meehl et al., 2007b), the temperature signal
is robust at all scales after a few decades and clearly exceeds the intermodel spread σm. In
contrast, simulated precipitation changes agree about 50 years later and on continental scales
only, both due to larger model differences and large interannual variability.
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Figure 3.9: Preservation of the initial errors among the models through time and spatial scales, defined as
the fraction of variance of the future errors that is explained by the initial model errors in 1960-1979 (globally
averaged). The time axis is divided into 12 intervals between 1960 and 2099. The perfect model approach was
used here for (a) temperature and (b) precipitation. Values near one indicate that differences between models
strongly persist over time, while values near zero indicate no relation between differences at the beginning and
the end of the simulation.

3.3.5 Initial error preservation

The global average of the explained variance values between initial and future model errors,
I(1)(t, λ), is shown in a contour plot in Fig. 3.9 as function of time and spatial scale. The time
axis is divided into 12 intervals between 1960 and 2099. For both temperature and precipitation
the explained variance is high at local scales until the end of the 21st century. At that time
and at larger scales however the explained variance vanishes. The decay of the explained
variance with time is slower at local scales than at large scales. In agreement with Giorgi
and Mearns (2002) and Räisänen (2007), a linear regression between initial and future model
errors for scales and periods exhibiting a high correlation yield regression slopes very close to
one, supporting the conclusions that initial differences between models are well preserved over
time, in particular on small scales. The relation I(2)(t, λ) between initial model differences and
trend errors was also analyzed. In contrast to the case before, only very small correlations are
seen for both temperature or precipitation (not shown). Therefore, the initial error seems to
relate only weakly to simulated future trends. The interpretation of these results is given in the
Discussion section.

3.4 Discussion

3.4.1 Data

Regarding the data, we have used the A1B scenario for the analysis of future projections,
but the choice of a specific scenario should not impact the presented results, because the ratio of
temperature change to forcing is approximately constant across scenarios (Knutti et al., 2008b;
Gregory and Forster, 2008), and simulated patterns tend to be similar for all scenarios (e.g.
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Meehl et al., 2005; Washington et al., 2009; Meehl et al., 2007b). The number of runs available
for each model varies from one to nine but very few models have more than five runs. We
selected arbitrarily the first run in the list. This choice is not critical since internal variability
after averaging the data on 20 years is relatively small in comparison to intermodel differences.
Choosing periods of 20 years is a compromise between having enough data inside a period to
avoid too much internal variability and having enough periods to cover the observation period
between 1960 and 2000. Averaging initial condition ensemble members only for some of the
models would inappropriately reduce variability for some models. The model evaluation was
only done for temperature and precipitation, but of course other important fields such as sea-
level pressure would be important to consider for a more complete study.

3.4.2 Measures of uncertainty

The magnitude of the error rather than error itself has been chosen for the analysis because
part of the multi-model error get canceled in a multi-model mean (Räisänen, 2007) and the
tendency of the error magnitude to decrease with increasing smoothing is masked. Our results
suggest that smoothing the data before the model evaluation reduces the disagreement between
the models and an observational dataset, in particular in the case of a variable that is difficult to
simulate and locally heterogeneous, such as precipitation. This does not ignore the weaknesses
of the models but may help to focus on features that are relevant at a certain spatial scale. Two
datasets were used to evaluate precipitation and it is interesting that on larger scales the sim-
ilarity between some models and one dataset is larger than the similarity of the two datasets.
For small scales, the two datasets are similar and all models are different because the mod-
els all share similar limitations in parameterizing or discretizing physical processes (Tebaldi
and Knutti, 2007; Knutti et al., 2010b) and are unable to correctly capture certain small scale
patterns in precipitation.

As model errors decrease when results are aggregated on larger scales, grid-points from
more climatic regimes are averaged together and the uncertainty related to the spatial variation
σs increases. The information provided by the models gets blurred and the simulation signal
is less precise than at the grid-point scale. Similar to the error, the intermodel spread σm for
precipitation is reduced faster by smoothing than for temperature. This is because precipita-
tion differences are dominated by small-scale features whereas temperature differences vary
at larger spatial scales. Although the intermodel spread σm of temperature is lowest at large
scales, it increases faster with time at large scales due to the different transient warming rates
of the models. The case of precipitation is interesting because the intermodel spread σm is
almost constant in time at each tested spatial scale. The reason is that precipitation changes are
only on the order of a few percent and can be of opposite sign in nearby areas and therefore
get partly averaged out at larger spatial scales. On the other hand, simulated precipitation in
the baseline climate can easily vary by a factor of two locally, so the intermodel spread σm is
dominated by the climatological errors at all times.
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3.4.3 Optimal smoothing for present day simulations

Combining the error and spatial variation σs into an overall penalty function where the er-
ror is substantially reduced yet the main spatial patterns are still preserved is possible but the
results depend on the definition adopted. Our results suggest that there are different optimal
scales, depending on which variable is analyzed as well as which region is considered. From a
numerical perspective several grid-points are needed to discretize the partial differential equa-
tions governing the climate models. Therefore, interpreting scales smaller than at least several
grid-points is dangerous because of numerical instabilities and errors generated. It is interesting
to compare the optimal scales obtained here with the choices made in publications that aggre-
gate regional climate change (e.g. Giorgi and Francisco 2000; Tebaldi et al. 2005; Christensen
et al. 2007; Mahlstein and Knutti 2009). Many of these studies provided regional averages over
26 land regions. If we divide the total land area by 26 and take the square root of that (corre-
sponding to the length and width of a region if the land was divided into 26 regions of equal
area), we find a characteristic length scales of about 2400 km, larger than those obtained here
with the Gaussian smoothing but in closer agreement with the step-function scales. We argue
that climate scientists may in fact often choose regions and scales based on a similar informal
optimization procedure, trying to maximize the regional detail (e.g. for impact studies). But
knowing that errors and intermodel spread σm are largest at local scales, they aggregate results
into regions encompassing multiple grid points. Of course, other aspects such as the communi-
cation of the results play a important role, and the optimal spatial scales found in this analysis
should be seen as an approximate estimate that depends on the location, the variable, the tem-
poral and spatial variability as well as the uncertainty in the observation. Different definitions
of a penalty function and an optimal spatial scale are possible, and the one chosen here should
be interpreted as an illustration that provides insight into how different quantities depend on
the spatial scale, rather than as a definitive answer.

3.4.4 Impact of resolution on model error

The resolution of models is correlated with their performance in simulating temperature, but
apparently not precipitation (at least in the CMIP3 ensemble). This might be because resolving
some processes related to clouds and precipitation would require much higher resolution than
any of the global models currently have.

Alternatively, it might also be that higher-resolution models produce precipitation with
higher geographical variability. Since the precipitation field is more variable than temperature,
a simple shift in precipitation pattern could penalize the model performance. High resolution
models have the clearest advantage in reproducing current temperature over land, on scales
between local and 500 km, partly because of a better representation of the topography. The
globally averaged error is reduced from about 1.5 K to 1 K from the coarsest to the highest
resolved models at the smallest scale, where the relation is strongest. However, given the cost
of higher resolution the benefit may be seen as rather small. As already noted by Santer et al.
(2009), the Canadian Climate Centre’s CGCM3.1 and the Japanese MIROC3.2 were both run
at higher and lower resolution configurations, but despite the use of higher resolution the error
was not much reduced. For some variables, a higher resolution may eliminate a parameteriza-
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tion and allow direct dynamical computations instead. In the ocean for example, a lot of energy
is contained in small-scale eddies. Therefore the relation between resolution and sea surface
temperature might be stronger than for surface air temperature. In general, it is not easy to sepa-
rate the effects of higher resolution and a more comprehensive representation of processes. The
groups running models at highest resolution are often also those with the longest experience in
building models and with the largest number of people developing the model. So resolution,
rather than just a numerical property, should probably be seen more as an indicator of overall
sophistication, effort, computing power and financial resources going in a model.

3.4.5 Robustness of climate change signal

Maximizing the ensemble robustness R is desirable and is likely to improve with newer
climate models generations. A closer look at Fig. 3.8b for precipitation compared to Fig.
10.12 of Meehl et al. (2007b) summarizes the benefit of this study: if models are compared
at the grid-point scale they do not agree in their trends over large areas on the globe, whereas
our study shows that they do, but only for regions with 4000 km as typical scale and trends
beyond the period 2050-2069. Trends are relatively weak and local precipitation is difficult to
simulate, therefore larger regions are needed in order to detect the precipitation change signal
and simulate robust trends, consistent with the results of the precipitation attribution study by
Zhang et al. (2007). Note that even if the global average of the robustness is below a given
threshold, there are of course regions where the robustness is high. For example, the simulated
increase in precipitation in high northern latitudes is significant and robust even at small scales
and in the near future.

3.4.6 Initial error preservation

The climatological errors in mean temperature and precipitation in temperature and precip-
itation in the CMIP3 models are surprisingly constant over time, in particular on small scales.
This error preservation vanishes towards the end of the century at large scales, indicating that
differences in climate change have a larger scale than the differences in error magnitudes. This
is consistent with the fact that climatological errors and simulated changes are weakly cor-
related (Murphy et al., 2004; Knutti et al., 2006, 2010b). Local errors are more likely to be
the result of deficiencies in simulating particular processes that are important locally (e.g. not
resolving a mountain range), and these are usually more persistent over time. The explained
variance between initial and future errors is larger for precipitation than for temperature, which
may seem surprising at first since precipitation is more difficult to simulate. The reason for
this persistence is that changes in precipitation are quite small in many regions compared to the
control errors. Therefore, future errors are essentially a sum of initial errors plus some trend,
with the former dominating the latter. The result is that two models having similar errors in
their initial state will tend to have similar errors in the future at the same location.

The lack of correlation between the initial errors and future trends errors is rather disturb-
ing. It is commonly assumed that models with small initial error are more accurate in predicting
future trends (e.g., IPCC AR4 FAQ 8.1, Randall et al. 2007). But reality suggests otherwise,
as shown by the lack of correlation between past or future predicted warming with present-
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day simulated temperatures (Tebaldi and Knutti, 2007; Jun et al., 2008b; Knutti et al., 2010b;
Weigel et al., 2010). As a consequence, knowing the discrepancy between present-day simu-
lations and observations of the mean climate state does not immediately help to constrain the
estimation of future trend error. On the other hand, there is clear evidence and physical reasons
for a relation of past greenhouse gas attributable warming and future warming (e.g. Stott and
Kettleborough 2002). Clear relations also exist for local processes, e.g. a correlation between
past and future sea-ice loss in the Arctic (Boé et al., 2009b). These points are important to
keep in mind when weighting the models for the future projections, with weights based on
performance in the past (Knutti et al., 2010a; Knutti, 2010).

3.5 Conclusion

Although small spatial scales are most important to determine specific climate impacts, this
is precisely the scale where climate is most difficult to simulate and where model errors and in-
termodel spread are largest. Climate scientists therefore often aggregate data to regions where
the above problems are less severe, even though some spatial information gets lost in that pro-
cesses. Here we have done this in a formal way and have demonstrated how the spatial variation
σs, the model spread σm, the model error in climatology and the persistence of errors depend on
the spatial scale of averaging. We have shown that the error and the intermodel spread can be
significantly reduced by smoothing the data (consistent with earlier results by Räisänen 2001),
however at the price of losing spatial detail (expressed in our case as an increase in the spatial
spread).

Our results support typical scales between the grid-point and 2000 km depending on the
variable, the location and the smoothing technique. Although there are of course various defi-
nitions of an optimal scale for different problems, we suggest that some form of spatial aggre-
gation should be considered to provide a more robust estimate of climate change.

Our analysis also reveals that model resolution in CMIP3 seems to only affect performance
in simulating present day temperature for small scales over land. Result may differ for other
quantities, but given the limited advantages of high resolution even for reproducing present
day climate, we speculate that pushing model resolution alone is unlikely to improve future
predictions and reduce uncertainties, unless a more complete understanding of the physical and
biogeochemical process is incorporated and the models are re-calibrated. This is consistent
with the fact that uncertainties in climate projections have not decreased significantly in the
last decade despite massive computational advances allowing for higher model resolution. As
a consequence, regional high resolution models and downscaling may provide greater spatial
detail but not necessarily higher confidence in local projections to determine the impacts of
climate change.

Finally, we have shown that the initial model errors of 1960-1979 persist over time in partic-
ular at small spatial scales, justifying to some extent the common practice to focus on anomalies
from a control simulation rather than absolute values (although that is unlikely to work well for
more complicated quantities, see Buser et al. 2009). In agreement with earlier studies, there is
a lack of correlation between straightforward measures of initial errors and future trends. We
have shown the difficulty in relating model skill based on present day climatological errors (as
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characterized by Reichler and Kim 2008) to prediction skill in the future, whatever spatial scale
is chosen.
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Abstract

Climate sensitivity has been remarkably difficult to constrain by comparing the simulated
mean climate state from different models with observations, in particular for small ensembles
with structurally different models like CMIP3. In this study, an empirical relationship between
the interannual variation of seasonal temperature is found to be strongly correlated to climate
sensitivity. The resulting 95% confidence interval for climate sensitivity is 1.9−4.9 K with the
best agreement for 3.3 K. In order to understand the nature of this relation, a multi-thousand-
member ensemble of climate models from the climateprediction.net (CPDN) project and a
pattern recognition algorithm called ”random forest” are used. While the random forest algo-
rithm successfully predicts the CPDN climate sensitivity values, the relation is non-linear and
complex. Yet, if simulations are tuned for better agreement with a reference dataset, a simpler
linear relation emerges. This supports the hypothesis that the CMIP3 models are tuned for a
better agreement with the observations. As a possible consequence, the estimated uncertainty
in climate sensitivity is smaller than in an ensemble without tuning. However, despite strong
correlations with climate sensitivity, interannual variability does not constrain the range of cli-
mate sensitivity beyond the initial distribution of CMIP3 climate sensitivities. We speculate
that this is partly because the feedbacks determining interannual variability as well as climate
sensitivity are those that are already tuned through the mean climate and seasonal cycle, such
that the data has effectively been used before in the model development processes and is of
little value to further constrain climate sensitivity.

4.1 Introduction

General circulation models (GCMs) are tools to understand climate processes and are often
applied to make projections for the next decades to centuries. The discretization of the equa-
tions of motion on a grid is subject to several choices (resolution, numerical schemes, hard-
and software, etc.) and the need for parameterizations leads to structural uncertainties that are
difficult to explore systematically by perturbing parameters in a single model (Stainforth et al.,
2007; Knight et al., 2007). At present, the data from the Coupled Model Intercomparison Phase
3 (Meehl et al., 2007a), collected for the Intergovernmental Panel on Climate Change Fourth
Assessment Report (IPCC AR4) (IPCC, 2007) forms the largest group of structurally differ-
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ent global models. However, this ensemble amounts to only 24 different models, and these
models are not independent (Jun et al., 2008b,a; Knutti et al., 2010b). It is also not clear how
these models should be averaged in a multimodel mean to produce a projection of the global
temperature increase (e.g., Knutti et al., 2010b).

Models show somewhat different patterns of warming, but also disagree about the global
magnitude of the projected changes. A central quantity to express their overall response to
increasing greenhouse gases is climate sensitivity, the global mean equilibrium near-surface
warming for doubling the atmospheric CO2 concentration. It is the single most important
quantity determining the impacts of climate change to a given forcing on long time scales.
The CMIP3 climate sensitivity values range from approximatively 2 to 5 K. A more reliable
estimate of the confidence interval can be obtained by constraining climate sensitivity from
observations. Unfortunately, very few observational variables can strongly constrain climate
sensitivity (see Knutti and Hegerl (2008) for a review). For the CMIP3 ensemble, Shukla et al.
(2006) found a relationship between climate sensitivity and the ability of a model to simulate
the present-day annual cycle and seasonal anomalies for surface temperature, where both the
magnitude and the pattern are expressed in terms of a relative entropy between the simulated
and observed distribution. The correlation is−0.74 and their best estimate favors a true climate
sensitivity close to the highest simulated value (i.e. approximatively 5 K). Based on Covey et al.
(2000), Wu et al. (2008) found a relation between the seasonal cycle amplitude and climate
sensitivity in CMIP3 but the agreement is not perfect and explains only 40% of the variance
in climate sensitivity. In the climateprediction.net (CPDN) ensemble, the climate sensitivity
values could be approximated using the patterns of the seasonal cycle as input in a neural
network pattern recognition technique (Knutti et al., 2006). Similar ideas of relating observed
features of climate to feedbacks and climate sensitivity have been used in other studies based on
the CPDN ensemble (Piani et al., 2005; Murphy et al., 2004; Sanderson et al., 2008) but in all
cases the uncertainty ranges reflect only the parametric uncertainty of the HadSM3 model. Wu
and North (2003) proposed a measure of interannual variability in surface temperature that was
correlated with climate sensitivity in an earlier ensemble of structurally different GCMs, but
their work got relatively little attention. The analysis is repeated here for the CMIP3 ensemble
and a significant correlation is found (section 4.3.1). In order to understand this relation, the
larger CPDN ensemble is in turn analyzed in section 4.3.2. The relation to climate sensitivity is
no longer linear and follows a complex pattern that can be approximated with a random forest
technique. We propose that this difference is due to the fact that the CMIP3 ensemble is tuned
in order to reproduce the observations, in contrast to the CPDN ensemble where the parameters
values are freely combined. Evidence for tuning in the CMIP3 ensemble has already been
reported in the past. For example, the total radiative forcing is a large source of uncertainty
because of unknowns mainly related to aerosol effects. Kiehl (2007) and Knutti (2008b) have
shown that the CMIP3 models compensate high climate sensitivity values by low total radiative
forcing without any obvious physical reason, except to match the warming of the 20th century.
The quantification of climate sensitivity depends critically on the feedback processes (Knutti
et al., 2008b). Huybers (2010) showed that the albedo, lapse rate, water vapor, cloud feedback
parameters strongly co-vary within the CMIP3 ensemble possibly as a result of tuning the
energy balance, indicating that the 2− 5 K climate sensitivity range has already been reduced
in comparison to what it might have been without covariance. On the other hand, the lack of
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correlation where it would physically be expected is surprising but might in fact support the
tuning hypothesis. For example, the CMIP3 warming trends over the 20th century and climate
sensitivity values are not significantly correlated although one would expect that models with
higher climate sensitivity would simulate higher transient climate response (Tebaldi and Knutti,
2007). The reason is that different aerosol forcings can obscure the picture, and different
combinations of forcings and feedbacks yield similar trends (Knutti et al., 2002; Knutti, 2008b;
Kiehl, 2007; Forest et al., 2002). But if the 20th century warming trends have already been
integrated in the models, it is likely that this information cannot be used again to constrain
climate sensitivity because the model spread of transient warming has become too narrow.

What impact does tuning have on the uncertainty range of climate sensitivity and to which
extent is it problematic? Tuning is sometimes seen as interfering with the falsification theory
(Randall and Wielicki, 1997). In the philosophy of science, falsifiability is the possibility for
a model to be falsified by observation (Popper, 1959). If all observations have already been
used to tune a model, its refutation will be harder to achieve and the model results might give
a false impression of validity (Oreskes et al., 1994). Alternatively, the equivalent term ”model
calibration” is more neutral but refers in fact to the same process.

The goal of this paper is twofold: first we constrain the CMIP3 climate sensitivity range
using interannual temperature variability. Second, we illustrate how tuning can play a role in
either creating or masking a correlation with climate sensitivity within an ensemble of sim-
ulations. In section 4.2 we introduce the observational temperature references used and two
simulation ensembles: the CMIP3 ensemble and the CPDN ensemble. In section 4.3.1, the
range of climate sensitivity constrained by observation is presented for the CMIP3 ensemble.
In section 4.3.2, the relevance of this constraint is justified using a pattern recognition algo-
rithm in order to capture the CPDN climate sensitivity values. The reason of the linear relation
between interannual variability and climate sensitivity is illustrated in section 4.4 by tuning the
CPDN simulations. A discussion and conclusion are given in section 4.5.

4.2 Models and data

This study uses results from the World Climate Research Programme (WCRP) Coupled
Model Intercomparison Project Phase 3 (CMIP3, Meehl et al., 2007a), a coordinated project to
gather and compare the different of GCMs used for the IPCC AR4 report (IPCC, 2007). The
CMIP3 experiment used here is pre-industrial temperature control simulations with no external
forcing and for the models listed in Table 4.1.

The variable of interest is surface air temperature and is compared to four observational
and reanalysis datasets: the 40-yr European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis (ERA-40; Uppala et al., 2005), the Hadley Centre Climatic Research
Unit instrumental dataset (HadCRUT3; Brohan et al., 2006), the National Centers for Envi-
ronmental Prediction National Center for Atmospheric Research reanalysis (NCEP-NCAR;
Kalnay et al., 1996) and the MERRA (GMAO, 2009) reanalysis. Because individual models
and observations come at different spatial resolutions, the data is interpolated using bilinear
interpolation to a common T42 grid (Gaussian grid associated with spectral truncation, 128
latitudinal by 64 longitudinal grid-points).
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Figure 4.1: Interannual temperature variability (expressed as variance) for (a) February and (b) July calculated
for the MERRA dataset for the period 1979-2008.

A direct calculation of the CMIP3 climate sensitivity values is computationally expensive
because the climate system has to reach a thermal equilibrium. Rather than simulating a fully
coupled transient evolution of the ocean, which takes several centuries to equilibrate with the
surface forcing, a more efficient method is to use an atmospheric GCM coupled to a slab ocean,
yielding a slab ocean equilibrium climate sensitivity. Another method uses the regression of the
radiative flux at the top of atmosphere against the global average surface temperature change
(Gregory et al., 2004) and produces an ”effective climate sensitivity”. To maximize the number
of models, the climate sensitivity definition used here for the CMIP3 ensemble is the mean
value of the two methods (or one of them if only one is available). The results do not depend
on this choice.

In order to further investigate climate sensitivity uncertainty, about 5000 CPDN control
simulations are used. The CPDN ensemble consists of several thousand simulations that were
designed to explore parametric uncertainty (Stainforth et al., 2005). More than 50 parame-
ters of the HadCM3L fully coupled model were perturbed in a range determined plausible by
experts. Monthly temperature averages in 32 selected different regions were analyzed. The
regions consist of the usual regions defined by Giorgi and Francisco (2000) plus additional
regions covering a large portion of the oceans and the remaining land surface. Full maps of
temperature at monthly resolution were not archived in the CPDN experiment. The CPDN
equilibrium climate sensitivity values were estimated for 154 physics perturbations categories
from a separate ensemble slab model experiments, i.e. using the atmosphere GCM coupled to
a slab ocean.

4.3 Constraining climate sensitivity from observed interan-
nual variability

4.3.1 CMIP3 ensemble

Natural variability is a crucial variable for detection and attribution studies of climate
change (Wigley et al., 1998; Barnett et al., 2005) and climate model development is often



4.3 CONSTRAINING CLIMATE SENSITIVITY FROM OBSERVATIONS 47

1 2 3 4 5 6 7 8 9 10 11 12

calendar month

σσ2  (
K

2 )

0
1

2
3

4

ncar_pcm1  (sensitivity 1.99 K)

1 2 3 4 5 6 7 8 9 10 11 12

calendar month

σσ2  (
K

2 )

0
1

2
3

4

cccma_cgcm3_1  (sensitivity 3.21 K)

1 2 3 4 5 6 7 8 9 10 11 12

calendar month

σσ2  (
K

2 )

0
1

2
3

4

miroc3_2_hires  (sensitivity 5.08 K)

1 2 3 4 5 6 7 8 9 10 11 12

calendar month

σσ2  (
K

2 )

0
1

2
3

4

ERA−40

Figure 4.2: The globally averaged variances σ2 of the temperature anomalies for each calendar month. Three
different CMIP3 models with low, medium and high climate sensitivity values (shown in parenthesis) and an
observational dataset (ERA-40) are displayed for illustration.
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Table 4.1: List of GCMs used, the length of their control simulations and climate sensitivity values. For the
CMIP3 models, the climate sensitivity value is the average between ”equilibrium climate sensitivity” and ”effec-
tive climate sensitivity” values. See main text for details.

Model Length (yrs) Climate sensitivity (K)
cccma cgcm3 1 1001 3.21

cccma cgcm3 1 t63 350 3.4
cnrm cm3 500 2.45

csiro mk3 0 380 2.65
gfdl cm2 0 500 2.62
gfdl cm2 1 500 2.84

giss model e h 400 2.87
giss model e r 500 2.63
iap fgoals1 0 g 350 2.13

inmcm3 0 330 2.19
ipsl cm4 320 4.11

miroc3 2 hires 100 5.08
miroc3 2 medres 500 3.96

miub echo g 341 3.10
mpi echam5 506 3.63

mri cgcm2 3 2a 350 3.08
ncar ccsm3 0 230 2.53

ncar pcm1 350 1.99
ukmo hadcm3 341 3.18
ukmo hadgem1 240 3.51

CPDN (HadCM3L) 160 0.13 - 9.27

focused as much on getting an adequate representation of variability as getting the mean state
right. Wu and North (2003) have reported a relation between interannual variability and cli-
mate sensitivity in an earlier set of GCMs. The idea behind Wu and North (2003) relies on the
cyclo-stationarity of interannual variability (Kim and Wu, 2000), i.e. the fact that in a control
climate each individual calendar month has its own interannual variability that can be consid-
ered constant in spite of being different from the eleven other months. Monthly mean surface
temperatures are considered first at the grid-point scale. The interannual variability is individ-
ually calculated at each grid-point and for each month. Fig. 4.1 illustrates those for February
and July. Thereafter, the global average of monthly interannual variability is calculated for
each CMIP3 model and the observational and reanalysis datasets. Fig. 4.2 shows examples
of the globally averaged interannual variability for models with high, middle and low climate
sensitivity as well as for the ERA-40 reference. Note that the globally averaged variability is
higher during the boreal winter than during the boreal summer. The larger winter variability is
due to different land mass distributions in the Northern and the Southern Hemispheres and is
predominantly caused by snow cover (Kumar and Yang, 2003) and sea-ice variability. Appar-
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ently, the models with the highest and the lowest climate sensitivity do not match the shape of
the reference dataset, leading to the hypothesis that the shape of the histograms could be used
to evaluate some aspects of climate models. Wu and North (2003) proposed to quantify the
asymmetry of the calendar month variances by the ratio σ2

s/σ
2
w, where σ2

s is the global average
of the smallest variance for the summer months June to August and σ2

w the global average of
the largest variance for the winter months December to February.

One key result of our study is the linear relation between the ratio σ2
s/σ

2
w and climate sensi-

tivity in the CMIP3 ensemble which is empirically found and shown in Fig. 4.3. The Pearson
correlation coefficient is 0.78 and is statistically significant using a two-sided T test (p-value
of 4.8 · 10−5). Moreover, the probability for this correlation to be spurious is negligibly small,
since Wu and North (2003) found approximately the same correlation (0.79) but with an older
set of 13 GCMs. Using the linear relation above, it is possible to constrain climate sensitivity
by the ratio σ2

s/σ
2
w derived from the observational references. Several sources of uncertainty

have to be incorporated: first, the optimal linear regression is uncertain due to the scatter of
the data points. Second, the real climate is always subject to changing external forcing (an-
thropogenic, volcanic and solar) which are not represented in the control simulations used in
this study. Alternatively, the ratio σ2

s/σ
2
w derived from the CMIP3 transient simulation could

be used instead of the control runs. However, this inflates the uncertainty because not all the
models simulate the natural forcing. Also, the control simulations are longer and provide a
more accurate estimate of σ2

s/σ
2
w. Third, the observations are uncertain due to measurement

uncertainty, model uncertainty in the reanalysis procedure, and due to sampling uncertainty
caused by the relatively short time period for which observations are available. The 95% con-
fidence interval of the linear regression is delimited by the two black dashed curves in Fig. 4.3.
The uncertainty of the observational references ratio σ2

s/σ
2
w (marked by horizontal lines) results

from external forcing and the limited time series available. In order to calculate the interannual
variability of the calender months, the observational data is first detrended for each individual
month in order to remove of the 20th century transient warming. For each dataset the unforced
natural variability is approximated by bootstrapping 30 individual years (20 for MERRA) from
the total number of years. Since MERRA only has 29 years of data, a 20 years observation
period is chosen instead. The interannual variability is then calculated for the twelve calendar
months at each grid-point. This is repeated 1000 times to derive the 95% confidence interval
for the ratio σ2

s/σ
2
w.

The ERA-40 and MERRA reanalysis reference dataset shows ratios σ2
s/σ

2
w of similar mag-

nitude and widths. The HadCRUT3 reference uses geographically scattered instrumental data
which contributes to increase the uncertainty of σ2

s/σ
2
w. The marine and land data have to be

blended together and the station data are interpolated to a common grid. This homogeniza-
tion artificially brings more variability over grid boxes with fewer observations (Brohan et al.,
2006). We speculate that because fewer observations exist over oceans, the winter variability
is overestimated and the HadCRUT3 ratio σ2

s/σ
2
w is shifted towards smaller values. The σ2

s/σ
2
w

confidence interval based on the NCEP-NCAR reanalysis is larger and higher than for the other
reference datasets.

The final 95% confidence interval for climate sensitivity combines the regression uncer-
tainty with the reference uncertainty by projecting the observation 95% confidence interval on
the linear regression 95% confidence interval. The result is given in Table 4.2. All reference
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Figure 4.3: Scatter plot of CMIP3 climate sensitivity versus the ratio of summer to winter interannual variability
σ2
s/σ

2
w. The correlation is 0.78, the dashed lines represent the 95% prediction confidence interval for the linear

regression. The horizontal colored lines correspond to the 95% confidence interval calculated for the references,
ERA-40 (blue), HadCRUT3 (green), NCEP-NCAR (orange) and MERRA (purple). The vertical lines on the left
side summarize the results: the dashed red line is the original CMIP3 minimum to maximum range, the other solid
colored lines are the 95% confidence interval for the climate sensitivity constrained by the corresponding refer-
ence dataset. The climate sensitivity uncertainty range takes into account both the regression and observational
uncertainty.

dataset are assumed to be equally likely, but the conclusions do not depend strongly on this
assumption. The best estimate climate sensitivity value averaged over the 4 references is 3.3 K
and the corresponding 95% confidence interval is 1.9-4.9 K, which closely corresponds to the
”likely” range of 2-4.5K given in the recent IPCC report (IPCC, 2007, Box 10.2).

Table 4.2: Constraint on climate sensitivity from observed interannual variability ratio σ2
s/σ

2
w, using the linear

relation within the CMIP3 ensemble shown in Fig. 4.3. The columns are the length in years of the observational
datasets, the best estimate of the predicted climate sensitivity and the 95% confidence interval.

Dataset Length (yrs) Climate sensitivity 95% C.I.
ERA-40 44 3.22 1.91 - 4.64

HadCRUT3 159 2.75 1.20 - 4.33
NCEP-NCAR 61 3.96 2.47 - 5.62

MERRA 29 3.40 1.97 - 4.82

Combined — 3.33 1.89 - 4.86
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4.3.2 CPDN ensemble

The same analysis is repeated for the CPDN ensemble, and the ratio σ2
s/σ

2
w is computed

for about 5000 CPDN control simulations. Because of this large amount of simulations, one
would expect to see a clearer picture of a linear correlation between σ2

s/σ
2
w and the CPDN

climate sensitivity values. Note that the CPDN simulation output is not given at the full grid-
point resolution but is regionally aggregated and 32 regions have been chosen in order to cover
most of the globe surface. As a consequence, the global average of the interannual variability
is necessary less accurate than if computed directly from the grid-point scale but this should
still provide useful information. The small grey dots in Fig. 4.4 show climate sensitivity versus
σ2
s/σ

2
w for CPDN. In order to make a comparison between CMIP3 and CPDN possible, the

CMIP3 ensemble was in turn regionally aggregated for the same regions to ensure consistency
and is represented by black circles. The global average of the regional ratios σ2

s/σ
2
w is shifted

towards smaller values because part of the grid-point information is lost, but the correlation still
exists for the CMIP3 models (Pearson correlation of 0.68 and a p-value equal to 0.001 using a
two-sided T-test). Surprisingly, no linear correlation exists for the CPDN ensemble.

This result might seem disturbing at first, but it does not imply that no relation exists. In
order to seek for a possible relation, a pattern recognition algorithm is used to predict the CPDN
climate sensitivity values with the regional ratios σ2

s/σ
2
w as input. The algorithm is called

”random forest” and is based on multiple regression trees (Breiman et al., 1984). The random
forest is trained to match climate sensitivity values with 60% of the data and the remaining 40%
of the data is used as validation set. The true climate sensitivity versus the sensitivity predicted
from the regional σ2

s/σ
2
w ratios is shown in Fig. 4.5 and shows that the fitting explains more

than 81% of the climate sensitivity with a root mean square (RMS) prediction error of 0.92 K.
For comparison, the fit of the climate sensitivity values by Knutti et al. (2006) using regional
seasonal cycles and a neural network technique explains 77% of the true climate sensitivity
variance with a RMS prediction error between 0.5 K and 1.5 K for small to high sensitivities,
respectively.

It appears that a relation exists in CPDN between climate sensitivity and the ratio σ2
s/σ

2
w,

even if this relation is complex and non-linear. Next, the CMIP3 climate sensitivity values
are predicted using the random forest trained on CPDN. The results are shown in Fig. 4.5
by black circles and a red dot for the unperturbed CMIP3 HadCM3 model sharing the same
structure as the CPDN simulations. The random forest predicts the HadCM3 climate sensitivity
successfully but fails for four out of twenty CMIP3 climate sensitivity values that lie outside
one CPDN standard error deviation, suggesting that these models are structurally too different
from the HadCM3L model.

The real world climate sensitivity can also be predicted using the CPDN random forest
and the observational references. The results are given in Table 4.3. The climate sensitivity
95% confidence interval averaged over the four reference datasets is 0.81-8.22 K. In contrast
to the CMIP3 case, the confidence interval is larger and does not exclude low or high climate
sensitivity values. The best estimate for climate sensitivity obtained for different observational
dataset is between 3.27 K and 3.46 K, in close agreement with the results in section 4.3.1.

At least two interesting questions remain: first, why is the relationship between climate
sensitivity and the ratio σ2

s/σ
2
w complex and non-linear while a simple linear regression is
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Figure 4.4: Scatter plot of climate sensitivity versus the globally averaged regional ratios σ2
s/σ

2
w. The grey dots

represent about 5000 CPDN perturbed simulations and do not show any correlation, in contrast to the CMIP3
ensemble (black circles) which still shows a significant correlation of 0.68.

sufficient in CMIP3? And second, why is the confidence interval derived from CPDN much
larger in CPDN compared to CMIP3? Our hypothesis is that the tuning of models plays a major
role and this point is discussed in the next section.

Table 4.3: Constraint on climate sensitivity (best estimate and 95% confidence interval) from regional interan-
nual variability ratio σ2

s/σ
2
w, using the random forest fit on the CPDN ensemble shown in Fig. 4.5.

Dataset Climate Sensitivity 95% C.I.
ERA-40 3.37 0.88 - 7.60

HadCRUT3 3.27 0.98 - 8.74
NCEP-NCAR 3.46 0.98 - 8.17

MERRA 3.37 0.41 - 8.37

Combined 3.37 0.81 - 8.22

4.4 Origin of the linear relation and tuning

The reason why the asymmetry of the calendar month interannual variability (expressed as
σ2
s/σ

2
w) should correlate with climate sensitivity is not evident. If the globe had a symmetric
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Figure 4.5: Climate sensitivity predicted with a random forest algorithm using regional variability ratios σ2
s/σ

2
w

as input vs true sensitivity. The scatter plot represents a subset of 40% CPDN data not used during the training
phase (approx. 2000 simulations, grey dots). The explained variance is 81%. The black circles represent the
CMIP3 models, the red circle is the CMIP3 HadCM3 unperturbed model.
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land-mass distribution from the equator, one would expect the ratio σ2
s/σ

2
w to be one and no

relation with climate sensitivity should appear. As the dominant signal in temperature interan-
nual variability is stronger over regions with snow cover and sea-ice, the representation of the
albedo feedback in the models may explain the relation to climate sensitivity. This is consistent
with recent work that demonstrates a relation between the seasonal and long term feedbacks
related to snow albedo (Hall and Qu, 2006). It is also consistent with a correlation of −0.65

measured between the albedo feedback estimated by Soden and Held (2006) for 12 CMIP3
models and the ratio σ2

s/σ
2
w over the Northern Hemisphere. One may argue that the albedo

feedback contribution and its spread across models is not the largest contribution to the magni-
tude and uncertainty of the total feedback (Soden and Held, 2006). On the other hand, Huybers
(2010) has recently demonstrated correlations of different feedbacks across models, implying
that the albedo feedback in a particular model could in fact explain more of the total feedback
because it is linked to other feedbacks through tuning. In other words, a particular value of the
albedo feedback favors certain values or ranges for other more important feedbacks. Wu and
North (2003) propose a conceptual model of an energy balance with noise and damping as an
alternative explanation of the relationship. However, further investigation is needed to explain
the linear relation found in the CMIP3 ensemble. For the moment, it is important to keep in
mind the fundamental difference between the CPDN and the CMIP3 ensembles. Although the
CPDN parameters are perturbed within a realistic range set by experts, their combinations are
not necessary plausible and some simulations will therefore significantly deviate from a real-
istic representation of the climate system. In contrast, the CMIP3 ensemble collects the best
GCM solutions provided by various institutions. The performances of these models are often
gauged by their ability to reproduce observations. It is thus likely that the CMIP3 models are
tuned, whether unconsciously or not, to produce a plausible realization of the climate system.
Our hypothesis is that this tuning simplifies the complex pattern found by the random forest
to an approximately linear relation. In order to test this idea, we perform a simple idealized
tuning procedure with the CPDN ensemble.

The CPDN ensemble is useful to test the impact of tuning because of its large ensemble
size and the access to the parameter values of each simulation. From the CPDN perspective,
”tuning” is the selection of simulations according to a certain quality criterion. It is assumed
that the design of the CPDN experiment did not try to reproduce the observations and the
complete ensemble represents an essentially un-tuned state. This is not entirely true, since the
CPDN HadCM3L ensemble is already a subset of earlier HadAM3 simulations that performed
reasonably well, but the range of responses covered by the CPDN ensemble is still very broad,
and no strong observational constraints were explicitly placed on any set of parameters.

Two cases of tuning can easily be tested: the regional mean temperature as well as the
regional seasonal cycle compared to a reference dataset. A subset of 50 simulations are se-
lected to build a subset of tuned simulations. The sample size is a subjective choice, but is a
compromise between enough models to get a robust result and a restrictive criteria. If a sub-
set of 50 simulations is selected for which the mean state of regional temperature mean state
is closest (determined by the root mean square error) to the CMIP3 HadCM3 model, a linear
relation emerges from the CPDN data cloud with a correlation of −0.79 (not shown). If the re-
gional seasonal cycle defined as the boreal summer (June to August) minus winter (December
to February) temperature is chosen as the tuning criterion the correlation is −0.76 (not shown)
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and if models are tuned for both regional mean state and regional seasonal cycle together, the
correlation is −0.79. The latter subset is shown in Fig. 4.6 by the red dots and the red 95%
prediction confidence interval. Tuning to observations results in lower correlations due to the
additional structural difference between the observations and all CPDN models.

Based on a simplified energy balance model, Wu and North (2003) have shown how to
get close to the observed ratio σ2

s/σ
2
w by tuning climate sensitivity. In GCMs however, tuning

σ2
s/σ

2
w is hard to achieve because it implies that the complete statistic of regional seasonal

interannual variability is correctly simulated. On the other hand, getting a reasonable seasonal
cycle value for the GCMs is more feasible and is in fact considered as a necessary condition
(Covey et al., 2000) for confidence in their projection. In addition, Covey et al. (2000) found
a correlation of 0.4 between the amplitude of the seasonal cycle values in global mean surface
temperature and climate sensitivity in an earlier set of GCMs. Later on, Wu et al. (2008)
repeated this analysis for the CMIP3 ensemble and have found a correlation 0.63. Comparing
the two results, it is evident that not only have the correlation improved, but also the range of
the seasonal cycle amplitudes have narrowed. Because the seasonal cycle, the ratio σ2

s/σ
2
w and

climate sensitivity are not independent and largely determined by the same feedbacks, tuning
the models according to the seasonal cycle will also indirectly tune σ2

s/σ
2
w. The reason for a

negative slope in CPDN as opposed to a positive slope in CMIP3 remains unclear at this point.
In summary, we find that an observational constraint can introduce a correlation, consistent
with recent works (Huybers, 2010; Kiehl, 2007; Knutti, 2008b).

4.5 Discussion and conclusion

We have empirically demonstrated a near linear relationship between climate sensitivity
and the asymmetry of the interannual variance in winter and summer surface temperature in
the CMIP3 climate model ensemble. Even though the underlying mechanism is not fully un-
derstood, the correlation is very unlikely to be spurious, as it is very similar to the one found
in a previous generation of models. The observations constrain climate sensitivity to 1.9− 4.9

K (5 − 95%), with a most likely value of 3.3 K, similar to the mean and range of the CMIP3
ensemble.

Interestingly however, no relationship between variability and climate sensitivity is seen in
the perturbed physics ensemble of CPDN. But when a subset of model versions from CPDN
is selected to match the observed regional temperature distribution or seasonal cycle, this in-
troduces a structure and correlation between interannual temperature variability and climate
sensitivity, although of opposite sign. Huybers (2010) has shown that by placing a constraint
on the top of atmosphere energy budget, correlations between seemingly unrelated feedbacks
may occur; each model has to satisfy the global energy balance, i.e. a constraint is placed on
the sum of all feedbacks, but not necessarily on any individual feedback. Kiehl (2007) and
Knutti (2008b) have shown that matching the 20th century warming introduces a similar cor-
relation between the total radiative forcing and climate sensitivity across the models; models
with a higher sensitivity compensate the strong warming by a strongly negative aerosol effect.

The question is whether such tuning is problematic and whether it results in a model spread
that is too small. Tuning the simulations decreases the possible configurations of a model by
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Figure 4.6: Scatter plot of climate sensitivity versus the globally averaged regional ratios σ2
s/σ

2
w. The grey

dots represent about 5000 CPDN perturbed simulations. The red dots represent a subset of 50 CPDN simulations
that are both close to the regional temperature mean state and the seasonal cycle of the unperturbed HadCM3
model as reference. The linear correlation is significant (-0.79). The dashed lines represent the 95% prediction
confidence interval of a linear regression.
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eliminating parameter values that do not match observations, and therefore usually narrows the
confidence interval. This can explain why the CMIP3 confidence interval based on observations
is smaller than the original distribution of climate sensitivities in CPDN. Constraining the range
of plausible models by observations could be considered as beneficial. But as a consequence,
if the CMIP3 models are tuned to match the 20th century warming trend, the temperature mean
state or seasonal cycle, of course these variables are no longer available as an observational
constraint. This might explain why so few constraints on the CMIP3 climate sensitivity range
are found, and why some constraints lead to posterior ranges similar to the original ones (Huber
et al. 2010, in press). Interannual temperature variability as used here is difficult to tune and
does show a relation to climate sensitivity, but since interannual variability, the mean state
and the seasonal cycle are largely determined by the same processes, the range of climate
sensitivities is again similar when applying observational constraints on interannual variability.
The important question is thus not whether a particular dataset has been used for evaluation or
tuning, but whether it provides additional independent information beyond what was already
available beforehand.

One interpretation of the recent work on multimodel ensembles is that the CMIP ensemble
might be considered as an approximate and ad hoc posterior distribution given observations
on the climate mean, variability and trends; an ensemble however that was produced in an un-
coordinated way, and of which we never knew the prior distribution nor the likelihood. The
implications of such an interpretation are that one should be careful in using observations to
weight models, since many observations were already used for model development and evalua-
tion (Tebaldi and Knutti, 2007; Knutti et al., 2010b; Knutti, 2010). Poorly constrained weights
are likely to do more harm than good (Weigel et al., 2010). Another implication is that such an
ensemble is not only conditional on the observations but also on the model structure; if most
or all models are missing or misrepresenting certain processes due to structural deficiencies,
the tuning might erroneously lead to other problems, e.g. other feedbacks compensating for
what is missing in a model. Such issues may not necessarily be apparent in a simulation of
the present day climate, but could be important in the future. Understanding and quantifying
uncertainty in a multimodel ensembles therefore remains challenging.
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Abstract

Climate change projections are often given as equally weighted averages across ensembles
of climate models, despite the fact that the sampling of the underlying ensembles is unclear.
We show that a hierarchical clustering of a metric of spatial and temporal variations of either
surface temperature or precipitation in control simulations can capture many model relation-
ships across different ensembles. Strong similarities are seen between models developed at the
same institution, between models sharing versions of the same atmospheric component, and
between successive versions of the same model. A perturbed parameter ensemble of a model
appears separate from other structurally different models. The results provide insight into in-
termodel relationships, into how models evolve through successive generations, and suggest
that assuming model independence in such ensembles of opportunity is not justified.

5.1 Introduction

Uncertainty in climate model projections is often characterized by some measure of spread
across an ensemble of simulations (Furrer et al., 2007; Tebaldi et al., 2005; Tebaldi and Knutti,
2007). The results thus depend on the range of responses covered by the models, and the dis-
tribution of the models within that range. The most recent coordinated ensemble used here
is from the World Climate Research Project (WCRP) Coupled Model Intercomparison Project
Phase 3 (CMIP3, Meehl et al., 2007a). A common assumption in such ensembles is that the set
of models reflects the uncertainty in how to best describe the climate system in a model, arising
partly from the difficulty in defining a unique model quality metric (Parker, 2006; Tebaldi and
Knutti, 2007; Knutti, 2008a; Knutti et al., 2010b,a). Whether models span the full uncertainty
range is hard to verify or falsify. The other assumption is that the models can be considered as
independent in the sense that every model contributes additional information (Annan, 2010a).
All models of course contain common elements (e.g. the equations of motion) because they
describe the same system, and they produce similar results. But if they make the same simplifi-
cations in parameterizing unresolved processes, use numerical schemes with similar problems,
or even share components or parts thereof (e.g. a land surface model), then their deviations
from the true system or other models will be similar. In the extreme case, a model run at two
resolutions, or the same model run twice with two initial states provide very little additional
information about climatology or a decadally averaged projection. We qualitatively define an
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additional model as dependent if it provides little insight into why and how models differ from
each other in the existing ensemble, and from observations. While statistically convenient,
the assumption of independence is unlikely to be fully justified. Successful concepts in mod-
els are often copied or inherited, some institutions have used whole components from other
models. Models are evaluated against the same observations, often using similar metrics. In
CMIP3 several modeling groups have submitted two or three models. Most intercomparisons
are thus ensembles of opportunity in which the sampling and dependence in the model space is
unknown.

5.2 Method

The metric used to quantify the distance between unforced control simulations of two mod-
els is based on the Kullback-Leibler divergence that takes into account the full spatial field of
monthly values in a control simulation. It thus considers the mean state, the seasonal cycle,
the interannual variations, as well as the spatial correlation. A hierarchical clustering applied
to the distance matrix of pairwise model dissimilarities and produces a ’family tree’ of the
models. The position at which the tree connects two models (relative to zero) characterizes the
disagreement between the simulated control climate of two models, the vertical ordering of the
branches is arbitrary. In addition, three reanalysis datasets (ERA, NCEP and MERRA) and two
precipitation datasets (GPCP, CMAP) are treated like additional models. The details of the sta-
tistical method as well as the CMIP3 and the reanalysis and observation datasets are described
in the supplementary material. Note that in contrast to earlier work (Jun et al., 2008a; Knutti
et al., 2010b; Pennell and Reichler, 2010) this method does not analyze pairwise correlation
of model errors to observations, but simply the similarity of two models as expressed by the
simlilarity of their temperature and precipitation fields (see also Annan, 2010a). Observations
are included here as ’additional models’ just for illustration. The method and all conclusions
are independent of whether the ensemble is interpreted as models being centered around truth
or models and truth being indistinguishable, because the method only uses pairwise distances
between models (Knutti et al., 2010a; Annan, J. D. and Hargreaves, J. C., 2010; Annan, 2010a).

5.3 Results and discussion

The tree in Fig. 5.1 shows that models from the same institution in almost all cases are
very similar (e.g. GISS, MIROC, CCCMA, GFDL, UKMO, CSIRO). The degree of similarity
varies and is more pronounced for example for GFDL than for GISS. Some of these pairs are
not surprising, e.g. the two CCCMA models only differ in resolution. Others like the two
UKMO for temperature are more surprising. Some characteristics seem to be preserved that
keep these two models close, despite significant changes that were made to most components of
the model. But relationships go beyond the ”same modeling center” attribute. MIUB-ECHO-G
and INGV-ECHAM4 (both based on an ECHAM4 atmosphere) cluster for temperature, INGV-
ECHAM4 and MPI-ECHAM5 (both ECHAM based but with different versions) cluster for
precipitation. A less evident pair, BCCR-BCM2 0 and CNRM-CM3, is identified for both
temperature and precipitation. These models share the same atmosphere and land components.
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Pennell and Reichler (2010) performed a similar analysis using hierarchical clustering but
with a different distance metric based on model biases and 35 climate variables. While their
results for CMIP3 are similar to those presented here, we show that a single variable (thus
avoiding normalization) is sufficient to reveal most of the dependency structure, and that the
key elements of dependence are similar for both surface temperature and precipitation. Obser-
vation and reanalysis datasets are not needed for the analysis, but when included like additional
models they also cluster together, with some distance to the models, but well within the bulk of
the simulations.

The picture gets even more interesting when the QUMP perturbed physics ensemble
(Collins et al., 2010) and the previous generation of models in CMIP2 is included, shown
in Fig. 5.2. The CMIP2 and CMIP3 models from the same institution also tend to cluster. For
precipitation for example, the old NCAR CSM, PCM1 and the NCAR WM models are close.
The newest NCAR CCSM3 in CMIP3 however was developed almost independently from ear-
lier NCAR models and appears separated. Qualitatively, the history can be traced back further
for most models (Edwards, 2010). But given the rapid development, the increase in resolution
in the models, the inclusion of new processes and the availability of more observations, we
believe the connections between successive model versions are unlikely to persist over more
than one or two generations.

In most of the trees, there is no clear separation into two or three clusters that are far apart,
i.e. there is no evidence for multiple classes of models, different mutually exclusive theories
or philosophies in how to build a model, or a clear separation between CMIP2 and CMIP3.
The climate model landscape rather resembles an evolutionary process. Individual models
take small steps compared to the size of the model space, successful pieces of a model are
kept, inherited and copied and less successful parts go extinct. Existing models adapt to new
environments (computer architecture and capacity, new observations, improved understanding
of the climate system), although by deliberate rather than random modifications. New models
rarely are written from scratch but evolve from combining, modifying and improving existing
parts and ideas.

The perturbed versions of the HadCM3 (Collins et al., 2010) model separate themselves
from the rest of the CMIP models. For some aspects, a large PPE can span a ”model space”
similar or larger than CMIP3, e.g. for the range of feedbacks and climate sensitivity (Sanderson
et al., 2010; Collins et al., 2010; Stainforth et al., 2005). However, if the full spatiotemporal
fields are considered, the underlying model structure (grid, numerical scheme, parameteriza-
tions, resolved processes) appears to be important. Note that parameter perturbations in the
QUMP ensemble are chosen to maximize the spread in feedbacks but ensure good agreement
with climatology for each member (see supplementary material). Very different unconstrained
model versions are likely to exist, and those may well fall outside the QUMP cluster.

5.4 Conclusions

Our analysis of spatial and temporal variations in surface temperature and precipitation
shows strong similarities in groups of two or three models, supporting earlier claims that the
effective number of independent models is smaller than the actual number of models in the
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Figure 5.1: Hierarchical clustering of the CMIP3 models for surface temperature (left) and precipita-
tion (right) in the model control state. Models from the same institution and models sharing versions of
the same atmospheric model are shown in the same color. Observations also are marked by the same
color. Models without obvious relationships are shown in black.
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Figure 5.2: Hierarchical clustering of the CMIP3, CMIP2 and QUMP perturbed physics ensemble for
surface temperature (left) and precipitation (right) in the model control state. Models developed by the
UK Metoffice Hadley Centre are shown in red, models developed by NCAR are marked in blue.
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multi model ensemble (Pirtle et al., 2010; Pennell and Reichler, 2010; Jun et al., 2008b; Tebaldi
and Knutti, 2007; Knutti, 2008a; Knutti et al., 2010b; Knutti, 2010; Annan, 2010a). Models
developed at the same institution show the most striking similarities, but dependencies are even
visible between two models that use different versions of the same atmosphere. Ensembles of
different generations as well as observations largely overlap, suggesting a gradual evolutionary
development and refinement of models. For the metric and variables chosen here, structural
model differences seem to be important. We interpret this as an indication that sampling dif-
ferent model structures is important to capture the full range of model behavior.

Correlations between the control state and the projected change across models are generally
weak (Knutti et al., 2010b), implying that a mapping of the dependence structure into projec-
tions is difficult (see supplementary material for a discussion of clustering projections), i.e. two
models that have similar biases in the present may not have similar projection errors in the fu-
ture. It is therefore unclear whether the dependence in the control state implies that uncertainty
in projections is underestimated, or that the number of effective models in the future is the same
as in the present.

Using equal weights for all models to create a most likely projection fails to take into
account model dependencies. If a group of similar models is part of the ensemble, either from
small changes in parameters or resolution, this poses a risk of double counting and giving undue
weight to the structure underlying the group. Given the large cost of model development, the
availability of open community models and the broader availability of supercomputers, model
variations of existing models and perturbed physics ensembles (Sanderson et al., 2010; Collins
et al., 2010) may become more common in the future, making this dependence a much bigger
issue.

The goal for an ensemble should be to maximize diversity in models yet ensure good per-
formance for all members, and minimize dependency. In principle, this could be achieved with
a sufficiently large and broad ensemble to start with, and an appropriate weighting that takes
into account two distinct factors: performance metrics measuring model skill, and the depen-
dence to other models to account for sampling problems demonstrated above. In practice, this
proves to be very difficult. For the former, the obvious problem is the lack of repeated ver-
ification to define skill for the forecast quantity of interest (Knutti et al., 2010b; Tebaldi and
Knutti, 2007; Knutti et al., 2010a). Skill therefore has to be indirectly determined by relating
the forecast to metrics based on past trends and climatology. With few exceptions (e.g., Stott
et al., 2006) such relationships are weak (Knutti et al., 2010b), making the definition of model
weights ambiguous. If weights are incorrectly specified, the forecast is likely to be worse than
if no weighting was used, in particular for small ensembles (Weigel et al., 2010). Accounting
for model performance may be possible in some cases, e.g. in the Arctic where several metrics
of present day climate and past trends are clearly related to future warming and sea ice decline,
and where the underlying processes are well understood (Boé et al., 2009b,a). If the identified
model biases lead to biased predictions (Stroeve et al., 2007), it would seems stupid not to
consider the observed evidence to improve projections and estimate uncertainties.

Even if the general formulation of an unambiguous weighting scheme for various regions,
variables and timescales that takes into account model performance and dependence appears to
be a long way off, a few conclusions are obvious. First, there is a lively debate in the commu-
nity on the point of model weighting (Knutti, 2010), but the issue of sampling in ensembles has
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received very little attention. Second, diversity is critical. The number of structurally differ-
ent models is small, and maintaining a sufficiently large set of reasonably independent models
that span a wide range of plausible assumptions and scientific viewpoints is important both to
quantify uncertainty and to understand model differences (Knutti, 2010). Eliminating a model
from an analysis is easy, extrapolation beyond the range covered by the ensemble is nearly im-
possible. Third, models are rarely built with lasting value as a primary goal (Held, 2005) and
are superseded by newer models. Yet to understand why models and their projections differ,
archiving results from older model versions and common scenarios would help. Fourth, con-
clusions drawn from ensembles should at least test the sensitivity to how models are selected
in the ensemble. Current coordinated model experiments are like asking the same question to a
small number of people, without thinking about how to select those people, how many to ask,
and how to account for the fact that they may have similarly biased opinions. This undoubtedly
makes the interpretation of the answers challenging.
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5.5 Supplementary material

5.6 Data

The data consists of simulated and observed monthly surface air temperature and precip-
itation fields from pre-industrial control experiment with no external forcing. Three sets of
models are used. The first set is the ensemble ”Quantifying Uncertainty in Model Predic-
tions” (QUMP) and was generated by perturbing the parameters of the HadCM3 climate model
(Collins et al., 2010). Multiple parameters are perturbed simultaneously such that the ensemble
covers a wide range of feedbacks, yet all models are required to be close to the climatological
mean state as measured by the CPI score (Murphy et al., 2004; Webb et al., 2006). Thus the
QUMP PPE is not a random perturbation of a base model, but can be interpreted as a PPE
constrained by climatology, in much the same way as CMIP2/3 is designed (or tuned in some
informal way) to agree reasonably well with climatology. If the requirement of agreeing with
the observed mean state is relaxed, other model versions are likely to be possible that look very
different from those used here. The second and third set belong to the phase 2 (CMIP2, Covey
et al., 2003; Meehl et al., 2000) and phase 3 (CMIP3, Meehl et al., 2007a) of the World Climate
Research Program (WCRP) Coupled Model Intercomparison, a coordinated project to gather
and compare the different of GCMs used for the third and fourth IPCC assessment reports,
respectively IPCC (2001) and IPCC (2007). The observational-based datasets for surface air
temperature are the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis (ERA-40; Uppala et al., 2005), the National Centers for Environmental Prediction
/ National Center for Atmospheric Research reanalysis (NCEP-NCAR; Kalnay et al., 1996)
and the Modern Era Retrospective-analysis for Research and Applications (MERRA; GMAO,
2009) reanalysis. For precipitation, the CPC Merged Analysis of Precipitation (CMAP; Xie
and Arkin, 1997) and the Global Precipitation Climatology Project (GPCP; Adler et al., 2003)
datasets are used. Because individual models and observations come at different spatial reso-
lutions, the data is interpolated to a common T42 grid (Gaussian grid associated with spectral
truncation, 128 latitudinal by 64 longitudinal grid-points) using bilinear interpolation.

5.7 Methods

The degree of dissimilarity between pairs of individual models and observational datasets is
based on a multivariate description of natural variability. The method is inspired from Shukla
et al. (2006). We choose the Kullback-Leibler divergence to quantify the dissimilarity be-
tween the two simulations. While simpler metrics such as root mean square error or pattern
correlation are possible, those consider only mean states and the information contained in the
variability is ignored. As natural variability is a crucial variable, model development is often
focused as much on variability as on the mean state (Covey et al., 2000). We therefore expect
similarities to become clearer when comparing models on the basis of the mean climate plus
natural variability.

In this study, the seasonal cycle (four successive seasons starting from December-January-
February) is defined at each grid-point as the seasonal mean value minus the average annual
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mean value of the entire simulation. The interannual variation in the seasonal cycle is defined
at each grid-point as the seasonal mean value minus the climatological value of that season. To
avoid biased estimates of variability, both the control simulations and the observational-based
datasets are linearly detrended for each individual season. Trends in control simulations occur
because of internal model drifts. The 20th century transient climate change is removed from
the observations by linear detrending to allow a comparison with the control simulations. The
method thus considers the seasonal and interannual variations with their spatial structure, but
not the global mean state and trends.

Each seasonal cycle is fitted with a multivariate normal distribution N (~µi,Σ) where ~µi is
a vector of length N representing the average seasonal cycle over N grid-points. The index
i stands for boreal winter, spring, summer or fall. The covariance structure between the grid-
points expressed in the N × N covariance matrix Σ is calculated using all successive seasons
t = 1, . . . T available in the model or observation-based dataset.

The dissimilarity between two multivariate normal distributions A and B is expressed by
the Kullback-Leibler divergence J(A,B):

J(A,B) =
1

2
Tr
{

(ΣA − ΣB)(Σ−1
B − Σ−1

A )
}

+
4∑
i=1

1

2
Tr
{

(Σ−1
A + Σ−1

B )(~µi,A − ~µi,B)(~µi,A − ~µi,B)t
}

(5.1)

This metric was first described in (Kullback, 1968) in the context of information theory and
statistics. J(A,B) is a positive and symmetric measure. However, it is not a distance in the
mathematical sense since the triangle inequality condition is not fulfilled. It should also not
be confused with the relative entropy used in Shukla et al. (2006) which is not a symmetric
measure. The Kullback-Leibler divergence used here is the sum of two components, one part
due to the difference in covariances and related to interannual variations, and the other due to
the difference in the climatological seasonal cycle.

A difficulty arises when computing (5.1) because of the inverse covariance matrices Σ−1.
Since the number T of simulated seasons is generally smaller than the number of grid-points
(N = 8192 in T42), the matrices Σ are often singular and do not have a unique inverse matrix.
The solution is to reduce the spatial dimensionality (N ) while preserving the maximum amount
of information. We have chosen to project the data on a new coordinate system based on
Empirical Orthogonal Functions (EOFs) of observed seasonal anomalies. While the number
of simulated seasons is between 320 and 4004, the observational dataset have generally much
shorter records. In order to get the best estimate of the observation-based covariance matrix,
ERA-40, NCEP and MERRA are concatenated, resulting in 541 seasons. The same is done
with CMAP and GPCP, resulting in 223 seasons for precipitation.

The new coordinate system uses 500 EOFs for temperature and 200 EOFs for precipita-
tion and explains almost 100% of the original variance. This arbitrary choice is a compromise
between retaining as much information as possible and avoiding singular matrices for the com-
plete set of simulation and observations. According to North’s Rule-of-Thumb (von Storch
and Zwiers, 2004, section 13.5.5), about 20 EOFs should be sufficient to find the physically
relevant patterns. While this is true for the interannual variations, the climatological seasonal
cycle needs more basis vectors to be correctly reconstructed because the EOFs are based on the
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interannual variability. For example, the linear correlation between the original ERA-40 boreal
autumn mean vector and its representation in the EOF basis is only 0.58 with 20 EOFs but 0.94

when 500 EOFs are used instead.
Next, a hierarchical clustering (see Hastie et al., 2001) is applied to map the structure of

all data objects. The algorithm uses the dissimilarity matrix of pairwise data measured by the
Kullback-Leibler divergence in the reduced space. The cluster analysis groups data objects
such that pairwise dissimilarities between those data assigned to the same cluster tend to be
smaller than those in different clusters. The hierarchical clustering is done separately for sur-
face air temperature and precipitation. The position of a node in the tree on the horizontal axis
measures the dissimilarity between its two daughters (which could itself be a single model or a
cluster of models). The range of the dissimilarity metric depends on the number of EOFs and
has no physical or climatological interpretation.

Note that the nearest neigbor in the tree can change if more models are added to the ensem-
ble (i.e. going from Fig. 1 to Fig. 2), even if the distance of the models in the original ensemble
does not change.

5.8 Robustness of results and additional discussion

The length of the control simulations varies for each model, but the results are insensitive to
that. The same analysis with different segments of the control simulations shows very similar
results; most of the relationships become evident already using a ten year segment of the control
simulation for each model. The results are also robust to using the observational datasets
separately rather than concatenating them to calculate the EOF basis. Similar results can in
principle be obtained with other basis sets, e.g. spherical harmonics.

One may argue that the dissimilarity metric should combine multiple variables. However, it
is unclear how to account for dependence between variables, and any combination of variables
requires an arbitrary choice to normalize variables with different units. The results presented
here show that many relationships are already obvious with a single variable and are consistent
for surface temperature and precipitation.

Another obvious question is whether projected changes could be analyzed instead of control
simulations. There are several difficulties in doing that. First, by considering anomalies from
a base period, the information of the seasonal cycle is lost, which is important in identifying
model relationships. Second, it is unclear whether the projected change patterns should be
normalized to account for different climate sensitivities. Finally, if two models cluster it is not
clear whether they behave similarly in terms of how they simulate processes or whether they
just use the same particular sets of forcings. An analysis performed on the projected changes
by the end of the twenty-first century relative to current climatology indicates that only a small
fraction of the model relationships are preserved (not shown). This is also consistent with the
general lack of correlation between the climatological mean state and the predicted changes
(Knutti et al., 2010b). The control simulations are appealing because they really express how
a model simulates feedbacks and processes, i.e. they tell us about the physical assumptions as
well as the numerical schemes built into the model.
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An obvious question is whether weights could be defined based on the hierarchical cluster-
ing. That appears difficult at this stage and is further complicated by the lack of correspondence
of the similarity of the control states to the similarity in the projected changes, but this is cer-
tainly an important topic for further research.





Chapter 6

Model weighting, ensemble size and
tuning: a conceptual study

73





6.1 INTRODUCTION 75

Model weighting, ensemble size and tuning:
a conceptual study

David Masson and Reto Knutti
Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland

Abstract

Multi-model averages is a widespread technique to aggregate the results of an ensemble of
simulations and has been often used to calculate the best estimate of future climate change.
Because the general circulation models used in the IPCC AR4 report do not perform equally
well, some studies have suggested that an optimum weighting would improve the accuracy of
climate projections. We investigate this hypothesis with a conceptual experiment where the size
of an ensemble and the calibration of the models can be controlled. The results are consistent
with other studies on the risks of an inappropriate model weighting and we find that weighting
is generally less beneficial than model calibration or increasing ensemble size.

6.1 Introduction

The Good Practice Guidance Paper on Assessing and Combining Multi Model Climate
Projections (Knutti et al., 2010a) emphasizes the limitations of combining multiple models for
certain applications. Progress in this area is expected to depend on the variable, spatial and
temporal scale of interest. In the case of temperature and precipitation change, models are
sometimes treated equally as in Meehl et al. (2007b), or weighted according to their perfor-
mance as in Giorgi and Mearns (2002) or Tebaldi et al. (2005).

Whetton et al. (2007) suggest to give higher weight to the best performing models because
models close in simulating present-day patterns tend to remain close in the future (Meehl et al.,
2007b). Räisänen et al. (2009) have studied this idea in details and show that weighting pro-
duces consistent results only when present-day performance is related to simulated future tem-
perature change, a condition that is not fulfilled for temperature over most part of the globe.
Some other studies emphasize the risk of an inappropriate weighting. For example, Weigel
et al. (2010) use a conceptual model to show that more information may be lost by weight-
ing than potentially gained. Equal-weighting appears therefore to be a safer solution for many
applications.

Even giving the same weight to all the models is biased by the fact that models are not
independent. Because several institutions have submitted more than one model to the Third
Model Intercomparison Project (CMIP3 Meehl et al., 2007a) used in the Intergovernmental
Panel on Climate Change Fourth Assessment Report (IPCC AR4 IPCC, 2007), some model
concepts are implicitly given more importance. Another concern arises if models are tuned
to match the observations: the information used to evaluate model performance should be
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as independent as possible of those used during the modeling calibration phase (Tebaldi and
Knutti, 2007; Knutti, 2010; Knutti et al., 2010a,b).

This study investigates the impact of model weighting as a function of the ensemble size and
model tuning to the consistency of global temperature projections. We use a cross-validation
technique based on a conceptual model. The idea is whether two independent IPCC reports
based on two model ensembles would agree, admitting that enough technical and financial
resources were available. We expect the consistency between the two reports to be a necessary
condition to trust the model projections.

Section 6.2 analyses the impact of weighting models in relation with the ensemble size
and uses the CMIP3 models. Section 6.3 analyses the impact of weighting in relation with
model calibration and uses artificial models generated by a toy-model. This study is rather a
conceptual analysis than a systematic investigation of the CMIP3 model outputs. Nevertheless,
some conclusions are likely to apply to existing climate ensembles.

6.2 Role of the ensemble size using CMIP3 models

This study uses a subset of the CMIP3 data. One ensemble member for each of the 24 At-
mosphere Ocean General Circulation Models (AOGCMs) simulations under the A1B emission
scenario (Nakicenovic et al., 2000) is used. The observation-based data sets is ERA-40 (Uppala
et al., 2005) for surface temperature. Climatological averages over periods of 20 years (annual
means) have been extracted from the original monthly averaged temperature fields. The evolu-
tion of the global temperature between 1900 and 2080 is shown in Fig. 6.1. The colored lines
represent the CMIP3 simulations and the black line corresponds to the ERA-40 reanalysis. The
first experiment stages two ensembles A and B made of CMIP3 models. We are interested in
the consistency of the projected temperature increase ∆T = T2080 − T1980 between the ensem-
ble A and B. Two effects are likely to change the degree of agreement between A and B: the
ensemble sizeN and the model weighting λ inside each ensemble. The consistency is expected
to increase with the number of models N because the variance of the sample mean decreases
with

√
N (see von Storch and Zwiers, 2004, section 4.3.1). However, the consistency between

ensembles A and B is still unknown when the models are weighted.
The experiment is constructed as follows: N different CMIP3 models are randomly as-

signed to the group A and B. Every model m predicts an increase of global temperature
change ∆Tm and is weighted according to its ability to reproduce the ERA-40 climatological
mean between 1980 and 1999 (termed present-day here). The weighting for model m is pro-
portional to wm(λ) = exp (−λ · E2

m), where λ controls the weighting and Em is the error of
the model m in reproducing the present-day global mean temperature. The estimated future
temperature change is assumed to be normally distributed according to N (∆T̄ , σ) centered on
the multi-model weighted average ∆T̄ and with weighted variance σ2 calculated as

σ2 =
N∑
m=1

wm(∆Tm −∆T̄ )2

/
N∑
m=1

wm

where ∆Tm is the warming in model m. Fig. 6.2a shows the confidence range for the
ensemblesA andB as function of the weighting steepness λ for two 5-model ensembles whose
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members have been arbitrarily chosen. In this particular case, weighting according to present-
day performance shifts the center of the distributions away from each other and does not result
in better agreement between the two ensembles A and B. With increasing weighting, the width
of the distributions gets smaller and the ensembles are more likely to become overconfident
and to disagree with each other.

In the general case, the ensemble A is generated by choosing N models from the original
CMIP3 ensemble of 24 models and the ensemble B by choosing N different models from the
remaining (24 − N) models. The disagreement between the two distributions NA and NB
for different weighting is quantified with the Kullback-Leibler divergence. Because ∆T is
assumed to be normally distributed, the divergence is given by

J(A,B) =
1

2
(σA − σB)(σ−1

B − σ
−1
A ) +

1

2
(σ−1

A + σ−1
B )(∆T̄A −∆T̄B)2 (6.1)

(see Kullback, 1968). The Kullback-Leibler divergence is a symmetric measure of dissimilar-
ity defined on the positive real axis. The closer J(A,B) is to zero, the more similar are the
distributions NA and NB. 500 different pairs of ensembles are generated in order to provide
many different combinations and increase robustness. The disagreement between the hypothe-
ses A and B on the future warming is shown in Fig. 6.2b as function of the weighting and
the number of models. This figure does not show values for weighting larger than λ = 2 be-
cause no overlap between the two distributions A and B produces large values (about 80) of
Kullback-Leibler divergence. Two important features appear: first, larger samples increase the
agreement betweenA andB. This is expected and follows the decrease with

√
N of the sample

mean variance. Second, model weighting is never profitable. This is a direct consequence of
present-day performance being unrelated to the predicted change in the CMIP3 ensemble (see
also Räisänen et al., 2009; Knutti et al., 2010b).

A strong weighting favors the models close to the observation. When the model sample is
large, the best performing model in the ensemble A has a larger probability to lie next to those
in the ensemble B. While weighting increases the confidence in the best performing models,
it also reduces overlapping between the confidence intervals of A and B. The disagreement
induced by weighting is more severe when the size of the ensembles is small. With two models
in each sample for example, weighting is equivalent to selecting one of the two models with an
increasing confidence, and the predictions provided by A and B are more likely to disagree.

6.3 Role of model calibration using artificial models

Weighting models does generally not improve the consistency of the CMIP3 global tem-
perature increase, because the correlation ρ between present-day bias and future projection is
weak (Tebaldi and Knutti, 2007; Räisänen et al., 2009). As the correlation ρ measured in the
CMIP3 ensemble cannot be changed, artificial global temperature simulations are created to
mimic the CMIP3 models while allowing the control over ρ by calibration. This section anal-
yses how model consistency is affected by weighting when models have been tuned using the
same variable as those used for model evaluation. Again, two ensemblesA andB withN mod-
els are created, but here a simple toy model is used. The global temperature T is artificially
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Figure 6.1: Evolution of the global average temperature. Colored lines are CMIP3 model simulations and the
black line represents the ERA-40 reanalysis.

simulated by a linear function of time: T (t) = T (t0) + µ · t. The boundary condition T (t0) is
generated from a normal distribution N (T̄0, σ0), with T̄0 the average CMIP3 simulated global
temperature in the period (1900 − 1919) and σ0 corresponding to the CMIP3 standard devia-
tion. The trend µ is generated from a Gamma distribution to avoid negative values implying a
cooling. The Gamma distribution Γ(α̂, β̂) is a function defined on the positive real axis and the
parameters α̂ = µ̄2

σ2 and β̂ = σ2

µ̄
are estimated to fit the CMIP3 trends with mean µ̄ and stan-

dard deviation σ (see Wilks, 2006, section 4.4.3). Fig. 6.3 shows artificial simulations (colored
lines) together with the ERA-40 reanalysis (black line). The model agreement can be tuned by
arbitrarily shrinking or expanding the standard deviation σ measured in the CMIP3 ensemble.
This action directly controls the correlation ρ between the present-day bias and future temper-
ature increase. When the artificial simulations have the same initial conditions T̄0 but different
trends, the relation is fully deterministic with a correlation equal to one. The initial uncertainty
σ0 in year t0 is responsible to change the deterministic relation into stochastic behavior. When
the relative importance of the future projection uncertainty σ ·∆t is large compared to σ0, the
relation is more deterministic and the linear correlation approaches one.

In the same way as the previous experiment, two ensembles A and B are created. Each
ensemble gets a fixed number of 12 artificial simulations. Fig. 6.4a shows one possible outcome
whose correlation ρ is 0.8. In this particular case, a moderate weighting brings more agreement
between the ensemble A and B. In order to get a general result, 10’000 ensemble pairs with
each 12 artificial simulations have been generated with varying the tuning parameter σ between
half to four times the original CMIP3 standard deviation of the 20th century simulated trends.
The disagreement is again quantified with the Kullback-Leibler divergence expression (6.1).
The results are aggregated into several correlation bins from the smallest value to the largest.
Finally, a detailed view in Fig. 6.4b shows the disagreement between the ensembles A and B
as function of the weighting stress λ and the correlation ρ.
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Figure 6.2: (a) Projected temperature increase for two ensembles with 5 models as a function of the weighting
λ. The solid lines are the ensemble mean values and the dashed lines represent one standard deviation. (b)
Disagreement between the two ensembles as a function of the ensemble size and the weighing λ. The disagreement
is measured with the Kullback-Leibler divergence and 500 model combinations from the 24 CMIP3 ensemble have
been averaged to ensure robustness.
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Figure 6.3: Evolution of the global average temperature. Colored lines are artificial simulations, see description
in text. The black line represents the ERA-40 reanalysis.

The maximum model consistency is reached when the correlation is low and no weighting
is applied. A low correlation is the result of tuning towards the warming consensus. It is
therefore not surprising that the ensembles A and B agree when ρ is close to zero, consistent
with Räisänen et al. (2009). Here, a higher correlation can be reached by relaxing the tuning
constraint and allowing model trends to come from a wider distribution. By construction,
the disagreement is larger simply because σA and σB are larger in the divergence expression
(6.1). Consistent with Räisänen et al. (2009), a moderate weighting improves the agreement.
A moderate weighting acts as a filter that eliminates outliers and inadequate simulations, while
the bulk of the remaining models remains approximately equally weighted in comparison. This
is visible in the particular case shown in Fig. 6.4a where the confidence interval of one of the
two ensembles (in blue) is strongly reduced because an outlier is dismissed by weighting.
The beneficial effect of weighting lasts as long as the distributions NA and NB of the future
temperature increase do no get too overconfident and still overlap. This experiment suggests
two possibilities to improve the consistence of multi-model projections: either the models are
tuned towards a better agreement, or they get weighted according to their performance.

6.4 Discussion and conclusion

We have analyzed the impact of weighting models in multi-model projections as func-
tion of the ensemble size and tuning. The agreement between two ensembles of models is a
consistency criteria and is a necessary condition for climate projection. It is nevertheless not
sufficient to guarantee future skill since all models might share similar biases. The conceptual
experiments done here suggest that a better model calibration and larger ensemble size improve
consistency. In contrast, weighting models according to performance is useful only when it acts
as a filter that eliminate deficient models.
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Figure 6.4: (a) Projected temperature increase for two synthetic 12-models ensembles as a function of the
weighting λ. The solid lines are the mean values and the dashed lines represent one standard deviation. (b)
Disagreement between two ensembles as a function of the weighing λ and the correlation ρ between present-day
bias and future temperature increase. The disagreement is measured with the Kullback-Leibler divergence and
10’000 synthetic models combinations have been averaged to ensure robustness.
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How does this result relate to a set of real GCMs? First, note that model calibration is also a
form of weighting where inadequate model configurations are eliminated. Second, some stud-
ies have chosen to dismiss certain models by selecting a subset of CMIP3 ensembles in order
to constrain future climate change (Walsh et al., 2008; Mahlstein and Knutti, 2010). In these
studies, the constrained variable correlates relatively well with the present-day performance
measure. With a moderate weighting equivalent to the elimination of poor models, a certain
similarity exists with the conceptual model presented here. A high correlation between present-
day performance and future climate change may indicate that the information contained in the
observation have not been fully used to calibrate the models. On the other hand, the absence
of correlation between model fidelity in simulating the 20th century trend and future warming
is a possible evidence of model tuning towards the observed trend (Knutti, 2008b). The agree-
ment of the CMIP3 models to reproduce the observed warming together with the absence of
correlation also fit the presented results.

Yet, the calibration of the parameters during the model development process might also
be dangerous for at least two reasons. First, when many parameter combinations exist as in
perturbed physics ensemble (see e.g., Murphy et al., 2004), calibration based on present-day
performance is close to screening optimal predictors and systematic biases might appear in
the future (DelSole and Shukla, 2009). Second, while calibration of models results in clearer
consensus among simulations, it also affects diversity and reduces the number of truly inde-
pendent models. However, these caveats seem to be less problematic than model weighting.
With the exception of eliminating clearly identified outliers, weighting does not improve model
consistency in the simplified experiments done here.



Chapter 7

Conclusions and outlook

7.1 Conclusions

This PhD thesis was primary focused on the statistical analysis of model ensembles. The
strength of this approach is to avoid subjective choices as much as possible and to rely on the
data only. However, different statistical approaches give different results and the way models
are interpreted affects uncertainty estimates. The interpretation of models depends on the spa-
tial and temporal scale considered as well as whether calibration or model-interdependence are
taken into account. The following list summarizes the main findings and puts them into a wider
perspective:

– Optimal spatial scale: Chapter 3 examined the spatial and temporal scales at which cli-
mate models can provide robust results. A definitive answer for an optimal spatial scale
does not exist and depends on the variable, the topography and the time-horizon of inter-
est. Moreover, different spatial aggregation techniques or definition of an optimal spatial
scale lead to different results (see Räisänen and Ylhäisi, 2010, for a similar study but dif-
ferent conclusions). Overall, this analysis suggests that some form of spatial aggregation
is necessary where grid-point information is known to be unreliable.

– ”Constant bias” assumption in regional climate modeling: The present-day perfor-
mance of GCMs at small spatial scales is preserved until the end of this century when the
global bias is ignored at least for monthly mean values of surface temperature and pre-
cipitation. This is consistent with the common practice of removing the control bias from
the regional climate change projections which is known as the constant bias hypothesis
(see e.g., Buser et al., 2009). However, other hypotheses exist as the constant relation
between models and observation, i.e. the future regional projections are scaled by a fac-
tor reflecting how much natural variability is over- or under-estimated by the GCM. An
extension of this study is to verify whether the ”constant relation” scaling factor is also
preserved through time.

– Model resolution: Model resolution in CMIP3 seems to affect present-day temperature
performance only for small scales over land. This is consistent with the fact that uncer-
tainties in climate projections have not decreased significantly in the last decade despite
massive computational advances allowing for higher model resolution. On the other
hand, higher resolution is indeed required for reliable estimation of future heat-wave,
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droughts or changes of tropical cyclone frequencies which also matter for adaptation
and mitigation planing (Palmer et al., 2008). This raises an interesting debate about fu-
ture ensembles of high-resolved models. While such models produce significantly more
data, network devices or storage capacity unfortunately does not scale at the same rate as
computational capacity. From the data user perspective, this means loaded network band-
width, more space required on storage devices and an increase of data pre-processing.

– Model calibration: Even if an observational constraint on climate sensitivity was found
in chapter 4, it does not reduce uncertainty beyond the original CMIP3 range of 2−4.5 K.
As model calibration might have used all the information contained in the observation, it
is not surprising that this information cannot be used a second time to constrain climate
sensitivity. This suggests challenging interpretations for the estimation of future climate
change. First, if models are misrepresenting certain processes due to structural deficien-
cies, tuning parameters might lead to other problems, e.g. other feedbacks compensating
for what is missing in a model (Kiehl, 2007; Huybers, 2010). For the same reason, model
weighting based on present-day skill might be risky. Such issues may not necessarily be
apparent in a simulation of the present day climate, but could be important in the future.

– Model inter-dependence: Chapter 5 points to strong similarities between models de-
veloped at the same institution or sharing the same atmospheric component. Therefore,
models cannot be considered as independent. Moreover, projections based on the CMIP3
multi-model mean are biased toward certain model designs and do not capture the true
diversity of climate models. A hierarchical clustering based on control simulations sug-
gests a gradual evolutionary development of climate models through successive gener-
ations. Models are rarely built with lasting value as a primary goal and when a new
generation of GCMs is gathered in an ensemble, older models are not maintained any
longer. Yet, in order to understand why models differ, comparing results from older
model versions and common scenarios is critical. Therefore, older model simulations
should be as accessible as those of the newest generation. In addition, the newer models
should at least run a scenario shared by previous versions (e.g. the A1B scenario). This
has the advantage of disentangling progress made in climate modeling from the use of
different scenarios.

– Model weighting: The conceptual experiment done in chapter 6 has illustrated the risk
of model weighting for the reliability of future climate projections. Consistent with
Räisänen et al. (2009), we have found that model weighting is justified only when a
relation between present-day performance and future climate projection exists. In this
simplified experiment, model weighting is beneficial when models are not tuned or when
some models are clearly deficient. To conclude this part, let us recall that a couple of
years ago, the fact that all available models were often averaged with equal weight,
regardless of their biases, might have seemed strange. The scientific community was
building metrics in order make accurate climate projections (e.g., Giorgi and Mearns,
2003; Tebaldi et al., 2005; Greene et al., 2006; Furrer et al., 2007). In the meanwhile,
other studies (Tebaldi and Knutti, 2007; Räisänen et al., 2009; Weigel et al., 2010) have
suggested serious caveats associated with inappropriate weighting. Though imperfect,
giving the same weight to all models seems less risky than model weighting.
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7.2 Outlook

While the first GCM prototypes designed in the late 1940s were run on a computer able to
perform 5000 operations per second, the typical capacity available in 2007 was in the order of
1012 floating point operation per second (one tera flop). This evolution has allowed the direct
dynamical computation of certain processes, reducing uncertainty related to parameterization.
The new generation of supercomputers (IBM Roadrunner, Cray Jaguar) already offer capacities
in the order of 1015 flops. How should climate models make the best use out of it? This question
is linked to another: how to make the best use of a collection of models? A simple solution does
not exist, but trying to answer these question helps a better coordination of GCM experiments
which clarifies the interpretation of future climate change. With the growing amount of data
produced by GCMs, the role of statistics will be enhanced, either to extract relevant information
or to provide an adequate frame to interpretation. The following aspects might be addressed by
further studies:

– Information theory: Model skill is often evaluated using root mean square errors (rmse)
of either climatological averages or variances for a collection of variables (e.g., Gleckler
et al., 2008; Reichler and Kim, 2008; Pennell and Reichler, 2010). However, these met-
rics do not explicitely formulate how these quantities are related, nor are they invariant
under changes of variables even though the same physics is being described (Majda and
Gershgorin, 2010). A more complete description of climate is possible by using multi-
variate distributions together with information theory. The results found in chapter 5 and
in other studies (e.g., Shukla et al., 2006; DelSole and Tippett, 2007; Majda and Gersh-
gorin, 2010) suggest promising applications of empirical information theory into climate
data processing.

– Nature of model ensembles: The recent past years have seen the formulation of two
challenging statistical frameworks to quantify climate change uncertainty. The first is
known as the truth plus error view and considers each simulation as an individual sample
of a distribution centered around the truth (see e.g., Tebaldi and Knutti, 2007). A second
viewpoint is known as the statistically indistinguishable paradigm, where both models
and observations are sampled from the same distribution, but where observations do not
necessary coincide with the center of the distribution (see e.g., Tebaldi and Sanso, 2009;
Annan, 2010b). Current progress is made towards a reconciliation of both views and the
resulting formulation might also impact the way we think about multi-model combination
and weighting.

– Model diversity: George E. Box is credited for having said ”all models are wrong but
some are useful”. In the context of model ensembles this might be rephrased as ”ensem-
bles are useless when individual members all agree with each other”. Model disagree-
ment reflects different hypotheses about the climate system. This diversity is crucial
in order to sample all the uncertainty we think exists. Several solutions might improve
model diversity. An idea is to generate perturbed simulations as different as possible
(as in Stainforth et al., 2005), but whose proximity with the observation is maximized
(as in Murphy et al., 2004; Webb et al., 2006). Assuming that the financial and techni-
cal capacity is available, each GCM institution would be encouraged to provide a dozen
of such perturbed yet calibrated simulations. The experiment would be collected into
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a coordinated ensemble and could sample a larger region of structural and parametric
uncertainty.

– Risk of model calibration and weighting: We have explored in chapter 4 and 6 the role
of model calibration in the CMIP3 ensemble. It might be interesting to study the risk of
model calibration for future climate projections using perturbed physics ensembles with
some cross-validation technique. Instead of artificial models where the interpretation is
limited, perturbed ensembles or some model of intermediate complexity as the Bern2.5D
model (Stocker et al., 1992; Knutti et al., 2002) could be used instead.

There is no doubt that quantifying uncertainty of future climate change is a crucial question
for those planning decisions related to adaptation and mitigation. More reliable estimates re-
flect progress made in observation measurements, process understanding (physics of climate),
statistical concepts and computing resources. Therefore, uncertainty should not be confused
with ignorance. Whatever progress is made in climate science, uncertainty cannot be elim-
inated completely. Science is therefore most useful to society when it finds good ways in
exploring and communicating uncertainty.
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Räisänen, J., 2001: CO2-induced climate change in CMIP2 experiments: Quantification of
agreement and role of internal variability. Journal Of Climate, 14 (9), 2088–2104.
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