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Abstract

Workflow management systems are widely used by organizations to manage and optimize their
business processes. Legislation and common business practices mandate authorization constraints,
which restrict how people may participate in the execution of workflows. A common and important
class of constraints is Separation of Duty, which aims at preventing fraud and errors. Model-
based management of workflows is essential for keeping workflow implementations consistent with
business requirements and to demonstrate compliance with legislation. Therefore, authorization
constraints should be part of workflow models. Recent work introduced the concept of release for
scoping constraints to prevent them from being overly restrictive. We provide three contributions
that build on this approach. First, we extend the industry standard BPMN 2.0, thereby making
the release concept available to a large number of workflow management tools. Second, we extend
the web-based workflow modeling tool Oryx, proving the applicability of our BPMN extension.
Third, for enforcing our constraints we introduce an algorithm which is more general than existing
approaches, and prove that it prevents both violations of constraints and obstructions of the
workflow.
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Chapter 1

Introduction

1.1 Motivation

According to a survey report by the research firm Gartner [MA11], CIOs of major companies
have rated the optimization of processes as a top-five priority during the last four years. For this
optimization task, Business Process Management (BPM) systems have been widely deployed. BPM
systems are IT systems for representing, managing, and operating an organization’s workflows1.
They are popular in particular to integrate diverse IT systems to a coherent system that is aligned
with the organization’s business. Access control for BPM systems is commonly defined in terms of
which user can execute which tasks. In particular, organizations would often like to ensure that for a
given workflow instance, two tasks must be executed by different users. This is called Separation of
Duties or the four-eyes principle and is an essential method for preventing unintentional errors and
fraud. Separation of Duties is central in widely used best practices frameworks such as Control
Objectives for Information and Related Technology (COBIT) [Ins05], in particular in sensitive
industries such as health and finance. Some companies are required by law to adhere to such
practices. For example, publicly traded U.S. companies use COBIT to comply with the Sarbanes-
Oxley Act of 2002 [SO002, LP05]. For these organizations, integrating COBIT principles with
BPM can facilitate demonstrating their compliance with legislation.

In their recent paper “Obstruction-free Authorization Enforcement: Aligning Security and Busi-
ness Objectives” [BBK11], David Basin, Samuel Burri, and Günter Karjoth provide a framework
for modeling authorization in BPM systems, and for enforcing security constraints in a way that
is aligned with the business objectives. They introduce the novel concept of release for scoping
constraints. Scoping of security constraints can reduce the constraints’ interference with business
objectives, while preserving security. However, their method for enforcing constraints does not
consider scopes, and is thus more restrictive than necessary. They also describe an informal ap-
proach for integrating their framework with the BPMN 2.0 [Obj11] standard for graphical business
process notation. The approach is however not tangible enough for practical use. A well designed
extension of the BPMN 2.0 standard could make the release concept available to practical appli-
cations and thus contribute to BPM systems which minimize the impact of security on business
requirements.

1.2 Outline

The basis of this thesis forms the paper “Obstruction-free Authorization Enforcement: Aligning
Security and Business Objectives” [BBK11]. We refer to the framework from the paper as the
BBK11 framework, and to the paper as the BBK11 paper.

1We use workflow as a synonym for business process.
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This thesis is organized as follows: First, we introduce the standards (in Chapter 2) and models
(in Chapter 3) used in the BBK11 framework. In Chapter 4, we introduce our method for modeling
security constraints such as Separation of Duties in BPMN 2.0. In Chapter 5, we introduce a new
algorithm for enforcing constraints. Finally, in Chapter 6 we describe our extension of a workflow
modeling tool.

1.3 Contributions

This thesis makes three contributions:

1. An extension to the industry standard BPMN 2.0 [Obj11] for specifying constraints from
the BBK11 framework as part of workflow models. This extension is in accordance with the
BPMN 2.0 standard’s abstract syntax model and guidelines. Therefore, it makes the concept
of release available to the large number of tools which support BPMN 2.0.

2. A software component which extends the modeling tool Oryx [DOW08] to enable modeling
of constraints from the BBK11 framework as part of workflow models. This is an implemen-
tation and validation of our extension for BPMN 2.0, and also a validation of the BBK11
framework. The component can enable case studies for showing the applicability of the
BBK11 framework.

3. A new algorithm for enforcing authorization constraints in a way that is aligned with the
business objectives. It takes into account the scopes of constraints, which are defined using
the release concept. We show that our algorithm is correct, and that it is more general than
the one presented in the BBK11 paper.

1.4 Technology Overview

In this work, we build upon a number of existing standards and software systems. Here, we give
a short description of each of them.

• XML and XML Schema: The Extensible Markup Language (XML) is a widely used markup
language for encoding arbitrary semi-structured data. From XML, it is possible to define
sub-languages (also known as XML dialects) which allow only some data structures.
XML Schema is an XML dialect for defining XML dialects. We assume that the reader has
basic knowledge of XML and XML Schema. For a detailed treatment of the subject, see
[HM04].

• Business Process Model and Notation (BPMN) 2.0 [Obj11] is an open standard for represent-
ing workflows at various levels of detail: from very abstract to detailed enough for automatic
execution. It defines a graphical notation as well as a serialization in XML. The syntax of
the XML serialization of BPMN 2.0 is specified by an XML Schema. From the BPMN 2.0
standard, we only use process diagrams, which describe what we call a workflow.

• CSP, as described in [Ros05], is a a process algebra. It is a notation for describing concurrent
processes that communicate via messages. It is useful to formally describe discrete systems
for specification and analysis.

• Oryx [DOW08] is an open-source web-based modeling tool that supports BPMN 2.0. It has
been specifically developed for the BPM research community, by the Hasso-Plattner Institute
at the University of Potsdam.

We provide more details about BPMN and CSP in Chapter 2, and about Oryx in Chapter 6.
For the definition and analysis of authorization-constrained workflows, we make use of different
representations and formalisms. Each of the representations comes with its respective terminology.
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As some terms are used by more than one terminology, and with a different meaning, we have to be
explicit about which notion we are actually referring to. We try to always indicate the framework
from which the terms are taken, when it is not clear from the context. Appendix A contains a list
of the terms used within more than one formalism.
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Chapter 2

Background

First, we introduce some conventions and notations that are used throughout this document. Then,
we present subsets of BPMN 2.0 and CSP. These are formalisms which we use in later chapters.

2.1 Notation

Special fonts indicate special terms and text in this document. We use...

• italic font for those terms which have a precisely defined meaning, when we introduce them
for the first time, for emphasized words, and for mathematical terms.

• monospace font for text that refers to program code, parts of data formats, filenames, and
URLs.

• sans-serif font for text that refers to elements of models, e.g. classes in abstract syntax models.

In terms of mathematical notation, we use the following special symbols and expressions:

• ∅ is the empty set.

• > and ⊥ are the boolean values true and false.

• 2S , for a set S, is the power set of S, i.e. the set of all subsets of S.

To refer to a lemma or definition we sometimes use a short form, e.g. L1 to refer to Lemma 1,
and D1 for Definition 1.

2.2 BPMN

In this work, we extend the widely used Business Process Model and Notation (BPMN) 2.0 standard
for graphically specifying authorization constraints in workflows. This means that our extension
can easily be integrated with existing tools and methodologies for workflow development and
management. We use only a subset of all the elements defined in the BPMN 2.0 standard [Obj11].
In particular, we only consider process diagrams. The following description of BPMN 2.0 only
describes the used subset. In this thesis we consider authorization constraints that regulate the
execution of tasks and may depend on the workflow’s control flow. We do not consider data
flows and therefore we ignore the BPMN 2.0 elements dealing with data flows. Furthermore, we
consider only the basic elements that regulate control flow, as other elements may alternatively
be expressed using the basic elements. A description of the subset, derived from the one given in
[BBK11], follows.
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2.2.1 Concepts and Modeling Elements

This section provides a short introduction to BPMN, as far as it is relevant for this work. The
introduction is based on [BBK11], from where we reuse and extend the graphics and some of the
descriptive text.

Artifacts

Activities

user task

subprocess

association

p

transaction
a

call activityc

Figure 2.1: BPMN elements (graphics adapted from [BBK11]).

bpmn::Event

bpmn::Task

bpmn::Activity

bpmn::Group

bpmn::Call Activity bpmn::SubProcess

bpmn::Transaction

bpmn::FlowNode

bpmn::FlowElement

bpmn::BaseElement

bpmn::SequenceFlow

bpmn::FlowElementsContainer

bpmn::Process

bpmn::Gateway

bpmn::Artifact

bpmn::Association bpmn::UserTask

Figure 2.2: Abstract Syntax of BPMN 2.0 (excerpt). Class names in italic font denote abstract
classes, class names in bold font denote concrete classes.

The BPMN 2.0 standard describes BPMN using tables of graphical symbols and an abstract
syntax model. We use the same approach here. Figure 2.1 shows the graphical symbols, and Fig-
ure 2.2 shows an UML1 class diagram of parts of the abstract syntax classes, with their inheritance
relations. In the following, when describing a particular element of BPMN, we mention the name
of the corresponding abstract syntax class in sans-serif font (e.g. “Event”).

Figure 2.1 illustrates the five kinds of BPMN elements that we consider. Activities (Activity)
encompass tasks (Task), subprocesses (SubProcess), and call activities (CallActivity). All activities
are represented by rectangles with rounded corners. A task’s type may be indicated by an icon
in the upper left corner. A user task is denoted by an icon depicting a person. A subprocess

1We assume that the reader has basic knowledge of the Unified Modeling Language (UML). We used [BRJ05] as
our reference.
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is a process that is embedded in another process, called the parent process. A call activity calls
another, globally defined activity.

“An event (Event) models the occurrence of a condition or interaction with the environment.
Events are circle-shaped. Their exterior boundary indicates whether their occurrence triggers a
workflow instantiation, called a start event, whether they occur during the workflow’s execution,
called an intermediate event, or whether their occurrence terminates a workflow instance, called
an end event. Furthermore, an event’s interior may contain an icon, which determines the event’s
type. Examples are the arrival of a message or the expiration of a deadline, illustrated by an
envelope and a clock, respectively.” [BBK11]

End events that contain a filled circle are terminate events. Terminate events immediately
trigger the process’ termination, so that any concurrently executed activities and control flow
branches are aborted.

“Flows describe a workflow’s control-flow. A sequence flow (SequenceFlow), illustrated by a
solid line with an arrow, defines the order in which tasks are executed and events occur. BPMN has
other flow elements, such as message flows, but we make only use of sequence flows. Merging and
branching of the control-flow is modeled by gateways (Gateway). A gateway has n ≥ 1 incoming
and m ≥ 1 outgoing sequence flows. Exclusive gateways are depicted by an empty (or with an
“x” labeled) diamond. Whenever the control-flow reaches an exclusive gateway on an incoming
sequence flow, it passes the control-flow immediately on to exactly one of the m outgoing sequence
flows, based on the evaluation of the condition c associated with the gateway. Parallel gateways
are illustrated by a diamond labeled with the symbol “+”. They synchronize the control flow
on the n incoming sequence flows and spawn concurrent execution on the m outgoing sequence
flows.” [BBK11]

Artifacts (Artifact) are offered by BPMN for annotating models. They cannot participate
in sequence or message flows. For example, text annotations can be added to any element, as
illustrated in Figure 2.1. We use two types of artifacts: The dotted line connecting the text
annotation to the task is an association (Association), and sets of tasks are defined by grouping
them with a dot-dashed box (Group).

2.2.2 Examples

Figure 2.3: Example Workflow 1: Procurement

Example 2.1 (Procurement Workflow). As an example, we describe the process shown in Fig-
ure 2.3. It is an extended and simplified version of an actual payment authorization process from
industry [Exp09]. To reduce complexity, we omitted some of the tasks. To make the example
more interesting, we embedded the payment authorization into the context of procurement. The
scenario that it handles is that a company needs to buy an item, let’s say a laptop computer. A

8



user collects the offers from different suppliers and then a user selects an offer and places an order.
After that, the workflow starts a sub-process, where the (financial) correctness of the order, and
the appropriate delivery of the goods are checked in parallel. If the result of any of those checks
turns out to be negative, the subprocess is terminated immediately. If both checks complete suc-
cessfully, a user decides on the approval of the payment. Upon termination of the sub-process, if
its result is “approve”, the whole workflow terminates, having fulfilled its purpose. If the payment
authorization is aborted, then another offer is selected and a new order placed. If the payment
is disapproved, then the list of possible offers is revised (possibly extended), the selection task is
repeated, and the payment authorization sub-process is executed anew.

Figure 2.4: Example Workflow 2: A simple process

Example 2.2 (A simple process). To illustrate the semantics of a workflow, we describe sequences
of task executions that are possible in the simple workflow given in Figure 2.4, by listing some
examples. Possible sequences are the following:

• Check,Approve,Get,Deliver.

• Get,Get, Check,Deliver,Approve.

• Get, Check,Get, Approve,Get,Get,Deliver.

Impossible sequences:

• Check,Approve,Approve,Get,Deliver. (Because Approve can only be executed once.)

• Get,Deliver,Get, Check,Approve. (Because Get is not possible after Deliver.)

2.2.3 XML Serialization

The BPMN 2.0 standard defines an XML serialization for BPMN models, formally described by
an XML Schema that closely follows the abstract syntax model. An XML serialization of a BPMN
model consists of a sequence of definitions. There are two kinds of definitions, process definitions
and diagram definitions. The process definition describes the elements of the process diagram and
their relations. The diagram definition describes how these elements are to be presented in the
diagram, for example by giving their exact location as (x, y) coordinates. The diagram definition
only complements the process definition for presentation as far as necessary. It does not contain
any information which can be derived from the process definition. Therefore, for rendering the
diagram, both the process and the diagram definitions are required. For semantic analysis and
execution of the process, only the process definition is relevant. In a particular serialization of a
BPMN model, diagram definitions are optional or may only describe a partial view of a process
definition. In general, it is forbidden for an element of the process definition to be associated with
more than one element in the diagram definition, i.e. it can only be rendered once in the diagram.

For the semantic data and the presentational data, the BPMN 2.0 standard each gives an XML
Schema file: Semantic.xsd and BPMNDI.xsd, respectively. The XML Schema file BPMN20.xsd

9



BPMN20.xsd

Semantic.xsdBPMNDI.xsd

DC.xsd

DI.xsd

http://www.omg.org/spec/DD/20100524/DC

http://www.omg.org/spec/DD/20100524/DI

http://www.omg.org/spec/BPMN/20100524/DI

http://www.omg.org/spec/BPMN/20100524/MODEL

Figure 2.5: Schema Files and Associated Namespaces

combines the semantic and presentational schemata by defining a topmost XML element called
definitions that contains elements from Semantic.xsd and BPMNDI.xsd.

The letters “DI” in “BPMNDI.xsd” refer to Diagram Interchange (DI), which is part of the
Diagram Definition (DD) standard that is currently developed by the Object Modeling Group
(OMG)2 to describe various kinds of graphical elements, such as shapes, edges, and labels. So far,
it is only used within the BPMN 2.0 standard, but is designed to be very generic, so that it can
be used for serializing other modeling languages by OMG. BPMNDI.xsd uses type definitions from
DI.xsd (the XML Schema file for Diagram Interchange) and DC.xsd (the XML Schema file for
Diagram Common (DC), which is another part of DD that describes its most basic elements, and
is used by DI). DC.xsd and DI.xsd are files taken from a preliminary version of DD and added to
the set of the BPMN 2.0 standard’s XML Schema files. BPMNDI.xsd extends the data structures
defined in DI and DC with additional attributes specific to BPMN.

Every XML Schema file is associated with a target namespace. The target namespace is a prefix
added to all the names of types and other elements defined in the schema file. Syntactically, it
is a URI. Its purpose is to give everything that is defined in the schema a globally unique name.
This facilitates the use of tags in XML documents that are defined in different XML Schema files,
avoiding name clashes.

The BPMN 2.0 XML serialization uses several namespaces. Elements and types are assigned
to a namespace depending on the context that they are used in. What is specific to the BPMN
2.0 context is assigned to the BPMN 2.0 Model namespace:

http://www.omg.org/spec/BPMN/20100524/MODEL

This includes everything that is defined in Semantic.xsd.
On the other hand, all types and elements defined in BPMNDI.xsd are part of the BPMN 2.0

Diagram Interchange namespace:

http://www.omg.org/spec/BPMN/20100524/DI

Figure 2.5 shows the XML Schema files of the BPMN 2.0 standard with their dependencies and
associated namespaces. A dashed arrow from file A to file B means that A uses objects defined
in B. DI.xsd and DC.xsd also have their own namespaces. They make no reference to BPMN,
instead they are part of the “DD” (Diagram Definition) specification.

Listing 2.1 shows an abbreviated example of a BPMN process serialized in XML. The definitions
tag contains the tags process and BPMNDiagram, which contain the semantic and presentational
data, respectively. Every element in the presentational data references an element from the se-
mantic data using the bpmnElement attribute.

2As of June 2011, the Beta 1 version [Obj10] was most recent.
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Listing 2.1: Example

<definitions

xmlns="http: //www.omg.org/spec/BPMN /20100524/ MODEL"

xmlns:bpmndi="http: //www.omg.org/spec/BPMN /20100524/ DI"

xmlns:di="http: //www.omg.org/spec/DD /20100524/ DI"

xmlns:dc="http: //www.omg.org/spec/DD /20100524/ DC">

<process processType="None" id="process1">

<startEvent id="start1"/>

<task name="Task1" id="task1"/>

<task name="Task2" id="task2"/>

<endEvent id="end1"/>

<sequenceFlow sourceRef="start1"

targetRef="release1" id="flow1"/>

[...]

</process >

<bpmdi:BPMNDiagram >

<bpmndi:BPMNPlane id="proce1pl" bpmnElement="process1">

<bpmndi:BPMNShape id="start1sh" bpmnElement="start1">

<dc:Bounds height=" -1" width=" -1" x="80" y="200"/>

</bpmndi:BPMNShape >

<bpmndi:BPMNShape id="task1sh" bpmnElement="task1">

<dc:Bounds height=" -1" width=" -1" x="300" y="200"/>

<bpmndi:BPMNLabel id="task1lb"/>

</bpmndi:BPMNShape >

<bpmndi:BPMNEdge id="flow1ed" bpmnElement="flow1">

<di:waypoint x="80" y="200"/>

<di:waypoint x="300" y="200"/>

</bpmndi:BPMNEdge >

[...]

</bpmndi:BPMNPlane >

</bpmdi:BPMNDiagram >

</definitions >
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2.2.4 Extension Mechanism

The XML schema of BPMN 2.0 is, according to the standard [Obj11], designed to be exten-
sible. In the semantic schema, any XML element can be extended by adding a sub-element
extensionElements, which is allowed to contain arbitrary elements from a different namespace.
In the presentational schema, most of the elements (except for the very basic types such as way-
points and shape bounds) can be extended by adding a sub-element extension, which is allowed
to contain arbitrary XML elements.

Presentational data that is not covered in the standard can therefore be added freely, even
without providing an additional schema. To include extensional semantic data in a BPMN XML
document, it is enough to reference an additional schema document that defines elements of a
namespace different from that of the BPMN elements. It is allowed for the extension schema to
build upon elements defined in the BPMN standard’s existing XML Schema.

2.3 CSP

For modeling authorization constraints and their enforcement, we use a subset of Hoare’s process
algebra CSP [Ros05], which we introduce in this section. The chosen subset and explanation are
based on what is contained in [BBK11]. Before introducing CSP, however, we provide some relevant
definitions and laws about relations, which we use extensively together with CSP.

2.3.1 Relations: Definitions and Properties

Definition 2.1. Let ψ be a relation ψ ⊆ A × B for the sets A and B. We use the following
definitions:

• aψ b :⇔ (a, b) ∈ ψ

• ψ−1 := {(b, a) | (a, b) ∈ ψ} (inverse relation)

• ψ(A′) := {b ∈ B | ∃a ∈ A′ : (a, b) ∈ ψ}, for a set A′ ⊆ A: using ψ as a function 2A → 2B .

• ψ−1(B′) := {a ∈ A | ∃b ∈ B′ : (a, b) ∈ ψ}, for a set B′ ⊆ B

• ψ{a} := {b ∈ B | (a, b) ∈ ψ}

• dom(ψ) := {a | ∃b : (a, b) ∈ ψ} (domain)

• ran(ψ) := {b | ∃a : (a, b) ∈ ψ} (range)

Note that ψ−1 is not generally the inverse of ψ when used as functions on sets. However the
following properties hold: For a relation ψ ⊆ A×B, with A′, A′′ ⊆ A:

• ψ(A′ ∪A′′) = ψ(A′) ∪ ψ(A′′).

• A′ ⊆ A′′ ⇒ ψ(A′) ⊆ ψ(A′′).

2.3.2 Notation and Definitions

Note 2.1 (Source). In this subsection (2.3.2) we use text from [BBK11]. In an effort to stay
compatible with their definitions, we re-use their description of CSP. We reproduce most of their
description verbatim, with some changes. We left out parts that are not relevant to this work, and
added extra information where needed.
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CSP describes a system as a set of communicating processes. A process is referred to by a name;
let N be the set of all process names. Processes communicate with each other by concurrently
engaging in events. Σ is the set of all regular events. In addition, there are two special events: τ , a
process-internal, hidden event, and X that communicates successful termination. Let C ⊆ Σ. We
write Cτ for C ∪ {τ}, CX for C ∪ {X}, and Cτ,X for C ∪ {X, τ}. In particular, Στ,X is the set of
all events.

A trace is a sequence of regular events, possibly ending with the special event X. 〈〉 is the
empty trace and 〈σ1, . . . , σn〉 is the trace containing the events σ1 to σn, for n ≥ 1. For two traces
i1, i2, their concatenation is denoted i1 î2. C∗ is the set of all finite traces over C and its superset
C∗X = C∗∪{i 〈̂X〉 | i ∈ C∗} includes also all traces ending with X. We abuse the set-membership
operator ∈ for traces and write σ ∈ i for an event σ and a trace i, if there exist two traces i1 and
i2 such that i = i1ˆ〈σ〉̂ i2.

For an event σ ∈ Σ and a name n ∈ N , the set of processes P is inductively defined by the
following grammar:

P ::= σ → P | SKIP | STOP | n | P � P | P u P | P ‖ P | P ||| P | P ; P (2.1)

There are different approaches to formally describing the behavior of a process. CSP’s deno-
tational semantics describes a process P as a prefix-closed set of traces T(P ) ⊆ Σ∗X, called the
traces model. Note that because T(P ) is prefix-closed, the empty trace 〈〉 is an element of the set of
traces of any process. The operational semantics describes P as a state-transition system. The two
semantics are compatible. Because we mainly use the traces model, we describe in the following
the process composition operators, introduced above, in terms of the denotational semantics.

Let P1, P2 ∈ P be two processes. The process σ → P1 engages in the event σ first and behaves
like P1 afterward. Formally, T(σ → P1) = {〈σ〉̂ i | i ∈ T(P1)} ∪ {〈〉}. SKIP engages in X and no
further event afterward; T(SKIP ) = {〈〉, 〈X〉}. STOP represents the process that does not engage
in any event; T(STOP ) = {〈〉}. In other words, SKIP represents successful termination and STOP
a deadlock. We write n = P1 to assign P1 to the name n. Correspondingly, the process n behaves
like P1. The process P1 � P2 represents the external choice and P1 u P2 the internal choice
between P1 and P2. With respect to the traces model, P1 � P2 and P1 u P2 are indistinguishable,
namely the following holds:

T(P1 � P2) = T(P1 u P2) = T(P1) ∪ T(P2) (2.2)

The failures model explained below distinguishes between the two processes. The process P1 ‖ P2

represents the parallel and (fully-) synchronized composition of P1 and P2. It engages in an event
σ if both P1 and P2 synchronously engage in σ:

T(P1 ‖ P2) = T(P1) ∩ T(P2) (2.3)

Similarly, the process P1 ||| P2 is the parallel, unsynchronized composition of P1 and P2. It
engages in σ if either P1 or P2 engage in σ; T(P1 ||| P2) is the set of all interleavings of i1 and i2 for
i1 ∈ T(P1) and i2 ∈ T(P2). For a trace i ∈ T(P1), P1 \ i represents the process P1 after engaging
in all events in i. If T(P1) ⊆ T(P2), then P1 is a trace refinement of P2, denoted P2 vT P1. If
P2 vT P1 and P1 vT P2, P1 and P2 are trace equivalent, denoted P1 =T P2.

The traces model is insensitive to nondeterminism. It describes what a process can do but not
what it may refuse to do. The failures model F is a refinement of the trace model that overcomes
this shortcoming. Let P be a process. P ’s refusal set is a set of events all of which P can refuse
to engage in and rs(P ) ⊆ 2ΣX

is the set of all refusal sets of P . For each refusal set R of P , all of
R’s subsets are also refusal sets of P . The set of failures of P is defined as:

F(P ) = {(i, R) | i ∈ T(P ), R ∈ rs(P \ i)} (2.4)

For two processes P1 and P2, P2 failure refines P1, written P1 vF P2, if F(P2) ⊆ F(P1).
Furthermore, P1 is failure equivalent to P2, written P1 =F P2, if P1 vF P2 and P2 vF P1.
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We define the set of events that a process P offers: initials : P → 2ΣX
.

initials(P ) = {e ∈ ΣX | 〈e〉 ∈ T(P )} (2.5)

P can immediately engage in any of those events, but it may also refuse some of those events that
are in a refusal set of P .

For a relation ψ ⊆ Σ × Σ ∪ {(X,X)}, with (X,X) ∈ ψ, and a process P , P [ψ] denotes P
renamed by ψ. For every pair (σ1, σ2) ∈ ψ, P [ψ] engages in σ2 if P engages in σ1. We abuse ψ
as a relation between traces, where for traces a = 〈a1, . . . , an〉 and b = 〈b1, . . . , bn〉 holds aψ b if
and only if n = m and ∀i ∈ {1, . . . , n} : (ai, bi) ∈ ψ. Note that aψ b implies a ∈ dom(ψ)∗ and
b ∈ ran(ψ)∗ and b ψ−1 a. Remember that we also use ψ as a function between sets of events: For
a set S ⊆ ΣX holds ψ(S) = {e | ∃e′ ∈ S : (e′, e) ∈ ψ}, as in Definition 2.1.

For the initials of a renamed process holds:

initials(P [ψ]) = ψ(initials(P )) (2.6)

For the traces of a renamed process holds:

T(P [ψ]) = {i′ | ∃i : i ψ i′ ∧ i ∈ T(P )} (2.7)

Some laws on failures, which hold for any processes P and Q:

F(P‖Q) = {(i, Y ∪ Z) | (i, Y ) ∈ F(P ) ∧ (i, Z) ∈ F(Q)} (2.8)

F(P [ψ]) = {(i′, R′) | ∃i : i ψ i′ ∧ (i, ψ−1(R′)) ∈ F(P )} (2.9)

∀(i, R) ∈ F(P ) : ∀R′ ⊆ R : (i, R′) ∈ F(P ) (by the definition of rs(P )) (2.10)

A deterministic process D has just one maximal refusal set for a trace i, which is the complement
of initials(D \ i), i.e. D cannot refuse any of the events that it offers. Therefore:

F(D) = {(i, R) | i ∈ T(D), R ⊆ ΣX \ initials(D \ i)} (2.11)

2.3.3 Style

The CSP processes that we use in this document are defined following a common style, which
we explain in this section. We also introduce a terminology which we use to reason about some
properties of the processes.

Our preferred way to specify processes is by a parameterized recursive formula that makes
states and transitions of the process explicit:

Example 2.3. The definition

P2.3(U) = v : {v ∈ N} → P2.3(U ∪ {v})

� w : {w ∈ Z| − w ∈ U} → P2.3(U\{−w})

� SKIP ,

U ∈ 2N

specifies an infinite set of processes {P2.3(U) |U ∈ 2N}. These processes form a system where
generally each process, after engaging in an event behaves like another process from the system.
As defined, P2.3(∅) behaves like P2.3({1}) after engaging in the event 1, and P1({1}) behaves again
like P2.3(∅) after engaging in −1. The only special case is that the process may behave like SKIP
at any time, i.e. engaging in X and then terminating.
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Definition 2.2. A process definition P is called a regular process definition if it matches the
following pattern:

P (p) = e : E1(p)→ P (next1(p, e))

� e : E2(p)→ P (next2(p, e))

. . .

� e : En(p)→ P (nextn(p, e))

� SKIP ,

p ∈ ϕ.

The placeholder p stands for a tuple of parameters. ϕ is the set of all parameters. Each line
e : Ei(p)→ P (nexti(p, e)) is a rule, and n is the number of rules. The set Ei(p) is called the rule’s
guard. The guard is a subset of the set of events Σ, and can depend on the parameters. The term
after the arrow is called the subsequent process term. Each nexti is a function of the parameters p
and the event e. The set G(p) = {E1(p), E2(p), . . . , En(p)} is the set of guards of P . The union of
all guards, together with X, is the set of all initials:

∀p ∈ ϕ :
⋃

i=1..n

Ei(p) ∪ {X} = initials(P (p))

Definition 2.3. A regular process definition is well-defined if for every rule e : Ei(p)→ P (termi(p, e))
holds ∀e ∈ Ei(p) : termi(p, e) ∈ ϕ, and termi(p, e) is well-defined for all possible p and e.

Example 2.4. The definition

P2.4(n) = m : N→ P2.4(n−m)

� SKIP ,

n ∈ N

is not well-defined as P2.4(1), after engaging in the event 1, would be P2.4(0), which is not defined,
as the parameter n is constrained by n ∈ N.

Definition 2.4. We say that the process P (p1) \ i for some i ∈ T(P (p1)) is in the state p2, if
P (p1) \ i = P (p2), i.e. it behaves like P (p2).

If all guards are pairwise disjoint for all parameters, i.e. ∀p ∈ ϕ∀Ei(p), Ej(p) ∈ G : i 6= j ⇒
Ei(p) ∩ Ej(p) = ∅, then the defined process is deterministic. If the process is deterministic and
a rule e : Ei(p) → P (termi(p, e)) exists in the definition, then for each event e ∈ Ei(p) holds
P (p) \ 〈e〉 = P (termi(p, e)).

Note 2.2. CSP according to [Ros05] defines the process E = P � SKIP , for some process P ,
as such that it may nondeterministically decide to refuse all events that P offers and only allow
X, i.e. E = (P u STOP ) � SKIP . In contrast, we assume that E may not refuse any events
that P offers. We strictly leave it to the environment to decide on termination, and therefore E
is a deterministic process. In the interest of simplicity we feel that it is appropriate to deviate
from [Ros05] in this way. Alternatively, one could introduce an additional event, e.g. #, which
marks the termination of a workflow, after which X will be the only event that can be executed.
In this case one would have to replace all instances of SKIP in our definitions with the process
#→ SKIP . Also one would have to add # to all sets of events which contain X.

In general, for the process definitions in this thesis we only state that they are deterministic,
without giving a proof, except if it is not straightforward to verify.

Definition 2.5. A rule e : Ei(p)→ P (termi(p, e)) is called repeatable if Ei(p) = Ei(termi(p, e)).
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If a rule e : Ei(p)→ P (termi(p, e)) is repeatable, then after engaging in any event from Ei(p),
the guard of the rule is the same as before, and therefore the process can again engage in all the
events from Ei(p), i.e.

e ∈ Ei(p)⇒ e ∈ initials(P (p) \ 〈e〉)

16



Chapter 3

Authorization-Constrained
Workflows

In this chapter, we first describe the general framework of authorization-constrained workflows
used in [BBK11], and then introduce their concrete model.

3.1 Framework

3.1.1 Workflow and Execution Model

There is a global set of all tasks T and of all points O. There is also a global non-empty set of all
users U . The set of task-execution events is T × U . We write t.u for an element (t, u) ∈ T × U .
A task-execution event t.u represents the execution of the task t by the user u. Task events are
elements of T , and denote the execution of a task independent of the user which executes it. Point
events are elements from O, and include all other events that one might want to consider. The
sets T , T × U and O must be strictly disjoint. The set of all regular events does not include any
additional events, so Σ = T ∪ (T × U) ∪ O. The set of execution events ΣX is (T × U) ∪ O. The
set of all execution traces is Σ∗XX . The set of all unterminated execution traces is Σ∗X .

Definition 3.1. An execution process is a CSP process that engages only in execution events
and X.

We define a workflow process, which is the CSP model of a workflow. The set of workflow events
ΣT is T ∪ O. The set of all workflow traces is Σ∗XT

Definition 3.2. A workflow process is a CSP process that engages only in workflow events and X.
Let W denote the set of all workflow processes.

The execution process of a workflow process W is the process W
[
π−1

]
, where π is the relation

that maps the task-execution event t.u to the task event t, and X and events in O to themselves:

π := {(t.u, t) | t.u ∈ (T × U)} ∪ {(o, o) | o ∈ O} ∪ {(X,X)}
dom(π) = ΣX

X , ran(π) = ΣX
T

An execution trace of W
[
π−1

]
models a workflow instance of the workflow modeled by W .

Note that π is also a function (while π−1 is not). Because π is a total function on ΣX
X , for an

execution trace i ∈ Σ∗XX we can define the unique workflow trace i [π] ∈ Σ∗XT of the same length,
which for i = 〈e1, . . . , en〉 is defined as i [π] := 〈π(e1), . . . , π(en)〉. So for any two traces i, i′ ∈ Σ∗X

holds:

i π i′ ⇔ (i ∈ Σ∗XX ∧ i′ = i [π]) (3.1)
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Because π is surjective on ΣX
T and U 6= ∅, for each workflow trace i′ ∈ Σ∗XT there exists at least one

execution trace i ∈ Σ∗XX such that i′ = i [π]. By the definition of π, the following two properties
hold for a set of events S ⊆ ΣX:

∀t ∈ T : t ∈ π(S)⇒ ∃u ∈ U : t.u ∈ S (3.2)

∀e ∈ OX : e ∈ π(S)⇒ e ∈ S (3.3)

The following is a limitation of this model: The execution of tasks is considered atomic, i.e.
task executions are modeled as events without duration. Though sequences of task executions
can be executed in parallel, two task executions cannot be happening at the same time. By the
CSP model, one event always happens either before or after other event. This collides with the
observation that in practice tasks can be executed in parallel and take a certain amount of time to
complete. The consequence is that when applying this model for practical systems, an exact point
in time has to be defined after which a task is considered executed.

3.1.2 Constraint Model

A workflow is authorization-constrained, if there exist constraints that describe which user may
execute which tasks in the workflow.

Definition 3.3. An authorization process is an execution process which is meant to be used as
a reference monitor for preventing the violation of an underlying constraint. The traces of an
authorization process are those that satisfy the underlying constraint.

We distinguish between static and dynamic constraints. Static constraints can be enforced by
an authorization process which offers always the same events, independent of the events that have
already been executed. This implies that without executing the workflow, it can be determined
whether a certain user executing a certain task would violate the constraint. All other constraints
are called dynamic. Dynamic constraints depend on events that happen during workflow execution.

Example 3.1. A common model for controlling access to resources is Role-Based Access Control
(RBAC) [FSG+01]: In our context, a simple variant of RBAC could be implemented as follows:
Each user gets assigned a set of roles. Each role gets assigned a set of tasks. A user can execute a
task if it is assigned to a role that he is assigned to.

In this work, we use a more abstract model, which is simply a relation between users and tasks
that specifies which tasks each user can execute. It can be defined by an RBAC system or any
other mechanism. In practice, the relation may change over time. However, to simplify our model
we assume that it is fixed, and therefore it constitutes a static constraint.

Example 3.2. An important kind of dynamic constraint is Separation of Duties, which we ab-
breviate as SoD. An SoD constraint for two tasks states that in a workflow instance, they cannot
be executed by the same user. It is a common requirement in heavily regulated industries such as
finance and healthcare. Binding of Duties, or BoD, is dual to SoD. A BoD constraint for two tasks
states that within a workflow instance, those two tasks must be executed by the same user.

SoD and BoD as given by those definitions are dynamic constraints, because after one of two
tasks included in an SoD or BoD constraint has been executed, the set of users which are authorized
to execute the second task depends on which user has executed the previous task.

3.1.3 Functions

We define some functions that we use on authorization processes:

Definition 3.4. χ : P → 2T ×U , χ(P ) = (T × U) ∩ initials(P ) is the set of task-execution events
that the process P offers.

Definition 3.5. ω : P → 2O, ω(P ) = O ∩ initials(P ) is the set of point events that the process
P offers.

18



3.2 The [BBK11] Constraint Model

3.2.1 Model

We define what constraints are possible in the model, and, in the next section, what their semantics
are. See [BBK11] for a more detailed treatment.

Definition 3.6 (SoD Constraint). An SoD constraint s is a triple s = (T1, T2, O), where T1 and
T2 are non-empty sets of tasks with T1 ∩ T2 = ∅, and O is a set of points, called the release points
of s.

Definition 3.7 (BoD Constraint). A BoD constraint b is a pair b = (T,O), where T is a non-empty
set of tasks, and O is a set of points, called the release points of b.

Definition 3.8 (User-Task Assignment). A user-task assignment UT , is a relation UT ⊆ U × T .

Definition 3.9 (Authorization Policy). An authorization policy is a triple (UT, S,B), where UT
is a user-task assignment, S is a set of SoD constraints, and B is a set of BoD constraints.

Note 3.1. Alternatively, we could define the policy using a relation T × U instead of UT , which
would be more convenient for some definitions. However, we chose to stay compatible with the
definitions in [BBK11].

3.2.2 Properties

We define some properties which are not part of the approach described in [BBK11]. We use them
for defining our new algorithm.

For a given authorization policy φ = (UT, S,B), we define the following relations between tasks:

Definition 3.10. Two tasks t1, t2 are called ...

• s-separated, denoted t1 6=s t2, if for an SoD constraint s = (T1, T2, O) holds that t1 ∈ T1∧t2 ∈
T2 or t1 ∈ T2 ∧ t2 ∈ T1.

• φ-separated, denoted t1 6=φ t2, if there exists an SoD constraint s ∈ S, s = (T1, T2, O) such
that t1 6=s t2.

• b-bound, denoted t1 =b t2, if for the BoD constraint b = (T,O) holds that t1 ∈ T and t2 ∈ T .

• φ-bound, denoted t1 =φ t2, if there exists a sequence of tasks t′1, . . . , t
′
n and a sequence of

BoD constraints b1, . . . , bn+1 from B, such that t1 =b1 t
′
1, t′k =bk+1

t′k+1 for 1 ≤ k ≤ n, and
t′n =bn+1

t2.

As suggested by the used notation symbols, these relations have certain properties:

Lemma 3.1. For any authorization policy φ, the relation 6=φ on T is symmetric, and the relation
=φ on T symmetric and transitive.

Proof. Let φ = (UT, S,B) be an authorization policy.

• Let t1, t2 ∈ T , and t1 6=φ t2. Therefore, an SoD constraint s = (T1, T2, O) exists such that
t1 ∈ T1 ∧ t2 ∈ T2 ∨ t1 ∈ T2 ∧ t2 ∈ T1. This implies t2 ∈ T1 ∧ t1 ∈ T2 ∨ t2 ∈ T2 ∧ t1 ∈ T1.
Therefore also t2 6=φ t1 holds, which proves that 6=φ is symmetric.

• Let t1, t2 ∈ T , and t1 =φ t2. Therefore there exists a sequence of tasks t′1, . . . , t
′
n and a

sequence of BoD constraints b1, . . . , bn+1 from B, such that t1 =b1 t′1, t′k =bk+1
t′k+1 for

1 ≤ k ≤ n, and t′n =bn+1 t2. Since for any b ∈ B, t1, t2 ∈ T , holds t1 =b t2 ⇒ t2 =b t1, it
follows with the reverse sequences of bn+1, . . . , b1 and t′n, . . . , t

′
1 that t2 =φ t1 holds. Therefore

=φ is symmetric.
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• Let t1, t2, t3 ∈ T , and t1 =φ t2 and t2 =φ t3. Therefore there exists a sequence of tasks
t′1, . . . , t

′
n and a sequence of BoD constraints b1, . . . , bn+1 from B, such that t1 =b1 t

′
1, t′k =bk+1

t′k+1 for 1 ≤ k ≤ n, and t′n =bn+1
t2. Also there exists a sequence of tasks t′′1 , . . . , t

′′
n′ and

a sequence of BoD constraints b′1, . . . , b
′
n′+1 from B, such that t2 =b′1

t′′1 , t′′k =b′k+1
t′′k+1 for

1 ≤ k ≤ n′, and t′n′ =b′
n′+1

t3. With the sequence of tasks t′1, . . . , t
′
n, t2, t

′
1, . . . , t

′
n, t
′′
1 , . . . , t

′′
n′

and the sequence of BoD constraints b1, . . . , bn+1, b
′
1, . . . , b

′
n′+1 follows that t1 =φ t3, which

proves that =φ is transitive.

Note 3.2. Contrary to what the notation might suggest, t1 6=φ t2 is not equivalent to ¬(t1 =φ t2).
For example, two tasks may be neither φ-bound nor φ-separated.

3.2.3 Authorization Processes

In this section, we define the semantics of the authorization constraints, using authorization pro-
cesses. The authorization process, for a given authorization constraint, may engage in any point
event and any task execution event not prohibited by the authorization constraint. The definitions
are from [BBK11], with only slight changes.

Definition 3.11 (BoD Authorization Process). For a BoD constraint b = (T,O), Ab(U) is the
authorization process for b, with

Ab(U) = (t.u) : T × U → Ab({u})

� o : O → Ab(U)

� (t.u) : (T \T )× U → Ab(U)

� o′ : O\O → Ab(U)

� SKIP ,

U ∈ 2U .

Ab(U) is well-defined. It is also deterministic, as the sets T ×U , O, (T \T )×U , O\O and {X}
are pairwise disjoint. The process Ab(U) for some BoD constraint b = (T,O) can be informally
described as follows: Ab(U) restricts which users can execute tasks from the set T . After some
trace i ∈ Σ∗, it behaves like Ab(U) for some U ⊆ U . Then, U is the set of users that can still
execute any task in T .

Definition 3.12 (SoD Authorization Process). For an SoD constraint s = (T1, T2, O), As(U ,U)
is the authorization process for s, with

As(U1, U2) = (t.u) : T1 × U1 → As(U1, U2\{u})

� (t.u) : T2 × U2 → As(U1\{u}, U2)

� o : O → As(U ,U)

� (t.u) : (T \{T1 ∪ T2})× U → As(U1, U2)

� o′ : O\O → As(U1, U2)

� SKIP ,

U1, U2 ∈ 2U .

As(U ,U) is well-defined. It is also deterministic, as the sets T1×U1, T2×U2, O, (T \{T1∪T2})×U ,
O\O, and {X} are pairwise disjoint (T1 and T2 are disjoint by definition).
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Definition 3.13 (Static Authorization Process). For a user-task assignment UT , the static autho-
rization process for UT is the process

AUT = (t.u) : UT−1 → AUT

� o : O → AUT

� SKIP .

It is easily recognizable that AUT is well-defined and deterministic.

Definition 3.14 (Authorization Process). For an authorization policy φ = (UT, S,B), the autho-
rization process for φ is the process

Aφ = AUT ‖
(∥∥

s∈SAs

)
‖
(∥∥

b∈BAb

)
.

The authorization process for the policy as a whole is the parallel composition of the policy’s
static authorization process and all of the SoD and BoD authorization processes of the SoD and
BoD constraints contained in the policy. By the trace semantics of CSP the set of traces of a
parallel composition of processes is the intersection of the sets of traces of the composed processes.

T(Aφ) = T(AUT ) ∩
⋂
s∈S

T(As) ∩
⋂
b∈B

T(Ab) .

3.2.4 Properties of the Authorization Processes

The algorithm for enforcing constraints, which is presented in [BBK11], does not depend on the
dynamic semantics of the enforcement constraints. However, our improved algorithm, which we
introduce in Chapter 5, does. It depends on which traces exactly are permitted by the authorization
processes. We describe the permissiveness of the authorization processes in terms of the possible
continuations for a given trace. We show in the following lemmas that our authorization processes,
after engaging in any trace of events, always offer all events in O, and never offer less task-execution
events after engaging in an event in O. Also, that for two task-execution events, after engaging in
one the other is still offered unless it is prohibited by the underlying constraint. Furthermore, we
show which task-execution events the authorization processes offer initially.

Lemma 3.2 (Properties of the SoD Authorization Process). Let s be an SoD Constraint s =
(T1, T2, O). Let i ∈ T(As(U ,U))∩Σ∗. Let Ais := As(U ,U) \ i. Then the following statements hold:

1. O ⊆ initials(Ais)

2. ∀o ∈ ω(Ais) : χ(Ais) ⊆ χ(Ais \ 〈o〉)

3. ∀t1.u1, t2.u2 ∈ χ(Ais) : (t1 6=s t2 ⇒ u1 6= u2)⇒ t2.u2 ∈ χ(Ais \ 〈t1.u1〉)

4. T × U ⊆ initials(As(U ,U))

Proof. Let s be an SoD Constraint s = (T1, T2, O). Let i ∈ T(As) ∩ Σ∗. Let Ais = As(U ,U) \ i.
Statement 1: This holds by rules 3 and 5 of the definition of As.
Statement 2: Consider rules 3 and 5 of the definition of As. Let o ∈ ω(Ais).
Case o ∈ O: Then Ais \ 〈o〉 = As(U ,U). Therefore, by rules 1, 2, and 4:

χ(Ais \ 〈o〉) = (T1 × U) ∪ (T2 × U) ∪ ((T \ (T1 ∪ T2))× U) = T × U

So χ(Ais \ 〈o〉) is maximal and therefore χ(Ais) ⊆ χ(Ais \ 〈o〉) holds.
Case o ∈ O \O: Then Ais \ 〈o〉 = Ais so by equality χ(Ais) ⊆ χ(Ais \ 〈o〉) holds.
Statement 3: Assume s = (T1, T2, O) and i ∈ T(As) ∩ Σ∗ and t1.u1, t2.u2 ∈ χ(As \ i). Assume
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t1 6=s t2 ⇒ u1 6= u2. From the definition of SoD constraints, T1 ∩ T2 = ∅. Let U1, U2 be so that
As(U1, U2) =T As(U ,U) \ i.

1. Case t1 ∈ T1 ∪ T2 ∧ t2 ∈ T1 ∪ T2:

(a) Case t1 ∈ T1:

i. Case t2 ∈ T2: In this case t1 6=s t2 holds, and by assumption u1 6= u2. Rule 1
applies for t1.u1. In Ais \ 〈t1.u1〉 =T As(U1, U2\{u1}), Rule 2 applies for t2.u2.

ii. Case t2 /∈ T2: Here t2 ∈ T1. The first rule of As applies. This rule is repeatable.
Therefore, t2.u2 ∈ χ(Ais \ 〈t1.u1〉).

(b) Case t1 /∈ T1: Here t1 ∈ T2.

i. Case t2 ∈ T2: The second rule of As applies. This rule is repeatable. Therefore,
t2.u2 ∈ χ(Ais \ 〈t1.u1〉).

ii. Case t2 /∈ T2: Here t2 ∈ T1, so t1 6=s t2 holds, and by assumption u1 6= u2. Rule 2
applies for t1.u1. Rule 1 applies for t2.u2 in As(U1\{u1}, U2) =T A

i
s \ 〈t1.u1〉.

2. Case ¬(t1 ∈ T1 ∪ T2 ∧ t2 ∈ T1 ∪ T2):

(a) Case t2 /∈ T1 ∪ T2: Here t2.u2 is a member of the guard of rule 4, independently of the
state. Therefore, t2.u2 ∈ χ(Ais \ 〈t1.u1〉).

(b) Case t2 ∈ T1 ∪ T2:

i. Case t1 ∈ T1 ∪ T2: This contradicts the assumption ¬(t1 ∈ T1 ∪ T2 ∧ t2 ∈ T1 ∪ T2).

ii. Case t1 /∈ T1 ∪ T2: Rule 4 applies. This rule is repeatable. Therefore, t2.u2 ∈
χ(Ais \ 〈t1.u1〉).

Statement 4: This follows from the guards of the rules 1, 2, and 4 of the definition of As(U ,U)
with (T1 × U) ∪ (T2 × U) ∪ ((T \ (T1 ∪ T2))× T ) = T × U .

Lemma 3.3 (Properties of the BoD Authorization Process). Let b be an BoD Constraint b =
(T,O). Let i ∈ T(Ab) ∩ Σ∗. Let Aib := Ab(U) \ i. Then the following statements hold:

1. O ⊆ initials(Aib)

2. ∀o ∈ ω(Aib) : χ(Aib) ⊆ χ(Aib \ 〈o〉)

3. ∀t1.u1, t2.u2 ∈ χ(Aib) : (t1 =b t2 ⇒ u1 = u2)⇒ t2.u2 ∈ χ(Aib \ 〈t1.u1〉).

4. T × U ⊆ initials(Ab(U))

Proof. Let b be an BoD Constraint b = (T,O). Let i ∈ T(Ab) ∩ Σ∗. Let Aib = Ab(U) \ i.
Statement 1: This holds by rules 2 and 4 of the definition of Ab.
Statement 2: Consider rules 2 and 4 of the definition of Ab. Let o ∈ ω(Aib).
Case o ∈ O: Then Aib \ 〈o〉 = Ab(U). Therefore, by rules 1 and 3:

σ(Aib \ 〈o〉) = (T × U) ∪ ((T \ T )× U) = T × U

So χ(Aib \ 〈o〉) is maximal and therefore χ(Aib) ⊆ χ(Aib \ 〈o〉) holds.
Case o ∈ O \O: Then Aib \ 〈o〉 = Aib so by equality χ(Aib) ⊆ χ(Aib \ 〈o〉) holds.
Statement 3: Assume b = (T,O), i ∈ T(Ab), t1.u1, t2, u2 ∈ χ(Aib).Let U be so that Ab(U) =T A

i
b.

1. Assume u1 = u2:

(a) Case t1 ∈ T : Rule 1 applies. Ab(U)\t1.u1 =T Ab({u1}).
i. Case t2 ∈ T : Now t2.u2 ∈ T × {u1}, and therefore t2.u2 ∈ χ(Aib \ 〈t1.u1〉).

ii. Case t2 /∈ T : Here t2.u2 ∈ χ(Aib \ 〈t1.u1〉), because of rule 3.

(b) Case t1 /∈ T : Rule 3 applies. Ab(U)\〈t1.u1〉 =T Ab(U). Therefore t2.u2 ∈ χ(Aib\〈t1.u1〉).
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2. Assume ¬(t1 =b t2): Then by definition of =b holds ¬(t1 ∈ T ∧ t2 ∈ T ).

(a) Case t1 ∈ T : So t2 /∈ T . Then t2.u2 ∈ χ(Ab(U) \ î 〈t1.u1〉), because of rule 3.

(b) Case t1 /∈ T : Then rule 3 applies and Ab(U) \ î 〈t1.u1〉 =T Ab(U) \ i.

Statement 4: This follows from the guards of the rules 1 and 3 of the definition of Ab(U) with
(T × U) ∪ ((T \ T )× T ) = T × U .

Lemma 3.4 (Properties of the Static Authorization Process). Let UT be an user-task assignment.
Let i be an unterminated trace of AUT , i.e. i ∈ T(AUT ) ∩ Σ∗.

1. O ⊆ initials(AUT \ i)

2. χ(AUT \ i) = χ(AUT )

3. χ(AUT ) = UT−1

Proof. Let UT be an user-task assignment. Let i ∈ T(AUT )∩Σ∗. Statement 1: This holds by rule
2 of the definition of AUT .
Statement 2: This holds because all guards are constant.
Statement 3: This holds by rule 1, and because there are no other rules including task-execution
events in its guard.

The authorization process for a policy φ = (UT, S,B) permits any behavior that all of the
authorization processes AUT , As(U ,U) for each s ∈ S, and Ab(U) for each b ∈ B, permit.

Lemma 3.5 (Properties of the Authorization Process for a Policy). Let φ = (UT, S,B) be an
authorization policy. Let i be an unterminated trace of Aφ, i.e. i ∈ T(Aφ)∩Σ∗. Then the following
statements hold:

1. O ⊆ initials(Aφ \ i)

2. ∀o ∈ ω(Aφ \ i) : χ(Aφ \ i) ⊆ χ(Aφ \ î 〈o〉)

3. ∀t1.u1, t2.u2 ∈ χ(Aφ \ i) :
(t1 =φ t2 ⇒ u1 = u2) ∧ (t1 6=φ t2 ⇒ u1 6= u2) ⇒ t2.u2 ∈ χ(Aφ \ î 〈t1.u1〉)

4. UT−1 ⊆ initials(Aφ)

Proof. Let φ = (UT, S,B). Let i ∈ T(Aφ) ∩ Σ∗.
Statement 1: This follows from the definition of Aφ and Lemmas 3.3, 3.2 and 3.4.
Statement 2: From Lemma 3.4, statement 2, follows ∀o ∈ ω(AUT \ i) : χ(AUT \ i) ⊆ χ(AUT \ î 〈o〉)
since î 〈o〉 ∈ T(AUT ) ∩ Σ∗ and ∀i ∈ T(AUT ) ∩ Σ∗ : χ(AUT \ i) = χ(AUT ). Then the statement
follows from the definition of Aφ and Lemmas 3.3, 3.2.
Statement 3: Let t1.u1, t2.u2 ∈ χ(Aφ \ i). Therefore ∀b ∈ B : t1.u1, t2.u2 ∈ χ(Ab(U)) and ∀s ∈
S : t1.u1, t2.u2 ∈ χ(As(U ,U)) and t1.u1, t2.u2 ∈ χ(AUT ). Let t1 =φ t2 ⇒ u1 = u2 and t1 6=φ t2 ⇒
u1 6= u2. This implies that ∀b ∈ B : t1 =b t2 ⇒ u1 = u2, and ∀s ∈ S : t1 6=s t2 ⇒ u1 6= u2. From
the definition of Aφ we know that if

1. t2.u2 ∈ χ(AUT \ î 〈t1.u1〉)

2. ∀b ∈ B : t2.u2 ∈ χ(Ab(U) \ î 〈t1.u1〉)

3. ∀s ∈ S : t2.u2 ∈ χ(As(U ,U) \ î 〈t1.u1〉)

then t2.u2 ∈ χ(Aφ \ î 〈t1.u1〉). Therefore we prove the above three conditions.

1. This follows from Lemma 3.4.

2. Let b ∈ B. t1 =b t2 ⇒ u1 = u2 holds. Therefore by Lemma 3.3, t2.u2 ∈ χ(Ab(U) \ î 〈t1.u1〉).
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3. Let s ∈ S. t1 6=s t2 ⇒ u1 6= u2 holds. Therefore by Lemma 3.2, t2.u2 ∈ χ(As(U ,U)\î 〈t1.u1〉).

Statement 4: This holds because of the definition of Aφ and because according to Lemma 3.4,
UT−1 ⊆ initials(AUT ), according to Lemma 3.2, T × U ⊆ initials(As(U ,U)), according to
Lemma 3.3, T × U ⊆ initials(Ab(U)), and UT−1 ⊆ T × U .
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Chapter 4

Extending BPMN to Support
SoD/BoD Authorization

In this chapter we describe how we extend the abstract and concrete syntax of BPMN 2.0 to allow
specification of dynamic SoD and BoD constraints. We show first how we extend the graphical
notation and the abstract syntax model, and then the extension of the XML serialization. For
improved readability, we use a sans-serif font to refer to classes in the Abstract Syntax model, so
that they are easily recognizable (e.g., “ReleaseEvent”).

4.1 Extending the Graphical and Abstract Syntax Models

4.1.1 Concepts and Graphical Elements

Graphic Name Abstract Syntax Class

release event ReleaseEvent

SoD constraint node SoDConstraintNode

BoD constraint node BoDConstraintNode

group node GroupNode

Table 4.1: Graphical Elements of the Extension and Corresponding Abstract Syntax Classes

We add four new graphical elements, which are listed in Table 4.1. We describe the use of these
elements formally using an extension to the abstract syntax model of BPMN 2.0. This extension is
given as a UML diagram in Figure 4.3. The abstract syntax classes corresponding to the graphical
elements are also indicated in Table 4.1.

To allow expression of SoD and BoD constraints in BPMN, we use the association element
already defined in BPMN 2.0. An association connects two diagram elements and is represented
in BPMN diagrams as a dotted line.

Our extension adds the concept of an association node (AssociationNode). It allows to form
a “higher-level association”, which involves arbitrarily many diagram elements. This is done by
connecting all elements directly to one association node using associations (dotted lines). We add
two kinds of association nodes: constraint nodes (ConstraintNode) and group nodes (GroupNode).
Constraint nodes serve to express constraints, and group nodes add an additional method to group
a set of tasks. A constraint node can be either a BoD constraint node or SoD constraint node.
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The graphical representation for an association node is a small circle (smaller than an event).
A constraint node has a thick black border and contains a symbol. The SoD constraint node
contains the symbol “ 6=”, and the BoD constraint node contains the symbol “=”. A group node
is represented by a filled circle.

We also add a new kind of event, the ReleaseEvent. The symbol used for the release event is a
person walking through a door case.

Nodes Elements defining sets of tasks
Binding of Duties constraint

Separation of Duties constraint

Group Node

Table 4.2: Concrete Syntax: BoD constraint, SoD constraint and group node can be connected
to one (BoD), two (SoD), or arbitrarily many (group node) activities (i.e. tasks, sub-processes,
transactions, or call activities), groups, or group nodes.

4.1.2 Graphical Representation of Sets of Tasks

BPMN 2.0 uses the term group to denote a set of diagram elements. For specifying the sets of
tasks that are involved in a constraint, we connect a graphical representation of the group to the
constraint node using an association. We allow all the graphical elements that the BPMN 2.0
standard defines for expressing groups of diagram elements (these are also called containers):

• A dot-dashed rectangle with rounded corners (a Group)

• Composite activities, such as Transaction, Sub-Process, and Call Activity

Non-containers can also be used: A single task connected to a constraint node or a group node, is
understood as the set containing only that task.

Additionally, for visually expressing sets of tasks, which are positioned in such a way that
they cannot be conveniently grouped using a rectangle, we introduce the group node. The group
node can be used to denote a set of tasks by individually connecting the tasks to the node by
associations. It represents the union of all sets of tasks which are defined by elements associated
with it. Several group nodes can be connected to each other, forming a tree of group nodes (no
loops are allowed). Every group node in the tree can be used to represent the whole group.

26



4.1.3 Mapping BPMN Process Models to CSP Processes

For describing the relations between our BPMN annotations and our formal constraint model, we
first show an example of how a BPMN process model can be formalized as a workflow process in
CSP. The details of this formalization are not important for this work. For a general method for
formalizing workflows in CSP, see Wong and Gibbons’ paper [WG07].

We use our simple workflow example from Example 2.2.

Example 4.1. We can model the BPMN process given in Figure 2.4 as a CSP process P in the
following way. We have {Check,Approve,Get,Deliver} ⊆ T and {start, end} ⊆ O, where start
and end represent the start and end event.

P = start→
(
Pupperbranch ||| Plowerbranch

)
; end→ SKIP

with

Pupperbranch = Check → Approve→ SKIP

Plowerbranch = Get→
(
Plowerbranch u (Deliver → SKIP )

)
For example, the following traces are in T(P ), by the trace semantics of CSP:

〈start, Check,Approve,Get,Deliver, end,X〉
〈start, Check,Get,Get,Deliver,Approve, end,X〉
〈start,Get, Check,Get,Approve,Get,Get,Deliver, end,X〉

Note how these traces correspond to the sequences mentioned in Example 2.2. The following traces
are not in T(P ):

〈start, Check,Approve,Approve,Get,Deliver, end,X〉
〈start,Get,Deliver,Get, Check,Approve, end,X〉

Note that P is not deterministic because the u operator (internal choice) is used. For example,
the following are failures of P , even though Get and Deliver are in initials(P \ 〈start,Get〉):

(〈start,Get〉, {Get}), (〈start,Get〉, {Deliver})

P can decide non-deterministically whether it will accept Get or Deliver after the trace
〈start,Get〉, which corresponds to the workflow execution engine deciding on which path to take
at the exclusive gateway.

4.1.4 Mapping the Formal Model to the Graphical Representation

Adding an SoD constraint (T1, T2, O) to a BPMN model involves adding an SoD constraint node
and associating it with the groups of tasks T1 and T2, as well each of the release points in O. A
release point is expressed in our BPMN extension as a release event. Adding a BoD constraint
(T,O) works analogously, in this case only one group of tasks is associated with the constraint
node.

4.1.5 Mapping the Graphical Representation to the Formal Model

As there is a very clear mapping between the graphical representation of the constraints and our
constraint model, it is also clear how to translate any graphically specified constraint into a formally
defined constraint:

• A BoD constraint node is associated with a set of release events (each connected individually),
and one set of tasks (T ) connected through a single association. The set of release events
maps to a set of release points O. This specifies the BoD constraint (T,O).
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• An SoD constraint node is associated with a set of release events (each connected individu-
ally), and two sets of tasks (T1, T2), connected through a single association each. The set of
release events maps to a set of release points O. This specifies the SoD constraint (T1, T2, O).

For constraint nodes which are an element of a sub-process, we add an additional release point,
which the process engages in when the sub-process is terminated. This has the advantage that the
effect of the constraint on the sub-process is independent of the context in which the sub-process
is executed.

4.1.6 Examples

Figure 4.1: Example Workflow 1: Procurement with Constraints

Example 4.2 (Procurement Workflow). Figure 4.1 shows the procurement example workflow,
annotated with constraints. There are two SoD constraints, and one BoD constraint. The task
Procurement is separated from all tasks of the Payment Authorization sub-process. The task
Approve Payment is separated from Check Correctness. Document Disagreement is bound to
Check Delivery.

Example 4.3 (An interesting workflow). We use a simpler but no less interesting workflow to
demonstrate the relation with our constraint model in detail. It is interesting because it allows us
to point out how constraints can conflict with business objectives.

Figure 4.2 shows the workflow of Figure 2.4, annotated with constraints. It also depicts the
static authorizations for the set of users U = {Alice,Bob, Claire,Dave}, by showing the users as
their names and icons next to the tasks that they are authorized to execute:

UT = {(Alice, Check), (Alice,Approve), (Bob,Check), (Bob,Get), (Claire,Get),

(Claire,Approve), (Claire,Deliver), (Dave,Get), (Dave,Deliver)}

The set of tasks in this example is: T = {Check,Approve,Get,Deliver}. The set S of SoD
constraints and the set B of BoD constraints are:

S = {sod1, sod2}, sod1 = ({Check}, {Approve},∅), sod2 = ({Approve}, {Deliver},∅)

B = {bod}, bod = ({Get,Deliver}, {release})

A possible execution trace of this workflow, which also satisfies the constraints is:

〈start, Check.Alice,Get.Bob,Approve.Claire, release,Get.Dave,Deliver.Dave, end,X〉
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Figure 4.2: Example Workflow 2: An interesting workflow

After the following trace however, the workflow cannot continue without violating a constraint:

〈start, Check.Alice,Get.Claire,Deliver.Claire〉

By UT and sod1, no user but Claire is authorized to execute Approve. However, she is not
authorized to do so by sod2. Therefore there is no user which is authorized to execute the task
Approve. We call such a situation an obstruction.

In any case where Bob executes Get, then unless the workflow’s control flow continues through
the release event release, the task Deliver can never be executed: By the BoD constraint bod no
user other than Bob can execute it, but Bob is not authorized to do so by UT . Therefore, Bob
should never execute Get, in order not to constrain the workflow’s control flow.

4.1.7 Abstract Syntax Model of the Extension

The abstract syntax model presented in Figure 4.3 shows how the elements we introduce relate to
existing BPMN 2.0 elements: They are subclasses of Event, Artifact or Association (which itself is
a subclass of Artifact). Of our extension classes, all except ReleaseEvent are therefore subclasses
of Artifact. As such, they inherit the special properties of artifacts. For example, as explicitly
required by the BPMN 2.0 specification [Obj11], they cannot participate in message or sequence
flows.

The subclasses of Association exist in the abstract syntax model only for specifying what kind of
associations are allowed as part of a constraint specification. targetRef and sourceRef are attributes
of Association and indicate the two elements that the association connects. We redefine these
attributes in subclasses of Association, restricting the set of objects that they may refer to. We
do this using directed UML associations. For example, a release association is an association
that connects release events to constraint nodes. Consequently, in the abstract syntax only a
ReleaseEvent can be the sourceRef for ReleaseAssociation, and only a ConstraintNode can be the
targetRef.

TaskSetAssociation is an abstract class that generalizes associations which connect association
nodes to sets of tasks. TaskSetAssociation plays the role incomingTaskSet for AssociationNode.
In subclasses of AssociationNode corresponding to constraint nodes, the cardinality of incoming-
TaskSet is restricted, as described in the diagram by OCL [BRJ05] constraints. They specify that
instances of BoDConstraintNode must be associated with exactly one set of task. For instances
of SoDConstraintNode, the number of associated task sets must be exactly two. The subclasses
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of TaskSetAssociation are ActivityAssociation, GroupAssociation, and GroupNodeAssociation. They
represent associations that connect association nodes to activities, groups, and group nodes, re-
spectively.

ActivityAssociationGroupAssociation

bpmn::Event

SoDConstraintNode

ReleaseEvent

 incomingTaskSet
*

+targetRef
1

*

+sourceRef
1

bpmn::Task

TaskSetAssociation

GroupNode

ConstraintNode

BoDConstraintNode

ReleaseAssociation
*

+targetRef
1

bpmn::Activitybpmn::Group

bpmn::CallActivity

+sourceRef
1

*

GroupNodeAssociation
*

+sourceRef
1

bpmn::SubProcess

bpmn::Transaction

bpmn::Association

{self.incomingTaskSet->size()=1}

+sourceRef
1

*

AssociationNode

{self.incomingTaskSet->size()=2}

bpmn::Artifact

bpmn::UserTask

Figure 4.3: Abstract Syntax. Classes from the BPMN abstract syntax model are prefixed with the
“bpmn” package name and shaded in gray.

4.2 Concrete Syntax: Extending the XML Model

As described in Section 2.2.4, the XML model can be extended by adding arbitrary XML elements
to any of the BPMN 2.0 elements, within a extensionElements child element. For our extension,
we define an XML Schema BPMNAuthorization.xsd, which is based on the classes of the abstract
syntax model. This schema file is given in Listing 4.1. Because we build upon existing BPMN 2.0
types, it depends on existing schema files. In our case, this is the Semantic.xsd file, from where
we use the types tEventDefinition, tAssociation, and tArtifact.

As the types tEventDefinition and tArtifact are defined as abstract in Semantic.xsd, we
cannot use these types directly for our new elements, and instead have to declare a concrete subtype
for each. Only for our association elements we can re-use the existing data type tAssociation.
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Listing 4.1: Full Listing of BPMNAuthorization.xsd

<?xml version="1.0" encoding="UTF -8"?>

<schema targetNamespace="http: // zurich.ibm.com/dru/bpmnauth"

xmlns="http: //www.w3.org /2001/ XMLSchema"

xmlns:auth="http:// zurich.ibm.com/dru/bpmnauth"

xmlns:bpmn="http://www.omg.org/spec/BPMN /20100524/ MODEL"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

elementFormDefault="qualified">

<import namespace="http: //www.omg.org/spec/BPMN /20100524/ MODEL"

schemaLocation="../../ spec/BPMN /20100501/ BPMN20.xsd"/>

<element name="sodConstraintNode" type="auth:tAssociationNode"/>

<element name="bodConstraintNode" type="auth:tAssociationNode"/>

<element name="groupNode" type="auth:tAssociationNode"/>

<element name="tasksetAssociation" type="bpmn:tAssociation"/>

<element name="releaseAssociation" type="bpmn:tAssociation"/>

<element name="releaseEventDefinition"

type="auth:tReleaseEventDefinition"/>

<complexType name="tAssociationNode">

<complexContent >

<extension base="bpmn:tArtifact"/>

</complexContent >

</complexType >

<complexType name="tReleaseEventDefinition">

<complexContent >

<extension base="bpmn:tEventDefinition"/>

</complexContent >

</complexType >

</schema >
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BPMNAuthorization.xsd

BPMN20.xsd

Semantic.xsdBPMNDI.xsd

DC.xsd

DI.xsd

http://www.omg.org/spec/DD/20100524/DC

http://www.omg.org/spec/DD/20100524/DI

http://www.omg.org/spec/BPMN/20100524/DI

http://www.omg.org/spec/BPMN/20100524/MODEL

http://zurich.ibm.com/dru/bpmnauth

Figure 4.4: Schema Files with Extension

The new elements can in principle be used within any element of the existing BPMN schema,
wrapped in an <extensionElements> element. They should however be used within the context
that they depend on. For example, artifacts describing constraints should be used within a process
definition.

An example XML representation of a process that includes elements of our extension is given
in Listing 4.2.
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Listing 4.2: Example Workflow Serialization

<?xml version="1.0" encoding="UTF -8" standalone="yes"?>

<definitions id=" example_definitions -01"

typeLanguage="http: // www.w3.org /2001/ XMLSchema"

expressionLanguage="http: // www.w3.org /1999/ XPath"

targetNamespace="http: // www.omg.org/spec/BPMN /20100524/ MODEL"

xmlns="http: // www.omg.org/spec/BPMN /20100524/ MODEL"

xmlns:bpmndi="http: // www.omg.org/spec/BPMN /20100524/ DI"

xmlns:di="http: // www.omg.org/spec/DD /20100524/ DI"

xmlns:dc="http: // www.omg.org/spec/DD /20100524/ DC"

xmlns:xsi= "http: // www.w3.org /2001/ XMLSchema -instance"

xmlns:auth="http: // zurich.ibm.com/dru/bpmnauth">

<process isClosed="false" processType="None" id="process -01">

<extensionElements >

<auth:sodConstraintNode id="sod -01"/>

<auth:tasksetAssociation id="tsa -01"

targetRef="task -01" sourceRef="sod -01"/>

<auth:tasksetAssociation id="tsa -02"

targetRef="task -02" sourceRef="sod -01"/>

<auth:releaseAssociation id="rla -01"

targetRef="release -01" sourceRef="sod -01"/>

</extensionElements >

<laneSet id="laneset -01">

<lane id="lane -01">

<flowNodeRef >event -01</flowNodeRef ><flowNodeRef >event -02</flowNodeRef >

<flowNodeRef >task -01</flowNodeRef ><flowNodeRef >task -02</flowNodeRef >

<flowNodeRef >release -01</flowNodeRef >

</lane>

</laneSet >

<intermediateThrowEvent id="release -01">

<extensionElements >

<auth:releaseEventDefinition id="release_def -01"/>

</extensionElements >

</intermediateThrowEvent >

<startEvent name="" id="event -01"/> <endEvent name="" id="event -02"/>

<task name="Task A" id="task -01"/> <task name="Task B" id="task -02"/>

<sequenceFlow sourceRef="event -01" targetRef="task -01" id="seqflow -01"/>

<sequenceFlow sourceRef="task -01" targetRef="task -02" id="seqflow -02"/>

<sequenceFlow sourceRef="task -02" targetRef="release -01" id="seqflow -03"/>

<sequenceFlow sourceRef="release -01" targetRef="event -02" id="seqflow -04"/>

</process >

<bpmndi:BPMNDiagram >

<bpmndi:BPMNPlane >

<bpmndi:BPMNShape bpmnElement="event -01">

<dc:Bounds x="0" y="1" width="1" height="1"/>

</bpmndi:BPMNShape >

<bpmndi:BPMNEdge bpmnElement="seqflow -01">

<di:waypoint x="0" y="1"/><di:waypoint x="1" y="1"/>

</bpmndi:BPMNEdge >

<bpmndi:BPMNShape bpmnElement="task -01">

<dc:Bounds x="2" y="1" width="1" height="1"/>

</bpmndi:BPMNShape >

<!-- [...] -->

<bpmndi:BPMNShape bpmnElement="release -01">

<dc:Bounds x="4" y="1" width="1" height="1"/>

</bpmndi:BPMNShape >

<bpmndi:BPMNShape bpmnElement="sod -01">

<dc:Bounds x="2.5" y="2" width="1" height="1"/>

</bpmndi:BPMNShape >

<bpmndi:BPMNEdge bpmnElement="tsa -01">

<di:waypoint x="2" y="1"/><di:waypoint x="2.5" y="2"/>

</bpmndi:BPMNEdge >

<bpmndi:BPMNEdge bpmnElement="tsa -02">

<di:waypoint x="3" y="1"/><di:waypoint x="2.5" y="2"/>

</bpmndi:BPMNEdge >

</bpmndi:BPMNPlane >

</bpmndi:BPMNDiagram >

</definitions >
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Chapter 5

Constraint Analysis and
Enforcement

In this chapter, we introduce two methods for enforcing constraints while preventing obstructions.
The first method is based on the approach from [BBK11]. The second is our improved approach.

5.1 Definitions

Authorization policies may contain contradictions. For example, a policy can specify that tasks
t1 and t2 have to be executed by different users, while at the same time requiring that they be
executed by the same user. In our model, this means that after executing one of t1 and t2, no
user would be authorized to execute the other task. If the workflow however allows executing
both t1 and t2 in a given workflow instance, the authorization policy may produce a situation we
call obstruction, i.e. the workflow permits a certain task to be executed, but the policy does not
authorize any user to do so.

Definition 5.1 (Obstruction, from [BBK11]). Let W be a workflow process, φ an authorization
policy, and i ∈ T(W

[
π−1

]
) a workflow trace of W . We say that i is obstructed if there exists a

task t such that i [π]ˆt ∈ T(W ) but there does not exist a user u such that î 〈t.u〉 ∈ T(Aφ).

5.1.1 Enforcement Process

Definition 5.2 (Enforcement Process, from [BBK11]). For a workflow W and an authorization
policy φ for W , an enforcement process for φ on W is a process E that satisfies the conditions:

1. Aφ vT E

2. (W
[
π−1

]
‖E) [π] =F W

Condition 1 states that the traces of E must be a subset of the traces that satisfy the policy φ.
Condition 2 states that the constrained workflow W

[
π−1

]
‖E is equivalent to the original workflow

at the workflow level, which implies that W
[
π−1

]
‖E is never obstructed.

5.1.2 Enforcement Process Existence (EPE) Problem

The problem of deciding whether an enforcement process exists for some policy φ on some workflow
W , has been formalized in [BBK11] as the Enforcement Process Existence (EPE) Problem. The
authors showed it to be at least NP-hard, but decidable if the set of users U and the set of states
of W are finite. They also provide approximative algorithms for solving EPE. The algorithms are
approximative in the sense that there may be false negatives, i.e. cases where algorithm cannot
confirm the existence of an enforcement process, even though such a process exists.
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5.2 Approximative Enforcement Processes

Note 5.1. We assume in this chapter that a workflow process W and an authorization policy
φ = (UT, S,B) are given. We discuss authorization processes for φ on W . We define T = {t ∈
T |∃i ∈ T(W ), t ∈ i}, i.e. the set of tasks that the workflow W engages in.

In this thesis, we do not attempt to provide a better solution to EPE than the one given
in [BBK11]. Rather, we improve the enforcement process that they provide, without relaxing
the condition for its existence, but so that it allows more traces if it exists: First we introduce
the static enforcement process Estaticφ,T,V , which corresponds to their enforcement process. We then
present our dynamic enforcement process Dφ,T , for which the following holds:

∀V : T(Estaticφ,T,V ) ⊆ T(Dφ,T )

In addition, we give a trace from T(Dφ,T ) which is not an element of Estaticφ,T,V for any V (see
Example 5.2). Therefore, our dynamic enforcement process is more general in the sense that it
allows traces which no static enforcement process allows. Formally, the set of traces of Dφ,T is
thus a proper superset: ⋃

V

T(Estaticφ,T,V ) ⊂ T(Dφ,T )

5.2.1 Satisfying Task-User Assignments

We introduce the term of a “satisfying” task-user assignment, which we use in the next sections
for presenting enforcement processes:

One approach to satisfy constraints imposed by a policy φ on a workflow W , is to try and find
a task-user assignment V ⊆ T × U which relates each task in T to one or more users, with the
property that letting tasks be executed only by the assigned users prevents any violation of the
policy φ. We call a task-user assignment V with this property an assignment that satisfies the
policy φ, the set of tasks T , and the assignments V̄ and V̂ , if V̄ ⊆ V ⊆ V̂ holds. We call V̄ a
minimal assignment, and V̂ a maximal assignment. We now define this formally:

Definition 5.3. A relation V ⊆ T × U satisfies an authorization policy φ = (UT, S,B), a set of
tasks T , and two task-user assignments V̄ and V̂ , written V |(φ, T, V̄ , V̂ ), if the following conditions
hold:

1. V̄ ⊆ V ⊆ V̂ ∩ UT−1

2. ∀i ∈ T(Aφ) : V ⊆ χ(Aφ \ i) ⇒
(
∀e ∈ (V ∪ O) : V ⊆ χ(Aφ \ î 〈e〉)

)
3. ∀t ∈ T ∃u : t.u ∈ V

We state condition 2 of the definition in words, in an attempt to provide a more intuitive
description: For any trace i which satisfies φ, if Aφ \ i offers all events in V , then after engaging
in any event from V ∪ O, it still offers all events in V .

For convenience, we define a variant where V̄ and V̂ have a default value:

Definition 5.4. A relation V ⊆ T × U satisfies an authorization policy φ = (UT, S,B), a set of
tasks T , written V |(φ, T ), if and only if V |(φ, T,∅, T × U).

Note that V |(φ, T, V̄ , V̂ ) implies V |(φ, T ) for any V̄ and V̂ . Informally we call a task-user
assignment V such that V |(φ, T ) simply a satisfying assignment, if φ and T are clear from the
context, such as given in a diagram. We describe in Section 5.3 how to compute a satisfying
assignment for a given policy.

Example 5.1. By revisiting Example 4.3, we illustrate how satisfying assignments can be used
for enforcing constraints and prevent obstructions. Recall the values of φ and T from Example 4.3.
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Figure 5.1: Example BPMN-Process 2: Two satisfying assignments

In Figure 5.1, we show two task-user assignments V1 and V2 (indicated by icons and names of the
users which are not faded to gray):

V1 = {(Check,Alice), (Check,Bob), (Approve, Claire), (Get,Dave), (Deliver,Dave)}
V2 = {(Check,Bob), (Approve,Alice), (Get, Claire), (Deliver, Claire)}

V1|(φ, T ) and V2|(φ, T ) hold (we show in Section 5.3 how to verify this). If only events from either
V1 ∪OX or V2 ∪OX are executed, then no obstruction can occur, by condition 2 of Definition 5.3.
Condition 3 of Definition 5.3 guarantees that for each task in T , there is at least one user who is
authorized to execute it. Therefore we can either use a process that only engages in events from
V1 ∪OX, or only in events from V2 ∪OX, as an enforcement process for any workflow W for which
T are the only tasks it engages in. We call this kind of enforcement process static, as it does not
change its state and always offers the same set of events. We define such a process formally in the
following section.

5.2.2 Static Approximative Enforcement Process

Given a set of tasks T , a policy φ, and a relation V ⊆ T ×U such that V |(φ, T ), we can construct
an approximative enforcement process as follows:

Estaticφ,T,V = (t.u) : V → Estaticφ,T,V

� o : O → Estaticφ,T,V

� SKIP .

Note 5.2. As explained in Note 2.2, we interpret the semantics of the process SKIP slightly
differently than as defined in CSP [Ros05]: We treat Estaticφ,T,V as a deterministic process, which will
only terminate when the environment allows it.

Theorem 1. Let W be a workflow process. Let T be the set of tasks that W engages in. Let φ
be an authorization policy. Let V ⊆ T × U be such that V |(φ, T ). Then Estaticφ,T,V is an enforcement
process for φ on W .

Theorem 1 has essentially already been proved in [BBK11], but by constructing the enforcement
process differently: Their approach corresponds to renaming the workflow process with a relation
that is an extension of the task-user assignment. We could use the same approach and show that
with R := V ∪ (O×O)∪{X,X}, then W [R] is an enforcement process for φ on W . However, since
this form of construction is not possible for the dynamic approximative enforcement process that
we present in the next section, we use our more general form of construction and prove that it is
correct. This enables us to introduce principles and proof techniques in this section that we can
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re-use in the next section. We start with establishing some facts about the process Estaticφ,T,V , and
then proceed to introducing the proof principles and lemmas necessary for proving Theorem 1.

Lemma 5.1. Let T be a set of tasks. Let φ be an authorization policy. Let V ⊆ T × U be such
that V |(φ, T ). Then the following statements hold:

1. Estaticφ,T,V is deterministic.

2. ∀i ∈ T(Estaticφ,T,V ) ∩ Σ∗ : (T ∪ O)X ⊆ π(initials(Estaticφ,T,V \ i))

Proof. Let T be a set of tasks. Let φ be an authorization policy. Let V ⊆ T × U be such that
V |(φ, T ).

1. This follows from the fact that V , O and {X} are pairwise disjoint.

2. Let i ∈ T(Estaticφ,T,V ). Let I := initials(Estaticφ,T,V \ i) = V ∪O∪{X}. Let e′ ∈ (T ∪O)X. We need
to show that there exists an e ∈ I such that e′ = π(e).
Case e′ ∈ T : Because of V |(φ, T ) there exists an u ∈ U such that e′.u ∈ I and, by the
definition of π, (e′.u, e′) ∈ π.
Case e′ ∈ O: e′ ∈ I and (e′, e′) ∈ π.
Case e′ = X: e′ ∈ I and (e′, e′) ∈ π.

We state two forms of the principle of structural induction, which we use in our proofs. The
first one is convenient for proving statements about the traces of a process. The second one is
more universal and can be used to prove statements about all traces in general.

Induction Principle 1. Given a CSP process P and a predicate on traces S : Σ∗X → {>,⊥}.
For convenience we write Tj(P ) for the traces of P with length j. Note that T0(P ) = {〈〉} and
Tj+1(P ) = {î 〈e〉|i ∈ Tj(P ), e ∈ initials(P \ i)}. If

1. S(〈〉)

2. ∀i ∈ Tj(P ) : S(i)⇒ ∀e ∈ initials(P \ i) : S(î 〈e〉)

then ∀i ∈ T(P ) : S(i).

In words: If the predicate S holds for all traces of length 0 (there is only one, 〈〉), and if it is
the case that S holds for traces of length j implies that S also holds for traces of length j+ 1, then
S holds for all traces; of arbitrary finite length.

Induction Principle 2. Given a predicate on traces S : Σ∗X → {>,⊥}. For convenience, we
write Σ∗Xj for the traces with length j. Note that Σ∗X0 = {〈〉} and Σ∗Xj+1 = {î 〈e〉|i ∈ Σ∗j , e ∈ ΣX}.
If

1. S(〈〉)

2. ∀i ∈ Σ∗j : S(i)⇒ ∀e ∈ ΣX : S(î 〈e〉)

then ∀i ∈ Σ∗X : S(i).

In words: If the predicate S holds for all traces of length 0 (there is only one, 〈〉), and if it is
the case that S holds for traces of length j implies that S also holds for traces of length j+ 1, then
S holds for all traces; of arbitrary finite length.

The following lemma proves an instance of the rather intuitive idea that if after any of its
traces, a process offers a particular set of events, then all traces that contain only elements of this
set of events are traces of the process.

Lemma 5.2. Let E be an execution process. Let T ⊆ T . Then:

∀i ∈ T(E) ∩ Σ∗ : (T ∪ O)X ⊆ π(initials(E \ i)) ⇒ (T ∪ O)∗X ⊆ T(E [π])
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Proof. Assume:
∀i ∈ T(E) ∩ Σ∗ : (T ∪ O)X ⊆ π(initials(E \ i)) (5.1)

Proof by structural induction (Induction Principle 2). To be shown:

∀i ∈ Σ∗X : i ∈ (T ∪ O)∗X ⇒ i ∈ T(E [π])

By equation 2.7, T(E [π]) = {i′ | ∃i : i π i′ ∧ i ∈ T(E)}.
Induction base, i = 〈〉: By the traces model i ∈ T(E [π]).
Induction step, i 6= 〈〉: Let i ∈ Σ∗. Induction hypothesis: Assume i ∈ (T ∪O)∗X ⇒ i ∈ T(E [π]).
Let e ∈ ΣX. We show that the hypothesis holds for î 〈e〉: Assume î 〈e〉 ∈ (T ∪ O)∗X. Therefore
i ∈ (T ∪ O)∗ and by the induction hypothesis i ∈ T(E [π]), and e ∈ (T ∪ O)X. Therefore
∃j : j π i ∧ j ∈ T(E)∩Σ∗. By (5.1), e ∈ π(initials(E \ j)), so let e′ be an event that π maps to e.
So we have jˆ〈e′〉 ∈ T(E) and (jˆ〈e′〉)π (î 〈e〉). Therefore î 〈e〉 ∈ T(E [π]).

Lemma 5.3. Given a workflow process W , an authorization policy φ for W . Let T be the tasks that
W engages in. A authorization process E is an enforcement process for φ on W , if the following
conditions hold:

1. Aφ vT E

2. ∀i ∈ T(E) ∩ Σ∗ : (T ∪ O)X ⊆ π(initials(E \ i))

3. E is deterministic

Proof. Let W be a workflow process and φ an authorization policy for W . Let T be the tasks that
W engages in. Let E be a authorization process. Assume

1. Aφ vT E

2. ∀i ∈ T(E) ∩ Σ∗ : (T ∪ O)X ⊆ π(initials(E \ i))

3. E is deterministic

From assumption 2 follows by Lemma 5.2, and because W is a workflow process that does not
engage in tasks other than those in T :

T(W ) ⊆ (T ∪ O)∗X ⊆ T(E [π]) (5.2)

To be shown is, by Definition 5.2:

1. Aφ vT E

2. (W
[
π−1

]
‖E) [π] =F W

1. This follows from assumption 1.
2. For improved readability we use the following convention for denoting traces in Σ∗XX and Σ∗XT :
We use plain names (such as “i”) to refer to traces in Σ∗XX , and primed names (such as “i′”) to
refer to traces in Σ∗XT . Similarly, we use plain names for refusal sets of execution processes, and
primed names for refusal sets of workflow processes.

First, we show some preliminary results: Since E is deterministic:

F(E) = {(i, S) | i ∈ T(E), S ⊆ ΣX \ initials(E \ i)} (5.3)

Let (i, S) ∈ F(E) with i ∈ Σ∗. Then S ⊆ ΣX \ initials(E \ i). Assumption 2 implies that
∀t ∈ T : ∃u ∈ U : t.u ∈ initials(E \ i). Let t ∈ T , so ∃u ∈ U : t.u ∈ initials(E \ i). Since for any
event e ∈ initials(E \ i) follows that e /∈ S, we conclude that

∀(i, S) ∈ F(E) : i ∈ Σ∗ ⇒ ∀t ∈ T : ∃u ∈ U : t.u /∈ S (5.4)
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Let R,R′ ⊆ ΣX be such that π−1(R′) = R. Let t.u ∈ T × U ∩R. Then by the definition of π,
t ∈ R′, so ∀u ∈ U : t.u ∈ R.

By the definition of failures of renamed processes (equation (2.9)):

F(W
[
π−1

]
) = {(i, R) | ∃i′ : i′ π−1 i ∧ (i′, π(R)) ∈ F(W )} (5.5)

= {(i, R) | i ∈ Σ∗XX ∧ (i [π] , π(R)) ∈ F(W )} (from (3.1)) (5.6)

From the definition of failures of synchronized parallel processes:

F(W
[
π−1

]
‖E) = {(i, R ∪ S) | (i, R) ∈ F(W

[
π−1

]
) ∧ (i, S) ∈ F(E)} (5.7)

Because the processes W and (W
[
π−1

]
‖E) [π] do not engage in task-execution events (T ×U),

for any set X ⊆ T × U of task-execution events follows:

∀(i′, R′) ∈ F(W ) : i′ ∈ Σ∗XT ∧ ∀X ⊆ T × U : (i′, R′ ∪X) ∈ F(W ) (5.8)

∀(i′, R′) ∈ F((W
[
π−1

]
‖E) [π]) : i′ ∈ Σ∗XT ∧ ∀X ⊆ T × U : (i′, R′ ∪X) ∈ F((W

[
π−1

]
‖E) [π])

(5.9)

Note that π−1 is total on Σ∗XT .
By the definition of failures of renamed processes, equation (2.9):

F((W
[
π−1

]
‖E) [π])

= {(i [π] , R′) | π−1(R′) = R ∪ S ∧ (i, R) ∈ F(W
[
π−1

]
) ∧ (i, S) ∈ F(E)}

= {(i [π] , R′) | π−1(R′) = R ∪ S ∧ i ∈ Σ∗XX ∧ (i [π] , π(R)) ∈ F(W ) ∧ (i, S) ∈ F(E)} (from (5.6))

We show separately the following propositions:

1. F((W
[
π−1

]
‖E) [π]) ∩ Σ∗XT × 2ΣX

T ⊆ F(W )

2. F(W ) ∩ Σ∗XT × 2ΣX
T ⊆ F((W

[
π−1

]
‖E) [π])

We then show that this implies (W
[
π−1

]
‖E) [π] vF W and W vF (W

[
π−1

]
‖E) [π], which con-

cludes the proof.

1. Let (i [π] , R′) ∈ F((W
[
π−1

]
‖E) [π]) ∩ Σ∗XT × 2ΣX

T . Therefore let i ∈ Σ∗XX , R, S be such that
π−1(R′) = R ∪ S ∧ (i [π] , π(R)) ∈ F(W ) ∧ (i, S) ∈ F(E). From π−1(R′) = R ∪ S follows that
R,S ⊆ ΣX

X .

• Case i [π] ∈ Σ∗T : We show that R′ = π(R):

– ⊆: Let r′ ∈ R′. Since R′ ⊆ ΣX
T holds r′ ∈ T ∨ r′ ∈ OX.

Case r′ ∈ T : Since π−1(R′) = R ∪ S, {r′} × U ⊆ R ∪ S. Therefore, with (5.4) we
know ∃u ∈ U : r′.u ∈ R, and so r′ ∈ π(R).
Case r′ ∈ OX: In this case r′ ∈ R ∪ S, but r′ /∈ S, since OX ⊆ initials(E \ i).
Therefore r′ ∈ R and by the definition of π follows r′ ∈ π(R).

– ⊇: Let r′ ∈ π(R). Then ∃r ∈ R : (r, r′) ∈ π. Therefore ∃r ∈ R ∪ S : (r, r′) ∈ π, so
r′ ∈ R′.

• Case i [π] /∈ Σ∗T (i ends with X): In this case (i [π] ,ΣX) ∈ F(W ), so by (2.10) also
(i [π] , π(R)) ∈ F(W ).

2. Let (i′, R′) ∈ F(W ) ∩ Σ∗XT × 2ΣX
T . Therefore i′ is a workflow trace. Let i ∈ Σ∗XX be such

that i [π] = i′. By (5.2), i ∈ T(E). Since R′ ⊆ ΣX
T , ∃R ⊆ ΣX

X : π(R) = R′ ∧ π−1(R′) = R.
With S := ∅ follows (i, S) ∈ F(E) from i ∈ T(E) and (2.4) and (2.10). Therefore (i′, R′) ∈
F((W

[
π−1

]
‖E) [π]).
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We show first (W
[
π−1

]
‖E) [π] vF W and then W vF (W

[
π−1

]
‖E) [π].

• Let (i′, R′) ∈ F(W ). Therefore (i′, R′ ∩ ΣX
T ) ∈ F(W ), and by proposition 2 and (5.8) follows

with X = R′ \ (R′ ∩ ΣX
T ) ⊆ T × U , that (i′, R′) ∈ F((W

[
π−1

]
‖E) [π]).

• Let (i′, R′) ∈ F((W
[
π−1

]
‖E) [π]). Therefore (i′, R′ ∩ ΣX

T ) ∈ F((W
[
π−1

]
‖E) [π]), and by

proposition 2 and (5.9) follows with X = R′ \ (R′ ∩ ΣX
T ) ⊆ T × U , that (i′, R′) ∈ F(W ).

We conclude that (W
[
π−1

]
‖E) [π] =F W holds.

Finally, we prove Theorem 1 using the lemmas that we proved before:

Proof of Theorem 1. Let W be a workflow process. Let T be the set of tasks that W engages in.
Let φ = (UT, S,B) be an authorization policy. Let V ⊆ T × U be such that V |(φ, T ). We show
that Estaticφ,T,V is an enforcement process for φ on W . By Lemma 5.1:

1. Estaticφ,T,V is deterministic.

2. ∀i ∈ T(Estaticφ,T,V ) ∩ Σ∗ : (T ∪ O)X ⊆ π(initials(Estaticφ,T,V \ i))

We show that Aφ vT E
static
φ,T,V and then apply Lemma 5.3 to conclude the proof.

Let i ∈ T(Estaticφ,T,V ). Proof by structural induction (Induction Principle 2). We need to show

∀i ∈ Σ∗X : i ∈ T(Estaticφ,T,V ) ⇒ i ∈ T(Aφ), which implies Aφ vT Estaticφ,T,V . However, for convenience

we show that ∀i ∈ Σ∗X : i ∈ T(Estaticφ,T,V )⇒ i ∈ T(Aφ) ∧ (i ∈ Σ∗ ⇒ V ⊆ χ(Aφ \ i)).
Induction base, i = 〈〉: By the traces model, i ∈ T(Aφ). Also V ⊆ χ(Aφ), since V |(φ, T ) implies
V ⊆ UT−1 and UT−1 ⊆ χ(Aφ) by Lemma 3.5.
Induction step, i 6= 〈〉: Let i ∈ Σ∗. Induction hypothesis: Assume i ∈ T(Estaticφ,T,V ) ⇒ i ∈
T(Aφ) ∧ (i ∈ Σ∗ ⇒ V ⊆ χ(Aφ \ i)). Let e ∈ ΣX. We show that the hypothesis holds for î 〈e〉:
Assume î 〈e〉 ∈ T(Estaticφ,T,V ), therefore i ∈ T(Estaticφ,T,V ), and by the induction hypothesis i ∈ T(Aφ)

and V ⊆ χ(Aφ \ i). Furthermore e ∈ initials(Estaticφ,T,V \ i) = initials(Estaticφ,T,V ). From the definition of

Estaticφ,T,V follows that e ∈ V ∨e ∈ O∨e = X. From V |(φ, T ) follows ∀e ∈ (V ∪O) : V ⊆ χ(Aφ \ î 〈e〉).
Case e ∈ V : e ∈ (V ∪ O), so V ⊆ χ(Aφ \ î 〈e〉). From V ⊆ χ(Aφ \ i) follows î 〈e〉 ∈ T(Aφ).
Case e ∈ O: e ∈ (V ∪ O), so V ⊆ χ(Aφ \ î 〈e〉). From Lemma 3.5 follows î 〈e〉 ∈ T(Aφ).
Case e = X: By the definition of Aφ follows î 〈e〉 ∈ T(Aφ). Furthermore (î 〈e〉 ∈ Σ∗ ⇒ V ⊆
χ(Aφ \ î 〈e〉)) holds since î 〈e〉 /∈ Σ∗.

Therefore we have shown that Aφ vT Estaticφ,T,V , and by Lemma 5.3 follows that Estaticφ,T,V is an
enforcement process for φ on W .
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5.2.3 Dynamic Approximative Enforcement Process

We show how to construct an enforcement process that is more general than the static approxi-
mative enforcement process. It is still approximative in the sense that its construction may not be
possible even though some enforcement process exists, and if it is possible, the enforcement process
may not permit all possible traces allowed by the workflow and the constraints. The construction is
possible exactly if a static approximative enforcement process exists. Therefore, it does not allow
any solutions for cases where no static approximative enforcement process exists, but solutions
which allow more traces.

Definition 5.5. A relation V ⊆ T ×U satisfies an authorization policy φ = (UT, S,B), a task-user
assignment V̄ , and a set of tasks T after a trace i ∈ Σ∗, written V |= (φ, T, V̄ , i), if the following
conditions hold:

1. i ∈ T(Aφ) ∧ V̄ ⊆ V ⊆ χ(Aφ \ i)

2. ∀i′ ∈ T(Aφ) : V ⊆ χ(Aφ \ i′) ⇒ ∀e ∈ (V ∪ O) : V ⊆ χ(Aφ \ i′ˆ〈e〉)

3. ∀t ∈ T ∃u : t.u ∈ V

Note that for a trace i ∈ T(Aφ) holds V |= (φ, T, V̄ , i) if and only if i ∈ T(Aφ) and V |(φ, T, V̄ , χ(Aφ\
i)).

We show now by an example how a dynamic enforcement process can be more general than a
static enforcement process, by taking into account that release events relax constraints.

Example 5.2. We revisit Example 5.1. Recall the values of φ and T from Example 4.3. Recall
the two task-user assignments V1 and V2 from Example 5.1, where V1|(φ, T ) and V2|(φ, T ) hold.
Consider the trace i = 〈start,Get.Claire, Check.Bob〉. Figure 5.2 illustrates the state of the

Figure 5.2: Example BPMN-Process 2: State after trace 〈start,Get.Claire, Check.Bob〉.

workflow after i, with the events in i marked as dotted ellipses with a number that indicates the
order of their occurrence. The task-user pairs (Get,Dave), (Get,Bob), and (Deliver,Dave) are
crossed out since they are not authorized by the constraint bod. They are not in χ(Aφ \ i). In
this state, who can be authorized to execute Approve, without inducing an obstruction? We can
authorize any user u for which the following holds:

∃V : V |= (φ, T, {Approve.u}, 〈start,Get.Claire, Check.Bob〉)

The reason for this is that by the conditions of Definition 5.5, if such a V exists then the workflow
is able to complete by only engaging in events from V ∪ O. For example the following holds:

V2 |= (φ, T, {Approve.Alice}, 〈start,Get.Claire, Check.Bob〉)
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Therefore, the workflow instance can continue with Approve.Alice and complete as

〈start,Get.Claire, Check.Bob,Approve.Alice,Deliver.Claire, end,X〉.

This trace is a trace of the static enforcement process Estaticφ,T,V2
. Consider however

ir := î 〈release〉 = 〈start,Get.Claire, Check.Bob, release〉.

Then V1 |= (φ, T, {Approve.Claire}, ir) holds and therefore the workflow instance can complete as

it = 〈start,Get.Claire, Check.Bob, release,Approve.Claire,Get.Dave,Deliver.Dave, end,X〉.

This trace satisfies the policy φ, but is not a trace of any static enforcement process: A static
enforcement process would have to always permit any event from the trace it, independent of past
events. For example, it would permit the trace 〈start,Get.Claire,Deliver.Dave〉. However, this
trace does not satisfy φ, because of the BoD constraint bod.

Therefore, we have shown by example how a dynamic enforcement process can allow more traces
than any static enforcement process. After any unterminated trace i, it can authorize the following
task-execution events: {t.u | ∃V ⊆ T × U : V |= (φ, T, {t.u}, i)}. We now formally construct an
approximative dynamic enforcement process using this method, and prove its correctness:

Definition 5.6. Dφ,T = Eφ,T (〈〉), where

Eφ,T (i) = (t.u) : {t.u | ∃V ⊆ T × U : V |= (φ, T, {t.u}, i)} → Eφ,T (î 〈t.u〉)

� o : O → Eφ,T (î 〈o〉)

� SKIP ,

i ∈ Σ∗.

Theorem 2. Let W be a workflow process. Let T be the set of tasks that W engages in. Let φ be
an authorization policy. If ∃V : V |= (φ, T,∅, 〈〉), then Dφ,W is an enforcement process for φ on
W .

For proving Theorem 2 we first prove some lemmas. We prove statements about all traces of a
process P using structural induction (Induction Principle 1).

Lemma 5.4 (Internal state). ∀i ∈ T(Eφ,T (〈〉)) ∩ i ∈ Σ∗ : Eφ,T (〈〉) \ i = Eφ,T (i)

Proof. We show that ∀i ∈ T(Eφ,T (〈〉)) : i ∈ Σ∗ ⇒ Eφ,T (〈〉) \ i = Eφ,T (i). Proof by structural
induction (Induction Principle 1). Let i ∈ T(Eφ,T (〈〉)).
Induction base, i = 〈〉: Trivially Eφ,T (〈〉) \ 〈〉 = Eφ,T (〈〉).
Induction step, i 6= 〈〉: Induction hypothesis: Assume i ∈ Σ∗ ⇒ Eφ,T (〈〉) \ i = Eφ,T (i). Let
î 〈e〉 ∈ T(Eφ,T (〈〉)). Therefore e ∈ initials(Eφ,T (〈〉)\i). Assume î 〈e〉 ∈ Σ∗. Thus i ∈ Σ∗ and e ∈ Σ.
Now with the induction hypothesis follows from e ∈ initials(Eφ,T (〈〉)\i) that e ∈ initials(Eφ,T (i)).
Therefore e ∈ T × U ∨ e ∈ O.

Case e ∈ T × U : Then Eφ,T (〈〉) \ î 〈e〉 induction hyp.
= Eφ,T (i) \ 〈e〉 rule 1

= Eφ,T (î 〈e〉).
Case e ∈ O: Then Eφ,T (〈〉) \ î 〈e〉 induction hyp.

= Eφ,T (i) \ 〈e〉 rule 2
= Eφ,T (î 〈e〉).

Lemma 5.5 (Trace refinement). Given an authorization policy φ and a set of tasks T . Then
Aφ vT Eφ,T (〈〉).

Proof. Let φ be an authorization policy and T a set of tasks. Proof by structural induction
(Induction Principle 2). To be shown: ∀i ∈ Σ∗X : i ∈ T(Eφ,T (〈〉)⇒ i ∈ T(Aφ)).

Induction base, i = 〈〉: By the traces model, i ∈ T(Aφ).
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Induction step, i 6= 〈〉: Let i ∈ Σ∗. Induction hypothesis: Assume i ∈ T(Eφ,T (〈〉)⇒ i ∈ T(Aφ)).
Let e ∈ ΣX. We show that the hypothesis holds for î 〈e〉: Assume î 〈e〉 ∈ T(Eφ,T (〈〉)), so i ∈
T(Eφ,T (〈〉)) and, by the induction hypothesis, i ∈ T(Aφ). Also, e ∈ initials(Eφ,T (〈〉) \ i). By
Lemma 5.4, e ∈ initials(Eφ,T (i)). Due to the definition of Eφ,T holds e ∈ T × U ∨ e ∈ O ∨ e = X.
Case e ∈ T ×U : By rule 1 of the definition of Eφ,T : ∃V ⊆ T ×U : V |= (φ, T, {e}, i). Let V1 be such
that V1 ⊆ T ×U ∧ V1 |= (φ, T, {e}, i). Therefore e ∈ V1 and V1 ⊆ χ(Aφ \ i), so e ∈ initials(Aφ \ i).
Case e ∈ O: By Lemma 3.5, O ⊆ initials(Aφ \ i).
Case e = X: By the definition of Aφ holds X ∈ initials(Aφ).
From this follows e ∈ initials(Aφ \ i) and therefore î 〈e〉 ∈ T(Aφ).

We prove an essential invariant on Eφ,T (〈〉), which says that in each state of Eφ,T (〈〉), there
exists a user-task assignment that satisfies (φ, T ), and which is a subset of the task execution events
that Aφ \ i offers, if such an assignment exists in the initial state.

Lemma 5.6. Given an authorization policy φ and a set of tasks T . Then the following holds:

∃V : V |= (φ, T,∅, 〈〉) ⇒
(
∀i ∈ T(Eφ,T (〈〉)) ∩ Σ∗ : ∃V : V |= (φ, T,∅, i)

)
Proof. Let V be such that V |= (φ, T,∅, 〈〉). Let i ∈ T(Eφ,T (〈〉))∩Σ∗. By Lemma 5.5 we find that
i ∈ T(Aφ). Proof by structural induction (Induction Principle 1).

Induction base, i = 〈〉: By assumption, V |= (φ, T,∅, 〈〉) holds.
Induction step, i 6= 〈〉: Induction hypothesis: Assume ∃V : V |= (φ, T,∅, i). Let Vi be such
that Vi |= (φ, T,∅, i) holds. Let e be an event such that î 〈e〉 ∈ T(Eφ,T (〈〉)) ∩ Σ∗. Therefore
e ∈ initials(Eφ,T (〈〉) \ i). Now initials(Eφ,T (〈〉) \ i) = initials(Eφ,T (i)), by Lemma 5.4. Since
Eφ,T (i) does not engage in events from T , holds e ∈ T × U or e ∈ O.
Case e ∈ T × U : By rule 1 of the definition of Eφ,T : ∃V ⊆ T × U : V |= (φ, T, {e}, i). Let Ve be
such that Ve |= (φ, T, {e}, i). This implies that Ve|(φ, T, {e}, χ(Aφ \ i)) and therefore e ∈ Ve and
Ve ⊆ χ(Aφ \ i). Now Ve|(φ, T, {e}, χ(Aφ \ i)) also implies that ∀e ∈ (Ve ∪ O) : Ve ⊆ χ(Aφ \ î 〈e〉).
Therefore Ve |= (φ, T,∅, î 〈e〉).
Case e ∈ O: V |= (φ, T,∅, i) implies that V |(φ, T,∅, χ(Aφ \ i)), from which ∀e ∈ (V ∪ O) : V ⊆
χ(Aφ \ î 〈e〉) follows. Therefore V |= (φ, T,∅, î 〈e〉).

Now we finally prove that our construction of a dynamic enforcement process is correct:

Proof of Theorem 2. Let W be a workflow process. Let T be the set of tasks that W engages in.
Let φ be an authorization policy. Assume ∃V ⊆ χ(Aφ) : A|(φ, T ). To be shown, by Definition 5.2:

1. Aφ vT Dφ,T

2.
(
W
[
π−1

]
||Dφ,T

)
[π] =F W

We show that Dφ,T is deterministic and that the following conditions hold, in order to be able
to apply Lemma 5.3:

1. Dφ,T is deterministic

2. Aφ vT Dφ,T

3. ∀i ∈ T(Dφ,T ) ∩ Σ∗ : (T ∪ O)X ⊆ π(initials(Dφ,T \ i))

Let T be the set of tasks that W engages in.

1. The process Dφ,T is deterministic because Dφ,T = Eφ,T (〈〉) in the definition of Eφ,T , the
guards of each rule are disjoint.

2. This holds by Lemma 5.5.
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3. By Lemma 5.4 holds π(initials(Dφ,T \ i)) = π(initials(Eφ,T (〈〉) \ i)) = π(initials(Eφ,T (i))).
Let i ∈ T(Dφ,T )∩Σ∗. From the definition of Eφ,T (i) and π follows OX ⊆ π(initials(Dφ,T \i)).
Furthermore, from Lemma 5.6 follows ∃V : V |= (φ, T,∅, i). This implies that also T ⊆
π(initials(Dφ,T \ i)).

The proposition follows from the application of Lemma 5.3.

5.3 Computing a Satisfying Task-User Assignment

We show how for a given authorization policy φ = (UT, S,B), a set of tasks T , and task-user
assignments V̄ and V̂ , we can find a task-user assignment V such that V |(φ, T, V̄ , V̂ ), using a SAT
solver. For this, we refine in two steps the conditions of the definition of V |(φ, T, V̄ , V̂ ), into a
form that can be directly translated into a logical formula. We prove that from a solution to the
formula we can construct a task-user assignment V such that V |(φ, T, V̄ , V̂ ).

Definition 5.7. A relation V ⊆ T × U strictly satisfies an authorization policy φ = (UT, S,B),
a set of tasks T , and task-user assignments V̄ and V̂ , written V |strict(φ, T, V̄ , V̂ ), if it fulfills the
constraints

1. V̄ ⊆ V ⊆ V̂ ∩ UT−1

2. ∀t1 ∈ T, t2 ∈ T : t1 =φ t2 ⇒ (∀u, u′ ∈ U : u ∈ V {t1} ∧ u′ ∈ V {t2} ⇒ u = u′)

3. ∀t1 ∈ T, t2 ∈ T : t1 6=φ t2 ⇒ (∀u, u′ ∈ U : u ∈ V {t1} ∧ u′ ∈ V {t2} ⇒ u 6= u′)

4. ∀t ∈ T ∃u ∈ U : t.u ∈ V

Lemma 5.7. Let T be a set of tasks and φ = (UT, S,B) an authorization policy. Let V and V̄ be
task-user assignments. Then the following holds:

V |strict(φ, T, V̄ , V̂ )⇒ V |(φ, T, V̄ , V̂ )

Proof. Let T ⊆ T and φ = (UT, S,B). Let V ⊆ T × U . Assume the four constraints as given in
D5.7 hold. We prove the three conditions of D5.3.
Condition 1: This follows directly from constraint 1.
Condition 2: Let i ∈ T(Aφ). Assume V ⊆ χ(Aφ \ i). Let e ∈ (V ∪ O). Therefore e ∈ V ∨ e ∈ O.

1. Case e ∈ O: By L3.5, χ(Aφ \ i) ⊆ χ(Aφ \ î 〈e〉) and therefore V ⊆ χ(Aφ \ î 〈e〉).

2. Case e /∈ O: Here e ∈ V . Then e = t1.u1 for some t1 ∈ T and some u1 ∈ U . We need to
show that V ⊆ χ(AUT \ î 〈e〉) and ∀s ∈ S : V ⊆ χ(As(U ,U) \ î 〈e〉) and ∀b ∈ B : V ⊆
χ(Ab(U) \ î 〈e〉). Let t2.u2 ∈ V .

(a) χ(AUT \ î 〈e〉) = χ(AUT ) = UT−1 and therefore V ⊆ χ(AUT \ î 〈e〉).
(b) Let s ∈ S.

i. Case t1 6=s t2: Here t1 6=φ t2. By constraint 3, u1 6= u2. By L3.2/3, t2.u2 ∈
χ(As(U ,U) \ î 〈t1.u1〉).

ii. Case ¬(t1 6=s t2): By L3.2/3, t2.u2 ∈ χ(As(U ,U) \ î 〈t1.u1〉).
(c) Let b ∈ B.

i. Case t1 =b t2: Here t1 =φ t2. Therefore by constraint 2, u1 = u2. By L3.3/3,
t2.u2 ⊆ χ(Ab(U) \ î 〈t1.u1〉).

ii. Case ¬(t1 =b t2): By L3.3/3, t2.u2 ⊆ χ(Ab(U) \ î 〈t1.u1〉).

Condition 3: This follows from constraint 4.
As conditions 1-3 are fulfilled, V |(φ, T, V̄ , V̂ ) holds.
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A relation V ⊆ T × U that strictly satisfies an authorization policy φ = (UT, S,B) and a set
of tasks T can be found as follows using a SAT solver.

Lemma 5.8. Let φ = (UT, S,B) be an authorization policy. Let T be a set of tasks. Let V̄
and V̂ be task-user assignments. We define the set of variables A = {at,u | t ∈ T, u ∈ U}. Let
α : A→ {>,⊥}, i.e. an assignment of each variable to a truth value. Furthermore, we define the
relation Vα = {(t, u)| t ∈ T , u ∈ U , α(at,u) = >}.

1. ∀t ∈ T, u ∈ U : if (t, u) /∈ V̂ ∩ UT−1 then (¬α(at,u))

2. ∀t ∈ T, u ∈ U : if (t, u) ∈ V̄ then (α(at,u))

3. ∀t1 ∈ T, t2 ∈ T : if t1 =φ t2 then ∀u ∈ U : (¬α(at1,u) ∨ α(at2,u)) ∧ (α(at1,u) ∨ ¬α(at2,u))

4. ∀t1 ∈ T : if ∃t2 ∈ T : t1 =φ t2 then ∀u1 ∈ U , u2 ∈ U : if u1 6= u2 then (¬α(at1,u1
)∨¬α(at1,u2

))

5. ∀t1 ∈ T, t2 ∈ T : if t1 6=φ t2 then ∀u ∈ U : (¬α(at1,u) ∨ ¬α(at2,u))

6. ∀t ∈ T : (
∨
u∈U α(at,u))

If the above conditions on α are fulfilled, then Vα|strict(φ, T, V̄ , V̂ ).

Note that the conditions for Vα in Lemma 5.8 are such that for a given φ, T and U , they can be
expressed as a boolean formula in Conjunctive Normal Form (CNF). We demonstrate this using
an example:

Example 5.3. Let T = {t1, t2}, U = {u1, u2}, V̄ = ∅, V̂ = UT−1 = T × U , S = ∅, B =
({t1, t2},∅), φ = (UT, S,B). For a satisfying assignment α for the CNF formula,

(¬at1,u1
∨ at2,u1

) ∧ (at1,u1
∨ ¬at2,u1

) ∧ (¬at1,u2
∨ at2,u2

) ∧ (at1,u2
∨ ¬at2,u2

) [from condition 3]

∧(¬at1,u1
∨ ¬at1,u2

) ∧ (¬at2,u1
∨ ¬at2,u2

) [from condition 4]

∧(at1,u1
∨ at1,u2

) ∧ (at2,u1
∨ at2,u2

) [from condition 6]

for the relation Vα = {(t, u)| t ∈ T , u ∈ U , α(at,u) = >} holds Vα|strict(φ, T, V̄ , V̂ ).

In general, the formula has a size of up to 2 · |T | · |U|2 + 6 · |T |2 · |U|+ 2 · |T | · |U| literals. We can
find a satisfying assignment α using a SAT solver. If the SAT solver doesn’t find a solution, we
can conclude that none exists. If it finds a solution, we are sure that it satisfies the CNF formula,
and therefore it satisfies the conditions of Lemma 5.8.

Proof of Lemma 5.8. Let φ = (UT, S,B) be an authorization policy. Let T be a set of tasks. Let
V̄ and V̂ be task-user assignments. Let at,u ∈ {>,⊥} for each t ∈ T, u ∈ U be values that fulfill
the five conditions of Lemma 5.8. Let Vα = {(t, u)| t ∈ T , u ∈ U , α(at,u) = >}. We prove the four
conditions of Definition 5.7.

1. Let (t, u) ∈ V̄ . By condition 2, (t, u) ∈ Vα and therefore V̄ ⊆ Vα.
Let (t, u) ∈ Vα. By condition 1, (t, u) ∈ V̂ ∩ UT−1 and Vα ⊆ V̂ ∩ UT−1.

2. Let t1 ∈ T, t2 ∈ T . Assume t1 =φ t2. Let u1 ∈ Vα{t1}, u2 ∈ Vα{t2}. By condition 3,
u1 ∈ Vα{t2}. Proof by contradiction: Assume u1 6= u2. Therefore by condition 4, either
u /∈ Vα{t1} or u2 /∈ Vα{t2}, which contradicts our assumptions about u1 and u2. Therefore
u1 = u2.

3. Let t1 ∈ T, t2 ∈ T . Assume t1 6=φ t2. Let u1 ∈ Vα{t1}, u2 ∈ Vα{t2}. Then α(at1,u1
) = >.

Therefore, by condition 5, α(at2,u2
) must be ⊥. Therefore u1 6= u2.

4. Let t ∈ T . Proof by contradiction. Assume ¬∃u ∈ U : (t, u) ∈ Vα. Then ∀u ∈ U : α(at,u) =
⊥. This contradicts condition 6.
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5.4 Evaluation

For a policy φ and a workflow W , we showed how to construct an enforcement process if a task-user
assignment V exists such that V |(φ, T ) holds, for the tasks T in W . The enforcement processes
constructed with this approach are independent of the control flow of W , and only depend on the
the policy φ and the set of tasks T . As a consequence of this, for some workflows our constructions
are not possible, because no V exists such that V |(φ, T ) holds. However, for such a workflow some
enforcement process for φ may still exist, which becomes apparent when one takes the control flow
of the workflow into account.

Figure 5.3: Workflow where our constructions fail

Example 5.4. Take the workflow depicted in Figure 5.3. The SoD constraint states that both
tasks have to be executed by different users, whereas the BoD constraint states that they have to
be executed by the same user. Therefore no satisfying V ⊆ T × U exists. However, if one takes
into account the control flow of the workflow, it becomes clear that the SoD constraint does not
have any effect, since it is released before it could constrain any task execution.

In future work, one could adapt the definition of V |= (φ, T, V̄ , i), so that it takes into account
the actual set of traces of the workflow. Model-checking methods, for example using Roscoe’s
work on model-checking CSP [Ros94], could be used for analyzing the traces. We expect that
the lemmas and proofs that we provide in this work can be useful as a template for proving the
correctness of a modified dynamic approximative enforcement process.

Note that we did not evaluate the performance of this approach. It is clear that when naively
implemented, our approximate dynamic enforcement process needs to solve an NP-complete prob-
lem for every authorization decision. However, for a given workflow and policy these problems are
all very similar. Therefore, it is likely that some assignments will be solutions for more than one
problem. Solutions should therefore be cached. It can be checked in polynomial time whether a
cached solution solves the problem at hand. Therefore, we expect that many of the problems can
be solved efficiently. We propose a thorough performance analysis as future work.
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Chapter 6

Tool Support

6.1 Purpose

In Chapter 4 we extended BPMN 2.0 to support our constraint model. In order to show the
applicability of this approach, we implemented the extension in a BPMN 2.0 modeling tool. In
future work, this implementation can be used for further validation, for example by conducting a
case study. Another purpose of the implementation is to illustrate our enforcement processes with
actual workflow models.

6.2 Choice of Implementation

We implemented our extension in the web-based modeling system Oryx [DOW08]. Oryx was
chosen for four reasons:

• It is open-source: This means it is possible to extend or modify it in any way that is
necessary.

• It is mature: The architecture and most of the code serve as a basis for the commercial
modeling tool and company Signavio [Sig], as well as for the open-source workflow engine
Activiti [Act].

• It is well-documented: Oryx has been developed in the form of several Bachelor theses,
which provide a detailed description of the concepts and their implementations.

• It is web-based: Web-based tools can be used without installing any software. This makes
it convenient for demonstration purposes.

6.3 Oryx Architecture

Oryx uses a client-server architecture based on standard Web technologies. The server part uses a
Java EE Web Server (Tomcat Version 6 [Tom]), with a PostgreSQL [Pos] database backend. The
server component is mostly implemented in Java, but also uses stored procedures in the database
written in Python [Foub], and XSLT [Wor99] to carry out XML data transformations. The client
part relies heavily on JavaScript [Foua] and asynchronous requests to the server (commonly called
“Ajax”), as well as SVG [Wor11] for the graphical representation of models, in addition to the
basic Web technologies. JSON [JSO], a subset of JavaScript for serializing data structures, is used
by Oryx as its main format for configuration and for transmitting data between the client and
the server. The client component of Oryx has been developed to run in Mozilla Firefox [Fir], but
future versions of other browsers may as well be supported, if their support for the aforementioned
standards improves.
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6.4 Oryx Editor Principles

Oryx is a tool for editing diagrams. A diagram is a hierarchical structure of shapes: Each shape
can have several child shapes. The root of the structure is the canvas shape. Except for the root,
each shape has exactly one parent shape. A shape is associated with a stencil, which describes the
type of the shape. A modeling language implementation for Oryx defines a stencil for each element
of the language. The stencil defines a graphical representation and a set of properties. A stencil
set describes how shapes can be arranged in the diagram, depending on their associated stencils.
Shapes are ordered by their z-order. The z-order determines the order in which the shapes are
painted when the diagram is displayed. A shape is painted on top of another shape if its z-order
is lower.

6.5 Oryx Extension Mechanisms

Oryx is implemented as a small core and a rich set of extension plugins. As such, it is built to be
extensible. New modeling languages can be added to Oryx by creating new stencil sets. A stencil
set consists of a set of SVG graphics with Oryx-specific annotations, a set of PNG [PNG] icons,
and a JSON configuration file. The configuration file describes the language in terms of which
types of objects exist, what properties they have, how they may be connected or combined, and
finally how they are represented graphically. It is also possible to add an extension to an existing
stencil set.

Two kinds of plugins can be added to Oryx:

• Client plugins can add new elements to the user interface, e.g. a button, as well as any
additional client-side processing, which includes interaction with the server. They are imple-
mented in JavaScript as classes that inherit from the abstract plugin class provided by Oryx.
Plugins can offer functionality to other plugins. This works through a publish-subscribe
mechanism: A plugin can define events, to which any plugin can register. Any plugin can
raise any event. When an event is raised, all plugins which have registered to the event get
notified. They also receive the data that has been submitted with the event. Events are the
only direct mechanism for communication between plugins.

• Server plugins extend the server. They are Java web applications based on Servlets [Ser].
Servlets are Java classes that implement the interface javax.servlet.Servlet. They can
be bundled into web application archives and deployed in a web server which complies with
the Java Servlet specification. When deployed in a web server, a servlet gets assigned a URL
pattern, and is called by the web server to handle any requests that match this pattern. More
specifically, the web server calls the “doGet” or “doPost” method on the servlet, depending
on the type of the HTTP request.

6.6 Our Extension

Our extension to Oryx consists of three client-side and three server-side components. The server-
side components are:

• Assign, a servlet that offers a method for finding a relation V ⊆ T ×U such that V |(φ, T, V̄ , V̂ ),
for a policy φ, a set of tasks T and a minimal and a maximal assignment V̄ and V̂ . However,
instead of expecting φ, T, V̄ , V̂ as its input, it expects a BPMN 2.0 diagram with BPMNAuth
annotations (as introduced in Chapter 4), and a task-user relation UT . It extracts the set of
tasks T , as well as the set of BoD constraints B and the set of SoD constraints S from the
diagram (as described in Section 4.1.5). This servlet uses the SAT solver SAT4J [Ber] for
finding the relation V .
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• Check, a servlet that offers a method for producing information about a BPMN 2.0 diagram
with BPMNAuth annotations: It checks that the constraints are correctly defined and that
they contain no contradictions. Additionally, if it is also provided with a task-user relation
UT , it computes an assignment V (using the SAT solver SAT4J) such that V |(φ, T ), where
φ = (UT, S,B), and S,B, T are extracted from the diagram. The result is returned in the
form of a function from a diagram element to a message. A message can be a textual error
message or a list of users.

The purpose of this functionality is to help the user of the editor locate problems in the
model. Simply checking whether a satisfying assignment exists is not very helpful if the
result is simply “No”. This servlet returns more detailed information about problems. For
example, if there is a conflict between constraints, it can indicate which constraints are
involved in the conflict.

• Store, a component that enables the server to deliver task-user relations and lists of users
to the client. Currently, it only supports delivering data from files that are deployed on the
server as a part of the web application archive, and data that has been sent to the server by
a client application. For an enterprise setting, this component could be extended to deliver
to the modeling environment the enterprise’s list of users and their authorizations.

Figure 6.1: (Screenshot) A process diagram opened in Oryx, with BPMNAuth annotations, and
with the task-user assignment dialog.

The client-side components integrate the BPMNAuth extension for BPMN 2.0 into the Oryx
editor. They also provide an interface for the server components. The client-side components are
the following:

• The BPMNAuth stencil set, which extends the BPMN 2.0 stencil set of Oryx with the elements
of our extension for BPMN 2.0.
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• BPMNAuth, an Oryx client plugin that is an interface to the Check and Assign servlets.
Through events, it offers to the other plugins the functionality to send the currently active
workflow to the Check servlet and display the returned messages as symbols in the diagram.
It also offers sending the currently active workflow to the Assign servlet, along with optional
parameters, and pass the returned task-user relation to the calling plugin. Furthermore, it
changes in two ways how the editor handles group shapes:

– Reordering: Originally, group shapes which are placed over existing shapes “cover” the
existing shapes: Clicking on one of the existing shapes selects the group shape. Our
plugin changes this behavior: Upon selection, the group shape is moved to the back
of the z-order, i.e. it is placed behind all other elements. This makes those elements
accessible which were previously covered.

– Reassigning of parent: Originally, shapes that were placed inside a group shape were
added as child shapes of the group shape. As a consequence, if the group shape was
moved, the child shapes moved along. The plugin changes this behavior. Whenever a
group shape is moved, it assigns the children of the group shape to the group shape’s
parent. Therefore they no longer move along.

We feel that these changes make the group element more intuitive and easier to use.

• BPMNAuthTaskUser, an Oryx client plugin that offers a dialog for specifying a task-user
assignment. It has a list of users that is currently loaded, and displays a toggle button for
each user in this list. When the shape of a task t is selected in the diagram, (u, t) ∈ UT holds
if and only if the button for the user u is pressed. The plugin uses the Store component to
offer loading of different lists of users, and storing and retrieving task-user assignments.

• BPMNAuthSimulation, an Oryx client plugin that is a partial implementation of a mecha-
nism for simulating executions of the dynamic approximative enforcement process. It can
determine which users can execute which tasks initially, using the Assign servlet. It is future
work to add a simulation of the authorization process Aφ, which would allow simulating
executions.

50



Chapter 7

Related Work

Basin, Burri and Karjoth [BBK11] introduce the concept of “release” to scope SoD and BoD
constraints, and describe this approach using a formal model in CSP, and an extension to BPMN.
Also, they define the notion of an enforcement process that ensures the absence of both constraint
violations and obstructions. They formulate the existence of an enforcement process as a decision
problem, which they show to be NP-hard, but decidable in the case that the workflow and set
of users are finite. For this problem they provide an approximative solution, by describing an
algorithm to construct an enforcement process, which may not provide a solution in all cases
where one exists. Furthermore, they describe a variant of this algorithm which runs in polynomial
time if the set of users is large and their static authorizations are well-distributed. Their work
forms the basis of this thesis. We use their formal model and refine and implement their extension
for BPMN. We provide a new construction of an enforcement process which is less restrictive.

Wolter, Miseldine and Meinel [WMM09, WM10] present an extension to BPMN for capturing
authorization requirements. It supports SoD, BoD, and also more general forms of constraints.
The constraints are modeled using artifacts, similar to our approach. However, constraints are
always defined with the current process instance as the scope. Relaxing the constraint through
a releasing mechanism is not considered. They also describe how to show absence of deadlocks
and security property violations for authorization-constrained workflows using the model checker
SPIN. This is a very powerful method that can accurately verify most properties. However, the
approach fails for workflows which contain arbitrary cycles.

The constraint model used in the BBK11 framework is based on the model of Crampton [Cra05].
His notion of a “completion compliant reference monitor” corresponds to an enforcement process.
He writes:

“In general, given a request by u to execute task t in a partially completed instance of a
workflow, there are three questions a reference monitor could consider:

• Is u authorized to perform t?

• Are all constraints in which t is [...], satisfied for this instance if u performs t?

• Can the workflow complete if u performs t?

[...] We say a reference monitor is [...] completion compliant if it guarantees that the answers to
each of the three questions is yes.”

His algorithm for a completion compliant reference monitor corresponds to our dynamic approx-
imative enforcement process. For example, the following observation also applies to our process:

“We now make the crucial observation that a partially completed instance of a workflow can be
regarded as a workflow specification in which completed tasks are assigned to a single user, namely
the user that executed the task.”

However, because he does not consider loops in workflows and no mechanism for releasing
constraints, the following differences exist: Firstly, because of loops there might be more than

51



one user who have executed a particular task. Secondly, because of releasing not all completed
task-executions are relevant for deciding whether an unterminated trace i can still be completed.
Rather, it is the state of the authorization process Aφ after the trace i.

Nevertheless, Crampton’s model is more general in the sense that for two tasks t1 and t2,
an arbitrary relation ρ on users can be used to constrain which task-executions are possible: A
constraint (t1, t2, ρ) mandates that if t1.u1 and t2.u2 happen in a workflow instance, then u1 ρ u2

has to hold. We expect that this capability can be added as an extension to the [BBK11] model.
However, it remains open whether this is useful in any practical applications.

Bertino, Ferrari and Atluri [BFA99] were the first to study and propose a method for enforcing
security constraints such as SoD on workflows. Their method is also based on task-user assignments
that satisfy the constraints. Their workflow model is however limited to sequences of tasks, with
no consideration of loops and parallel executions.
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Chapter 8

Conclusions and Future Work

We have shown how to extend the industry standard for modeling workflows, BPMN, with the
authorization constraints introduced in the BBK11 paper. We have also described our extension
of the modeling tool Oryx, which adds support for the BBK11 framework. Furthermore, we have
described a new algorithm for enforcing constraints, which is more general than the one introduced
in the paper. It achieves this by taking into account the release mechanism. We have also proved
the correctness of this algorithm, and pointed out its relation to existing approaches.

The following are opportunities for future research:

• Based on our implementation in Oryx, a case study involving business process and security
modeling practitioners from industry can be conducted, to validate the applicability of the
constraint model in practice. For this, the client plugin for the simulation of workflow exe-
cutions should be extended, so that it can be used to demonstrate the constraint semantics.

• The dynamic approximative enforcement process for enforcing policies on workflows can be
modified to take into account the traces of the workflows, and therefore allow more of the
traces which satisfy the policy.

• A thorough performance analysis of our dynamic approximative enforcement process should
be conducted. The current implementation in Oryx can be adapted for performance testing.

• In the BBK11 framework, task executions are considered atomic. The implications of this
should be investigated. For example, consider the case that a task t1 is started by some
user u1, but then aborted and instead completed by a user u2. If t1 and another task t2
are separated by an SoD constraint, the question arises whether u1 should be authorized to
execute t2.

• The constraint model can be adapted to support using arbitrary relations on users to specify
constraints, as in [Cra05].

• The constraint model should be adapted so that the permissions which are now considered
static can be changed during the execution of a workflow instance, like it is possible in
practice.

In conclusion, we have provided three contributions that build on the approach from the BBK11
paper. We have focused on steps towards making the approach applicable in practice. This work
enables the conduction of case studies for proving the practical relevance of the framework. Such
studies may finally lead to the implementation of concepts from the framework within commercial
BPM systems. We hope that this thesis can thereby contribute to advancing the practice of security
modeling and enforcement on workflows.
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Appendix A

Terminology

Table A.1 lists some of the terms that are used in more than one of the different formalisms, and
the corresponding terms that we use in this document. For example, we use “workflow” to mean
“business process”, in order to clearly set it apart from the term “process”, as used within CSP.
However, we may use “event” both to refer to an event as defined in BPMN or CSP respectively. If
it might not be clear from the context which of the two is meant, we use “BPMN event” or “CSP
event”.

Term Domain Description
process CSP A discrete mathematical object, characterized as a set of traces or

failures (by the denotational semantics) or as a transition system
(by the operational semantics).

BPMN “A sequence or flow of Activities in an organization with the ob-
jective of carrying out work.” [Obj11] We call this a workflow to
prevent confusion with CSP processes.

event BPMN A flow element that triggers some action or waits for a condition
to occur.

CSP An element of a trace, or a label in the transition system of a
process.

element BPMN A syntactical unit. Corresponds to a notational symbol, an ab-
stract syntax class, and an XML element.

XML “Each XML document contains one or more elements, the bound-
aries of which are either delimited by start-tags and end-tags, or,
for empty elements, by an empty-element tag.” [Wor08]

association BPMN A BPMN artifact that relates two BPMN elements. Expressed by
a dotted line.

UML “A [UML] structured relationship that specifies that objects of
one thing are connected to objects of another.” [BRJ05]

Table A.1: Conflicting Terminology
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