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Abstract

Biological nervous systems can deal with many real-world natural stimuli and outper-

form any computer algorithm available today in most tasks involving interaction with real

objects as required for example in interactive motor control problems. Moreover, they

are able to learn an internal model of a controllable system solely from experience, unlike

today’s most successful control algorithms. The computational architecture expressed by

brains is fundamentally different from modern computer hardware, in that it is composed

of billions of small computational units with information stored only in the effectiveness

of the communication channels between these units. Despite this restricted form of infor-

mation storage, brains are able to devise complex sequences of actions which span many

time scales.

We investigate neurally inspired algorithms that learn how to control systems of un-

known mechanical structure solely from data collected from experience. These algorithms

are designed to run on distributed computational architectures composed of many small

and locally operating units. Further, we explore how motions spanning multiple time

scales can be planned on such architectures.

Graphical models with discrete-state variables are used to model the relation of both

input and output variables of a controllable system. After maximum likelihood learning

within these graphs, the sum-product algorithm can be used to infer output values con-

sistent with the current goal during live control. A hierarchical architecture is used to

model multiple temporal and spatial scales in order to carry out long sequences of actions

without the need to plan the entire action at once. All information is stored exclusively

at the nodes of the employed graphical models and both during learning and live control,

all computation takes place locally.

We demonstrate how factor graphs modelling instantaneous dynamics can be used

to control a simple compliant robotic system and how complex robot kinematics can be

factorized into products of simple functions, which can form the core of a basic con-

trol algorithm. Furthermore, we describe the concept of hierarchical navigation networks

(HNN), which form a new class of graphical model topologies that are based on a hierar-

chical decomposition of state space. In these models, instantaneous dynamics at different
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spatial and temporal scales are modelled at different hierarchy levels. Given a distant

goal, higher levels of this hierarchy impose subgoals that are closer to the current position

onto lower levels, which eventually allows the determination of an immediate action at

the lowest level. Detailed inference algorithms for these models are found, as well as local

learning rules for the model parameters.

All models that we employ are self-contained - they learn solely from experience and

without the necessity for any prior information or reward signal. By relying on a dis-

tributed computation scheme in which the computational units have access only to local

messages, our approach to motor control and planning problems shares important fea-

tures with biological nervous systems. The HNNs we develop introduce a new concept in

the modelling of temporal processes and hierarchical plans using graphical models. We

believe that the three approaches to motor control and planning presented in this thesis

form an important step towards self-contained distributed computational architectures

that can learn to control robotic systems on their own.



Zusammenfassung

Nervensysteme von biologischen Organismen und im speziellen das menschliche Gehirn

sind in der Lage, eine Vielzahl von natürlichen Stimuli zu verarbeiten. Dabei übertreffen

sie alle derzeit verfügbaren Computeralgorithmen bei der Lösung von Aufgaben, die eine

Interaktion mit der realen Welt voraussetzen, wie zum Beispiel der Kontrolle von mo-

torischen Systemen. Erstaunlicherweise sind sie in der Lage, ein internes Verständnis

von beliebigen steuerbaren Systemen einzig durch die Interaktion mit diesen aufzubauen,

was sie von den performantesten Steueralgorithmen unterscheidet. Gleichzeitig ist of-

fensichtlich, dass Berechnungen im Gehirn auf eine Weise durchgeführt werden, die sich

fundamental von der Rechenart auf moderner Computerhardware unterscheidet. Anstelle

einer oder weniger zentraler Steuereinheiten ist das Gehirn aus vielen Milliarden winziger

Recheneinheiten aufgebaut. Informationen werden in diesen Recheneinheiten gespeichert

indem die Effektivität der Kommunikationskanäle moduliert wird. Trotz dieses schein-

baren Nachteiles, nur lokale Berechnungen durchführen zu können und keine globale

Steuereinheit zu besitzen, sind Nervensysteme in der Lage, eine grosse Vielfalt an Be-

wegungen von zu planen, welche sich über verschiendene Zeiträume erstrecken können.

In dieser Arbeit untersuchen wir Algorithmen, welche von biologischen Nervensyste-

men inspiriert sind und allein durch Analyse von beobachteten Zuständen eines zuvor un-

spezifizierten steuerbaren Systems lernen, dieses zu kontrollieren. Diese Algorithmen sind

darauf ausgelegt, auf verteilten Rechenarchitekturen zu laufen, welche aus vielen kleinen

und lokal operierenden Einheiten aufgebaut sind. Weiterhin betrachten wir Möglichkeiten,

auf die sich lange Sequenzen von Bewegungen auf solchen Rechenarchitekturen planen

lassen.

Wir verwenden Graph-basierte Wahrscheinlichkeitsmodelle, die Variablen mit diskre-

ten Zuständen enthalten, um den Zusammenhang zwischen Eingabe- und Ausgabevari-

ablen eines steuerbaren Systems abzubilden. Diese Modelle werden zunächst nach dem

Verfahren der grössten Wahrscheinlichkeit (engl. ‘maximum likelihood’) trainiert. Ein

einfacher Algorithmus basierend auf dem Summenprodukt zweier Vektoren kann dann ver-

wendet werden, um Ausgabewerte zu berechnen, wenn nur die Zustände der Eingabevari-

ablen bekannt sind, wie zum Beispiel bei der Steuerung des Systems. Eine hierarchis-
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iv Zusammenfassung

che Modellarchitektur wird eingesetzt, um verschieden grosse zeitliche und räumliche

Grössenordnungen zu repräsentieren und um Bewegungen von unterschiedlicher Länge

zu planen. Alle eingesetzen Rechenmodellen bestehen aus vielen kleinen Recheneinheiten,

welche jeweils nur auf lokal gespeicherte Informationen zugreifen können. Sowohl während

der Lernphase als auch der Anwendung dieser Modelle findet die Informationsverarbeitung

ausschliesslich in diesen Recheneinheiten statt.

Wir führen vor, wie Faktor Graphen, welche die unmittelbare Bewegungsdynamik

eines Systems abbilden, zur Steuerung eines einfachen nachgiebigen robotischen Systems

eingesetzt werden können und wie die komplexe Kinematik eines Roboterarms als Produkt

einfacher Funktionen dargestellt werden kann, um dann den Kern eines simplen Steuer-

algorithmus’ zu bilden. Darüber hinaus beschreiben wir eine neue Klasse von Graph-

basierten Rechenmodellen, welche auf einer hierarchischen Aufteilung des Raumes auf-

bauen. In diesen hierarchischen Navigations-Netzwerken (HNN) werden die unmittelbare

Veränderungen eines Systems und ihre Ursachen in unterschiedlichen räumlichen und

zeitlichen Massstäben betrachtet. Soll eine Veränderung herbeigeführt werden, welche

viele Einzelaktionen benötigt, so ermitteln die höheren Hierarchieebenen in diesen Net-

zwerken Zwischenziele, welche den unteren Hierarchieebenen vermitteln werden. Auf

der untersten Hierarchieebene kann auf diese Weise eine unmittelbare Einzelaktion bes-

timmt werden, welche im Sinne der erwünschten Veränderung ist. Wir erklären die

genauen Regeln, nach denen in diesen Netzwerken Schlussfolgerungen getroffen werden

und beschreiben lokal funktionierende Lernregeln, die zum Aufbau dieser hierarchischen

Netzwerke führen.

Alle Kontrollalgorithmen, welche wir in dieser Arbeit verwenden, sind in sich ge-

schlossen und benötigen keine Vorabinformationen über die Struktur des zu kontrollieren-

den Systems. Die Parameter dieser Algorithmen werden ausschliesslich durch Analyse

von Beobachtungsdaten trainiert. Ferner können alle Berechnungen in diesen Algorith-

men verteilt auf viele kleine Recheneinheiten durchgeführt werden. In diesen Punkten

ähneln die von uns vorgestellten Methoden den Rechenabläufen in biologischen Nerven-

systemen. Die HNNs, welche wir entwickelt haben, stellen ein neues Konzept dar, wie

zeitliche und hierarchische Zusammenhänge in verteilten Rechenstrukturen dargestellt

werden können. Zusammenfassend sind wir überzeugt davon, dass die in dieser Arbeit

vorgestellten Ansätze zur Steuerung von motorischen Systemen und zur Bewegungspla-

nung eine wichten Schritt darstellen auf dem Weg zu vollständig in sich geschlossenen, auf

parallelen Architekturen durchführbaren Rechenalgorithmen, welche von sich aus lernen

können, robotische Systeme zu steuern.
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Chapter 1

Introduction

1.1 Purpose of this thesis

From a very abstract point of view, brains can be reduced to being powerfull and almost

universal inference machines. Millions of sensors provide a continuous stream of high-

dimensional input to the brain, which itself generates an equally complex stream of motor

output signals. In this vast amount of data, the brain discovers functional dependencies

and thereby gains an understanding of its environment. This knowledge can be interpreted

as an internal model of the world, which enables the brain to infer properties of the

world whenever direct observations about these properties are unavailable. Such a non-

observable property could be a prediction about a future state of the environment. For

example, we can predict the future position of a flying ball after seeing its recent trajectory.

Another type of non-observable data brains need to infer is required in motor control:

In order to cause a transition from an observed body posture to a desired future posture,

the brain needs to infer sequences of motor output signals, which are of course non-

observable before execution.

Amazingly, the brain seems to be able to learn an internal model of the world solely

from experience. Concerning motor control abilities for example, a newborn human strug-

gling with its limbs appears to have very little conception about the effects of its motor

output signals. By executing thousands of seemingly random movements, its brain learns

to correlate neural output signals with limb movements and from these statistics gains

basic control over its skeletal muscles within short time. As the newborn’s control abilities

improve, movements will become more directed and less noisy, which allows the brain to

refine and specialize its internal model of the motor system. The self-containment of this

process of acquiring new abilities is impressive: random movements lead to a basic model,

which allows to generate better movements, leading to a better model and so on.

While it is an open question how much prior information about the motor system of

1



2 Chapter 1. Introduction

its own body is available to the brain at birth, it seems like brains can learn arbitrary

tasks purely by monitoring the relation between action and effect. Interestingly, the brain

learns to control its body at a large number of various timescales, with motions directed

towards goals that are reachable within tenths of a second or within up to several days.

This thesis aims at the development of self-contained algorithms for control that learn

to control robotic systems through a self-developed internal model, without having any

prior information about the structure of the system. We use graphical models like factor

graphs in order to learn the statistics between input and output data obtained from

robotic systems and employ these models to infer motor control outputs in control tasks.

In contrast with methods from reinforcement learning, these models are constructed solely

from data points collected while interacting with the system and do not require a teaching

signal, such as a reward signal.

We demonstrate that both the instantaneous dynamics of a robotic system and the

kinematics of a complex robot can be modelled as a factorized function and outline algo-

rithms for control that are based on this representation. In order to solve control tasks

that require the execution of long sequences of actions, we introduce a new concept of

how temporal processes can be modelled as a graphical model. This approach uses a hi-

erarchical decomposition of a state space to partition a complex control task into simple

tasks at different spatial and temporal scales.

The models we employ are neurally inspired in terms of their underlying computational

paradigms: All information is processed locally at the nodes of a distributed computa-

tional network. Both learning and inference calculations result as a coordinated action

of these small computational units. In addition, the presented algorithms are of non-

procedural nature: Information is communicated between the computational units, but is

never stored as intermediate results. Instead, a single communication between all nodes is

sufficient to infer actions. Even during the execution of long action sequences, immediate

actions are computed with a single communication between all nodes.

1.2 Human control compared to control algorithms

For several decades already, there have been tremendous efforts to develop control algo-

rithms for robotic systems that would mimic the abilities of brains. Despite these efforts,

human control over the motor system still outclasses any available algorithms for robot

control as of today. While modern robotics can provide systems that outperform humans

in terms of precision, speed and strength, no one has yet been able to demonstrate a

robot that can compete with humans in terms of adaptability to a dynamic environment.

This superiority of human movement control results from three important properties:
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First, humans are able to dynamically respond to unpredictable obstacles and thereby

avoid collisions while still achieving their goal under the unexpected constraints, which is

something robot control is struggling to do. Modern approaches allow to avoid obstacles,

but the spatial position of such obstacles needs to be defined precisely for example in

terms of smooth cost function, which requires cumbersome parameter tuning. In addi-

tion, a full trajectory around the obstable needs to be precomputed before the initiation

of movement, which is a time-consuming procedure [Tou09].

Second, human motions are passively compliant. The forces that humans exert with

their muscles in order to perform a movement normally matches precisely the required

strength for executing this movement. As a consequence, our motions can be modified by

external forces. In comparison, most robotic systems are stiff and use servo controllers in

order to precisely follow a defined trajectory. This stiffness, which seems like an advantage

at first sight, can be problematic if the robot should interact with humans in dynamic

environments. Particularly when combined with an inability to avoid collisions, this non-

compliance of a robot can cause damages of the robotic system, the environment, or

injuries of interacting humans. Typical factory robots must therefore be turned off before

a human can safely approach it.

Third, humans are able to quickly adapt to changes of the motor system. As such,

we never experience a handicap caused by slow changes as caused by body or muscle

growth. Sudden changes caused for example by injuries or by bulky clothing are also

adapted within short time. In contrast, robotic control algorithms need to be designed

and adapted for a specific robotic system.

One of the major challenges modern robotic control algorithms are facing is to control

a humanoid robot. Approaches to this problem are usually bound to a precise description

of the robot in terms of its topology and its actuators and cannot be learned from expe-

rience [KKK+03, HKK+07]. In addition, these approaches are designed for the control of

almost deterministic systems with little noise in sensor data and action execution, which

restricts their application to precisely controlled and non-compliant systems. Probabilis-

tic approaches to motor control naturally extend to noisy systems. However, they also

require a precise parameterization of the robot to control [Tou09]. Modern approaches

involving reinforcement learning allow adaption to modified systems, but nevertheless

require the definition of motion primitives, which in turn are tied to a specific robotic

system [SBTS10, PVS03, TBS10, KP09].

1.2.1 Human abilities to plan sequences of actions

In order to solve complex tasks, we often need to exert long sequences of coordinated

short actions. As an example, imagine a person that is leaving from home and heading to
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a local airport in order to catch a plane. Solving this task requires the person to execute

thousands of short muscle actions. While the complete sequence of actions is necessary

in order to reach the defined goal, it is impractical to plan the complete trajectory of all

body limbs in advance.

Interestingly, we are able to outline a path to the goal within a few seconds, which

allows us to almost immediately initiate a movement. Instead of planning a detailed

trajectory for each of our joints and predicting the precise position of our body at all

timesteps in the future, we rather follow more abstract goals and subgoals. In the example,

the abstract goal the person is pursueing could be the state of being at the airport. Even

if the final goal would be defined in terms of a precise position and body pose, these

details are irrelevant for reaching it as long as the distance to the goal is high.

An abstract formulation of the goal will in most cases not on its own be sufficient

to determine suitable muscle actions, but we can easily formulate less abstract subgoals

that need to be reached in order to get to the final goal. These, in turn, can guide the

formulation of even less abstract subgoals and so on. In the example, a possible series of

such subgoals might be ‘reach the bus stop’, ‘leave the house’, ‘leave the room’, ’stand

up’ and ‘shift weight forwards’. This subgoal is the least abstract and the only one that

will have an effect on the precise muscle actions the person needs to execute immediately.

Future muscle actions can be computed as soon as the state of the body has changed. In

this way, the complete sequence of actions unfolds only during the process of solving the

task.

1.3 Towards neurally inspired control algorithms

1.3.1 Computational properties of brains

Obviously, brains are able to solve classes of motor control tasks, which today’s algorithms

struggle to solve. A lot of research is invested into improving existing methods from control

theory or reinforcement learning in order to get closer to the brain’s performance. Instead

of following the existing approaches to motor control and attempting to gradually improve

today’s algorithms, we choose to follow a different path towards motor control solutions,

in the hope to make a step into a new direction that might eventually lead to a new

class of control algorithms. Since brains are the only known computational devices which

can provide robust control in interactive environments, we followed several computational

paradigms in the design of our approaches, which were inspired by the computational

properties of brains.

The human brain is composed of approximately 1011 neurons, each of which is con-

nected to about 104 neurons. Each neuron in a brain forms a distinct computational
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unit and can only communicate with the connected units. All information it can access

is stored locally in its activation state or in the synaptic connection strengths to other

neurons or is transmitted to it through spiking signals from connected neurons. Remark-

able about the organization of the brain and in particular the mammalian cortex is its

uniformity, which is both expressed in terms of neuron densities [HW74, RHP80] and

neuron connectivities [DM04, DMW89].

1.3.2 Factor graphs

Interestingly, graphical models such as factor graphs share several qualitative properties

with brains: They are composed of many computational nodes which can communicate

with each other through communication channels. Information is stored locally at the

nodes and computations at each node are performed based on this locally available infor-

mation and messages that are received from other nodes. Moreover, these local parame-

ters can also be trained from experience by locally evaluating incoming messages [Rol06].

Besides these computational similarities, factor graphs and brains share the property of

having a uniform structure. Algorithms like the belief propagation algorithm rely entirely

on the repetitive application of the same and simple operations.

One might argue that the computational power of nodes in a graphical model is much

higher than that of single neurons. However, ensembles of neurons could be regarded as

the neuronal counterpart of these nodes. This idea was applied in several recent studies,

that inspect how calculations on a factor graph could be implemented with simulated

neurons [SMD09, Rao04, Rao05, LU09, DIPR07, MBLP06].

Factor graphs can be regarded as powerfull machines for the approximation of high-

dimensional functions [KFL01]. By factorizing such high-dimensional functions into prod-

ucts of lower-dimensional functions, they allow a significant reduction of the number of

parameters. At the same time, interesting properties of the global function can be com-

puted efficiently using Pearl’s belief propagation algorithm [Pea88]. One such property

are the marginals of the global function with respect to one parameter. These marginals

are of particular interest if the global function is a probability distribution, because the

marginals will be equal to the conditional probability distribution for one variable.

The possibility to distribute computations in a factor graph to many small compu-

tational units is of course interesting with regard to standard multi-core hardware ar-

chitectures that are available today, but also makes factor graphs an interesting subject

for implementation on massively parallel architectures, like the SpiNNaker architecture

[KLP+08].
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1.3.3 Control algorithms based on graphical models

Motivated by the apparent similarities between the computational properties of brains

and of factor graph, we developed control algorithms based on graphical models. In our

approach, a graphical model is used to create an internal representation of a robotic sys-

tem, which learns to relate input and output variables of the system through experience.

In two different approaches we present, the internal model is trained to represent either

the instantaneous dynamics or the kinematics of a robot. Notably, these internal models

are represented in terms of sums and products of small functions. During live control,

motor commands are inferred using the belief propagation algorithm on these internal

models.

The control algorithms we present are self-contained: they learn behaviour solely from

observations at several data channels and have no prior information about structure within

the data. After learning, complex functions like the inverse kinematics of a robot arm are

computed by simple multiplications of low-dimensional functions.

1.3.4 Representing multiple timescales in a graphical model

The control of robotic systems often involves motor planning, which requires the identi-

fication of usefull sequences of motor commands. This problem is related to navigation

tasks, where sequences of actions are required to navigate from a starting point to a des-

tination. We therefore chose navigation problems in order to investigate how temporal

sequences could be generated using graphical models.

We present a hierarchical approach to navigation that is inspired by the way in which

humans seem to plan a path between a source and a destination. As described in the

last section, we do not require a precise definition of a distant goal in order to execute

immediate actions. Instead, it is apparently sufficient to define distant goals at an abstract

level, which allows to deduce less abstract subgoals. Our approach uses an abstraction

hierarchy, which arises as a result from learning through experience. The relation between

the current state of the agent and a given goal is evaluated at different abstraction levels.

As a result of this evaluation, subgoals at lower abstraction levels are chosen, which

ultimately guide the immediate behaviour of the agent.

We show how to implement the described scheme of computation in terms of a hier-

archical navigation network (HNN), which is related to graphical models and as such is

composed of a network of many small computational nodes. Each of these nodes belongs

to an abstraction level and is connected to a small number of other nodes at the same

or an adjacent abstraction level. Nodes can communicate through these connections by

message passing, where each message consists of vectors of real numbers. The messages
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sent to a node compose the only information that is accessible to that node. While we

assume that the network topology is predefined by the programmer, each node can learn

its own message-producing behaviour from its experience of the messages it receives. The

nodes are organized in a hierarchical structure, which reflect the layering of abstraction

levels mentioned above. We describe the topology of HNNs and show how these can be

used to solve navigation tasks by applying them to maze navigation tasks. The nodes of

the network use learning rules that rely solely on local messages available to the nodes.

HNNs have several interesting properties: First, they demonstrate how a simple on-line

learning rule can lead to the emergence of a hierarchical decomposition of space. Second,

the self-emerging hierarchical decomposition of space allows the network to quickly con-

verge when given a source and a destination and to select an appropriate basic action at

every point in the journey. While the generated paths are not necessarily optimal in terms

of length, the resulting path lengths get close to optimal as the system learns. Third and

most importantly, HNNs represent an alternative way to model temporal processes with

graphical models. Processing across different time scales arises naturally as a consequence

of the hierarchical spatial decomposition.
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Chapter 2

A software to allow interaction with

factor graphs

2.1 Motivation

In order to obtain the ability to use a factor graph for controlling a systems of any

kind, three elements need to be implemented: First, the factor graph itself, together

with the possibilities to run message passing algorithms on it and to adjust its internal

parameters. Second, a controllable system, such as a robotic system. Third, a bridging

interface between the first two components. All three parts could be implemented in

arbitrary form, for example as a hardware or a software solution.

As of now, there exists no hardware implementation of a factor graph, which makes a

software solution the prefered choice for the first component if the goal is rapid produc-

tivity. If the type of robotic system that should be connected to such an implementation

of a factor graph could change, it is desirable to design the interface as flexible as possible

in order to allow it to interact with both real and software-simulated robotic systems as

well as more abstract controllable agent-based environments.

Before this thesis project, there existed no such flexible interface that would allow to

easily connect different types of data sources such as robotic systems to factor graphs of

arbitrary topology in order to explore solutions for various control problems. Therefore,

we decided to implement a software library that would allow to setup factor graphs, to

efficiently run message passing algorithms on these graphs and to link nodes from these

graphs to arbitrary data sources.

In order to develop and explore new concepts within the framework of factor graphs,

it is of fundamental importance to truly understand both its capabilities and restrictions.

While it is fairly easy to understand the mathematics underlying factor graphs and the

belief propagation algorithm, it is often times already difficult to picture the effects a

9
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single parameter change in one factor node can have on a message to an adjacent node.

It is of course an even more complex task to imagine the effects of various learning rules

applied to one factor node on whole series of messages arriving at distant nodes.

Gaining a natural understanding of any complex system can be greatly alleviated by

a tool that allows to visualize its properties and to easily interact with it. This insight

motivated us to integrate the required factor graph and interfacing software into a powerful

visualization and editing framework.

2.2 Software characteristics

We developed a Factor-graph editing environment called FGControl which offers much

more functionality beyond the main function of interactively creating and modifying factor

graphs. It is designed as a modular multi-purpose framework that can easily be extended

with any desired capabilities. A screenshot of a possible setup can be seen in figure 2.1.

The software provides its own serialization mechanism which allows to detect new

classes and user-controlled instantiation of members of these classes. This allows devlopers

to quickly extend the software with new modules, which are easily integrated into the

existing framework. The properties of the new modules can be edited from within the

software and can be stored in and restored from XML-files and a binary file format. New

modules can define their own user interface and visualization, which will automatically

become availabe in the interface. Section 2.4.3 guides through an example class that

extends the software.

2.2.1 Factor graph functionality

Despite its design as a multi-purpose framework, the main function of FGControl is of

course the interaction with graphical models and in particular factor graphs. Therefore,

the center window in the graphical user interface is currently reserved for displaying such

graphical models (see figure 2.1). Three aspects were guiding the implementation of the

factor graph functionality.

High performance computation

Messages inside the factor graph are communicated through simple array structures and

data sharing between the nodes reduces the amount of storage overhead. Tensor calcula-

tions at the factor nodes, which make up the major part of the computational complexity

in a factor graph are highly optimized in low-level code. This code takes advantage

of cache-coherency and as such aims to reduce the amount of memory address jumps.
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In addition, it avoids to recompute memory addresses by reducing the amount of array

indexing.

Message passing in a factor graph is currently implemented in a single-threaded version

only. This single-threaded version proved to be sufficient for all control setup that were

tested in the course of the thesis project. Nevertheless, it would be desirable to extend

this code to a multi-threaded or a distributed version.

Flexibility

FGControl allows to easily setup factor graphs of arbitrary topology. Factor nodes can

have any desired dimensionality and variable nodes can have user-defined numbers of

discrete states. Connections between nodes can be added at any time and have as little

impact as possible. Similarly, the number of states for variable nodes can be adjusted at

any time, with as little impact as possible.

As shown in section 2.3.1, messages in a factor graph can be inspected by single mouse

clicks and the contents of factor nodes can be continually observed while they are being

modified by factor node training algorithms.

Interfacing to data sources

Variable nodes in a factor graph can be observed variables. These variables are typically

linked to some observation which originates from some sort of data source. The messages

these observed variable nodes send to their neighbors should depend solely on this obser-

vation. In FGControl, variable nodes can interactively be linked to data source variables,

which can be part of various observations. New data sources can easily be added to the

software by reimplementing an abstract class for data sources.

2.2.2 Choice of programming language

FGControl is implemented in C++ and makes heavy usage of the cross-platform applica-

tion and user interface framework Qt [Nok11]. As such, the software can easily be compiled

on several platforms (Linux, Windows, MacOSX). While being almost as portable as a

Java application, this choice is advantageous in terms of computation speed, because the

code runs without virtual machine and can be optimized for a specific architecture by the

compiler.

Implementation in the C++-language also provided the advantage of simplifying com-

munication with several application programming interfaces for various robotic systems.

Libraries for communication with a compliant pendulum (see section 3.2.1) or a Katana-

robot (see sections 3.7) were both available as C++-libraries. A software implementation
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in Java or Python would have required additional interfacing work. Interfaces to native

libraries also would have reduced the advantage of these two languages of being designed

for cross-platform usage.

The usage of Qt as a application framework allows cross-platform compilation, but

in addition provides the advantage of future software interfacing to the Python-language,

because all Qt-objects can be used from within Python via PyQt . During this thesis

project, it was successfully tested to interface objects from FGControl through PythonSIP

and to use them from within a Python-script. This approach was however not pursued

any further because it provided no additional benefit for this project.

2.3 Features and usage

2.3.1 Interface basics

The user interface of FGControl mainly consists of 4 elements: First, a configuration

window displays the currently instantiated objects. Second, a center area that is reserved

for factor graph manipulation and inspection. Third, a properties window allows to edit

the properties of objects. Fourth, a user-selectable number of windows is used to visualize

the contents of selected objects. All windows except the factor graph editing area are

dockable windows, which allows to freely configure the interface.

Configuration window

The configuration windows displays items for all instantiated top-level objects (see 2.4).

New objects can be instantiated by double-clicking, which causes a dialog to appear.

This dialog offers a list of known classes and allows to create a new instance of any of

these classes and to assign it a name. Instantiated abjects are then shown as a movable

item in the configuration window. Selection of an object by left-mousebutton click causes

its properties to be displayed in the properties window, where these can also be edited.

Double-clicking an item calls an object-specific dialog. This dialog depends on the object

implementation. An example for such a dialog is shown in figure 2.2, which allows to edit

the properties of a factor node. Right-clicking an item displays a small menu. The menu

entries are object-dependant, but two options are always available: First, a visualizing

window for the respective object can be created, which will add a new dockable window

to the user interface. Second, a window can be created that displays the child objects of

the selected object. This window behaves similar to the configuration window. Mouse

scrolling in the configuration windows allows to zoom in and out, which is beneficial for

setups with many objects.
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Figure 2.2: A dialog for editing the contents of a factor node. Here, a three-dimensional
factor node is shown. Grey values in the center area indicate the relative value of a factor
node entry, with darker colors representing higher values. The combo-boxes above this
area allow to change the order of connected variable nodes, which will affect the display.
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Factor graph editing

The factor graph editing area behaves very similar to the configuration window. As such,

mouse buttons are assigned the same function in normal editing mode. However, users are

only allowed to instantiate classes that are of type FactorNode or VariableNode or are

childclasses of these. Factor nodes are displayed as rectangular items with sharp edges in

the area, while variable node items have rounded edges. Connections between factor nodes

and variable nodes are displayed as two lines connecting their respective items, one line

for each message direction between the nodes. A small arrow box indicates the message

direction. Right-dragging the mouse from these arrow boxes adds a small message display

to the factor graph editing area, which will automatically display the message sent along

this connection. An example setup with message inspection is shown in figure 2.3.

A small toolbar in the software admits to enable three more editing modes: One mode

allows to add factor nodes with a single click and another to similarly add variable nodes.

The third mode is used for connecting nodes in the network. If enabled, left-dragging

the mouse from a variable node to a factor node or vice versa establishes a connection

between these nodes. This operation automatically increase the dimensionality of the

connected factor node. The contents of the factor node are expanded in such a way that

the additional connection will have no immediate effect on the global function the current

factor graph is representing.

In standard editing mode (activated by small ’hand’-icon), items as well as connections

between nodes can be selected in the factor graph editing area. Both elements can be

deleted by using the ’Delete’-key on the keyboard. Deletion of connections will cause

a reduction of dimensionality in the connected nodes. Deleting nodes also causes the

deletion of their connections.

Properties window

The properties windows shows the parameters of a selected object in either the factor

graph editing area or the configuration window. The parameters displayed are the same

that are saved to a XML-file when storing the state (see section 2.3.1). Some of these

parameters such as numbers, boolean values or strings can be edited in the properties

window.

Storing and restoring a setup

A setup in FGControl can be saved to disk by pressing the ’Save File’- or the ’Save File

As’-Button (’Disc’-icons in the toolbar), the latter allowing to select the name of the

desired output file. The program will ask for to files for saving, because contents of a
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Figure 2.3: Inspecting messages sent between nodes in a factor graph. The dis-
played graph was used to learn one-timestep dynamics of a simple pendulum (see sec-
tion 3.4). Here, eight messsages are inspected, six of which are directed towards the
inside of the graph and the remaining to pointing towards the observed variable node
motorCommand 21 states. The user can inspect message by simply right-mouse dragging
from the small arrow-boxes that indicate the message direction between two nodes.

Figure 2.4: The properties window displaying the parameters of an example object.
The first line indicates the name of the object, the remaining bold lines indicate which
parameters were inherited from which parent class.
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setup are stored in two separate files: An XML-file is used to store structural paramters

of objects in the setup as well as the user interface setup. A binary ’.data’-file is used

to store other data associated with the objects, such as recorded data traces or factor

node contents. As a rule of thumb, everything that would be to bulky to be edited in the

properties window is stored in this binary file (see also section 2.4.2).

When opening a file (using the ’Folder’-icon), the user has the option to either load a

XML-file or a ’.data’-file. The former will basically restart FGControl with a new setup,

while the latter will cause all objects in the current setup to attempt to load non-structural

data from the binary file.

2.3.2 Factor node training

Parameters of factor nodes can be trained using many possible methods, such as gradient

descent methods or an expectation maximization algorithm. In the course of this thesis,

many different learning algorithms were applied. Particularly the development of HNNs

required the devolopment of several specialized algorithms. Sometimes, several different

algorithms need to be applied at the same time to different factor nodes.

FGControl provides a universal graph training module (class GraphTrainer) for train-

ing factor nodes with respect to observed data. It can be used to train a complete factor

graph by adding multiple trainers for single factor nodes. Figure 2.5 shows several GUI

elements associated with this module. A dialog allows to create new factor node trainers,

which can easily be enabled or disabled for training. Parameters of the individual trainers

can then be edited through the properties window.

During training, the graph training module will iterate over a selected range of data

points the connected data source can provide. For each data point, all observed variable

nodes in the network are fixed to their respective value. Messages are then passed in the

network until convergence before the graph training module informs the activated factor

node trainers that a new data point was presented.

2.4 Software architecture

2.4.1 Object hierarchy

As mentioned before, FGControl is designed as a multi-purpose framework that serves

as a platform for a collection of many modules. New modules can easily created and

integrated into the software. This modular design is enabled by a framework-specific

serialization mechanism, which is described in the next section.
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Figure 2.5: Graphical user interface elements for graph training. Left: A dialog that
allows to create new objects for training algorithms for selected factor nodes. Middle:
the created node trainer objects appear as child object of the graph trainer object. Using
a ’child inspector’-window, these node trainer objects can be selected, which allows their
parameters to be edited in the properties-window. Right: The dockable window for a graph
trainer object, which can be used to initiate the training process, either in continuous form
or by training for a selected number of steps.

Objects in FGControl are organized in a hierarchy. Each object can have one parent

object and an arbitrary number of children. This hierarchical structure matches the

modular design: A module usually consists of a collection of objects and it makes sense

to bind these objects together, as they should be instantiated and restored together.

In FGControl, objects loaded by another object will become its children and will be

maintained by it. Accordingly, deletion of one object implies deletion of all its children.

This allows to easily remove a complete module from memory. As an example, consider

a factor graph, which contains several factor nodes and variable nodes. In FGControl,

these nodes are considered the children of the factor graph. The nodes are tied to the

factor graph because they lose their relevance without the existence of the factor graph.

All classes are children of one base object, which is a member of the main class

FGControl. This base object holds together all loaded modules.

The organization as a tree is useful to express strong object dependencies as described

above. However, it is often required that different modules can communicate with each

other, although they are not tightly bound to each other. A data source needs to commu-

nicate to a factor graph, but deletion of the factor graph does not imply deletion of the

data source and neither vice versa, as each object has a relevance without the other. In

FGControl, modules can search for other modules along the tree structure and thereby

establish communication links. These links can be stored together with other contents and

will be re-established when restoring the state, if both involved objects are also restored.



2.4. Software architecture 19

2.4.2 Serialization in C++

The problem

Unlike more modern programming languages like Java, C# or Python, C++ is lacking

mechanisms for serialization or self-reflection of objects. This property can become a

handicap when developing a software that should be able to save its current state and

should later be able to restore the saved state.

In order to understand this problem, consider a simple example: Let a software contain

a list of objects of type A that can change during execution. In order to store its current

state, it needs to save the state of all these objects, for example by first storing the number

of objects in the list and then successively calling a save-method of A for all objects in

the list. As long as the object type in the list is static, the state of the software can

easily be recovered by creating the correct number of instances of A and then calling a

load-function for each of these.

If the list contains instances of a childclass B of A, storing the state remains straight-

forward: B should reimplement the function save, which will allow to correctly store the

state of the list. However, recovering the state of the software has become much more

complicated: The program needs to know whether it should create instances of A or B.

Even if the stored state contains the name of the class, the program still needs to know

how to create an instance of this class. While Java for example provides mechanisms for

precisely this situation, C++ is lacking any equivalent.

One parent class for all dynamically loaded objects

One of the design goals for our software framework was that it would allow interactive

addition of objects of arbitrary type and would be able to store and restore its state, in-

dependent of the currently loaded objects. In addition, integration of new classes should

be straightforward and also possible dynamically by loading libraries. As such, the soft-

ware needed to remain flexible with respect to manageable object types and allow the

integration of classes that were not known at compilation time.

In order to solve the problems described in the last section, we chose to make all

dynamically loaded classes childclasses of one base class, FWSerializable. In the fol-

lowing, we will denote these childclasses by the term serializable class. By creating a

childclass of the abstract creator class FWSerializableCreator and registering this class

at a central factory class (FWSerializableFactory), new classes become visible to the

software framework and can be created by the user and be stored to and restored from

data streams. A creator class can automatically be created and registered by calling the

macro REGISTER SERIALIZABLE, which will be demonstrated in section 2.4.3.
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The class FWSerializable provides a function getType, which needs to be reimple-

mented by each serializable class. While saving the state, the program stores the types

of all instances of serializable classes by calling this function. When restoring the state,

the central factory class is queried for a creator class that allows to instantiate a class of

requested type.

Serialization of object properties

Each serializable class can define the contents that need to be stored and restored by

reimplementing the functions serializeParameters and serializeData. The difference

between these is explained in table 2.1. Both functions are given an instance of an abstract

archive class as parameter. These abstract archives provide overloaded synchronize-

functions that allow to synchronize various data types. An archive can either store or

restore variable contents, depending on its implementation.

This constructions bears two advantages: First, the programmer only needs to define

the synchronization behaviour once, instead of defining both a load- and a save- function,

which need to be consistent with each other. Second, the serializable object can be

stored in and restored from arbitrary data structures. All that needs to be done to

synchronize the state with a new data structure is to implement new archive classes.

We took advantage of this construction in the current version: Structural properties of

objects are typically stored in a XML-file but at the same time, they can also be edited in

a properties-widget at runtime. In both cases, the same serialization-functions are called,

but different archive classes manage the in- and output. Figure 2.6 shows an example for

this process: Here, a simple class Foo is synchronized with two different data structures,

which are both used in the software.

Dynamically loaded objects can contain pointers to other objects, which also need to

be stored and restored. Of course, it makes little sense to store the value of these pointers,

as the physical address of the linked objects will have changed after restoring the state.

In FGControl, each dynamically loaded object is assigned a unique ID, which is stored

as a property of the object and remains constant across different program sessions. This

ID is also used to reestablish links between objects: In order to store its state, an object

can create instances of FWSerializableReference for all pointers to other objects by

calling the function createReference on these objects. These reference objects will store

all information necessary to reidentify the connected object after restoring the software

state.

This method allows to identify connected objects, but at the time an object is restored,

a linked object might not be instantiated yet. To overcome this problem, child classes

of FWSerializable can reimplement the function establishConnections, which will be
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"FactorGraph"
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Figure 2.6: Object parameter serialization in different contexts. Depending on the type
of archive that is passed to the function serializeParameters, data is stored in different
formats. Shown here is the result of storing an imaginary class Foo either to the properties
window via FWTreeSavingArchive or an XML-file through FWQDOMSavingArchive. The
contents of the object can be recovered from these data containers by using a different
archive, in this case FWTreeLoadingArchive or FWQDomLoadingArchive. Data can be
stored in any other format by implementing new archive classes. Source code for the
function serializeParameters can be found in listing 2.2.

Function name Effects
getType Returns the type of the class as a QString.
serializeParameters Stores and restores structural properties of an object,

such as dimensions of the object or links to other objects.
Variables that are synchronized inside this function are
typically stored in a XML-file and can be modified at
runtime through the properties-tab.

serializeData Stores and restores data contained in an object, such as
recorded data traces or factor node contents. Variables
are typically synchronized with binary data files.

establishConnections This function is called after all objects have been created
and should be used to re-establish links to other dynamic
objects.

Table 2.1: Functions of FWSerializable that should be reimplemented by child classes
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Function name Return type corresponding GUI element
createVisualizer SerializableVisualizer A visualization widget that will

typically be embedded in a dock-
able window and might be a perma-
nent part of the user interface. Can
be used as a monitor to follow pa-
rameter changes of the object (such
as factor node contents).

createDialog SerializableDialog A dialog window that will be shown
as a modal window after the user
double-clicked on the object’s item.

createItem ConnectorClassItem A small icon representing the ob-
ject, for example in the configura-
tion window.

Table 2.2: Functions of FWConnectorClass that can be reimplemented to define the
object’s behaviour in the graphical user interface.

called after all objects have been loaded from a file.

2.4.3 Modular extensibility

User-instantiatable classes

The serialization mechanism described in section 2.4.2 allows it to easily extend FGCon-

trol. New child classes of FWSerializable can automatically be stored and restored by

the program if the classes properly registered themselves at the central factory class. In

addition, parameters of these new classes can easily be made accessible to the user by

using the serialization functions described in section 2.4.2.

However, in order to allow dynamic instantiation of a new class by the user, new

modules should be child classes of FWConnectorClass. Only classes of this type can be

instantiated by double-clicking in the configuration window. FWConnectorClass defines

three functions that can be reimplemented to define the user interface representation of

an object; these are explained in table 2.2.

A simple example

This section provides an example of a minimal class Foo that allows to be interactively

instantiated. The complete class declaration and source code are shown is listings 2.1 and

2.2.

The class Foo contains two parameters: content, which is of string-type and factor-

Graph, which links to an instance of FactorGraph. Both are synchronized in the function
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1 #include <core/Framework/ExtendedConnectorClass.h>

2 #include <core/FactorGraph/FactorGraph.h>

3
4 c la s s Foo: public ExtendedConnectorClass {

5 public:
6 FactorGraph * factorGraph;

7 QString content;

8 Foo(const QString& name = QString(), FWSerializable * parent = 0);

9 virtual ~Foo();

10 virtual QString getType () const;
11 virtual SerializableVisualizer * createVisualizer(

12 QWidget * parentWidget = 0);

13 protected:
14 virtual SerializableDialog * createDialog(

15 QWidget * parentWidget = 0);

16 virtual void serializeParameters(

17 FWParameterSynchronizationInterface &archive );

18 };

Listing 2.1: Class declaration for a new dynamically loadable class Foo.

serializeParameters (lines 30 and 31 in listing 2.2). Notice that before these variables

are synchronized, the parent’s implementation of the function is called in order to first

synchronize the parameters of all parent classes in the hierarchy. For better style and

for avoiding variable naming collisions, a new section is opened before synchronizing the

parameters.

Foo is a childclass of ExtendedConnectorClass, which simplifies the maintainance of

links to other objects. The link to an object of type FactorGraph is declared in line 4

in the constructor. Declaring this link has several effects: First, the object’s dialog will

automatically contain a drop-down box for establishing a new connection. Second, the

internal pointer factorGraph will be automatically be set to null as soon as the linked

object is deleted. Third, serialization is simplified and requires a single line (line 24). The

connection to the object will automatically be re-established after the software state was

restored.

The call of the macro REGISTER SERIALIZABLE in line 4 makes sure that Foo will

be integrated properly in the software framework, which takes as parameters the name

of the class that should be registered and the name of its superclass. Internally, this

macro creates two helper classes: The first one is a childclass of FWSerializableCreator,

which provides a function create that can be called to create an instance of Foo. The

second one will register the creator class at a central factory class in its constructor. The

macro also declares an instance of this second class, which will cause the execution of

this constructor. Taken together, the creator class will automatically be registered as

soon as the code is loaded and this will allow the software to dynamically create new
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1 #include "Foo.h"

2 #include <coreincludes.h>

3
4 REGISTER_SERIALIZABLE(Foo , ExtendedConnectorClass)

5
6 Foo::Foo(const QString& name , FWSerializable * parent) :

7 ExtendedConnectorClass(name , parent) {

8 factorGraph = 0;

9 declareConnectedSerializable("factorGraph", "FactorGraph",

10 (FWSerializable **)& factorGraph , "connected FactorGraph:");

11 content = QString("Hello World!");

12 }

13
14 QString Foo:: getType () const {

15 return QString("Foo");

16 }

17
18 SerializableVisualizer * Foo:: createVisualizer(QWidget * parentWidget) {

19 return new FooVisualizer( this , parentWidget );

20 }

21
22 SerializableDialog * Foo:: createDialog(QWidget * parentWidget) {

23 return new FooDialog( this , parentWidget );

24 }

25
26 void Foo:: serializeParameters(

27 FWParameterSynchronizationInterface &archive) {

28 ExtendedConnectorClass :: serializeParameters(archive );

29 i f (archive.openSection("Foo") == ARCHIVE_OK) {

30 synchronizeConnectedSerializable(archive ,

31 (FWSerializable **)& factorGraph );

32 archive.synchronize(QString("content"),content );

33 archive.closeSection ();

34 }

35 }

36
37 Foo ::~ Foo() {}

Listing 2.2: Source code for a new dynamically loadable class Foo.
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1 c la s s FooVisualizer : public BasicSerializableVisualizer {

2 QLabel * label;

3 public:
4 FooVisualizer(Foo * foo , QWidget * parentWidget );

5 virtual ~FooVisualizer ();

6 virtual void serializableChanged(FWSerializable * serializable );

7 };

8
9 FooVisualizer :: FooVisualizer(Foo * foo , QWidget * parentWidget)

10 : BasicSerializableVisualizer(foo , parentWidget) {

11 label = new QLabel(foo?foo ->content:"");

12 this ->getLayout()->addWidget(label );
13 }

14
15 FooVisualizer ::~ FooVisualizer () { }

16
17 void FooVisualizer :: serializableChanged(FWSerializable * serializable) {

18 Foo * foo = dynamic cast <Foo*>( getConnectedSerializable ());
19 i f (serializable == foo && foo)

20 label ->setText(foo ->content );

21 }

Listing 2.3: Example code for a basic visualization class for Foo. The resulting user
user interface element is shown in figure 2.7.

instances of Foo. Necessary conditions for the macro to work are that Foo is a subclass of

FWSerializable and that is declares a constructor with the same footprint as shown in

this example. Abstract classes that to not allow instantiation should use the similar macro

REGISTER ABSTRACT SERIALIZABLE, which is necessary for the framework to maintain a

class hierarchy.

Foo defines its own user inferface by reimplementing createVisualizer and create-

Dialog. These functions simply return new instances of FooVisualizer and FooDialog,

respectively (lines 14 and 18). Listings 2.3 and 2.4 show the code for these two user

interface elements.

FooVisualizer (listing 2.3) defines a simple visualization class for the class foo, which

can be used to permanently monitor the state of the contents of Foo. As Foo is not

very sophisticated, a single label is sufficient to visualize its state (lines 11-12). Note

that FooVisualizer reimplements the method serializableChanged, which is called

whenever the contents of a class changed. Here, the visualization is updated by changing

the displayed text (line 20).

The dialog class FooDialog extends the class ExtendedConnectorClassDialog (list-

ing 2.4). As such, the link to an instance of FactorGraph will automatically be main-

tained by the graphical user interface elements of the parent class. Hence, the function

addControls is only used to add a simple line editor, which will be used to edit the string
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1 c la s s FooDialog : public ExtendedConnectorClassDialog {

2 QLineEdit * lineEdit;

3 public:
4 FooDialog(Foo * foo , QWidget * parentWidget );

5 virtual ~FooDialog ();

6 protected:
7 virtual void addControls(QBoxLayout * layout );

8 virtual bool evaluateControls ();

9 };

10
11 FooDialog :: FooDialog(Foo * foo , QWidget * parentWidget)

12 : ExtendedConnectorClassDialog(foo , parentWidget) {}

13
14 FooDialog ::~ FooDialog () {}

15
16 void FooDialog :: addControls(QBoxLayout * layout) {

17 ExtendedConnectorClassDialog :: addControls(layout );

18 Foo * foo = dynamic cast <Foo*>( getSerializable ());
19 lineEdit = new QLineEdit(foo?foo ->content:"");

20 layout ->addWidget(lineEdit );

21 }

22
23 bool FooDialog :: evaluateControls () {

24 Foo * foo = dynamic cast <Foo*>( getSerializable ());
25 i f (foo) {

26 foo ->content = lineEdit ->text ();

27 foo ->contentsChanged ();

28 }

29 return ExtendedConnectorClassDialog :: evaluateControls ();

30 }

Listing 2.4: A simple dialog class for a new module Foo. The resulting user dialog is
shown in figure 2.7.
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Figure 2.7: Graphical user interface of Foo. Shown here are user interface elements
corresponding to the two classes FooDialog (left, see listing 2.4) and FooVisualizer

(right, see listing 2.3).

contained in Foo (lines 19 and 20). The function evaluateControls is called when the

dialog is closed using the ’Ok’-button. Here, the content of the line editor are transferred

to the connected instance of Foo (line 26). Calling contentsChanged on this instance will

inform all visualization classes about this change. This will for example cause an update

in the permanent visualization of Foo, as described above.

2.4.4 Important classes

Table 2.3 shows a selection of classes that are important for extending the existing func-

tionality of FGControl.

2.5 Discussion

FGControl was initially designed as a software to interface factor graph functionality to

real robotic systems or any other controllable system. In the course of this thesis project,

it became apparent that a more powerful tool was required.

In order to gain an understanding of how message passing on factor graphs can be used

to exert control over a system like a simple pendulum, we needed to explore many different

factor graph setups, change the number of states in variables, change the encoding of

parameters of the robotic system, use different learning rules etc. In addition, we needed

some method to reliably store setups together with parameters and recorded data traces.

Of course, it was necessary that these setups could be restored and edited, which implies

the possibility to inspect all parameters of a setup.

Because there existed no software that would have been flexible enough to meet our

requirements, FGControl was extended to a larger interfacing and visualization frame-

work. In order to later allow the usage of objects with arbitrary properties such as nodes

with different message passing behaviour or new data sources, the software was designed
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Class name Properties of child classes
FWSerializable Child classes can automatically be detected by the

framework and contents of instances will be stored and
restored to disk.

FWConnectorClass Child classes can dynamically be instantiated by the
user and can define their own user interface through
functions described in table 2.2.

ExtendedConnectorClass Convenience class that extends FWConnectorClass.
The function declareConnectedSerializable, al-
lows to create links to other objects that are au-
tomatically updated and are editable in a dia-
log of class ExtendedConnectorClassDialog. (Use
synchronizeConnectedSerializable) when synchro-
nizing these links. Connections will be established au-
tomatically.)

DataModel Child classes can function as data sources that serve
data points to a factor graph. A data source should
contain instances of DataVariable, which can be added
using the function addVariable.

DataVariable Instance of DataVariable serve as the interface between
a variable node in a factor graph and a data source by
providing the state of one observed variable. Variable
nodes in a factor graph can be connected to an instance
of a DataVariable through their respective dialogs.

Node Child classes can be instantiated as members of a factor
graph. New nodes can define their own specific message
passing behaviour.

AbstractTrainer Child classes can be added as factor node trainers to
an instance of GraphTrainer, which allows to add new
learning algorithms to FGControl.

Table 2.3: Important serializable classes of FGControl. Child classes of the given classes
can be used in different contexts and thereby allow to extend the existing functionality.
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as a modular framework, which would allow to store, restore and edit arbitrary objects

as part of a setup.

Emphasis was placed on the visualization and editing capabilities for factor graphs.

Factor node contents can be permanently monitored, as well as messages between nodes

in the graph. Nodes can be added to or remove from a graph at any time and variable

nodes can always be resized. Factor node contents can easily be edited by the user, for

example by using a simple expression evaluator.

This software proved to play a central role in the evolution of this thesis project.

Its flexibility allowed to quickly set up new experiments involving different types of data

sources or controllable systems and different factor graph topologies. Almost 200 different

setups have been evaluated in this thesis project, which illustrates the importance of this

software framework for this project.

At the same time, the integrated visualization mechanisms greatly helped to identify

and understand problems that occured in these setups. First, visualization of factor

node contents helped to understand the capabilities and restrictions of different learning

rules. Second, message inspection was important to gain insights about different coding

schemes, such as population codes (see section 3.5). Third, the user interface allowed

to quickly search parameter spaces for sensible values, for example for finding suitable

learning parameters. Fourth, the software made it easier to picture the effects of different

factor graph topologies, which for example was important to develop the concept of HNNs

(see section 4).

We believe that this software will be a very useful tool for future work related on

graphical models. While it was originally designed to interface factor graphs to robotic

systems, it could easily be extended to connect very different inputs to factor graph setups,

such as vision sensors. Its versatility and modularity also allow it to form a foundation

for many other software projects.

Future work

A software is never finished. It can rather reach a state at which it fulfills certain re-

quirements. In its current version, the software proved to be a useful tool for this thesis

project, but it might require extension for future projects.

Message passing between objects in FGControl could be standardized. In the current

version, communication between objects is specialized for each connection. For example,

nodes in a factor graph communicate with each other using certain functions, while a

different set of functions is used in the communication between variable nodes and a data

source. Standardization would allow to build generic classes that display messages, record

these or can generate user-defined messages. At the moment, messages in a factor graph
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can be inspected, but these inspection tools cannot be used to visualize other types of

messages.

Another future extension could of course be the possibility to compute in multiple

threads or on distributed machines. In the course of this thesis project, the performance

of the single-threaded FGControl was sufficient, but larger setups could require to engage

multiple CPUs. The speed of message passing on a factor graph can also be increased by

using general processing on graphical processing units (GPGPU).

At the moment, the software is compiled into one executable file. It can be extended

by adding new classes and compiling these together with the current version. Future

versions could add a mechanism to dynamically load libraries. These libraries could

then contain extension modules. The flexible serialization and factory mechanisms that

form the foundation of FGControl will allow classes from dynamically loaded libraries to

automatically become available in the software.

Finally, it will be useful to interface FGControl to the programming language Python,

which is becoming more and more popular for software projects in science. Programs in

Python could benefit from the fast implementation of factor graph computation in native

machine code. Several classes such as FactorNode, VariableNode and FactorGraph were

already partly interfaced to Python using the PythonSIP -framework during this thesis

project, which proved to be a straightforward task. The PythonQt-framework would also

allow integration of python-functionality into FGControl, such as a python console. Such

an integration of a scripting language would largely extend the possibilities for flexible

experiment setups.
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Motor control with factor graphs

3.1 Motivation

Robotic systems are commonly composed of several joints that are connected through

hinges. Actuators allow to modify the position of the joints. Interestingly, the spatial

position of a joint depends exclusively on the positions of connected joints and the current

angles at the connecting hinges. Hence, given the position of connecting joints, the posi-

tion of a certain joint is independent of all other joints. Such conditional independences

can also be identified in the human body: The position of a hand is independent of the

shoulder’s position if the forearm’s position is known.

These conditional independences imply that global functions describing the state or

dynamics of a robotic system might be factorizable. One example for such a global

function is the joint probability distribution (JPD) describing the spatial positions of

the robot’s joints. Since the individual joint positions only depend on connected joints,

this global function can be defined by a set of local functions, where each of these local

functions captures the effect of one joint. Intuition suggests that this approach could also

extend to functions that are used to control a robotic system. Consider for example a

hand-shaped gripper and assume a model for its kinematics and dynamics would be given,

which would allow precise control. If this gripper would be extended by a few joints to a

robotic arm, the model representing the gripper should be reusable, which would simplify

the task of learning to control the full arm. While the complete model for the arm might

factorize into a product of small functions, it could consists of several modules that need

to communicate very little information between each other.

High-dimensional functions that can be factorized into products of lower-dimensional

functions can naturally be represented by factor graphs, which by definition merely are

visualizations of such functions. For example, in order to represent the JPD over joint

angles and joint positions mentioned above, a factor graph can easily be constructed: For

31
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each joint angle, a factor node could be added which would connect three variable nodes,

with one of them representing the joint angle itself and the other two the positions of the

adjacent joints. Belief propagation on the resulting graph would allow to infer all joint

positions when given a single joint position and all joint angles.

In order to plan movements of a robot, though, it is necessary to consider its dynamics,

whereas the JPD in the last example decribes the kinematics of a robot, which is a static

relationship between angles and spatial positions.

In this part of this thesis, we will investigate general approaches of how dynamical

systems can be modelled with factor graphs and how such factor graphs can be used to

directly control robotic systems or be used as part of a robotic controller. In different

scenarios, we employ factor graphs with discrete state variables that are trained based on

recorded data traces of a robotic system.

While the topology of all factor graphs we employ is assumed to be given, the pa-

rameters of the factor nodes are initialized with flat priors and are trained from recorded

data.

Discrete state variables bear the advantage that message passing is straightforward

and, more importantly, a range of learning algorithms are available that allow to train

the parameters of a factor graphs based on experience. Furthermore, their use is in many

aspects more intuitive because the computations performed in message passing can be

more easily followed. Finally, concepts developed for discrete state spaces can later be

mapped to continous spaces.

The application of factor graphs to control problems requires the solution of several

challenging problems: First, a suitable encoding for parameter values needs to be found.

Since we are using variables with discrete state spaces, we need to map continous param-

eter values to discrete states. Outputs of the applied factor graphs will be distributions

on discrete state spaces, which need to be converted back into specific control parameters.

Second, data sampling in real robotic systems is time-consuming, which causes training

data to be sparse. In addition, data usually cannot be sampled uniformly. Factor graphs

trained on sparse and nonuniformly sampled data are likely to behave different from ex-

pectation. Third, we will inspect in which ways factor graphs can be used to model the

dynamics of a robotic system.

3.2 Controlling a toy robot

In this section, control concepts based on factor graphs will be explored in the context of

a small robotic system with a single degree of freedom. The simplicity of such a system

allows to explore various types of variable encodings and to more easily understand the
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Figure 3.1: Schematic view of a compliant pendulum with one degree of freedom. Input
to this small robotic system consists of one parameter M , which controls the motor and
thereby relates to the torque that will be applied to the shaft. The output of the pendulum
defines the current angle A, which can be used to also compute the angular speed S.

effects of factor graph training with sparse and nonuniformly sampled data.

3.2.1 The robot

A small compliant pendulum was chosen as a robotic system in order to define a first

task for factor graph based motor control. Figure 3.1 shows a schematic picture of such

a compliant pendulum, which was designed by Andreas Keller and Jorg Conradt [Kel08].

The input to the pendulum consists of a single parameter, which defines a torque that a

motor will apply to the shaft of the pendulum. The pendulum is subject to several other

forces: Friction, centripetal force, gravity and inertia, which all influence its movement.

Two circular potentionmeters at the shaft of the pendulum are used to measure the

angle of the pendulum’s blade. A microcontroller that also controls the voltage applied

to the motor continuously samples the two sensors and transmits these values at 1000 Hz

via a simulated serial port through a USB connection to a computer. The sensor readouts

are then decoded into angular values and the angular speed is calculated as a low-passed

first derivative of the angle. The software used to evaluate these angles reads out the

values for angle and speed at 20 Hz.

While the angle is measured at a precision of approximately 0.07◦, the temporal preci-

sion for reading out values is low. Data points are read out every 50 ms with a precision of

about ±5 ms. More importantly, the time that passes between sending a motor command

and detecting its effect varies between 20 and 80 ms. This temporal variation is the main

source of noise in the system.

One might ask why it would be necessary to use a real pendulum instead of a simulated

version. Simulated robotic systems bear the advantage that their creation is much easier,

which also makes it cheaper. Much more important though, simulated systems allow to
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quickly sample large amounts of data points and this sampling can be performed in a

uniform way.

However, the intention in this project was to explicitly deal with the shortcomings of

real world systems, including time-consuming and non-uniform data sampling, which will

generate very noisy data. While these shortcomings can of course also be simulated, it is

easy to neglect certain problems of a real system. For example, the temporal imprecision

described above introduces high amounts of noise that might be ignored in a simulated

system. Additionally, a real robotic system is often more appealing to spectators, because

it allows to demonstrate the practicality of an approach.

3.2.2 The task

A simple control task was created for the pendulum described in the last section: Given

a target angle, apply angle-dependent torques to the shaft such that the pendulum arm

moves to the desired angle and remains there. A factor graph should be used to model

the dynamics of the system and be used to generate the controlling output. Importantly,

the controller should have no prior knowledge about the robotic system - all parameters

of the model should be trained based on data collected in sample runs.

As described in the last section, data collected from the pendulum is noisy, in particular

with respect to the temporal precision when responding to a command. Obtaining training

data is time-consuming and therefore, this data is sparse. Moreover, the input space is

sampled non-uniformly. The chosen task requires to understand the dynamics of the robot

in spite of these restrictions.

In all setups, we use a simple exploration function to generate training data. This

function is called every 50 ms and at each timestep, it modifies the current torque applied

to the pendulum with a probability of 10%. New torques are chosen randomly with a bias

towards torques that have been less explored in states similar to the current one.

3.2.3 Discretizing continuous observations

Variables in a robotic system are most commonly of continuous nature, whereas we are

using factor graphs with discrete state variables, ss mentioned in section 3.1. This makes

it inevitable to discretize values from continuous observations in order to yield messages

that can be used in the factor graphs that we consider.

The most straight-forward discretization strategy can be outlined as follows: Assume

a continuous variable x is given which can take up values between xmin and xmax and

should be encoded as a message with N elements. The intervall [min,max] is split into

N intervalls of equal length and each intervall is assigned to one of the elements of the
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message. For a specific x, all entries in the message will be set to 0, except the entry

which corresponds to the intervall containing x, which is set to 1. We assume that the

elements of the message are sorted in order of their corresponding intervall.

Another interpretation of this discretization is that each element of the message is

assigned a specific center of activity in the intervall [min,max] and is only activated by

an observed value x if its center of activity is closer to x than all the other centers of

activity. This interpretation allows to define a similarity or a distance measure between

an element of a message and an observed variable x as the distance between the element’s

center of activity and x.

3.2.4 Simple approach: Joint probability distribution in one fac-

tor

Three variables are sufficient to describe the state of the compliant pendulum described

above: angle A, angular speed S (in the following referred to as ’speed’) and the current

motorcommand M which corresponds to a torque the motor applies to the shaft. These

could be divided into input and output variables, but this separation is not necessary

when analyzing the statistics of the system.

Further derivatives of the angle other than the speed could be considered as state

variables, but given the torque applied to the shaft, these derivatives would not confine

the current state of the pendulum since all other forces acting on the pendulum are

functions of the angle or the speed.

An assignment to the three described variables describes the state of the pendulum

at a specific timepoint t, which we will refer to as the current state. A model describing

the relation between these three variables could be used to compute the probability of a

certain state, but it would not allow any prediction about expected changes of the system

because it would not contain any information about the system’s dynamics. Therefore,

we added a fourth variable, which encodes the angle A+1 at a timepoint t+ ∆t, which we

will refer to as future angle. The time difference ∆t is a time constant, which needs to

be chosen before training. We typically used values of around 200ms for the pendulum

setup.

The low dimensionality of the task that we chose allows to use a straight-forward

approach, using a factor graph with a single factor node to capture the statistics of the

four variables. This factor can connect to four variable nodes, each representing one

variable of the system. With sufficient amounts of data, the single factor can be trained

to approximate the joint probability distribution P (A,A+1, S,M) (JPD). From a trace of

recorded data points consisting of A, S and M at times t, training data can be generated

by setting
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Figure 3.2: A trivial factor graph for controlling a pendulum. All variables nodes are
connected to a single factor node. The factor graph can be used to learn the relation be-
tween current angle A, future angle A+1, angular speed S and the current motor command
M , which defines the applied torque.

Training in this case can be performed by gradient ascent: A four-dimensional his-

togram f(A,A+1, S,M) can be used to count the occurrences of every combination of

possible values for A, A+1, S and M . The estimated JPD is then equal to this histogram

function, normalized to a sum of 1.

The estimated JPD can be used to compute several interesting functions. Marginal or

prior probabilities for a subset of the variables can be computed by summing the entries

of the JPD over all remaining variables, for example:

P (A,A+1) =
∑
s

∑
m

P (A,A+1, S = s,M = m)

If a subset of the variables is observed, it is possible to compute conditional probabil-

ities for the remaining variables, for example:

P (A+1 |A = α, S = s) =
P (A+1, A = α, S = s)

P (A = α, S = s)

=

∑
m P (A = α,A+1, S = s,M = m)∑

α+1

∑
m P (A = α,A+1 = α+1, S = s,M = m)

In the control task that we want to solve, a motor command should be computed as a

function of a target angle α∗ and the current state of the system, defined by the current

angle α and speed s. Given these three values, the conditional probability distribution

for the motor command can be computed:

P (M |A = α,A+1 = α∗, S = s) =
P (A = α,A+1 = α∗, S = s,M)

P (A = α,A+1 = α∗, S = s)

=
P (A = α,A+1 = α∗, S = s,M)∑

m P (A = α,A+1 = α∗, S = s,M = m)

Note that here, the desired angle is used as if it would be a true future angle. Since
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the desired angle is the angle the pendulum should be in at a future time, this seems

reasonable. However, the interpretation of the variable has been changed in comparison

to the training phase. The future angle was determined as a result of an observation,

whereas the desired angle represents a yet unobservable state. It is therefore possible,

that the configuration is impossible, which would result in a flat conditional probability

distribution for the motor command. This problem is particularly interesting in cases

when the desired state is not reachable within the time ∆t, because data points describing

such transitions are not part of the training data.

3.2.5 Pendulum control

Using the inferred conditional probability distribution for the motor command, a simple

closed-loop control algorithm can be devised:

1. Receive a desired state - a target angle α∗- as input.

2. Observe the current state of the system, comprising the current angle α and the

angular velocity s.

3. Use a trained factor graph representing P (A,A+1, S,M) to compute the conditional

probability distribution P (M |α, α∗, s).

4. Select a new motor command m as a function of P (M |α, α∗, s) and apply it to the

pendulum, if necessary.

5. Repeat steps 2 to 4.

The precision of the described controller is of course limited by the discretization of

observed parameters. But in addition, this simple controlling scheme suffers from typical

control problems such as oscillations around a target state. In the described four-variable

setup, the desired future state can only be defined in terms of a desired angle, the speed at

that point is not considered, neither is the state of the pendulum after reaching the goal.

The controller will therefore select those actions that will cause a transition to the target

angle, but neglect the future effect of that action. Hence, selected motor commands might

be too high and cause overshooting, which will result in pendulum oscillations around the

target angle, or fast rotations of the pendulum in one direction.

These control problems could easily be solved by extending the controller to a PID-

controller [Min22], but this would change the nature of the controller from a purely factor

graph based control into a classical control solution which would use the factor graph

output as a guiding input.
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Figure 3.3: Decoding output variables of a factor graph. Belief propagation on a factor
graph yields vectors defining the marginal proababilities of unobserved variables. In order
to use outputs of the factor graph for action selection in a controllable system, these
probability distributions need to be decoded. a) The maximum of a distribution might be
subject to noise and therefore be a bad representation of the population response. b) and
c) The mean value is biased towards central values, which causes problems for example
when the signal-to-noise ratio is low or when the distribution is multimodal. d) Circular
mean: The distribution from c) is arranged around a circle such that each value maps to
an angle, which in turn defines a direction vector. An output (red line) is determined by
vector addition of all direction vectors, weighted by their respective probability (blue line,
segments correspond to the individual contributions).

A pure factor graph based solution could be to include a fifth variable, namely the

future speed of the pendulum. This would allow to set the desired speed at the destination

to 0, which would cause the controller to select those motor command that will make the

pendulum rest at the destination.

Concluding, it is out of question that it is possible to design a much better control

solution for a one-dimensional pendulum. However, we did not pursue any of the above

strategies to optimize the control performance. The performance that was obtained with

the described controlling algorithm was sufficient to evaluate the effects of training and

the simplicity of the algorithm allowed to better trace problems caused by sparse and

non-uniformly sampled training data.

3.2.6 Motor command selection

The control algorithm described in the last section relies on a function that returns a

single motor command when given a probability distributions over a set of discrete states.

The simplest selection mechanism would be to chose the motor command that is assigned

the highest probability. However, this selection strategy bears two disadvantages: First,

the maximum of the probability distribution might change its position very quickly, which

would result in jittery movements of the pendulum. This problem would require low-pass

filtering. Second, the maximum only takes into account a single value which might be
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erroneous due to noise in the training data. Instead, it is more desirable to take into

account the full population response.

This could be achieved either by sampling motor commands from the returned distri-

bution or by computing a weighted average by multiplying each returned probability with

its corresponding motor command and summing over all entries. Sampling would cause

quickly changing motor commands which would result in jittery movements. Hence, the

motor command would have to be low-pass filtered again, which in turn would give the

same results as a weighted average.

Both approaches take into account the whole population response, but in practice, they

will bias the selected motor commands towards low values. Figure 3.3 shows two examples

where this effect could influence the selection: First, the mean value of a distribution will

be biased towards the center of the distribution if the signal-to-noise ratio is low. Second,

it can happen that two competing actions are possible in a certain scenario, as depicted

in 3.3c). The mean value will select neither of the two competing actions, but instead

choose a motor command that lies in the middle between the two possible ones. More

generally, these effects are reflecting the fact that the expected value of the mean for

random distributions on a fixed intervall is equal to the center of the intervall.

We are using an unbiased motor command selection process as depicted in figure

3.3d): All possible motor commands are arranged in order on a circle and based on its

angular position, each motor command is assigned a unit vector that points to the motor

command’s direction. In order to select a motor command from a list of probabilities,

these unit vectors are weighted by their corresponding probability and finally added to give

a response vector. The direction of this response vector determines the motor command

that will be selected.

At first, it might seem peculiar to arrange the highest and the lowest possible motor

commands adjacent to each other on the circle. However, situations in which both of

these two motor commands are possible require the selection of either one of the two

actions. The described mechanism will select the one that caused the stronger population

response.

It should be noted that the described method will fail in situations where two motor

commands are possible and these correspond to two opposing positions in a circular

arrangement. In order to correctly decode such setups, a more sophisticated method

using for example winner-take-all mechanisms would be required. However, in the setups

used in this project, such separated population responses were never observed, which is

why the descibed decoder delivered a usefull performance.
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3.2.7 Limitations

The simple approach using a single factor node bears several disadvantages that render it

impracticable for most applications. The number of parameters contained in the central

factor node scales proportional to the number of states of all four variables. If high

precision is required in these variables, this number of parameters quickly exceeds 105,

which would set high constraints on the number of data points that need to be observed

in order to sufficiently approximate the JPD without overfitting. Since data points can

only be collected at around 20 Hz, this process would be very time consuming.

Another drawback of the simple approach is its inability to generalize to unseen data.

Since the future angle A+1 is fixed to a distinct future time during training, the factor

graph will only be usefull to predict correct motor actions if at least one datapoint was seen

during training that contained the precise desired combination of current angle, current

speed and future angle. Otherwise, the conditional probability distribution returned for

the motor command will be flat.

Population codes

Whenever the target angle is out of reach from the current configuration, it would be

usefull to at least return a motor command that will bring the pendulum closer to the

desired state. One way of computing such a motor command would be to iteratively move

the target closer to the current state as long as the conditional probability distribution

for the motor command remains flat.

However, this iterative procedure would result in a search through the input space

and would be infeasible in larger systems in which the target state is high-dimensional.

Instead of iteratively searching through the input space, it seems reasonable to activate

several states simultaneously with a gradient towards the target state. While a single

state activation defines a single state as the only desirable future state, such a gradient

input signals that many target states are desirable, but to different degrees. Figure 3.4c)

shows an example for such a gradient encoding scheme.

In such an encoding scheme where multiple states of the input are activated at the

same time, each activation level contains some information about the desired target state.

It therefore resembles a population code.Population codes in general can have arbitrary

shapes, but we will use codes where the activation of each state of a variable depends

on the similarity of a state to the observed value. Hence, a similarity function is used

to define the activation of each state. Several functions were tried as candidates for this

similarity function and the best performance was obtained using exponentially decaying

functions. Such exponential tuning curves for each state allow to put emphasis on states
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Figure 3.4: Inferring a motor command when given a target angle. Shown is a
schematic two-dimensional cut of a four dimensional factor node at A = 50◦ and S = 0.
The red line indicates a fictive set of training data points. a) A motor command can be
inferred easily when the desired angle is close to the current angle and can be reached
within a certain time frame. b) The probability distribution for the motor command is
flat if the angle is further away. c) This problem can be counteracted by using population
codes as input.

representing the true observation. This increases the influence of training data points

that were very similar to the currently observed state.

In a population code as described above, the vector of state activations can be inter-

preted as a weighting of the individual states. In case of the target state, this corresponds

to a ‘desirability’ of each state. However, it might also be usefull to apply such gradient

inputs to other input variables: If, for example, no data points have ever been observed

for the current angle, but many data points have been observed for a closeby angle, it

makes sense to approximate the output motor command using these data points. Again,

a population code can introduce a weighting for the individual states which then defines

the degree to which data points in the training set should be considered.

Summarizing, the use of gradient shaped population codes for encoding the inputs to

a factor graph seems to bear two advantages: First, such codes should allow to select

actions when the target state is too far away to be reached in a single timestep. Second,

this approach seems to introduce generalization properties into an overfitted model.

Necessary modifications for the use of population codes

If gradient shaped population codes are used to define the activation of observed vari-

ables in a factor graph and standard belief propagation is used to infer the probability

distribution of unobserved variables, the inferred distributions will be biased by the prior

probabilities of the observed variables.

Consider for example figure 3.5, where a population code is used as an input message

for a two-dimensional factor node. Assume the factor node was trained to represent an
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identity matrix and the training data was noisy and not uniformly distributed. Due

to the non-uniform distribution of the training data, the states of the input variable A

have different prior probabilities. When using the sum-product algorithm to compute the

output message, states of A with higher prior probability will have a larger impact on

the result than others. The result is that training data points which were very similar

to the currently observed state might be neglected, if they were outnumbered by closeby

datapoints, as is the case in this example.

This topic will be discussed in detail in section 3.5.2. In short, standard belief prop-

agation yields correct conditional probabilities for an unobserved variable when the ob-

servations defining the states of the remaining variables are deterministic and therefore

only single states are activated. However, when multiple states are activated for observed

variables, messages to unobserved variables will be influenced by the prior probabilities

for the states of the observed variables.

In order to obtain the desired conditional probability distribution for the motor com-

mand given multi-state activations at the observed variables, the factor node representing

the joint probability distribution P (A,A+1, S,M) needs to be transformed into the con-

ditional probability distribution P (M |A,A+1, S), which corresponds to a normalization

along the output dimension. In figure 3.5, this method is illustrated on the right.

3.2.8 Simulations

We used a low-resolution discretization of the variables in the factor graph shown in figure

3.2 to store the instantaneous dynamics of the described compliant pendulum (A, A+1:

12 states, M : 13 states, S: 9 states). Contents of the single factor node were set to the

relative occurrences of the respective configurations in a data set of 104 data points.

Figure 3.6a shows the inferred motor commands for different current angles and tar-

get angles at a speed of 0. For large distances between current and target angle, the

inferred motor command remains 0. This indicates that transitions of this length were

not contained in the training data set. This lack of reach can be removed by using gra-

dient shaped population codes as inputs for the variables A, A+1 and S. Results for a

system using such inputs are shown in figure 3.6b. Here, the factor node was normalized

in output direction in order to improve inference results.

Performance evaluation

The described controller was tested during live control while the pendulum angle was

monitored. For evaluating the performance of various pendulum controller, we used a

fixed training protocoll: With time lags of 2.5s, 500 random target angles were set as
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Figure 3.5: Influence of the prior probabilities of observed variables on the message to
an inferred variable. The left matrix shows a fictive joint probability function P (A,B),
which was estimated from noisy and non-uniformly sampled data, where A = B. When
the state of A is defined in terms of a population code (incoming message), the prior
probabilities P (A) will influence the result. Here, the highest activity in the output is
elicited at position 7 instead of 6, because the prior probability P (A = 7) is higher than
P (A = 6). This problem can be solved by using the conditional probability distribution
instead, as shown on the right. Here, the entries of the matrix are normalized row-wise in
order to represent P (B|A). The output shown on the right is closer to the expected ouput
and the remaining deviations are a result of the noisy identiy matrix and perfectly match
the given model. This topic is discussed in more detail in section 3.5.2.
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Figure 3.6: Vector field generated by a simple factor graph. A factor graph with a single
factor node was used to store the instantaneous dynamics of a compliant pendulum. After
training, it was used to infer motor commands at different configurations of current and
target angle for a fixed angular speed of 0. The lengths of the arrows indicate the inferred
torques and their direction for the various configurations as indicated by the position of
their origins.

control goals. A single random sequence was reused for all tests in order to allow better

comparability. A sample trace of the angle is shown in figure 3.7. The angle difference

between pendulum position and target angle was recorded during the final second of each

intervall and eventually, the average of these deviations was computed. We will refer to

this value as the average angle deviation.

For the simple approach as described in the past sections, three setups were tested,

each of which were constructed as described before, but different encodings were used for

the observed variables. Average angular deviation for single-state activations was 49◦,

resulting from the fact that the model was not able to model transitions longer than the

chosen time constant ∆t = 200 ms and the default motor command was set to 0. If this

default value was set to the highest angular torque, the performance of the system was

significantly improved to 11.2◦, which is close to the optimal expected average angular

deviation of 10◦ for a discretization of the angle into 12 states.

By encoding the observed variables as population codes with shape of an exponential

decay, performances of 15.9◦ and 9.5◦ were obtained. For the latter value, the factor

node was normalized in output direction as described in figure 3.2.7 and section 3.2.7. As

expected, the straightforward application of gradient shaped population codes does not

result in an improvement over a discrete encoding. However, the factor graph represent-
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Figure 3.7: Pendulum control using a trivial factor graph. A factor graph with a single
factor node was used to infer actions during live control, which were then decoded into
angular torques. Every 2.5 seconds, a new target angle was randomly chosen. Shown are
the deviations from the desired angle in dependence of time.

ing the conditional probability distribution for the motor command allowed to improve

precision beyond the expected precision for a discretization for the angle with 12 states,

which was verified in multiple test runs.

3.3 Training

In all setups described in this chapter, factor graphs are used to model the joint probability

distribution over a set of variables. We assume that no prior information about the

true underlying JPD is available. Instead, all described models are trained based solely

on observations. Of course, these observations represent a finite sample of all possible

observations and hence only allow to create an approximate model of the true JPD.

In section 3.2.4, a factor graph containing a single factor node was trained to repre-

sent the JPD over a set of four parameters. In this case, learning the parameters was

particularly easy because the entries of the factor node can simply be set to the observed

frequencies of the corresponding events. For factor graphs containing multiple factor

nodes and that possibly contain hidden variables, learning the parameters requires more

sophisticated maximization methods.

In general, the aim of model training is to adjust the parameters θ of the model in such

a way that the probability distribution defined by the model approximates the observed
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probability distribution and hence the true JPD. This approximation can be done by

maximizing the likelihood of the observed data given the model, p(Y |θ) or the posterior

probability p(θ|Y ). When the priors for the model parameters p(θ) are uniform, the

posterior probability equals the likelihood. Since we have no knowledge about p(θ) and

therefore have to assume uniform priors, we will focus on the likelihood as the quantity

to be maximized.

We used two learning methods that were previously described by Rolfe [Rol06]: Gra-

dient ascent and expectation maximization. Both methods aim at maximizing the log-

likelihood of the observed data, which is equivalent to maximizing the likelihood because

the logarithm is a strictly increasing function. In the remaining part of this section, both

methods will shortly be outlined.

3.3.1 Gradient ascent

From the work of Rolfe [Rol06], it follows that the gradient of the log-likelihood of the

data with respect to a model parameters can be calculated as follows:

∂

∂fa′(Xa′ = x)
log p(Y |θ) ∝ 1

fa′(Xa′ = x)
·
(〈
p(Xa′ = x|Y (X) = Y i)

〉
i
− p(Xa′ = x)

)
(3.1)

Here, fa′ denotes a single function of the factor graph and Xa′ = x indicates a specific

variable configuration for this function. Hence, fa′(Xa′ = x) corresponds to a single

parameter of one function.

In order to calculate the gradient with respect to a single parameter of the factor graph,

the marginal probability for the corresponding variable configuration p(Xa′ = x) and the

average probability of the configuration given the observed data 〈p(Xa′ = x|Y (X) = Y i)〉i
need to be known. In a non-loopy factor graph, p(Xa′ = x) can be determined by fixing the

messages from all observed variables to non-informative messages (i.e. uniform messages)

and running the belief propagation algorithm until convergence. Multiplying the outer

product of the incoming messages to the factor node fa′ with the entries of fa′ and

subsequent normalization yields the vector of probabilities for all configurations of Xa′ .

The probabilities p(Xa′ = x|Y (X) = Y i) can be obtained similarly, but with the observed

nodes fixed to the observation Y i.

The gradient can be used to update the parameters by following the gradient for a
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distance η:

f t+1
a′ (Xa′ = x) = f ta′(Xa′ = x) + η ·∆f ta′(Xa′ = x) (3.2)

∆f ta′(Xa′ = x) =
(〈p(Xa′ = x|Y (X) = Y i)〉i − p(Xa′ = x)) /fa′(Xa′ = x)

|| (〈p(Xa′ |Y (X) = Y i)〉i − p(Xa′)) /fa′(Xa′)||2
(3.3)

Small values of η will result in slow convergence. Larger values will yield faster con-

vergence but will reduce the probability to find a local minimum of the log-likelihood for

fa′ . The learning rate can also be defined as a function of time, typically by choosing a

monotonically decreasing function like η(t) = η0 ·αt with α < 0. However, it is difficult to

determine a usefull function ηt because the time until convergence cannot be predicted.

We found that two simple techniques can improve the convergence properties: First,

∆f ta′(Xa′) can be low-pass filtered. This will prevent the parameter vector from moving

around the maximum and therefore allows to set η to higher values. Second, η(t) can be

defined as a function of η(t − 1) and be changed depending on the angle γ between the

vectors ∆f ta′(Xa′) and ∆f t−1a′ (Xa′): η(t) = g (η(t), γ). The following definition resulted in

fast and precise convergence:

η(t) =

η(t− 1) + (a− 1) · cos γ · η(t− 1) if γ ≤ 90◦

η(t− 1) + (1− 1
b
) · cos γ · η(t− 1) else

(3.4)

According to this definition, the learning rate is multiplied by a if the gradients at two

subsequent time steps point into the same direction and divided by b if they point into

opposite directions. Note that a and b are given in similar units and can therefore directly

be compared to each other. The change is modulated by cos γ such that η changes more

slowly in non-extreme cases. It is usefull to have a < b (we used a = 1.1 and b = 3). This

will cause the learning rate to slowly increase when the gradient does not change and to

quickly decrease when the gradient is subject to fast changes.

The described techniques cause the learning rate to automatically adapt to the shape

of the curve defined by the log-likelihood in dependance of the model parameters. In

parameter regimes where the log-likelihood changes slowly, the learning rate increases in

order to speed up the movement through the flat parts in parameter space. Likewise, the

learning rate decreases in parameter regimes where the log-likelihood changes quickly.

3.3.2 Expectation maximization

Maximizing the log-likelihood of observed data for factor graphs in which all variables

are observed has been shown to be a convex optimization problem. Hence, there will be

only a single global maximum of the log-likelihood. This property makes it feasable to
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Figure 3.8: Maximizing the likelihood for factor graphs with hidden variables is non–
convex. In a) and b), two parameter configurations for a factor graph are shown, which
both maximize the likelihood for two observed data points (A=0,B=0) and (A=1,B=1). If
the likelihood maximization would be a convex problem, the set of optimal solutions must
be a convex set. The parameter configuration used in c) is equal to the mean of the con-
figurations in a) and b) and would therefore have to belong to the convex set of optimal
solutions. It is obvious, however, that this configuration does not maximize the likelihood
of the described data.

apply simple gradient ascent methods as introduced in the last section: If the learning

rate is sufficiently small, gradient ascent will converge to the maximum. The single

maximum allows to start with a large learning rate and to adjust the learning rate when

the maximum of the log-likelihood is missed and the gradient changes its direction.

Maximizing the log-likelihood for factor graphs containing hidden variables, however,

is a non-convex problem, which can easily be proved, as shown in figure 3.8. Hence,

the log-likelihood may contain many local maxima and the aim of maximization should

be to converge to one of these local maxima. Again, gradient methods with sufficiently

small update steps would converge to such a local maximum. But such small values

for the learning rate would cause learning to become infeasibly slow. And the existence

of multiple maxima makes it much more difficult to design a gradient method with a

varying learning rate, because the gradients at different timesteps might point to different

maxima. This makes it impossible to decide whether the learning rate should be increased

or decreased based on the changes of the gradient. Consequently, adaptive methods like

the technique described in the last section may not converge at all.

The expectation maximization (EM) algorithm is an iterative procedure to maximize

the log-likelihood in the presence of missing or hidden data. It was shown to converge

to a stationary point, most likely a local maximum of the log-likelihood [MK96]. Each

iteration of the EM algorithm consists of an expectation step (E-step), followeg by a

maximization step (M-Step). During the E-step, the expected log-likelihood is calculated

using the current estimate for the model parameters. In the M-step, the model parameters

are updated in order to maximize the expected log-likelihood found in the E-step.

By first computing the expected value of the log-likelihood and then maximizing the

resulting term, Rolfe derived the following update rule for the parameters of a factor

graph [Rol06]:
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f t+1
a′ (Xa′ = x) = f ta′(Xa′ = x) · 〈p(Xa′ = x|Y i, θ)〉i

p(Xa′ = x)
(3.5)

This update rule would typically be used as follows: First, the intrinsic marginal prob-

ability p(Xa′ = x) and the marginal probability given the observed data p(Xa′ = x|Y i, θ)

can be determined as outlined in the last section. Using the EM update rule, the model

parameters can change dramatically within a single update. Therefore, it is necessary

to present a large batch of data points in order to determine a good approximation of

〈p(Xa′ = x|Y i, θ)〉i before performing an update. Normally, the complete batch of data

should be presented before each update. As soon as the marginal probabilities are de-

termined, the factor entries can be updated. The EM update rule was derived under

the assumption that the partition function Z =
∑

X

∏
a fa(Xa) would only be subject

to small changes during an update. Therefore, it would be desirable to change only few

model parameters in each update. In practice, all parameters of a single factor node can

be updated at once, but changing the entries of several factor nodes in one update would

cause too much variation of the partition function.

Note that using the update rule 3.5, parameters will be set to zero when the respective

marginal probability given the data is zero. During the next update, the intrinsic marginal

probability would correctly be calculated as zero, hence the result of the update would

be undefined. In order to avoid these special cases, it is advisable to lower-bound factor

entries to insignificantly low values (i.e. 10−9), such that the update rule can be executed

without treatment of special cases.

In order to ensure numerical stability, it is furthermore recommendable to normalize

the factor entries after each update. Scaling the factor entries will have no effect on the

JPD represented by the factor graph, because the partition function will scale analogously.

The EM algorithm does not require any parameters that define the learning rate and

it is thus fairly easy to apply it to unknown data. A single update can cause large jumps

in parameter space, which allows to quickly approach a maximum of the log-likelihood.

Despite these possibly large update steps, the algorithm is guaranteed to converge to a

stationary point which most likely will be a local maximum (saddle points are unstable

fixpoints) [MK96]. Gradient methods, in contrast, are only guaranteed to approach a

single maximum if the learning rate is sufficiently small.

A major drawback of the EM update rule discussed here, however, is the restriction to

updating a single factor node during each update. Additionally, each update should only

be performed after a large batch of data has been presented to the factor graph. These

two properties can cause slow learning behaviour of the algorithm which is why gradient

ascent methods with high learning rate can sometimes allow to approach a maximum of
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A
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Figure 3.9: Representation of instantaneous pendulum dynamics in a factor graph with
two factor nodes. A hidden variable H was introduced into the graph from figure 3.2 in
order to allow a factorization of the joint probability distribution.

the log-likelihood faster than the expectation maximization algorithm.

3.4 Instantaneous dynamics as a factorized function

The approach described in section 3.2 used a single factor node to connect all variables

of the system. Hence, the joint probability distribution P (A,A+1, S,M) (JPD) over

these variables was stored by a single function. This stands in contrast to the main

idea underlying the framework of factor graphs, which is to take advantage of the way a

global function on a high dimensional input space factorizes into the product of local and

lower-dimensional functions. Because of the lower dimensionality of the local functions, a

factorized representation allows to significantly reduce the number of model parameters.

When the internal structure of a global function is unknown, it may be difficult to select

a usefull factorization. In many cases, the global function may not be factorizable at all.

The existence of a factorization requires conditional independences between the variables,

which might not exist. The joint probability distribution for instantaneous pendulum

dynamics for example cannot be factorized, because no conditional independences between

the variables exist: In order to compute the future angle of the pendulum, the current

angle, motor command and angular speed need to be known.

The introduction of non-observable, or hidden variables allows to resolve this prob-

lem: Instead of factorizing the global function into a single product of functions, it will

effectively be reduced to a sum of products of functions.

Figure 3.9 shows an example factor graph that represents a possible factorization of

the same JPD that was discussed in section 3.2.4. A single hidden variable H with |H|
states was introduced. The JPD is therefore represented by the following function:

P (A,A+1, S,M) =
1

Z

∑
i

F (A,A+1, H = hi) ·G(H = hi, S,M) (3.6)
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The partition function Z is used to normalize the function to a total sum of 1.

A full reconstruction of the non-factorized representation becomes possible if |H| is

made large enough: At some point, the number of parameters in one of the adjacent

functions reaches the number of parameters in the non-factorized version. Reproducing

the original function then becomes a trivial task.

Often, the amount of information that needs to be transmitted through a hidden

variable is small, which allows to choose small values for |H|. This will cause a reduction

of the total number of parameters required to store the functions F and G when compared

to non-factorized represenation. Consider for example a pendulum that is not subject to

gravity and in which all other external forces are constant in the movement space. In such

a setup, it would be sufficient to transmit the difference between the current angle A and

the future angle A+1 through the hidden variable, because this information would suffice

to determine the correct motor command when given an angular speed. Hence, it would

be sufficient if the number of hidden states |H| would equal the number of states used

to represent the angles. In a real pendulum that is affected by gravity and other angle-

dependent forces, the information transmitted through H will be related and therefore,

useful numbers of hidden states will have the same magnitude order.

The factorization obtained by introducing a low-dimensional hidden variable brings

several benefits: First, the number of parameters can be reduced, which also reduces the

storage requirements. Second, functions like the marginal probabilities can be computed

more efficiently by belief propagation. Third, a factorized representation can force the

model to generalize to unseen data. In the example above, assume a combination of

current angle, future angle and speed is observed which was not contained in the training

data. As long as the combination of current angle and future angle occurred in the training

data, the angle difference transmitted through H would be correct, which would allow to

infer the correct motor command.

However, the introduction of a hidden variable makes training more challenging: In an

untrained factor graph, the states of the hidden variable have no meaning. Such a meaning

must be assigned to the states during training and finding a usefull state assignment can

be difficult. In the next section, we will shortly describe possible training strategies.

3.5 Population codes in a factor graph

In section 3.2.4, we introduced the idea of using population codes in a trained factor

graph when inferring the state of unobserved variables. We are considering gradient

shaped population codes in which the activation of each state increases with decreasing

distance to the true observation. The reasoning behind using such codes as inputs to a
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factor graph is to obtain linearly interpolated inference results. In an overfitted model,

such interpolations could allow to smoothen outputs and thereby help to generalize to

unseen data.

3.5.1 Motivation for using population codes

If the individual entities encoding a population code can be in unlimited many states, a

population code clearly allows to encode continuous variables at infinite precision. For

example, a code using only two units could be used to distinguish all possible settings

of a parameter x with values in the intervall [0, 1] by setting the activations of the two

units to x and 1 − x. In practice, encoding resolution is of course limited by each unit’s

resolving power, but it is obvious that this coding scheme allows to distinguish far more

states than a single-unit activation code.

When performing calculations based on population codes, it is however necessary

to take the population activity into account in a usefull manner in order to gain an

advantage of the higher resolving power. If, for example, only the maximum activity of a

population code would be taken into account when performing inference calculations on a

factor graph, no benefit would be drawn out of the higher precision of the inputs. A more

usefull effect of population coded activity at observed variables in a factor graph would be

if the resulting messages in the graph would be weighted averages of those messages which

would be obtained for single-state activations. This would allow to turn the discontinuous

function represented by a factor graph with discrete states into a continuous one. A piece-

wise linear function for example would be obtained if a continuous input would be encoded

as a graded activity of the two most similar states, similar to the two-unit example in the

last paragraph.

Three benefits can be identified that would result from essentially converting the

discontinuous function represented by a factor graph with discrete state variables into

a continuous function: First, inference calculations on the resulting continuous function

would change smoothly as the originally continuous observations change, which would

allow a better approximation of real world phenomena than a discontinuous function.

The achievable higher precision, in turn, would allow to reduce the number of states of

observed variables and thereby reduce the number of parameters in a factor graph.

Second, the smoothed continuous function might allow to counteract overfitting of a

factor graph. The number of parameters in factor nodes that are connected to observed

variables increases with their discretization resolution. A large number of parameters in

factor nodes can result in overfitting if the training data set is not sufficiently large. In

an overfitted factor graph, configurations of the observed variables that are not contained

in the training data set are assigned zero probability and as a result, inferred probability
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distributions for unobserved variables are flat. For example, a certain configuration of

current angle, speed and future angle of a pendulum might not have been contained in the

training data. This would be correctly modelled by an overfitted factor graph, but would

make it impossible to infer a motor command for such configurations, even if very similar

configurations were part of the training data. This problem is to a large degree caused by

the fact that a factor graph with discrete states represents a discontinuous function, and

thereby allows sudden changes of the function. Population codes can turn this function

into a smooth continuous function, which are less prone to extreme overfitting. Expressed

in simplified terms, function smoothening resulting from smooth inputs causes the model

to consider data points in the training set that were similar but not identical to a specific

configuration.

Third, function smoothening could allow a model to make predictions about impossible

configurations of the system, as previously described in figure 3.4. For example, if a

model is trained to represent one-timestep dynamics with a fixed timestep length, the

training data set cannot contain data points describing state transitions that would take

longer than this fixed time intervall. Hence, the model could not be used to infer motor

commands that would introduce such a transition. Essentially, the function represented by

such a factor graph assigns zero probability to all transitions that are not possible within

the considered time frame. The flat surface of the function in such parameter regimes

makes it impossible to infer a usefull motor command. By smoothening this function with

carefully chosen population codes, these impossible transitions can be assigned a non-zero

probability and function values will be different for different motor commands, which in

turn allows to select a motor command.

3.5.2 Population codes vs. messages in a factor graph

Interpreting input messages as population codes or as probabilistic observa-

tions

Unfortunately, population codes cannot be used in a factor graph in a straightforward way

because observations passed to a factor graph are interpreted differently from what would

be expected intuitively. Consider a simple factor graph with a single two-dimensional fac-

tor node as depicted in figure 3.10a) and an input message in which two out of four states

are activated by 50%. Interpreted as a population code, this message would correspond

to ‘the true state of A lies in the middle between states 2 and 3’. The expected inferred

message for B would therefore be the average of the two output messages that would be

generated for A = 2 and A = 3.

The message could also be interpreted as a probabilistic statement about the observa-



54 Chapter 3. Motor control with factor graphs

.05

.4

.3

.1

.05

.1

.5

.75

.5

.5

.1 .9 .25

.5

.5

a) b)

1

1

.5

.25

.75

1

2

3

4

A

1 2 3 4

B

1

2

3

4

A

1 2 3 4

B

0

0

0

0

0 0 0 0

Figure 3.10: Different interpretations of messages to a factor node. a) Given a fac-
tor node representing the joint probability distribution P (A,B) over two variables and an
incoming message for A, the sum-product algorithm is used to compute an output mes-
sage, which is biased by the marginal proababilities P (A). (all empty factor entries are
assumed to be 0) b) The same factor node is normalized row-wise and hence represents
the conditional probability distribution P (B|A). This removes the effect of the marginal
proababilities P (A) in the message to B when applying the sum-product algorithm.

tion, such that the observed probability that variable A is in state 2 is 50% and the same

for state 3. Hence, if mA→F (i) denotes the ith element of the message from A to the factor

node, this value would be interpreted as an observed probability Pobs(A = ai) = mA→F (i).

In this case, the message from the factor node to node B would be expected to be the

conditional probability of B given a probabilistic observation about A, in the example

P (B|Pobs(A = 2) = 0.5 ∧ Pobs(A = 3) = 0.5). The message to node B representing this

distribution would be expected to equal the expected value of the conditional probability:

mprob
F→B(j) = E [P (B = bj|Pobs(A = 2) = 0.5 ∧ Pobs(A = 3) = 0.5)]

= Pobs(A = 2) · P (B = bj|A = 2) + Pobs(A = 3) · P (B = bj|A = 3)

=
∑
i

mA→F (i) · P (B = bj|A = ai) (3.7)

=
∑
i

mA→F (i) · P (A = ai, B = bj)

P (A = ai)
(3.8)

Note the difference between the observed probabilities Pobs and the model-intrinsic

probabilities P . The latter are defined by the trained factor graph whereas the former

refers to a current observation that should be used to infer the state of another variable.

Interestingly, the interpretation of incoming messages as observed probabilities results

in the same output message for B as if the message is interpreted as a population code.
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Message interpretation in belief propagation

When using standard belief propagation on a factor graph, the described message will

be interpreted differently. Here, the meaning of the example message would be ‘Variable

A is in state 2 or 3, but no further information is available’. Consequently, the prior

probabilities for A will be taken into account when computing the message to B.

mF→B(j) =
1

Z

∑
i

mA→F (i) · P (A = ai, B = bj) (3.9)

with the partition function

Z =
∑
i

∑
j

mA→F (i) · P (A = ai, B = bj) (3.10)

It can be seen that equations 3.8 and 3.9 differ solely in the normalization applied,

where in the former case, the incoming message is first normalized by the marginal prob-

abilities P (A) and in the latter case, the output message is normalized. The effect of this

different normalization can be observed in figure 3.10. In figure 3.10b), the factor node

is normalized row-wise and represents the conditional probability distribution P (B|A).

Applying the sum-product rule results in the same term as in equation 3.7, which gives

the expected result when interpreting the message entries as observed probabilities.

Summarizing, the sum-product algorithm does not yield the output messages that one

would expect when interpreting the state of observed variables as population codes or as

observed probabilities for the individual states.

3.5.3 Population codes are incompatible with factor graphs.

In the last section, it was shown that message passing on a factor graph might not yield the

expected result when multiple states of observed variables are simultaneously activated.

The messages to unobserved variables will not be equal to the linear interpolation of those

messages that would be received with single-state activation. Instead, these messages

would be biased by the prior probabilities of the observed variables. Hence, the output

will likely be biased towards observations that were more frequent in the training data

set.

It appears like belief propagation on a factor graph representing the JPD is not suited

for inferring the probability distribution of unobserved variables when multiple states of

observed variables are activated simultaneously. In this section, we will inspect whether it

is possible to modify the graph and the message computation such that multi-state acti-

vations at observed variables would be interpreted as population codes or as probabilistic
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observations. A more formal definition is given in the next section.

Problem definition

Let Y = {Y 1, . . . , Y |Y |} be a set of |Y | observable variables, and let variable Y i have

Ni discrete states, which will be denoted by yi1 through yiNi
. We define a multi-state

observation for variable Y i as a vector Ỹ i = {ỹi1, . . . , ỹiNi
}, where ỹik ∈ [0, 1] denotes the

activation of state k of variable Y i.

Given multi-state observations for all variables except Y i, we want to be able to

compute the conditional probability for Y i as follows:

P (Y i | Ỹ 1, . . . , Ỹ i−1, Ỹ i+1, . . . , Ỹ |Y |)

=
∑

k1,...,ki−1,
ki+1,...,k|Y |
kj∈{1,...Nj}

(∏
j

ỹjkj

)
· P (Y i | y1k1 , . . . , y

i−1
ki−1

, yi+1
ki+1

, . . . , y
|Y |
k|Y |

) (3.11)

We will denote this value as the conditional probability of Y i given multi-state activa-

tions (CPDMS). The definition is equal to the linear interpolation between all conditional

probability distributions for Y i that are obtained when single-state observations are made

for all remaining variables. In this interpolation, each of the conditional probability dis-

tributions is weighted by the product of the corresponding activations. If the multi-state

activations are proportional to observed state probabilities, the above definition equals

the expected value of the conditional probability distribution for Y i.

We would like to be able to compute the CPDMS for every variable in Y in an efficient

manner by using message passing.

General considerations

Assume a model is given that allows the computation of the JPD. In order to compute

the CPDMS for a variable Y 1, we can rewrite 3.11 as follows:
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P (Y 1 | Ỹ 2, . . . , Ỹ |Y |) =
∑

k2,...,k|Y |
ki∈{1,...Ni}

(∏
i

ỹiki

)
· P (Y 1 | y2k2 , . . . , y

|Y |
k|Y |

) (3.12)

=
∑

k2,...,k|Y |
ki∈{1,...Ni}

(∏
i

ỹiki

)
·
P (Y 1, y2k2 , . . . , y

|Y |
k|Y |

)

P (y2k2 , . . . , y
|Y |
k|Y |

)

=
∑

k2,...,k|Y |
ki∈{1,...Ni}

(∏
i

ỹiki

)
·

P (Y 1, y2k2 , . . . , y
|Y |
k|Y |

)∑
k1
P (y1k1 , y

2
k2
, . . . , y

|Y |
k|Y |

)
(3.13)

Equation 3.13 can be computed if the joint probability distribution is accessible, inde-

pendent of its representaion, for example through a factor graph or a bayesian network.

This approach was used in section 3.5.2, where a factor graph consisting of a single two-

dimensional factor node was inspected: In order to compute the CPDMS for one variable

given the other one, the factor nodes needed to be normalized along the output dimension.

The same approach can be extended to multi-dimensional factor nodes: For each

output direction, a differently normalized factor is used in order to compute the output

message using the sum-product algorithm. After normalization, these factor nodes will

contain the conditional probabities for their respective output variable. Figure 3.11 depicts

the effect of these transformations on message passing: A factor graph with a single factor

node F is transformed into a message passing graph with three nodes FA, FB and FC

replacing the single factor node F , where FA(a, b, c) = F (a, b, c)/
∑

a F (a, b, c) and FB

and FC are defined analogous. In effect, the factors represent the conditional probability

distributions for their respective output variable. Computing the CPDMS for a variable in

this transformed graph can be done using the sum-product rule and applying multi-state

activation vectors as input messages for the remaining variables.

In this example, the three factors FA, FB and FC can be directly derived from the

original factor node, which would make it possible to use existing learning methods to

train the factor node and only transform it whenever the CPDMS for a variable should

be computed.

Intuition suggests that the same approach would extend to factor graphs composed of

many factor nodes and hidden variables: Replace each factor connecting n variable nodes

by n factor nodes, where each node computes the messages to a one of the variables.

An example for such a transformation is depicted in figure 3.12. In this example, two

undirected factor nodes f and g are each replaced by three directed factors that are

each normalized with respect to their output direction, for example f1(Y
1, Y 2, H1) =



58 Chapter 3. Motor control with factor graphs

F
A

F
B

F
C

Figure 3.11: Transforming a factor graph with a single factor node of degree 3 for
computing the CPDMS of all variables: The original Factor F , representing the JPD
P (A,B,C) is normalized along different dimensions in order to yield the three factors
FA = P (A |B,C), FB = P (B |A,C) and FC = P (C |A,B). Using belief propagation
with the sum-product algorithm on the right graph will result in messages that are equal
to the CPDMS.
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Figure 3.12: Attempt to transform a factor graph with two factor nodes in order to
enable the computation of the CPDMS for observed variables. Both factor nodes are
transformed similar to the transformation in figure 3.11.

f(Y 1, Y 2, H1)/
∑

i f(y1i , Y
2, H1) and gH(Y 3, Y 4, H1) = g(Y 3, Y 4, H1)/

∑
i g(Y 3, Y 4, h1i )

Assume that the original factor graph can be used to compute the JPD over Y 1, Y 2,

Y 3 and Y 4:

P (Y 1, Y 2, Y 3, Y 4) =
1

Z
·
∑
i

f(Y 1, Y 2, h1i ) · g(Y 3, Y 4, h1i ) (3.14)

Can belief propagation on the transformed graph be used to compute the CPDMS for one

of the variables, for example Y 1? When multi-state observations Ỹ 2, Ỹ 3 and Ỹ 4 are used

as input messages to the remaining variables, the sum product rule yields the following
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message to node Y 1:

mf1→Y 1 =
∑
k2

∑
k3

∑
k4

∑
kH

ỹ2k2 ỹ
3
k3
ỹ4k4 · f1(Y

1, y2k2 , h
1
kH

) · gH(y3k3 , y
4
k4
, h1kH ) (3.15)

=
∑
k2

∑
k3

∑
k4

ỹ2k2 ỹ
3
k3
ỹ4k4 ·

∑
kH

f(Y 1, y2k2 , h
1
kH

)∑
k1
f(y1k1 , y

2
k2
, h1kH )

·
g(y3k3 , y

4
k4
, h1kH )∑

i g(y3k3 , y
4
k4
, h1i )︸ ︷︷ ︸

x

(3.16)

While the result looks similar to the CPDMS as defined in 3.13, the term x does not equal

the conditional probability for Y1, which can be verified by calculating the expected term:

P (Y 1 | y2k2 , y
3
k3
, y4k4) =

P (Y 1, y2k2 , y
3
k3
, y4k4)∑

k1
P (y1k1 , y

2
k2
, y3k3 , y

4
k4

)
(3.17)

=
∑
kH

f(Y 1, y2k2 , h
1
kH

) · g(y3k3 , y
4
k4
, h1kH )∑

k1

∑
i f(y1k1 , y

2
k2
, h1i ) · g(y3k3 , y

4
k4
, h1i )

(3.18)

The term x from 3.15 and the term in 3.18 contain slightly different denominators, which

cannot easily be transformed into each other, because the latter cannot be factorized.

This example illustrates a problem with the definition of the CPDMS: The quotient in

3.13 prevents the application of the distributive law, which is the basic principle underlying

message passing schemes such as belief propagation. The calculation of the CPDMS using

3.13 would therefore force the separate calculation of all
∏

i 6=1Ni terms (which arise as a

result of the sums over {k2, . . . , k|Y |}).

Application of the distributive law might become possible if the conditional probability

distribution P (Y 1 |Y 2, . . . , Y |Y |) can be computed as a sum of products of local functions

of low dimensionality. In other words: A factor graph can be found that represents a

factorization of P (Y 1 |Y 2, . . . , Y |Y |). In some cases, this factor graph could be a subgraph

of a factor graph representing the JPD. In the following, an example for such a distribution

will be given.

A factorized conditional probability distribution

Consider a bayesian network as depicted in figure 3.13a) and its factor graph representa-

tion in b). Here, the joint probability distribution is given as follows:

P (Y 1, Y 2, Y 3, Y 4) =
∑
kH

P (Y 1) · P (Y 2) · P (h1kH |Y
1, Y 2) · P (Y 3) · P (Y 4 |h1kH , Y

3)

(3.19)
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Figure 3.13: a) A simple bayesian network with 4 observed variables and 1 hidden. b)
The factor graph representation of a).

Note that the variables Y 1, Y 2, and Y 3 are independent of each other. The conditional

probability distribution for Y 4 can be written as a sum of products of functions that are

contained in the JPD:

P (Y 4 |Y 1, Y 2, Y 3) =
∑
kH

P (h1kH |Y
1, Y 2) · P (Y 4 |h1kH , Y

3) (3.20)

This form of the conditional probability distribution allows the application of the dis-

tributive law when computing the CPDMS for Y 4:

P (Y 4 | Ỹ 1, Ỹ 2, Ỹ 3) =
∑

k1,k2,k3

ỹ1k1 ỹ
2
k2
ỹ3k3

∑
kH

P (h1kH | y
1
k1
, y2k2) · P (Y 4 |h1kH , y

3
k3

) (3.21)

=
∑
kH ,k3

ỹ3k3 · P (Y 4 |h1kH , y
3
k3

)
∑
k1,k2

ỹ1k1 ỹ
2
k2
· P (h1kH | y

1
k1
, y2k2)︸ ︷︷ ︸

mP (H1 |Y 1,Y 2)→H1

(3.22)

The right hand side of the equation illustrates the advantage of using the distributive law:

By separating the sums over k1 and k2 from the sums over kH and k3, the effective number

of calculations that need to be performed is reduced. The result equals the message to

node Y 4 when belief propagation is applied to the subgraph of 3.13b) where the factor

nodes containing the prior probabilities P (Y 1), P (Y 2) and P (Y 3) have been replaced by

the multi-state activation vectors of the respective variables. The brace indicates the

downstream message that would be sent to node H1
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Computing the CPDMS of several variables using the same graph

While the CPDMS for Y 4 in the last example can be calculated using belief propagation

on the described subgraph, the message that would be sent to node Y 3 does not equal its

CPDMS:

mP (Y 4 |H1,Y 3)→Y 3 =
∑
kH ,k4

ỹ4k4 · P (y4k4 |h
1
kH
, Y 3)

∑
k1,k2

ỹ1k1 ỹ
2
k2
· P (h1kH | y

1
k1
, y2k2) (3.23)

=
∑

k1,k2,k4

ỹ1k1 ỹ
2
k2
ỹ4k4

∑
kH

P (h1kH | y
1
k1
, y2k2) · P (y4k4 |h

1
kH
, Y 3)︸ ︷︷ ︸

6=P (Y 3 | y1k1 ,y
2
k2
,y4k4

)

(3.24)

As indicated, the last term does not equal the conditional probability distribution P (Y 3 |
y1k1 , y

2
k2
, y4k4), which would be the case if the message were equal to the CPDMS for Y 3.

Apparently, the graph needs to be changed to enable the correct computation of this

distribution. In the given example, the required change is simple: By replacing the factor

P (Y 4 |H1, Y 3) with the conditional probability distribution P (Y 3 |Y 4), the message to

Y 3 that was computed above would become equal to the desired CPDMS. In order to

store both P (Y 4 |H1, Y 3) and P (Y 3 |Y 4), the factor node could simply store the JPD

P (Y 3, Y 4, H1), which allows to derive both conditional probability distributions by nor-

malizing along different directions.

However, the example graph discussed above was derived from a simple bayesian

network and assumed that three out of four variables were independent of each other.

This property was required in order to compute the CPDMS of Y 4 and Y 3 through

message passing on a factor graph that was only slightly modified compared to the graph

containing the JPD.

Figure 3.14 shows a more general graph that assumes no independences between the

observed variables. The figure shows only two factor nodes f and g, where the latter is

a placehoder for an arbitrary graph structure. We will inspect how the CPDMS for Y 1

and Y 2 can be computed based on messages in such a general graph.

Preferably, the desired distributions should be computable from the same message

arriving at f from node H1. Based on the last example graph, we showed already that

depending on the output direction, different functions might need to be applied at the

node f in order to compute the correct CPDMS for different variables. Let α(Y 1, Y 2, H1)

be the function used to compute the CPDMS for Y 1 and β(Y 1, Y 2, H1) the corresponding

function for Y 2. After calculating the CPDMS for both variables as in equation 3.21, we
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Figure 3.14: A very general factor graph. The factor g stands representative for an
arbitrary graph structure that might contain many more hidden variables and factor nodes.

get the following conditions:

P (Y 1 |Y 2, Y 3, . . . , Y |Y |) =
∑
kH

α(Y 1, Y 2, h1kH ) · g(Y 3, . . . , Y |Y |, h1kH ) (3.25)

P (Y 2 |Y 1, Y 3, . . . , Y |Y |) =
∑
kH

β(Y 1, Y 2, h1kH ) · g(Y 3, . . . , Y |Y |, h1kH ) (3.26)

A solution can be found by making the following assumption:

P (Y 1, H1 |Y 2, Y 3, . . . , Y |Y |) = α(Y 1, Y 2, H1) · g(Y 3, . . . , Y |Y |, H1) (3.27)

P (Y 2, H1 |Y 1, Y 3, . . . , Y |Y |) = β(Y 1, Y 2, H1) · g(Y 3, . . . , Y |Y |, H1) (3.28)

Which implies:

α(Y 1, Y 2, H1)

β(Y 1, Y 2, H1)
=
P (Y 1, H1 |Y 2, Y 3, . . . , Y |Y |)

P (Y 2, H1 |Y 1, Y 3, . . . , Y |Y |)
=
P (Y 1, Y 3, . . . , Y |Y |)

P (Y 2, Y 3, . . . , Y |Y |)

=

∑
k2
P (Y 1, y2k2 , Y

3, . . . , Y |Y |)∑
k1
P (y1k1 , Y

2, Y 3, . . . , Y |Y |)
(3.29)

Here, the ratio between α and β is a function of all observed variables. Hence, at least

one of the two functions cannot be a local and low-dimensional function as desired (in

fact, the input space of these function would need to be changed). It follows that the

node f would have to have connections to all observed variable nodes.

Without the assumptions made in 3.27 and 3.28, it might be possible to find local
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functions for α and β that depend only on Y 1, Y 2 and H1. This, however, would require

that the message sent from H1 to f contains enough information about the current state

of all observed variables connected to g for computing both P (Y 1 |Y 2, . . . , Y |Y |) and

P (Y 2 |Y 1, Y 3, . . . , Y |Y |).

The conditions given in equations 3.25 and 3.26 require the separation of each of

the two conditional probability distributions into two functions after introducing one

hidden variable. With a very high number of states assigned to the hidden variable, this

factorization allows to represent any function. However, the minimal number of states

for H1 required to sufficiently approximate a specific function depends on the function

and the chosen separation of the parameter set. While the chosen factorization in the

example might allow to encode one of the conditional probability distributions with a very

low number of hidden states, this does not imply any boundary on the number of hidden

states required for encoding the second distribution. This results from the complex ratio

between the two distributions, which is equal to the ratio calculated in 3.29.

This insight remains valid even when removing the assumption that the function g

remains constant independent of whether it is used to compute the CPDMS for Y 1 or

for Y 2: A specific separation of the parameter set into two sets might be efficienct for

encoding one conditional probability distribution, but could require a very large amount

of hidden states in order to encode a second distribution. The problem gets worse if the

number of variables that are connected to the node f in figure 3.14 is increased: The

more variables are connected to f , the less likely it will become that a small number of

hidden states will be sufficient for factorizing all conditional probability distributions of

variables connected to f based on the same variable set separation.

Of course, there exist joint probability distributions that allow an efficient factorization

of all possible conditional probability distributions with the same separation of the variable

set. One trivial example are distributions where all variables are independent of each

other. It remains an open question though whether there exist JPD’s which do not

contain many independences but still allow to express all CPD’s using sets of functions

defined on the same subsets of the parameter set.

For arbitrary distributions however, it seems like the number of states of hidden vari-

ables would have to be set to large values in order to allow the transmission of all in-

formation necessary to compute all conditional probability distributions. The increase of

the overall number of adjustable parameters would render such an approach infeasible.

Instead, it would probably be more efficient to create a separate factorization for each

conditional probability distribution. A single undirected factor graph representing the

JPD would have to be replaced by |Y | directed graphs, which would have to be trained

separately. This, in turn, would be inappropriate for large numbers of variables, because
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the number of local functions would scale quadratically with the number of variables.

3.6 Function smoothing without population codes

In the last section, we showed that it is infeasible to use message passing schemes for the

computation of conditional probability distributions when given multi-state activations for

observed variables. Messages to unobserved variables in a factor graph will be biased by

the prior probabilities of observed variables, and these effects are difficult to remove unless

a directed graph is used, which allows a message-based computation of the conditional

probability distribution of only a single variable.

The original motivation to introduce population codes was described in section 3.5.1:

If the population coded activity could be properly taken into account in calculations on

a factor graph, the discontinuous function represented by a factor graph with discrete

states would effectively be transformed into a interpolated continuous function. This,

in turn, promised to yield three advantages: First, the interpolated function could have

provided a more precise model of real world phenomena than a discontinuous function,

which would have solve. Second, function smoothening could have helped to counteract

overfitting. Third, function smoothening could have allowed to select motor commands

even when the desired transition cannot be obtained instantaneously.

As discussed, the use of population codes in belief propagation on a factor graph in-

troduces severe problems and as a consequence, results from inference calculations are

biased towards observations which were more frequent in the training data set. Experi-

ments showed that this disadvantage outweighs the possible advantages described above.

As such, three problems remain unsolved: First, factor graph based control has a low

precision if continuous observed parameters of a robotic system are discretized into vari-

ables with few states. Second, factor graphs tend to overfit to training data if observed

variables have too many states. Third, a factor graph representing instantaneous dynam-

ics does not allow to select motor commands if a desired transition cannot be performed

instantaneously.

The third point relates to a fundamental problem of the architecture we chose to solve

a planning task and its usage: A single iteration on a model representing the instantaneous

dynamics of a robotic system does not suffice to make predictions about future changes

of the system and therefore cannot be used to plan sequences of movements. In chapter

4, we will introduce a novel kind of graphical modesl which overcome the limitations of

models representing instantaneous dynamics and can be used to execute such sequences

of actions in order to reach a goal.

The remaining two problems relate to the granularity of discretization, which will be
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discussed further below.

3.6.1 Choosing appropriate variable dimensions

The most obvious solution to avoid overfitting in factor graphs with discrete state variables

is to reduce the dimensionality of observed variables. In a setup as depicted in figure 3.9,

two three-dimensional factors are used. In this setup, the hidden variable H is used to

transmit all important information about the combination of current angle and future

angle to another node which will determine a motor command based on the current

angular speed. As described in section 3.4, this information will be related to the angle

difference between the current and the future state. While it would be possible to encode

this information in a message with very few states, experiments showed that a much better

performance is achieved if the resolution of the hidden variables is in the same order as

the resolution of the observed variables. The number of parameters in the factor node F

should therefore scale proportional to the third power of the chosen angle resolution.

With only approximately 104 available training datapoints, the angular resolution

should be chosen around 10-40 states in order to avoid overfitting of this single factor.

Similar considerations apply to the second factor G. Extensive experiments have con-

firmed that these settings yield the best control performance. Best results were obtained

if the current and the target angle were discretized at a resolution of 36 states, and motor

command and speed at resolutions of 21 and 11 states, respectively. The resolution of the

hidden variable had little influence on performance, as long as its state space comprised

between 10 and 30 states. Interestingly, none of the tested factorized representations

was able to outperform the simple approach using population codes on a factor graph

representing the conditional probability distribution for the motor command. Peak per-

formance was at a hidden variable resolution of 11 states, which resulted in an average

angle deviation of 12.5◦.

It should be noted that the computational time required for running belief propagation

on a factor graph scales linearly with the number of parameters in the factor nodes.

When using the expectation maximization algorithm, a single training run requires as

many belief propagation runs as the number of data points in the training set (see section

3.3.2). If both the number of data points and the number of parameters are in the range

of 104, each training run will require a multiple of 108 calculations. (The required number

of clock cycles will be about 50 times higher than this value because the sum product rule

requires additional overhead and messages for several directions need to be calculated.)

Execution of several hundreds of training runs therefore quickly exceed several hours if the

resolution of variables is large. The maximum resolution for variables in a factor graph is

therefore also limited by practical considerations.
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Figure 3.15: An factor graph similar to the example from figure 3.9, but with additional
mapping nodes Rx, which reduce high-dimensional observed variables to low-dimensional
hidden variables. (Small numbers indicate the number of states of each variable.) The
mapping nodes allow to translate a code using single-state activations for the observed
variable into a multi-state activation code for the hidden variables.

3.6.2 Further factorization

In order to allow observed variables with high resolution, three-dimensional factors con-

necting at least two of the observed variables must be avoided, because these would con-

tain too many parameters. Several factor graphs were therefore trained which contained

only two-dimensional factor nodes. These setups, however, require the introduction of

hidden variables with degree bigger than 2 in order to create a factor graph connecting

all observed variables. Training of factors that are attached to such hidden variables is

often slow because several factor nodes must agree to associate a specific meaning to the

individual states of the hidden variable. In addition, all graphs with hidden variables

of degree 3 or higher that we tested on control tasks performed poorly. Therefore, we

focused our analysis on graphs with multiple factor nodes of degree 3 and hidden variable

nodes with degree 2.

Using mapping factor nodes to reduce variable resolution

High dimensional observed variables can also be mapped to lower dimensional hidden

variables by using factor nodes of degree 2. Figure 3.15 shows an example factor graph

that uses this idea in order to map the four observed variables to hidden variables with

fewer states. This approach was motivated by the impossibility of using population codes

in a factor graph: The mapping nodes (or reduction nodes) Rx can be used to compute a

low-dimensional population code from a single-state activation of a high-resolution input

variable and could therefore act like encoders for population codes. Unlike discussed

in previous sections, gradient shaped population codes would not be used as inputs to a

factor graph, but could instead arise internally inside the graph. Since the mapping nodes

are also subject to training algorithms and will therefore become a part of the modelled

joint probability distribution, problems discussed in previous sections cannot arise in this
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Figure 3.16: Evolution of log-likelihood with training progress. The log-likelihood of
the training data monotonously increases in dependence of training runs. Factor graphs
with a single hidden variable (black dashed line) converge significantly faster than after
the addition of mapping nodes (grey line) together with 4 additional hidden variable nodes.
The addition of mapping nodes allows a slightly better representation of the training data.

approach.

Figure 3.16 shows the training success for such a network, compared to training of

a graph without mapping nodes. Due to the increased number of hidden variables, the

average log-likelihood of the training data converges much slower, but finally to a slightly

higher log-likelihood. However, this improved representation of the training data was not

reflected in terms of system performance.

A stronger effect on the log-likelihood of the data could be seen for data from a

simulated pendulum with increased gravity constant: Data obtained from this system was

biased towards angles in the range between −90◦ and 90◦ (lower half of the pendulum’s

reach). The mapping nodes allowed to reflect this bias by adapting the mapping resolution

depending on the density of the data. This effect is illustrated in figure 3.17. It resulted

in a significantly higher final log-likelihood of the data than without mapping nodes as

shown in figure 3.18.

When the control performance of this model was compared to a model without map-

ping factors in a test where target angles were evently distributed, it performed worse on

average. This decrease in performance can be attributed to higher deviations when target

angles were set to be in the upper half of the pendulum’s reach. This effect would be
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a)

b)

Figure 3.17: Contents of a mapping node (node RA in figure 3.15 connecting a high-
-dimensional representation of the angle and a low-dimensional hidden variable, after
training with data from a real pendulum (a) or a simulated pendulum (b). Darkness of
each square indicates the relative connection strength between a high-precision angle (hori-
zonatal) and a low-precision hidden representation of the angle (vertical). In the simulated
pendulum, more states

expected since this regions is represented less precisely by the model containing mapping

factors. Disappointingly, however, the performance for target angles in the lower half of

the pendulum’s reach was also not significantly better when using mapping nodes. Yet,

the performance of the simpler model for such target angles was already very good and

the performance limiting factor in this region was most likely the resolution for the motor

command. Since motor commands were evenly distributed in the training data, the map-

ping factor for the motor command assigned nearly the same resolution to all possible

motor commands.

3.7 Factorized representation of robot kinematics

In this section, we will consider a more complex robotic system with four degrees of free-

dom. We describe an approach to solving a simple control task on this system, which uses

a factor graph representing the robot’s kinematics for computing its inverse kinematics.

Unlike in methods described in the previous sections, the dynamics of the robotic system

are not modelled in this approach. Instead, a target configuration of the robotic system

is computed as a function of cartesian coordinate and the robot’s joint angles are then

linearly moved towards this target configuration.

3.7.1 An industrial robotic arm

Figure 3.19 shows a Katana robotic arm, manufactured by Neuronics [Neu11] with 6

degrees of freedoms. Here, we will not consider the state or angle of the gripper, which
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Figure 3.18: Evolution of log-likelihood with training progress for a simulated pendulum.
Shown is the evolution of the log-likelihood of the training data as a function of training
rounds. This plot is similar to figure 3.16, but for a simulated pendulum with high gravity
constant. Here, a factor graph with mapping nodes (grey line) allows the creation of a
significantly better model than without mapping nodes (black dashed line).
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Figure 3.19: A robotic arm with six degrees of freedom. In this project, only the four
indicated degrees of freedom were taken into account, the gripper status (opened/closed)
as well as the gripper rotation were ignored. Hence, the robotic arm can be regarded as
a system with 4 degrees of freedom, namely the angles A1, A2, A3 and A4. The robot
software provided functions to compute the cartesian coordinate (x, y, z) of the tip of the
center of the gripper.

effectively reduces the robot to a system with 4 degrees of freedom. Each of the axes is

equipped with a high precision servo motor which is controlled by a microcontroller. The

microcontrollers allow to perform linear movements to a desired configuration, specified

as a set of desired angles.

3.7.2 Control task

A control task was chosen which is similar to the task we described for the compliant

pendulum arm in section 3.2.2: Given a position in cartesian coordinates, move the center

of the robot’s gripper to this position by modifying the joint angles. For simplicity, the

pointing direction of the gripper can be ignored.

A crucial difference distinguishes this task from the pendulum-task: While the motor
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of the pendulum allowed to modify the torque acting on the pendulum shaft and thereby

allowed compliant control, the microcontrollers for the motors of the robotic arm imple-

ment a servomechanisms and will automatically compensate all external forces, which

results in non-compliant control. As a consequence, a configuration change to a set of

target angles is largely simplified, because the servo controllers will generate a linear

movement towards this set of angles. To a large degree, this simplified control renders it

unnecessary to consider the dynamics of the robotic system, because normally, the output

that needs to be computed for a given target position in cartesian position is independent

of the current state of the system.

However, care needs to be taken in order to avoid collisions: A linear adjustment of

target angles towards a target position might cause the robot to collide with itself or the

ground floor. We use a simple filter function, which will stop any movement that would

cause such collisions.

3.7.3 An iterative control algorithm based on a factor graph

Our strategy to solve the described control task is based on a factor graph representing

the joint probability distribution P (X, Y, Z,A1, A2, A3, A4), which describes the relation

between discretized cartesian coordinates and discretized joint angles of the robotic sys-

tem, thus its kinematics. Figure 3.20 shows an example factor graph composed of four

factor nodes that are connected to each other with two additional hidden variable nodess,

which was successfully used for representing the JPD. Factor nodes were trained using

the expectation maximization algorithm and based on data, which was generated under

human control. For each data point, angles were read out directly from the robot’s sensors

and a cartesian coordinate was calculated using a software library provided by the robot’s

manufacturer.

Given a trained factor graph representing the JPD P (X, Y, Z,A1, A2, A3, A4), our con-

trol algorithm can be outlined as follows:

1. Accept a target position defined in cartesian coordinates as input.

2. Read out the current position of angles.

3. Clamp the variable nodes of the factor graph to the observed angles and the input

coordinates.

4. Run belief propagation and read out the messages arriving at each node representing

an angle and decode these messages into target angles.

5. Start a movement towards the configuration defined by the set of decoded target

angles by linearly changing the angles at the axes.
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Figure 3.20: A simple factor graph for representing kinematics of a robot arm. Two
hidden variables H1 and H2 are introduced in order to limit the maximum node degree to
3.

6. Interrupt movement after 300 ms and repeat control procedure by returning at step

2.

Computing target angles

In steps 3 and 4, the factor graph representing the JPD P (X, Y, Z,A1, A2, A3, A4) is used

to compute a set of target angles. This computation is less straightforward than it might

seem at first sight, which is why its details need further inspection.

First, assume that the target position and the target angles would all be encoded as

messages in which a single element is different from zero. The state of the respective

variables would thereby be fixed to the observed value. After belief propagation, the

message arriving at a node representing the angle Ax would then encode the conditional

probability distribution of Ax given the current configuration of the remaining 3 angles

and the desired cartesian coordinate. In many cases however, the current configuration

of the other three angles and the target position are conflicting and simply changing the

angle Ax is not sufficient to reach the desired position. Hence, the conditional probability

distribution for Ax would be flat, because none of the possible angles will cause the joint

probability to be greater than zero. Consequently, it would be impossible to choose a

target angle for Ax.

This problem reflects the trivial insight that the robotic arm will be unable to reach

every possible possible position by adjusting a single angle. Obviously, it is wrong to

assume that all angles except the angle Ax were fixed to the current value. Instead,

it could be assumed that no prior information exists about these angles, which could be

encoded as flat input messages to the respective variable nodes. However, the consequence

would be that each angle would be adjusted independent of the current configuration.

The messages arriving at a node Ax would equal the marginal distribution for that angle
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given only the cartesian coordinate. A single target value could then be drawn from this

distribution but it would be independent of the current configuration. Such a method

could cause the robot arm to make inefficiently long movements.

Therefore, we use a gradient shaped population code to define the input message for

each observed angle. All elements of the input message are activated to some degree, but

the activation will be stronger the more similar the corresponding variable state is to the

currently observed angle. In this way, output messages of the factor graph will be biased

towards configurations that are similar to the current configuration of the angles.

As described in section 3.5.3, the resulting output messages will not equal the expected

value of the conditional probability distribution, but will be biased to configurations which

were observed more frequently in the training data. As a result, inferred angles will be less

precise. However, we found this problem to be less troublesome in the setup considered

here: Since the cartesian target position is always defined as a messages with single-state

activation, there is less bias towards robot configurations which do not match the desired

position. Performance diminishes if the target is also defined in terms of a gradient shaped

population code.

Figure 3.21 shows a screenshot of the software FGControl, which contains visualiza-

tions of the inputs to and the output messages from the observed variable nodes in a

factor graph modelling the JPD.

Obtaining smoother motions

In an early version of the algorithm, a new goal was for the robot arm was selected

every 50 ms. However, stopping an ongoing motion and initiating a new motion causes

the robot arm’s motions to become stuttery, independent of whether the new motion is

almost identical to the last one. Therefore, the control algorithm was slightly adapted.

Simply increasing the time intervall to 300 ms resulted in unesthetic sudden changes

of motion direction and poor convergence towards the goal, because the angles of the

system changed too much between measurements and likewise, the computed target angles

changed radically.

A simple idea allowed to improve the algorithm, which resulted in much smoother

movements of the robotic arm: After step 4 in the algorithm described above, a target set

of angles is known, which will then lead to a short movement towards the corresponding

configuration for a time of 300 ms short time. In the considered system, the angle change

within this time is deterministic. Therefore, the set of current angles that will be measured

at the next iteration of the algorithm can be predicted. Moreover, the outcome of the

factor graph calculation at the next iteration can also be computed, because the target

coordinate will remain the same.
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In order to achieve smoother movements, we take advantage of this insight and iterate

5 times over steps 3 and 4, before finally selecting a target angle. In the first iteration,

the currently observed set of angles is used as an input to the factor graph. A target

set of angles is then computed as described in the last section. In the next iteration, it

is assumed that a total angle change of 17◦ would have been performed, starting at the

current configuration of the robot. The result of this iteration will be a refined output

compared to the first iteration and will then be used as an input for the third iteration

and so on. After the fifth iteration, a movement is then initiated towards the target angle

set computed in the last run.

3.7.4 Simulations

The control algorithm for the Katana robot arm was tested in various setups. Approxi-

mately 20000 data points which were recorded under human control were used as training

data. Different factor graph topologies were tested, with most of them yielding similar

performace. In all these factor graphs, observed variables were discretized into 10 states.

Figures 3.22 and 3.23 show two typical traces from live control tasks, which were obtained

with a factor graph topology as depicted in figure 3.20. Control precision was about as

low as expected given the low-resolution discretization of the observed variables. In about

10 − 20% of all tests, the arm’s movement stopped long before the target position was

nearly reached. We attribute these cases to the filter algorithm, which stopped all motions

which would have caused collisions.

While the hidden variables H1 and H2 needed to have a minimum resolution of about

10− 20 states, a further increase of the resolution did not yield significant improvements.

We also tested higher setups with higher-resolution observed variables, but this had also

no beneficial effect on control performance, probably because the number of available data

points was not sufficient for more precise training.

3.8 Discussion

3.8.1 Appeal of our approach

In this chapter, we described several factor-graph based approaches to various motor

control problems. Besides their distributed computational properties inherited from the

framework of factor graphs, the presented algorithms have several appealing properties:

First, they are self-contained systems that learn an internal model of a robotic system

solely through experience. Second, the undirectedness of the models allows an application

of these in any direction. A factor graph that is trained to represent the relation between
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cartesian coordinates and angles in a robotic system can be used to compute both the

direct kinematics as well as the inverse kinematics. Third, all these computations are

a result of simple operations. Both during learning and during live control, the same

operations are executed, which are based on the simple sum-product rule. Finally, the

control algorithms do not depend on the meaning of the input variables. Instead of

transmitting the cartesian coordinate of a robot as input, one could equally well transmit

other properties of a current configuration, such as the coordinates of the robot’s gripper

in two 2D images.

3.8.2 Variable encoding

Low precision of the control algorithms we designed can partly be explained with the

chosen parameterization of the functions in the factor graphs: These depend on discrete

variables and use a naive scheme to store the function values. Under this kind of parame-

terization, factor-graphs based models for robotic systems either have a low precision due

to low-resolution discretizations, or tend to overfit, because data is too sparse for training

the large amount of parameters.

Our initial goal was to overcome the limitations of this parameterization through the

use of gradient shaped population codes. However, we were able to show in this thesis

that such codes cannot yield the desired effects in factor graphs, unless these graphs are

transformed into directed graphs, which can then be used to infer one of the variables.

However, we are not aware of any learning algorithm for training graphs.

Since gradient shaped inputs cannot be used to properly smoothen a functions repre-

sented by a factor graph, different parameterizations would be desirable. Another moti-

vation is the slow learning convergence, which could be largely improved by using lower-

dimensional parameterizations. For most real-world phenomena, it seems like continuous

variables would be a wiser choice over variables with discrete states. However, the only

continuous functions we know of that allow precise inference calculations are unimodal

Gaussian functions, as used for example by Toussaint et al. [Tou09, TG10] or in the

Kalman filter [Kal60]. A factor graph with functions representing unimodal Gaussian

functions, however, is equal to a single unimodal and high-dimensional Gaussian.

3.8.3 Modelling dynamics of a robotic system with a factor

graph

Besides low precision, another apparent problem of the control algorithms we presented

is their inability to model the dynamics of a robot. The algorithm for control of a robotic

arm ignores the dynamics of the robot but instead drives the motors of the robot linearly
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towards a goal. Modelling instantaneous dynamics of a robot in a factor graph proved

to be usable in a simple compliant system. In the regarded system, though, goals can in

most cases be reached within a single timestep. As soon as a simple obstacle is introduced

at a specific angle, a model for the instantaneous dynamics is no longer sufficient because

many possible transitions of the system will require several timesteps. By increasing the

time constant ∆t, such transitions could be modelled, but the model will become less

precise for short motions.

Modelling temporal processes apparently requires more sophisticated methods. In

chapter 4, we will introduce a new kind of graphical model topologies that are designed

to represent long action sequences in terms of a hierarchical organization.
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Figure 3.21: Typical input and output messages in a factor graph used for controlling
a robotic arm. The figure shows a screenshot from FGControl. The factor graph on the
right is composed of 5 factor nodes (F1 to F5), 4 hidden variables (H1 to H3) and the 7
observed variables representing the angles of the robotic arm (A1 to A4) and the cartesian
coordinate (X, Y and Z). Shown on the left are the inputs to the individual observed
variables (left) and the output messages arriving at these nodes (right). Each message
is composed of 10 elements and the activation of the individual elements is indicated by
white bars (full height corresponding to an activation level of one). The inputs to all
angle nodes are encoded as population codes with exponential shape, whereas a specific
cartesian coordinate is defined by applying sharp messages to the node X, Y and Z. The
output messages indicate the factor graphs belief about each variable, given the inputs to
all the other nodes. The output messages at the angle nodes are used to compute a set
of target angles, towards which a linear motion will be executed. Here, particularly the
output messages at A2 and A3 differ from the input messages, indicating that these angles
need to be changed the most.
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Figure 3.22: Movements of a robotic arm under factor graph control. A factor graph
as depicted in figure 3.20 was trained to represent the kinematics of a katana robotic arm
and was then used in live control. Every 10s, a new random target position was chosen
and the algorithm outlined in section 3.7.3 was used to steer the robot arm based on target
angles as obtained from inference calculations on the factor graph. Shown is the temporal
evolution of the distance to the target (length of the arm ≈ 1m). Two setups with different
numbers of states were tested (blue line: H1: 20 states, H2: 15 states; red line: H1: 40
states, H2: 30 states). In both cases, all observed variables were discretized into 10 states.
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Figure 3.23: Similar recording as in figure 3.22, but for a different sequence of targets.
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Hierarchical navigation networks

4.1 Motivation

In order to solve complex tasks, we often need to exert long sequences of coordinated

short actions. As an example, imagine a person that is leaving from home and heading to

a local airport in order to catch a plane. Solving this task requires the person to execute

thousands of short muscle actions. While the complete sequence of actions is necessary

in order to reach the defined goal, it is impractical to plan the complete trajectory of all

body limbs in advance.

Interestingly, we are able to outline a path to the goal within a few seconds, which

allows us to almost immediately initiate a movement. Instead of planning a detailed

trajectory for each of our joints and predicting the precise position of our body at all

timesteps in the future, we rather follow more abstract goals and subgoals. In the example,

the abstract goal the person is pursueing could be the state of being at the airport. Even

if the final goal would be defined in terms of a precise position and body pose, these

details are irrelevant for reaching it as long as the distance to the goal is high.

An abstract formulation of the goal will in most cases not on its own be sufficient

to determine suitable muscle actions, but we can easily formulate less abstract subgoals

that need to be reached in order to get to the final goal. These, in turn, can guide the

formulation of even less abstract subgoals and so on. In the example, a possible series of

such subgoals might be ‘reach the bus stop’, ‘leave the house’, ‘leave the room’, ’stand

up’ and ‘shift weight forwards’. This subgoal is the least abstract and the only one that

will have an effect on the precise muscle actions the person needs to execute immediately.

Future muscle actions can be computed as soon as the state of the body has changed. In

this way, the complete sequence of actions unfolds only during the process of solving the

task.

In this chapter, we present a hierarchical approach to navigation that is inspired by

79
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this way of computing a path between a source and a destination. Similar to the scheme

desribed above, our approach uses an abstraction hierarchy, which arises as a result from

learning through experience. The relation between the current state of the agent and

a given goal is evaluated at different abstraction levels. As a result of this evaluation,

subgoals at lower abstraction levels are chosen, which ultimately guide the immediate

behaviour of the agent.

We show how to implement the described scheme of computation in terms of a hier-

archical navigation network (HNN), which is related to graphical models and as such is

composed of a network of many small computational nodes. Each of these nodes belongs

to an abstraction level and is connected to a small number of other nodes at the same

or an adjacent abstraction level. Nodes can communicate through these connections by

message passing, where each message consists of vectors of real numbers. The messages

sent to a node compose the only information that is accessible to that node. While we

assume that the network topology is predefined by the programmer, each node can learn

its own message-producing behaviour from its experience of the messages it receives. The

nodes are organized in a hierarchical structure, which reflect the layering of abstraction

levels mentioned above. We describe the topology of HNNs and show how these can be

used to solve navigation tasks by applying them to maze navigation tasks. The nodes of

the network use learning rules that rely solely on local messages available to the nodes.

Our goal was the development of a biologically-inspired hierarchical system for naviga-

tion in arbitrary environments that would be able to learn to represent the environment,

learn the causal effects of actions inside it, and be able to guide action selection for nav-

igation. We chose message passing on a graphical model as a computational paradigm

because it shares several features with neural computational systems: Computation is

distributed among multiple computational nodes, information is stored locally at the

computational units, and every unit only has access to this local information and to mes-

sages it receives from connected units. We wanted the model to quickly converge when

given a source and a destination, efficiently guiding the selection of basic actions.

HNNs have several interesting properties: First, they demonstrate how a simple on-line

learning rule can lead to the emergence of a hierarchical decomposition of space. Second,

the self-emerging hierarchical decomposition of space allows the network to quickly con-

verge when given a source and a destination and to select an appropriate basic action at

every point in the journey. While the generated paths are not necessarily optimal in terms

of length, the resulting path lengths get close to optimal as the system learns. Third and

most importantly, HNNs represent an alternative way to model temporal processes with

graphical models. Processing across different time scales arises naturally as a consequence

of the hierarchical spatial decomposition.
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4.2 Relationship to existing approaches

Existing solutions to navigational tasks can be classified in terms of several criteria: First,

information about the environment can be acquired and stored by the agent in different

ways. Second, certain assumptions can be made about the available computational ar-

chitecture. Third, each approach is designed to work in navigational environments with

specific properties. In the following, we will mainly focus on approaches that resemble our

approach in the third criterion by being designed to work in graph-based environments.

When working with other types of environments, such as continuous geometric spaces,

other approaches can be applied including solutions from control theory, which require

that the behaviour of the navigational agent can be expressed as a dynamical system.

This, however, cannot easily be done in graph-based environments.

Regarding possible schemes of information acquisition and storage, the easiest situa-

tion is found when the full structure of the world is known and a navigational agent is

allowed to directly access the connectivity of a graph, for example in the form of adja-

cency lists. This assumption is made in standard graph navigation algorithms that go

back to Dijkstra’s algorithm [Dij59]. More advanced extensions like the D* algorithm

[Ste95] also work when parts of the graph are invisible at the time of computation, but

these approaches all have in common that all acquired information can be directly ac-

cessed and that a sequence of actions is computed by iteratively accessing this data. In

contrast, information in our approach is stored locally at the computational nodes. Also,

each of the nodes computes its output messages in a non-procedural way as a result of

the incoming messages, without having to store any intermediate results.

Incomplete information about the environment is also assumed in solutions from re-

inforcement learning. In these approaches, an agent learns behaviour through trial-and-

error interactions with an environment [SB98] by evaluating a reward signal it receives.

When applied to navigation problems, a RL-based agent would typically receive a posi-

tive reward signal whenever reaching a specified goal, and it would be trained to estimate

expected future reward values for all possible pairs of state and action. Actions would

then be selected based on their expected future reward. The information about expected

future reward distinguishes RL approaches from standard graph navigation algorithms.

It resembles a direction pointer which guides the behaviour of an agent toward a goal

and thereby allows action selection without the need to plan longer sequences of actions.

However, if the agent is supposed to be able to navigate to any destination, it needs to be

trained for each possible destination and for each triple of source, action and destination,

a separate value of expected reward needs to be learned and stored. This results in an

increase of learning time and storage requirements when the corresponding data is stored

in a naive way. In comparison, our approach does not rely on a reward signal. Instead
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of modelling a three-dimensional function fRL : {goal, state, action} → reward, a HNN

rather represents the two-dimensional function fHNN : {goal, state} → action.

When there is a regionalized structure to the environment, then there are signifi-

cant redundancies within this stored information. Hierarchies can be used to express

the regional structure of an environment and thereby reduce the amount of information

stored. This has been exploited by hierarchical approaches to RL, such as option-related

approaches [BM03]. Here, the hierarchy is on paths of different lengths, called options.

Options refer to policies that allow transitions between defined distant points in space

[SPS99]. A skill that allows a transition between a given pair of source and destination

can be reused in other contexts as part of a longer path, or as part of another skill, which

yields a hierarchical organization of skills. In approaches using intrinsic motivation, skills

can automatically be learned by an agent [SBC05].

Another way of exploiting regional structure in the environment by using hierarchies

was demonstrated by Dayan and Hinton, who looked at transitions between regions in a

hierarchy of different spatial scales [DH93]. In terms of information acquisition and stor-

age, their approach is closely related to the HNNs we present: In both cases, information

about the environment is acquired in the form of sequential exploration data and both

approaches use a hierarchy of spatial scales to represent the acquired knowledge. The

existence of a reward signal as well as the inability to learn higher level representations

from experience distinguish this approach from ours.

The existing approaches to navigation described above resemble each other in terms

of the typical computational architecture that is required for algorithm execution. Ap-

proaches from graph theory and RL are traditionally designed to work on classical von-

Neumann architectures and as such are based on procedural algorithms that have global

access to all stored information. However, there exist more recent approaches that are

based on distributed schemes of computation. Conradt employed an approach to graph

navigation that is remarkably similar to Dijkstra’s algorithm but relies on a network of

agents that communicate with each other [Con08]. Here, the nodes of a graph are rep-

resented by individual agents and a path search is performed through message passing

between the agents.

Similarly, solutions have emerged from reinforcement learning that rely on distributed

computational schemes. These are often biologically motivated and work with neural

networks. Examples can be found both in value function approaches [FMD00, SCSG05,

LWW10] and in approaches using a direct policy search [Seu03, LWW10].

The HNNs we introduce here are each composed of a single graphical model and as

such inherits the distributed computational character of these models: Computation is

shared amongst several small computational units that share information through message
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Figure 4.1: a) Graph navigation: The objective is to move the agent (green node) along
edges in the graph to its destination (red circle). Numbers indicate an order in which the
states could be sorted and should emphasize the absence of a prior knowledge regarding the
graph structure. b) Mazes with discrete state space can be formulated as graph navigation
tasks. The maze shown here is equivalent to the graph shown in a).

passing.

4.3 Factor graphs for navigation

4.3.1 The task

In the following, we are considering a simple navigation task: An agent is placed at a node

in a graph containing N nodes and is given the label of a destination node inside the same

graph (see figure 4.1). At each timestep, the agent chooses one edge along which it will

travel to an adjacent node. Thus, edges represent single-timestep-actions that the agent

can execute. Self-edges represent actions that cause no change to the agent’s position.

For simplicity, we will only consider graphs with small constant node degree, typically 4.

This allows us to use the same labels for the possible actions at each node. Given the

labels of the current position and the destination, the task is to execute a sequence of

actions that moves the agent to its destination.

The setup described above can be described as a Markov decision process (MDP)

with a deterministic relation between actions and state transitions. The problem can be

extended by making the outcome of actions probabilistic. For simplicity, we will assume

that the environment behaves deterministic for now, but we will also test our approach

in probabilistic environments in section 4.6. Maze navigationally tasks can be formulated

as graph navigation problems as depicted in figure 4.1.
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4.3.2 Standard solutions to graph navigation

The standard approach to solve a task as described above is to store the adjacencies

between positions in the maze and then to perform a breadth-first search starting at

the current position. This approach yields the optimal path. However, the breadth-first

search algorithm has two main disadvantages: First, its time complexity is O(dk), where

d denotes the distance between the two positions and k the number of dimensions of the

maze. While this tolerable in low dimensions, it becomes infeasibly slow for navigation

in high-dimensional mazes. Second, this type of iterative algorithm is not well suited to

implementation in neural architectures: While determining the optimal path, the algo-

rithm needs to cache sequences of positions and actions or at least the preceding action

for each position that was reached. While multiple positions could be remembered by

having dedicated neurons or groups of neurons to each store one single position, caching

of actions would require multiple locations to be able to store the same actions.

Another approach would be to pre-compute all paths between each possible combi-

nation of current position and destination and to store the first action for each such

combination.

4.3.3 A factor graph approach

The adjacencies between different positions in the maze could also be stored by a small

factor graph as depicted in figure 4.2a: Here, an action A and the position before (P )

and after that action (D) are represented by variable nodes. The factor node connecting

all three variable nodes contains a three-dimensional table containing the probabilities

for each event: P (P,A,D). In a deterministic environment as in our example, this table

would only contain N · |A| non-zero entries, where |A| denotes the number of possible

actions.

This factor graph could be used to infer the outcome of a single action or to infer the

action that gives the maximum likelihood to move the agent to a desired position.

However, it would be more difficult to infer a correct action if the goal state cannot

be reached with a single action, because P (P,A,D|D 6∈ VP ) = 0, where VP specifies the

set of states adjacent to P . One possibility to deal with the temporal aspect of sequences

of actions in this setup is to ‘unroll’ time as depicted in 4.2b. In this graph, each action

at each future timestep is represented as a distinct variable node. However, since the

path to the destination is unknown, the intermediate states would need to be inferred

together with the appropriate actions. Hence, finding the optimal sequence of actions

would require a more elaborate scheme than simply sending the beliefs along the graph.

Additionally, this approach requires the knowledge of the length of the path, which is
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Figure 4.2: a) A factor graph to infer single actions. P denotes a position before execut-
ing an action A and D the position after that action. The factor F defines the transition
probabilities between states. b) Standard approach for inferring sequences of actions using
factor graphs by unrolling time. Starting at a position Pt, the execution of a sequence of
actions (At, At+1, . . . ) causes the sequential transition to positions (Dt, Dt+1, . . . ). The
transition probabilities at time step t are defined by Ft.

usually not accessible. Determining this parameter further complicates the algorithm.

The repetitive structure of this kind of network also renders it neurally unplausible:

Neurophysiological evidence makes it seem unlikely that our brains store many copies

of the same information, i. e. the adjacencies between different positions in space. Of

course, it would be possible to perform the same computations by using a network as in

figure 4.2a and repetitively use a data structure storing the parameters of one single factor

node. This iterative scheme, however, would require the storage of many intermediate

results, which again seems difficult with a neurally plausible setup.

Finally, both approaches suffer from another problem when it comes to computing

long action sequences: All actions have to be pre-computed before a single action can be

executed. Hence, the computational time required for planning cannot be less than linear

in the distance between the current position and a goal. This would limit the length of

sequences that could be planned by a neural information processing system within a few

milliseconds.

In dynamic environments, computing the complete sequence of actions before execut-

ing a single action can also be futile: Some data about the environment might not be

available at the time the path is computed or the environment could change and thereby

render the pre-computed path invalid.

4.4 Hierarchical navigation networks

4.4.1 Hierarchy of simple factor graphs

Unlike the factor graph-based approaches described in the last section, we want to pursue

another approach to deal with the temporal aspect of sequence planning. As we have seen
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Figure 4.3: A maze at different resolutions. Possible transitions in the original maze
can be represented by a graph as indicated in the left frame by the black connections. Lower
resolution transition graphs can be obtained by clustering positions. At some resolution,
the current position (green) and a target (red) will be adjacent to each other, which allows
to determine a high-level action, such as ‘move from region I to region II’. The knowledge
of such an abstract action allows to determine subgoals (dark grey) for representations with
higher resolution. For example, the transition from region I to region II in the rightmost
representation can be initiated by first executing a transition from region i to region ii.

above, it is easy to infer one-step-sequences: Using belief propagation on the factor graph

in 4.2a with a given current position and a destination yields the marginal probabilities

for the actions. Selecting the action with highest probability then gives the best chance

to find the goal.

Assuming there existed a representation of the same maze with a coarser resolution

along with a set of higher-level actions, we could create a second factor graph, storing

the same relation as before, but for higher level states P (1), D(1) and higher-level actions

A(1). After mapping the current position P and the destination D to the corresponding

higher-level states P (1), D(1), we could infer a higher level action, given that the current

position and the destination are adjacent in the coarser representation.

Continuing along these lines, we could use coarser and coarser representations together

with more and more abstract actions. This way, a hierarchy of representations would be

obtained. At some resolution of the maze, the current position and the destination will

be adjacent to each other, which would then allow us to infer some high-level action.

Coarser representations of the maze can be generated by clustering adjacent positions

as shown in figure 4.3. This can also be done by analyzing recorded position sequences of

movements in the maze as we will do in section 4.5.1. However, the execution of high-level

actions seems to require the solution of the original planning task, because it should be

possible to generate a sequence of elementary actions from one high level action.
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4.4.2 Combined hierarchical model

In our approach, we define actions at one level of the hierarchy in terms of positions at the

next lower hierarchy level. This way, an action at hierarchy level h+1 would correspond to

the instruction to go to a specific position which is defined in the space of hierarchy level

h. In the following, we will refer to this position as subgoal S(h) in order to distinguish it

from the final destination of the movement. Instead of targeting the destination directly,

the agent performs movements to achieve subgoals.

Figure 4.4 illustrates how different hierarchy levels can be combined to one message-

passing model, which we call an hierarchical navigation network (HNN): Similar to figure

4.2a, the current position P (0), the final destination D(0) and the elementary action A

are represented as variable nodes. Coarser representations P (1) and P (2) of the current

position are extracted on the left side of the network. Similar coarse representations of the

destination are extracted on the right side. At each level h, a variable node indicates the

current subgoal S(h). This subgoal can be induced by the destination D(h) or computed

as a function of the current position P (h) and the subgoal S(h+1) which is selected at the

next hierarchy level. This function is stored in the factor node F (h). Since this node

supervises the selection of a suitable subgoal at the level, we will refer to it as instructor

node below.

Similar to messages in factor graphs with discretet-state variables, messages in an

HNN are vectors of real numbers. The length of the messages that are communicated

with variable nodes is defined by the number of states of the corresponding variable and

each element in the message vector is linked to the probability that the variable is in a

certain state.

4.4.3 Navigating using an HNN

Figure 4.5 illustrates how a single elementary action is determined using an HNN. Input

to an HNN is passed to the variable nodes P (0) and D(0) in form of messages encoding the

observed current position and the destination of the agent. In a deterministic environment,

a single entry in these messages would be set to one, in order to encode that the observation

is certain.

The input messages to the nodes P (0) and D(0) are used to compute messages to nodes

P (1) andD(1), which encode the current position of the agent and the destination at coarser

representations of the maze. Messages to higher level nodes P (h) and D(h) are computed

analogously. At all levels, the destination is also set as a possible subgoal by forwarding

the incoming message to the destination-node D(h) to the neighboring subgoal-node S(h).

At some level h, the current position and the subgoal will be adjacent to each other. The
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Figure 4.4: The graph structure of an HNN. The hierarchical graph can be interpreted as
being a composition of several small graphs as depicted in figure 4.2a). Each such small
graph operates at a different spatial scale of the environment and can only determine
actions if the current position and the destination are adjacent to each other. Actions at
higher levels are defined in terms of positions at the next lower resolution, which allows
to glue the simple graphs together. Subgoal nodes S(h) are introduced in order to combine
the destination at each level with subgoals induced from higher levels. The current state
(green arrow) and a destination (red arrow) are transmitted to the nodes P (0) and D(0),
respectively. From there, coarser representations are extracted, which are sent upwards
in the hierarchy to the nodes P (1), P (2) etc. and similarly for the destination. Subgoals
S(h) at each level h are either set to the destination at the same level or are induced from
a higher level subgoal through an instructor node F (h). By comparing the subgoal S(0) at
the lowest level with the current state, the node G selects an action A (black arrow). For
details, see figure 4.5.
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Figure 4.5: Determining an immediate action using an HNN. In the example, a 5x5
maze is represented by an HNN. An observed current position and a destination are en-
coded as 25-dimensional vectors and transmitted to the nodes P (0) and D(0). In the exam-
ple, these messages are represented by matrices of 5x5 circles. Only one entry corresponds
to the observed position and is set to one, as indicated by a filled circle. Information about
the current position and the destination is passed upwards through the network. At each
level, the resolution at which the maze is represented is reduced and along with that, the
length of the transmitted vector is reduced. Each node encoding the destination forwards
the incoming message (red circle) to a subgoal-node at the same level, where it is com-
bined with a message from the next higher level of the hierarchy (grey circle). The latter
message is computed by the instructor node F (h) by comparing the subgoals at the next
higher level with the current position at its own hierarchy level. The instructor nodes have
limited knowledge and can only determine subgoals for the lower level if the subgoal at the
higher level and the current position at that level are adjacent. Since the resolution of the
maze is reduced with each level, it is ensured that at some level, the destination (which
is also a subgoal) and the current position are adjacent to each other, which allows to
send a suitable subgoal down the hierarchy. This procedure ensures that at each hierarchy
level, at least one subgoal is known which can be used to compute a subgoal for the next
lower level. Finally, a comparison of the possible subgoals and the current position at
the lowest hierarchy level yields an output message encoding a possible action, which is
again encoded as a vector, where each possible action is represented by one entry (here: 4
possible actions, ‘move downwards’ is selected).
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instructor node F (h−1) will then be used to determine an alternative subgoal S(h−1) for

the next lower level, which will be adjacent to the current position P (h−1) at that level.

This process continues until a suitable subgoal has been found for the lowest level, which

will allow the derivation of an elementary action. The output is read at the action-node

A and equals the message from G to A: This messages assigns each possible action one

value, with each value rating whether the corresponding action should be selected in order

to move the agent closer to the destination. The output message can then be used by a

controller to select a single action.

When executing an elementary action, the current position changes. This will in turn

cause an update of some messages sent from the P (h)-nodes, finally resulting in a newly

computed elementary action. Due to the coarser representation at higher levels, subgoals

at these will change more slowly than low-level subgoals. Note that the precise sequence

of elementary actions is computed while the agent is moving, it is not pre-computed. This

bears the advantage of being able to react to unpredictable events along the way. This is

especially useful if the movement of the agent or the behaviour of the world are stochastic.

4.4.4 Smooth higher-level regions

Up to now, we have assumed that each high-level position corresponds to a precisely

defined group of lower-level positions. In this approach, a high-level state can only be in

one of two states at a time: activated or not activated. If we allow states to be partly

activated, it becomes possible to create high-level states that correspond to regions of

lower-level states with soft boundaries. Given a precise position at maximum resolution,

several higher level states can be partly activated at the same time, together composing

a population code for the current position. Figure 4.6 shows an example of how the 12

second-level states can be tuned to regions with soft boundaries.

Theoretically, the described population code would allow the identification of every

elementary position based on the activation levels of all states at one level of the hierarchy.

In practice, this will be limited by the noisy resolution of partial activation. However, it

does allow a more precise definition of the target and the current position at a given level

of the hierarchy. Navigation can benefit from this increased precision: Assuming a goal

lies within a certain region, but there are several possible ways to get from the current

position to the goal, partial activation of several regions that are close to the goal can

help to choose the shortest path.
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Figure 4.6: Assignment of regions with soft boundaries to 12 states in level 2. Each
depicted maze shows the tuning of one of 12 states. Grey levels indicate strength of
activation.

4.4.5 Message passing between nodes

In our model, we assume a message-passing communication style between nodes, which

is very similar to belief propagation in factor graphs [KFL01]. Unlike in a factor graph,

though, information flow in a HNN is directed.

A more detailed cutout of the graph delineated in figure 4.4 is shown in figure 4.7,

which illustrates the messages that are sent between nodes at hierarchy level h. Green

square nodes in the graph behave like factor nodes in a factor graph and use the sum-

product rule to compute outgoing messages. Blue circle nodes are related to variable

nodes in factor graphs, with the exception that the nodes P (h) and D(h) forward the

unmodified incoming message to two nodes.

The message p(h) arriving at the node P (h) defines the current state at the resolution

of level h. It is forwarded to the nodes V (h) and F (h). At V (h), this message is translated

into a coarser representation as follows:

p
(h+1)
i =

∑
j

v
(h)
ij · p

(h)
j (4.1)

Here, the parameters v
(h)
ij define the regions to which the states at level h+ 1 are tuned.

Basically, the activation P (h+1) of states at level h + 1 is computed by multiplying the

activation vector P (h) with a matrix V (h): P (h+1) = V (h) · P (h). The activation of the

individual states of D(h+1) are computed analogously, by multiplying the activation at
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Figure 4.7: Details of message passing in an HNN. Shown are the messages (see edge
labels) that are sent between nodes on a hierarchy level h. In comparison to figure 4.4,
three additional nodes per level are shown: V (h), W (h) as well as a +-node, which performs
a weighted addition of incoming messages. Blue circles represent variable nodes, which
simply forward messages arriving at them. Green squares represent factor nodes which
compute an outgoing message by applying the sum-product rule to the incoming messages.

level h with a weight matrix W (h):

d
(h+1)
i =

∑
j

w
(h)
ij · d

(h)
j (4.2)

Again, w
(h+1)
ij are the parameters defining the shape of higher-level states.

In the context of the maze task we are considering here, current state and destination

have the same input encodings, which are fed into the nodes P (0) and D(0). It would

therefore be possible to set V (h) = W (h) for all hierarchy levels h, such that the represen-

tations of current state and destination would be equal accross all levels. However, we use

distinct matrices for each side, which are trained separately from each other. This way,

the representations at the individual levels will typically differ from each other, thereby

confirming that our approach would also work smoothly in setups where the inputs for

current state and destination have different input encodings.

The instructor node F (h) receives the message p(h), which defines the current state

at the respective hierarchy level, and the message s(h+1), containing information about

a desired higher-level subgoal. It combines these two messages using the sum-product

rule in order to infer subgoals at its own hierarchy level, which are compatible with the
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higher-level subgoal, encoded in the message g(h):

g
(h)
k =

∑
i,j

f
(h)
ijk · p

(h)
i · s

(h+1)
j (4.3)

(4.4)

The destination, encoded in the message d(h) determines one possible subgoal that

could be desirable to reach. Whenever this goal is out of reach, a subgoal should be

selected which is compatible with higher-level goals, as contained in the message g(h).

These two messages are combined by weighted addition at the +-node into a message

s(h), containing all possible subgoals:

s
(h)
j = α · d(h)j + (1− α) · g(h)j (4.5)

Here, α defines the ratio by which the destination and the message coming from the next

higher level are weighted. We used α = 0.9. Note that the message s(h) is the only message

which is not computed according to the sum-product rule. The incoming messages are

first normalized in order to ensure proper weighting:

d
(h)

j = d
(h)
j /

∑
i

d
(h)
i (4.6)

g
(h)
j = g

(h)
j /

∑
i

g
(h)
i (4.7)

By making α > 0.5, the current destination is assigned a higher priority than subgoals

that are compatible with higher-level subgoals. That is, if in the representation at a

certain level the current position and the destination are close enough to each other to

know what action to take, then this takes precedence over the less-precise instructions

from the higher level.

4.4.6 Scaling properties

In the following, we will analyze the scaling properties of our hierarchical approach with

respect to computational cost and required storage. For the purpose of this analysis, we

make two simplifications: First, we assume that a state at hierarchy level h responds to

exactly two states at hierarchy level h−1 whose response regions are connected. This way,

the size of response regions doubles with each level. Second, the representations for the

current state and the goal should be identical at all levels. Our third restriction concerns

the data stored in instructor nodes: Assume the current position causes activity of states

c(h) at hierarchy level h and c(h+1) at hierarchy level h+1. An instructor node F (h) should
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be able to determine a subgoal s(h) for level h if and only if it is given a subgoal s(h+1) at

level h+ 1 that is adjacent to c(h+1). The output s(h) of this instructor node needs to be

a region inside s(h+1) or c(h+1).

The last requirement makes sure that our algorithm will allow navigation in all cases

possible with the described setup: Any destination will be adjacent to any current position

at some hierarchy level h. The instructor node at this level will either provide a lower-level

subgoal that is closer to or a subregion of the higher-level goal. In the first case, the agent

will later be able to provide a subgoal similar to the second case. In the second case,

the agent will move to a position that will be adjacent to the destination at a hierarchy

level smaller than h. By induction, it follows that the agent is guaranteed to find the

destination.

Network size

Since we require that the region sizes double with every hierarchy level, a single region at

level h will cover a region of 2h positions. Hence, in a maze of size 2h, every pair of positions

will be adjacent to each other at some hierarchy level smaller than h. We conclude that

the maximum number of hierarchy levels that need to be engaged to compute a path in

a maze of size N is log2N .

Node sizes

If we assume that regions at hierarchy level h have an average m(h) neighboring regions

of the same size, an instructor node F (h) needs to store m(h+1) values for each possible

current position c(h). Since the maze is split into N/2h regions at level h, the instructor

node needs to store a total of m(h+1)N/2h values. The total number of values stored in

all instructor nodes is therefore:

log2N−2∑
h=0

m(h+1)N/2h (4.8)

Additionally, at the lowest level, the action instructor G needs to store Nm(0) values. If

m(h) is approximately constant and equal to m across hierarchy levels, the total sums up to

less than 3mN values. This approximation is reasonable for many real-world applications

such as navigation in two-dimensional environments, as long as the shape of regions is

similar at all hierarchy levels.

In order to obtain higher level representations of a current position or a destination, we

also need to store mappings between the levels. In our simplified case, every region at one

hierarchy level projects to exactly one region at the next hierarchy level. Hence, we need
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to store 2 ∗N/2h values, where the additional factor of 2 reflects the fact that we need to

extract higher level representations both for current position and destination. Summing

up over all levels, this corresponds to 4N additional values. Overall, we conclude that

our algorithm requires storage of O(Nm) values. Interestingly, this is result is similar to

the number of parameters needed to store a state-action-reward function, which is used

in classical reinforcement learning [SB98] in order to learn movements to a single fixed

goal.

Computational cost

In order to compute one single action given a current position and a destination in a maze

of size N , O(log2N) messages need to be sent, which follows directly from the network

size. With the assumptions given above, every message will contain only one non-zero

entry. It is therefore possible to also restrict the computational costs to O(log2N).

Path length

In the worst case, the restricted version of our algorithm used in this section might generate

paths with length O(N), independent of the minimal distance of starting position and

destination. This worst case, however, will only happen in specifically designed malicious

setups, where higher level regions are laid out disadvantageously. Examples are situations

where the current state and the destination are only adjacent to each other at an upper

hierarchy level and the common boundary of the corresponding high-level regions is far

away from the current state and the destination. The algorithm will always choose a path

through this boundary, which will be inefficient if a shortcut between current position and

goal exists. If high-level regions are chosen wisely and form a compact region at maximum

resolution, these worst case scenarios can be avoided.

Using smooth boundaries for higher level regions and relaxing the assumptions made

above will render this problem irrelevant in real-world use. On average, path lengths

resulting by application of our algorithm are close to optimal, as shown in section 4.6

4.5 Implementing an HNN

4.5.1 Training parameters in an HNN

Up to now, we implicitly assumed that we would be given hierarchical networks with ap-

propriate parameters. For the system to be able to learn to navigate in new environments,

it must be possible to train these parameters based on experience. For the sake of neural
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plausibility, learning should happen locally. That is: the parameters of each node in the

network should be trained using only the messages received by the node.

In the maze task described in section 4.3, training data can be acquired by using

an explorative controller to generate actions. A simple such controller could execute a

random walk. In order to generate more long-distance information about the maze, more

sophisticated controlling strategies need to be applied which take advantage of previously

aquired knowledge about the maze. A partially trained hierarchical network can also

serve to generate more directed walks.

Data acquired using an exploratory controller consists of a list of actions together with

a stream of position data that was generated while successively executing the actions. For

each action that was executed in a training run, the positions before and after executing

this action and the action itself are presented to the nodes P (0), D(0) and A, respectively.

After all messages in the network have been updated, the parameters of the nodes are

adjusted. This process of presenting one sample and adjusting the parameters is repeated

for all actions of a training run in the order they were executed.

In the following, we present learning algorithms that demonstrate that all parameters

in an HNN can be learned based on local messages only and with limited storage for

buffering. However, they were derived phenomenologically and no assertions can be made

neither about convergence time nor about optimality of the learned parameters. It remains

an open question whether learning algorithms exist that can be shown to be optimal in

terms of a global cost function or in terms of convergence time while preserving the

desirable features of our algorithms.

Generating coarse representations

States in higher-level representations of a maze should correspond to groups of lower-

level positions which are spatially clustered. In a stream of position data, generated from

walks in the maze, spatial clustering will be expressed as temporal clustering. Neighboring

positions will also appear close to each other in the stream. Therefore, we could apply any

temporal clustering algorithm to the provided data stream in order to generate higher-

level representations. In order to make our training algorithm more neurally plausible,

we chose to use a clustering method that has only access to a short history of positions

instead of being able to consider all data in a long data trace.

We will now describe our clustering algorithm, which is based on a winner-take-all

method. As described in section 4.4.5, the activation of states at a level h is computed

by matrix-multiplying the activities from level h − 1. Both the current position and the

destination are transformed into the higher-level representation, by multiplying with V (h)

or W (h), respectively. Because both matrices are trained using the same method, we will
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only describe the training of V (h) in the following.

Initially, all entries v
(h)
ij of V (h) are initialized to constant values. After each presenta-

tion of a new datapoint, a winninng row i∗(t) and a winning column j∗(t) of the matrix

V (h) are selected in the following way: First, the activities p
(h+1)
j are computed according

to equation 4.1. These activities define the outgoing message. Second, a winning row

i∗(t) and a winning column j∗(t) are selected based on the activities in the outgoing and

the incoming message, respectively:

i∗(t) = arg max
i

p
(h+1)
i − µ(h+1)

i

σ
(h+1)
i

j∗(t) = arg max
j

p
(h)
j − µ

(h)
j

σ
(h)
j

(4.9)

Here, µ
(h)
i and σ

(h)
i denote the average activity and its standard deviation for state i at

level h. These values are continually updated according to the following equations:

µj(t) = (1− α) · µj(t− 1) + α · p(h)j (4.10)

σ2
j (t) = (1− β) · σ2

j (t− 1) + β · (µj(t)− p(h)j )2 (4.11)

The parameters α and β need to be adjusted to the respective hierarchy level, we used

values of 0.002 at V (0) and 0.001 at V (1), both for α and β.

The winning row i∗(t) corresponds to an element of the outgoing message and therefore

to a state of P (h+1) at the next hierarchy level. Similarly, the winning column j∗(t)

corresponds to a state of P (h). During training, our aim is to increase the sensitivity

of the winning higher level state for the current winning lower level state, but also for

winning lower-level states at recent timesteps. In this way, lower level states that were

observed in successive timesteps in the training data are mapped to the same higher level

state. Thereby, a temporal clustering of data points is interpreted as a spatial clustering.

We use a row vector x to assign to each state of P (h) a value to memorize its recent

winning activity. At each timestep, the vector is multiplied by a γ and the element j∗(t)

is increased by ε:

xj(t) =

γ · xj(t− 1) + ε, if j = j∗(t)

γ · xj(t− 1) else
(4.12)

This vector is then added to the winning row j∗(t) in the matrix V . ε denotes a learning

constant and γ a decay-constant, determining the weighting for winning states at past

timesteps, with values between 0 and 1. Since the effect on a winning row j∗(t) persists

over time, several high-level states might become tuned to the corresponding lower-level

state, which introduces a competition between high-level states for a given low-level state.
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With larger γ-values, the decay becomes slower and therefore, more future winning states

of P (h+1) will be tuned to state j∗(t) of P (h). This has two effects: First, the response

regions of the higher level states will have softer boundaries and there will be more overlap

between the regions. Second, competition between high level-states is increased. This

second effect results in more compact high-level regions because such regions are more

stable under the effects of competition. This helps to avoid the creation of high-level

response regions that are disconnected.

After incrementing the winning entries, the matrix V (h) is normalized to one, which

will cause a decay of all entries that are never increased.

Training inter-level instructors

As shown in equation 4.3, the message ~g(h) is computed using parameters f
(h)
ijk . These

need to be trained based on messages that arrive at the F (h)-nodes. In section 4.4.5, we

described how these nodes receive messages from the nodes P (h) and S(h+1). The output

message g(h) of the F (h)-node should have the same encoding as the output message of the

D(h)-node to allow a simple weighted addition of both messages at the +-node. Therefore,

the F (h)-node needs to also have access to the output message of D(h) in order to learn

the parameters f
(h)
ijk .

During training, changes of activities in the messages coming from S(h+1) can be

observed. An increase in activity of one state between timesteps t and t + τ (h+1) is

apparently caused by the sequence of actions that was executed within the past τ (h+1)

timesteps. Our goal is to reproduce this sequence whenever the destination causes a high

activity in the same state. Similarly, sequences that lead to a decrease of activity should

be avoided in such situations.

Our training strategy can be outlined as followed: First, recent messages coming from

the nodes P (h) and D(h) are recorded. Second, deviations ∆(t−τ (h+1),t)s
(h+1)
j between the

two messages coming from S(h+1) at timesteps t−τ and t are computed. These deviations

define how much the recent history served to get closer or farther away from states in

S(h+1). Third, the parameters f
(h)
ijk are changed proportionally to the product of the

recorded recent messages and the deviations ∆(t−τ (h+1),t)s
(h+1)
j .

The following equations define the change in f
(h)
ijk at each timestep:

trace
(h)
ik (t) =

t∑
u=t−τ (h)

p
(h)
i (u− τ (h) + 1) · d(h)k (u) (4.13)

∆f
(h)
ijk = η(h) ·∆(t−τ (h+1),t)s

(h+1)
j · trace(h)ik (t) (4.14)

Here, η(h) is a learning rate that needs to be set to sufficiently small values to allow a
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slow convergence. We used η(0) = 1.5 · 10−4 and η(1) = 3 · 10−3. τ (h) defines the timeframe

that is considered at a certain level.

The average number of timesteps that need to pass until a certain change in activity

can be observed in messages sent from S(h) depends on the level h. In general, this time

constant could be adjusted by observing the speed of change. For simplicity, we set τ (h) to

2h. This setting reflects the exponential increase of region sizes with increasing hierarchy

level and yields usable results in our configurations.

During training, the messages coming from D(h) encode a position that is reached one

timestep after the state encoded in the message from P (h). When using the network to

generate action sequences, however, F (h) should generate a message g(h) which encodes a

subgoal that can be reached within τ (h) timesteps. Therefore, an additional delay of +1

timesteps is assigned to messages coming from node P (h) during training as can be seen

in equation 4.13.

4.5.2 Generating useful streams of data

The performance of a trained hierarchical network depends largely on the quality of the

provided training data. Since we generate coarse representations by analyzing the stream

of training data, action sequences executed while recording training data influence the

topology of these representations. In general, neighboring regions will be grouped if

transitions between them occured often. Similarly, inter-level instructor nodes will only

know about transitions between two regions at their respective hierarchy level if transitions

between them occured.

Taken together, it is desirable to provide training data that contains many transitions

between different regions at all levels of the hierarchy. While it might be suitable to

use data from a simple random walk to train the lowest hierarchy level, such data is too

erratic to train higher levels of the hierarchy. With increasing hierarchy level, training

data needs to contain longer paths.

We use a simple online training method, where a partially trained HNN network is

used to generate data which is suitable to further train the same network. An agent is

placed at a random position in an unknown maze and controlled by a controller that is

based on an initially untrained HNN. This controller first executes a certain number of

random actions before it selects a goal from the set of positions that have been visited

already, favoring positions that have been visited fewer times in the past. The HNN is

then employed to reach this goal: The current position and the destination are presented

to the network. An action is then selected with a probability proportional to the entries in

the resulting message arriving at node A. Actions are iteratively selected in this way and

executed until the agent reaches the selected goal or a predefined maximum of actions
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is executed. After that, the controller will again execute a few random action before

selecting a new goal. These additional random action allows to discover new positions in

the map. This process is repeated and the collected data is in parallel used to train the

network.

By employing the partially trained HNN in the described way, it becomes possible to

generate data that contains longer and straighter paths through the maze. As soon as

one level of the hierarchy is trained, actions or action sequences that cause no transition

on this level of the hierarchy will automatically be avoided because the HNN will select

those actions that cause transitions towards the goal. This allows to generate better data

for training the next hierarchy level.

4.5.3 Using a trained HNN for navigation

Given a current position and a destination, the output of a trained HNN consists of a

message that assigns one value to each possible action. Each of these values represents a

belief about the optimality of the corresponding action. A controller can use this vector

to determine an action for a given configuration. In the last section, we described a

controller that chooses an action with a probability proportional to the corresponding

response value. This strategy bears the advantage of easily incorporating an explorative

element.

In order to quickly move from a position to a destination, it is desirable to reduce

the amount of exploration. Therefore, we chose a different controlling strategy when

evaluating a trained HNN: our controller picks actions with probability proportional to

the square of the corresponding entry in the response vector. This procedure can be

interpreted as a soft-max on the response vector. It causes a stronger focus on those

actions that receive the highest response values.

4.6 Simulations

We tested our algorithms by applying them to navigation tasks on random undirected

graphs. All graphs contained 36 nodes of degree 4. Edges were randomly added while

enforcing 40% self-edges and finally selecting only graphs with diameter 16.

For each navigation environment, we created a HNN with 3 hierarchy levels. Variable

nodes of the first, second and third level were fixed to 36, 18 and 6 states, respectively.

Information about the current and future state was transmitted to the nodes P (0) and

D(0) through additional multiplicative nodes V (−1) and W (−1) similar to the V (h)- and

W (h)-nodes in figure 4.7, which were also trained as described in section 4.5.1, but with

small time constants (V (−1): γ = 0.01, W (−1): γ = 0.1).
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All parameters in these networks were initialized to constant values, ensuring that the

network contained no information about the topology of the environment. Parameters

were then trained using a stream of position data that was generated by a controller as

described in section 4.5.2.

Training was executed in 2 phases. During the first phase, learning rates for creating

coarse representations (ε in forumula 4.12) were set to large values which ensured fast

adaption of parameters (ε = 0.006 for V (−1) and W (−1), otherwise ε = 0.0015). Time

constants γ were also set to large values (V (0) and W (0): γ = 0.88, V (1) and W (1):

γ = 0.95), in order to cause strong competition between high-level states, which causes

high-level regions to become more compact and significantly reduces the occurrence of

high-level regions that respond to disconnected regions in the maze.

All these learning parameters were decreased during the second phase, which helped

to achieve better network performance after learning: Decreasing ε helped to avoid sig-

nificant shifts of the response regions of higher-level states (V (−1) and W (−1): ε = 0.0002,

otherwise ε = 0.0001). Such shifts could make it necessary to re-learn the parameters of

the instructor nodes, since these are tied to a certain representation. Lower time con-

stants resulted in high-level regions with sharper boundaries (V (0) and W (0): γ = 0.4,

V (1) and W (1): γ = 0.6). In environments with such regions, messages at upper hierarchy

levels have a more precise meaning, which improves the overall network performance after

training.

Introducing two phases during learning might at first glance seem like conflicting

with the dogma of neural plausibility, since it requires some external mechanism that

evaluates the overall states of training and sends a signal to all nodes. However, the

parameter changes could happen gradually: Each node extracting a higher level state

could continually adapt its learning constant, based on the amount of data it has observed.

4.6.1 Evaluation

Computing average path lengths

In order to evaluate the performance of our method, we compare the average path lengths

an HNN-based controlling strategy yields with the optimal path lenghts. Interestingly, it

is possible to analytically compute the average path lengths in this setup.

When given a current position and a destination, the controlling strategy described

in section 4.5.3 uses the output of a trained HNN to assign a probability to each possible

action. During analysis, the result of these actions is known, which makes it possible to

calculate a vector containing transition probabilities for a given position and destination.

This can be done for all starting positions and a fixed goal, resulting in a transition
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probability matrix Γ for a fixed goal. We are interested in the average pathlengths ξij

between each position i and a given destination j. If i = j, no action needs to executed,

and therefore ξjj = 0. For all other positions i, the path is one step longer than the

average pathlength from those positions that can be reached from i in one step, weighted

by the associated transition probability.

In matrix notation, we get:
~ξj = Γ ~ξj + ~u (4.15)

~u contains the observations described above: All its entries are equal to 1, except for the

jth entry, which is 0. The transition probabilities from position j should all be set to 0

in order to make sure that ξjj = 0. By solving this system of linear equations for ~ξj, we

obtain a vector containing the average pathlength from all positions to position j. This

process can be repeated for all possible destinations in order to obtain the average path

lengths for all possible pairs of start and destination.

Tests on random graphs

We define the path penalty as the ratio between a computed average path length and the

minimal distance as obtained from graph analysis. A path penalty of 1.10 corresponds to

an average detour of 10% compared to the optimal path.

We generated 1000 random undirected graphs and for each one trained an HNN for

70000 timesteps. Every 2000 timesteps, we measured all path penalties. These were

grouped into six groups for goals at a distance of 1, 2, 3 to 4, 5 to 8, 9 to 12 and 13 to 16

steps. In four test runs, the performance of the network degraded exponentially for certain

paths, which was caused by higher level regions that responded to disconnected parts in

the graph. We believe this problem could be avoided by making the representations at

higher levels overcomplete, with several states responding to every position. We excluded

those four test runs from the analysis in figure 4.8, which shows how the path penalties

improve during learning, averaged over all paths in all test runs. The same analysis was

performed for a noisy environment, in which selected actions were ignored 20% of the

time and replaced by a random action. Figure 4.9 shows the results, averaged over 999 of

1000 runs.

The evolution of the path penalties expresses an interesting behaviour: While path

penalties for longer paths converge later during training, they converge approximately

at the same speed as the path penalties for shorter paths (except for those for goals at

distance 1). In addition, the relation between convergence time and path length seems to

be non-linear: Penalties for goals at distances of 13 to 16 steps converge about 2 times

slower than path penalties for goals at distances of 3 to 4 steps. Noise up to the tested

degree does not seem to have a huge impact on training success.
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Figure 4.8: Performance of HNNs as a function of training rounds. The figure shows
the evolution of measured path penalties (see text for explanation) as a function of training
iterations, where each iteration corresponds to one observed data point. Each of the lines
shows the evolution of path penalties for a specific goal distance range (goal distances were
grouped in goal distances of 1, 2, 3-4, 5-8, 9-12 or 13-16 steps). Curves show averages
over 996 out of 1000 runs. In the remaining 4, path penalties did not converge because
one of the high-level regions was disconnected. Final path penalties in the plot are ≤ 1.05.

This behaviour matches our expectations: Longer paths cannot be learned by a HNN

as long as the shorter paths are not properly understood. As soon as these are properly

modelled, longer paths can be modelled quickly.

4.7 Discussion

In this chapter, we describe how planning and execution of action sequences can be

achieved using a fixed graphical model in the context of graph-based navigation tasks.

The hierarchical navigation networks (HNN) that we describe in this chapter rely on

a hierarchical decomposition of space to which the granularity of processing is matched.

Connections at each hierarchy level express possible spatial transitions which are local

at the respective level scale. Higher level connections constrain possible transitions at

the lower levels. The basic organization of these networks is given by the programmer,

whereas the connections at each level are learned from experience.

Fine-grained information about the current position of an agent and a destination are
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Figure 4.9: Performance of HNNs as a function of training rounds for a noisy system.
The figure shows the same plot as figure 4.8, but for a system with noisy observations
during training: At each step, a random action was selected with probability 0.2. Curves
show averages over 999 out of 1000 runs. Final path penalties in the plot are ≤ 1.07.



4.7. Discussion 105

fed into nodes at the lowest level of the network. This information propagates through

the levels of the spatial hierarchy and simultaneously, each level resolves possible paths

between source and destination at that scale, constrained by solutions at the adjacent

level. Overall, the network solves a feasible route between a source and a destination and

the process imposes the next elementary action at the lowest level of the hierarchy.

Our approach demonstrates how to implement navigation using a fixed graphical

model. In contrast to most approaches from reinforcement learning or classical graph-

based navigation, it does not require a procedural processing style but instead relies

entirely on a message passing scheme between nodes of a network. All messages that are

sent between nodes inside the network only require simple computation at the nodes and

most messages are created following the belief propagation algorithm [Pea88] except for

messages that combine information from two different levels of the hierarchy, which in

turn are computed by weighted addition.

Graphical models such as factor graphs have been shown to be computationally ef-

ficient for the implementation of many algorithms from various fields such as artificial

intelligence, lattice physics, and digital communcations [KFL01]. These implementations

take advantage of the factorized representation of a global function with many parameters.

Factor graphs have also been applied to temporal processes. For example, the Kalman

filter can be implemented as a factor graph [Kal60, KFL01]. Factor graphs can also be

used in motor control, where time series need to be predicted [TG10]. All approaches we

know of that apply graphical models to temporal processes employ a time-slicing scheme

to model temporal dynamics. That is, the same graph structure is repeated for every

timestep that should be modeled. When dealing with long timescales, this time slicing

can lead to very large graph structures and unfeasibly long computation times.

In an HNN , each layer of the hierarchy works on a different abstraction level of input

space and time. The hierarchical approach thereby leads to a hierarchical factorization of

the navigation problem. We therefore think that HNNs introduce a novel approach of how

to model time in graphical models.In the current version, the current and the future state

of the agent are encoded in single variables. Hence, the input variables are not encoded

in a factorized representation, which makes it difficult to apply HNNs to problems with

high dimensional state space. We are optimistic that a factorized representation of space

can be incorporated in future extensions of our approach.

In section 4.5.1, we described simple online methods of how the parameters of an HNN

can be trained. The algorithms we presented are designed to work locally on single nodes

of the network and only require information about recent messages that were visible to

the respective node.

We showed that useful decompositions of space can be generated using such a local
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learning rule. However, the presented algorithms do not guarantee any optimality of the

generated decompositions. Better decompositions of space could be obtained using clus-

tering methods that take into account global information. In a continuous environment,

the spatial representation at higher hierarchy levels could also be generated using slow

feature analysis [WS02]. As Wiskott et al. showed, it is possible to use this method in

a hierarchical fashion which allows one to extract features that change at very different

timescales. Such a hierarchical arrangement was also employed by Legenstein et al. in

the context of reinforcement learning, where the behaviour of an agent was trained based

on the slow features of a high-dimensional input [LWW10].

In a recent paper, Hopfield proposes a neurally plausible model for navigation [Hop10].

In this model, each position in space causes a firing of a specifically tuned spiking neuron,

called a place cell. During maze exploration, each place cell is trained to connect to those

place cells which are tuned to regions adjacent to the cell’s receptive field. Navigation

tasks are then solved by executing a ’mental exploration’ phase, in which firing activity

propagates in random directions starting from a place cell representing the current position

until the place cell representing the destination becomes active. The neural activity path

that led to this cell can then guide an animal to the destination.

We believe that the hierarchical approach we describe could guide to the development

of an extension to Hopfield’s detailed neurally plausible model. This would allow one

to replace the random mental exploration phase with a much more effective hierarchical

search.

The HNNs as described in this chapter form a proof-of-concept of how a single message-

passing network can be trained to represent an environment and then be used for navi-

gation. These models are composed of many small computational units that each work

with locally available information, both during training and during application to navi-

gation tasks. Importantly, our models can be extended to larger state spaces and more

hierarchy levels in a straight-forward way. Concluding, we introduced a new concept of

how different spatial and temporal scales can be incorporated in a graphical model.



Chapter 5

Discussion

5.1 The big picture

In this thesis, we have pursued a novel approach to motor control and motion planning.

We demonstrated how graphical models can be used to model the joint probability dis-

tribution of instantaneous dynamics of a robotic system or to model the kinematics of a

robot. In both cases, we described how to apply the probabilistic model in the context

of control tasks. Finally, we introduced a new hierarchical method for representing time

in a graphical model and applied this method to maze tasks that require the execution

of sequences of actions. Alle models we presented form self-contained systems for con-

trol. They are trained solely from experience and require no prior information about the

structure of the robotic system.

Robot kinematics in a factor graph

Kinematics of a robot describe the static dependences between angles and the spatial

positions of the robot joints. This can be contrasted to the dynamics of a robot, which

describe the temporal dependences between configurations of the robot. We used a factor

graph to approximate the joint probability distribution of joint angles in a robotic arm

and its end-effector position in section 3.7. This probability distribution captures a part of

the kinematics of the robot. Consequently, this factor graph cannot predict the temporal

dynamics of the robot arm. However, it can be used to infer the end-effector position

when given a set of angles, but also vice versa for computing the inverse kinematics. It is

appealing how the undirectedness of a factor graph that is trained solely from experience

allows to compute both these functions. We described an algorithm that uses this factor

graph to steer the robotic arm towards a desired position in space.

The drawback of this approach is that the motion of the robot arm is not explicitly

computed by our model. Instead, a set of target angles is given and the joint angles
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are simply adjusted linearly in order to approach this target. As a result, there is no

intrinsic possibility to avoid collisions. In our setup, configurations that would cause

collisions are avoided by applying a complex filter function that will rule out harmfull

intermediate positions. In addition, this approach requires that the motor commands

that need to be applied in order to reach the target configuration do not depend on the

starting configuration.

Instantaneous dynamics in a factor graph

In a robotic system where selection of an action depends on the desired target and the

current position, a factor graph representing the kinematics cannot provide sufficient

control. This is for example the case in the simple control task on a compliant pendulum

that was considered in this thesis project: While an applied angular torque of 0 is the

correct command in order to hold the pendulum in an upright position, this torque is not

helpfull when attempting to reach this state (see sections 3.2 and 3.4).

In order to overcome this problem, we used a factor graph to represent the instanta-

neous dynamics of the robotic system. A factor graph was trained to relate actions with

the state of the system before and after executing these actions. This factor graph was

used in a control task to infer suitable motor commands in order to cause a transition to

a desired state.

The major drawback of this approach of using a factor graph to model instantaneous

dynamics of a robotic system is its limited reach: The graph can only be used to infer

actions in situations where the goal can be reached with a single action.

Graphical models for representing temporal sequences

The common approach to overcome this issue is to view the dynamics over N timesteps

as a repetition of single-timestep dynamics. In a factor graph representation, this would

correspond to a graph with N variable nodes representing the actions at each timestep

and N + 1 variable nodes representing the starting and target state as well as all in-

termediate states, as for example sketched in figure 4.2b. Such a time-slicing approach

was successfully used for time-series analysis like the Kalman filter [Kal60], but also in

the context of motor control [TG10, Tou09]. These approaches have also been extended

to systems in which the dynamics of a system is non-markovian and depends on the

recent two timesteps [ML09]. All described time-slicing approaches require an iterative

procedure on a function representing instantaneous dynamics when analyzing sequences.

We pursued a different approach, which uses a hierarchical decomposition of space

and time (see chapter 4). The layers in our hierarchial graphical models each act similar

to a factor graph representing instantaneous dynamics. However, each layer operates on
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a different temporal and spatial scale. Higher levels that consider larger time frames can

impose subgoals onto lower levels of the hierarchy. Subgoals that are imposed from a

higher level of the hierarchy to a lower level can be reached within a single timestep at

that level. Hence, the instantaneous dynamics stored at that level are sufficient in order

to select an action, which imposes a subgoal onto an even lower level. At the lowest level,

the selected action corresponds to a real action, which will then be executed.

5.2 Neural plausibility

In several studies within the past decade, it has been suggested that human behaviour is

optimal in a bayesian sense. This seems to be the case in visual perception [KMY04], but

also when combining visual and haptic cues [EB02] and in sensorimotor learning [KW04].

Consequently, it is not foolish to describe human behaviour using probabilistic models,

which approximate the joint probability distribution over observed data.

Factor graphs represent an elegant way to model probability distriubtions. They can

be used to approximate functions with many parameters as products of smaller functions.

Inference calculations can be performed using belief propagation, which relies on message

passing between small computational units. Interestingly, factor graphs share several

qualitative properties with nervous systems: First, computations are distributed to many

small computational units: In a factor graph, these units are formed by nodes, whereas

neurons or ensembles of neurons are commonly regarded as the computational units of

brains.

Second, each computational unit operates solely on local data, consisting of messages

that are sent to this unit and a set of parameters, which in turn can also be trained based

on messages. Nodes in a factor graph can only access information that is transmitted to

them through population-code like messages. Similarly, all information a single neuron

can access must be locally available. Third, factor graphs express a uniform structure,

with similar operations being executed in all parts of the graph. Likewise, the mammalian

cortex expresses a remarkably uniformity [HW74, RHP80] and the same computational

microstructure can be identified in many parts of the mammalian cortex [DM04, DMW89].

The hierarchical navigation networks that we presented introduce a new concept of

how to model temporal processes in a graphical model. We believe that this approach is

neurally more plausible than the common approach to model time by time-slicing. First,

our method does not require any iterative procedure as used in time-slicing approachs.

This iterative procedure would either require a highly repetitive and redundant structure

or a iterate many times over the same structure, but require the storage of temporary

results.
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In an HNN , actions at higher hierarchy levels are described in terms of subgoals at the

lower levels. These higher level actions could be interpreted as being motor primitives,

which can be executed in various contexts. The model therefore matches the common

thinking that the brain stores such motor primitives [FH05].

If an HNN would be used to model a complex robotic system, single states of variables

at lower levels in the hierarchy would most likely respond to specific body configurations.

At higher levels though, these states would most likely be tuned to regions in space,

independent of a specific body configuration. In neuroscience, units that respond to

regions in space are known as place cells, which have been discovered in rat hippocampus

[OD71]. In repetitive environments, higher-level states in an HNN could also become

tuned to grid-like structures, similar to response regions of grid cells [HFM+05, DBB10].

Grid cells can have grid-like response regions of different different scales [BST+10]. A

similar organization would be expected at high levels in an HNN : Response region sizes

increase with increasing hierarchy level.

5.3 Conclusion

The three approaches to various motor control and planning tasks we have described in

this thesis are by no means competitive with the best algorithms available today. However,

our aim was not to improve existing techniques, but to make a step into a new direction

in order to develop a different perspective on motor control problems.

We made certain assumptions about the available computational architecture, which

were chosen based on the computational properties expressed by brains. The resulting

algorithms have interesting properties, such as their ability to learn to control a system

without any prior knowledge. Information is processed in a non-procedural way and

motor actions are selected based on the result of a sequence of simple multiplications and

summations. In addition, all models we presented rely on distributed computation, where

the individual computational units can only access local information.

Two main aspects of motor control problems were modelled in this thesis and the

associated complex functions were broken apart into smaller functions: First, we demon-

strated that the topological properties of a complex robot can be factorized into a product

of low-dimensional functions. Second, a novel kind of graphical models was presented,

which allow to partition the temporal dependencies of a controllable system into smaller

functions. We believe that these two approaches could be combined in the future and

therefore form important steps towards graphical models for robotic control.



5.4. Outlook 111

5.4 Outlook

On the one hand, we showed how to model the kinematics of a robot can be factorized and

represented as a factor graph. On the other, we introduced a new concept of how to model

temporal processes in graphical models. In the former approach spatial aspects of a robot

were modeled, while temporal dynamices were completely ignored. In contrast, the latter

approach provided a factorization of temporal dynamics, but up to now includes no spatial

factorization, which limits its usability in large state spaces. Future work will hopefully

allow to combine both approaches: If it would be possible to include a fatorization of

the state in an HNN , these models could prove to be usefull in much higher-dimensional

tasks.

All factor graphs in this thesis were hand-crafted. While experiments showed that the

precise topology had very little influence on system performance in our setups, this is not

necessarily the case for higher-dimensional systems. In such systems, defining a usefull

graph topology might be much more intricate. Several studies suggest methods of how

to learn structure in graphical models, but none of these considers networks with hidden

variables [PPL97, Mcc03, LGK07]. It is promising to extend this research to factor graphs

with hidden states, which would allow to construct fully self-contained control algorithms

that can learn to control a robotic system without any user input.

In our approaches to robot control, the precision of control was coupled to the overall

number of parameters. In order to increase the precision of factor-graph-based control

algorithms, it would be desirable to choose a different parameterization for the contents

of factor nodes. Representing factor nodes with continuous functions such as gaussian

mixture models could significantly reduce the overall number of parameters, which could

result in better generalization properties and therefore require much less training data.

Continuous high-level regions in an HNN could be extracted from continuous lower-level

representations using slow feature analysis [WS02].
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Appendix A: Factor graphs

A.1 History of the belief propagation algorithm

The belief propagation algorithm was developed separately in the fields of artificial intelli-

gence, coding theory as well as in statistical physics. The success of the belief propagation

algorithm and the fact that it was independently developed in various fields underline its

flexibility.

In the artificial intelligence literature, the algorithm was originally developed for infer-

ence calculations on Bayesian networks and was used in expert systems, for example for

medical diagnosis [Pea88, Jen96]. Several successful algorithms from the field of coding

theory can be expressed as instances of the belief propagation algorithm on factor graphs,

such as the Viterbi algorithm [Vit67] and the forward-backward algorithm [BP66]. The

very successfull turbo codes, which are near-shannon limit error correcting codes can be

described as belief propagation on a loopy factor graph [BGT93]. The similarities between

these algorithms were discovered by Aji an McEliece [AM00].

Shortly after that, Yedida, Freeman and Weiss discovered a close connection be-

tween the belief propagation algorithm and the Bethe approximation of statistical physics

[YFW03].

A.2 Factor graphs

Factor graphs are visual representations of functions over sets of variables which can

be described as products of lower-dimensional functions. Consider for example a high-

dimensional function G, which is defined over variables Y 1 to Y 6, H1 and H2 and assume

that this function can be expressed as a product of smaller functions as follows:

G(Y 1, Y 2, Y 3,Y 4, Y 5, Y 6, H1, H2)

= f1(Y
1, Y 2, H1) · f2(Y 3, H1, H2) · f3(Y 4, Y 5, H2) · f4(Y 6, H2) (A.1)
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Figure A.1: Visualization of a function that can be factorized as a factor graph. Here,
the function f1(Y

1, Y 2, H1) · f2(Y 3, H1, H2) · f3(Y 4, Y 5, H2) · f3(Y 6, H2) is displayed: Cir-
cles indicate variable nodes that can be either be associated to real-world observations
(observed Variables, blue) or hidden variables (purple). Squares indicate relations be-
tween the variables, which are associated with a function fa, which is defined over the
variables that are connected to its node.

In order to visualize a such a function as a factor graph, a variable node is drawn for

each variable (typically drawn as circles) and each is function fa is assigned a factor node

(drawn as rectangles). Each factor node then gets connected to all variable nodes that it

is defined on. In this way, a bipartite graph is created, with variable nodes in the first and

factor nodes in the second set of nodes. Figure A.1 shows a visualization of the function

chosen above.

In general, the variables in a factor graph can take on one of possibly infinitely many

values, which allows the use of continuous variables. In this thesis, however, we consider

functions over variables that can take on values from a limited alphabet, which we will

denote the discrete states of these variables. Variables can be distinguished into a set

Y = {Y 1, . . . , Y |Y |} of observed and a set H = {H1, . . . , H |H|} of hidden variables.

Observed variables are directly associated with some observable quantity, whereas hidden

variables refer to an internal state. The cartesian product of the two sets will be denoted

by X = Y ×H = {Y 1, . . . , Y |Y |, H1, . . . , H |H|}. We will use the notation X i to refer to

the ith variable in this set.

In analogy to the example above, any function G that depends on the variables in X

and factorizes into a product of functions can be written as follows:

G(X) =
∏
a

fa(Xa) (A.2)
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Here, a is an index to identify the individual functions fa and Xa denotes the subset of

X that a function fa depends on.

A.3 Belief propagation

By factorizing a high-dimensional function into a product of lower-dimensional functions,

the number of parameters required to define the function can be reduced. More impor-

tantly, certain properties of the function can be calculated more efficiently by using a

factorized representation than by using the a naive representation. In particular, this

includes the calculation of certain marginal function values, which are obtained by sum-

ming the function values for all possible configurations of a selected set of variables. In

the example from equation A.1, one might for example want to compute the following

marginal probability:

G(Y 1) =
∑

Y 2,Y 3,Y 4,Y 5,Y 6,H1,H2

G(Y 1, Y 2, Y 3, Y 4, Y 5, Y 6, H1, H2) (A.3)

=
∑

Y 2,Y 3,Y 4,Y 5,Y 6,H1,H2

f1(Y
1, Y 2, H1) · f2(Y 3, H1, H2) · f3(Y 4, Y 5, H2) · f4(Y 6, H2)

(A.4)

Here, the global function is summed over all variables except Y 1. The number of terms

that need to be summed therefore increases exponentially with increasing number of

variables. However, the distributive law allows to rewrite this function as follows:

G(Y 1) =
∑

Y 2,Y 3,Y 4,Y 5,Y 6,H1,H2

G(Y 1, Y 2, Y 3, Y 4, Y 5, Y 6, H1, H2) (A.5)

=
∑
Y 2,H1

f1(Y
1, Y 2, H1)

∑
Y 3,H2

f2(Y
3, H1, H2) ·

(∑
Y 4,Y 5

f3(Y
4, Y 5, H2)

)
·
(∑

Y 6

f4(Y
6, H2)

)
(A.6)

Interestingly, the summation over certain variables can be separated from the other sum-

mations. In effect, it is for example sufficient to compute the sum
∑

Y 6 f4(Y
6, H2) once

for each possible assignment to H2. These values can then be reused for each assignment

to the other variables. Similarly, the sum over Y 4 and Y 5 can be precomputed to yield

another vector of values. Both can then be used to compute a vector of values for the

sum over Y 3 and H2 and so on. In a factor graph, the calculated temporary results can

be interpreted as messages that are sent between the nodes: the nodes f4 and f3 each

send a vector of values to the node H2, where the vectors are multiplied and forwarded

to the node f2 and so on.
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The belief propagation algorithm generalizes this observation to arbitrary tree-shaped

factor graphs. Two rules define how outgoing messages are calculated at variable nodes

and at factor nodes.

The message mXi→fa that is sent from a variable node X i to a factor node fa is equal

to the product of all messages sent to X i, except the message coming from fa:

mXi→fa(k) =
∏

fa′∈Adj(Xi)\{fa}

mfa′→Xi(k) (A.7)

Here, Adj(X i) is the set of factor nodes adjacent to X i.

At a factor node fa, a message mfa→Xi to a variable node X i is calculated by mul-

tiplying the function values fa(Xa) with the incoming messages from all nodes except

X i:

mfa→Xi(ki) =
∑

{k1,k2,... }\{ki}

(
fa(k1, k2, . . . )

∏
Xm∈Adj(fa)\{Xi}

mXm→fa′ (km)

)
(A.8)

Here, the ki refer to a specific discrete state of the ith variable connected to fa. The

function values fa(k1, k2, . . . ) essentially get multiplied with the values in the incoming

messages that correspond to the respective coordinate. For fixed ki, the sum is then

computed over all these products to yield the kithe element of the outgoing message.

If all messages in a non-loopy factor graph are calculated according to these rules, it

can be shown that marginal function values for selected variables can be calculated by

multiplying all incoming messages at that node [KFL01].

A.4 Joint probability distribution as a factor graph

In general, factor graphs can represent any factorizable function. Oftentimes, when prob-

abilistic relations are modelled, the function of interest is the joint probability distribution

(JPD) over a set of variables: P (X).

Since a probability distribution must sum up to 1, a factorized representation of the

function usually needs to be the factorized function is usually needs to be normalized:

A.4.1 Joint probability function as a factor graph

P (X) =
1

Z

∏
a

fa(Xa) (A.9)
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The normalization factor Z is called the partition function and is defined as follows:

Z =
∑
X

∏
a

fa(Xa) (A.10)

Importantly, the marginal function values of the JPD have interesting relevance. For

example, the marginal distribution over a variable X i is equal to the prior probability

distribution of that variable. Moreover, it is possible to compute conditional probability

distributions of a single variable X i given obervations about observed variables. In that

case, the messages from the observed variables to their adjacent factor nodes simply need

to be fixed to a single state. This will effectively avoid the summation over this variable.

By normalizing the product of the message to the node X i, the conditional probability

distribution is obtained.
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Implementation of an O(N) planarity test for a commercial library of

graph algorithms

2000, 2006 Teaching Assistant

University of Tübingen
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