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constrainedKriging: an R-package for customary, constrained and
covariance-matching constrained point or block kriging 1

Christoph Hofer∗, Andreas Papritz∗

Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland

Abstract

The article describes the R package constrainedKriging, a tool for spatial prediction problems
that involve change of support. The package provides software for spatial interpolation by con-
strained (CK), covariance-matching constrained (CMCK) and customary universal (UK) kriging.
CK and CMCK yield approximately unbiased predictions of nonlinear functionals of target quan-
tities under change of support and are therefore an attractive alternative to conditional Gaussian
simulations. The constrainedKriging package computes CK, CMCK and UK predictions for
points or blocks of arbitrary shape from data observed at points in a two-dimensional survey do-
main. Predictions are computed for a random process model that involves a nonstationary mean
function (modelled by a linear regression) and a weakly stationary, isotropic covariance function
(or variogram). CK, CMCK and UK require the point-block and block-block averages of the
covariance function if the prediction targets are blocks. The constrainedKriging package uses
numerically efficient approximations to compute these averages. The article contains, apart from
a brief summary of CK and CMCK, a detailed description of the algorithm used to compute the
point-block and block-block covariances, and it describes the functionality of the software in de-
tail. The practical use of the package is illustrated by a comparison of universal and constrained
lognormal block kriging for the Meuse Bank heavy metal data set.

Keywords: Constrained kriging, Covariance-matching constrained kriging, Universal kriging,
Change of support, Block kriging, Block-block covariance

1. Introduction

Change-of-support problems are quite common in practical applications of geostatistical methods
(Gotway and Young, 2002). In surveys of soil contamination, as an example, one has often to
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predict the mean pollutant content of whole parcels of land from measurements with quasi-point
support. Predictions of mean values are required because remediation or regulatory measures are
imposed for entire parcels of land and not for areal units with the same support as the observations
(Papritz et al., 2005). Predicting the mean ore content of larger volumes of rock in metal mining
is another, classical, example for change of support. Typically, the target areas or volumes — in
the sequel we denote them as blocks — for which predictions are required, are several orders of
magnitude smaller than the survey domain, but at the same time distinctly larger than the support
of the measurements. This local change of support (Chilès and Delfiner, 1999, pp. 378–380) has
to be considered if one wishes to predict nonlinear functionals of block means (e.g., whether the
block mean exceeds some regulatory threshold in soil pollution surveying).

Conditional Gaussian simulations (CS, e.g. Chilès and Delfiner, 1999, chap. 7) are the pop-
ular approach to nonlinear prediction problems with local change of support. But CS is not
undisputed: Aldworth and Cressie (2003) pointed out that CS is highly parametric and that pre-
dictions of nonlinear functionals of block means are (badly) biased if the probabilistic model is
misspecified. Moreover, for large problems, CS is still demanding in terms of computing time
and storage requirements.

Constrained kriging (CK, Cressie, 1993a) is an alternative to CS for nonlinear prediction
problems with change of support. The linear CK predictor satisfies in addition to the unbiased-
ness constraints of universal kriging (UK, e.g. Cressie, 1993b, sec. 3.4, also denoted as kriging
with trend) a further constraint that matches the variances of the predictions to the variances of
the block means. Aldworth and Cressie (2003) extended CK to covariance-matching constrained
kriging (CMCK), which matches for a set of blocks both the variances and covariances of pre-
dictions and block means. From theory we expect that predictions of nonlinear functionals of
block means by CK and CMCK are less biased than by UK and exactly unbiased if the spatial
variable is Gaussian.

To explore the practical advantages of CK and CMCK, Hofer and Papritz (2010) compared
the performance of CS, CK, CMCK and UK by simulations for nonstationary Gaussian and
positively skewed spatial process models. Besides prediction of block means (linear prediction
problem), they studied the prediction of binary indicators that signal if the block means exceed
critical thresholds (nonlinear prediction problem). All four methods predicted the blocks means
well. CK and CMCK gave less precise predictions than UK and CS only if sampling was sparse.
When predicting the indicators, CK and CMCK showed the best performance, except in the
Gaussian case where threshold exceedance was best predicted by the conditional quantiles of CS.
However, CS failed for the positively skewed data when the model was misspecified. Overall,
CK showed a good performance, slightly better than CMCK. Apart from its favourable statistical
properties, CK is also simple to compute and does not require more computing resources than
UK.

The programming environment R (R Development Core Team, 2010) comprises several
packages for the geostatistical analysis of spatial data. Most of these packages contain soft-
ware to compute UK point predictions. To our knowledge, only the R package gstat (Pebesma,
2004) has a function for block UK. We are not aware of any R package (or any other freely avail-
able software) for CK and CMCK. We closed this gap by the R package constrainedKriging that
we describe in this article. The constrainedKriging package computes CK, CMCK and UK pre-
dictions for points or blocks of arbitrary shape from data observed at points in a two-dimensional
survey domain. The predictions are computed for a spatial random process model that uses a
linear regression model for the nonstationary mean function and a weakly stationary, isotropic
covariance function (or variogram) to model the residual autocorrelation.
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The next section summarizes some theory about CK and CMCK, a more comprehensive
exposition can be found in Aldworth and Cressie (2003) and in Hofer and Papritz (2010). In
section 3 we describe how we implemented CK and CMCK. In particular, we discuss how we
efficiently integrate the covariance function for predicting block means, and we summarize the
functionality of the constrainedKriging package. An application of the software is presented in
section 4. We use data on heavy metals in a floodplain along the river Meuse (Meuse Bank data
set, Burrough and McDonnell, 1998). The article concludes in section 5 with a summary of the
main findings.

2. Constrained and covariance-matching constrained kriging

We consider m blocks, B1, . . . ,Bm, in a two-dimensional domain D. The area of a block is denoted
by |Bi|; s = (x,y)′ is a location in D ( ′ denotes transpose). The target quantities are the block
means (or some nonlinear transform thereof)

Y (Bi) =
1
|Bi|

∫
Bi

Y (s)ds

of a variable of interest
Y (s) = x(s)′β +δ (s),

with expectation E[Y (s)] = x(s)′β (x(s) and β are p-vectors with the covariates for location s and
the regression coefficients, respectively). δ (s) is a zero mean, weakly stationary variable with an
isotropic covariance function

Cov[δ (s),δ (s+h)] = Cov[Y (s),Y (s+h)] =C(h),

where h = |h|.
We have “noisy” measurements, Z(si) = Y (si)+ εi, of the variable of interest from n loca-

tions, which we denote by Z = (Z(s1), . . . ,Z(sn))
′. εi is a zero mean white noise variable with

variance σ2
ε . Let Ym = (Y (Bi), . . . ,Y (Bm))

′ denote the vector with the m block means. We look
for an approximately unbiased prediction of g(Ym), where g(·) is a (possibly nonlinear) scalar
function of Ym. Notice that we are interested in predicting functionals of the “noise-free” Y (Bi).
We consider predictors of the form g(Ŷm), where Ŷm = Λ

′Z is a linear predictor of Ym and
Λ = (λ 1, . . . ,λ m) is a n×m matrix of weights.

The covariance-matching constrained kriging predictor, ŶCMCK , proposed by Aldworth and
Cressie (2003), is a linear predictor, having the property that for any smooth, nonlinear g(·)
g(ŶCMCK ) is approximately unbiased for g(Ym) and exactly unbiased if Ym is Gaussian (Ald-
worth and Cressie, 2003, p. 12). The CMCK predictor of Ym is given by

ŶCMCK = Xmβ̂ GLS +K′C′Σ−1(Z−Xβ̂ GLS), (1)

where K = Q−1
1 P1 is a m×m matrix; Q1 and P1 are symmetric m×m matrices given by

Q1Q1 = Q = C′(Σ−1−Σ
−1X(X′Σ−1X)−1X′Σ−1)C, (2)

P1P1 = P = Σm−X′m(X
′
Σ
−1X)−1Xm; (3)
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β̂ GLS = (X′Σ−1X)−1X′Σ−1Z is the p-vector with the generalised least squares (GLS) estimate
of β ; C = (c(s1...n,B1), . . . ,c(s1...n,Bm)) is a n×m matrix where c(s1...n,Bi) = (C(s1,Bi), . . . ,
C(sn,Bi))

′ are the n covariances between Z and Y (Bi); Σ = Cov[Z,Z′]; Σm = Cov[Ym,Y′m];
Xm = (x(B1), . . . ,x(Bm))

′ and X = (x(s1), . . . ,x(sn))
′ are the m× p and n× p design matrices

of the blocks and observations, respectively. The matrices Q1 and P1 exist and are positive def-
inite if Q and P are themselves positive definite. In practice, the CMCK predictor thus exists if
Q and P are positive definite. Unlike Q, which is always nonnegative definite, the matrix P may
become negative definite (see Aldworth and Cressie, 2003, p. 15, Hofer and Papritz, 2010, p. 635
for details).

For m = 1 the CMCK predictor simplifies to the CK predictor

ŶCK (B1) = x(B1)
′
β̂ GLS +Kc(s1...n,B1)

′
Σ
−1(Z−Xβ̂ GLS), (4)

and K reduces to the scalar

K =

(
Var[Y (B1)]−x(B1)

′(X′Σ−1X)−1x(B1)

c(s1...n,B1)′(Σ
−1−Σ

−1X(X′Σ−1X)−1X′Σ−1)c(s1...n,B1)

)1/2

=

(
P
Q

)1/2

. (5)

The constraints that the (co-)variances of Ym and Ŷm match, result in larger mean square
errors (MSPE) of the CK and CMCK compared to the UK predictor

MSPE[ŶCMCK ] = MSPE[ŶUK ]+ (P1−Q1)(P1−Q1), (6)

and
MSPE[ŶCK (B1)] = MSPE[ŶUK (B1)]+(

√
P−

√
Q)2, (7)

where

MSPE[ŶUK ] = Cov[(ŶUK −Y),(ŶUK −Y)′]

= Σm−C′Σ−1C+ (8)
(X′m−X′Σ−1C)′(X′Σ−1X)−1(X′m−X′Σ−1C).

is the covariance matrix of the UK prediction errors.

3. Software

The constrainedKriging package computes univariate UK, CK and CMCK predictions for points
or blocks in a two-dimensional domain from data that can be represented by a spatial random
process with a nonstationary mean function (modelled by a linear regression) and an isotropic,
weakly stationary covariance function. Currently, our software does not allow to use unbounded
variograms. This may appear as a limitation, but our experience is that variograms are hardly
ever unbounded if the large scale trend of a spatial variable is adequately modelled by a linear
regression. The uncertainty of the covariance parameters is ignored when computing the predic-
tions, i.e. our software computes so-called “plug-in” predictions. For all kinds of block kriging,
the “block-block”-averages (elements of Σm, in the sequel denoted as block-block covariances)
and “point-block”-averages (elements of C, point-block covariances in the remainder) of the co-
variance function are required. Computing these averages is the numerically costly step in block
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kriging. Apart from some general remarks about our implementation of CK and CMCK, we de-
scribe in this section therefore, how we compute these averages in an efficient way. The second
part of the section describes the functionality of the software.

3.1. Implementation
The CK and CMCK algorithms are closely related to UK. The only difference is that the weighted
sum of the GLS residuals is multiplied by K′ for CMCK (1) and by K for CK (4). K is obtained
from the terms required to calculate the UK predictor and its MSPE. Thus, the CK predictor can
be computed with negligible cost from the standard (block) UK results. For CMCK we have
to compute the nonnegative definite, symmetric m×m matrices Q1 (2) and P1 (3) — which in
turn depend on C and Σm — to get K. Q1 and P1 are obtained by eigenvalue decomposition
of Q and P (Harville, 1997, sec. 21.9): Let V be a nonnegative definite m×m matrix with
eigenvalue decomposition V = UDU′ where the columns of U contain the eigenvectors and D =
diag(d1, . . . ,dm) the m eigenvalues, di, of V. The nonnegative symmetric square root, V1, of V
such that V = V1V1 = V2

1, is then given by V1 = Udiag(
√

d1, . . . ,
√

dm)U′. If either P or Q are
not strictly positive definite, then some eigenvalues are either negative (P) or equal to zero (Q)
and in both instances the decomposition fails. Our software then issues a warning and returns NA
as prediction result.

It remains to explain how we compute Σm and C. Our software computes them only for
isotropic covariances. To cope with geometrically anisotropic autocorrelation one could trans-
form the geographical coordinates beforehand by an affine transformation. Zonal anisotropies,
however, cannot be currently handled. We believe that this is not too serious a limitation because
anisotropic autocorrelation patterns of spatial data are frequently linked to a large-scale spatial
trend and often disappear in the residuals of a linear regression model. C is required in all three
approaches; UK and CK require only the diagonal elements of Σm, but CMCK needs also the
off-diagonal elements of Σm. In the explanation we consider a set of m = 4 blocks (Fig. 1). B1 is
the target block, B2, B3 and B4 are its “neighbours” used for matching the (co-)variances of pre-
dictions and block means in CMCK. Jointly they form a so-called “prediction set”, abbreviated
in the sequel by PS. The blocks of a prediction set usually share one or more edge(s) with the
target block, cf. Bivand et al. (2008, sec. 9.2) for a discussion how to define spatial “neighbours”.
If the prediction target is a point we can of course define prediction sets in the same way.

The block-block covariance between two blocks Bi and B j of arbitrary shape is given by

[Σm]i j = Cov[Y (Bi),Y (B j)] =
1

|Bi||B j|

∫
Bi

∫
B j

C(|si− s j|)dsi ds j. (9)

We can reduce this quadruple integral to a single integral by exploiting the fact that it can be
written as the expected value of C(|si−s j|) with respect to the distribution of the distance |si−s j|
between two points, si and s j, uniformly distributed in Bi and B j, respectively

Cov[Y (Bi),Y (B j)] =
∫ +∞

−∞

u(|si− s j|)C(|si− s j|)d|si− s j|. (10)

u(|si−s j|) is the probability density function of the distance between the two points. This density
is hard to derive for arbitrary block shapes, but Gosh (1951) deduced it for two rectangular
blocks with the same shape and size. Based on this result, Clifford (2005) wrote the R package
spatialCovariance (Clifford, 2009) to compute the spatial covariance between two rectangular
blocks with the same geometry.
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We use Clifford’s package to approximate Cov[Y (Bi),Y (B j)] for blocks of arbitrary shape:
The key idea is to approximate the blocks by sets of rectangular “pixels”, to compute the co-
variance matrix of the pixel means by Clifford’s software and to approximate Cov[Y (Bi),Y (B j)]
from the latter matrix. Our algorithm consists of the following steps:

1. Find the PS with the largest bounding box among all PSs.
2. Place a grid with q rectangular pixels, PXk, k = 1, . . . ,q, that have all the same size and

shape over the largest bounding box (Fig. 2, left). The dimension of the pixel should be
chosen such that the pixel is distinctly larger than the support of the observations, but small
enough to allow a good approximation of the blocks.

3. Compute the covariance matrix of the q pixel means, Y (PXk) = 1/|PX |
∫

PXk
Y (s)ds, by the

R package spatialCovariance.
4. Approximate the blocks of each PS by a subset of the q pixels. Figure 2 (right) illustrates

the approximation for our example PS shown in Figure 1. The approximation of the block
Bi is denoted by B̃i. The pixels are allocated to the blocks according to the following rules:

a) Blocks that do not contain pixel centroids are treated as points.

b) A pixel is allocated to that block of the PS that contains its centroid, provided the
area of the respective block, say Bs, is not smaller than the area of the pixel.

c) If, however, |Bs| < |PX | then the block Bs is treated as a point and the pixel, whose
centroid lies in Bs, is allocated to the block B j, B j ∈ PS, j , s, with whom it shares
the largest area. The intersection of the areas of pixels and blocks are computed by
the R package gpclib (Peng et al., 2010).

5 Compute for each PS the covariance matrix of the Y (B̃i) from the covariance matrix of the
Y (PXk) by

Cov[Y (Bi),Y (B j)]≈ Cov[Y (B̃i),Y (B̃ j)] =
1

q2
i j

qi j

∑
k=1

qi j

∑
l=1

Cov[Y (PXk),Y (PXl)], (11)

where qi j is the number of pixels used to approximate Bi and B j.

Steps 1–3 are carried out just once, but steps 4 and 5 must be executed for each PS. Our allocation
rule for the pixels in step 4 is a compromise that ensures a computationally efficient yet precise
approximation of Cov[Y (Bi),Y (B j)].

The elements of C are approximated in a similar way: Without loss of generality, we can
represent a point-block covariance by a single integral

[C]ki = Cov[Y (sk),Y (Bi)] =
1
|Bi|

∫
Bi

C(|sk− si|)dsi

=
∫ +∞

−∞

v(|sk− si|)C(|sk− si|)d|sk− si|, (12)

where v(|sk−si|) is the probability density function of the distance |sk−si| between the sampling
location sk and a point si, uniformly distributed in Bi. We approximate Bi again by a set of pixels,
yielding B̃i, cf. step 4 above, and we approximate the point-block covariance in the modified step
5 by

Cov[Y (sk),Y (Bi)]≈ Cov[Y (sk),Y (B̃i)] =
1
qi

qi

∑
l=1

Cov[Y (sk),Y (PXl)], (13)
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where qi is the number of pixels that make up B̃i. To compute Cov[Y (sk),Y (PXl)] we derived the
density function of the distance between a fixed point, say the origin s0, and a point s, uniformly
distributed in a rectangle (cf. Appendix A), and we implemented the integration in a C function
that is callable from R. This function relies on CovarianceFct(·), a function of the R package
RandomFields (Schlather, 2001) that we also use to compute the covariance matrix of the pixel
means in step 3 and for point kriging.

To reduce the approximation error in (11) and (13), the software allows to average for each
PS the results of several runs of the steps 2–5. Each run uses a randomly shifted origin for the
grid of pixels in step 2. The origin is shifted by (∆x,∆y)′ where ∆x (∆y) is uniformly distributed
in the interval ±0.5 pixel-length (±0.5 pixel-width).

3.2. Functionality
The constrainedKriging package provides two main user functions, preCKrige(·) and CKrige(·):

• preCKrige(·) computes the block-block covariances of the PSs.

• CKrige(·) computes the point-block covariances and the predictions based on the output
generated by preCKrige(·).

The purpose of the first step is to supply the block-block covariance matrices and the informa-
tion about the PS block approximations. preCKrige(·) requires as input (i) the coordinates and
covariates of the prediction targets, (ii) the definition of the neighbourhood relations in each PS,
and (iii) the parameters of the covariance function. For block prediction the function requires in
addition the dimension (width, length) of the pixel for the numerical integration. The coordinates
and covariates of the prediction targets are passed to preCKrige(·) as a SpatialPointsDataFrame
(point kriging) or as a SpatialPolygonsDataFrame (block kriging), two classes provided by the
R package sp (Bivand et al., 2008, chap. 2). By default, preCKrige(·) computes the items re-
quired for UK and CK, i.e., it assumes that the prediction sets consist only of the target block
(case m = 1). For CMCK the prediction sets must be defined by a list that has as many compo-
nents as there are prediction targets (the ith component contains a vector with the indices of the
neighbourhood relations of the ith prediction set).

The covariance parameters are passed to preCKrige(·) as a list that is conveniently generated
by the auxiliary user function covmodel(·), which is also part of our package. The covariance
function may consist of a single “elementary” function such as exponential, spherical, etc., or of
a sum of several such elementary functions. Each elementary function is characterized by the
following parameters: Type of model (e.g., exponential), variance of measurement errors (σ2

ε ),
variance of spatial micro-scale variation (nugget variance of δ (s)), variance of autocorrelated
component (partial sill of δ (s)), range parameter, and possibly further parameters such as the
“smoothness” parameter of Matern’s Bessel function covariance model. Notice that covmodel(·)
takes two “nugget” constants: one for the variance of the measurement errors that are filtered
in kriging and one for the spatial micro-scale variation that is considered when computing the
kriging predictions. Finally the user can choose the number of runs to approximate the block-
block and point-block covariances of the PSs. By default, only one run is executed.

A call of preCKrige(·) generates a S4 class object (Chambers, 1998, chap. 7). The returned
object is either of class preCKrigePoints (point kriging) or of class preCKrigePolygons (block
kriging), two classes defined by our package. Four elements (slots) are common to both classes:
A list with the block-block covariances of the PSs, a list with the covariance parameters, a matrix
with the coordinates of the prediction points (preCKrigePoints) or a list with the coordinates of
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the blocks (preCKrigePolygons), and a data frame with the covariates for the prediction targets.
A preCKrigePoints object contains an additional slot with a list of the “neighbours” of each target
point (the list is empty for UK and CK). For block kriging, the information about “neighbours”
is stored in another slot that lists (as an R list) per PS the number of blocks and the information
about the approximation of the blocks by the pixels. A preCKrigePolygons object has one more
slot if the block-block covariances are approximated in multiple runs: The slot contains a list of
matrices with the standard errors of the block-block covariances of each PS as computed from the
replicated runs of the approximation algorithm. Our package provides print(·) and summary(·)
methods for the classes preCKrigePoints and preCKrigePolygons and for the latter also a plot(·)
method to display the approximation of the blocks by the pixels (cf. Fig. 2).

The second step is to compute the kriging predictions by a call of CKrige(·). By default,
CKrige(·) computes CK predictions. If UK or CMCK predictions are requested then the kriging
method must be explicitly specified. CKrige(·) requires as input (i) the object generated before by
preCKrige(·), (ii) a data frame with the coordinates of the sampling sites, the response variable
and the covariates, and (iii) two R formulae (Chambers and Hastie, 1992), one specifying a
linear regression model for the mean function of the response variable, the other (one-sided) the
coordinates of the sampling sites. Note that CKrige(·) computes the predictions by including all
observations, i.e., no local search windows are used.

By default, CKrige(·) returns either a SpatialPointsDataFrame (point kriging) or
SpatialPolygonsDataFrame (block kriging). Recall that the type of kriging (point or block)
is controlled by the class of the object generated before by preCKrige(·) (preCKrigePoints or
preCKrigePolygons). The object generated by CKrige(·) contains always the coordinates of the
prediction targets and a data frame with the kriging results. No matter which kriging method has
been selected, the data frame has a column with the kriging predictions and a column with the
root mean square prediction errors (kriging standard errors). For CK, the data frame contains in
addition columns for

√
P,
√

Q and K. For CMCK, the data frame has instead columns with the
first diagonal elements of P1, Q1 and K, which all refer to the target point or block (we use the
convention that the first block or point in a PS is the prediction target). CKrige(·) offers the pos-
sibility to generate an extended output. This is useful if the kriging results are further processed,
e.g., in lognormal kriging for the backtransformation to the original scale of the measurements.
The extended output object is a list that has as components the CKrige(·) default output, the GLS
estimates, their covariance matrix, the GLS residuals and the simple kriging weights Σ

−1C plus
further items. We refer the reader to the help page of CKrige(·) for a complete description of the
structure of the extended output.

The graphical display of the kriging results is straightforward as the generic function spplot(·)
of the sp package (Bivand et al., 2008, sec. 3.2) provides plot(·) methods for the default CKrige(·)
output objects. In addition, our packages provides print(·) and summary(·) methods for the ex-
tended output of CKrige(·).

3.3. Availability
The constrainedKriging package can be obtained from the comprehensive R archive network

(CRAN) and its mirrors (http://cran.r-project.org/web/packages/).

4. Application

We illustrate the use of the constrainedKriging package by an example that uses a data set on
heavy metals in the topsoil of a floodplain along the river Meuse in the Netherlands (Burrough
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and McDonnell, 1998). This so-called Meuse Bank data set is part of the sp package, and it is
heavily used in Bivand et al. (2008) and in the R package gstat (Pebesma, 2004).

Provided the constrainedKriging package is installed, the package and the data sets required
by the example are loaded by

> require(constrainedKriging); data(meuse,meuse.blocks)

where > is the R prompt, meuse is the Meuse Bank data set and meuse.blocks is a SpatialPoly-
gonsDataFrame supplied by our package, which contains the coordinates of 259 blocks, arbitrar-
ily defined by putting a grid with 150 m mesh width over the floodplain area, and a 259×2 data
frame with the covariate dist (mean Euclidean distance of the blocks from the river, normalized to
the interval [0,1]) and the attribute M, the (spatial) variance of the mean distance between points,
uniformly distributed within the blocks, and the river. M is required for the backtransformation
in lognormal CK and UK under the assumption of permanence of lognormality (cf. below and
Cressie, 2006). Figure 3 shows the position of the 259 blocks.

Suppose we aim to predict the mean topsoil zinc concentration of the blocks by CK and
compare the CK with the UK predictions. Following Bivand et al. (2008), we use the regression
model log(zinc(s)) ∼

√
dist(s) as trend function, where zinc(s) is the zinc concentration in the

topsoil at location s and dist(s) is the mean Euclidean distance between s and the river. The
autocorrelation of the regression errors is modelled by an exponential covariance function with
nugget = 0.05, partial sill = 0.15 and range = 192.5. The parameters of the covariance function
were estimated by restricted maximum likelihood, using the function gls(·) of the R package nlme
(Pinheiro and Bates, 2000, sec. 5.4). Since we have no information about the precision of the
measurements, we assume that the nugget reflects micro-scale variation, and we will therefore
set σ2

ε = 0.
The size of the pixel, used in the approximation of the blocks, should be chosen larger than

the support of the observations, but small enough to allow a reasonable approximation of the
blocks. The support of the observations is about 15 m×15 m, and the area of the blocks varies
between 707 m2 and 22500 m2 (67.6 % of the blocks are squares with the maximum support).
Given these dimensions, we choose a 75 m×75 m square pixel to approximate the blocks. We
are now ready to call preCKrige(·) to compute the block-block covariances

> preCK=preCKrige(newdata=meuse.blocks,model=
covmodel("exponential",0,0.05,0.15,192.5),
pwidth=75,pheight=75)

and we store the output in the object preCK. Notice the use of the auxiliary function covmodel(·)
to pass the covariance parameters to preCKrige(·). Then, we call CKrige(·)

> CK=CKrige(formula=log(zinc)~sqrt(dist),data=meuse,
locations=~x+y,object=preCK,ex.out=TRUE)

to obtain the CK predictions of the mean log-transformed zinc content for the blocks. By de-
fault, CKrige(·) computes CK predictions (argument: method=2). To compute UK (CMCK)
predictions, one has to specify method=1 (method=3) explicitly. The first formula, log(zinc) ∼
sqrt(dist), specifies the trend model, and the second, ∼x+y, the coordinates of the sampling lo-
cations (the variables zinc, dist, x and y are contained in the data frame meuse). Note that we
request extended output because we need some of its items for the backtransformation of the
predictions to the original scale of the measurements.
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Assuming a trend function modelled by a linear regression and permanence of lognormality,
Cressie (2006) showed that an approximately unbiased backtransformation of a generic predictor,
say Y̌ (B), of the target quantity on the log-scale is given by

Ť (B) = exp
(
Y̌ (B)+1/2

{
C(0)+β

′M(B)β −Var[Y̌ (B)]
})

, (14)

where
M(B) =

1
|B|

∫
B

(
x(s)−x(B)

)(
x(s)−x(B)

)′ ds

is the (spatial) covariance matrix of the covariates for a point s uniformly distributed in B, and
C(0) is the variance of Y (s). For CK, we have by definition Var[ŶCK (B)] = Var[Y (B)]. Further-
more, M(B) simplifies in our example to M(B) = M = VarB[

√
dist(s ∈ B)] as the intercept, β0,

of a linear regression model is support independent (β0(s) = β0(B)) (VarB[.] denotes here the
variance based on a uniform random location in B). In practice we substitute β̂ GLS for β , hence
the backtransformation for CK is given in our example by

T̂CK(B) = exp
(

ŶCK (B)+1/2
(
C(0)+ β̂

2
1,GLS M−Var[Y (B)]

))
,

For better readability we extract β̂1,GLS and M first and store them as separate objects

> beta.gls=CK$parameter$beta.coef
> M=meuse.blocks@data$M

and then compute the backtransformed predictions by

> CK$object@data$Zn=exp(CK$object@data$prediction+
0.5*(0.2+beta.gls[2]^2*M-unlist(preCK@covmat)))

and store them in the data frame slot of CK$object as a variable named Zn. The R base function
unlist(·) is used here to convert the approximated block variances, stored as a list in preCK-
rige@covmat, to a vector.

To compare the prediction uncertainty modelled by CK and UK, we divide — on the original
scale of the measurements — the upper bound of 95 % prediction intervals by the predicted
mean zinc content, i.e., we consider the upper bound of relative prediction intervals. For CK this

upper bound is UCK(B) = exp
(
ŶCK (B)+ 1.96

√
MSPE[ŶCK (B)]

)
/ T̂CK(B) and is obtained by

the command

> CK$object@data$U=exp(CK$object@data$prediction
+1.96*CK$object@data$prediction.se)

/CK$object@data$Zn

Note that UCK(B) is also stored in the data frame slot of CK$object as a variable named U.
Finally, we plot maps of the predicted zinc block means by the generic function spplot(·) of

the sp package by the commands

> breaks=seq(0,1850,by=185)
> spplot(CK$object,zcol="Zn",at=breaks,col.regions=ck.colors(10),

colorkey=list(labels=list(at=breaks,labels=breaks)))

10



The argument breaks takes a vector with “breakpoints” where the color should change when
displaying a response variable. ck.colors(·) is an auxiliary function of our package that creates a
rainbow-like color vector from blue to red. The argument colorkey adds a colorbar to the plot.

The generated plot is shown in Figure 3A, with the difference that the above code does neither
produce the black dots at the sampling locations nor the distance scale bar. The commands to
create these features are given in Appendix B for the UK predictions. A map of UCK(B) is
obtained by

> breaks=seq(1,3.2,by=0.2)
> spplot(CK$object,zcol="U",at=breaks,col.regions=ck.colors(11),

colorkey=list(labels=list(at=breaks,labels=breaks)))

The backtransformation of the UK block predictions to the original scale is more involved.
Therefore, we list the respective commands along with some explanations in Appendix B.

The comparison of the CK and UK results shows that the CK block predictions vary more
strongly than the UK predictions (Figs 3A, C) and that UCK(B) consistently exceeds UUK(B)
(Figs 3B, D). Close inspection reveals that the differences between CK and UK are more pro-
nounced in the sparsely sampled parts of the floodplain. The differences depend on K =

√
P/
√

Q,
which is mainly influenced by the block size and the density of the sampling locations in and
around the blocks. Var[Y (B)] increases as the block size decreases. Hence small blocks have
larger P and K (5). The sampling density influences K mostly through Q: Q decreases (and
K increases) as the distance between a block and its nearest sampling location increases. Con-
versely, Q grows and K→ 1 with increasing sampling density (cf. Hofer and Papritz, 2010, for
a more thorough discussion). Thus, the observed differences between CK and UK reflect what
we expect from theory. The example shows that the CK predictions are less smooth than the UK
predictions and, consequently, should be less biased for nonlinear functionals thereof. However,
the larger uncertainty of the CK predictions is the price to be paid for this advantage.

5. Summary and Conclusion

This article presents the R package constrainedKriging, a tool for linear and nonlinear spatial
prediction problems with change of support. The package offers software for spatial interpolation
of data observed at points in a two-dimensional survey domain. The predictions are computed by
constrained, covariance-matching constrained and universal kriging for a spatial random process
model that uses a linear regression model for the nonstationary mean function and a weakly
stationary, isotropic covariance function (or variogram) for the autocorrelation of the regression
errors. The prediction targets may be points or blocks of arbitrary shape and size. The article
describes in detail the algorithms that we utilise in our software to compute the block-block and
point-block covariances efficiently. Computing these quantities is the computationally costly step
in any kind of block kriging. Using an efficient algorithm for the integration of the covariance
function is therefore essential. Our software is competitive compared to CS as long as the area
of the pixels is of the same order of magnitude as the area of the target blocks. In that case
the target block areas are approximated by just a few pixels, and the approximation of the block-
block and point-block covariances requires relatively little computing time. If, however, the pixel
area is small compared to the target block areas then evaluating the point-block and block-block
covariances requires a lot of computing time and the advantage of any form of block kriging over
CS diminishes.
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We illustrate the use of the software with a lognormal block kriging example, in which we
use the public domain Meuse Bank data set. Using our software is easy: by a call of preCKrige(·)
one computes in a preparatory step the block-block covariances and passes them subsequently
to CKrige(·) to compute the kriging predictions. By making use of the spatial classes of the
R package sp, our software integrates well into existing R tools for the geostatistical analysis of
spatial data. Thus, the constrainedKriging package extends the range of geostatistical tools avail-
able in R and provides a lean, numerically fast, and therefore attractive alternative to conditional
simulations for nonlinear spatial prediction problems with local change of support.
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Appendix A. Probability distribution of the Euclidean distance between a fixed point and
a point uniformly distributed in a rectangular block

To calculate the point-pixel covariances we derived the density function, v(r), of the distance
r = |s−s0|= |s| between the origin s0 = (0,0)′ and a point s, uniformly distributed in a rectangle
with length b− a ≥ 0 and width d− c ≥ 0 that lies in the first quadrant of the Cartesian plane
(Fig. 4). The density function of the distance depends on the zones I–III shown in Figure 4:

zone I: if max(b2 + c2,a2 +d2)< r2 ≤ b2 +d2

v(r) = 1/A
(

arctan
(

b/
√

r2−b2
)
− arctan

(√
r2−d2/d

))
; (A.1)

zone II: if a2 +d2 < r2 ≤ b2 + c2 (or if a2 +d2 > r2 ≥ b2 + c2)

v(r) = 1/A
(

arctan
(√

r2− c2/c
)
− arctan

(√
r2−d2/d

))
; (A.2)

zone III: if a2 + c2 < r2 ≤min(b2 + c2)

v(r) = 1/A
(

arctan
(√

r2− c2/c
)
− arctan

(
a/
√

r2−a2
))

; (A.3)

where A = (b−a)(d− c) is the area of the rectangle.
For the actual computation of the point-pixel covariances, the pixel coordinates are centred

(by subtracting the coordinates of the sampling location sk) and the centred pixel coordinates
are possibly rotated around s0 such that the centred and rotated pixel lies in the first quadrant.
Moreover, a pixel is subdivided into four rectangular subpixels if s0 lies within the centred pixel
or into two subpixels if s0 is on any of its edges (the subdivision is done such that s0 is a ver-
tex of each subpixel). Where necessary, the subpixels are then rotated into the first quadrant,
and the point-pixel covariance is computed similar to (13) by summing up the point-subpixel
covariances.
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Appendix B. Application continued: Lognormal block UK

The following call of CKrige(·) computes the UK predictions of the mean log-transformed zinc
content for the blocks

> UK=CKrige(formula=log(zinc)~sqrt(dist),data= meuse,
locations=~x+y,object=preCK,method=1,ex.out=TRUE)

The extra argument method=1 selects UK, and ex.out=TRUE requests again extended output.
According to (14) we need Var[ŶUK (B)] to transform ŶUK (B) back to the original scale of the

measurements. It is not difficult to show that

Var[ŶUK (B)] = Var[Y (B)]−MSPE[ŶUK (B)]+2Ψ(B)′ x(B),

where

Ψ(B) = (X′Σ−1X)−1(x(B)−X′Σ−1c(s1...,n,B)
)
= Cov[β̂ GLS, β̂

′
GLS]

(
x(B)−X′Σ−1c(s1...,n,B)

)
is the vector with the p Lagrange multipliers of the UK equations. Hence, an approximately
bias-corrected backtransformation of ŶUK (B) is obtained from (cf. Cressie, 2006, Appendix C)

T̂UK(B) = exp
(
ŶUK (B)+1/2

{
C(0)+ β̂

′
GLS M(B) β̂ GLS−Var[Y (B)]+MSPE[ŶUK (B)]

}
−Ψ(B)′x(B)

)
.

where we have again substituted β̂ GLS for β in (14).

For better readability, we store M, β̂ GLS, Cov[β̂ GLS, β̂
′
GLS] and the simple kriging weights

Σ
−1C again in separate objects

> M=meuse.blocks@data$M
> beta.gls=UK$parameter$beta.coef
> cov.beta.gls=UK$parameter$cov.beta.coef
> SKw=UK$sk.weights

Next, we generate the design matrices of the data (X) and of the 259 target blocks (say XB)

> X=model.matrix(~sqrt(dist),meuse)
> XB=model.matrix(~sqrt(dist),meuse.blocks@data)

model.matrix(·) is a R base function to create design matrices. The bias correction terms for the
backtransformation are then obtained by

> c1=0.5*(0.2+beta.gls[2]^2*M-unlist(preCK@covmat)
+UK$object@data$prediction.se^2)

> c2=numeric()
> for(i in 1:nrow(XB)){

c2[i]=t(cov.beta.gls%*%(XB[i,]-t(X)%*%SKw[,i]))%*%XB[i,]
}

where we used [c1]i =
1
2

(
C(0)+ β̂ 2

1,GLS M−Var[Y (Bi)]+MSPE[ŶUK (Bi)]
)

and [c2]i =Ψ(Bi)
′x(Bi).

The command
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> UK$object@data$Zn=exp(UK$object@data$prediction+c1-c2)

transforms the UK predictions back to the original scale and stores them in the data frame slot of
UK$object as a variable named Zn. The upper limits of the relative prediction intervals UUK =

exp
(
ŶUK (B)+1.96

√
MSPE[ŶUK (B)]

)
/ T̂UK(B) are obtained by

> UK$object@data$U=exp(UK$object@data$prediction
+1.96*UK$object@data$prediction.se)

/UK$object@data$Zn

and are stored in the data frame slot of UK$object as a variable named U.
Finally, maps of T̂UK(B) (Fig. 3C) and UUK (Fig. 3D) are generated by

> pts=list("sp.points", meuse[,1:2], pch=21,
col=1, fill=1, cex=0.5)

> scale=list("SpatialPolygonsRescale", layout.scale.bar(),
offset=c(180500,329800), scale=500,

fill=c("transparent","black"), which = 1)
> text1=list("sp.text", c(180500,329900), "0", cex=1.5, which=1)
> text2=list("sp.text", c(181100,329900), "500 m",

cex=1.5, which=1)
> breaks=seq(0,1850,by=185)
> spplot(UK$object,zcol="Zn",col.regions=ck.colors(10),at=breaks,

colorkey=list(labels=list(at=breaks,labels=breaks)),
sp.layout = list(pts, scale, text1, text2))

> breaks= seq(1,3.2,by=0.2)
> spplot(UK$object,zcol="U",col.regions=ck.colors(11),at=breaks,

colorkey=list(labels=list(at=breaks, labels=breaks)),
sp.layout = list(pts, scale, text1, text2))

where the coordinates of the sampling locations are stored in the variable pts, the information of
the distance scale bar is stored in the variable scale, and the variables text1 and text2 contain the
distance scale bar annotation. The sampling locations and the distance scale bar are generated
by the argument sp.layout of the generic function spplot(·).
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List of Figure Captions

Figure 1: Example of a prediction set (PS) with 4 blocks; B1 is the target block and B2, . . . ,B4
are used to match the (co-)variances in covariance-matching constrained kriging.

Figure 2: Approximation of the 4 blocks of the PS shown in Figure 1 by a set of 16 pixels
PX1, . . . ,PX16. Pixels shown on the right in the same color as the original blocks (Bi) constitute
the approximated blocks B̃i.

Figure 3: A Lognormal constrained block kriging predictions (CK) of the topsoil Zn concen-
tration [in mg/kg] of 259 blocks in a floodplain along the river Meuse; B upper limits UCK(B)
of relative 95 % prediction intervals for CK (multiplying UCK(B) by the predictions shown in A
gives the upper limits of 95 % prediction intervals); C and D same as A and B but for lognormal
universal block kriging. The dots mark the position of the sampling locations.

Figure 4: Three zones used in the definition of the density function, v(r), of the distance between
the origin, s0, and a point s, uniformly distributed in a rectangle that lies in the first quadrant of
the Cartesian plane. See Appendix A for details.
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