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Abstract

Complicated overlapping singularities are faced in higher order perturbative QCD

calculations. In this thesis we develop a new technique to factorise singularities

of dimensionally regulated singular integrals. The technique will be based on a

special non-linear mapping, which allows to rescale parameters of integration with

respect to each other. We will demonstrate that this approach can be applied quite

systematically on a number of examples. We will then consider some of the most

singular one and two-loop integrals and demonstrate how they can be factorised and

evaluated numerically.

Furthermore, we will consider infra-red singular phase-space integrals as they

occur in next-to and next-to-next-to-leading-order perturbative QCD corrections in

both decay and hadronic production processes. In particular we shall develop a

method, based on the non-linear mapping, for double real emission corrections to

hadronic productions of massive final states.

With the techniques developed we will compute the fully differential decay width

of a Higgs boson decaying into a bottom quark anti-quark pair at the next-to-next-

to-leading order accuracy. For this purpose we compute and present all the required

amplitudes needed for the calculation using conventional Feynman diagrammatic

methods. We check that our result is in agreement with existing inclusive results and

present a number of differential observables, namely jet rates and the distribution

of the maximum energy of the leading jet.

Furthermore, we compute the fully differential next-to-next-to-leading-order Higgs

production cross section in bottom quark anti-quark annihilation. We present a

number of differential distributions, including the rapidity and transverse momen-

tum distribution as well as jet-rates and pt-veto plots of the 125 GeV Higgs-boson

at the LHC. We study the factorisation and renormalisation scale dependence of a

number of fully differential obervables as well as a number of observables associated

with the Higgs boson decay into two photons.



Zusammenfassung

Komplizierte überlappende Singularitäten treten in höheren Korrekturen der

perturbativen QCD auf. In dieser Dissertation, wird eine neue Methode zur Fak-

toriserung solcher Singularitäten in dimensionell regularisierten Integralen entwick-

elt. Diese Methode basiert auf speziellen nicht-linearen Transformationen welche es

erlauben Integrationsparameter miteinander zu reskalieren. Anhand von mehreren

Beispielen wird gezeigt wie diese Methode systematisch angewendet werden kann.

Die Methode wird dann auf einige maximal singuläre Ein- und Zwei-Schleifenintegrale

angewandt.

Des weiteren werden infrarot divergente Phasenraumintegrale, für Zerfalls- und

hadronische Produktions-Prozesse, in Betracht gezogen. Hierbei wird eine allge-

meine Methode für doppelt reelle Emissionen zur hadronischen Produktion von

massiven Endzuständen entwickelt.

Als erste praktische Anwendung der Methoden wird die voll-differentielle Zer-

fallsbreite des Higgs-Bosons in ein Bottomquark-Antiquark Paar zur dritten Ord-

nung berechnet. Für die Rechnung werden alle benötigten Amplituden mit moder-

nen Feynman diagrammatischen Methoden berechnet. Es wird gezeigt dass das

berechnete Resultat für die inklusive Zerfallsbreite mit existierenden Resultaten

übereinstimmt. Ausserdem werden Jetraten und die Energieverteilung des führenden

Jets berechnet.

Des weiteren wird der voll-differentielle Wirkungsquerschnitt des Higgs-Bosons

in der Bottomquark Annihilierung zur dritten Ordnung berechnet. Es werden

einige differentielle Verteilungen präsentiert, unter anderem beinhalten diese die

Rapiditäts- und die Transversalimpuls- Verteilung und Jetraten des 125 GeV Higgs-

Bosons am LHC. Die Abhänigkeit von Renormierungs- und Faktorisierungs-Skalen

einiger Observablen werden analysiert und ein paar Observablen im Photonen-Zerfall

des Higgs-Bosons präsentiert.
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Chapter 1

Introduction

The interactions of all the visible matter of the universe are believed to be governed

by four fundamental forces of nature. These are the electromagnetic force, the

weak and strong nuclear forces, and the force of gravity. At the quantum level

the Standard Model (SM) of particle physics successfully describes all of these but

gravity. Gravity, however, is not expected to play a role at current collider energies,

where the dominant interactions are governed by the strong and electro-weak forces.

Having survived numerous experimental tests, many aspects of the SM have been

validated at a very high level of precision. Furthermore, the SM has made a number

of predictions. The most important may be the discovery of the massive gauge

bosons W+,W− and Z at the UA1 experiment, and the discovery of the top quark

at Tevatron. These discoveries already constitute a huge success of the theory.

Only the Higgs sector of the SM has not been fully confirmed by the experiments

yet, although the LHC has already shown strong hints towards the existence of a

125 GeV SM Higgs. Without the Higgs sector the SM is known to lose its predictive

power at energies well within the scope of the Large Hadron Collider (LHC) . It is

therefore certain that something new must be found at the LHC. This is either at

least one Higgs boson, or some new strongly coupled force usually termed Techni-

color.

The SM realisation of the Higgs sector is a minimal one, where only one scalar

particle can be observed experimentally. Extensions beyond the Standard Model

(BSM) are plentiful and large classes of models predict more involved Higgs sectors,

where five or more fundamental scalars could be observed. Many models, such as

those based on supersymmetry or extra-dimensions, also predict a wealth of new

heavy particles which should be observed experimentally. Such BSM models may
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also explain other puzzles of fundamental physics such as the unification of forces, the

existence of dark matter, the hierarchy problem or the size of the matter-antimatter

asymmetry.

New discoveries at Collider experiments, such as the LHC, may only be made

through an excellent understanding of the already known physics of the SM. This is

primarily because it is generally not possible to observe the new particles directly.

Rather heavy states are mostly very short-lived and immediately decay into lighter

SM particles. The situation may be different for very stable particles such as dark

matter candidates. These particles will still leave traces of missing energy, and it

is then essential to know the Standard Model background of missing Energy which

consists of neutrinos. Moreover, new physics events will only constitute a very tiny

fraction of the SM events, or background events, produced in the collisions. Isolat-

ing these events therefore requires not only very precise experimental measurements,

but also very precise knowledge of the scattering rates and their kinematical distri-

butions.

To a large extent the dynamics of particles at modern Collider experiments, now

most importantly the LHC, are governed by QCD. In order for new physics to be

found at the LHC, may it be the existence of the Higgs boson, dark matter, super-

symmetry or extra-dimensions, it is therefore necessary to have full control over QCD

driven effects. At high enough energies QCD becomes asymptotically free, allowing

the use of perturbation theory. However, higher order effects in perturbative QCD

are generally still large, even at typical LHC energies, and must be included to a

sufficient degree for comparisons of theory and experiments to be meaningful.

Historically it was indeed the impact of radiative corrections which marked the

first successes of QCD. In the deep inelastic scattering experiments it was small

violations of Bjorken scaling which were correctly predicted by the radiative correc-

tions computed by G. Altarelli and O. Parisi in 1977 [1]. Around the same time

also the Drell Yan cross section could be accounted for with the inclusion of next-

to-leading-order (NLO) corrections, via the famous calculations by G.Altarelli, K.

Ellis and G. Martinelli in 1977 [2], later confirmed in [3]. These results finally gave

physicists confidence that QCD was indeed the correct theory to describe the strong

interaction instead of the string models whose popularity then was still comparable.

With NLO corrections generally large, the convergence of the perturbative series

was still highly questionable and demanded the computations of yet higher orders.
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The first fully inclusive NNLO corrections were pioneered in the late 80s and early

90s with the heroic computations of the process e+e− → hadrons by S. G. Gorishny,

A. L. Kataev and S. A. Larin in 1988 [4] and the computation of the Drell-Yan

cross-section by R. Hamberg, W.L. van Neerven and T. Matsuura in 1990 [5]. Both

computations showed that the corrections were larger than may have been expected.

Nevertheless, theoretical uncertainties were reduced and were found to greatly im-

prove the theoretical definition of QCD observables. Having knowledge of the NNLO

correction also allowed for a more precise extraction of the strong coupling constant

from the e+e− → hadrons measurements.

NLO corrections to the production of a Higgs boson in gluon fusion, computed

in the heavy quark effective theory in 1990 [6] and independently in [7], were par-

ticularly large. It took more than a decade for the inclusive NNLO calculation to

appear by R. Harlander and W. Kilgore in 2002 [8] and independently in [9]. This

calculation showed, even though the NNLO correction were found to be much larger

than for the Drell-Yann process, a considerable reduction of the scale uncertainties.

It was clear that in order to discover the Higgs boson the full kinematic information

was required. This and the large NNLO corrections found in the gg → H process

strongly motivated the computation of differential observables at NNLO. The first

fully differential NNLO calculation for a hadronic cross-section was eventually com-

puted by C. Anastasiou, K. Melnikov and F. Petriello in 2004 [10] with the method

of sector decomposition [11, 12, 13].

The last decade has seen tremendous progress in the development of fully dif-

ferential methods for LO, NLO and NNLO computations. Tree-level amplitudes

are meanwhile computed with powerful recursion relations. The fastest available

method remains, at least for more than 8 external gluons, the Berends-Giele recur-

sion relation developed in 1987 by W. T. Giele and F. A. Berends [14]. More recent

work, inspired by twistor string theory, lead to the BCFW recursion relation by R.

Britto, F. Cachazo, B. Feng in 2004 [15].

Developments on the NLO frontier have been at least as dramatic, especially in

the last few years. NLO corrections are naturally split into a real emission correc-

tion and a one-loop correction. Since both contributions are separately divergent,

methods had to be developed to handle this complication. The divergences are reg-

ulated by computing in d = 4− 2ε dimensions, which allows to isolate the divergent

3



contributions as poles in ε. In the earlier NLO calculations, for example in [2], the

divergences were dealt with via simple subtractions which allow expansions in terms

of distributions. To handle the complexity of more complicated final states including

jets, more elaborate methods were needed for the real emission corrections.

A number of general methods, designed to handle these complexities, were de-

veloped. The first general approach was put forward by W.T Giele and E.W.N.

Glover in 1991 [16, 17] and was based on the idea of phase space slicing. Two, now

commonly used methods, are based on the idea of subtraction. The first of these was

derived by S. Frixione, Z. Kunszt and A. Signer in 1995 [18, 19, 20] and is known

as FKS subtraction. The second was developed by S.Catani and M.H.Seymour in

1996 and is known as the dipole subtraction method [21, 22].

The bottleneck of NLO was for long the virtual correction but there has been

tremendous progress since the methods of ’tHooft and Veltman [23] and Passarino

and Veltman [24] in 1978. There now exist a number of completely automated

tools. Many of these methods rely on the use of unitarity in order to find the

coefficients of scalar integrals numerically. It was long known that all scalar one-

loop n-point integrals could be spanned by a basis containing only 4-,3- and 2-point

integrals [25, 26]. The original idea of using unitarity for one-loop computations was

developed by Z. Bern, L.J, Dixon , D. C. Dunbar and D. A. Kosower in 1994 [27].

These ideas obtained a major boost with the development of generalised unitarity

by R. Britto, F. Cachazo, B. Feng [28] in 2004 which generalised the former idea of

unitarity for complex valued momenta. The development of such novel techniques

lead to the computation of even 2→ 5 processes [29] at NLO.

Also at NNLO progress has been impressive over the last years. Further col-

lider processes for which differential calculations have been completed, apart from

the gg → H, are the Drell-Yan process, e+e− → 3 jets , pp → WH , pp → γγ

and bb̄ → H [30, 31, 32, 33, 34]. Only in the last year have the first complete

NNLO corrections for 2 → 2 scattering processes been computed. Still many

processes exist for which NNLO calculations are in particular demand, such as

pp→ jj, jW, jZ, jH,WW,ZZ,ZH, tt̄ to list just the most important. Large efforts

are ongoing and still required to complete these calculations.

Computing observables beyond NLO remains an extremely challenging task and

constantly requires the developments of more powerful methods to tackle the grow-

ing mathematical complexity. Due to the appearance of overlapping singularities,

the cancellation of infra-red divergences becomes highly non-trivial at higher orders.

A number of different approaches have been developed to deal with this problem.
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While first successful fully differential NNLO calculations were accomplished using

Sector Decompostion [35, 36, 37, 38, 39, 40], many other methods have been put

forward. Earlier developments proved that the phase space slicing method was also

capable of dealing with the kinds of singularities met at NNLO [41]. Later meth-

ods were mostly based on the subtraction idea. These methods are the Antenna-

subtraction method [42, 43, 44, 45], kt subtraction [46] and general subtraction

[47, 48, 49, 50, 51]. Further propositions were presented in [52, 53, 54]. None of

these approaches can yet claim a similar level of automation as the NLO methods. A

further problem at NNLO is the appearance of highly singular multi scale two-loop

integrals. While powerful integration techniques have been developed, like the dif-

ferential equations methods [55, 26, 56] or the Mellin Barnes representation method

[57, 58, 59, 60], many problems are still faced at this frontier.

In this thesis we shall develop a technique for the factorization of overlapping sin-

gularities, based on non-linear mappings. With the non-linear mapping we will show

that singularities can be factorised in a more economical way, then with the previ-

ous sector decomposition approach which easily leads to a proliferation of integrals.

We will demonstrate how the non-linear mapping can be applied systematically to

loop and phase-space integrals. We shall use the method to obtain a number of

phenomenologically important results.

The thesis is organised as follows. A more technical introduction to some of the

key concepts underlying perturbative QCD, which are needed at later stages, will be

given in chapter 2. Chapter 3 discusses typical forms of factorised and non-factorised

singularites. Further more, we will here develop the method of non-linear mappings.

In chapter 4 we apply non-linear mappings to factorise singular loop integrals. In

chapter 5 we will introduce a method to factorise and evaluate phase-space integrals

of single and double real radiation for the hadronic production of massive systems. In

chapter 6 we will introduce a method to factorise and evaluate phase-space integrals

of single and double real radiation for decay processes of massive particles into two

massless particles. An application of the methods developed in chapter 6 to the fully

differential calculation of the decay width of a Higgs boson into a bottom quark anti-

quark pair is given in chapter 7 . An application of the methods developed in chapter

5 to the fully differential calculation of the hadronic production of a Higgs boson in

bottom quark fusion is given in chapter 8. In chapter 9 we present d-dimensional

helicity amplitudes for the process H → gggg.
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Chapter 2

Perturbative QCD

2.1 The QCD Lagrangian

In this section we will briefly review some of the key concepts underlying QCD.

This is intended mainly to establish the notation, which will be used throughout

this work. For derivations and more complete discussions of the quantum field theory

involved, the references [61, 62, 63, 64, 65, 66, 67, 68] should be consulted, though

this list is by no means complete.

The theory of QCD is formulated as a non-abelian gauge theory of gauge group

SU(3). However since considerable interest exists in the more general case of SU(N),

we shall keep the number of color charges N a free parameter throughout.

At the heart of QCD lies its classical Lagrangian,

Lclassical = −1

4
F a
µνF

µν
a +

nf∑

i=1

q̄i
(
i /D −mi

)
qi, (2.1)

where the field strength F is defined as

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν (2.2)

and the covariant derivative is defined via

/D = Dµγ
µ = (∂µ − igAaµT a)γµ. (2.3)

Here we used the standard Feynman slash notation, /p = pµγ
µ. The γ- matrices
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satisfy the anti-commutation relation

{γµ, γν} = 2gµν . (2.4)

The Lagrangian describes interactions of non-abelian spin 1 gauge fields Aµ with

spin 1
2

fields qi of flavor i and mass mi, which live in the fundamental representation

of SU(N). nf shall denote the number of different quark flavors. The gauge group

SU(N) is generated by the generators T a where a = 1, .., N2 − 1, which satisfy the

commutation relation

[T a, T b] = ifabcT c. (2.5)

The antisymmetric structure constants fabc are directly related to the generators of

the adjoint representation by the relation (TA)abc = −ifabc. We will use the fairly

common normalisation

Tr
(
T aT b

)
= TF δ

ab, TF =
1

2
; (2.6)

such that

Tr
(
T aAT

b
A

)
= CAδ

ab, CA = N (2.7)

and ∑

b

(
T bAT

b
A

)
ac

= CF δac, CF =
N2 − 1

2N
. (2.8)

The Lagrangian is invariant under local gauge transformations of the gauge and

quark fields:

AaµT
a → U

(
AaµT

a +
i

g
∂µ

)
U †

q → Uq (2.9)

q̄ → q̄U †,

where

U = exp (iθa(x)T a) . (2.10)

The parameter θa(x) can be an arbitrary function of space-time and parametrises

the gauge freedom. For non-physical polarisation states of the gauge field not to

affect physical quantities, we must further include a ghost term Lghost, as well as a
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gauge fixing term Lgauge−fixing. The complete QCD Lagrangian is therefore

LQCD = Lclassical + Lghost + Lgauge−fixing, (2.11)

where

Lgauge−fixing = − 1

2ξ

(
∂µAaµ

)2
, (2.12)

with ξ a free parameter through which a certain gauge may be selected, and

Lghost = ∂µc
a†Dµ

abc
b, (2.13)

where the ghost field c is an anti-commuting scalar field.

2.2 Feynman rules for QCD

The Feynman rules for QCD can be derived in the Path Integral formalism. This

subject is covered very well in many standard texts, e.g. [61, 62, 63, 64]. For our

convenience we present the Feynman rules here. Gluon self interactions are presented

in Figure 2.1, gluon-fermion and ghost interactions are presented in Figure 2.2 and

gluon, fermion and ghost propagators are presented in Figure 2.3. We shall adopt

the convention that all momenta, denoted by pµi and kµ, are outgoing. ε is a small

real positive parameter. The gluon self interactions are expressed in terms of the

Lorentz generators,

J µν;αβ = i
(
gµαgνβ − gναgµβ

)
, (2.14)

of the vector representation. Further we use the notation J pν;αβ ≡ pµJ µν;αβ.

2.3 Divergences, renormalisation and dimensional

regularisation

Beyond tree-level, most quantum field theories suffer from divergences and are thus

not defined without a prescription which allows to regularise these divergences. A

number of regularisation schemes exist, the most commonly used ones are dimen-

sional regularisation, Pauli-Villar regularisation and cut-off regularisation. In this

work we will only be concerned with dimensional regularisation, which is generally

regarded to as the scheme of choice, since it preserves both Lorentz and gauge sym-

metry. Dimensional regularisation amounts to an analytic continuation of the theory

8



a1, µ1 a2, µ2

a3, µ3 a4, µ4

a1, µ1, p1

a2, µ2, p2a3, µ3, p3

= −g2




+fa1a2afaa3a4J µ1µ2;µ3µ4

+fa1a3afaa2a4J µ1µ3;µ2µ4

+fa1a4afaa3a2J µ1µ4;µ3µ2




= −igfa1a2a3
[
J p1µ1;µ2µ3 + J p2µ2;µ3µ1 + J p3µ3;µ1µ2

]

Figure 2.1: Gluon self interactions

j

i

a, µ = igT a
ji γ

µ

c, p

b

a, µ = gfabc pµ

Figure 2.2: Gluon,fermion and ghost interactions

to d = 4− 2ε dimensions. The origin of the divergences can be traced back to par-

ticular kinematic configurations of real or virtual particles. One type of divergence

occurs when a virtual particle, circulating in a loop, gains infinite momentum. Such

divergences are termed UV divergences. Another class of divergences occur when

massless particles have either zero energy or become collinear to each other. We
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=
−iδab

k2 + iε


gµν − (1− ξ)

kµkν

k2


a, µ b, ν

=
iδij( 6 k +m)

k2 −m2 + iε
i j

a b =
iδab

k2 + iε

Figure 2.3: Gluon,fermion and ghost propagators

shall denote these singularities as IR divergences.

2.3.1 Renormalisation

In renormalisable Quantum Field Theories, these include abelian and non-abelian

gauge theories, UV divergences are are finite for d < 4. Working in d = 4 − 2ε

therefore allows to treat these divergences as poles in ε. UV divergences can be

dealt with by absorbing these poles into physical parameters and external wave-

functions. This procedure is known as renormalisation. For QCD, renormalisation

results in the following replacements:

q → Z1/2
q q, q̄ → Z1/2

q q̄,

Aα → Z
1/2
A Aα, c→ Z1/2

c c, (2.15)

m→ Zmmµ
ε, g → Zggµ

ε, ξ → Zξξ.

In the above we also introduced the regularisation scale µ in the renormalisation of

the gauge coupling g and quark mass mi. This is to keep the action,

S =

∫
ddxLQCD , (2.16)

dimensionless in d dimensions, without having to alter the dimension of the fields.

In this work we will only need the renormalisation of the gauge coupling strength
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αs = g2/(4π) and the mass parameter mi. In the MS scheme these read:

mi → miS
−1/2
ε

{
1− αs

4π

3CF
ε

+
(αs

4π

)2
[
− 1

ε2

(
2TFnf −

9

2
CF −

11

2
CA

)

+
1

ε

(
5TF

3
nf −

3CF
4
− 97

12
CA

)]
CF +O(α3

s)

}
(2.17)

αs → αsS
−1
ε

{
1− αs

4π

1

ε

[
11CA

3
− 4TFnf

3

]
+O(α2

s)

}
, (2.18)

where

Sε =

(
4π

µ2eγE

)ε
= 1 + ε(log 4π − log µ2 − γE) +O

(
ε2
)

(2.19)

and γE ' 0.577215665 is the Euler-Mascheroni constant. The renormalized strong

coupling and quark mass parameter depend on the regularisation scale µ,

αs ≡ αs(µ) mi ≡ mi(µ), (2.20)

and satisfy the following evolution equations

∂αs(µ)

∂ log µ2
= β(µ)αs(µ),

∂mi(µ)

∂ log µ2
= γ(i)(µ)mi(µ). (2.21)

The beta function β(µ) as well as the anomalous dimension of the quark mass γ(µ)

may themselves be expanded perturbatively

β(µ) = −
∞∑

n=0

βn

(
αs(µ)

π

)n+1

γ(µ) = −
∞∑

n=0

γn

(
αs(µ)

π

)n+1

. (2.22)

The coefficients of β(µ) and γ(µ) are directly connected to the Zs we introduced in

eq.(2.15). This can be seen by noting that before renormalisation the bare coupling

constant were, of course, independent of the scale µ. Hence also after renormali-

sation the products Zααµ
2ε and Zmimiµ must be independent of µ, leading to the

conclusion that the coefficients βi and γi can be matched to the coefficients of the

perturbative expansions of Zα and Zmi order by order in perturbation theory. In
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our convention this leads to the following relations:

γ0 =
3

4
CF , γ1 =

97

96
CFCA +

3

32
C2
F −

5

24
TFnf ,

β0 =
11

12
CA −

1

3
TFnf , β1 =

17

24
C2
A −

1

4
(CF + 10CA)TFnf . (2.23)

The fact that the coupling in QCD decreases with increasing scale, as can be readily

confirmed from the above coefficients, is known as property of asymptotic freedom

and lead to the Nobel Prize in Physics 2004, awarded jointly to David J. Gross, H.

David Politzer and Frank Wilczek. QCD therefore becomes more weakly coupled

at higher energies, making the perturbative series a more reliable tool. It further

means that, unlike QED, QCD is well defined at higher energies. In Appendix

D we discuss in some detail the implications of renormalisation group invariance

on the scale dependence of cross-sections. Further discussions on the topic of re-

normalisation are left to the literature, e.g. [61, 62, 63, 64, 65, 66, 67, 69].

2.3.2 Infrared Divergences

Unlike UV divergences, IR divergences cancel for infra-red safe observables like cross-

sections or decay widths. Nevertheless since the divergences are there at intermedi-

ate states in higher order calculations, they require regularisation.

Fortunately dimensional regularisation can be used also here. Since IR divergences

are of logarithmic nature, IR divergent amplitudes are finite for d > 4 and are thus

well defined for ε < 0. This is in contrast to UV divergences, which formally require

ε > 0. A possible strategy would be to separate the UV divergences for ε > 0 and

from the IR divergences defined at ε < 0 and evaluate the integrals separately. This

can in fact always be achieved, see for example [69], but is rather impractical in

calculations. Instead what is done is to treat IR and UV divergences on the same

footing, i.e. by using an identical ε for for both types. This even leads to cancella-

tions of the latter. Since the final result for a given infra-red safe observable should

be free of poles, whether UV or IR, and is therefore finite in the limit ε → 0, it

is only an academic exercise to keep track of the precise way in which the poles

are cancelled and we are therefore free to treat them on the same footing when

performing calculations of scattering rates.
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2.4 The d-dimensional phase space measure

The Lorentz invariant phase space measure is of key importance to all computations

of cross-section and decay-rates in particle physics. In order to regularise infra-red

divergences which manifest themselves in certain regions of phase-space it is essential

to keep the measure d-dimensional. We define the expression for the phase-space

measure here, since we shall often make use of it later.

dΦn(
√
s;m1, ..,mn) =

(
n∏

i=1

ddpi
(2π)d

δ+
(
p2
i −m2

i

)
(2π)

)
δ(d)

(
q1 + q2 −

n∑

i=1

pi

)
(2π)d.

(2.24)

Here we use the notation δ+ (p2
i −m2

i ) = δ (p2
i −m2

i ) θ(p
0), to indicate that only

positive energy solutions are allowed. The phase-space volume satisfies the following

useful factorization property

Φn(
√
s;m1, ..,mn) =

∫
dsk..n
(2π)

Φk

(√
s;m1, ..,mk−1,

√
sk..n

)
Φn−k+1 (

√
sk..n;mk, ..,mn) ,

(2.25)

where 1 < k < n and we defined

sk..n = (pk + ..+ pn)2. (2.26)

This factorization property can be proven straight forwardly by inserting

1 =

∫
dsk..n
(2π)

δ+
(
sk..n − (pk + ..+ pn)2

)
(2π)

×
∫ n∏

i=1

ddpk..n
(2π)d

δ(d)

(
pk..n −

n∑

i=k

pi

)
(2π)d (2.27)

into eq.(2.24).

2.5 Cross sections and decay rates

The formula for computing a cross-section, σ2→n(s; {mi}), corresponding to the

scattering of 2 massless particles of center of mass energy
√
s into n massive particles

of masses mi is given by

σ2→n(
√
s; {mi}) =

1

2s

∫
dΦn(

√
s;m1, ..,mn)|A2→n({p})|2, (2.28)
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where dΦn(
√
s;m1, ..,mn) is the differential, Lorentz invariant, phase space element

defined in eq.(2.24). With |A2→n({p})|2 we shall denote the spin summed and av-

eraged squared amplitude for the 2→ n scattering process, which is in general a

function of the set of Lorentz invariant scalar products of the set of all momenta

involved in the process. The amplitudes for all QCD processes can, at least in prin-

ciple, be computed to a given order with the Feynman rules we presented in section

2.2. The formula corresponding to the decay rate of a particle of mass m into n

massive particles of masses mi is, in the same notation, given by

Γ1→n(m; {mi}) =
1

2m

∫
dΦn(m;m1, ..,mn)|A1→n({p})|2. (2.29)
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Chapter 3

Divergent integrals and non-linear

mappings

Loop and phase-space integrals which arise in perturbative Quantum Field Theory

often suffer from infra-red and ultra-violet divergences in four space-time dimen-

sions. Analytic continuation of the dimension to d = 4 − 2ε, allows to isolate the

divergent pieces as poles in ε.

It is always possible to represent loop and phase-space integrals as multi-dimensional

integrals on the unit-hypercube. In this chapter we will discuss typical forms which

singularities take in such integrals. Further we will review existing methods to

achieve Laurent expansions for arbitrary numerator functions, focusing in partic-

ular on numerical approaches. The technique for the factorisation of overlapping

singularities via non-linear mappings will be introduced and developed.

3.1 Factorised singularities

The simplest divergent structure one may encounter contains a single factorised

logarithmic singularity at x = 0:

I =

∫ 1

0

dx x−1+αεf(x), (3.1)

where f(x) is an integrable function which is finite but non-zero at the point of the

singularity. It is easy to see that a singularity at x = 0 is equivalent to a singularity
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at x = 1 via the mapping x 7→ x̄, where we introduced

x̄ ≡ 1− x. (3.2)

One also often encounters both singularities at the same time, i.e. integrals of the

form

I =

∫ 1

0

dxx−1+αεx̄−1+βεf(x). (3.3)

Using the partial fractioning identity

x−1+αεx̄−1+βε = xαεx̄−1+βε + x−1+αεx̄βε (3.4)

we can always write eq.(3.3) as a sum of two integrals of type eq.(3.1). Alternatively

such divergences may be separated by splitting the integral into two sectors, such

that x ∈ [0, 1/2] in the first and x ∈ [1/2, 1] in the second sector. We may therefore

continue our discussion by focusing only on integrals of type eq.(3.1).

Taylor expanding the numerator of eq.(3.1), f(x), around x = 0 we obtain

I =
∞∑

n=0

f (n)(0)

n!

∫ 1

0

dxx−1+n+αε, f (n)(x) =
∂nf(x)

∂xn
. (3.5)

It is then clear that the logarithmic singularity is only present in the first term of

the Taylor series, and that its residue is f(0). The singular piece of eq.(3.1) can thus

easily be subtracted out, allowing us to obtain the full Laurent expansion in ε as

I = f(0)

∫ 1

0

dxx−1+αε +

∫ 1

0

dxxαε
(
f(x)− f(0)

x

)

=
f(0)

αε
+
∞∑

n=0

(αε)n

n!

∫ 1

0

dx logn(x)

(
f(x)− f(0)

x

)
. (3.6)

It is worth remarking that it was not necessary to perform any non-trivial integrals

in order to obtain this Laurent expansion. Furthermore the coefficients of εn are

now well defined convergent integrals which may even be computed numerically,

if an analytic evaluation should appear to be infeasible. This option may become

particularly attractive when the boundaries of the integral are wanted to be kept

arbitrary or only a subspace of the integration range would be of interest according

to, for example, the wishes of the experimentalists. Since our major motivation is

phenomenological, this point will be of crucial importance in the chapters to come.

16



Indeed eq.(3.6) can be summarized neatly in the following identity:

x−1+αε =
δ(x)

αε
+
∞∑

n=0

(αε)n

n!
Dn(x) , (3.7)

where Dn(x) =
[

lnn(x)
x

]
+

and the plus-distribution is defined through

∫ 1

0

dx f(x)

[
g(x)

x

]

+

=

∫ 1

0

dx g(x)

(
f(x)− f(0)

x

)
. (3.8)

Laurent expansions for integrals of the type

I =

∫ 1

0

(
n∏

i=1

dxix
−1+αiε
i x̄−1+βiε

i

)
f(x1, .., xn) (3.9)

can then be obtained via eq.(3.4) and eq.(3.7).

While divergences in gauge theories are only believed to be of logarithmic degree,

it may occur that one encounters divergences in partial results, which appear to have

a worse behaviour. Let us for example consider the integral

I =

∫ 1

0

dxx−2+αεf(x), (3.10)

which carries a quadratic divergence. Taylor expanding f(x) around x = 0 we see

that the first term in the expansion, f(0), leads to a pole in (αε− 1), and that the

second term gives the pole in ε. In order to obtain a Laurent expansion we must

therefore subtract the first two coefficients of the expansion, i.e. rewrite eq.(3.10) as

I = f(0)

∫ 1

0

dxx−2+αε + f (1)(0)

∫ 1

0

dxx−1+αε +

∫ 1

0

dxxαε
(
f(x)− f(0)− xf (1)(0)

x2

)

=
f(0)

αε− 1
+
f (1)(0)

αε
+
∞∑

n=0

(αε)n

n!

∫ 1

0

dx logn(x)

(
f(x)− f(0)− xf (1)(0)

x2

)
. (3.11)

In the same manner yet more divergent integrals may also be subtracted.

3.2 Overlapping singularities

An overlapping singularity arises when two or more variables of integration must

simultaneously tend towards a fixed value to create the singularity.
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Here we will restrict ourselves to the situation where the overlapping singularity

will occur only at the boundary of the region of integration.

For factorised singularities it was rather straight forward to determine the degree

of divergence. Indeed the degree of divergence of the integral

I =

∫ 1

0

dx
f(x)

xn
(3.12)

could be considered to be n. For overlapping singularities the situation is a little

more complicated. Let us consider the integral

I =

∫ 1

0

dx1dx2
f(x1, x2)

h(x1, x2)
, (3.13)

where h(x1, x2) shall denote a function responsible for an overlapping logarithmic

singularity at the point x1 = 0 = x2. Let us focus only on the most divergent part

of this integral. In this limit we may consider f(x1, x2) ∼ f(0, 0). Furthermore we

are free to change the upper boundaries of integration since this can also not affect

the singular part. Hence we can change the upper boundary of the unit square into

a quarter unit disk. This allows us to change variables to polar coordinates,

(x1, x2) = (r cos θ, r sin θ), (3.14)

such that the overlapping singularity at the point x1 = 0 = x2 becomes factorised

at r = 0. The most singular part of the integral is thus also captured by

I = f(0, 0)

∫ π
2

0

dθ

∫ 1

0

dr
r

h(r cos θ, r sin θ)
. (3.15)

It follows that for a logarithmic singularity to be present we must have h ∝ r2 +

O (r3). And so the condition for h(x1, x2) to contain a singularity of degree k at

x1 = 0 = x2 is that

h(x, x) ∝ xk+1 +O
(
xk+2

)
. (3.16)

We can generalise the above argument to the n-variable case. The condition for the

integral

I =

∫ 1

0

dx1dx2..dxn
f(x1, x2, .., xn)

h(x1, x2, .., xn)
(3.17)

to carry an overlapping singularity at the point x1 = x2 = ... = xn = 0, of degree of
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divergence k, is thus

h(x, x, .., x) ∝ xk+n−1 +O
(
xk+n

)
. (3.18)

The latter statement can be proven identically, using polar coordinates in n dimen-

sions. This condition may be faked by, for example, h(x1, x2, .., xn) = xk+n−1
1 , but

this singularity would be present in the entire hyperplane defined by x1 = 0, and

would therefore give rise to a much higher degree of divergence away from the point

x1 = x2 = ... = xn = 0. Let us focus again on the two-dimensional case. If we

assume the function h of eq.(3.13) to be a polynomial it must be a quadratic form,

if it is to give rise to a logarithmic divergence. A general Ansatz would yield

h(x1, x2) = a11x
2
1 + 2a12x1x2 + a22x

2
2 , (3.19)

where the aij may even be functions of x1 and x2 themselves, as long as they do

not spoil the overall quadratic behaviour in the singular limit and do not allow for

further singularities inside the unit square. However non-polynomial realisation are

plentiful, for example

h(x1, x2) =
(x1 + x2)4

(ax1 + x2)2
. (3.20)

would also scale with r2. We shall therefore not be concerned with writing down the

most general structure which is possible. Nevertheless eq.(3.19) already captures a

number of interesting features. Let us regularize the integral as follows

I =

∫ 1

0

dx1dx2x
αε
1 x

βε
2

f(x1, x2)

[h(x1, x2)]
1−γε . (3.21)

While this is not the most general choice, it captures typical examples which we

encounter in loop and phase space integrals. The case a11 = a12 = a22 = 1, α = β =

0, γ = 1,

I1 =

∫ 1

0

dx1dx2
f(x1, x2)

(x1 + x2)
2−2ε , (3.22)

is an instructive example. In some sense it is a minimal overlapping singularity,

since its denominator polynomial is linear while the power by which it is raised is

maximal. Similarly the minimal overlapping logarithmic singularity containing n
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variables could be defined as

In =

∫ 1

0

(
n∏

i=1

dxi

)
f({xi})

[
∑n

i=1 xi]
n−ε . (3.23)

Another example is the case a11 = a12 = 1, a22 = 0, α = 1, β = 0 = γ:

I2 =

∫ 1

0

dx1dx2x
ε
1

f(x1, x2)

x1(x1 + x2)
. (3.24)

We will often encounter similar structures in phase-space integrals. Besides the

overlapping singularity at x1 = 0 = x2 the denominator of this integral contains

a factorised logarithmic singularity at x1 = 0. We shall highlight this feature by

regarding the engagement of x1 in the overlapping singularity as active and the one

of x2 as passive. Using the Feynman parameter identity

1

A1A2

=

∫ 1

0

dy
1

[yA1 + ȳA2]2
(3.25)

we can combine a product of denominators into a single denominator. Applying this

identity with A2 = x1 and A1 = x1 + x2 yields

I2 =

∫ 1

0

dx1dx2dyx
ε
1

f(x1, x2)

(x1 + x2y)2
. (3.26)

This integral contains two entangled overlapping singularities, one at x1 = 0 = x2

and another one at x1 = 0 = y. Of course the engagement of x1, x2 and y in

the overlapping singularity is now completely passive. In turn, Feynman parameters

allow us to transform integrals containing active singularities into higher dimensional

integrals which contain only passive, but entangled, singularities.

3.3 Methods for overlapping singularities

There are two, commonly used, ways to deal with overlapping singularities in the

presence of an arbitrary numerator function:

1. A subtraction which generalises eq.(3.6) to overlapping singularities.

2. A method of factorisation, making it possible to use the simple subtraction

identity of eq.(3.7) also for overlapping singularity.
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We will describe both approaches in the next sections.

3.3.1 The subtraction method for overlapping singularities

The subtraction method generalises eq.(3.6) to overlapping singularities. As an ex-

ample let us consider the integral of eq.(3.22). We can expand the function f(x1, x2)

around the origin as

f(x1, x2) = f(0, 0) + x1
∂f(0, 0)

∂x1

+ x2
∂f(0, 0)

∂x2

+ ... (3.27)

As was the case for the factorised singularity, we can use power counting to infer

that the logarithmic divergence is only present in the first term of the series. Hence

the piece containing the pole can be subtracted as follows

I1 = f(0, 0)

∫ 1

0

dx1dx2

(x1 + x2)
2−2ε +

∫ 1

0

dx1dx2(x1 + x2)−2ε

[
f(x1, x2)− f(0, 0)

(x1 + x2)2

]
(3.28)

In our simple example the first integral can easily be done analytically,

∫ 1

0

dx1dx2

(x1 + x2)
2−2ε =

1

ε

22ε−1 − 1

(2ε− 1)
(3.29)

=
1

2ε
+ (1− 2 log(2)) + ε

(
2− 2 log(2) + 2 log2(2)

)
+O

(
ε2
)
.

Hence no longer only the pole but also finite contributions are subtracted through

all orders in ε. When dealing with more complicated overlapping singularities, espe-

cially when more external scales are involved, analytic integration will become more

difficult. In such cases powerful methods are needed to tackle the problem. Meth-

ods which have been applied in this context are the differential equations methods

[55, 26, 56] and the Mellin Barnes representation method [57, 58, 59, 60].

The subtraction method can then be generalised to overlapping singularities but

comes at a high cost. While it may appear difficult, if possible, to automatize it

generally it has found much application in real radiation problems in QCD. Here

subtraction limits can usually be inferred from QCD factorization theorems. We

will discuss the different approaches in some more detail in chapter 5.
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3.3.2 Sector Decomposition

The first fully automated method to factorise overlapping singularities is sector de-

composition [11, 12, 13]. We illustrate the method on our simple example integral

eq.(3.22). To factorise the overlapping singularity at x1 = 0 = x2, we sector decom-

pose by inserting

1 = θ(x1 − x2) + θ(x2 − x1) (3.30)

where θ(x) is the Heaviside step function. In each of the two sectors which are

created through this decomposition we rescale the integration variable back on the

unit hypercube, using x2 7→ x1x2 in the first and x1 7→ x1x2 in the second sector.

This factorizes the integrand since both variables contributing to the overlapping

singularity now scale with either x1 or x2 in both sectors. We obtain

I1 =

∫ 1

0

dx1dx2x
−1+2ε
1

f(x1, x1x2)

(1 + x2)2−2ε
+

∫ 1

0

dx1dx2x
−1+2ε
2

f(x1x2, x2)

(1 + x1)2−2ε
(3.31)

A Laurent expansion can now be achieved by invoking eq.(3.7). The same procedure

also works on our second example, we obtain

I2 =

∫ 1

0

dx1dx2x
−1+ε
1

f(x1, x1x2)

1 + x1

+

∫ 1

0

dx1dx2(x1x2)−1+εf(x1x2, x2)

1 + x2

. (3.32)

In fact the only information needed for sector decomposition is the location of the

singularity in the integrand, here the point (0, 0). A factorisation is then imminent,

making the algorithm easy to automate. However when more complicated singu-

larities are encountered, the algorithm will unavoidably lead to a proliferation of

integrals. This feature makes it desirable to have a more economical alternative.

3.3.3 Non-linear mappings

In the previous examples of sector decomposition, singularities where factorised

by a rescaling of the integration parameters, e.g. x1 7→ x1x2 resulted in x1(x1 +

x2) 7→ x1x
2
2(1 + x1). A linear rescaling is not possible on the unit interval without

altering the boundaries. However, a rescaling is always possible when the integration

boundaries are from zero to infinity. Let us therefore extend our upper boundary to

infinity. This may be realised for example with the non-linear mapping

x1 7→
x1

1 + x1

. (3.33)
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There is actually no particular reason here to choose x1 over x2. But due to the

x1 ↔ x2 symmetry of our example integral, it surely does not matter which one we

choose. Our sample integral eq.(3.22) then transforms to

I1 =

∫ ∞

0

dx1

∫ 1

0

dx2

(1 + x1)−2εf
(

x1
1+x1

, x2

)

(x1 + x2(1 + x1))2−2ε
. (3.34)

Indeed the rescaling did not alter the position of the singularity, which is still located

at the origin. Now we are in a position to apply x1 7→ x1x2 without altering the

boundaries. We obtain

I1 =

∫ ∞

0

dx1

∫ 1

0

dx2x
−1+2ε
2

(1 + x1x2)−2εf
(

x1x2
1+x1x2

, x2

)

(x1 + (1 + x1x2))2−2ε
. (3.35)

The singularity is now nicely factorised in x2 and we are free to map the x1 integral

back to [0, 1]. The minimal choice is to apply the inverse of eq.(3.33)

x1 7→
x1

1− x1

, (3.36)

this yields the final result

I1 =

∫ 1

0

dx1dx2x
−1+2ε
2 (1− x1 + x1x2)−2ε

f
(

x1x2
1−x1+x1x2

, x2

)

(1 + x1x2)2−2ε
. (3.37)

The overall mapping of x1 which we performed to factorise the singularity is therefore

x1 7→
x1x2

1− x1 + x1x2

. (3.38)

It is worth pointing out what we have just accomplished. As was the case with Sector

Decomposition we have managed to factorise the singularity in a single variable, yet

it was not necessary to split the integration range. We have therefore circumvented

the problem of proliferation of integrals. Letting x1 = x and x2 = A/B, for reasons

which will become apparent, we can write the general form of eq.(3.38) as:

x 7→ α(x,A,B) ≡ xA

xA+ x̄B
, <(A) > 0,<(B) > 0 (3.39)
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The mapping fulfils a number of useful properties. One of these is that it treats x

and x̄ on the same footing since

x̄ 7→ 1− α(x,A,B) = α(x̄, B,A). (3.40)

It contains the identity mapping,

α(x, 1, 1) = x, (3.41)

a composition rule,

α(α(x,A1, B1), A2, B2) = α(x,A1A2, B1B2), (3.42)

as well as the property

α(x,A,B) = α(x, 1/B, 1/A). (3.43)

It then also follows that the inverse transformation must be

α−1(x,A,B) = α(x,B,A) = α(x, 1/A, 1/B). (3.44)

The α-mapping then satisfies the group axioms by containing a composition rule,

the identity mapping and the inverse mapping. Another interesting feature is that

the α-mapping is intimately linked to Feynman parameters. Reconsider the basic

Feynman parameter integral of eq.(3.25), applying x 7→ α(x,A1, A2) results in

∫ 1

0

dx
1

[xA2 + x̄A1]2
7→ 1

A1A2

∫ 1

0

dx =
1

A1A2

. (3.45)

In other words the α-mapping trivializes the Feynman parameter integral. While we

could have obtained the above from the Feynman parameter identity, the α-mapping

actually allows us to derive a more general result, valid for arbitrary x− dependent

numerator functions

∫ 1

0

dx
f(x)

[xA1 + x̄A2]n
7→
∫ 1

0

dx
[xA2 + x̄A1]n−2

An−1
1 An−1

2

f(α(x,A2, A1)). (3.46)
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Substituting A1 = A1 + A2 in the above yields yet another useful result

∫ 1

0

dx
f(x)

[xA1 + A2]n
7→
∫ 1

0

dx
[A2 + x̄A1]n−2

(A1 + A2)n−1An−1
2

f(α(x,A2, A1 + A2)). (3.47)

Since we shall use this mapping frequently we shall denote it by

β(x,A/B) ≡ α(x,A,A+B) =
xA

A+ x̄B
(3.48)

While the use of non-linear mappings goes far beyond eqs.(3.46) and (3.47), one

lesson to be learned is that terms which are of the form xA1 + x̄A2 are naturally

factorised with the α-mapping, while terms which are of the form xA1 +A2 are natu-

rally factorised with the β mapping. As an example we can use eq.(3.47) recursively

to factorise the minimal overlapping singularity involving n variables in eq.(3.23).

Applying

x1 7→ β

(
x1,

n∑

i=2

xi

)
(3.49)

yields

I =

∫ 1

0

dx1..dxn
f̃({xi})

[
∑n

i=2 xi]
(n−1)−ε, (3.50)

where

f̃({xi}) =

(
x̄1 +

n∑

i=2

xi

)n−ε−2(
1 +

n∑

i=2

xi

)1−n+ε

f({xi}). (3.51)

The latter contains a minimal overlapping singularity involving only n−1 variables.

Repeating the procedure n− 2 times, i.e. mapping subsequently

x2 7→ β

(
x2,

n∑

i=3

xi

)

x3 7→ β

(
x3,

n∑

i=4

xi

)

.

.

xn−1 7→ β (xn−1, xn) (3.52)

will thus lead to a single factorised logarithmic singularity.

Let us now explore the effect of non-linear mappings on our second test integral,
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eq.(3.24). Since the sector decomposition algorithm essentially realizes all different

scalings of the singular integration variables with respect to each other, we can learn

much from the example eq.(3.32). There we saw that only the scaling present in

the second sector x1 7→ x1x2 factorised the passive singularity in x2, meaning that

it was the active singularity which had to be rescaled.

We therefore suspect 1 that x1 7→ β(x1, x2) is the right mapping to use here. Ap-

plying it we obtain

I2 =

∫ 1

0

dx1dx2(x1x2)−1+ε(1− x1 + x2)−εf(β(x1, x2), x2), (3.53)

which indeed contains a factorised singularity structure. On the other hand when

we apply x2 7→ β(x2, x1) we obtain

I2 =

∫ 1

0

dx1dx2x
ε
1

f(x1, x2)

x1(x1 + x̄2)
. (3.54)

We see that mapping the passive singularity leaves (up to a mapping x2 7→ x̄2)

the integral untouched and certainly does not factorise the singularity. We can

understand this to some degree by considering the Jacobian of the α-mapping,

∂α(x,A,B)

∂x
=

AB

[Ax+Bx̄]2
. (3.55)

The α (and therefore also β) -mapping therefore creates a quadratic denominator,

which introduces a new singularity into the integral. Therefore, unless the vari-

able which is being mapped is at least quadratic in the denominator, the Jacobian

will be left at least partially un-cancelled and will introduce a new singularity into

the integral. Having understood this concept we can establish the following rule of

thumb: When factorising overlapping singularities with the α-mapping in the pres-

ence of active and passive singularities, it is the active singularities which should be

remapped.

Another interesting connection is between non-linear mappings and hypergeometric

argument transformations. Let us reconsider our example integral I2 for the case of

1x1 7→ α(x1, x2, 1) would have also factorised the singularity.
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f(x1, x2) = 1. Using the integral representation,

B(b, c− b) 2F1(a, b; c; z) =

∫ 1

0

dxxb−1(1− x)c−b−1(1− zx)−a (3.56)

we can rewrite I2 as a one dimensional integral over a 2F1 as follows

I2 =
1

ε

∫ 1

0

dx2
2F1 (1, ε; 1 + ε; (x2)−1)

x2

. (3.57)

The overlapping singularity is now hiding at the singular point of the hypergeometric

function, and the above integral is therefore not well defined as ε → 0. Pfaff’s

transformation can be used to factor out the singular behaviour and yields

2F1

(
1, ε; 1 + ε;−(x2)−1

)
= (1 + x2)−εxε2 2F1

(
ε, ε; 1 + ε;

1

1 + x2

)
. (3.58)

Substituting this into eq.(3.57) and then translating it back to the integral represen-

tation with eq.(3.56) indeed recovers eq.(3.53) with f(x) = 1. While Pfaff’s trans-

formation may be seen as an analytic continuation identity, extending a function’s

range of validity to a different regime, we see that this can also be realised with a

non-linear mapping in the integral representation. Non-linear mappings can there-

fore become an important analysis tool when studying yet unclassified functions.

This of course is often the situation with Feynman integrals. Feynman integrals

may generally be expressible in terms of hypergeometric functions or their general-

isation, but making those connections may be rather non-trivial, if possible at all,

for multi-scale multi-loop integrals.

3.3.4 A more complicated example with non-linear map-

pings

So far we have only discussed the α-mapping in the context of single variable trans-

formations. Let us now consider a more complicated example. The integral

I3 =

∫
dx1..dx4

f(x1, .., x4)

[x1x2 + x3x4]
2−2ε (3.59)

illustrates well the kind of problems which we encounter when tackling more difficult

integrals. A singularity analysis yields that there are four entangled overlapping

singularities located at x1 = 0 = x3, x1 = 0 = x4, x2 = 0 = x3 and x2 = 0 = x4.
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As a guideline we should always consider one variable at the time, rather than

immediately try to guess the mapping which factorizes all singularities at once. In

our example there is an absolute symmetry between the integration variables and

we may just pick x4 to start with. We then notice that the denominator is of the

form (Ax4 +B)n and so the identity of eq.(3.47) suggests that we apply

x4 7→ β

(
x4,

x1x2

x3

)
. (3.60)

This results in

I3 =

∫
dx1..dx4(x1x2)−1+2ε(x1x2 + x3x̄4)−2εf(x1, .., x4)

[x1x2 + x3]
1−2ε. (3.61)

The mapping activated x1 and x2, but left x3 passive. We should therefore proceed

by mapping either x1 or x2, to scale either of the remaining singularities. We proceed

by mapping x1 7→ α(x1, x2, 1) to scale out the overlapping singularity in x2 = 0 = x3.

This yields

I3 =

∫
dx1..dx4(x1x2x3)−1+2ε f(x1, .., x4)

[x̄1 + x1(x2 + x3)]
1−2ε

× (x̄1 + x1x3)−2ε(x1x2 + x̄1x̄4 + x1x3x̄4)−2ε. (3.62)

The last remaining overlapping singularity is located at x̄1 = 0 = x2 = 0 = x3. Here

we must accomplish that all three variables have the same scaling. Since both x2

and x3 are active we may rescale them both at the same time with x̄1. Applying

(x2, x3) 7→ (α(x2, x̄1), α(x3, x̄1)) we obtain

I3 =

∫
dx1..dx4(x1x̄1x2x3)−1+2ε f(x1, .., x4)

[1− x2
1x2x3]

1−2ε.

× (1− x1x2)−2ε(x̄4 + x1x2x4 − x2
1x2x3)−2ε (3.63)

The remaining overlapping singularity at x1 = x2 = x3 = 1 is integrable and we are

able to obtain its Laurent expansion. For the case f(x1, .., x4) = 1 we numerically

obtain

I3 = −0.25

ε3
+

0.49999(5)

ε2
− 0.1775(1)

ε
+ 0.0546(5) +O (ε) . (3.64)
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3.3.5 A two-variable non-linear mapping

The overall three-variable mapping which we effectively created with the last three

mappings is:

(x1, x2, x3) 7→
(
x1x3,

x2x̄3

1− x2x3

,
x1x̄3

1− x1x3

)
. (3.65)

Its apparent simplicity can be traced back to the following identity:

α(x1, α(x3, 1− x1, 1), 1) = x1x3. (3.66)

In other words the sequence x 7→ α(x, y, 1), y 7→ α(y, x̄, 1) corresponds to the

following two-variable mapping:

(x, y) 7→ ~γ(x, y) ≡
(
xy,

xȳ

1− xy

)
(3.67)

This mapping has a few interesting properties. One property is that since γ maps x

to the product xy, then γ−1 maps the product of two variables xy to a single variable

x. Another interesting property is that (x, y) 7→ γ(x, y) is completely equivalent to

(x̄, ȳ) 7→ γ−1(x̄, ȳ).

In practice the two-variable mapping eq.(3.67) is very useful. One idea is that we

can always make two variables scale with a common variable, thereby factoring out

the corresponding overlapping singularity. We will illustrate this method in the next

section. However if there are more than two variables involved it may be useful to

have more variables scale with a common variable. Such a mapping can always be

created by recursively applying the γ-mapping. We find that

(x1, x2, x3, ..., xn) 7→
(
x1x2x3..xn,

x1x̄2

1− x1x2

,
x1x2x̄3

1− x1x2x3

, ..,
x1x2..xn−1x̄n

1− x1x2x3..xn

)
(3.68)

with Jacobian

J =
xn−1

1 xn−2
2 xn−3

3 ...xn−1

(1− x1x2)(1− x1x2x3)..(1− x1x2x3..xn)
(3.69)

indeed qualifies as a valid n-dimensional generalization of the two-variable γ-mapping.

As a possible application, this mapping can also be used to completely factorise the

minimal n-dimensional logarithmic singularity which we introduced in eq.(3.23).
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3.3.6 A more complicated example with non-linear map-

pings II

Let us now illustrate how the γ-mapping may be used to systematically remove

singularities from a denominator. Applying (x1, x3) 7→ ~γ(x1, x3) to eq.(3.59) yields

I3 =

∫
dx1..dx4x

−1+2ε
1

(1− x1x3)1−2εf(x1, .., x4)

[x2x3(1− x1x3) + (1− x3)x4]
2−2ε. (3.70)

The term (1−x1x3) can not contribute to the overlapping singularity since it is tamed

by the corresponding factor in the numerator. We can therefore continue the Spiel

by removing the overlapping singularity at x2 = 0 = x4 with (x2, x4) 7→ ~γ(x2, x4),

I3 =

∫
dx1..dx4(x1x2)−1+2ε ((1− x1x3)(1− x2x4))1−2εf(x1, .., x4)

[x3x4(1− x1x3)(1− x2x4) + x̄3x̄4]
2−2ε. (3.71)

Ignoring the factors (1− x3x1)(1− x2x4) the remaining singularity looks much like

the one of eq.(3.46) and we can factorise it with the final mapping x3 7→ α(x3, x̄4, x4).

The numerical convergence we find using this strategy is very similar to our former

approach to this integral.

3.3.7 A more complicated example with non-linear map-

pings III

One may have wondered why we did not make use of eq.(3.47) in eq.(3.61) since

the singular denominator was of the form x1x2 + x3. We will now explore this path

here. Mapping x3 will, since it is passive, not factorise the singularity, but mapping

x1 7→ β

(
x1,

x3

x2

)
(3.72)

(mapping x2 would have worked equally well) results in

I3 =

∫
dx1..dx4(x1x2x3)−1+2εf(x1, .., x4)

× (x2(x̄4 + x1x4) + x3x̄4)−2ε(x2x̄1 + x3)−2ε(x2 + x3)2ε. (3.73)

At first sight it appears that all singularities have been factorised into the factor

(x1x2x3)−1+2ε. However the three other factors are all zero valued at the point

x2 = 0 = x3 and thus do not allow for a subtraction at this particular point.
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The mapping (x2, x3) 7→ γ(x2, x3) may be used to factorise the un-subtractable

numerators at the expense of a further factorised singularity at x̄2 = 0, we obtain

I3 =

∫
dx1..dx4(x1x2x̄2x3)−1+2ε(1− x2

2x3)2εf(x1, .., x4) (3.74)

× (1− x2
2x3 + x4x̄1 + x1x2x4 − x2

2x3x4)−2ε(1− x2
2x3 − x1 + x1x2)−2ε.

The numerical convergence we find with this strategy is also comparable to our

former approaches to factorise this integral.

3.4 Line singularities

A line singularity arises when two or more variables of integration must lie on a

hyper contour of the region of integration to create the singularity.

A simple example is given by the integral

I =

∫ 1

0

dx1dx2
f(x1, x2)

|x1 − x2|1−ε
, (3.75)

where the singularity is located along the line x1 = x2. This line singularity may be

factorised with sector decomposition. Inserting

1 = θ(x1 − x2) + θ(x2 − x1) (3.76)

and then mapping x2 7→ x1x2 in the first and x1 7→ x1x2 in the second sector yields

I =

∫ 1

0

dx1dx2f(x1, x1x2)xε1x̄
−1+ε
2 +

∫ 1

0

dx1dx2f(x1x2, x2)xε2x̄
−1+ε
1 . (3.77)

The reason why the sector decomposition works here is because it splits the region

of integration along the line x1 = x2. Therefore the line singularity is mapped onto

the upper boundary of each of the new sectors. We are not aware of trick which

allows to factorise a line singularity without splitting the integrand, nevertheless a

non-linear mapping can be applied to shrink the line singularity into a single point.

Mapping x1 7→ α(x1, x2, x̄2) yields

I =

∫ 1

0

dx1dx2x
ε
2x̄

ε
2(1− 2x1)−1+ε(x̄1x̄2 + x1x2)−1−εf(α(x1, x2, x̄2), x2). (3.78)
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This contains a singularity at x = 1/2, in order to map this back to the boundary

we would have to insert

1 = θ

(
x1 −

1

2

)
+ θ

(
1

2
− x1

)
,

thereby also creating two sectors. And so there is no apparent gain in using a

non-linear mapping to factorise a line singularity.

3.5 Conclusion

In this chapter we first reviewed the subtraction method for factorised singularities.

We then introduced overlapping singularities, discussed the two-variable case in some

depth and introduced the notion of active and passive singularities by focusing on

two simple example integrals displaying these features.

The subtraction method for overlapping singularities was discussed and applied to

a simple example integral. An alternative to the subtraction method is a method

of factorisation. We illustrated the method of sector decomposition on our two

examples, showing that the algorithm of sector decomposition worked irrespectively

of singularities being active or passive. As an alternative to sector decomposition we

introduced a non-linear mapping. We demonstrated that with non-linear mappings

a proliferation of integrals can be avoided. Further, we showed that the use of

non-linear mappings, in contrast to sector decomposition, is sensitive to whether a

singularity is active or passive. As a rule of thumb, we established that only active

singularities should be remapped. We gave a number of useful identities which

could be used to factorise certain denominator structures and demonstrated the

connection of our non-linear mapping with Feynman parameters. Furthermore we

remarked that this non-linear mapping could be used to derive analytic continuation

identities for hypergeometric functions. Finally the method was demonstrated on

a more complicated example containing several entangled overlapping singularities.

In particular we showed three different ways in which this example integral could

be factorised systematically with non-linear mappings.
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Chapter 4

Factorising singular loop integrals

with non-linear mappings

In this section we shall use the method of non-linear mappings to factorise some

of the most singular one- and two-loop integrals. At one-loop we will consider the

massless one-loop box with both, sector decomposition and non-linear mappings.

This will serve as a demonstration of how the latter can avoid a proliferation of

integrals. We will further consider a one-loop box containing two adjacent external

masses. As a final example, we will consider the two-loop massless non-planar trian-

gle, and use non-linear mappings to derive a fully factorised integral representation

for it.

4.1 The massless one-loop box with sector decom-

position

Let us consider the one-loop box scalar integral,

I =

∫
ddk

iπ
d
2

1

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
. (4.1)

The corresponding Feynman parametrisation reads,

I =

∫ 1

0

dx1 . . . dx4δ (1− x1 − . . .− x4) f(x1, . . . , x4) (4.2)
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with

f(x1, . . . , x4) ≡ Γ(2 + ε)

[−sx1x3 − tx2x4 − i0]2+ε . (4.3)

To avoid creating poles at the upper limit of the xi integrations we first apply the

method of primary sectors [11], which solves the delta-constraint of a Feynman

integral by decomposing into primary sectors as follows

I =

∫
dx

∫ 1

0

(∏

i

dxi

)
δ
(

1−
∑

xi

)
f({xi})

∑

i

δ(xi − x)
∏

j 6=i

θ(xi − xj). (4.4)

We now rescale

xk = ykx (4.5)

and perform the x integration. This yields

I = Γ(2 + ε)

∫ 1

0

dy1 . . . dy4

(∑

i

yi

)2ε ∑
i δ(1− yi)

[−sy1y3 − ty2y4 − i0]2+ε . (4.6)

All terms in the sum can be computed in exactly the same fashion. For convenience,

although not necessary, we use the special symmetry of this problem, y1 ↔ y3 and

y2 ↔ y4, and cast the integral as

I = 2 Γ(2 + ε)

∫ 1

0

dy1dy2dy3 (1 + y1 + y2 + y3)2ε

×
{

[−sy1 − ty2y3]−2−ε + [−ty1 − sy2y3]−2−ε} (4.7)

We observe that the integral becomes singular in the following instances

y1 = 0 and (y2 = 0 or y3 = 0). (4.8)

We now apply sector decomposition to factorize the entangled singularity structure.

We multiply the integrand by

1 = θ(y1 − y2) + θ(y2 − y1) (θ(y2y3 − y1) + θ(y1 − y2y3))

= θ(y1 − y2) + θ(y2 − y1)θ(y2y3 − y1) + θ(y2 − y1)θ(y1 − y2y3) . (4.9)

In each of the three sectors of the above equation we rescale the smallest variables

with respect to the large ones, mapping the boundaries of the sectors to the unit
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cube. Specifically,

θ(y2y3 − y1) : y1 → y1y2y3, (4.10)

θ(y2 − y1)θ(y1 − y2y3) : y1 → y1y2 and y3 → y3y1, (4.11)

θ(y1 − y2) : y2 → y2y1. (4.12)

This allows us to obtain a representation for the one-loop box,

I = I1 + I2 + I3, (4.13)

with a simple, factorised singularity structure:

I1 = 2 Γ(2 + ε)

∫ 1

0

dy1dy2dy3 (1 + y1y2y3 + y2 + y3)2ε

×
{

[−sy1 − t]−2−ε + [−ty1 − s]−2−ε} (y2y3)−1−ε , (4.14)

I2 = 2 Γ(2 + ε)

∫ 1

0

dy1dy2dy3 (1 + y1y2 + y2 + y3y1)2ε

×
{

[−s− ty3]−2−ε + [−t− sy3]−2−ε} (y2y1)−1−ε , (4.15)

I3 = 2 Γ(2 + ε)

∫ 1

0

dy1dy2dy3 (1 + y1 + y2y1 + y3)2ε

×
{

[−s− ty2y3]−2−ε + [−t− sy2y3]−2−ε} y−1−ε
1 . (4.16)

The resulting integrals I1, I2, I3 of sector decomposition can all be expanded in ε

using the subtraction method.

4.2 The massless one-loop box with non-linear

mappings

Let us write eq.(4.14) as

I = F (s, t) + F (t, s), (4.17)

where

F (s, t) = 2 Γ(2 + ε)

∫ 1

0

dy1dy2dy3 (1 + y1 + y2 + y3)2ε [−sy1 − ty2y3]−2+ε . (4.18)
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The singularity structure is of the same type as eq.(3.47), and can be factorised

efficiently with the mapping

y1 7→ β

(
y1,

ty2y3

s

)
. (4.19)

We obtain

F (s, t) = 2 Γ(2 + ε)

∫ 1

0

dy1dy2dy3(y2y3t)
−1−ε [−s− ty2y3]−1−ε

× (1 + β (y1, ty2y3/(sy1)) + y2 + y3)2ε (4.20)

All the singularities arising from the loop integration are now factorised and sub-

tractable. Let us remark that it is not necessary to apply a primary sector decompo-

sition in the first place. This may be advantageous when using sector decomposition,

since it implies that all singularities are located at the origin. When using non-linear

mappings on the other hand, singularities present at both boundaries are a welcome

feature, since they often allow the use of the identity eq.(3.46). Let us demonstrate

this by solving the delta constraint in eq.(4.2) with the following parameterisation:

x1 = y1

x2 = ȳ1y2

x3 = ȳ1ȳ2y3

x4 = ȳ1ȳ2ȳ3. (4.21)

The box integral may then be expressed as

F (s, t) = Γ(2 + ε)

∫ 1

0

dy1dy2dy3(ȳ1)−ε(ȳ2)−1−ε [−sy1y3 − tȳ1y2ȳ3]−2−ε . (4.22)

We observe that the identity of eq.(3.46) should be applicable and map

y3 7→ α(y3,−tȳ1y2,−sy1),

which results in

F (s, t) = Γ(2 + ε)

∫ 1

0

dy1dy2dy3(ȳ1)−1−2ε(sty1y2ȳ2)−1−ε [−sy1ȳ3 − tȳ1y2y3]ε . (4.23)
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An interesting complication arises here. While all the singularities appear to be

factorised, the purely finite term [−sy1ȳ3 − tȳ1y2y3]ε is not subtractable at the limit

y1 = 0 = y2. The problem can in fact be cured with the γ-mapping. Mapping

(y1, y2) 7→ γ(y1, y2) yields the now fully factorised and subtractable result

F (s, t) = Γ(2 + ε)

∫ 1

0

dy1dy2dy3(sty1ȳ1y2ȳ2)−1−ε [−sy2ȳ3 − tȳ2y3]ε . (4.24)

In comparison to the result of eq.(4.20), this result is much more compact. Further

more the y1 integration can be done trivially and yields just a simple B(−ε,−ε). We

also saw that the identity eq.(3.46) must be applied with care and can create non-

subtractable numerator functions. As was already demonstrated in section 3.3.7, a

γ mapping could also be applied here to obtain a subtractable result.

4.3 The one-loop box with two external masses

Let us now consider the box which has two adjacent external masses. This is of

course less singular then the purely massless box, but the denominator structure is

considerably more complicated and one may therefore question whether the non-

linear mapping can be used efficiently to factorise such structures. The standard

Feynman parametrisation of this integral reads

I =

∫ 1

0

(
4∏

i=1

dxi

)
δ (
∑

i xi − 1)

[x1x3s+ x2x4t+ x1x2m2
1 + x2x3m2

2]
2+ε . (4.25)

We shall now use the projective mapping,

xi 7→
xiAi∑
j xjAj

, (4.26)

used also by ’tHooft [23]. Under this mapping the measure transforms as

∫ 1

0

(
n∏

i=1

dxi

)
δ

(∑

i

xi − 1

)
7→
∫ 1

0

(
n∏

i=1

dxi

)
δ

(∑

i

xi − 1

) ∏
iAi[∑

j xjAj

]n .

(4.27)
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Essentially this is nothing but the n-dimensional generalisation of our non-linear

α-mapping. The box integral then becomes

I =

∫ 1

0

(
4∏

i=1

dxiAi

)
δ (
∑

i xi − 1) (
∑

i xiAi)
2ε

[x1x3sA1A3 + x2x4tA2A4 + x1x2m2
1A1A2 + x2x3m2

2A2A3]
2+ε .

(4.28)

We can remove all kinemtical dependences from the numerator by choosing [26]

A1A3 =
1

s
, A2A4 =

1

t
, A1A2 =

1

m2
1

, A2A3 =
1

m2
2

. (4.29)

This choice has the following unique solutions for the Ai:

A1 =
m2√
sm1

, A2 =

√
s

m1m2

, A3 =
m1√
sm2

, A4 =
m1m2√
st

. (4.30)

We should remark that this choice is only possible for all Ai positive, and we are

thus working in the Euclidean regime where s, t > 0. The integral becomes

I =

∫ 1

0

(
4∏

i=1

dxiAi

)
δ (
∑

i xi − 1) (
∑

i xiAi)
2ε

[x1x3 + x2(x4 + x1 + x3)]2+ε . (4.31)

Let us now solve the δ-constraint as follows

x1 = ȳ1y2,

x3 = ȳ1ȳ2y3, x2 = y1, (4.32)

x4 = ȳ1ȳ2ȳ3.

This results in

I =

(
4∏

i=1

Ai

)∫ 1

0

dy1dy2dy3 ȳ
−ε
1 ȳ2

(
∑

i xiAi)
2ε

[ȳ1y2ȳ2y3 + y1]2+ε . (4.33)

We can factorise the remaining overlapping singularity with

y1 7→ α(y1, y2ȳ2y3, 1). (4.34)
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Due to a remarkable conspiracy, the Jacobian of this transformation is cancelled

entirely and we end up with

I =

(
4∏

i=1

Ai

)∫ 1

0

dy1dy2dy3 (ȳ1ȳ2)−ε(y2y3)−1−ε

(∑

i

x̃iAi

)2ε

, (4.35)

where

x̃1 = ȳ1y2,

x̃3 = ȳ1ȳ2y3, x̃2 = y1y2ȳ2y3, (4.36)

x̃4 = ȳ1ȳ2ȳ3.

This result is fully factorised and subtractable.

4.4 The non-planar massless two-loop triangle

Figure 4.1: The massless non-planar two-loop triangle with one massive external leg

A convenient Feynman parametrisation for the non-planar massless two-loop

triangle, see Fig 4.1, reads

Xtri = Γ(2 + 2ε)

∫ 1

0

dx1dx2dxdydz
zz̄−1−εy1+εȳ−1−ε

[
xx̄+ yz(x− x1)(x− x2)

]2+2ε . (4.37)

First we rearrange the denominator into a positive definite form. We find

Xtri = Γ(2 + 2ε)

∫ 1

0

dx1dx2dxdydz
zz̄−1−εy1+εȳ−1−ε

[
xx̄(1− yz) + yz(xx̄1x̄2 + x̄x1x2)

]2+2ε . (4.38)

In this form it is apparent that y and z always appear as a product inside the

denominator. We can use the mapping (z, y) 7→ γ−1(y, z) to shrink this product
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into a single parameter of integration, this yields

Xtri = Γ(2 + 2ε)

∫ 1

0

dx1dx2dxdydz
y1+ε(zz̄)−1−εȳ−1−2ε

[
xx̄ȳ + y(xx̄1x̄2 + x̄x1x2)

]2+2ε . (4.39)

The denominator structure is now of the type yA1+ȳA2. Eq.(4.20) therefore suggests

the mapping

y 7→ α(y, xx̄, xx̄1x̄2 + x̄x1x2). (4.40)

This results in

Xtri = Γ(2 + 2ε)

∫ 1

0

dx1dx2dx3dydz y
1+εȳ−1−2ε(zz̄)−1−ε(xx̄)−ε (4.41)

×
{
xx̄y + ȳ(xx̄1x̄2 + x̄x1x2)

}3ε[
xx̄1x̄2 + x̄x1x2

]−2−4ε
.

The singular denominator (in square brackets) is now of the form xA+ x̄B allowing

us to repeat the Spiel with the mapping

x 7→ α(x, x1x2, x̄1x̄2). (4.42)

We then obtain

I = Γ(2 + 2ε)

∫ 1

0

dx1dx2dxdydz y
1+εȳ−1−2ε(zz̄)−1−ε(xx̄)−ε (4.43)

× (x1x̄1)−1−2ε(x2x̄2)−1−2ε
{
xx̄y + ȳ(xx1x2 + x̄x̄1x̄2)

}3ε
,

which is fully factorised and subtractable. Indeed we could easily perform the z-

integration which leads to a pre-factor of B(−ε,−ε), but for the purpose of demon-

stration we perform a completely numerical evaluation of the above with standard

subtractions. Numerically we then obtain

Xtri = Γ(2 + 2ε)

[
1

ε4
− 2.00001(8)

ε3
− 9.1598(7)

ε2
− 11.73(3)

ε
+ 9.13(1) (4.44)

+90.2(1)ε+ 312.4(2)ε2 + 863.2(7)ε3 + 2164(2)ε4 + 5169(6)ε5 +O
(
ε6
)
]
,

which agrees with the known analytic result [70]. For the numerical evaluation we

used the partial fraction identity eq.(3.4), this creates eight separate terms. However

the symmetry of the integrand allows to regroup these into two non-equal integrals.
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This is to be compared to 64 integrals which are created when sector decomposition

is used to factorise the integrand.

4.5 Conclusion

We have demonstrated the method of non-linear mappings on three loop integrals,

namely the massless one-loop box, the two adjacent massive box and the massless

non-planar two-loop triangle. We find that the non-linear mappings can be used

very efficiently to factorise the singularities of all three integrals, without the need

to split the integrals. In comparison to the sector decomposition approach we save

a factor of three in the number of different independent integrals for the one-loop

box and a factor of 32 for the non-planar two-loop triangle.

41



Chapter 5

Real corrections to the hadronic

production of massive states

Singularities in phase space integrals are encountered when two or more final state

massless particles become indistinguishable from each other. This means either that

at least one particle’s energy vanishes, or that at least two particles become collinear

to each other. When considering LO jet cross-sections, for example the hadronic

production of two gluons, it is therefore necessary to demand these gluons to be

distinguishable (or resolved) such that they may not become too soft or too collinear

to each other or to the beam. Such requirements can be efficiently implemented via

a jet algorithm.

Beyond LO un-resolved emissions must also be taken into account to ensure the

cancellation of singularities between real and virtual corrections. Given a suitable

phase space parametrisation on the unit hypercube we can handle these singularities

with simple subtractions.

The latter, together with QCD factorisation, is also the basis of FKS subtraction

[18, 19, 20], which formulates a subtraction scheme for NLO real emissions. Other

schemes in particular the Catani-Seymour dipoles [21, 22] make use of counter-terms,

such as dipoles, whose singular limits resemble those of the physical amplitudes.

The counter-terms are first subtracted from the real emission part, then integrated

over the singular phase space of the real emission, and finally added to the virtual

contributions in their integrated form. This procedure therefore allows for a purely

analytic cancellation of poles. Subtraction schemes therefore do not directly rely on

an explicit factorisation of the singularities, instead the poles in ε are retrieved via an

analytic integration of these counter-terms. Several schemes exist which generalize
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the subtraction ideas to NNLO. Quite general is the Antenna subtraction scheme

[42, 43, 44, 45, 46] which uses simpler physical amplitudes to build their subtraction

terms, this makes an analytical evaluation feasible with loop integration techniques

via cut-propagators. A scheme, which aims at a yet more general subtraction, using

dipoles as counter-terms, is under development [47, 48, 49, 50, 51]. Further ideas

were developed [52, 53, 54].

However, the first fully differential NNLO calculations were accomplished using

sector decompostion [35, 36, 37, 38, 39, 40]. The original approach was as follows.

First, a suitable decomposition of the squared amplitude in terms of topologically

different denominator structures is performed. For each denominator structure, a

suitable phase-space parametrisation is then used, which factorises the singularities

of that denominator with the help of sector decomposition.

In the meantime a new approach has been proposed [71, 72, 73], which merges the

subtraction idea of FKS with a factorisation of the singularities via sector decompo-

sition. But there is an essential difference between the latter developments and the

original approach with sector decomposition. This new approach does not intend a

decomposition into different singularity structures on the squared amplitude level,

rather its approach is to first sector decompose the entire phase-space in such a way

that all possible singularity structures are factorised. Further it then substitutes

the singular limits of the matrix element, known from QCD factorization, at the

corresponding points of subtraction.

The latter substitution of the singular limits was not trivial to accomplish with

the former method of topology separation. This is mainly because QCD factorisation

works on the amplitude squared level rather than on the diagram level, where the

different singular topologies are identified.

We will present yet another approach to double real emission which is based

also on a topology decomposition of the amplitude, however instead of using sec-

tor decomposition for the factorisation of the singularities, we will use non-linear

mappings to achieve a more economical factorisation, and save on the number of

integrals, which have to be integrated independently. We will first review the case

of single real emission at NLO, before moving to the case of double real emission.

This will serve as both an introduction, as well as a preparation for the complexity

which exists at NNLO.
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5.1 Notational setup for the NNLO partonic cross

section

Let us consider a LO process where n massive particles with momenta pi and masses

p2
i = m2

i , where i = 1..n, are produced in a collision of two massless partons of

momenta q1 and q2. Momentum conservation then yields

q1 + q2 =
n∑

i=1

pi. (5.1)

In the partonic center of mass frame we can parameterise the momenta of the in-

coming partons as follows

q1 =

√
s

2
n+ , q2 =

√
s

2
n− (5.2)

where n± = (1, 0, 0,±1) are light cone vectors and s = (q1 + q2)2 is the partonic

center of mass energy. The fully differential hadronic cross section at NNLO may

be written as

σ2→n+X [J ] = σ
(0)
2→n[J ] +

(αs
π

)(
σ

(0)
2→n+1[J ] + σ

(1)
2→n[J ]

)
(5.3)

+
(αs
π

)2 (
σ

(0)
2→n+2[J ] + σ

(1)
2→n+1[J ] + σ

(2)
2→n[J ]

)
+O

(
α3
s

)
,

where X shall collectively stand for QCD radiation in the final state and the nota-

tion is such that σ
(l)
2→n+r[J ] corresponds to the lth order correction with r emitted

particles in the final state. The fully differntial cross section σ2→n+X [J ] is a func-

tional of the jet function J , through which arbitrary infra-red safe final state phase

space cuts can be implemented. We shall denote the momenta of the r unresolved

particles as qi=3..2+r. Here αs = αs(µ) shall denote the MS renormalised strong

coupling constant. The fully differential LO partonic cross section is

σ
(0)
2→n[J ] =

1

2s

∫
dΦn|A(0)

2→n|2Jn (5.4)
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At NLO we must also include one-loop corrections (the virtual) and the emissions

of a massless parton at tree-level (the real):

σ
(1)
2→n[J ] =

1

2s

∫
dΦn|A(1)

2→n|2Jn

σ
(0)
2→n+1[J ] =

1

2s

∫
dΦn+1|A(0)

2→n+1|2Jn+1. (5.5)

At NNLO double virtual, real-virtual and double real corrections must be considered,

these are

σ
(2)
2→n[J ] =

1

2s

∫
dΦn|A(2)

2→n|2Jn,

σ
(1)
2→n+1[J ] =

1

2s

∫
dΦn+1|A(1)

2→n+1|2Jn+1, (5.6)

σ
(0)
2→n+2[J ] =

1

2s

∫
dΦn+2|A(0)

2→n+2|2Jn+2,

respectively. Here |A(l)
n+r|2 shall denote the coefficient of the lth order correction to

a squared spin averaged and summed amplitude of the 2→ n + r process. Further

we introduced the notation

Jn+r = J ({pi=1..n, qi=3..2+r}) (5.7)

which shall denote the n+r final state jet function, through which we will implement

any infra-red safe final state phase space cuts. The phase space volumes here are

defined in a similar fashion as

Φn+r = Φn+r(
√
s;m1, ..,mn, 0, .., 0︸ ︷︷ ︸

r

). (5.8)

Lorentz invariants shall be defined through scalar products of the vectors

pi1...in = pi1 + ...+ pin

qi1...in = τi1qi1 + ...+ τinqin (5.9)

where

τi =

{
−1 if i = 1, 2

+1 if i > 2
(5.10)
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q3
q1

q2 p1..n

∼ 1
s13

q1

q2

q3

p1

p2

∼ 1
t3;1

Figure 5.1: Singular Feynman diagrams for single real emissions

as

ui1...in = (pi1...in)2, si1...in = (qi1...in)2 (5.11)

and

ti1...in;j1,...,jm = (qi1...in + pj1...jm)2 − (m2
j1

+ ...+m2
jm). (5.12)

At times we shall also use the angle functions

yij =
1− cos θij

2
, where cos θij =

~qi.~qj
|~qi||~qj|

(5.13)

and

yi;j =
1− cos θi;j

2
, where cos θi;j =

~qi.~pj
|~qi||~pj|

. (5.14)

The energies or zero components of the momenta qi shall be denoted by Ei. We will

not often need the energies of the momenta pi and shall denote them by p0
i to avoid

confusion with the energies of qi.

5.2 Single real emission for massive final states

The possible singular invariants may be identified most easily when working with

energy and angle variables and are

s13 = (q1 − q3)2 = −√sE3(1− cos θ13)

s23 = (q2 − q3)2 = −√sE3(1 + cos θ13) (5.15)

and

t3;i = (q3 + pi)
2 −m2

i = 2E3p
0
i (1− vi cos θ3;i), i = 1..n, (5.16)

where vi = |~pi|
p0i

is the velocity of the massive particle i. Diagrams corresponding to

these singularities are depicted in Figure 5.1. Soft singularities are therefore present

in s13, s23 and t3;i, while collinear singularities are present only in s13 and s23 since

as long as m2
i > 0 further collinear singularities in the invariants t3;i are shielded by

46



the fact that |vi| < 1 . The singularities may therefore be factorised in terms of the

energy and angle of q3 and are independent of the momenta pi. It is then convenient

to factorise the n+ 1 particle phasespace as follows

Φn+1(
√
s;m1, ..,mn, 0) =

∫
du1..n

2π
Φ2(
√
s; 0,
√
u1..n) Φn(

√
u1..n;m1, ..,mn). (5.17)

where

(m1 + ...+mn)2 ≤ u1..n ≤ s. (5.18)

See also Figure 5.2. It is then clear that when the center of mass energy u1..n of the

massive particles equals the total partonic center of mass energy s, that no energy

is left over and q3 must become soft. This limit is therefore uniquely specified when

z̄ = 1− z = 1− u1..n

s
→ 0. (5.19)

In the case n = 1 of only a single massive particle being produced (e.g. W,Z or

single Higgs production), the above still holds. The 2→ 1 phase space is

Φ1(
√
u1;m1) = 2πδ(u1 −m2

1), (5.20)

which precisely kills the integral over u1 and the soft singularity occurs as

z̄ = 1− z = 1− m2
1

s
→ 0. (5.21)

We shall see in the next sections that this variable can always be used to control

the maximum soft singularity which occurs. Let us now parametrise the 2 particle

q3

Φn+1

q1

q2

p1

p2

pn

=

q3

Φ2

q1

q2 p1..n

p1

p2Φn

pn

Figure 5.2: Phase space factorisation: qi are massless particles while pi are massive.
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phase-space volume

Φ2(
√
s; 0,
√
u1..n) =

∫
ddq3

(2π)d−1
δ+(q2

3)
ddp1..n

(2π)d−1
δ+(p2

1..n − u1..n) (5.22)

× (2π)dδ(d)(q1 + q2 − q3 − p1..n).

The d-dimensional delta function may be used to integrate out the momentum p1..n.

The 4-vector q3 may then be parametrised in terms of the energy E3 and a further

angle through the following change of variables

ddq3δ(q
2
3) =

1

2
dE3E

d−3
3 dΩ(d−1). (5.23)

Here

Ω(d) =
2π

d
2

Γ
(
d
2

) (5.24)

is the volume of the unit sphere in d-dimensions. We can extract a further angle via

the identity

dΩ(d−1) = dΩ(d−2)d cos θ13 (sin θ13)d−4 . (5.25)

It is convenient to parameterise cos θ13 = 2y13− 1, such that y13 is situated in [0, 1].

Solving the remaining delta function for the energy yields

E3 =

√
sz̄

2
, (5.26)

which indeed vanishes in the limit z̄ → 0. We end up with the following parametri-

sation of the phase space:

Φ2(
√
s; 0,
√
sz) =

1

8π

(4π)ε

Γ(1− ε)s
−εz̄1−2ε

∫ 1

0

dy13[y13ȳ13]−ε , (5.27)

with the Lorentz invariants taking the simple form

s13 = −sz̄y13 ,

s23 = −sz̄ȳ13 . (5.28)

All singular propagators s13, s23 and t3;i are therefore factorised nicely and may be

dealt with using simple subtractions.
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C1 :

C3 :

C2 :

q1

q2 p1..n

q3

q4 ∼ 1/(s134s13)

q1

q2

p1..n

q3

q4

∼ 1/(s13s24)

q1

q2

p1..n

q3

q4

∼ 1/(s34s234)

C4 :

q1

q2 q3

q4

p1

p3..n
∼ 1/(t3;1t4;2)

p2

Figure 5.3: The most singular topologies: C1, C2, C3, C4

5.3 Double real emissions for massive final states

Infrared singularities can occur in this double real emission phase-space whenever

q3 and/or q4 become soft or collinear to q1, q2 or to each other. The situation is

therefore considerably more complicated then for single real emissions.

For the case of double real radiation to the production of a color singlet (e.g. Higgs,

W, Z,γγ, WW or ZZ production) potentially singular propagators can be summa-

rized as

s34 = 2q3.q4

s13 = −2q1.q3

s23 = −2q2.q3

s14 = −2q1.q4

s24 = −2q2.q4 (5.29)
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and

s134 = (q3 + q4 − q1)2 = s34 + s13 + s14

s234 = (q3 + q4 − q2)2 = s34 + s23 + s24. (5.30)

Note that s123, s124 are bounded from below. Further soft singularities can be found

if there are colored massive particles in the final state, which radiate off soft gluons.

One can then also get the following possibly singular denominators:

t3;i = 2q3.pi

t4;i = 2q4.pi (5.31)

as well as

t34;i = (q3 + q4 + pk)
2 −m2

k = s34 + t3;i + t4;i. (5.32)

for i ≥ 1. These denominators only contain soft singularities as was the case for the

single real emissions. Whenever some heavy colored state radiates off two gluons we

now also get the denominator t34;i, it can only become singular in the double soft

limit when E3 = 0 = E4. However the double soft limit will always be factorized as

we will show in the next section.

Not all singular propagators can appear at the same time. We can identify the

most singular denominator structures, by considering typical Feynman Diagrams.

The most singular diagrams which one could expect are those where radiation is

emitted from the initial state particles. We illustrate their propagator structure

using diagrams containing gluons in Fig. 5.3, diagrams containing massless quarks

contain of course the same propagator structures. Diagrams whose propagator struc-

ture can be related to the ones in Fig.5.3 by a simple interchange of q3 with q4 or of

q1 with q2 will also fall into the same topology. By considering square and interfer-

ence terms of the topologies C1, C2 and C3, we obtain the list of integrals depicted

in Table 5.3.

Here dΦ3 is the differential double emission phase space element for 2 + n final

state particles, and N({sij}) is in general a finite function of the kinematical invari-

ants. The topology C4 contains only soft singularities similar to those in C1. The

topologies C4 ⊗ C4 and C4 ⊗ C1 are, therefore, easier than C1 ⊗ C1. They can be

treated exactly like C1 ⊗ C1 and we will not discuss them in what follows.
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Table 5.1: The most singular integrals to double real emission of massive final states

Topology Most singular integrals

C1 ⊗ C1

∫
dΦ3N({sij})

(s13s24)2

∫
dΦ3N({sij})
s13s23s14s24

C2 ⊗ C2

∫
dΦ3N({sij})

(s34s134)2

∫
dΦ3N({sij})
s2

34s134s234

C3 ⊗ C3

∫
dΦ3N({sij})

(s13s134)2

∫
dΦ3N({sij})
s13s23s134s234

∫
dΦ3N({sij})
s13s24s134s234

C1 ⊗ C2

∫
dΦ3N({sij})
s34s234s13s24

C1 ⊗ C3

∫
dΦ3N({sij})
s134s13s23s14

∫
dΦ3N({sij})
s134s

2
13s14

C2 ⊗ C3

∫
dΦ3N({sij})
s34s

2
134s13

∫
dΦ3N({sij})
s34s134s234s23

C4 ⊗ C1

∫
dΦ3N({sij})
t3;it4;js13s14

C4 ⊗ C2

∫
dΦ3N({sij})
t3;it4;js34s134

C4 ⊗ C3

∫
dΦ3N({sij})
t3;it4;js13s134

C4 ⊗ C4

∫
dΦ3N({sij})

t23;it
2
4;j

∫
dΦ3N({sij})
t3;it4;jt3;jt4;i
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5.3.1 Factorisation of the double emission phase space

q3

Φn+2

q1

q2

q4

p1

p2

pn

=

q3

Φ3

q1

q2

q4

p1..n

p1

p2Φn

pn

Figure 5.4: Double real phase space factorisation

It does not appear to be possible to find phase space parametrisations which

completely factorise all singularities, without splitting the phase space into a number

of integrals via sector decomposition. Nevertheless, different parametrisations of the

phase-space can factorize different sets of kinematic invariants. We will derive two

such parametrisations which allow for a more convenient numerical evaluation of

diverse diagrams, according to their topology.

Similarly to the NLO case, we factorize the double real phase space into a 3-particle

phase space times an n-particle phase space as follows

Φn+2(
√
s;m1, ..,mn, 0, 0) =

∫
du1..n

2π
Φ3(
√
s; 0, 0,

√
u1..n)Φn(

√
u1..n;m1, ..,mn).

(5.33)

This is depicted graphically in Figure 5.4. The double soft singularity will then

appear when

z̄ ≡ 1− u1..n

s
→ 0. (5.34)

The fact that the double soft singularity can always be factorised then follows from

the fact that it is controlled by the single parameter z.

In the following we will assume that one can parametrise the n-particle phase

space dΦn, and we will focus on the phase-space of the potentially unresolved mass-

less partons dΦ3.
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5.3.2 Energies and angles parametrisation

Since infra-red singularities are due to vanishing energies and angles, it appears

to be rather natural to use these variables to parametrise the real emission phase-

space. Indeed, already at NLO we saw that this choice lead us to a fully factorised

parametrisation. As our first attempt we shall therefore pursue a similar path here

as well. The three particle phase space element dΦ3 is defined as

dΦ3(
√
s; 0, 0,

√
u1..n) = (2π)3−2dddq3δ

(+)(q2
3)ddq4δ

(+)(q2
4) (5.35)

× ddQδ(+)(Q2 − u1..n)δ(d)(q1 + q2 − q3 − q4 −Q).

We proceed as in the case of the single real emission by integrating out Q = p1...n

and using that ddqδ(+)(q2) = dEEd−3dΩ(d−1)/2. We then obtain the measure in

terms of energies and angles:

dΦ3(
√
s; 0, 0,

√
u1..n) = (2π)3−2d1

4
dΩ

(d−1)
3 dΩ

(d−1)
4 dE3dE4(E3E4)d−3 (5.36)

×δ(+)(s− u1..n − 2
√
s(E3 + E4) + 2E3E4(1− cos θ34)).

The remaining δ-constraint can be solved in a number of ways. We could integrate

out u1..n or cos θ34, but u1..n controls the double soft limit and we would like to keep

this feature. If we would integrate out cos θ34 we would have to choose this parameter

as a parameter of integration by pulling it out of either dΩ3 or dΩ4, the solid angles

of q3 and q4. Picking one would also break the same symmetry. Alternatively

we can integrate out E3 or E4. This may lead to a nice parametrisation but we

desire a more symmetric parametrisation of the two energies. We therefore make

the following Ansatz :

E3 =
1

2

√
sz̄x1κ

E4 =
1

2

√
sz̄x̄1κ. (5.37)

The energy constraint may then be written as a quadratic equation in κ

ξκ2 − κ+ 1 = 0, with ξ = x1x̄1z̄y34, (5.38)
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where y34 is defined in eq.(5.13). The positive energy solution is

κ =
1−√1− 4ξ

2ξ
∈ [1, 2). (5.39)

In the limit ξ → 0 this function behaves as

lim
ξ→0

κ = 1 + ξ + 2ξ2 + 5ξ3 +O
(
ξ4
)

(5.40)

and is therefore well behaved in this limit. The double soft limit now appears when

z → 1, and does not overlap with the single soft singularities which are now nicely

separated in phase-space at x1 = 0 and x1 = 1. After this transformation the phase

space volume becomes

dΦ3 = 2−4(2π)3−2ddΩ
(d−1)
3 dΩ

(d−1)
4 dx1

(
z̄κ2

2− κ

)(
sz̄2κ2x1x̄1

4

)d−3

. (5.41)

Having solved the energy constraint we must still classify the angles. It is convenient

to choose the z-axis as the direction of q1 and we can directly parametrise the angles

which q3 and q4 make with the z-axis. At last we parametrize the azimuthal angle,

φ, between q3 and q4 in the x-y plane. This leads to the following expressions of the

differential solid angles

dΩ
(d−1)
3 = dΩ

(d−2)
3 d cos θ3(sin θ3)d−4

dΩ
(d−1)
4 = dΩ

(d−3)
4 d cos θ4(sin θ4)d−4d cosφ(sinφ)d−5. (5.42)

Suppressing any extra dimensional components our 4-vectors are then fully parametrized

as q3 = E3(1, sin θ3, 0, cos θ3) and q4 = E4(1, sin θ4 sinφ, sin θ4 cosφ, cos θ4). Mapping

the remaining angles linearly, i.e. cos θ3 = 2x3 − 1, cos θ4 = 2x4 − 1 and φ = x2π,

one obtains

∫
dΦ3 =

(2π)−3+2ε

16Γ(1− 2ε)

∫ 1

0

dx1dx2dx3dx4

(
sz̄3κ4x1x̄1

2− κ

)
(5.43)

×
(
s2z̄4κ4x2

1x̄
2
1x3x̄3x4x̄4 sin2(πx2)

)−ε
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The following lists the propagators of massless partons in this parameterization:

s13 = −sz̄κx1x3

s23 = −sz̄κx1x̄3 (5.44)

s14 = −sz̄κx̄1x4

s24 = −sz̄κx̄1x̄4

and

s34 = sz̄2κ2x1x̄1x̃34

s134 = sz̄κ [z̄κx1x̄1x̃34 − x1x3 − x̄1x4] (5.45)

s234 = sz̄κ [z̄κx1x̄1x̃34 − x1x̄3 − x̄1x̄4]

where

x̃34 = x3x̄4 + x4x̄3 − 2 cos(x2π)
√
x3x̄3x4x̄4 (5.46)

and

κ =
1−√1− 4z̄x1x̄1x̃34

2z̄x1x̄1x̃34

. (5.47)

The angle between q3 and q4 is related to

x̃34 =
1− cos θ34

2
=

1− cos θ3 cos θ4 − cosφ sin θ3 sin θ4

2
. (5.48)

This expression exposes the weak point of this parametrisation: it gives rise to an

overlapping line singularity when φ = 0 and θ3 = θ4 i.e. when q3 is parallel to

q4. Nevertheless the above construction can be used to fully subtract all phase

space integrals which do not contain singularities in x̃34, i.e. which do not contain

s34, s134, s234.

Let us now analyse the singularities in this parametrisations. While s13, s23, s14

and s24 are fully factorized, there is an overlapping line singularity in s34 when

x̃34 = 0. Furthermore there are overlapping singularities in s134 and s234. For s134

there are 3 different possibilities

a)x3 = 0 and x4 = 0

b)x3 = 0 and x1 = 1 (5.49)

c)x4 = 0 and x1 = 0
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while for s234 the singularities are located at

a)x3 = 1 and x4 = 1

b)x3 = 1 and x1 = 1 (5.50)

c)x4 = 1 and x1 = 0.

We can now apply this parametrisation to all integrals of type C1⊗C1,C3⊗C3 and

C1 ⊗ C3.

Line singularities in the energy and angles parametrisation

One can use a non-linear transformation to get rid of the overlapping structure

in x̃34 [35]. A convenient way to derive such a mapping is remapping x̃34 from

x̃−34 = x̃34(φ = 0) to x̃+
34 = x̃34(φ = 1) using

x̃34 =
x̃−34x̃

+
34

x̃+
34 − x2(x̃+

34 − x̃−34)
. (5.51)

It is then apparent that x̃34 will vanish whenever x̃−34 or x̃+
34 will, for any value of x2.

The overlapping line singularity is then re-expressed into just a line singularity. To

aid numerical stability we perform the mapping x2 → (1 − cos(x2π))/2, such that

x̃34 becomes

x̃34 =
(x3 − x4)2

x3x̄4 + x4x̄3 + 2 cos(x2π)
√
x3x̄3x4x̄4

. (5.52)

This is in fact identical to the mapping in [71]. The phase space volume then

becomes

Φ3 =
(2π)−3+2ε

16Γ(1− 2ε)

∫ 1

0

dx1dx2dx3dx4

(
sz̄3κ4x1x̄1

2− κ

)
(5.53)

×
(
s2z̄4κ4x2

1x̄
2
1x3x̄3x4x̄4 sin2(πx2)

)−ε
(

x̃34

|x3 − x4|

)1−2ε

.

To factorize the line singularity in s34 (at x3 = x4) we are forced to split the inte-

gration region in two, separating x3 < x4 from x4 < x3.
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5.3.3 A more general κ parameterisation

Writing

y1 = x1x3 y3 = x̄1x4

y2 = x1x̄3 y4 = x̄1x̄4, (5.54)

it is clear thar
∑

i yi = 1. This observation allows us to generalise the energies and

angle parameterisation of the previous section, as follows

∫
dΦ3 =

(2π)−3+2ε

16Γ(1− 2ε)

∫ 1

0

dx2

(
4∏

i=1

dyi

)
δ

(
4∑

i=1

yi − 1

)
(5.55)

×
(
sz̄3κ4

2− κ

)(
s2z̄4κ4 sin2(πx2)

4∏

i=1

yi

)−ε
.

In the following we list the propagators of massless partons in this parameterization:

s13 = −sz̄κy1

s23 = −sz̄κy2

s14 = −sz̄κy3 (5.56)

s24 = −sz̄κy4

and

s34 = sκ2z̄2 (y1y4 + y2y3 + 2 cos(πx2)
√
y1y4y2y3) . (5.57)

This allows to derive a whole class of possibly nice parameterisations. We can, for

example, solve the δ-constraint using

y1 = x1x3 y2 = x̄1x4

y3 = x1x̄3 y4 = x̄1x̄4. (5.58)

The parameterisation for s134 and s234 then read

s134 = sz̄κ
[
z̄κ(x2

1x3x̄3 + x̄2
1x4x̄4 + 2x1x̄1 cos(πx2)

√
x3x̄3x4x̄4)− x1

]
,

s234 = sz̄κ
[
z̄κ(x2

1x3x̄3 + x̄2
1x4x̄4 + 2x1x̄1 cos(πx2)

√
x3x̄3x4x̄4)− x̄1

]
. (5.59)
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For s134 there overlapping singularities are now located at,

a)x4 = 0 and x1 = 0

b)x4 = 1 and x1 = 0, (5.60)

while for s234 the overlapping singularities are located at:

a)x3 = 0 and x1 = 1

b)x3 = 1 and x1 = 1 (5.61)

5.3.4 Hierarchical parameterization

Since in the energy and angles parameterization the invariants s34, s134, s234 had line

and overlapping singularities, it is worth having a second parameterization which

factorizes these, but may not factorize the others. Our second parameterization

closely resembles the features of the rapidity parameterization published in [36],

however it is somewhat simpler. In this parameterization the three particle phase

space element dΦ3 is first factorized into a product of two 2-particle phase spaces

dΦ3(
√
s; 0, 0,

√
u1..n) =

∫
ds34

2π
dΦ2(
√
s;
√
s34,
√
u1..n)dΦ2(

√
s34; 0, 0), (5.62)

with

dΦ2(
√
s;
√
s34,
√
u1..n) = (2π)2−dddQδ(+)(Q2 − u1..n) (5.63)

×ddQ̃δ(+)(Q̃2 − s34)δd(q1 + q2 − Q̃−Q)

and

dΦ2(
√
s34; 0, 0) = (2π)2−dddq3δ

(+)(q2
3)ddq4δ

(+)(q2
4)δd(Q̃− q3 − q4). (5.64)

Parameterisation of dΦ2(
√
s;
√
s34,
√
u1..n)

Integrating out Q we obtain

dΦ2(
√
s;
√
s34,
√
u1..n) = ddp34δ(Q̃

2 − s34)δ((p1 + p2 − Q̃)2 − u1..n). (5.65)

We rewrite ddQ̃ in terms of energy EQ̃, transverse momentum Q̃⊥ and the z-

momentum component Q̃z and use the two delta functions to eliminate EQ̃ and
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Q̃⊥. This yields

EQ̃ =
1

2
√
s

(s+ s34 − u1..n) (5.66)

and

Q̃⊥ =
√
E2
Q̃
− (Q̃z)2 − s34 (5.67)

We then introduce the integration variable s134 through the identity

1 =

∫
ds134δ(s134 − (p1 − Q̃)2) (5.68)

and use this new constraint to eliminate Q̃z as

Q̃z = EQ̃ +
s134 − s34√

s
. (5.69)

The phase space measure then becomes

dΦ2(
√
s;
√
s34,
√
u1..n) = (2π)2−d 1

4s
dΩd−2(Q̃⊥)d−4ds134. (5.70)

We use the condition Q̃⊥ ≥ 0 to find the physical region for s34 and s134. This yields

the conditions

0 ≤ s34 ≤
s134(s+ s134 − u1..n)

s134 − u1..n

0 ≥ s134 ≥ (u1..n − s). (5.71)

Parametrisation of dΦ2(
√
s34; 0, 0)

dΦ2(
√
s34; 0, 0) can be parameterised in terms of the invariants s13 and s23 yielding

dΦ2(
√
s34; 0, 0) = (2π)2−d 1

8Q̃⊥s
ds13ds23dΩd−3 [(p3)⊥ sinφ]d−5 (5.72)

where φ is the angle between (p3)⊥ and Q̃⊥. We fulfil the constraint (p3)⊥ sinφ ≥ 0

to find the limits of integration for s13 and then for s23.

Hierarchical parametrisation of dΦ3(
√
s, 0, 0,

√
u1..n)

Parameterizing s134, s34, s13 and s23 linearly between their correpsonding limits of

integration, as described above, we arrive at the following parameterisation of the
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phase space measure

∫
dΦ3 =

(2π)−3+2ε

16Γ(1− 2ε)

∫ 1

0

dx1dx2dx3dx4

(
sz̄3x1x̄1

z + x1z̄

)(
s2z̄4x2

1x̄
2
1x2x̄2x3x̄3 sin2(πx4)

z + x1z̄

)−ε
.

(5.73)

The invariants in this parameterization are

s34 =
sz̄2x1x̄1x2

z + x1z̄
s134 = −sz̄x1

s234 = −sz̄x̄1

[
z + x1x̄2z̄

z + x1z̄

]

s23 = −sz̄x̄1x3

s24 = −sz̄x̄1x̄3 (5.74)

and

s13 = −sz̄x1

[
x3x̄2 +

x2x̄3

z + x1z̄
− 2 cos(πx4)

√
x2x̄2x3x̄3

z + x1z̄

]

s14 = −sz̄x1

[
x̄3x̄2 +

x2x3

z + x1z̄
+ 2 cos(πx4)

√
x2x̄2x3x̄3

z + x1z̄

]
.

We see that the only invariants which are not factorized are s13 and s14. The variable

s13 contains overlapping singularities at x3 = 0 = x2 and x3 = 1 = x2 as well as an

overlapping line singularity at x4 = 0, x1 = 1, x3 = x2, while s14 contains overlapping

singularities at x3 = 0, x2 = 1 and x3 = 1, x2 = 1 as well as an overlapping line

singularity at x4 = 1, x1 = 1, x3 = 1− x2.

Line singularities in the hierarchical parameterization

Let us consider the expressions

J(p1, p2, p3, p4)

s13s24

,
J(p1, p2, p3, p4)

s13s23

(5.75)

with J(p1, p2, p3, p4) a finite numerator function. They both contain a line singularity

due to s13 in the denominator. We now use the partial fractioning identities,

1

s13s24

=
1

s13s234 + s134s24

(
s134

s13

+
s234

s24

)
, (5.76)
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1

s13s23

=
1

s13s234 + s23s134

(
s134

s13

+
s234

s23

)
. (5.77)

The term s13s234 + s134s24 has an overlapping singularity at x3 = 1 = x2, while

the term s13s234 + s134s23 has an overlapping singularity at x3 = 0 = x2. Then we

exchange 1↔ 2 and 3↔ 4 in the term containing s13 to rotate the line singularity

out, i.e.
J(p1, p2, p3, p4)

s13s24

=
J(p1, p2, p3, p4) + J(p2, p1, p4, p3)

s13s234 + s134s24

s234

s24

(5.78)

J(p1, p2, p3, p4)

s13s23

=
J(p1, p2, p3, p4) + J(p2, p1, p3, p4)

s13s234 + s23s134

s234

s23

. (5.79)

and we are left with just overlapping singularities, which can be treated as explained

in the following section. This trick was first discovered by Frank Petriello [74] and

it has been used in the implementation of the program FEHiP described in [36], it

has been also been used in the evaluation of double real counterterms in [51].

5.3.5 Numerical evaluation of double-real radiation phase-

space integrals

In this section, we present a numerical evaluation of the phase-space integrals we

presented in Table 5.3. To evaluate our integrals numerically we choose the point

(s = 1, z = 0.1). We will only consider the integrals to O (ε0).

Topology C1 ⊗ C1

1. The integral

I11a =

∫
dΦ3

s13s23s14s24

(5.80)

fully factorizes in the energies and angles parameterization (Section 5.3.2), we

obtain

I11a = 0.09400(2) +
0.010951(4)

ε
− 0.0035586(5)

ε2
− 0.001119844946(1)

ε3
. (5.81)

2. The integral

I11b =

∫
dΦ3

(s34s− s14s23)2

s2
13s

2
24

(5.82)

with the numerator structure as in [36], factorizes in the energies and angles
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parameterization (Section 5.3.2), we get

I11b = 0.023885(3) +
0.0041606(3)

ε
+

0.00036930(4)

ε2
. (5.83)

Topology C2 ⊗ C2

1. The integral

I22a =

∫
dΦ3N({sij})

(s34s134)2
(5.84)

factorizes in the hierarchical parameterization (Section 5.3.4). The numerator

function has the scaling behavior N({sij}) ∼ s34s134 [36]. We obtain

I22a =

∫
dΦ3

s34s134

= 0.0011728(1)− 0.00050726(1)

ε
− 0.000125982556(0)

ε2
. (5.85)

2. The integral

I22b =

∫
dΦ3N({sij})
s2

34s134s234

(5.86)

factorizes in the hierarchical parameterization (Section 5.3.4). The numerator

scales as N({sij}) ∼ s34. We obtain

I22b =

∫
dΦ3

s34s134s234

= −0.0015003(2) +
0.00112726(5)

ε
+

0.000279961236(1)

ε2
.

(5.87)

Topology C3 ⊗ C3

1. The integral

I33a =

∫
dΦ3

(s34s− s14s23)2

s2
234s

2
24

(5.88)

factorizes in the hierarchical parameterization (section 5.3.4). The numerator

structure can be found in [36]. We obtain

I33a = −0.003841(2) +
0.0007814(4)

ε
+

0.00018465(1)

ε2
. (5.89)

2. The integral

I33b =

∫
dΦ3

s134s234s13s23

(5.90)

neither factorizes in energies and angles nor in the hierarchical parameteriza-

tion. We use the hierarchical parameterization (section 5.3.4), since fewer over-
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lapping singularities are present there. Using partial fractions, as described in

section 5.3.4 we can rewrite the integral as

I33b =

∫
2dΦ3

s23s134(s134s23 + s234s13)
. (5.91)

This contains the following substructure

1

x3

1

x3A+ x2x̄3B + C
√
x2x̄2x3x̄2

(5.92)

with A,B,C finite. This becomes singular when x3 = 0 = x2 where x3 is active.

We factorize this singularity by applying

x3 7→ α(x3, x2, 1) (5.93)

and obtain

I33b = 0.023155(3)+
0.0076371(1)

ε
+

0.00007730(6)

ε2
− 0.000279961236(1)

ε3
. (5.94)

3. The integral

I33c =

∫
dΦ3

s134s234s13s24

(5.95)

is similar to I33b in the hierarchical parameterization (Section 5.3.4). Partial

fractioning as before we get

I33c =

∫
2dΦ3

s24s134(s134s24 + s234s13)
. (5.96)

This contains the substructure

1

x̄3

1

x̄2A+ x̄3x2B + C
√
x2x̄2x3x̄3

(5.97)

with A,B,C finite. This becomes singular when x̄3 = 0 = x̄2 with x̄3 being

active. We disentangle this singularity by applying

x̄3 7→ α(x̄3, x̄2, 1) (5.98)
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We then obtain

I33c = 0.12567(9)− 0.03645(1)

ε
− 0.018566(1)

ε2
+

0.002799612364(0)

ε3
. (5.99)

Topology C1 ⊗ C3

1. The integral

I13a =

∫
dΦ3

(s34s− s14s23)2

s234s2
24s13

(5.100)

with the numerator structure as in [36]. The singularities factorize in energies

and angles. We immediately obtain

I13a = −0.0040885(4)− 0.00036930(1)

ε
. (5.101)

2. The integral

I13b =

∫
dΦ3

N({sij})
s134s13s14s23

(5.102)

has a quadratic divergence due to the term s134s13s14. This means thatN({sij}) ∼
{s134, s13, s14}. Such that

I13b =

{∫
dΦ3

s13s14s23

,

∫
dΦ3

s134s14s23

}
(5.103)

the first of which is a sub-topology of C2
1 while the second is a sub-topology of

C2
3 .

Topology C1 ⊗ C2

1. The integral

I12 =

∫
dΦ3N({sij})
s34s234s13s24

(5.104)

has a quadratic divergence due to the term s34s234s24. The numerator can have

the following scalings: N({sij}) ∼ {s34, s234, s24}. We therefore consider the

following possibilities

I12 =

{∫
dΦ3

s34s13s24

,

∫
dΦ3

s34s234s13

,

∫
dΦ3

s234s13s24

.

}
(5.105)
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The last of these is a sub-topology of C2
3 and does not merit further attention.

We will evaluate the other two in the hierarchical parameterization. For

I12a =

∫
dΦ3

s34s13s24

(5.106)

we use the same strategy as we used for I33c. We obtain

I12a = 0.07115(1) +
0.006996(1)

ε
− 0.0029912(1)

ε2
− 0.000839883709(0)

ε3
. (5.107)

The integral

I12b =

∫
dΦ3

s34s234s13

(5.108)

factorizes in the hierarchical parameterization. We obtain

I12b = 0.0198554(9) +
0.0023667(2)

ε
− 0.00088965(4)

ε2
− 0.000279961236(1)

ε3
.

(5.109)

Topology C2 ⊗ C3

1. The integral

I23a =

∫
dΦ3N({sij})
s34s2

234s23

(5.110)

factorizes in the hierarchical parameterization, but carries a cubic divergence in

x̄1 ∼ s234. Taking N({sij}) ∼ s2
234, we get

I23a =

∫
dΦ3

s34s23

(5.111)

which just is a sub-topology of I12a. While other numerators are possible these

do not give different singularity structures.

2. The integral

I23a =

∫
dΦ3N({sij})
s34s134s234s23

(5.112)

factorizes in the hierarchical parameterization, but carries a quadratic divergence

in x̄1 ∼ s234. A minimal choice for the numerator is N({sij}) ∼ s234 in which

case we recover I22b. Hence no new singularity structures can be obtained from

this topology.

65



Topologies C2 ⊗ C4 and C3 ⊗ C4

We will now consider interferences of C4 with C2 and C3. One can evaluate these

interferences in the energies and angles parameterization. In the following we will

use t13 ∼ E3 ∼ (s13 + s23) and t24 ∼ E4 ∼ (s14 + s24).

1. Topology C2 ⊗ C4:

The integral

I24 =

∫
dΦ3

s34s134(s13 + s23)(s14 + s24)
(5.113)

has the following singularity structure

1

x1x̄1(x3 − x4)

1

Ax1x̄1(x3 − x4)2 +Bx1x3 + Cx̄1x4

(5.114)

in the energy and angle parameterization after the mapping (see 5.3.2) is applied.

We first split the integration region into two sectors which we define as x3 < x4

(sector 1) and x4 < x3 (sector 2). After this sector decomposition we are still left

with overlapping singularities at x3 = 0 = x̄1 in sector 1 and at x4 = 0 = x1 in

sector 2. These can be disentangled using

x̄1 7→ α(x̄1, x3, 1) (5.115)

in sector 1 and

x1 7→ α(x1, x4, 1) (5.116)

in sector 2. We then obtain

I24 = −0.006956(3)− 0.0010708(3)

ε
+

0.00065900(1)

ε2
+

0.000207378694(0)

ε3
.

(5.117)

2. Topology C3 ⊗ C4:

The integral

I34 =

∫
dΦ3

s13s134(s13 + s23)(s14 + s24)
(5.118)

has the following singularity structure

1

x1x3

1

Ax1x̄1(x3 − x4)2 +Bx1x3 + Cx̄1x4

. (5.119)

It contains no line singularity but several overlapping ones located at x3 = 0 = x4,

x4 = 0 = x1 and at x3 = 0, x̄1 = 0. To separate the two singularities we first
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partial fraction the soft singularities by multiplying by 1 = x1 + x̄1. We then

treat the two terms with different non-linear transformations. For the first term

we apply the mapping

x3 7→ α(x3, x4x̄1, 1) (5.120)

since x3 is the only active singularity, it is clear that we had to remap it. The

second term is more difficult, since both x3 and x1 are now active. We apply the

following sequence of mappings:

First let

x3 7→ α(x3, x4, 1) (5.121)

and then

x1 7→ α(x1, x̄3, 1)

x4 7→ α(x4, x̄3, 1) (5.122)

We obtain

I34 = −0.32519(4)− 0.048942(2)

ε
− 0.0062917(3)

ε2
− 0.000559922473(3)

ε3
. (5.123)

5.4 On the dimensionality of the massive LO n-

particle phase space in higher order calcula-

tions

The dimension of the massive LO n-particle phase-space, which we explicitly fac-

tored out also for real and double real corrections, can always be taken as strictly

4 dimensional. This appears to be intuitively clear, since there are no singularities

associated to any of the kinematical variables of the n massive particles.

We can prove this statement more rigorously. Let us write the NNLO contribution
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to the partonic cross section as

σNNLO
2→n+x = σ

(2)
2→n[J ] + σ

(1)
2→n+1[J ] + σ

(0)
2→n+2[J ]

=
1

2s

[∫
dΦn|A(2)

2→n|2Jn (5.124)

+

∫
dΦn+1|A(1)

2→n+1|2Jn+1

+

∫
dΦn+2|A(0)

2→n+2|2Jn+2

]
.

Now we apply the phase space factorisation of the single and double real emission

phase space measures to obtain

σNNLO
2→n+x =

1

2s

∫
du1..n

2π

∫
dΦn

[
(2π)δ(u1..n − s)|A(2)

2→n|2Jn (5.125)

+

∫
dΦ2|A(1)

2→n+1|2Jn+1 +

∫
dΦ3|A(0)

2→n+2|2Jn+2

]
.

Let us now assume that all re-normalisation procedures, both UV and initial state

collinear, have already been carried out. It may not be trivial that one can do this

for the initial state collinear singularities, but it can always be done by introducing

explicit counter-terms on the amplitude squared level. The expression in the square

bracket of eq.(5.125) must then be finite. This follows straight from the condition of

infra-red safety, which essentially states that, in the event of a singularity of a real

emission, the n + r particle jet function must reduce to an n + r − 1 jet function.

In the most singular configurations at NNLO, those which require cancellations

between double-virtual, real-virtual and double-real corrections, we then have that

Jn+2,Jn+1 → Jn. We can interpret this as the statement that IR singularities cancel

locally in the phase-space of the n massive particles.

It follows that for any infra-red safe observable, the expression in the square

bracket is a finite real number plus terms of order ε, for every allowed configuration

of the n massive momenta {pi}. Then there is no problem in taking the limit

d → 4 already now, and to perform the integration over dΦn in four dimensions

only. Furthermore, this statement is not limited to NNLO, but is true to all orders

in perturbation theory, by the same argument.
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5.5 Conclusions

In this chapter we developed a method for double real emissions to massive final

states in hadronic collisions. This method is based in particular on two phase-space

parametrisations with which many of the singular invariants are in a factorised

form. By considering the most singular propagator structures which may occur in

all possible Feynman diagrams we derived a list of the most singular denominators,

which could appear. For each of these integrals it was then demonstrated how an

efficient factorisation could be achieved using mostly non-linear mappings and in

some cases partial fraction identities to avoid possible line-singularities. For the

scenario of gluon emissions off massive coloured particles, it is more beneficial to

use the energy and angle parametrisation, this is the only case in which a sector

decomposition must be partially applied. To proof our concept we evaluated all

singular integrals numerically.
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Chapter 6

Real corrections to 1→ 2 massless

decays

There exist a number phenomenologically important processes of 1→ 2 decays (e.g.

(Z,H) → qq̄,W → ud̄, ..), which may be very well approximated by taking the

2 decay products as massless. In this chapter we shall develop a general approach

towards tackling single and double real emissions corrections to such processes using

the tool of non-linear mappings. When considering double real emission corrections

to a 1 → 2 decay process, the production of two further massless particles in the

final state must be considered. At NNLO this results in phase-space integrals with

up to 4 massless particles in the final state.

We should remark that the more general subtraction schemes which we mentioned

in the beginning of Chapter 5 should also be applicable in this scenario. In fact a

more difficult problem, the NNLO corrections to the 1 → 3 decay: γ∗ → jjj, was

tackled using the Antenna subtraction scheme, but remains to this day the only

complete differential computation which has been accomplished within this scheme.

6.1 Notational setup for 1→ 2 decays at NNLO

Let us denote the momenta of the final state massless particles by pi, where i ∈
{1, 2, 3, 4}, and the momentum of the decaying massive particle as Q. Momentum

conservation then gives

Q =
4∑

i=1

pi. (6.1)
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We define the Lorentz invariants such that they correspond to singular propagators

appearing in the corresponding Feynman diagrams, normalised to the only physical

scale Q2:

sij =
(pi + pj)

2

Q2
, i, j ∈ {1, 2, 3, 4}, i 6= j

sijk =
(pi + pj + pk)

2

Q2
, i, j, k ∈ {1, 2, 3, 4}, i 6= j, j 6= k, k 6= i. (6.2)

All of these invariants may become singular in some limit.

At NNLO the fully differential decay width may be written as

Γ1→2+X [J ] = Γ
(0)
1→2[J ] +

(αs
π

)(
Γ

(1)
1→2 + Γ

(0)
1→3[J ]

)

+
(αs
π

)2 (
Γ

(2)
1→2[J ] + Γ

(1)
1→3[J ] + Γ

(0)
1→4[J ]

)
+O

(
α3
s

)
. (6.3)

Here the notation is such that Γ
(l)
1→n+r[J ] corresponds to the lth order correction

with r emitted particles in the final state. The fully differential LO partonic decay

rate is then

Γ
(0)
1→2[J ] =

1√
Q2

∫
dΦ2|A(0)

1→2|2J2. (6.4)

At NLO we must also include virtual and real corrections:

Γ
(1)
1→2[J ] =

1√
Q2

∫
dΦ2|A(1)

1→2|2J2

Γ
(0)
1→3[J ] =

1√
Q2

∫
dΦ3|A(0)

1→3|2J3 (6.5)

At NNLO double virtual, real-virtual and double-real emissions must be included:

Γ
(2)
1→2[J ] =

1√
Q2

∫
dΦ2|A(2)

1→2|2J2

Γ
(1)
1→3[J ] =

1√
Q2

∫
dΦ3|A(1)

1→3|2J3 (6.6)

Γ
(0)
1→4[J ] =

1√
Q2

∫
dΦ4|A(0)

1→4|2J4.

Here we used the shorthand notation Jn = J ({pi=1..n}) to denote the jet function

of the n-particle final state. With Φn = Φn(
√
Q2; 0, ..., 0) we denote the massless

n-particle phase space volume and with |A(l)
1→n|2 the lth order correction to the
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squared, spin summed and averaged matrix element.

6.2 A 1→ 2 phase space parametrisation

The 1 → 2 phase-space is trivial, since in the center of mass frame, the 2 decay

products are back to back. The phase- space volume is therefore

Φd
2 =

∫
dΦd

2 =
1

(2π)d−2

Ωd−1

2d−1
(Q2)−ε =

1

8π

(Q2)−ε(4π)εΓ(1− ε)
Γ(2− 2ε)

. (6.7)

6.3 A 1→ 3 phase space parametrisation

We use the following parametrisation for the 1→ 3 phase space:

Φ3 =
Φ2(Q2)1−2ε

(4π)d/2Γ(1− ε)

∫ 1

0

dx1dx2(x1x̄1x2)−εx̄1−2ε
2 . (6.8)

The invariants take the simple form:

s12 = x2

s13 = x̄2x1

s23 = x̄2x̄1 (6.9)

The most singular Feynman diagram is depicted in Figure 6.1. Considering the

Q

p1

p2

p3

∼ 1
s12

Figure 6.1: Most singular Feynman diagrams in real emissions to 1 → 2 massless
decays

expressions which the invariants take in this parametrisation it is clear that all

interferences and squares of this topology are always factorised.
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6.4 A 1→ 4 phase space parametrisation

We parameterize the phase space for the 1→ 4 processes as follows:

Φ4(Q; 0, 0, 0, 0) = N4

∫ 1

0

dx1dx2dx3dx4dx5[x1x̄1x̄2]1−2ε[x2x3x̄3x4x̄4]−ε [sin(x5π)]−2ε

(6.10)

where

N4 =
(Q2)2−3ε2−13+8επ−4+3 ε (1− 2 ε)

Γ (3/2− ε)2 Γ (1− ε)
. (6.11)

The invariants in this parameterization are

s234 = x1

s34 = x1x2

s23 = x1x̄2x4

s24 = x1x̄2x̄4

s12 = x̄1x̄2x̄3

s134 = x2 + x3x̄1x̄2 (6.12)

and

s13 = x̄1

[
x4x3 + x2x̄3x̄4 + 2 cos(x5π)

√
x2x3x̄3x4x̄4

]

s14 = x̄1

[
x3x̄4 + x2x̄3x4 − 2 cos(x5π)

√
x2x3x̄3x4x̄4

]
. (6.13)

This parameterization is very similar to the ones used in [75, 35].

In the following section we shall describe how to factorise the singularities of the

most singular topologies using the above parametrisation with the non-linear map-

ping. In contrast to our strategy for double real emissions in hadronic production

processes we shall here demonstrate the power of non-linear mappings by factoris-

ing all singularities in a single parametrisation. Due to the large discrete symmetry

group S4 of the massless 4 particle phase space only a small number of maximally

singular integrals must be considered independently. We depict typical Feynman

diagrams which correspond to maximally singular phase-space integrals in Figure

6.2.
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Q

p1

p2

p3

p4

p1

p2

p3

p4

Q

∼ 1
s12s34

∼ 1
s123s12

Figure 6.2: Most singular Feynman Diagrams in 1→ 2 massless Decays

6.5 Integration of most singular double-real inte-

grals

In this section we show how the most singular double emission phase space integrals

can be factorized with non-linear transformations. We begin the discussion with an

integral with four singular denominators,

I1[J ] =

∫
dΦ4

J(p1, p2, p3, p4)

s12s34s123s234

. (6.14)

where the function J represents a non singular function of the partonic momenta,

composed of numerators in the squared matrix elements and the infrared-safe ob-

servable J . We disentangle the overlapping singularities using

x̄3 7→ α(x̄3, x4, 1), (6.15)

After this transformation all remaining singularities are integrable. The expansion

in ε is then straightforward with simple subtractions. For the special case J = 1,

we obtain

I1 [J = 1] = N4

[
61.76(2) +

8.554(2)

ε
− 0.1710(2)

ε2
+

0.34657(2)

ε3
+

0.25

ε4

]
. (6.16)
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Other integrals may be mapped to I1 of Eq. 6.14 with a relabeling of the partonic

momenta. For example, the integral

I1 =

∫
dΦ4

J(p1, p2, p3, p4)

s14s23s134s234

, (6.17)

which has an apparently more complicated singularity structure due to s14 in the

denominator, is transformed to the integral of Eq. 6.14 by exchanging p2 and p4.

A second class of integrals has the following denominator structure:

I2[J ] =

∫
dΦ4

J(p1, p2, p3, p4)

s13s23s134s234

(6.18)

Notice, that the integrand is singular not only at the boundaries of the integration

variables xi, but it also develops a “line singularity” inside the integration volume.

We eliminate this by casting the integral in the form

I2[J ] =

∫
dΦ4

(J(p1, p2, p3, p4) + J(p2, p1, p3, p4))s24

s23s134s234(s13s24 + s14s23)
. (6.19)

It is easy to see that Eq. 6.19 is equivalent to I2[J ], by exchanging the momenta

p1 ↔ p2 in the term with J(p2, p1, p3, p4). The denominator

s13s24 + s14s23 = x1x̄1x̄2

[
2x3x4x̄4 + x2x̄3(x2

4 + x̄2
4) (6.20)

+2 cos(πx5)(1− 2x4)
√
x2x3x̄3x4x̄4

]

is only singular at the boundaries of the integration region. Applying the following

sequence of mappings

x2 7→ α(x2, x3, 1)

x4 7→ α(x4, x2x̄3, 1) (6.21)

x2 7→ α(x2, x̄1, 1)

leads to a factorized form. Numerically we then obtain

I2 [J = 1] = N4

[
−201.16(3)− 68.426(4)

ε
− 12.027(8)

ε2
+

1.0397(1)

ε3
+

0.75

ε4

]
.

(6.22)
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A last class of singular integrals with four denominators is:

I3 [J ] =

∫
dΦ4

J(p1, p2, p3, p4)

s13s23s14s24

=

∫
dΦ4

J(p1, p3, p2, p4)

s12s34s14s23

=

∫
dΦ4

(J(p1, p3, p2, p4) + J(p2, p4, p1, p3))s24

s34s12s23(s13s23 + s14s24)
. (6.23)

The term in parenthesis in the last denominator is given by

s13s23 + s14s24 = x1x̄1x̄2

[
2x2x̄3x4x̄4 + x3(x2

4 + x̄2
4) (6.24)

+2 cos(πx5)(2x4 − 1)
√
x2x3x̄3x4x̄4

]

We let dI3 = x2dI3 + x̄2dI3 and apply

x2 7→ α(x2, x3, 1)

x3,4 7→ α(x3,4, x̄2, 1) (6.25)

to x̄2dI3 and

x4 7→ α(x4, x3, 1) (6.26)

to x2dI3. After these transformations, both integrals have only factorized singulari-

ties and can be evaluated numerically. We obtain:

I3 [J = 1] = N4

[
−292.54(4)− 217.030(9)

ε
− 52.768(2)

ε2
+

6.9314(3)

ε3
+

5

ε4

]
. (6.27)

Other integrals with four denominators are mapped to I1,2,3[J ] with simple re-

labeling of the partonic momenta. Integrals with fewer denominators are simpler

and the non-linear mappings for them are obvious upon inspection. One case which

requires special attention arises when a denominator is raised to the second power in

the squares of diagrams where a gluon splits into a qq̄ or gg pair, as has already been

discussed in the literature (see, for example, [36, 76]). These quadratic singularities

are fake. A combination of terms, such as

1

s2
34

(
s14

s134

− s24

s234

)2

(6.28)
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is the one which emerges in the physical matrix elements. After a non-linear mapping

x2 → α(x2, x3, 1) (6.29)

to factorize an overlapping singularity, the integrand is also free of quadratic singu-

larities in the integration variables xi.

6.6 Conclusion

In this chapter we developed a strategy to tackle real emission integrals for 1 → 2

massless decay processes at NNLO. The major challenge here was to tackle the

double real emission integrals, very complicated overlapping singularity structures

are encountered here. In order to factorise these singularities we employed the

method of non-linear mappings. With the aid of partial fractions it was found

that all singularities can be factorised with this technique. We presented numerical

results for the most singular of these integrals and checked these against known

analytic results in the literature.
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Chapter 7

The H → bb̄ decay width

Direct searches and electroweak precision tests suggest that a Standard Model Higgs

boson is light, and that it should decay predominantly into a bottom quark (bb̄) pair.

Inclusive searches at the LHC of a Higgs resonance in the bottom-pair invariant mass

distribution are unfortunately hampered by a very large QCD background. Direct

searches are therefore focusing on other decay channels, such as H → γγ, with

a much smaller branching ratio. In view of this, perturbative corrections to the

H → bb̄ decay are most interesting for the inclusive rate, due to its contribution

to the total decay width and the branching ratios of other decays. A remarkable

effort has been made for a precise calculation of ΓH→bb̄ and now QCD corrections

are known to O(α4
s) [77, 78, 79, 80, 81, 82, 83, 84, 85].

Recently, confidence has grown that the H → bb̄ decay can be observed at the

LHC directly in events where the Higgs boson is produced in association with a

massive vector boson (W,Z) [86] or a tt̄ pair [87]. Backgrounds from tt̄,V + jj and

multi-jet production are challenging. However, the excellent b−jet tagging of the

ATLAS and CMS detectors as well as sophisticated selections of jet events described

in [86, 87], render these channels hopeful, as explicitly demonstrated by the ATLAS

collaboration in a full detector simulation analysis for the ZH case [88]. For this

channel, further suppression of the background can be obtained with the sub-jet

algorithms of [89].

These search strategies rely on a selection of phase space corners which are rich

in potential Higgs events. An accurate modeling of QCD radiation is necessary in

order to assess the efficiency of these selections. This motivates the computation of

the fully differential H → bb̄ decay at NNLO in perturbative QCD.
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7.1 Notation and set-up

We compute the partial width ΓH→bb̄X [J ] through NNLO in perturbative QCD for

any infrared safe observable J , such as an appropriate jet-algorithm, in the decay

of a Higgs boson to a pair of bottom-quarks,

H → b+ b̄+X. (7.1)

In our calculation we consider only the Higgs boson to couple to a bottom quarks

with a bare Yukawa coupling strength yBb =
mBb
v

. Due to the largely different mass

of the Higgs boson, mH , and the small bottom-quark mass, mb, we treat the latter

as independent of the Yukawa coupling and set it to zero in matrix elements and

phase space integrals. In addition, we neglect top-quarks both in virtual corrections

and in the renormalization procedure and consider nf = 5 light quark flavors. For

the renormalization of UV divergences we work in the MS-scheme where the bare

couplings, yBb =
mBb
v

, and gBs =
√

4παBs , are related to their renormalized counter-

parts by the relations introduced in chapter 2. These considerations lead us to use

the Lagrangian

L = LQCD|nf=5,mi=0 − ybHb̄b (7.2)

to effectively describe the interactions of this process. We shall use a notation similar

to the one introduced in Chapter 6, with Q = pH and Q2 = m2
H . We write the fully

differential H → bb̄ decay rate as

ΓH→bb̄+X [J ] = y2
b

[
Γ

(0)

H→bb̄[J ] +
(αs
π

)(
Γ

(0)

H→bb̄[J ] + Γ
(1)

H→bb̄j[J ]
)

(7.3)

+
(αs
π

)2 (
Γ

(2)

H→bb̄[J ] + Γ
(1)

H→bb̄j[J ] + Γ
(0)

H→bb̄jk[J ]
)

+O
(
α3
s

)
]
.

At LO we must consider

Γ
(0)

H→bb̄[J ] =
1

2mH

∫
dΦ2

∣∣∣A(0)

H→bb̄

∣∣∣
2

J2 (7.4)

At NLO we include real and virtual corrections

Γ
(1)

H→bb̄[J ] =
1

2mH

∫
dΦ2

∣∣∣A(1)

H→bb̄

∣∣∣
2

J2

Γ
(0)

H→bb̄j[J ] =
1

2mH

∫
dΦ3

∣∣∣A(0)

H→bb̄g

∣∣∣
2

J3. (7.5)
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At NNLO we include double virtual, real-virtual and double real emissions

Γ
(2)

H→bb̄[J ] =
1

2mH

∫
dΦ2

∣∣∣A(2)

H→bb̄

∣∣∣
2

J2

Γ
(1)

H→bb̄j[J ] =
1

2mH

∫
dΦ3

∣∣∣A(1)

H→bb̄g

∣∣∣
2

J3 (7.6)

Γ
(0)

H→bb̄jk[J ] =
1

2mH

∫
dΦ4

(∣∣∣A(0)

H→bb̄qq̄

∣∣∣
2

J4

+
1

2!

∣∣∣A(0)

H→bb̄gg

∣∣∣
2

J4 +
1

2!2!

∣∣∣A(0)

H→bb̄bb̄

∣∣∣
2

J4

)
.

Regarding the analytic continuations of complex functions presented in this chap-

ter the positive “epsilon prescription” must be used, since all occurring mass scales

are external,i.e.

m2
H → m2

H + iε, sij → sij + iε. (7.7)

where ε is a small positive parameter.

7.2 Squared amplitudes

In this section we present the square of the scattering amplitudes needed for the

computation of the H → bb̄ decay width through O(α2
s). These can be derived with

modern methods for computing Feynman diagrams and have been ingredients of

many prior calculations. For example, the same matrix elements enter the calcula-

tion of the NNLO total cross-section bb̄ → H [90]. We have made an independent

computation and present them here for completeness. For the generation of the

matrix elements we used QGRAF [91]. For further symbolic manipulations, such

as color and Dirac algebra, we used FORM [92] and MAPLE [93]. We reduced

one and two-loop amplitudes to master integrals using the method of integration by

parts [94, 95] and the Laporta algorithm [96] with AIR [97].

7.2.1 Decay to two partons

For the process

H(pH)→ b(p1) + b̄(p2)
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we require up to 2-loop corrections. The tree-level coefficient is simply

∣∣∣A(0)

H→bb̄

∣∣∣
2

= 2Nm2
H , (7.8)

the one-loop coefficient is

∣∣∣A(1)

H→bb̄

∣∣∣
2

=
∣∣∣A(0)

H→bb̄

∣∣∣
2

CF

[
<
((

µ2

−m2
H

)ε)
fε +

3

2ε

]

with

fε = (1− ε)2 Γ(1 + ε)Γ(−ε)2

Γ(2− 2ε)
eγε. (7.9)

The NNLO contribution is

∣∣∣A(2)

H→bb̄

∣∣∣
2

=
∣∣∣A(0)

H→bb̄

∣∣∣
2
(∣∣AV VH→bb̄

∣∣2 +
∣∣∣AV 2

H→bb̄

∣∣∣
2
)
, (7.10)

where

∣∣∣AV 2

H→bb̄

∣∣∣
2

= C2
F

[∣∣∣∣
µ2

−m2
H

∣∣∣∣
2ε

f 2
ε +

3

ε
<
((

µ2

−m2
H

)ε)
fε +

9

4ε2

]
. (7.11)

corresponds to the one-loop squared amplitude and

∣∣AV VH→bb̄
∣∣2 =

4∑

k=0

∣∣AV V−k
∣∣2

εk
+O (ε) (7.12)

corresponds to the two-loop amplitude interfered with the tree amplitude. The

coefficients are given by

∣∣AV V0

∣∣2 =

[
1

6
lH

4 +
13

72
lH

3 +

(
−6ζ2 −

31

36

)
lH

2 +

(
− 55

108
− 61

24
ζ2 −

7

6
ζ3

)
lH

+
455

162
+

377

72
ζ2 +

263

16
ζ4 −

47

36
ζ3

]
CF

2 +

[
− 1

36
nf lH

3 +
5

36
nf lH

2

+
1

27
(9ζ2 − 7)nf lH −

1

648
(495ζ2 − 18ζ3 − 200)nf

]
CF
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+

[
11

72
lH

3 +

(
1

4
ζ2 −

67

72

)
lH

2 +

(
−13

4
ζ3 −

11

6
ζ2 +

121

108

)
lH

+
701

144
ζ2 − ζ4 −

467

648
+

151

72
ζ3

]
CFN

−1

∣∣AV V−1

∣∣2 =

(
−1

3
lH

3 +
3

8
lH

2 +

(
6ζ2 +

31

36

)
lH −

13

4
ζ2 +

7

12
ζ3 −

491

864

)
CF

2

+

(
− 5

36
nf lH +

1

432
(54ζ2 + 65)nf

)
CF

+

((
−1

4
ζ2 +

67

72

)
lH −

11

16
ζ2 +

13

8
ζ3 −

961

864

)
CFN

−1

∣∣AV V−2

∣∣2 =

(
−3ζ2 −

5

3
lH +

1

2
lH

2 +
217

144

)
CF

2

+

(
1

12
nf lH −

1

18
nf

)
CF +

(
1

8
ζ2 −

11

24
lH +

2

9

)
CFN

−1

∣∣AV V−3

∣∣2 =

(
17

8
− 1

2
lH

)
CF

2 − 1

8
CFnf +

11

16

CF
N

∣∣AV V−4

∣∣2 =
1

4
CF

2 (7.13)

with lH = ln
(
µ2

m2
H

)
.

7.2.2 Decay to three partons

For the process

H(pH)→ b(p1) + b̄(p2) + g(p3)

we require up to 1-loop corrections. The tree contribution can be expressed as

∣∣∣A(0)

H→bb̄g

∣∣∣
2

= 8π2S−1
ε

∣∣∣A(0)

H→bb̄

∣∣∣
2

P̂qq

(
s12

m2
H

)[
1

s13

+
1

s23

]
(7.14)

where

P̂qq(z) = CF

[
1 + z2

1− z − ε(1− z)

]
(7.15)

is the quark gluon splitting kernel. The one-loop correction can be expressed as
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∣∣∣A(1)

H→bb̄g

∣∣∣
2

= −2π2
(
µ2eγE

)ε
S−1
ε ×

{(
8

(s23 + s13)2 ε2

s23s13

+4
(s23 + s13)2 ε

s23s13

+
−12 s12

2 − 12m4
H + 8 s12m

2
H

s23s13

+
4 s12

2 + 4m4
H

ε s13s23

)
CF Bub (s12)

+

[(
8 + 4

(s23 + s13) (s23 +m2
H) ε2

(s13 + s12) s23

− 4
(s12s23 + 3 s23s13 − s23

2 +m4
H) ε

(s13 + s12) s23

)
NCF

2

+

(
4

(s23 + s13) (2 s23 + s13) ε2

s23s13

− 4
(s12s13 − s23

2 − s13
2) ε

s23s13

−4
2 s12

2 + s23
2 + s23s13 + s13

2 + 2m4
H

s23s13

+ 4
s12

2 +m4
H

ε s13s23

)
CF

]
Bub (s23) + (1↔ 2)

+

[(
− 8

(s23 + s13)m2
H (2 s23s13 + s12s23 + s12s13) ε2

s13s23 (s23 + s12) (s13 + s12)

+
(8mH

8 − 8 s12
2s13

2 + 16 s23
2s13

2 − 8 s23
2s12

2 + 8 s12
4 − 8 s13

3m2
H − 8 s23

3m2
H) ε

s13s23 (s23 + s12) (s13 + s12)

−8
2 s12

2 + 3 s23s13 + s23
2 + s13

2 + 2m4
H

s23s13

+ 8
s12

2 +mH
4

ε s13s23

)
NCF

2

+

(
− 8

(s23 + s13)2 ε2

s23s13

− 4
(s23

2 + s13
2) ε

s23s13

+ 4
2 s12

2 + s23
2 + s23s13 + s13

2 + 2m4
H

s23s13

−4
s12

2 +m4
H

ε s13s23

)
CF

]
Bub

(
m2
H

)
+

[
2
s12s13 (s23 + s13) ε2

s23

+2
s12 (s23 + s13)2 ε

s23

− 2
s12 (s12

2 +m4
H)

s23

]
CF Box

(
s12, s13,m

2
H

)
+ (1↔ 2)

+
[ ((
−12 s23s13 − 4 s23

2 − 4 s13
2
)
ε+ 4 s12

2 + 4m4
H

)
NCF

2

+
((
−6 s23s13 − 2 s23

2 − 2 s13
2
)
ε+ 2 s12

2 + 2m4
H

)
CF

]
Box

(
s13, s23,m

2
H

)
}

−1

ε

(
3CF

2
+

11CA
12
− TFnf

3

) ∣∣∣A(0)

H→bb̄g

∣∣∣
2

. (7.16)

There are only two different master integrals which appear here. The bubble

Bub(s23) =

∫
ddk

iπ
d
2

1

k2(k + p2 + p3)2
=

Γ(1 + ε)Γ(1− ε)2

εΓ(2− 2ε)
(−s23)−ε (7.17)
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as well as the following box integral

Box(s23, s34,m
2
H) =

∫
ddk

iπ
d
2

1

k2(k + p2)2(k + p2 + p3)2(k + p2 + p3 + p4)2
. (7.18)

which can be expressed to all orders in ε in terms of hypergeometric functions

Box
(
s, t,M2

)
=

2Γ(1 + ε)Γ(1− ε)2

ε2Γ(1− 2ε)

1

st

[
− (−M2)−ε2F1

(
1,−ε; 1− ε;−uM

2

st

)
(7.19)

+(−t)−ε2F1

(
1,−ε; 1− ε;−u

s

)
+ (−s)−ε2F1

(
1,−ε; 1− ε;−u

t

)]

with u = M2 − s − t. This result is well known, nevertheless we provide an inde-

pendent derivation in Appendix C.

7.2.3 Decay to four partons

For the decay to four partons we need

H(pH)→ b(p1) + b̄(p2) + i(p3) + j(p4), (ij) ∈ {(qq̄), (bb̄), (gg)} (7.20)

at tree-level. The H → bb̄qq̄ amplitude can be expressed as

∣∣∣A(0)

H→bb̄qq̄

∣∣∣
2

= (2π)4S−2
ε (2NCF )A(p1, p2, p3, p4). (7.21)

For two bb̄ pairs in the final state we obtain

∣∣∣A(0)

H→bb̄bb̄

∣∣∣
2

= (2π)4S−2
ε (7.22)

×
{

2NCF [A(p1, p2, p3, p4) + A(p1, p4, p3, p2) + A(p3, p2, p1, p4) + A(p3, p4, p1, p2)]

+2CF [B(p1, p2, p3, p4) +B(p3, p4, p1, p2) +B(p4, p3, p2, p1) +B(p2, p1, p4, p3)]

}
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where

A(p1, p2, p3, p4) =

2

[
2(1− ε)
s34

− (1 + ε)

(
1

s134

+
1

s234

)
+m2(ε− 1)

(
1

s2
134

+
1

s2
234

)

+
s13 − s14 − 2(s24 +m2)− ε(s13 + s14)

s234s34

− 2m2

s2
34

(
s14

s134

− s24

s234

)2

(7.23)

+
s23 − s24 − 2(s14 +m2)− ε(s23 + s24)

s134s34

− 2m2

s34

(
s14

s2
134

− s24

s2
234

)

+2
m4 +m2(s14 + s24) + (s14 + s24)2

s134s34s234

+ 2
(1 + ε)m2 + s34 + 2(s14 + s24)

s134s234

]
.

The form factor B(p1, p2, p3, p4) is presented in Appendix A. The squared amplitude

corresponding to the Higgs decaying into a bb̄ plus two extra gluons can be expressed

as

∣∣∣A(0)

H→bb̄gg

∣∣∣
2

= (2π)4S−2
ε

[
CFAHbb̄gg +NC2

FBHbb̄gg + CF (1 + 2NCF )CHbb̄gg

]
(7.24)

where

AHbb̄gg = A
(0)

Hbb̄gg
+ εA

(1)

Hbb̄gg
+ ε2A

(2)

Hbb̄gg

BHbb̄gg = B
(0)

Hbb̄gg
+ εB

(1)

Hbb̄gg
+ ε2B

(2)

Hbb̄gg

CHbb̄gg = C
(0)

Hbb̄gg
+ εC

(1)

Hbb̄gg
. (7.25)

The form factors A
(i)

Hbb̄gg
, B

(i)

Hbb̄gg
and C

(i)

Hbb̄gg
can be found in Appendix A.

7.3 Integration over phase-space

For the integration over phase-space we use the techniques developed in Chapter

6. While these are fully sufficient for the integrations of the single and double real,

complications arise with the integration over the real-virtual contribution. We will

discuss this issue in the next section.

85



7.4 Integration of the real-virtual

In the one loop amplitude for H → bb̄g we will face integrals like

∫
dΦ3

2F1(1,−ε; 1− ε;− s23
s13

)

s23s13

(7.26)

Since the numerator in this case is not well defined for s23, s13 → 0, we can not sim-

ply apply the plus-prescription of eq.(3.7) to extract the singularities. To tackle this

difficulty we use Euler’s integral representation of the hypergeometric function, and

apply a non-linear mapping to disentangle an overlapping singularity of the inte-

gration variable in the hypergeometric representation and the phase space variables

which generate s13, s23. Defining

F (z) =

∫ 1

0

dx3
x−1−ε

3

1 + zx3

=
2F1(1,−ε; 1− ε;−z)

−ε (7.27)

we apply the transformation,

x3 7→ β(x3, z
−1) (7.28)

which yields

F (z) = (1 + z)ε
∫ 1

0

dx3x
−1−ε
3

(
1− x3z

1 + z

)ε
. (7.29)

This representation of the hypergeometric function has finite values at the points

where we need to make a subtraction,

2F1(−ε,−ε; 1− ε; 0) = 1

2F1(−ε,−ε; 1− ε; 1) = Γ(1 + ε)Γ(1− ε), (7.30)

and we can obtain the Laurent expansion in ε of the real-virtual contribution easily

with a “plus-prescription” subtraction. For non-special values of the kinematic

variables the ε−expansion of the hypergeometric function reads:

2F1 (−ε,−ε; 1− ε; z) = (1− z)ε
(

1− ε log (1− z)−
∞∑

k=2

εkLik

(
z

z − 1

))
. (7.31)

The mapping of Eq. 7.28 simply re-derives a well known identity

2F1(a, b; c; z) = (1− z)−b2F1

(
c− a, b; c; z

z − 1

)
, (7.32)
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and there would be no need of it had we started with the following representation

of the box master integral:

Box(u, t,M2) =
2Γ(1 + ε)Γ(1− ε)2

ε2Γ(1− 2ε)
(ut)−1−ε

×
[

(−t− s)ε2F1

(
−ε,−ε; 1− ε; s

t+ s

)
(7.33)

+(−u− s)ε2F1

(
−ε,−ε; 1− ε; s

u+ s

)

−(−M2)−ε(ut+ sM2)ε2F1

(
−ε,−ε; 1− ε; sM2

ut+ sM2

)]

On the other hand, more complicated master integrals for one-loop amplitudes do

not always have representations in terms of hypergeometric functions with known ex-

pansions in ε and variable limits. However, it is always possible to derive a Feynman

representation or a hypergeometric representation (via a Mellin-Barnes representa-

tion) for them and attempt a direct numerical evaluation of the combined phase

space and virtual multiple integral using non-linear transformations to factorize the

singularities. We have compared the two approaches:

1. Numerically evaluate the coefficients of the Laurent expansion for the two-

dimensional phase space integral after we express the loop amplitude and its

hypergeometric functions in terms of polylogarithms,

2. Numerically evaluate the coefficients of the Laurent expansion for the three-

dimensional combined phase space and loop integral.

We find that the three-dimensional numerical integration is as fast as the two-

dimensional numerical integration where we require the evaluation of polylogarith-

mic functions.

7.5 Numerical results

In this section we present our numerical results for the decay rate ΓH→bb̄X [J ] for

selected infrared safe observables J . We select the value of the renormalization scale

µ = mH . First, we compute the inclusive decay width. Our numerical result is,

ΓNNLOH→bb̄ = ΓLOH→bb̄

[
1 +

(αs
π

)
5.6666(4) +

(αs
π

)2

29.14(2) +O(α3
s)

]
(7.34)
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with

ΓLOH→bb̄ =
y2
bmHN

4π
. (7.35)

This is in agreement with the known result [77]

ΓNNLOH→bb̄ = ΓLOH→bb̄

[
1 +

(αs
π

)
5.6666666..+

(αs
π

)2

29.146714..+O(α3
s)

]
. (7.36)

With our numerical program, we can compute the decay rate for arbitrary infrared-

safe observables. As an example we present our results for the 2,3 and 4 jet rates

using the JADE algorithm [98] with parameter ycut = 0.01:

ΓLOH→bb̄(4Jets) = ΓLOH→bb̄

[
+
(αs
π

)2

94.1(1) +O(α3
s)

]

ΓNLOH→bb̄(3Jets) = ΓLOH→bb̄

[
+
(αs
π

)
19.258(4) +

(αs
π

)2

241(2) +O(α3
s)

]
(7.37)

ΓNNLOH→bb̄ (2Jets) = ΓLOH→bb̄

[
1−

(αs
π

)
13.591(6)−

(αs
π

)2

307(2) +O(α3
s)

]

We have checked that our results for the jet-rates indeed add up to the inclusive

rate for general ycut values to cross-check our implementation.

In Fig. 7.1, we present the leading jet energy, Emax, in the rest frame of the Higgs

boson, for events with two jets (ycut = 0.1). This is a new result which can only

be obtained with a fully differential NNLO calculation and cannot be inferred from

the inclusive decay width and NLO calculations. At leading order, Emax = mH
2

.

At higher orders, there is a range of jet energies which are kinematically allowed.

We choose a value of αs(mZ) = 0.118 at the Z boson mass and evolve consistently

through LO, NLO and NNLO up to the Higgs boson mass, which we then assumed

to be mH = 120GeV.

7.6 Conclusions

In this chapter, we presented a first physical application of a new method for the

factorization of overlapping singularities in phase space and loop integrations. We

computed the fully differential decay width of a Higgs boson to a bottom-quark pair.

We computed the required tree, one-loop and two-loop amplitudes with standard

Feynman diagrammatic methods.

We applied non-linear mappings to factorize all overlapping singularities in all

real-virtual and double-real integrations. Consequently, we perform the expansion of
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Figure 7.1: The energy spectrum of the leading jet in the decay H → bb̄ in the rest
frame of the Higgs boson through NNLO. The jet clustering is performed with the
JADE algorithm with ycut = 0.1.

all integrals in the dimensional regulator ε with simple subtractions. The formalism

allows for the computation of the decay rate for arbitrary physical observables.

We verify that we can reproduce the known results for the NNLO inclusive decay

width and compute the differential two, three and four jet rates with the JADE

algorithm. We also present the leading jet energy distributions, a new result that

cannot be inferred from previous calculations. In the future, we will interface our

NNLO Monte-Carlo to Monte-Carlo programs for the production of a Higgs boson.
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Chapter 8

Hadronic bb̄→ H production

The dominant production channel in the SM, but also in all non-fermiophobic models

of new physics, is single Higgs hadroproduction. Within the SM, Higgs production

is dominated by gluon fusion, since the alternative mechanism of quark annihilation

is severely suppressed by the small Yukawa coupling of bottom and light quarks to

the Higgs boson. However, if the Higgs sector is non-minimal, as is the case in any

two-Higgs-doublet model (among which the MSSM is the most studied example),

the Yukawa coupling to down-type quarks is enhanced by a factor of tan β (the

ratio of the vacuum expectation values of the two doublets) and the contribution

of the bb̄ → H process becomes significant. Furthermore, the production cross

section through gluon fusion decreases due to the enhanced, negative top-bottom

interference diagrams. In such a scenario, the production of a Higgs boson via bb̄

pairs contributes much more than in the SM, and a detailed description of this

process is desirable. In other BSM models, for example in models with dynamically

generated Yukawa couplings [99, 100] both the bottom and the charm quarks have

enhanced couplings to the Higgs boson and charm annihilation becomes important

as well.

The experimental searches are currently focused on measuring an enhanced pro-

duction rate via bottom annihilation in the τ+τ− decay channel with the MSSM as

the default BSM model [101, 102]. There are, moreover, several studies on measur-

ing single Higgs decaying to bottom quarks in more generic models in which bottom

annihilation is the dominant production channel, using, for example, three b-tagged

jets [103, 104], or measuring the ratio of three heavy (c- or b-) jet events to three

b-jet events to discriminate between classes of models with two Higgs doublets [105].

Bottom quark annihilation has been the subject of much theoretical discussion
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in the last decade due to the freedom in treating the initial state bottom quarks.

Bottom quarks lie in an intermediate mass range between the non-perturbative

regime of the proton mass and the typical scale of a hard scattering event at the LHC.

One can retain their small mass in the calculation, and exclude them from the proton

constituents (four flavor scheme – 4FS) or treat them as massless partons with their

own parton distribution functions (five flavor scheme – 5FS). In the 4FS the inclusive

cross section develops large logarithms ∼ log( mb
mH

) due to the collinear production

of b-quarks which is regulated by the bottom mass. In the 5FS these logarithms

are re-summed to all orders by the DGLAP evolution inside the bottom PDFs, for

all scales up to the factorisation scale adopted in the calculation. The consequent

improved convergence of the perturbative expansion is an advantage of the 5FS

approach, but at the same time it renders the 5FS prediction very sensitive to the

choice of factorisation scale. It has been realized that if the factorisation scale is set

to low values ∼ mH/4, both the 5FS and the 4FS predictions for the inclusive cross

sections agree with each other within their respective uncertainties [106, 107, 108],

and there is an open discussion as to how one would combine information from both

approaches [109, 110].

In the 4FS, the lowest order process is gg → bb̄H which begins at order α2
s in

the QCD perturbative expansion and is known at next-to-leading-order (NLO) in

QCD [111, 112, 113, 114]. The process bg → bH, which starts at order αs, has also

been studied at NLO in QCD [115] and with electroweak (EW) corrections [116].

In the 5FS the lowest process is bb̄ → H. Hence the LO 4FS process where a non-

collinear bottom pair is observable, is reached for the first time at NNLO in the 5FS.

The inclusive cross section, in the 5FS, of bb̄→ H is known at NNLO in QCD [90]

as well as at NLO EW [117]. NNNLO threshold re-summed soft and collinear terms

are also known [118] and the transverse momentum distribution of the Higgs boson

has been studied with re-summation techniques [119, 120] . Also known at NNLO

are the zero, one and two jet rates and related distributions [121], quantities which

can be obtained already from the differential H+jet computation at NLO [122] in

combination with the fully inclusive NNLO cross section.
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8.1 Notation and set-up

8.1.1 The hadronic cross section

We consider the following hadronic process

P1 + P2 → H +X , (8.1)

where P1, P2 are the incoming hadrons, H denotes the Higgs boson and X generically

denotes surplus QCD radiation in the final state. The Higgs boson is assumed to

couple only to bottom quarks via the SM Yukawa interaction. Assuming the usual

factorisation, the fully exclusive hadronic cross section can be written as

σP1P2→H+X [J ] =
∑

i1,i2

∫ 1

0

dx1dx2 θ(x1x2 − τ)fi1(x1)fi2(x2)σi1i2→HX [J ] , (8.2)

where the fi(x) denote the bare (unrenormalized) parton distribution functions

(PDFs) in the 5FS, x1 and x2 are the usual Bjorken-x momentum fractions of the

partons i1 and i2 respectively, and τ =
m2
H

S
, where m2

H is the (on-shell) mass of the

Higgs boson and S is the square of the total center of mass (CoM) energy of the

colliding hadrons. A number of different parametrisations and some performance

tests are given in Appendix B. By σi1i2→HX we denote the partonic cross section for

the processes

i1(q1) + i2(q2)→ H(pH) +X(i3(q3), i4(q4), . . .) , i1,2,3,... ∈ Spartons (8.3)

where the set of partons is defined as

Spartons := {b̄, q̄, g, q, b}. (8.4)

We are denoting with q the whole set of light quarks u, d, s and c collectively. This

is convenient since the process under consideration is not sensitive to their flavour.

The PDFs we have inserted in eq.(8.2) are bare and still have to be rewritten in

terms of the renormalized PDFs. This step will introduce collinear counter terms

which cancel initial state collinear singularities which remain even after all real and

virtual corrections have been added. This cancellation is achieved fully numerically

in our calculation, we will discuss it in Appendix 8.4.
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8.1.2 The partonic cross section

For the computation of the partonic cross section we shall use the notation intro-

duced in Chapter 5, with the Higgs boson being the single massive particle with

momentum p1 = pH and mass m2
1 = m2

H .

Expanding the partonic cross section to NNLO in QCD we obtain

σij→HX [J ] = y2
b

[
σ

(0)
ij→H [J ] +

αs
π


σ(1)

ij→H [J ] +
∑

k∈Spartons

σ
(0)
ij→Hk[J ]


 (8.5)

+
(αs
π

)2


σ(2)

ij→H [J ] +
∑

k∈Spartons

σ
(1)
ij→Hk[J ] +

∑

k,l∈Spartons

σ
(0)
ij→Hkl[J ]




+O
(
α3
s

)
]
.

Here yb = yb(µ) and αs = αs(µ) are the MS renormalized bottom Yukawa and

strong couplings, with 5 active flavors as in Chapter 7. We set the dimensional

regularisation scale µ to be equal to both the renormalisation and factorisation

scales, µR and µF . Separation of the two scales can be achieved via the relations

given in section D.

The LO partonic cross section is defined as

σ
(0)
ij→H [J ] =

1

2s

∫
dΦ1

∣∣∣A(0)
ij→H

∣∣∣
2

J1 (8.6)

At NLO we encounter virtual and real corrections

σ
(1)
ij→H [J ] =

1

2s

∫
dΦ1

∣∣∣A(1)
ij→H

∣∣∣
2

J1

σ
(0)
ij→Hk[J ] =

1

2s

∫
dΦ2

∣∣∣A(0)
ij→Hk

∣∣∣
2

J2. (8.7)

At NNLO double virtual, real-virtual and double real corrections must be considered

σ
(2)
ij→H [J ] =

1

2s

∫
dΦ1

∣∣∣A(2)
ij→H

∣∣∣
2

J1

σ
(1)
ij→Hk[J ] =

1

2s

∫
dΦ2

∣∣∣A(1)
ij→Hk

∣∣∣
2

J2 (8.8)

σ
(0)
ij→Hkl[J ] =

1

2s

∫
dΦ3

∣∣∣A(0)
ij→Hkl

∣∣∣
2

J3.

93



8.2 Squared amplitudes

In this section we discuss the squared amplitudes required. Using the discrete sym-

metries of the squared amplitudes we are able to considerably reduce the number of

independent channels, which need to be implemented separately. These symmetries

are due to the charge invariance of all the ij → HX amplitudes (exchanging q ↔ q̄

or b ↔ b̄ leaves the squared amplitudes invariant). For 2 → 1 processes we only

need to consider the bb̄ channel

∣∣∣A(l=0,1,2)
ij→H

∣∣∣
2

=





∣∣∣A(l)

bb̄→H

∣∣∣
2

if (i, j) ∈ {(b, b̄), (b̄, b)}

0 otherwise

(8.9)

When one unresolved parton is found in the final state, also gluons must be consid-

ered in the initial state:

∑

k

∣∣∣A(l=0,1)
ij→Hk

∣∣∣
2

=





∣∣∣A(l)

bb̄→Hg

∣∣∣
2

if (i, j) ∈ {(b, b̄), (b̄, b)}
∣∣∣A(l)

bg→Hb

∣∣∣
2

if (i, j) ∈ {(b, g), (b̄, g)}
∣∣∣A(l)

gb→Hb

∣∣∣
2

if (i, j) ∈ {(g, b), (g, b̄)}

0 otherwise

(8.10)
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For two unresolved partons in the final state yet more channels open up:

∑

k,l

∣∣∣A(0)
ij→Hkl

∣∣∣
2

=





1
2!

∣∣∣A(0)

bb̄→ggH

∣∣∣
2

+
∣∣∣A(0)

bb̄→bb̄H

∣∣∣
2

+(nf − 1)
∣∣∣A(0)

bb̄→qq̄H

∣∣∣
2

if (i, j) ∈ {(b, b̄), (b̄, b)}
∣∣∣A(0)

qq̄→bb̄H

∣∣∣
2

if (i, j) ∈ {(q, q̄), (q̄, q)}
∣∣∣A(0)

qb→qbH

∣∣∣
2

if (i, j) ∈ {(q, b), (q̄, b), (q, b̄), (q̄, b̄)}
∣∣∣A(0)

bq→bqH

∣∣∣
2

if (i, j) ∈ {(b, q), (b̄, q), (b, q̄), (b̄, q̄)}
∣∣∣A(0)

bg→bgH

∣∣∣
2

if (i, j) ∈ {(b, g), (b̄, g)}
∣∣∣A(0)

gb→bgH

∣∣∣
2

if (i, j) ∈ {(g, b), (g, b̄)}
∣∣∣A(0)

gg→bb̄H

∣∣∣
2

if (i, j) = (g, g)

1
2!

∣∣∣A(0)
bb→bbH

∣∣∣
2

if (i, j) ∈ {(b, b), (b̄, b̄)}

0 otherwise

(8.11)

All the above amplitudes can in fact be obtained from the decay amplitudes∣∣∣A(l=0,1,2)

H→bb̄

∣∣∣
2 ∣∣∣A(l=0,1)

H→bb̄g

∣∣∣
2

,
∣∣∣A(0)

H→bb̄gg

∣∣∣
2

,
∣∣∣A(0)

H→bb̄bb̄

∣∣∣
2

,
∣∣∣A(0)

H→bb̄qq̄

∣∣∣
2

by crossing external legs

between the initial and final state, and multiplying with the corresponding averaging

factors. A factor of minus one must be included when crossing a fermion line.

8.3 Details on the calculation

In order to perform the required phase-space integrations over the real emission

phase space, we will use the technology we developed in Chapter 5. As was already

mentioned there, our strategy is fully applicable also to the case n = 1 where the

LO phase-space,

Φ2→1(
√
s,mH) = 2πδ(s−m2

H), (8.12)

yields a further constraint on the Bjorken-x integration variables. In this special

case the phase-space factorisation of the real-emission phase-spaces from the lead-

ing order phase-space becomes obsolete, since the real emission phase-spaces already

cover the entire phase-space.

Non-trivial problems are encountered when integrating over the phase space of the

unresolved parton in the real-virtual contribution. In Chapter 7 we found that
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hypergeometric argument transformations can be applied to extract potentially sin-

gular factors from the hypergeometric functions, which express the box-function.

We outline how this approach can be applied in section 8.3.1.

While our methods of chapter 5 are fully sufficient to factorise all singularities, we

will go one step further here and perform a separation of purely soft and hard con-

tributions to σbb̄→HX . Since this procedure is fully process independent and holds

at all orders, we shall carry out this separation for a generic cross-section σ in sec-

tion 8.3.2. In our case, the correspondence is σ = σbb̄→HX , since other initial state

channels must vanish in this limit. We will present the explicit soft limit of σbb̄→HX

at NNLO in section 8.3.2.

8.3.1 Analytic continuations for the real-virtual

The box integrals we encounter in this amplitude are entirely expressible in terms

of Gauss’ hypergeometric function 2F1(1,−ε, 1− ε, z) where z can be in any of the

three sets Sfine, Sinv and Snl :

Sfine =

{−s13

s12

,
−s23

s12

}
, Sinv =

{−s12

s13

,
−s12

s23

}
,

Snl =

{−s13

s23

,
−s23

s13

,
−s12m

2
H

s13s23

,
−s13m

2
H

s23s12

,
−s23m

2
H

s12s13

}
. (8.13)

When attempting a direct subtraction of the singularities present due to the real

emission, the points of subtraction overlap with singular points of the hypergeomet-

ric functions which express the box integral. In section 7.4 it was found that, in

order to circumvent this difficulty, one can apply transformations on the argument of

the functions. Since here we are no longer in the euclidean regime of this amplitude,

the required transformations are different than in section 7.4. Analyzing integral

representations, we find that we have to apply the following identities:

• If z ∈ Sfine the soft-collinear limits are well defined.

• If z ∈ Snl we apply

2F1(a, b; c; z) 7→ (1− z)−b2F1

(
c− a, b; c; z

z − 1

)
.
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• If z ∈ Sinv we employ the argument inversion,

2F1(a, b; c; z) 7→ Γ (b− a) Γ (c) 2F1

(
a, a− c+ 1; a− b+ 1; 1

z

)

Γ (b) Γ (c− a) (−z)a

+
Γ (a− b) Γ (c) 2F1

(
b, b− c+ 1; b− a+ 1; 1

z

)

Γ (a) Γ (c− b) (−z)b
. (8.14)

After these transformations are applied, the singularities corresponding to the real

emission are factorized and sub-tractable. In order to obtain the final Laurent

expansion in ε we employ the library HypExp [123] to expand the hypergeometric

functions in terms of polylogarithms.

8.3.2 Separation of Soft and Hard

Let us loosely define the soft contribution σS to σ as the sum of the leading order

contribution, all purely virtual contributions plus the limit of all real emissions in

which the unresolved partons are all simultaneously soft. We wish to separate this

soft contribution (σS) to the partonic cross section (σ), from the hard contribution

(σH), such that

σ = σS + σH . (8.15)

This would allow for a fully analytic treatment of σS, while σH must, as far as

external kinematics are concerned, be treated numerically. Let us re-introduce the

variable

z =
m2
H

s12

. (8.16)

Then the soft limit of all real emission amplitudes corresponds to z → 1, which

identifies the production threshold. Given that infra-red singularities are of loga-

rithmic nature and that the divergence at z = 1 is always factorised, the soft singular

behaviour can be exposed as follows

σ(z)[J ] = δ(1− z)σ̃V (ε)[J ]|z=1 +
∑

n

σ̃
(n)
R (z, ε)[J ]

(1− z)1+nε
, (8.17)

where σ̃V denotes the purely virtual correction, while σ̃
(n)
R (z, ε) denotes real correc-

tions collectively (at NNLO this includes both real-virtual as well as double real

corrections). Separation into soft and hard parts can now be achieved by adding
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and subtracting the soft limit from the second term in the above, yielding

σ(z)[J ] = δ(1− z)σ̃V (ε)[J ]|z=1 +
∑

n

σ̃
(n)
R (1, ε)[J ]|z=1

(1− z)1+nε

︸ ︷︷ ︸
≡σS

+
∑

n

σ̃
(n)
R (z, ε)[J ]− σ̃(n)

R (1, ε)[J ]|z=1

(1− z)1+nε

︸ ︷︷ ︸
≡σH

, (8.18)

such that σH is integrable in the range z ∈ [τ, 1]. Of course this decomposition

of the partonic cross section into its soft and hard components is not unique: one

could use any other subtraction term with the correct limit, thereby including, for

example, the luminosity function. Our choice, however, has the nice property that

the soft part σS can be expanded purely in terms of δ- and plus-distributions via

eq.(3.7),

σS[J ] = c0δ(1− z)J |z=1 +
∞∑

n=0

cnDn(1− z)J |z=1 .

Thereby all threshold divergences between σ̃V and σ̃
(n)
R are cancelled analytically,

leaving only a finite threshold contribution. Furthermore this framework provides a

natural way to incorporate threshold re-summation in fully differential calculations.

Finally let us mention that we can extend the above to cross sections containing n

massive particles in the final state. This can be achieved identically by writing

σn(
√
s,m1, ..,mn) =

∫
du1..n

2π
σn(
√
s,m1, ..,mn)2πδ(s− u1..n) (8.19)

and then identifying

z =
u1..n

s
. (8.20)

The soft behaviour of the real

Using the parameterisation of section 5.2,we can see that the soft singularity struc-

ture of this contribution is

σ
(0)

bb̄→Hg [J ] =
σ̃

(0)

bb̄→Hg [J ]

(1− z)1+2ε
. (8.21)
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The soft contribution is therefore

σ
S(0)

bb̄→Hg [J ] =
lim
z→1

σ̃
(0)

bb̄→Hg [J ]

(1− z)1+2ε
. (8.22)

The soft behaviour of the double real

Using the parameterisation of section 5.2,we can see that the soft singularity struc-

ture of this contribution is

∑

k,l∈Spartons

σ
(0)

bb̄→Hkl [J ] =
∑

k,l∈Spartons

σ̃
(0)

bb̄→Hkl [J ]

(1− z)1+4ε
. (8.23)

Similarly then

∑

k,l

σ
S(0)

bb̄→Hkl [J ] =
∑

k,l∈Spartons

lim
z→1

σ̃
(0)

bb̄→Hkl [J ]

(1− z)1+4ε
. (8.24)

The soft behaviour of the real-virtual

The soft singularity structure of the real-virtual may be extracted as

σ
(1)

bb̄→Hg [J ] =
4∑

m=2

σ̃
(1),m

bb̄→Hg [J ]

(1− z)1+mε
. (8.25)

In the soft limit only the m = 2, 4 coefficients survive and the integration over λ can

be carried out analytically, yielding

σ
S(1)

bb̄→Hg [J ] =
lim
z→1

σ̃
(1),2

bb̄→Hg [J ]

(1− z)1+2ε
+

lim
z→1

σ̃
(1),4

bb̄→Hg [J ]

(1− z)1+4ε
. (8.26)

The combined soft limit

The combined soft limit is then defined as

σSbb̄→HX [J ] = y2
b

[
σ

(0)

bb̄→H [J ] +
(αs
π

)(
σ

(1)

bb̄→H [J ] + σ
S(0)

bb̄→Hg [J ]
)

(8.27)

+
(αs
π

)2
(
σ

(2)

bb̄→H [J ] + σ
S(1)

bb̄→Hg [J ] +
∑

k,l

σ
S(0)

bb̄→Hkl [J ]

)
+O

(
α3
s

)
]
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All the soft real, real-virtual and double real emission integrals were carried out

analytically yielding the final result

σSbb̄→HX [J ] = B ·
(
δ(1− z) +

αs
π

∆S,NLO +
(αs
π

)2

∆S,NNLO +O(α3
s)

)
J |z=1 ,

(8.28)

where

B =
πy2

b

6m2
H

. (8.29)

The NLO correction ∆S,NLO may be expressed as

∆S,NLO =
1

ε

(
−2

3
δ (1− z)− 8

3
D0 (1− z)

)
+

(
8

3
ζ2 −

4

3

)
δ (1− z)

+
8

3
D0 (1− z) lH +

16

3
D1 (1− z) +O(ε) , (8.30)

while the NNLO correction ∆S,NNLO can be expanded as follows

∆S,NNLO =
∑

n

∆
(n)
S,NNLOε

n +O(ε) , (8.31)
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with the only non-vanishing contributions [124]

∆
(0)
S,NNLO =

((
2

27
− 10

27
ζ2 +

2

3
ζ3

)
nf −

64

9
ζ2l

2
H +

(
−17

3
+

8

3
ζ2 +

250

9
ζ3

)
lH

+
211

18
+

58

9
ζ2 −

26

3
ζ3 −

17

6
ζ4

)
δ (1− z)

+

((
56

81
− 20

27
lH +

2

9
lH

2 − 8

9
ζ2

)
nf − lH2 +

(
70

9
− 164

9
ζ2

)
lH

− 212

27
+

20

3
ζ2 +

638

9
ζ3

)
D0 (1− z)

+

((
8

9
lH −

40

27

)
nf +

68

3
+

128

9
lH

2 − 4lH − 72ζ2

)
D1 (1− z)

+

(
−4 +

8

9
nf +

128

3
lH

)
D2 (1− z) +

896

27
D3 (1− z) , (8.32)

∆
(−1)
S,NNLO =

((
1

36
+

2

9
ζ2

)
nf +

64

9
ζ2lH +

43

24
− 23

3
ζ2 −

125

9
ζ3

)
δ (1− z)

+

(
10

27
nf −

16

3
lH −

35

9
+

82

9
ζ2

)
D0 (1− z)

−
(

32

3
+

128

9
lH

)
D1 (1− z)− 64

3
D2 (1− z) (8.33)

and

∆
(−2)
S,NNLO =

(
19

4
− 1

6
nf −

32

9
ζ2

)
δ (1− z) +

(
9− 2

9
nf

)
D0 (1− z)

+
64

9
D1 (1− z) . (8.34)

Here nf is the number of light flavors, ζn are the usual Riemann zeta values and

lH = log

(
m2
H

µ2

)
. (8.35)

8.4 Collinear Factorisation

Parton distribution functions are renormalized to absorb initial state collinear sin-

gularities via

f̃i(z, µ) = (Γij(µ)⊗ fj) (z) , (8.36)
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where µ is the factorisation scale and fi are the bare parton densities. In the following

discussion summation over indices will always be assumed unless explicitly stated.

We will also need the convolution integral, which is defined as

(f ⊗ g)(z) =

∫ 1

0

dxdyf(x)g(y)δ(z − xy) . (8.37)

The kernel Γij is defined in the MS scheme by

Γij(z) = δijδ(1− z) +
(αs
π

)
Γ

(1)
ij (z) +

(αs
π

)2

Γ
(2)
ij (z) +O(α3

s) , (8.38)

where the coefficients of the expansion in the strong coupling involve the Altarelli-

Parisi splitting functions. Specifically,

Γ
(1)
ij (z) = −P

0
ij(z)

ε
, (8.39)

Γ
(2)
ij (z) = −

{
P 1
ij(z)

2ε
− 1

2ε2
[(
P 0
ik ⊗ P 0

kj

)
(z) + β0P

0
ij(z)

]}
, (8.40)

with β0 = 11
4
− 1

6
NF . Let us define the inverse of the kernel Γij as

∆ij(z) =
2∑

n=0

∆
(n)
ij (z)

(αs
π

)n
+O

(
α3
s

)
, (8.41)

such that it satisfies the condition (Γik ⊗∆kj) (z) = δijδ(1 − z). Solving for the

coefficients yields

∆
(0)
ij (z) = δijδ(1− z) , (8.42)

∆
(1)
ij (z) = −Γ

(1)
ij (z) =

P 0
ij(z)

ε
, (8.43)

∆
(2)
ij (z) = −Γ

(2)
ij (z) +

(
Γ

(1)
ik ⊗ Γ

(1)
kj

)
(z)

=
P 1
ij(z)

2ε
+

1

2ε2
[(
P 0
ik ⊗ P 0

kj

)
(z)− β0P

0
ij(z)

]
. (8.44)

The strong coupling expansion of the bare PDFs then reads

fi(z) =
2∑

n=0

f
(n)
i (z)

(αs
π

)n
+O

(
α3
s

)
, (8.45)
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with

f
(n)
i = ∆

(n)
ij ⊗ f̃j . (8.46)

In evaluating the collinear counter terms we encounter convolutions of the type

(f ⊗∆)(x), where the function f is regular and ∆(x) can in general be written as

∆(x) = aδ(1− x) +
∑

n

bnDn(1− x) + C(x). (8.47)

Expressing the convolution as a single integral we obtain

(f ⊗∆)(x) =

∫ 1

x

dy

y
f

(
x

y

){
aδ(1− x) +

∑

n

bnDn(1− x) + C(x)

}
. (8.48)

Care has to be taken with convolutions over Dn. Since the integration does not start

at zero a boundary term must be included

(Dm ⊗ f) (x) =
log(1− x)m+1

m+ 1
f(x) +

∫ 1

x

dy log(1− y)m
1
y
f
(
x
y

)
− f(x)

1− y . (8.49)

Because of the downward sloping shape of all parton distribution functions, a quadratic

remapping of the integration variable y was found to optimize the convergence be-

haviour, i.e. we parameterise the integral like

y = x+ (1− x)z2,

with z uniformly spaced between 0 and 1. In our code, this integration is carried

out numerically. For every bare PDF used, we construct a one-dimensional grid in

the Bjorken-x variable and interpolate from it during runtime. An alternative to

constructing a grid is to perform the integration numerically along with the phase

space ones, thereby increasing the dimensionality of the Monte Carlo integration by

one (or by two in the case of double NLO kernels convoluted with the Born). We

have implemented this as well and found that it yields the same results as the grid

approach.

This procedure allows us to expand the (singular) bare PDFs via eq.(8.45) order

by order in the dimensional regulator ε and substitute them directly in eq.(8.2). The

singularities in the resulting convolutions, appearing as poles in the ε-expansion,

cancel the initial state collinear singularities of the partonic cross section. This

cancellation is achieved numerically in our calculation and can be observed bin by
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bin in e.g. the rapidity distribution of the Higgs boson. One can achieve this

cancellation in each initial state channel separately, at the cost of separating the

convolution integrals depending on the initial state parton in the convolution, i.e.

by not performing the implicit j-summation in eq.(8.46).

It is worth pointing out that the procedure described here is entirely generic, i.e.

it provides the collinear counter terms for any NNLO process numerically. Moreover,

we thereby circumvent the usual insertion of eq.(8.36) in the equivalent of eq.(8.2) for

renormalized quantities and the resulting cumbersome and process specific analytic

treatment of the convolutions.

8.5 Numerical Results

We have performed a number of tests to ensure that our results are consistent with

each other and with results available in the literature:

• We have implemented the entire calculation in two different computer codes,

one in Fortran and one in C++, and all results agree within their respective

Monte Carlo errors, both inclusively and differentially.

• The coefficients of all poles in the ε-expansion of all cross sections cancel both

inclusively and differentially for the entire process and also for all individual

initial state channels.

• The inclusive cross section agrees with the one available in [90] and from

ihixs [125] and so does the inclusive cross section per initial state channel.

This is the first independent check of the inclusive cross section published

in [90] and adopted in [125].

• The soft limit of both real-virtual and double real contributions were com-

puted both numerically (as a limiting case of the generic matrix elements) and

analytically. Moreover the integrated double real contributions were found to

agree with an analytic computation provided by [124].

• The subtraction process for every double real integral was implemented in two

different ways and were found in complete agreement.

We present results for the LHC with a center of mass energy of 8 TeV. We fix

the mass of the Higgs boson at 125 GeV. We have used the MSTW2008 (the 68%CL

set) PDFs for all results in this paper. The value of αs at mZ that we use is the
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Figure 8.1: The Higgs rapidity distribution for mH = 125 GeV at the 8 TeV LHC.
The bands describe the uncertainty due to factorisation scale
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Figure 8.2: The Higgs transverse momentum distribution for mH = 125 GeV at the
8 TeV LHC.
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best-fit value of the PDF set at the corresponding order. We use µR = mH as the

central renormalisation scale. The value of αs used is run from mZ to µR through

NNLO in QCD. The mass of the bottom quarks is set to zero in all matrix elements,

consistently with the 5FS choice. The bottom Yukawa coupling, however, depends

on the mass of the bottom. The Yukawa coupling at µR is obtained from the Yukawa

coupling at µ∗ = 10 GeV, using mb(µ
∗) = 3.63 GeV.

We do not vary µR in what follows, since the µR scale dependence of the total

cross section has been found to be very mild. We have also checked that the µR-

dependence of differential distributions is very small.

Previous studies have shown that the inclusive cross section is very sensitive

to the choice of factorisation scale. Arguments related to the validity of the 5FS

approximation with respect to the collinearity of final state b-quarks, as well as to

the matching to the 4FS calculation or to the need for a smoother perturbative

expansion, point to factorisation scales that are much lower than the Higgs boson

mass. We adopt the choice µF = mH
4

as a central scale and vary it in the range

[mH
8
, mH

2
] to estimate the related uncertainty.

All Monte Carlo integrations was performed with the Cuba [126] implementation

of the Vegas algorithm.

The rapidity distribution of the Higgs boson is shown at fig. 8.1. As expected,

the perturbative expansion is converging smoothly for this choice of central µF and

the NNLO uncertainty band is entirely engulfed by the NLO one.

The transverse momentum distribution for the Higgs boson is shown in fig. 8.2.

This observable starts at NLO in QCD and the fixed order prediction fails, as usual,

to describe the very low pT spectrum due to the related large logarithms. At the

large pT range we see that the NNLO calculation leads to a harder spectrum than the

NLO one and the NLO scale uncertainty fails to capture this feature. This implies

that great care should be taken when relying on NLO predictions for observables

that are highly exclusive in the transverse momentum of the Higgs boson.

The differential distribution in both the rapidity and the pT of the Higgs is shown

in fig. 8.3, both in a three-dimensional lego plot and in a density plot. We see that

the bulk of the events are produced centrally (with |y| < 2.5) and at relatively low

pT ( 35− 50GeV).

In fig. 8.4 we show the cumulative distribution of the Higgs transverse momen-

tum. This observable is equivalent to the cross section in the presence of a jet veto

at NLO, but only related indirectly at NNLO. In fig. 8.5 we present the cross section

in the presence of a jet veto. We see again that the perturbative description for high
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Figure 8.3: Differential distribution in rapidity and transverse momentum of the
Higgs boson for mH = 125 GeV at the 8 TeV LHC.
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Figure 8.5: The cross section in the presence of a jet veto (the 0-jet rate) for mH =
125 GeV at the 8 TeV LHC.

pT cut-offs is satisfactory (despite the discrepancy in high pT between NLO and

NNLO, which is, in absolute terms, unimportant), while for cut-offs lower than 20

GeV the NLO description does not coincide with the NNLO one. The vanishing of

the uncertainty around 15 GeV (which in the case of the jet veto is taking place at a

slightly lower pT -veto value) is a feature reminiscent of a similar situation in Higgs

production via gluon fusion [127]. The fixed order prediction in this region is very

stable under varying the factorisation scale, and any residual uncertainty in quan-

tities like the acceptance in the presence of a veto is driven by the uncertainty in

the total cross section. Various approaches to assign a larger uncertainty to similar

observables involving re-summation exist, see for example [128].

An important observable in bb̄ → H is the cross section for zero, one and two

jets. We use the anti-kT algorithm [129] for jet clustering1 with a cone in the y − φ
plane of radius R = 0.4. We show in fig. 8.7 the jet rates as a function of the jet

pmaxT used to define them. Here we do not distinguish between b-jets and light jets.

We find the jet rates for pmaxT = 20GeV to be in agreement with those published

in [121].

1At this order in perturbation theory, the anti-kT , the kT and the Cambridge-Aachen algorithms
are completely equivalent.
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Figure 8.9: The distribution of the Higgs absolute rapidity, |y| per initial state
channel for mH = 125 GeV at the 8 TeV LHC
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A wealth of information can be derived from examining the contribution of the

different initial state channels to differential distributions. The six initial state chan-

nels that contribute to our NNLO calculation have singularities in various collinear

regions that are cancelled against the collinear counter terms from mass factorisa-

tion. In order to make the cross section per channel finite one has to use collinear

counter terms that include Γ
(m)
ij kernels involving only the initial state partons of

the channel considered. Since we calculate the collinear counter terms numerically

this modification was relatively easy to achieve.

Initial state channel contributions to differential distributions have a strong de-

pendence on the factorisation scale, as do initial state channel contributions to the

inclusive cross section. In fig. 8.8 we see the contributions to the Higgs pT distri-

bution from each channel, for various factorisation scales ranging from mH/16 to

2mH .

Within the 5FS, the factorisation scale regularizes the collinear singularities

which in the 4FS are regularized by the bottom mass. At NNLO, three initial

state channels, bb̄, bg and gg share common collinear configurations whose leading

logarithms cancel each other in different bins of the Higgs pT distribution. In the

zero pT bin, in particular, squared logarithms from the double collinear limit of the

gg channel cancel against the single collinear limit of the bg channel and the born

contribution of the bb̄ channel. Moreover at NNLO one also sees sub-leading (single)

logarithms cancelling each other between the single collinear configurations of the gg

channel and the regular contributions to the bg channel, a cancellation that appears

in non-zero pT bins as well. The magnitude of those logarithmic cancellations is regu-
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lated by the value of the factorisation scale. The factorisation scale dependence is an

artifact of the truncation of the perturbative series, so one would naively choose the

scale in a way that minimizes the cross-channel logarithmic cancellations. However,

choosing the scale too small reduces the regime where the logarithms are re-summed

in the PDFs, destabilizing the perturbative expansion. Ideally one should choose

the scale in the region where the collinear approximation implicit in the 5FS is still

reasonable, which is at mH/4 or lower.

These features are also seen in the rapidity distribution of the Higgs boson per

initial state channel, shown in fig. 8.9 for various values of µF . There it is clearly

seen that a scale like µF = mH/4 eliminates the cross-channel cancellations but a

lower scale µF = mH/16 leads to a reduced, bg-dominated prediction.

We turn now to more exclusive observables. In large tan β models where the

Higgs boson production gets significant contribution from the bottom quark annihi-

lation process, one would like to examine differential distributions involving decay

products of the Higgs boson, with cuts necessary in the experimental analyses. We

focus here, for demonstration purposes, on the case where Higgs decays to two pho-

tons. In such an analysis the minimal cuts used by CMS and ATLAS include:

• A cut on the pT of the leading photon: pT ;1 > 40GeV.

• A cut on the pT of the trailing photon: pT ;2 > 25GeV.

• A cut on the rapidity of both photons: |y1,2| < 2.4.

• An isolation cut on photons: no jet is allowed in a cone of radius 0.4 around

any of the two photons if it is pT > 15GeV.

We treat the Higgs boson in the zero width approximation in this article. We defer

a more realistic treatment of the Higgs propagator to future work.

Within this setup we show in fig. 8.10 the distribution of the average transverse

momentum of the two photons and the distribution of the absolute of the difference

in pseudo-rapidity between the two photons, Y ∗ = 1
2
|y1 − y2|.

8.6 Conclusion

We have presented the fully differential NNLO calculation of bb̄ → H, a process

of prime phenomenological importance for the LHC in all models with enhanced

bottom Yukawa couplings. This is the first independent cross-check of the inclusive
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NNLO calculation performed in [90]. We have presented a variety of differential

distributions for Higgs production that can only be obtained with a fully differential

calculation and are useful for assessing the quality of the perturbative expansion

and the level under which several features are under control at a fully differential

level. We have also presented predictions for fully exclusive observables for the

bb̄ → H → γγ process in the presence of tight cuts on the final state photons

including isolation cuts, demonstrating that our calculation can fully simulate any

experimental setup at the partonic level.

This is the second application of our approach to treat real emission singular

amplitudes at NNLO [130]. It is the first application for the more complicated case

of a hadron collider process. We find the approach particularly beneficial, both in

terms of automatisation and in terms of performance of the resulting numerical code.

We find that the improvement in performance compared to the sector decomposition

approach is significant. We intend to release the computer code in the near future

and we defer for then any detailed comments on performance issues.

A study of significantly wider scope, including the production via gluon fusion

in models with enhanced bottom Yukawa couplings, as well as the decay of Higgs to

bottom quarks or tau leptons would vastly benefit the experimental searches. We

defer such a study for a future publication.

114



Chapter 9

The H → gggg amplitude and

ε−helicities

The gg → H represents one of the most interesting processes for the LHC. As

already mentioned, the fully differential computation of this process has already

been accomplished in two independent calculations in [10] and in [46].

With the methods developed in chapter 5 it would be an ideal next application

to recompute the gg → H double-real corrections. The primary problem with this

method is that of finding a compact analytical representation for the double real

squared ampltiudes, which allows an easy identification of the different singularity

structures. In contrast to the H → bb̄gg and H → bb̄bb̄ amplitudes, which are

made up of 8 Feynman diagrams each, the H → gggg, which contains 26 Feynman

diagrams, is already considerable more complicated. Since we wish to compute the

square of the amplitude analytically, the number of terms goes as n(n− 1)/2 where

n is the number of diagrams. While for 8 diagrams we expect 28 different terms,

we already obtain 325 terms for 26 diagrams. This growth was of course what

has limited the squaring amplitude procedure for more complicated final states and

has nowadays made it more popular to square the amplitude numerically. That is,

evaluate the amplitude as a complex number and then take the absolute value of it.

While this may sound counter-intuitive, it is not clear that the squared amplitude

is necessarily much more complicated than the amplitude. At least for simple 2→ 2

processes this statement is true. For example the squared amplitude for the process

gg → gg can be expressed simply as

|A(0)
4g |2 = 16g4(1− ε)2

(
3− su

t2
− ut

s2
− st

u2

)
. (9.1)
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But it turns out, that it is rather difficult to find such compact expressions of squared

amplitudes when the number of external particles exceeds 4. Certainly this is the

case with conventional Feynman diagrammatic methods in d = 4 − 2ε dimensions.

This poses a serious challenge for our treatment of more complicated final states

with the topological decomposition we described in chapter 5.

It has been shown in the last few decades that the complexity of gauge theory

amplitudes can be tamed considerably. One observation is that one should work

with so called primitve amplitudes, which are essentially believed to be the smallest

gauge invariant building blocks from which the entire amplitude can be obtained.

A method to obtain the primitive amplitudes was established via color ordering

and working with explicit helicities of the external particles. A trick to extend the

formalism to 4 − 2ε dimensions was given in [131] for the case of external gluons

only. We will use this method to compute the H → gggg helicity amplitudes in the

following section.

9.1 The helicity approach with ε polarisations

Let us demonstrate these methods on the H → gggg amplitude, where due to the

large discrete symmetry group S4 these methods should be particularly fruitful.

We color decompose the amplitude as follows

AH4g =
∑

σ∈S4/Z4

Tr(T aσ1T aσ2T aσ3T aσ4 )AH4g(σ(1), σ(2), σ(3), σ(4)). (9.2)

It turns out that there is a particularly simple expression for the square of the

amplitude. Using the photon decoupling identity,

AH4g(1, 2, 3, 4) + AH4g(2, 1, 3, 4) + AH4g(2, 3, 1, 4) = 0, (9.3)

one can show that

|AH4g|2 = N2(N2 − 1)
∑

σ∈S4/Z4

|AH4g(σ(1), σ(2), σ(3), σ(4))|2. (9.4)
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Furthermore, we may write the color ordered amplitude AHgggg(1, 2, 3, 4) as a sum

over the helicities of the external gluons, i.e.

AH4g(1, 2, 3, 4) =
∑

λ1,λ2,λ3,λ4

AH4g(1
λ1 , 2λ2 , 3λ3 , 4λ4). (9.5)

For the positive and negative helicity states we will use the usual polarisation vectors

in terms of massless chiral spinor products, i.e.

ε±µ (p, n) = ±〈n
∓|γµ|p∓〉
〈n∓|p±〉 , (9.6)

where n is a massless reference spinor, which satisifies n.ε(p, n) = 0. This satisfies

the polarisation sum

P µν =
∑

λ=+,−

ελµ(p, n)ελν(p, n) = −gµν +
pµnν + pνnµ

n.p
(9.7)

in 4 dimensions. To take into account the extra −2ε dimensional degrees of freedom

a third helicity state λ = ε is added. The polarisation vector corresponding to this

helicity state satisfies

εε(p, n).q = 0, (9.8)

i.e. scalar products with all vectors vanish. This property can be traced back to the

fact that such terms could never give rise to ε dependent pieces. Only terms where

contractions of the metric appear with itself, can give rise to ε dependent terms in

the square of the amplitude. This could, in the case of gluons only, only arise from

terms where P µν ’s are contracted with each other.

The second identity which they must satisfy is:

εε1(p1, n1).εε2(p2, n2) = δi1i2 (9.9)

where the δij is a Kronecker delta in −2ε dimensions. And therefore satisfies

∑

i

δii = −2ε. (9.10)

Using this formalism we are able to compute the helicity amplitudes also for the ε

dimensional components. We compute these amplitudes using the standard Weyl-

van Waerden spinor formalism, a good review of these methods is given in [132].
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For the 4 dimensional pieces of the amplitude we require only:

AH4g(1
+, 2+, 3+, 4+) = −2

m4
H

〈23〉〈14〉〈12〉〈34〉 , (9.11)

AH4g(1
+, 2+, 3−, 4−) = −2

(〈34〉)3

〈23〉〈14〉〈12〉 − 2
([12])3

[23][14][34]
, (9.12)

and

AH4g(1
+, 2−, 3−, 4−) =

2
〈24〉 ([13]〈23〉+ [14]〈24〉)2

〈12〉[34][13]s14

− 2
(〈24〉)2 (−[12]〈23〉+ 〈34〉[14])2

〈14〉[14]〈12〉[12]s124

−2
〈34〉 ([13]〈23〉+ [14]〈24〉)2

〈14〉[14][34]s134

+ 2
〈24〉 (〈24〉[12] + 〈34〉[13])2

〈14〉[13][23]s12

−2
〈23〉 (〈24〉[12] + 〈34〉[13])2

〈12〉[23][12]s123

. (9.13)

We have checked that these expressions indeed agree with the ones of [133]. All the

others can be obtained using the dual ward identities, i.e.

AH4g(1
+, 2−, 3+, 4−) = AH4g(1

+, 3+, 4−, 2−)− AH4g(3
+, 1+, 4−, 2−), (9.14)

the reflection identities or the cyclic properties of the color ordered amplitudes.
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Amplitudes containing ε-polarisations are somehow more involved, we obtain

AH4g(1
ε1 , 2ε2 , 3+, 4−) =

−2
δi1i2 (〈24〉[23] + 〈14〉[13]) (s14[23]〈24〉 − s24〈14〉[13])

〈34〉[34]s12s123

−2
δi1i2〈24〉[23] (−s34〈14〉[13] + s14[23]〈24〉 − s24〈14〉[13])

〈34〉[34]s23s123

+2
δi1i2 (〈24〉[23] + 〈14〉[13]) (s13〈24〉[23]− s23〈14〉[13])

〈34〉[34]s12s124

+2
δi1i2〈14〉[13] (s13〈24〉[23] + s34〈24〉[23]− s23〈14〉[13])

〈34〉[34]s14s124

−2
δi1i2 (〈14〉)2 ([13])2 (s23 + s24 + s12)

〈34〉[34]s14s134

− 2
δi1i2 (〈24〉)2 ([23])2 (s12 + s14 + s13)

〈34〉[34]s23s234

+2
δi1i2〈14〉[13] (−〈14〉[13] + 〈24〉[23])

〈34〉[34]s14

− 2
δi1i2〈24〉[23] (−〈14〉[13] + 〈24〉[23])

〈34〉[34]s23

+2
δi1i2〈24〉〈14〉[23][13] (s34 + s13 + s24 + s12)

〈34〉[34]s23s14

(9.15)

and

AH4g(1
ε1 , 2ε2 , 3+, 4+) =

δi1i2〈12〉[34] (〈14〉[24] + [23]〈13〉)
〈13〉〈14〉s12

− δi1i2 [34] (〈13〉[34] + 〈12〉[24])

〈13〉s123

+
δi1i2 [34] (−[34]〈14〉+ 〈12〉[23])

〈14〉s124

+ 2
s14δi1i2〈12〉[23] (〈13〉[34] + 〈12〉[24])

〈13〉〈14〉s23s123

+
δi1i2 (s13[34]〈14〉 − s23[34]〈14〉+ 2s14〈12〉[23]) (〈13〉[34] + 〈12〉[24])

〈13〉〈14〉s12s123

−δi1i2 (−[34]〈14〉+ 〈12〉[23]) ([34]s24〈13〉 − [34]s14〈13〉+ 2s13〈12〉[24])

〈13〉〈14〉s124s12

+2
δi1i2〈12〉[23] (s12 + s14 + s13) (〈13〉[34] + 〈12〉[24])

〈13〉〈14〉s23s234

(9.16)

+2
δi1i2〈12〉[34] (s12 + s14 + s13) (〈14〉[24] + [23]〈13〉)

〈13〉〈14〉s34s234

+2
δi1i2〈12〉[34] (s13 + s14) (〈14〉[24] + [23]〈13〉)

〈13〉〈14〉s34s12

+2
δi1i2〈12〉[23] (〈13〉[34] + 〈12〉[24])

〈13〉〈14〉s23

+ 2
δi1i2〈12〉[34] (〈14〉[24] + [23]〈13〉)

〈13〉〈14〉s34

.
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Using the dual Ward identity we can also obtain

AH4g(1
ε1 , 2+, 3ε3 , 4+) = AH4g(1

ε1 , 3ε3 , 4+, 2+)− AH4g(1
ε1 , 3ε3 , 4+, 2+) (9.17)

and

AH4g(1
ε1 , 2+, 3ε3 , 4−) = AH4g(1

ε1 , 3ε3 , 4+, 2−)− AH4g(1
ε1 , 3ε3 , 4+, 2−). (9.18)

Finally we find the all ε configuration:

AH4g(1
ε1 , 2ε2 , 3ε3 , 4ε4) =

(s13 + s23 + s34) (−2δi1i3δi2i4 + δi1i2δi3i4 + δi2i3δi1i4)

s124

+
(s14 + s24 + s34) (−2δi1i3δi2i4 + δi1i2δi3i4 + δi2i3δi1i4)

s123

+
(−2δi1i3δi2i4 + δi1i2δi3i4 + δi2i3δi1i4) (s12 + s14 + s13)

s234

+
(−2δi1i3δi2i4 + δi1i2δi3i4 + δi2i3δi1i4) (s23 + s24 + s12)

s134

(9.19)

+
δi2i3δi1i4 (s34 + s12 − s24 − s13)

s14

+
δi1i2δi3i4 (s23 + s14 − s24 − s13)

s12

+
δi2i3δi1i4 (s34 + s12 − s24 − s13)

s23

+
δi1i2δi3i4 (s23 + s14 − s24 − s13)

s34

−δi2i3δi1i4 (−s34 + s13) (s23 + s24 + s12)

s14s134

− δi1i2δi3i4 (−s14 + s13) (s23 + s24 + s12)

s34s134

+
δi1i2δi3i4 (s14 + s24 + s34) (−s13 + s23)

s12s123

+
δi2i3δi1i4 (s14 + s24 + s34) (−s13 + s12)

s23s123

+
δi2i3δi1i4 (s13 + s23 + s34) (−s24 + s12)

s14s124

− δi1i2δi3i4 (s24 − s14) (s13 + s23 + s34)

s12s124

−δi2i3δi1i4 (−s34 + s24) (s12 + s14 + s13)

s23s234

+
δi1i2δi3i4 (s23 − s24) (s12 + s14 + s13)

s34s234

+2
δi2i3δi1i4 (−s13s24 + s12s34)

s14s23

+ 2
δi1i2δi3i4 (−s13s24 + s14s23)

s12s34

−4δi1i3δi2i4 + 2δi1i2δi3i4 + 2δi2i3δi1i4 .

9.2 Discussion

The relative compactness of these expressions and the fact that helicity amplitudes

square independently, may lead one to believe that compact squared expressions
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could be more easily obtained with these methods. This statement is partially true,

however, upon squaring, some of these expressions contain terms which contain sin-

gularities of higher than logarithmic degree. This is a rather unwanted feature for

the topology decomposition. While it is conceivable that one can re-write the above

expressions, in such a way that the logarithmic nature of the singularities of each

term becomes apparent, this does not appear to be a straightforward task.

The problem of un-physical singularities can be traced back to the use of eq.(9.6).

It is clear that since we have introduced un-physical singularities into the amplitude

they, unless we manage to explicitly cancel them, will remain there. We would prefer

to be able to make a clear identification of the singularity structure of a diagram with

its propagator structure. This can be realised when working in the Feynman gauge

with external ghosts. However it is not clear how to combine the ghost formalism

with the spinor-helicity formalism. We defer this discussion and possible resolutions

to the future.
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Chapter 10

Conclusions

Let us briefly summarize the achievements of chapter 3. We started by review-

ing methods which allow to obtain Laurent expansions for singular, dimensionally

regularised, integrals for arbitrary finite numerator functions. We showed how fac-

torised singularities can be dealt with by expanding them in terms of delta and plus

distributions. We then discussed the phenomenon of overlapping singularities, in

particular we gave a condition to determine the degree of divergence of an arbitrary

overlapping singularity. We demonstrated how the method of sector decomposition

factorises overlapping singularities by splitting the integrand in such a way that the

parameters, involved in the overlapping singularity, are rescaled with respect to each

other, when mapped back onto the unit hyper cube in each sector. We showed how

the phenomenon of rescaling could also be achieved with aid of non-linear mappings.

We then applied the non-linear mapping to factorise some simple as well as some

more complicated singularity structures, demonstrating how the method could be

applied rather systematically. Further we remarked that there was not necessarily

a unique way to apply the mapping but that there were a number of “philosophie”

which one could follow. We also showed that non-linear mappings could be used to

derive analytic continuation formulae for hypergeometric functions and showed that

the non-linear mappings were intimately linked to Feynman parameters.

In chapter 4 we demonstrated how the non-linear technique could be applied

to factorise singular loop integrals, in particular the massless one-loop box, the box

with two adjacent external masses as well as the massless 2 loop non-planar triangle.

In all cases we obtained completely factorised expressions, by relatively straightfor-

ward use of the techniques we developed in chapter 3. The method of non-linear
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mappings, also in conjunction with the projective mapping as demonstrated for the

massive box, therefore appears to be a useful tool for efficient numerical evaluations

of singular loop integrals. Also for analytical evaluations it may turn out to be

rather useful. This appears to be a very promising direction for future research.

In chapter 5 we discussed divergent single and double real emission phase space

integrals for the hadronic production of massive systems. We showed that the sin-

gularities which appear in single real emission integrals can always be factorised by

choosing an appropriate parametrisation in terms of the energy and angle variables

of the massless final state particle. We then discussed the possible singularity struc-

tures which could appear in double real emissions. We gave an exhaustive list of the

most singular topologies which could appear based on diagrammatic considerations.

Considering interferences and squares of these topologies we derived a list of the

most singular phase-space integrals to appear for these double real emissions. We

derived two phase space parametrisations, one in terms of energy and angle variables

and one based on a hierarchical decomposition. While neither of the two was able to

factorise all singularities, either of them was more suited to different classes of the in-

tegrals. Using these parametrisations we numerically evaluated all of the most singu-

lar integrals of the list by applying non-linear mappings, when required, to factorise

overlapping singularities. We showed that line-singularities can be avoided in most

cases, via partial fractions, but can not be avoided within our proposed parametri-

sations, in situations where massive coloured states are found in the final state.

Potential applications of this approach are plentiful and include for example the

fully differential cross sections for the processes pp → WW,ZZ,WH,ZH, tt̄, γγ, ..

at NNLO.

In chapter 6 we discussed divergent single and double real emission phase space

integrals for decay processes where a massive state decays into two massless states.

For single real emissions all singularities can be factorised in a single parametri-

sation. For the double real emissions the situation is similar to the one found

for the hadronic production of massive states. In contrast to the latter we only

used a single parametrisation to factorise the most complicated singularity struc-

tures here. This demanded much more complicated applications of the non-linear

mapping but served as a further powerful demonstration of the effectiveness of the

approach. There are many potential applications of the methods which we pre-

sented here. These include the fully differential decay widths for the processes
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H → qq̄,W → q, Q̄, Z → qq̄, e+e− → jj at NNLO.

In chapter 7 we applied the methods of chapter 6 in the fully differential calcu-

lation of the H → bb̄ decay width at NNLO, an important phenomenological result.

For this we re-computed all the amplitudes needed with conventional diagrammatic

methods. We find that the method of chapter 6 works well in this application and

implement them in a numerical code. For the real-virtual corrections we found that

the non-linear mappings can also be used to disentangle overlapping singularities

between loop and phase space integrations. We also found that these non-linear

mappings correspond to analytic continuation formulae of the hypergeometric func-

tions which represent the box integrals found there. We checked that our numerical

result for the inclusive decay width agrees with the known analytic result. Further

we computed 2,3 and 4 jet-rates using the JADE jet algorithm as well as the Energy

distribution of the leading jet in the 2 -jet rate, a rather complicated observable,

which can only be computed within a fully differential implementation. There re-

main very important future applications for this computation. Since the Higgs boson

may be discovered in this channel when discovered in association with a W or a Z

boson it is very interesting to have a Monte Carlo code where the production and

decay are implemented at NNLO.

In chapter 8 we applied the methods of chapter 5 in in the fully differential

computation of the bb̄ → H cross-section. The amplitudes needed for this calcula-

tion were obtained from the ones computed in chapter 7. We put forward a novel

approach for dealing with the purely soft contributions which allowed us to deal

with these contributions purely analytically. This also resulted in a great speed-up

factor of our numerical code. For the real-virtual contribution we found, as in chap-

ter 7, that analytic continuation formulae could be used to disentangle overlapping

singularities between phase-space and loop parameters. The analytic continuation

formulae needed were different to the ones used in chapter 7 and somewhat more

complicated. For the collinear counter terms required to cancel initial state singu-

larities we used a purely numerical approach. This approach is completely process

independent and may therefore be advantageous to analytic approaches. We im-

plemented two different versions for the numerical evaluation of the convolution

integrals required and found that both yielded very fast and stable results. With

our numerical code we presented a large number of observables. We checked that

our implementation is in agreement with other known results, like the inclusive

cross-section as well jet rates and Higgs pt-veto plots. Furthermore, we computed
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the rapidity distribution, the average Higgs pt and the average Higgs rapidity with

for a large variety of factorisation and renormalisation scales. We also interfaced

our Monte Carlo program with a fully differential decay of the Higgs boson into

photons and presented the average pt and the average rapidity difference of the two

photons. This wealth of differential results clearly demonstrates the potential of our

approach and we are confident that it can be used with similar success for even more

complicated final states.

In chapter 9 we presented helicity amplitudes for the process H → gggg, includ-

ing also epsilon dimensional polarisations for the gluons. These expressions were

computed mainly to pioneer ways to square amplitudes analytically in ways suitable

to identify the different singular topologies. Due to the appearance of unphysical

singularities in some of these primitive amplitudes, we do not find them particularly

useful for the topology method. We anticipate that using external ghosts should

circumvent the problem. A possible idea could be to use Berends-Giele recursion

relations with external ghosts. It could also be possible to use an approach similar

to the OPP reduction method adapted for real-emissions. To find such a method is

certainly an essential step for the topology method to become applicable for more

complicated final states and represents an interesting direction for further research.
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Appendix A

H → bb̄ double real amplitudes

The function B(p1, p2, p3, p4) occurring in the H → bb̄bb̄ squared amplitude can be

expressed as

B(p1, p2, p3, p4) = B(0)(p1, p2, p3, p4) +B(1)(p1, p2, p3, p4)ε+B(2)(p1, p2, p3, p4)ε2

(A.1)

where

B(0)(p1, p2, p3, p4) = 2 s34
−1 − 2 s134

−1 − 4 s234
−1 + 2 s124

−1 + 4
s12s23

s14s124s134

−2
s12 (s13

2 + 2 s12
2 + 2 s12s13)

s14s34s124s234

+ 4
s12s23

s34s134s234

− 2
s12 (s23 + 2 s13 + s12)

s14s34s124

+
4 s12 + 4 s23 + 8 s13

s14s34

+
−6 s13 − 2 s14 − 4 s24

s34s134

+
2 s23 − 2 s24 + 4 s12 − 2 s34 − 4 s13

s14s134

+
−4 s23 − 10 s12 + 4 s24 − 6 s13

s14s234

+
4 s12 + 4 s13 + 2 s23 + 2 s14

s34s234

+
2 s14 + 4 s13 + 4 s12

s134s234

+
2 s12 + 2 s24

s14s124

+
−6 s13 − 6 s23 − 4 s12

s34s124

+
2 s13 − 2 s14 + 4 s23

s124s134

+
4 s14 + 4 s13 + 8 s12

s124s234

− 4
s13 (s12 + s24 + s23)

s14s134
2

− 4
s13 (s12 + s24 + s23)

s34s134
2

+
−2 s23

2 − 2 s12s23 + 2 s13
2 − 4 s13s23 + 4 s12

2 + 4 s24
2 + 4 s12s13 − 4 s24s13 − 4 s12s24

s14s34s234

+
−2 s12

2 − 2 s24
2 − 4 s23

2 − 4 s12s24 − 4 s24s23 − 4 s12s23

s14s234s134

+
−2 s23

2 − 2 s12
2 + 4 s23s14 − 2 s14

2

s34s124s134

+
4 s12

2 − 2 s24s23 − 2 s24
2

s14s124s234

+
−4 s13s14 − 8 s12

2 − 2 s13
2 − 2 s14

2 − 8 s12s13 − 6 s12s14

s34s124s234

(A.2)
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B(1)(p1, p2, p3, p4) = −4 s14
−1 + 6 s34

−1 + 6 s134
−1 + 4 s234

−1 − 2 s124
−1

−4
s12s23

s34s134s234

− 4
s12s23

s14s124s134

− 2
s12 (−s23 − 2 s13 + s12)

s14s34s124

+
4 s12 + 4 s24 + 4 s23

s134
2

+
−6 s24 − 8 s13

s14s34

+
−6 s12 − 2 s23 + 6 s34 + 8 s13

s14s134

+
6 s13 + 6 s24 − 2 s14 + 2 s23

s34s134

+
6 s13 + 4 s24 + 10 s12

s14s234

+
−2 s23 − 4 s24 + 2 s14 + 4 s12

s34s234

+
−4 s13 − 2 s14 − 4 s12

s134s234

+
−2 s24 − 2 s12

s14s124

+
6 s23 − 8 s12 − 8 s14 + 6 s13

s34s124

+
−2 s13 − 4 s23 + 2 s14

s124s134

+
−4 s14 − 4 s13 − 8 s12

s124s234

+ 4
s13 (s12 + s24 + s23)

s14s134
2

+ 4
s13 (s12 + s24 + s23)

s34s134
2

+
4 s13s23 + 2 s12s23 − 2 s13

2 − 2 s23
2

s14s34s234

+
2 s24

2 + 2 s24s23 − 4 s12
2

s14s124s234

+
2 s12

2 + 4 s23
2 + 8 s24s23 + 4 s12s23 + 6 s24

2 + 8 s12s24

s14s234s134

+ 2
s12s13

2

s14s34s124s234

+
−4 s12s23 + 6 s14

2 + 4 s12s14 + 2 s23
2 + 2 s12

2 − 8 s23s14

s34s124s134

+
−4 s12

2 − 6 s12s14 + 2 s13
2 − 2 s14

2

s34s124s234

(A.3)

B(2)(p1, p2, p3, p4) =
4 s13s14 + 2 s13

2 + 4 s12s13 + 2 s14
2 + 2 s12s14

s34s124s234

+
−2 s24 − 4 s13

s14s34

+
−2 s24 + 2 s12 − 2 s23

s14s234

+
4 s14 − 4 s23

s124s134

+
−4 s12 − 4 s14 − 4 s13

s134s234

+
2 s12 + 2 s24

s14s134

+
2 s14 + 4 s13 + 2 s23

s34s124

+ 2
s12s13

s14s34s124

+
−2 s24 + 2 s12

s14s124

− 2
s13 (−s23 + s13)

s14s34s234

+
−4 s13 − 2 s14 + 2 s23

s34s234

+
4 s12s13 + 2 s24s23 + 2 s24

2

s14s124s234

+
−4 s12 − 4 s24 − 4 s23

s134
2

+
2 s24 + 2 s23

s34s134

+ 2 s14
−1 + 2

s12s13
2

s14s34s124s234

− 8 s134
−1 + 2 s234

−1

−2 s124
−1 (A.4)
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A
(0)

Hbb̄gg
= 20 s234

−1 + 20 s134
−1 + 32 s13

−1 + 24 s24
−1 + 24 s14

−1 + 32 s23
−1

+4
3 s13 − 6mH

2 + 3 s14 + 6 s34

s24s23

+ 8
3 s24 − 6mH

2 + 3 s14 + 3 s34

s13s23

+4
6mH

2 − 3 s13 + 3 s34 + 3 s24

s234 s14

+ 4
−s24 − s14 + s34 + 4mH

2

s234 s13

−4
−3 s14 − 6mH

2 + 3 s23 − 3 s34

s134 s24

+ 4
3 s23 + 6 s34 − 6mH

2 + 3 s24

s13s14

+8
−5 s34 − 8mH

2 − 4 s24 − 4 s14

s134 s234

+ 8
mH

2

s134
2

+ 8
mH

2

s234
2

−4
8mH
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Appendix B

The pdf convolution

The integral measure

I =

∫ 1

0

dx1dx2θ(x1x2 − τ), (B.1)

with

τ =
M2

s
, (B.2)

is essential for the evaluation of hadronic cross sections. For numerical evaluations

one wishes to deal with integrals situated on the unit hypercube. The simplest

implementation option is therefore to just integrate over the theta-function directly,

we shall regard to this as the brute force parametrisation. However it may be more

beneficial to find parametrisations which do not not require the θ constraint. We

shall present a number of such parametrisations in this appendix and will test their

relative performances on a suitable test integral.

B.1 Parametrisation 1

The most straight forward parameterisation is probably

I =

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 . (B.3)

Mapping linearly on the hypercube yields

(x1, x2) =

(
τ + y1(1− τ),

τ + y1y2(1− τ)

τ + y1(1− τ)

)
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where the y1, y2 ∈ [0, 1] and the measure becomes

I =

∫ 1

0

dy1dy2

(
y1(1− τ)2

τ + y1(1− τ)

)
. (B.4)

B.2 Parametrisation 2

If there are singularities at z = 1 then it may be necessary to use the variable

z = τ
x1x2

. Mapping x2 7→ τ/(x1z), yields

I = τ

∫ 1

τ

dx1

x1

∫ 1

τ
x1

dz

z2
. (B.5)

Linearly mapping onto the unit-hypercube results in

(x1, x2) =

(
τ + y1(1− τ),

τ

τ + y1y2(1− τ)

)

where y1, y2 ∈ [0, 1] and the measure becomes

I =

∫ 1

0

dy1dy2

(
y1τ(1− τ)2

(τ + y1y2(1− τ))2

)
. (B.6)

B.3 Parametrisation 3

Another parametrisation is in terms of the “partonic” rapidity

y =
1

2
log

(
x1

x2

)

and the partonic center of mass energy ŝ = sx1x2, where s is the total collision

energy here. One can then map (x1, x2) 7→
√

ŝ
s
(ey, e−y) which yields

I =

∫ s

M2

dŝ

s

∫ log
√

s
ŝ

log
√

ŝ
s

dy. (B.7)

The above mapping has the nice feature that one gains explicit control over ŝ. Since

ampltudes tend to behave as 1/(1− z), we neverthless prefer to use the variable

ρ = 1− z, ∈ [0, 1− τ ].
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Remapping ρ and y linearly on the unit hypercube results in the following mapping

for the Bjorken x-variables

(x1, x2) =

((
τ

1− y1(1− τ)

)1−y2
,

(
τ

1− y1(1− τ)

)y2)

with the y1, y2 ∈ [0, 1] and

ρ = 1− z = y1(1− τ).

The measure is then given by

I =

∫ 1

0

dy1dy2
τ(1− τ)

(1− y1(1− τ))2
log

(
1− y1(1− τ)

τ

)
. (B.8)

B.4 Numerical performance

We shall test the numerical performance of the different parametrisations on the

integral

I =

∫ 1

0

dx1dx2θ(x1x2 − τ)
fg(x1, µF )fg(x2, µF )

2x1x2

, (B.9)

where fg(x1, µF ) shall denote the gluon parton density. In Tables B.4 and B.4 we

compare our parametrisations to the brute force approach, denoted as parameter-

isation 4. For our test integral we conclude that for both parameter choices for τ

parameterisation 3 outperforms the others. A further conclusion which on can make

is that all parametrisations show better convergence than the brute force approach.

Table B.1: Uing MSTW NLO central set and µf = 100, τ = 0.1, 106 points with
Cuba Vegas

Param. I ∆I
1 5.42830 · 10−3 0.00112 · 10−3

2 5.42841 · 10−3 0.00097 · 10−3

3 5.42837 · 10−3 0.00078 · 10−3

4 5.42536 · 10−3 0.00936 · 10−3
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Table B.2: Using MSTW NLO central set and µf = 100, τ = 0.0001, 106 points
with Cuba Vegas

Param. I ∆I
1 7.25694 · 105 0.000546 · 105

2 7.25675 · 105 0.000143 · 105

3 7.25678 · 105 0.000088 · 105

4 7.25689 · 105 0.001659 · 105
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Appendix C

The one-loop box with one

external mass

We begin by applying the massless propagator combination trick [134], to get a

suitable Feynman parameterization. Feynman parameterizing, or “combining”, the

first and second propagator as well as the third and fourth we arrive at

BoxF(s23, s34) =

∫ 1

0

dxdy

∫
ddk

iπ
d
2

1

[(k + xp2)2]2[(k + p23 + yp4)2]2
.

We then Feynman parameterize the final two propagators, Wick rotate and integrate

the loop momentum and the final Feynman parameter to get

BoxF(s23, s34) =
Γ(2 + ε)Γ(−ε)2

Γ(−2ε)

∫ 1

0

dxdy[∆(x, y)]−2−ε

where

∆(x, y) = s24xy − s23x̄− (s24 + s34)y.

We then perform the integration over y and end up with

BoxF(s, t) =
Γ(2 + ε)Γ(−ε)2

Γ(−2ε)(1 + ε)

[∫ 1

0

dx
(−sx)−1−ε

−t− ux −
∫ 1

0

dx
(−x(M2 − t)− t)−1−ε

−t− ux

]

where we defined M2 = s + t + u. The first integral is of Euler type and we can

immediately identify a hypergeometric function,

I1 =

∫ 1

0

dx
(−sx)−1−ε

−t− ux = −(−s)−ε
stε

2F1(1,−ε, 1− ε,−u
t

)
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where

2F1(1,−ε, 1− ε, z) =
Γ(1− ε)
Γ(−ε)

∫ 1

0

dx
x−1−ε

1− zx.

In the second we change variable y = x(1− t
M2 ) + t

M2 , to get

I2 =

∫ 1

0

dx
(−x(M2 − t)− t)−1−ε

−t− ux =
(−M2)−ε

st

∫ 1

t
M2

dy
y−1−ε

1 + y
(
uM2

st

)

We then split the integral such that

I2 =
(−M2)−ε

st

∫ 1

0

dy
y−1−ε

1 + y
(
uM2

st

) − (−M2)−ε

st

∫ t
M2

0

dy
y−1−ε

1 + y
(
uM2

st

)

and bring the limits back from 0 to 1 in the second using y = x t
M2 to obtain

I2 = −(−M2)−ε

stε
2F1(1,−ε, 1− ε,−uM

2

st
) +

(−t)−ε
stε

2F1(1,−ε, 1− ε,−u
s

).

Noting that
Γ(2 + ε)Γ(−ε)2

Γ(−2ε)(1 + ε)
= −2Γ(1 + ε)Γ(1− ε)2

εΓ(1− 2ε)

gives the final result.
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Appendix D

Scale dependence and separation

To all orders in perturbation theory any physical observable has to be independent of

the regularisation scale. For the partonic cross-section σ(µ) = σ(log µ2,m(µ), a(µ)),

where we introduced αs(µ)/π = a(µ), this implies

dσ(µ)

d log µ2
= 0. (D.1)

The statement is completely equivalent to saying that σ(µ0) = σ(µ1). Expanding

the total derivative we obtain

dσ(µ)

d log µ2
=

∂σ(µ)

∂ log µ2
+
∂σ(µ)

∂a

∂a(µ)

∂ log µ2
+
∂σ(µ)

∂m

∂m(µ)

∂ log µ2
(D.2)

Substituting the evolution equations of eqts.(2.21) we thus get

∂σ(µ)

∂ log µ2
+ a(µ)β(µ)

∂σ(µ)

∂a
+m(µ)γ(µ)

∂σ(µ)

∂m
= 0. (D.3)

The explicit log µ2 dependence of σ(µ) is therefore such as to cancel the dependence

on log µ2 created by the running couplings. In turn this implies that if we know

the explicit dependence of the couplings on log µ2 we can recover also the explicit

dependence of the partonic cross-section on log µ2. A solution to the renormalisation

group equation eq.(D.3) can be constructed by solving the evoution equations for
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m(µ) and a(µ). We can obtain all order expressions by integrating eqts.(2.21)

m(µ1) = m(µ0) +

∫ µ1

µ0

d log(µ2)γ(µ)m(µ)

a(µ1) = a(µ0) +

∫ µ1

µ0

d log(µ2)β(µ)a(µ). (D.4)

In fact all eq.(D.3) is telling us is that it is invariant under such shifts and its solution

is simply

σ(log µ2
1,m(µ1), a(µ1)) = σ(log µ2

0,m(µ0), a(µ0)) = (D.5)

σ

(
log µ2

1, m(µ0) +

∫ µ1

µ0

d log(µ2)γ(µ)m(µ), a(µ0) +

∫ µ1

µ0

d log(µ2)β(µ)a(µ)

)

One can check that this indeed satisfies eq.(D.3). This equation is probably the

essence of why the “renormalisation group” is called a group after all, the group

transformations then just correspond to scale transformations which leave the phys-

ical quantity invariant.

These coupled integral equations can be solved to any order in a by recursively

re-substituting the left hand side back into the right hand side. Performing this

once we find

m(µr) = m(µ0) +

∫ µ1

µ0

d log(µ2)γ(µ)

[
m(µ0) +

∫ µ

µ0

d log(µ2
s)γ(µs)m(µs)

]

a(µ1) = a(µ0) +

∫ µ1

µ0

d log(µ2)β(µ)

[
a(µ0) +

∫ µ

µ0

d log(µ2
s)β(µs)a(µs)

]
.(D.6)

Substituting the perturbative expansions of the the evolution equations and repeat-

ing the procedure until all as and ms to O (a3) depend only the scale µ0, the integrals

can be evaluated trivially and yield just logarithms to some power. We then obtain

m(µ1) = m(µ0)

{
1 + a(µ0)γ0 log

(
µ2

0

µ2
1

)
(D.7)

+a(µ0)2

[
γ1 log

(
µ2

0

µ2
1

)
+

1

2
(γ0β0 + γ2

0) log2

(
µ2

0

µ2
1

)]
+O

(
a(µ0)3

)
}
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and

a(µ1) = a(µ0) + a(µ0)2β0 log

(
µ2

0

µ2
1

)
(D.8)

+a(µ0)3

[
β1 log

(
µ2

0

µ2
1

)
+ β2

0 log2

(
µ2

0

µ2
1

)]
+O

(
a(µ0)4

)

We remark that formally these are the NLO “unresummed” evolution equations of

m(µ) and a(µ). Substituting these expressions into σ(µ) allows us to to derive the

renormalisation dependence on log µ2 of the partonic cross section at NNLO. Effec-

tively the NNLO scale dependence cancels the LO and NLO contributions of the

running of the coupling constants, thereby reducing the sensitivity to the renormal-

isation scale. However since in any practical calculation one always uses re-summed

evolution equations at one order higher than the one at which one does the compu-

tation, there are residual scale dependence effects which are not cancelled. Varying

the scales therefore estimates the size of those higher order contributions and hence

allows to estimate the convergence of the perturbative series.

In practical calculations the evolution equations allow us to do a calculation at

any conveniently fixed scale, e.g. µ = mH , and restore the full scale dependence at

a later stage in the calculation. For example the NLO log µ2 can be retrieved by

expanding

σ(µ)|µ=mH = σ

(
log µ2,m(µ) +m(µ)a(µ)γ0 log

µ2

m2
H

, a(µ) + a(µ)2β0 log
µ2

m2
H

)

(D.9)

consistently to O (an+2), where we assume the LO to be of O (an).

So far we have only discussed the renormalisation scale dependence. Let us

now analyse the factorisation scale dependence of the hadronic cross section. The

hadronic cross section is given by

σ(µ) = fi(µ)⊗ fj(µ)⊗ σ̂ij(µ). (D.10)

We can follow exactly the same strategy as before by solving the evolution equation

for the parton distribution function

∂f(µ)

∂ log(µ2)
= a(µ)P (µ)⊗ f(µ) (D.11)
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known as the DGLAP equation. Integrating

f(µF ) = f(µ0) +

∫ µF

µ0

d log(µ2)a(µ)P (µ)⊗ f(µ) (D.12)

and resubstituting we obtain

f(µF ) = f(µ0)+

∫ µF

µ0

d log(µ2)a(µ)P (µ)⊗
[
f(µ0) +

∫ µ

µ0

d log(µ2
s)a(µs)P (µs)⊗ f(µs)

]
.

(D.13)

Expanding the splitting function P (µ) = P 0 + a(µ)P 1 + .. and using the evolution

of a(µ) we then derive

fi(µF ) = fi(µ0) + a(µ0) log

(
µ2
F

µ2
0

)
P 0
ij ⊗ fj(µ0)

+a(µ0)2

[
log

(
µ2
F

µ2
0

)
P 1
ij ⊗ fj(µ0) (D.14)

+
1

2
log2

(
µ2
F

µ2
0

)(
P 0
ij ⊗ P 0

jk ⊗ fk(µ0)− β0P
0
ij ⊗ fj(µ0)

)
]

+O
(
a(µ0)3

)

A simple method to seperate the renormalisation and factorisation scales

The renormalisation and factorization scales, µR and µF , can be conveniently sep-

arated by first performing the calculation at µ = µF . Applying the relations (and

letting yb = m/v)

αs(µF )

π
=

αs(µR)

π
+

(
αs(µR)

π

)2

β0 log

(
µ2
R

µ2
F

)

+

(
αs(µR)

π

)3 [
β1 log

(
µ2
R

µ2
F

)
+ β2

0 log2

(
µ2
R

µ2
F

)]
+O

(
α4
s

)
,

yb(µF ) = yb(µR)

{
1 +

αs(µR)

π
γ0 log

(
µ2
R

µ2
F

)
(D.15)

+

(
αs(µR)

π

)2 [
γ1 log

(
µ2
R

µ2
F

)
+

1

2
(γ0β0 + γ2

0) log2

(
µ2
R

µ2
F

)]
+O

(
α3
s

)
}

then allows to separate the scales a posteriori.
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