
ETH Library

Overapproximating the Cost of
Loops

Master Thesis

Author(s):
Schweizer, Daniel

Publication date:
2013

Permanent link:
https://doi.org/10.3929/ethz-a-009767769

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-009767769
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Overapproximating the Cost of Loops

Master’s Thesis

Chair of Programming Methodology

Department of Computer Science

ETH Zurich

 http://www.pm.inf.ethz.ch/

Daniel Schweizer, daschwei@student.ethz.ch

Supervisors: Dr. Pietro Ferrara, Prof. Dr. Peter Müller

April 9, 2013

2

3

Abstract
TouchDevelop is a novel programming language developed by Microsoft to write
scripts on mobile devices. In this master’s thesis we present a cost analysis that
overapproximates the cost of loops in a TouchDevelop program. The analysis is
implemented as an extension of Sample, a generic static analyzer based on the abstract
interpretation theory. First, we run a numerical analysis relying on Apron on the input
program. Then, we use the result of this analysis to infer a cost relation system for each
loop in the program. Finally, this system is solved by the upper bounds solver PUBS.
PUBS calculates a closed-form upper bound of the cost of each loop, which is used as
the result of the cost analysis.
The implementation of the analysis has been deeply evaluated. First, we show its results
on a series of input programs - including scripts written by ourselves and scripts from
the TouchDevelop cloud - to illustrate its capabilities and limits. Then, to evaluate the
performance of the loop cost analysis, we ran it on more than 1700 scripts from the
cloud. The results show that the analysis scales up and is precise enough to be used in
practice. For instance, we could use the cost information from the analysis at runtime to
decide whether it is better to execute a script locally on the mobile device, or in the
TouchDevelop cloud.

5

Acknowledgment
First, I would like to thank my supervisors Prof. Dr. Peter Müller and Dr. Pietro
Ferrara. I am grateful to Prof. Müller for giving me the possibility to create this
challenging Master’s thesis at the Chair of Programming Methodology. A special
thank goes to Pietro Ferrara for his excellent assistance.
I would also like to thank Lucas Brutschy for helping me with TouchDevelop and
Sample. Further thanks go to Antoine Miné for providing the Apron library, and to
Samir Genaim for providing the PUBS solver and for his helpful input in an early
stage of this thesis. I would like to thank all the members of the Chair of Programming
Methodology for their valuable discussion input at my thesis presentations. Finally,
thanks go to my family and colleagues for supporting me during the past six months.

6

Contents

1 Introduction 8

2 TouchDevelop 10

2.1 Collections in TouchDevelop 10

2.2 Control Structures in TouchDevelop 11

3 Cost Relations and Cost Model 13

3.1 Cost Relations 13

3.2 PUBS 15

3.3 Cost of a Control Structure 16

4 Sample 18

4.1 Analyses in Sample 18

4.2 Control Flow Graph (CFG) 18

4.3 From TouchDevelop Control Structures to CFGs 19

4.4 Control Flow Graph Execution (CFGE) 20

5 Approach 22

5.1 Step-by-Step Description 22

5.2 Implementation 23

6 TouchDevelop Cost Analysis Compiler 24

6.1 Augmenting a Control Flow Graph 24

7 TouchDevelop Loop Cost Analysis 26

7.1 Finding the Control Structures 26

7.2 Loop Condition 26

7.3 Variable Update Rules 28

7.4 Initial Variable Values 31

7.5 Conditional Condition 32

7.6 Composing the Cost Relation System 32

 Base case (loop) 32

 Base case (conditional) 34

 Nested control structures 35

 Composite conditions 36

7

8 Case Studies (Constructed Scripts) 38

8.1 Simple for Loop 38

8.2 foreach Loop over Immutable Collection 39

8.3 foreach Loop over Mutable Collection 40

8.4 Simple while Loop 41

8.5 while Loop with Decreasing Counter Value 42

8.6 while Loop with Exponentially Growing Counter Value 43

8.7 Nested Loops 45

8.8 Conditional inside Loop 46

8.9 Composite Loop Condition 48

8.10 Variable Update Depending on Other Variable 51

9 Case Studies from the TouchDevelop cloud 52

9.1 Coding Duel 52

9.2 Password Generator 54

9.3 Shakespearian Insults Generator 56

9.4 Text my Location 58

10 Experimental Results 59

11 Related Work 61

11.1 Cost Analysis of Object-Oriented Bytecode Programs 61

11.2 Closed-Form Upper Bounds in Static Cost Analysis 62

12 Conclusion 64

References 66

8

1 Introduction
The TouchDevelop, developed by Microsoft, is a novel programming language that
gives users the possibility to write scripts on their mobile devices (in particular on the
Windows Phone). It is particularly simple, since it must allow one to develop
applications on mobile devices with limited screen size and input devices.
TouchDevelop scripts are created by the users on their smartphones and executed
within the TouchDevelop run time environment on the phone. These scripts can then
be shared with other users by uploading them to the TouchDevelop cloud
infrastructure. Because of the limited hardware resources of mobile devices, a cost
analysis of a TouchDevelop script could provide some useful information to optimize
its execution. In particular, we could attach cost information to the script and use this
information at runtime to decide whether the application should be executed locally on
the mobile device, or in the cloud.

The goal of this master thesis is to develop a cost analysis that correctly
overapproximates the cost of all loops in TouchDevelop scripts. We implement the
cost analysis in Sample, a powerful tool for static program analysis. This gives us the
possibility to implement the cost analysis relying on numerical analyses (based on the
Apron library) which already exist in Sample. We intend to use the result of the
numerical analysis to find entry-exit relations and initial values for the variables
appearing in a loop. Using this information, we can infer a system of cost relations.
We then use PUBS to solve this system. PUBS is a tool to automatically obtain closed
form upper bounds for cost relation systems. From PUBS we get an upper bound of
the cost of the loop, which is the result of the cost analysis.

In chapter 2 of this thesis, we introduce TouchDevelop, with a focus on collections
and control structures. In chapter 3, we formally define cost relations and cost relation
systems. Furthermore, we introduce the cost model that we will use throughout this
thesis. In chapter 4, we discuss the static analyzer Sample. In particular, we see what
an analysis is, and how a program is represented. In chapter 5 we sketch the main
contribution of this thesis by giving a step-by-step summary of our approach for
inferring the cost of loops. The next two chapters are then a detailed description of our
implementation of the approach. In chapter 6 we present a slightly modified version of
Sample’s TouchDevelop compiler on which our analysis relies. It mainly performs a
pre-processing step needed by the loop cost analysis, which we call augmenting a
control flow graph. In chapter 7, we present the core of the actual analysis. In
particular, we explain how we use the result of a numerical analysis to infer a cost
equation system which represents the cost of a loop. In chapter 8, we discuss the result
of running our analysis on a set of case studies. This nicely illustrates the possibilities
and the limits of our analysis. In chapter 9, we present the result of running our

9

analysis on a selection of real scripts from the TouchDevelop cloud. In chapter 10, we
discuss the experimental results that we obtained by applying the loop cost analysis on
a large number of scripts from the TouchDevelop cloud. In chapter 11, we present
some related work. In chapter 12 we conclude this thesis, and we sketch some possible
extensions of our work.

10

2 TouchDevelop
TouchDevelop (TD) [9] is a novel development environment for the Windows Phone
[16], which allows one to develop scripts directly on the smartphone. TouchDevelop
allows its users to develop Windows Phone applications which can access the data
(including sensor values) and the media on their phone. Furthermore, the applications
can easily access cloud services, including storage, computing, and social networks.
Most TouchDevelop scripts are rather small (typically less than 100 lines of code).

TouchDevelop scripts are developed on the Windows Phone and executed within the
TouchDevelop run time environment on the phone. The scripts can then be shared
with other users, by uploading them to the TouchDevelop cloud infrastructure [15].
The TouchDevelop cloud enables sharing of scripts, and it acts as a repository of all
scripts developed and published by users. A user can create a script by copying and
modifying an existing script from the TouchDevelop cloud. A script which is not such
a modified version of an existing script is called a root script.

The TouchDevelop programming language is a typed, structured language, built
around the idea of only using a smartphone’s touch screen as input device when
writing code. The language mixes imperative, object-oriented, and functional features.
The API offers a number of predefined classes (representing basic data types and data
structures, different kinds of media, and interfaces for the physical components of the
device). Using a concept called records [14], the programmer can also define own
tables and indexes (like in database systems) and create own objects (similar to other
object-oriented languages with garbage collection).

2.1 Collections in TouchDevelop
The TouchDevelop API offers access to several types of collections. In contrast to
other high level languages, the implementation of collections is completely hidden
from the user.

Some kinds of collections are mutable. This means that a script can create such a
collection, add elements to it, and remove elements from it. The API provides several
types of mutable collections, e.g. Number Collection, String Collection or Sprite Set.
Other kinds of collections are immutable. This means that the elements of the
collection (e.g., a list of songs on the user’s phone) can only be accessed, and it is not
possible to add or remove elements. The API provides several types of immutable
collections, e.g. Songs (which represents the collection of all songs on the user’s

11

phone), Pictures (all pictures on the phone) or Contact Collection (all address book
entries on the phone).

2.2 Control Structures in TouchDevelop

TouchDevelop is a structured programming language. As such a language, it offers
sequential composition, conditionals and three forms of loops as the only means to
manage the control flow. In the remainder of this section, condition denotes a boolean
expression, collection denotes a TouchDevelop collection (either mutable or
immutable), block, block1 and block2 denote a sequential composition of statements,
and expr denotes an arithmetic expression.

Conditional
A conditional in TouchDevelop has the usual form as follows:

if condition then block1 else block2

Loops
The three kinds of loops are the while loop, the foreach loop, and the for loop. The
most generic kind of loop is the while loop, which has the following form:

while condition do block

The foreach loop iterates over all elements of a collection which are part of the
collection when the execution of the loop starts. It has the following form, where x is a
variable name:

for each x in collection where condition do block

This statement is equivalent to:

 coll := collection.copy();
 index := 0;
 while index < coll->count do {
 x := coll.at(index);
 if condition then {
 block;
 }

 index := index + 1;
}

Note that a foreach loop operates on a copy of the collection. So adding to or
removing elements from the collection in the body of a foreach loop has no effect on

12

the copy of the collection over which the loop iterates, but effects the original
collection.

The for loop uses an index variable i incremented from zero to expr - 1. The index
variable is read-only, i.e., its value is increased by 1 after each loop iteration and can
not be changed in any other way. It has the following form:

for 0 ≤ i < expr do block

This statement is equivalent to:

 coll := collection;
 index := 0;
 while index < coll->count do {
 x := coll.at(index);
 if condition then {
 block;
 }

 index := index + 1;
}

13

3 Cost Relations and Cost Model
Evaluating cost relations which are part of a cost relation systems plays a central role
in this master’s thesis. This chapter formally defines these concepts, based on [1].
Furthermore, we show in this chapter how we model the cost of a program in this
thesis.

First, we need to introduce some basic definitions. In this chapter, we use a and b for
integer numbers, r for rational numbers, and n for natural numbers. We use v and w to
denote variables with an integer value. Given an expression exp, vars(exp) denotes the
set of variables occurring in exp. The notation

€

v refers to an ordered list of variables
v1, …, vn, for some n > 0. To keep things simple, in the following explanations we
sometimes interpret these lists as sets.

3.1 Cost Relations
First, let us define the concepts of a linear expression and a linear constraint:

DEFINITION: A linear expression is a expression which has the form a0 + a1v1 + … +
anvn for some n ≥ 0.

We call a term aivi in a linear expression a variable-coefficient-pair, and we call a0 the
constant of the linear expression.

DEFINITION: A linear constraint (or linear relation) has the form l1 op l2, where l1 and
l2 are linear expressions, and op is a relational operator, op ∈ {=, ≠, <, ≤, >, ≥}.

We use c to denote a linear constraint. Note that linear constraints with rational
coefficients can always be transformed to equivalent linear constraints with integer

coefficients, e.g.

€

1
3

x > y is equivalent to x > 3y. We use P and Q to denote sets of

linear constraints of the form {c1, …, cn}, which should be interpreted as the
conjunction c1 ∧ … ∧ cn.

Now we can introduce the notion of a cost expression:

14

DEFINITION: A cost expression cexp is recursively defined as follows:
• r
• nat(l)
• exp1 + exp2
• exp1 * exp2
• expr
• logn(exp)
• nexp
• max(S)
• exp – r

where r is a non-negative rational number, n is a natural number, l is a linear
expression, nat(a) = max(a, 0), exp, exp1 and exp2 are cost expressions, and S is a non-
empty set of cost expressions. Furthermore, for any assignment of the variables in
vars(cexp), cexp must evaluate to a non-negative rational number.

Cost expressions are used to describe the closed-form upper bounds for the cost of
loops, which we try to find in the scope of this thesis. Note that, by definition, they are
always evaluated to non-negative values. Now we are able to define a cost relation and
a cost relation system:

DEFINITION: A cost relation (or cost equation, respectively) is a guarded equation of

the form ⟨C(

€

v) = exp +

€

Di w i()
i=1

k

∑ , P⟩ with k ≥ 0, where C and all Di are symbols

representing a cost, all variables

€

v !

€

w i are distinct variables, exp is a cost expression,
and P is a set of linear constraints.

A cost relation ⟨C(

€

v) = exp +

€

Di w i()
i=1

k

∑ , P⟩ defines the cost of C(

€

v) to be exp plus

the sum of the cost of all Di(

€

w i). We call the linear constraints in P the guards of the

cost relation. They represent the conditions under which the equation can be
evaluated, as well as size constraints for the variables in the equation.

DEFINITION: A cost relation system (CRS) is an ordered list of cost relations.

As an example, consider method while (listing 3.1). It contains a single while loop at
program point 1. Listing 3.2 shows the cost relation system representing the cost of
the loop in method while. We will discuss in section 8.4 how the loop cost analysis

15

actually generates and solves the CRS. For now, we use this example only to show
how a cost relation system is represented in the remainder of this thesis. As one can
see in listing 3.2, we enumerate the cost equations in a cost relation, starting at 1, so
we can easily refer to them in the discussion. While our implementation internally
uses an elaborate system of cost symbols, in this written report we use the capital
letters A, B, etc. for them to keep things simple (these symbols are just names, so it
does not matter). Each cost relation consists of a left and a right part. The left part is
the actual equation, which is the definition of some cost. The right part lists the guards
of this cost relation, enclosed in curly brackets. In the example in listing 3.2, the first
cost relation has true as its only guard, so it can always be evaluated. The second cost
relation has 7 guards in total. All of them are by definition linear constraints.

action while(a: Number, b: Number) {
 $x := $a;
 $y := $b;
 $i := 1;
 while $i < $x + 2 * $y do { // program point 1
 $i := $i + 1;
 }
}

Listing 3.1. Code of method while.

1) A(c1, a, b) = B(c1, a, b, a, b, 1)

2) B(c1, x, y, a, b, i) =
 nat(c1) + B(c1, x’, y’, a, b, i’)

{true}

{x’ = x, y’ = y, i’ = i + 1, x ≥ a,
y ≥ b, i ≥ 1, i < 2y + x}

Listing 3.2. Example of a cost relation system (cost of loop 1 in method while).

3.2 PUBS
PUBS (Practical Upper Bounds Solver) is a tool to automatically obtain closed form
upper bounds for cost relation systems. It is an implementation of the approach for
finding closed form upper bounds in static cost analysis presented in [1], which is
summarized in the Related Work section of this thesis.

In the loop cost analysis implemented as the central contribution of this thesis, for
each loop in a TouchDevelop method we compose a CRS which represents the loop,
and then we use PUBS to solve this system. By passing a cost relation system which
captures correctly the semantics of some loop to PUBS, we will get back from PUBS a
cost expression that is a upper bound for the cost of the loop.

16

In the remainder of this thesis, by evaluating a CRS S we mean evaluating the first
cost relation in S (with respect to the cost relations in S). This is exactly what PUBS
does if it gets as input a CRS, but no further specification about which cost relation to
evaluate.

3.3 Cost of a Control Structure
In this thesis, we use program points to refer to control structures. The program point
of a statement is a pair (r, c) of integers, where r is the row number and c is the
column number of the position of this statement in the source code file. For better
readability, we do not use this definition in the examples in this written report. Instead,
we explicitly mark and name program points in the code listings by adding comments
of the form // program point k (for some positive integer k). In this section, we
use p and q to denote program points. By definition, at each program point in the code
at most one control structure can occur, so each control structure can uniquely be
identified by its program point. For simplicity, we write control structure p (loop p,
conditional p) to refer to the control structure at program point p.

A cost relation captures the cost of a program – or, in the case of this thesis, more
specifically the cost of a control structure – with respect to a given cost model. In this
thesis we do not use a concrete way to model costs, such as a cost model which takes
into account the actual cost (e.g., in terms of energy consumption) of executing a
certain statement. We simply say that the cost of a block of statements is the sum of
the costs of the statements in this block.

In this section we present a way to define the cost of a control structure in terms of
cost parameters. A cost parameter is a symbolic expression that captures the cost of a
set of statements. We use the following cost parameters:

• cp is the cumulative cost of all the statements in loop p which are not a control
structure themselves.

• tp is the cumulative cost of all the statements in the then-branch of conditional
p which are not a control structure themselves.

• fp is the cumulative cost of all the statements in the else-branch of conditional
p which are not a control structure themselves.

Furthermore, we need to introduce the following definitions:

• Cost(p) is the cost of the control structure at program point p.
• For loops, np is the number of times loop p is iterated. For conditionals, np = 1.

17

• inner(p) denotes a set of program points. It is defined to be inner(p) = {q |
control structure q is a statement directly contained in control structure p}.
Intuitively, this describes the inner control structures of control structure p.

Now, we can formally define the cost of a control structure:

DEFINITION: Assume that we have a control structure at program point p. Then the
cost of this control structure is

Cost(p) = np(cp +

€

Cost(q)
q ∈ inner(p)
∑)

As an example, consider again the cost relation system in listing 3.2. When we use
PUBS to solve this cost relation system, we get nat(a+2*b-1)*nat(c1) as an upper
bound of the cost of loop 1 in method while. We can see that this cost expression
actually conforms to the definition above, where nat(a+2*b-1) corresponds to np,
nat(c1) corresponds to cp, and 0 corresponds to the sum in the definition above, as loop
1 in method while does not have any inner control structures.

18

4 Sample
During the last four years, the static analyzer Sample (Static Analyzer of Multiple
Programming LanguagEs) [6, 7] has been developed at the Chair of Programming
Methodology. Sample is based on the abstract interpretation theory [4, 5]. This
analyzer has been already applied to a wide range of properties and to different
programming languages (Scala and Java bytecode, as well as TouchDevelop). The
goal of this master thesis is to apply Sample to infer an overapproximation of the cost
of loops in TouchDevelop programs relying on PUBS.

4.1 Analyses in Sample
An analysis in Sample is the composition of a heap analysis and a value analysis.
Sample can be used with various heap abstractions and value domains. A state of an
analysis is a pair consisting of a state of the heap domain and a state of the value
domain. Sample has already been applied to various value analyses (e.g. strings [3],
types [6], access permissions [8], data leaking [12]). It supports some common
numerical analyses through Apron [10], which is a library dedicated to the static
analysis of the numerical variables of a program. Additionally, some heap analyses
have been already developed in Sample [7].

In this thesis, we run a numerical analysis (TouchDevelop analysis with Apron) on the
input program. We then use the result of this analysis to overapproximate the costs of
the loops in the input program. We use Apron’s linear equalities (based on the work
by Karr [11]) as the value domain, and we use a program point based heap abstraction.

4.2 Control Flow Graph (CFG)
Sample uses control flow graphs to represent methods. A control flow graph (CFG) of
a method m is a graph representation of all paths through m that might be traversed
when m is executed. In Sample, the CFG of some method m is represented as a
directed, weighted graph. Each node of this graph is a (possibly empty) ordered list of
statements (instructions and boolean expressions), representing the concatenation of
statements. There is an edge from node n1 to node n2 if (according to the semantics of
m) the first statement in n2 may be executed directly after the last statement in n1. We
call an edge from node n to some other node an out-edge of n, and an edge from some
other node to n an in-edge of n. If a node has one out-edge, this edge does not have a
weight. If a node has two out-edges, then one of them has the label true as a weight
and the other one has the label false as a weight. We will see in the next section that

19

such nodes always are the initial point of some control structure, and the weights of
the two out-edges are needed to clearly define the control flow.

4.3 From TouchDevelop Control Structures to CFGs

Figure 4.1. A conditional in a CFG.

We can often identify typical patterns which represent control structures in a CFG. In
figure 4.1 we see how a conditional looks like in a CFG. We have a node with one in-
edge and two out-edges, one labeled true and the other labeled false. We call this first
node the initial node of the conditional. It contains exactly one statement, which is the
condition of the conditional. We then have two edge-disjoint paths, each containing
one or more nodes. One of them starts with the edge labeled true. It represents the
execution of the then-branch of the conditional. The other path starts with the edge
labeled false. It represents the execution of the else-branch of the conditional. Finally,
the two paths join at a node with two in-edges and one out-edge, which we call the
final node of the conditional. Each of the two paths of the conditional may contain
inner control structures, and thus be split up in sub-paths.

20

Figure 4.2. A loop in a CFG.

In a control flow graph, the information about the specific type of a loop (namely,
while, for, and foreach) is abstracted away, since all loops are compiled to CFG
structures. Consider for instance figure 4.2. We have a node with two in-edges and
two out-edges, one labeled true and the other labeled false. We call this node the
initial node of the loop. At the same time, it is the final node of the loop. It contains
exactly one statement, which is the condition of the loop. Starting with the out-edge
labeled true, there is a cyclic path both starting and ending at the initial node of the
loop. This path, which represents one execution of the loop body, may contain inner
control structures, and thus be split up in sub-paths. Basically, the structure of a loop
in a CFG corresponds directly to a while loop as it is presented in section 2.2 of this
thesis. It is easy to see how a while loop is converted into a loop in a CFG: The loop
condition becomes the (single) statement in the initial node of the loop in the CFG,
and the list of statements in the body of the while loop is converted into the cyclic path
of nodes starting and ending at the initial node of the loop. For a foreach loop, we can
see the conversion in the following way: First, the foreach loop is converted into an
equivalent while loop as described by the equivalence relation given in section 2.2.
Then, the resulting while loop is converted into a loop of the CFG as described above.
The same holds, analogously, for for loops.

4.4 Control Flow Graph Execution (CFGE)
Given an analysis, a value domain, a heap domain, an input method m, and an initial
state defining the context in which m is called, Sample runs the analysis on the CFG of
m, which we denote by cfg here. The result of this process is also a directed, weighted
graph cfge which we call a control flow graph execution (CFGE). cfge and cfg are
isomorphic, i.e., they have the same structure where each node n in cfg has a
corresponding node n’ in cfge. If there is an edge from n to m with weight w (which is
a label true, a label false, or no label), then there is an edge from n’ to m’ with weight
w in cfge. Remember that each node in a CFG of Sample is an ordered list of

21

statements. If a node n in cfg contains x statements, then its corresponding node n’ in
cfge is an ordered list of x + 1 states, where the i-th state in this list is the result that
was inferred by the analysis for the program point in between the (i-1)-th and the i-th
statement in n1.

1 To be precise, this only holds for 1 < i < x + 1. The first state in n’ is the result that was inferred by the
analysis for the program point directly before the first statement in n, and the (x+1)-th state is the result
that was inferred by the analysis for the program point directly after the x-th statement in n .

22

5 Approach
To overapproximate the cost of TouchDevelop loops, we use the classical approach to
static cost analysis. It consists of two parts. First, in Sample we run a numerical
analysis on the input program. Second, we use the result of the numerical analysis to
infer a cost relation system for each loop in the input program. The first cost relation
in this system represents an overapproximation for the cost of the loop. We then pass
this cost relation system to PUBS for solving it. In this way, we try to get a closed-
form representation of the cost defined by the cost relation, which is an upper bound
for the cost of the loop we are looking at.

5.1 Step-by-Step Description
Given a method m as input, we perform the following steps to create a cost relation
system for each loop in m:

1) First, we compile m to generate the control flow graph representing m.

2) We then slightly modify the result, which we call augmenting the control flow
graph. Let’s denote the resulting augmented control flow graph by cfg.

3) Then, we execute a numerical analysis (which uses the Apron library) on cfg,
which gives us cfge.

4) Then, using cfge, we retrieve all the relevant information to infer the cost

relation systems:

o First, we iterate over the nodes of cfg. For each node, we check whether
it is the initial node of a loop .

o For each loop that we found:

 We retrieve the loop condition, and store it in a tree-like data
structure which can later be used by the loop cost analysis.

 For each variable that appears in the loop (but not for
arguments, as we assume them to be constant in the scope of the
method), we try to find out how its value changes in each
iteration of the loop body. In particular we try to detect if the
variable value always increases, always decreases, or stays
constant.

23

 For each variable that appears in the loop, we try to find its
initial value, i.e., its value before the loop body is executed the
first time.

o For each conditional that we found inside a loop, we retrieve its
condition. We store this condition and its negation in a tree-like data
structure which can later be used by the loop cost analysis.

o We try to find out about the topology of cfg, i.e., which control
structure is contained in which other control structure.

5) For each loop in m, we now try to compute an upper bound of its cost. We do this
by performing the following steps:

o We compose a cost relation system that represents the loop, using the
information we gathered at step 4).

o We pass this cost relation system to PUBS. We use the answer that we
get back from PUBS as the result of our analysis of this loop.

5.2 Implementation
In the scope of this thesis, two additions to Sample were implemented:

• The TouchDevelop cost analysis compiler (chapter 6), which augments the
control flow graph produced by the TouchDevelop compiler to infer useful
cost relations.

• The TouchDevelop loop cost analysis (chapter 7), which must be used in
combination with the TouchDevelop cost analysis compiler (else, the analysis
produces an error). It does the same as the existing TouchDevelop analysis
with APRON, and additionally tries to find an upper bound for the cost of all
loops in the methods under examination.

Both the analysis and the compiler can be selected in the GUI of Sample. When
running the TouchDevelop loop cost analysis, the Loop Cost or the Loop Cost with
Show Graph property must be selected such that the loop costs are actually calculated
and displayed.

24

6 TouchDevelop Cost Analysis Compiler
The loop cost analysis uses a slightly modified version of Sample’s TouchDevelop
compiler. It mainly performs a pre-processing step needed by the loop cost analysis,
which we call augmenting a control flow graph.

6.1 Augmenting a Control Flow Graph
The loop cost analysis does not operate on a control flow graph as it is normally
created by Sample, but on a slightly modified version of such a graph, which we call
an augmented control flow graph. Creating an Augmented control flow graph out of a
control flow graph cfg (which we call augmenting cfg) means performing the
following steps for each loop in cfg:

1) Find all variables that appear in the loop. We denote the set of these variables
by V.

2) For each variable v ∈ V, add a new assignment old_v := v at the beginning of

the loop, directly after the loop condition and before any other existing
statement of the loop body. This adds a variable old_v to cfg, which does not
exist in the original control flow graph. We call such a variable a old-variable.
As old_v is not affected by any other statement in the loop, after an execution
of the loop body its value equals v’s value before this particular execution of
the loop body.

This last point gives us a means to argue about how the value of each variable v
changes when the body of a loop is executed once. Because the loop cost analysis
needs to know entry-exit relations on the variables involved in the loop, we actually
use an augmented CFG rather than an unmodified CFG as input for the analysis.

action sumOfSums(a: Number) returns r: Number {
 $x := 1;
 $i := 1;
 ; // program point 1
 while ($x < $a) do { // program point 2
 $i := $i + 1;
 $x := $x + $i;
 ; // program point 3
 }
 $r := $i;

Listing 6.1. Code of method sumOfSums.

25

Figure 6.1. a) the CFG of method sumOfSums; b) the augmented CFG of method sumOfSums.

As an example, consider method sumOfSums (Listing 6.1; we will discuss the result of
analyzing this method in section 8.10). In figure 6.1 a) we see the CFG that Sample
produces when it compiles sumOfSums using its TouchDevelop compiler. It contains a
simple loop with the loop condition x < a, where a is an argument of the method.
When we augment it, we see that we have a single loop at program point 1, so we have
to perform steps 1) and 2) for this loop. We first determine the set of all variables
appearing in the loop, which turns out to be V = {i, x}. For each variable in V, we add
an assignment to the loop, which gives us the assignments old_i = i and old_x :=
x. Note that we do not get an assignment old_r := r, as r is a variable of the method,
but does not appear inside the loop. According to the description above, we add the
two new statements directly after the loop condition and before any other existing
statement in the loop body, i.e., directly before i := i + 1. The resulting augmented
CFG is shown in figure 6.1 b). Note that our implementation always adds the new
assignments to the node containing the first statement of the loop body, but they could
be added to the node with the loop condition as well, or even to a newly created node.
This does not matter, as long as the new assignments are placed at the correct position
relative to the existing statements.

26

7 TouchDevelop Loop Cost Analysis
In this chapter we present the implementation of the actual analysis. In particular, we
explain how it uses the result of a numerical analysis to infer a cost equation system
which represents the cost of a loop. Let us assume that we have a method m as the
input for our analysis. cfg denotes the augmented CFG representing m, and the control
flow graph execution cfge is the result of running a numerical analysis (using Apron’s
linear equalities) on cfg.

7.1 Finding the Control Structures
To find all control structures, we iterate over the nodes of cfg. For each node, we
check whether it is the initial node of a loop or a conditional. Remember that the
initial node of a control structure is the node that contains the condition of the loop or
conditional, respectively.

We use the program point where the control structure begins (syntactically) in the
source code as an identifier for that control structure. As no two control structures can
start at the same program point, these identifiers are guaranteed to be unique.

As soon as the analysis knows which control structures there are in cfg, we can also
find out about the topology of the input method, i.e., which control structure is
contained in which other control structure. For control structures in conditionals, we
additionally distinguish between being contained in the if-branch and being contained
in the else-branch.

Both for finding the control structures and finding out about their nesting, our
implementation performs a breadth-first search [13] on the control flow graph cfg.

7.2 Loop Condition
Our loop cost analysis only works if the loop under examination has a loop condition
which fulfills certain properties. We call such a loop condition a valid condition.

27

DEFINITION: A valid condition is one of:

• true (represented as the linear relation 1 = 1)
• false (represented as the linear relation 0 = 1)
• a linear relation expr1 op expr2, where expr1 and expr2 are linear arithmetic

expressions, and op is a relational operator, op ∈ {=, ≠, <, ≤, >, ≥}
• ¬ c, the negation of a valid condition c
• c1 ∧ c2, the conjunction of two valid conditions c1 and c2

• c1 ∨ c2, the disjunction of two valid conditions c1 and c2

Note that this recursive definition allows us to have nested loop conditions, such as (i
> 1 ∧ j > 10) ∨ ¬ (k < i). We call a condition which consists of one or more
conjunctions, and/or disjunctions, a composite condition. PUBS does not allow to have
a composite as a guard of a cost equation (only linear relations are allowed). However,
we found a way to still be able to handle them, namely by splitting them up in multiple
cost relations (see section 7.6).

The loop cost analysis retrieves the loop condition from the semantics of the method
we are looking at. If it is not a valid condition, the analysis can not compute the cost of
the loop, because in this case the cost of the loop can not be represented as a cost
relation system that can be handled by PUBS. If it is a valid condition, the loop
condition is stored in a tree-like data structure. Each operation of the condition is a
node of the tree, where the outermost operation is the root of the tree. Conjunctions
and disjunctions are intermediate nodes of the tree, while the basic linear relations are
the leaves of the tree.

Note that no node of the tree represents a negation. There is no need for this, as every
valid condition can be converted to an equivalent boolean expression with no explicit
negation in the following way (and the analysis exactly does this): First, we repeatedly
apply the laws of DeMorgan ¬ (c1 ∧ c2) ≡ (¬ c1) ∨ (¬ c2) and ¬ (c1 ∨ c2) ≡ (¬ c1) ∧

(¬ c2) on the conjunctions and disjunctions, respectively, starting with the outermost
ones and proceeding inward. This gives us an equivalent boolean expression which
only contains negations of basic linear relations, but no negations of conjunctions or
disjunctions. Then, we apply the arithmetic rules ¬ (a = b) ≡ (a ≠ b), ¬ (a ≠ b) ≡ (a =

b), ¬ (a < b) ≡ (a ≥ b), ¬ (a ≤ b) ≡ (a > b), ¬ (a > b) ≡ (a ≤ b) and ¬ (a ≥ b) ≡ (a < b)

to get rid of the explicit negations. The absence of explicit negations in our

28

representation of the loop condition is helpful later on when we compose the cost
relation system.

As an example, consider again method sumOfSums which we introduced in chapter 6.
Here, we have x < a as the loop condition, which is the only statement in the initial
node of the CFG (figure 6.1 b)). This is clearly a valid condition, as it is a linear
relation.

7.3 Variable Update Rules
We call how the value of a variable v changes in one iteration of a loop the variable
update rule for v. For example, the update rule of the iteration variable i in a
TouchDevelop for loop is i’ = i + 1, as i is increased by 1 in each execution of the loop
body. Here, i denotes the value of the iteration variable before the execution of the
loop body, and i’ refers to the value of the iteration variable after the execution of the
loop body.

The loop variables of a loop l, written as LV(l) is the set of the variables that have an
influence on the number of times l is iterated. In the step discussed here, the loop cost
analysis iteratively finds LV(l) by performing the following algorithm:

1) Add all variables that appear in the loop condition to an initially empty set S.

2) Try to find an update rule for every variable in S for which we have not tried
this before.

3) Add all variables that appear in the update rules found in the previous step to S.
If, by doing this, S grows (i.e., we found at least one new variable), repeat steps
2) and 3).

4) LV(l) := S

Our analysis can only find variable update rules that have a certain form (see below).
Remember that the loop cost analysis uses the control flow graph execution cfge as
input, i.e., the result of executing a numerical analysis on cfg. In order to find the
variable update rules, our analysis uses this result. It looks at all linear relations that
the numerical analysis infers at the last statement in the last node of the loop. Now, the
old-variables which were added when the CFG was augmented become helpful.
Thanks to them, the numerical analysis is potentially able to infer relations between
the value of a variable v after the loop body was executed and its value before the loop
body was executed (represented by old_v), and our analysis gets these relations as part
of the set of linear constraints it gets from the numerical analysis.

29

To find the update rule for a variable i, the loop cost analysis performs an algorithm
consisting of two runs, where the second run is only performed if the first one was not
successful2:

1) In the first run, the analysis considers only the linear constraints coming
from the numerical analysis that are fully described by v and old_v, i.e.,
that have a coefficient of zero for all other variables. It looks for a
constraint of the form v = a*old_v + b, where a and b are rational constants,
with a ≠ 0. In case of success, it translates the found constraint to the
update rule v’ = a*v + b.

2) In the second run, the analysis considers all linear constraints coming from
the numerical analysis. It looks for a constraint of the form v = expr, where
expr is a linear expression. In case of success, it translates the found
constraint to the update rule v’ = expr*, where expr* is the result of
replacing all occurrences of old_v by v in expr.

As an example, consider again method sumOfSums. The program point after the last
statement of the loop body is program point 3. For this program point, we get the
following constraint from the numerical analysis:

i = old_i + 1
x = old_x + i

By performing the algorithm described above, the analysis finds variable update rules
for both loop variables. From i = old_i + 1 it derives the update rule i’ = i + 1 in the
first run of the algorithm. From x = old_x + i it derives the update rule x’ = x + i, but
only in the second run of the algorithm, as the updated value of x depends on the value
of some other loop variable, namely i.

Using the detected variable update rules, the loop cost analysis then also tries to find
out for each loop variable if its value increases or decreases, according to the
following definitions3:

2 Note that in Sample v refers to the new variable value (and old_v refers to the old variable value),
while in the update rule (which is used as an input for PUBS) v refers to the old variable value (and v’
refers to the new variable value). This is just a notational matter due to implementation reasons, and
does not cause any problems.

3 We are aware that according to these definitions it may become impossible to determine whether two
or more variables increase (or decrease, respectively) due to cyclic dependencies in their update rules.
To prevent non-termination, our implementation tries to detect increasing and decreasing variables in a
loop. As soon as in a loop iteration no further variable could be detected to be increasing or decreasing,
the loop terminates.

30

• The value of a variable v increases if it has an update rule of the form v’ =

expr, with expr = (

€

coeffi
i=1

n

∑ *vi) + c, where the vi are variables other than v,

the coeffi are their coefficients (which must be rational numbers), and c is a
constant (which must be rational as well), such that the values of all variable-
coefficient-pairs in expr increase and c is non-negative.

• Analogously, the value of a variable v decreases if it has an update rule of the

form v’ = expr, with expr = (

€

coeffi
i=1

n

∑ *vi) + c, where the vi are variables other

than v, the coeffi are their coefficients (which must be rational numbers), and c
is a constant (which must be rational as well), such that the values of all
variable-coefficient-pairs in expr decrease and c is non-positive.

• The value of a variable-coefficient-pair coeffi*vi increases if the value of vi
increases and coeffi is non-negative, or if the value of vi decreases and coeffi is
non-positive. Analogously, the value of a variable-coefficient-pair coeffi*vi
decreases if the value of vi decreases and coeffi is non-negative, or if the value
of vi increases and coeffi is non-positive.

Note that our definition of an increasing or decreasing variable value also includes the
case where the variable value is constant. When we know that in a loop the value of a
variable v increases (or decreases, respectively), we can – together with our
knowledge about the initial value of v – derive loop invariants of the form v ≤ expr or
v ≥ expr or v = expr, respectively, which can then be added as additional guards to the
cost relation system. This is described in the next section.

For our example method sumOfSums, the analysis first detects that the value of i
increases. Using this, it then detects that the value of x increases as well (because the
value of i increases).

31

7.4 Initial Variable Values

For each loop variable, the loop cost analysis tries to find the initial value, i.e., its
value before the body of the loop is executed for the first time. This works like the
detection of the variable update rules described in the previous section, i.e., the
analysis uses the result from the numerical analysis here as well. It looks at all linear
constraints that the numerical analysis infers at the program point just before the loop,
i.e., after the last statement in the node before the loop.

When trying to find the initial value of a variable v, the analysis looks for a linear
constraint of the form v = expr, where expr is a linear expression. In case of success,
the information about the initial value of v is stored in memory, and will be used when
the cost relation system is created (section 7.6).

When the analysis could find the initial value of a variable v with respect to a loop l,
and if it could furthermore detect that in l the value of v increases, decreases, or stays
constant (section 7.3), then it can derive a loop invariant of the form v ≤ vinit or v ≥ vinit
or v = vinit, respectively, where vinit denotes the initial value of v. This linear relation
can then be added as an additional guard to the cost relation system that represents the
cost of l (see section 7.6).

As an example, consider again method sumOfSums. The program point just before the
loop is program point 1. For this program point, we get the following constraint from
the numerical analysis:

i = 1
x = 1

This directly gives us the initial values for both loop variables. Combining this with
the information about increasing/decreasing variable values from the previous section
(remember that we found out that both loop variables increase), the analysis is able to
infer the linear relations i ≥ 1 and x ≥ 1 which can be added as additional guards to the
cost relation system.

32

7.5 Conditional Condition
In section 7.2 we saw that the loop cost analysis can handle loops which have a valid
condition as their condition. The same holds for conditionals. A conditional’s
condition is retrieved in exactly the same way (using the result of the numerical
analysis) as we saw it for loop conditions in section 7.2.

As we will also have to include the semantics of the else-branch in the cost relation
system, we additionally store a tree-like structure representing the negation of the
condition in memory at this point. This is not absolutely necessary, as we can always
retrieve the negation of a boolean expression from the expression itself. However, it
will be convenient to have the negated condition available in this form later on when
we compose the cost relation system (section 7.6).

7.6 Composing the Cost Relation System
At this point the loop cost analysis has gathered all the information needed to create a
cost relation system, whose first equation represents the cost of the loop under
examination. The analysis can then pass this system to PUBS. We can be sure that this
cost relation system correctly overapproximates the cost of the loop under
examination, because all the constraints that we use to generate the cost relation
system are inferred by a sound abstract numerical domain. Therefore, they are a sound
overapproximation of the concrete behavior of the input program. We use four
examples to illustrate how the resulting cost relation system looks like. First, we look
at the base case of a loop where we have no inner control structures, and no composite
condition (i.e., the condition is simply a linear relation here). Then, we analogously
consider the base case for a conditional. Next, we explain how the cost relation system
must be adapted when we have inner control structures. Finally, we show how the cost
relation system is composed if the loop or conditional, respectively, has a composite
condition.

Base case (loop)
Here, we use method while (listing 7.1) to illustrate how the loop cost analysis
composes the corresponding cost relation system. The method contains a simple while
loop which is iterated as long as the counter variable i, which is initially 1, is smaller
than x + 2y, which has a constant value defined by two arguments of the method, a
and b.

33

action while(a: Number, b: Number) {
 $x := $a;
 $y := $b;
 $i := 1;
 while $i < $x + 2 * $y do { // program point 1
 $i := $i + 1;
 }
}

1) A(c1, a, b) = B(c1, a, b, a, b, 1)

2) B(c1, x, y, a, b, i) =
 nat(c1) + B(c1, x’, y’, a, b, i’)

{true}

{x’ = x, y’ = y, i’ = i + 1, x ≥ a,
y ≥ b, i ≥ 1, i < 2y + x}

Listing 7.1. Code of method while and CRS of the loop at program point 1.

The cost relation system composed by the loop cost analysis basically consists of two
cost equations. Equation 2) represents the cost of the loop in terms of all loop
variables, method arguments, and parameters of the cost model. But we do not want to
get as a result a cost expression in terms of variables which appear only locally inside
the method. This is why we add equation 1) to the system as the first cost equation. It
gives us the cost of the loop in terms of the method arguments and cost model
parameters only. This is exactly what we want, and because the answer we get from
PUBS is always the cost defined by the first equation in the cost relation system, we
list it as the first equation. As we can see in the example, equation 1) refers to equation
2), in which all loop variables are instantiated by the initial values of the
corresponding variables, which we have retrieved before.

Equation 2) is the central part of the cost relation system. An evaluation of it
represents the effects of one execution of the loop body. In our example, the first
evaluation of B (which is its outermost evaluation, as the equation contains itself
recursively) corresponds to executing the loop in a state with x = a, y = b and i =
1. The next evaluation of B then corresponds to executing the loop in a state with x =
a, y = b and i = 2, and so on. The cost expression in equation 2) consists of two
parts. The first part, which is nat(c1) in our example, is the cost of the current
iteration of the loop. The second part, which is B(c1, x’, y’, a, b, i’) in our
example, is the cost of all remaining iterations of the loop after the current one. As we
can see in the example, this second part occurs as a recursive evaluation of B in the
cost relation system, in which each loop variable v is replaced by a variable v’. Here, v
represents the value of the variable at the beginning of the current iteration of the loop,
and v’ represents the value of the variable at the beginning of the next iteration of the
loop. This change of the variable value between two consecutive iterations of the loop
is exactly what we already know as the update rule of a variable. Our analysis adds the
variable update rules as guards to equation 2), and thus ensures that the primed

34

variables (x’, y’ and i’ in the example) are clearly and correctly defined whenever B is
evaluated. But the cost relation system is not complete at this point. We also need to
add the loop condition, which we also retrieved earlier on, to the cost relation system.
As said before, in this section we only look at the case where the loop condition is a
linear relation, e.g. i < x + 2*y in our example. As long as this holds, we can simply
add the loop condition as an additional guard to cost equation 2). This then completes
the cost relation system.

Base case (conditional)
In this section we use method if (listing 7.2) to illustrate how the loop cost analysis
composes a cost relation system from a conditional. The method simply contains a
conditional. The then-branch of the conditional is executed if a, which is an argument
of the method, is non-negative. As a consequence, the else-branch is executed if a is
negative.

action if(a: Number) returns r: Number {
 if ($a >= 0) then { // program point 1
 $r := 1;
 } else {
 $r := -1;
 }
}

1) A(t1, f1, a) = B(t1, f1, a) + C(t1, f1, a)

2) B(t1, f1, a) = nat(t1)

3) C(t1, f1, a) = nat(f1)

{true}

{a ≥ 0}

{a < 0}

Listing 7.2. Code of method if and CRS of the conditional at program point 1.

In the case of conditionals, the cost relation system composed by the loop cost analysis
basically consists of three cost relations (more if we have a composite loop condition,
or if we have inner data structures). We get the cost of the conditional by evaluating
equation 1). As we can see in the example, this cost is simply defined as the sum of
the costs defined by equation 2) and equation 3), respectively. Equation 2) represents
the cost of executing the then-branch of the conditional, while equation 3) represents
the cost of executing the else-branch. The cost expression that we get by evaluating
equation 2) is simply an expression in terms of the parameters of the cost model we
use. As executing a conditional involves no repetitions, there is no recursive
evaluation of B in the cost expression, as we had it before for the loop case. The same
holds analogously for equation 3). In order to complete the cost relation system, all we

35

need to do is to add the conditional’s condition as a guard to equation 2), and its
negation as a guard to equation 3).

Nested control structures

Here, we use method nested (listing 7.3) to illustrate how the cost analysis composes
the CRS when we have a control structure which contains another control structure.
The method contains two nested for loops. The inner loop is iterated as long as the
counter variable j, which is initially 0, is smaller than b, which is an argument of the
method. The outer loop is iterated as long as the counter variable i, which is initially 0,
is smaller than a, which is also an argument of the method.

action nested(a: Number, b: Number) returns r: Number {
 $r := 0;
 for 0 ≤ i < $a do { // program point 1
 for 0 ≤ j < $b do { // program point 2
 $r := $r + 1;
 }
 }
}

1) A(c1, c2, a, b) = B(c1, c2, 0, b, a, a, b)

2) B(c1, c2, j, j_bound, a, i_bound, i, b)
 = nat(c1) + B(c1, c2, j’, j_bound’, a,
 i_bound’, i’, b) + C(c2, b)

3) C(c2, b) = D(c5, 0, b, b)

4) D(c2, j, j_bound, i, b)
 = nat(c2) + M1(c2, j’, j_bound’, b)

{true}

{i’ = i + 1, i_bound’ = i_bound,
i ≥ 0, i_bound = a, i < i_bound}

{true}

{j’ = j + 1, j_bound’ = j_bound,
j ≥ 0, j_bound = b, j < j_bound}

Listing 7.3. Code of method nested and CRS of the loop at program point 1 (the “outer” loop). Note that
the CRS of the loop at program point 2 (the “inner” loop) would simply consist of cost relations 3 and 4.

Including information about nested control structures in the cost relation system is
simple and straightforward. We can compose a cost relation system for the cost of the
inner control structure (e.g., the inner loop in the example here) as described above.
Then, we simply add the cost relations of this system to the cost relation system for the
outer control structure. In the example, equations 3) and 4) in the cost relation system
for the outer loop are actually the two cost relations defining the cost of the inner loop.
We know that at each iteration of the outer loop, the inner control structure is executed
once. So, all we need to do is adding the cost of the inner control structure (which is

36

C(c2, b) in our example) to the cost expression in equation 2). If the outer control
structure is a conditional, we do it analogously.

Composite conditions

When we have a loop with a condition that contains one or more conjunctions and/or
disjunctions, which we call a composite condition, the loop cost analysis must ensure
that this composite condition is correctly represented in the cost relation system it
generates. Remember that in our implementation a condition is stored as a tree-like
structure, where each operation of the condition is a node of the tree, and the
outermost operation is the root of the tree. Conjunctions and disjunctions are
intermediate nodes of the tree, while the basic linear relations are the leaves of the
tree. When composing the cost relation system, our analysis creates up to two cost
relations for each node in this tree.

action compositeCondition() returns r: Number {
 $i := 0;
 $j := 0;
 while ($i < 3) or ($j ≥ 5 and $j < 20) do { // program point 1
 $i := $i + 1;
 $j := $j + 2;
 $r := $r + $i + $j;
 }
}

1) A(c1) = B(c1, 0, 0)

2) B(c1, i, j) = C(c1, i, j)

3) B(c1, i, j) = D(c1, i, j)

4) C(c1, i, j) = nat(c1) + B(c1, i’, j’)

5) D(c1, i, j) = E(c1, i, j)

6) E(c1, i, j) = F(c1, i, j)

7) F(c1, i, j) = nat(c1) + B(c1, i’, j’)

{true}

{true}

{true}

{i’ = i + 1, j’ = j + 2, i ≥ 0, j ≥ 0,
i < 3}

{true}

{j ≥ 5}

{i’ = i + 1, j’ = j + 2, i ≥ 0, j ≥ 0,
j < 20}

Listing 7.4. Code of method compositeCondition and CRS of the loop at program point 1.

We use method compositeCondition (listing 7.4) to illustrate how this is exactly done.
The loop in compositeCondition has a condition which is a disjunction, where the left
operand is a linear relation and the right operand is the conjunction of two linear
relations.

37

• Equation 1) is exactly the same as before: It is used to specify the initial values
of the loop variables. The outermost operation in our condition is the
disjunction.

• Equations 2) and 3) represent this disjunction. Notice that they both define B.
In this way, they capture the semantics of the disjunction: The disjunction
evaluates to true if either of its operands evaluates to true. Analogously, when
calculating the cost of the loop that has this disjunction as its condition, PUBS
can use either of the two definitions for it, each representing one of the
operands.

• Equation 4) represents the left operand of the disjunction, which is the linear
relation $i < 3. As this equation represents a basic linear relation, it has the
same form as Equation 2) in the base case. It has a cost expression consisting
of two parts (the cost of the current loop iteration, and the sum of the cost of all
future loop iterations), as we have seen it before. As in equation 2) of the base
case, the guards of the equation are the variable update rules, and the
information about the lower bounds of i and j. Additionally, we add the part of
the condition that we are currently looking at, namely the linear relation $i <
3, as a guard.

• Equation 5) represents the conjunction that we have as an inner operation in
our example condition. Notice that, compared to the disjunction case discussed
before, we do not have two definitions of D. Instead, we have some kind of
sequential evaluation of cost relations here: D is defined by E, which in turn is
defined by F, so in order for D to have a non-zero value, all the guards in
equations 6) and 7) must evaluate to true. This fully reflects the semantics of
the conjunction: A conjunction evaluates to true exactly if all its operands
evaluate to true.

• Equations 6) and 7) represent the operands of the conjunction, namely the
linear relations j ≥ 5 and j < 20. Equation 6) simply checks the guard j ≥
5. Finally, Equation 7) has the same form as Equation 4) in this example (or
Equation 2 in the base case, respectively). The guards of the equation are the
variable update rules, and the information about the lower bounds of i and j.
Additionally, we use the part of the condition that we are currently looking at,
namely $j < 20, as a guard.

38

8 Case Studies (Constructed Scripts)

In this chapter, we present the result of the loop cost analysis for some input scripts we
wrote ourselves, and which we used as test cases during the development of our
implementation. The results nicely illustrate the capabilities and the limits of the loop
cost analysis.

8.1 Simple for Loop
Method sum (listing 8.1) calculates the sum of the numbers 0 to a-1, where a is given
as an argument of the method. To do so, it uses a simple for loop. The return value r
does not appear in the loop condition, nor does it influence any variables which do
(namely i), so it does not have an influence on the cost of the loop. It is included in the
example only for illustrative purposes.
The loop condition is simply i < a, which is obviously a linear relation. As a is an
argument (having a non-modifiable value) and the update rules i’ = i + 1 and
i_bound’ = i_bound (which are linear as well) can be found by the loop cost
analysis, the analysis is able to find nat(a)*nat(c1) as an upper bound for the loop cost,
which is correct (and, in this simple case, also precise).

Note that equation 2) of the cost relation system must contain some information about
the lower bound of i (namely the guard i ≥ 0). Without it, PUBS would not be able to
find a ranking function for the system, and thus to calculate an upper bound for the
loop cost.

action sum(a: Number) returns r: Number {
 $r := 0;
 for 0 ≤ i < $a do { // program point 1
 $r := $r + $i;
 }
}

1) A(c1, a) = B(c1, 0, a, a)

2) B(c1, i, i_bound, a)
 = nat(c1) + B(c1, i’, i_bound’, a)

{true}

{i’ = i + 1, i_bound’ = i_bound,
i ≥ 0, i_bound = a, i < i_bound}

Result: nat(a)*nat(c1)

Listing 8.1. Code of method sum, CRS of the loop at program point 1, and result of the analysis.

39

8.2 foreach Loop over Immutable Collection
foreachPic (listing 8.2) is a simple method that displays all pictures that can be found
on the phone on which the method runs. To do so, it uses a foreach loop that iterates
over the immutable collection media→pictures.

Here, we can take advantage of the fact that Sample treats foreach loops in exactly the
same way as for loops. In the CFG, the loop condition is rewritten as

while pic_index < pic_collection.count().

From Sample we get that pic_collection.count() is equal to Length({9,3}) (i.e., the
length of the data structure at program point 9,3), which in turn is equal to
Length(media.pictures). Using all this, the loop cost analysis is able to compose the
cost relation system, which has the same structure as the one derived from the simple
for loop from section 8.1: we have pic_index instead of i, Length({9,3}) instead of
i_bound, and Length(media.pictures) instead of a. As in section 8.1, the loop condition
i < i_bound is a linear relation, and we have linear update rules for pic_index and
Length({9,3}), so the analysis is able to find a correct and precise upper bound of the
cost of the foreach loop, namely nat(Length(media.pictures))*nat(c1).

action foreachPic() {
 foreach p in media→pictures do { // program point 1
 $p→post_to_wall;
 }
}

1) A(c1, Length(media.pictures))
 = B(c1,0,Length(media.pictures),
 Length(media.pictures))

2) B(c1, p_index, Length({9,3}),
 Length(media.pictures)) =
 nat(c1) + B(c1, p_index’,
 Length({9,3})’,
 Length(media.pictures))

{true}

{p_index’ = p_index + 1, p_index ≥ 0,
Length({9,3})’=Length(media.pictures),
Length({9,3}) = Length(media.pictures),
p_index < Length({9,3})}

Result: nat(Length(media.pictures))*nat(c1)

Listing 8.2. Code of method foreachPic, CRS of the loop at program point 1, and result of the
analysis.

40

8.3 foreach Loop over Mutable Collection
Method foreachNum (listing 8.3) creates a new number collection, adds two numbers
to it, and then, using a foreach loop, prints on the phone’s screen all the numbers that
are initially in the collection. Additionally, in each loop iteration, another number is
added to the collection.

This example is basically handled in the same way as example 8.2, where we iterated
over a predefined, immutable collection. As in example 8.2, the cost relation system
has the same structure as the one for the simple for loop (example 8.1). We have the
loop condition num_index < Length({18,3}), which is a linear relation, and the
variable update rule num_index’ = num_index + 1, which is linear as well. So the
analysis is able to find 2*nat(c1) as an upper bound for the loop cost, which is correct
and precise.

Note that adding another number to numbers in the loop body has no influence on the
number of times that the foreach loop is iterated. This is due to the semantics of the
TouchDevelop foreach loop: The loop actually iterates over a copy of $numbers
(which is made before the first execution of the loop body), while $numbers still refers
to the original collection, so $numbers→add(3) adds the number 3 to the original
number collection, and not to the copy of it over which we iterate.

action foreachNum() {
 $numbers := collections→create_number_collection;
 $numbers→add(1);
 $numbers→add(2);
 foreach n in $numbers do { // program point 1
 $numbers→add(3);
 $n→post_to_wall;
 }
}

1) A(c1) = B(c1, 0, 2)

2) B(c1, n_index, Length({18,3}))
 = nat(c1) + B(c1, n_index’,
 Length({18,3}))

{true}

{n_index’ = n_index + 1,
n_index ≥ 0, Length({18,3}) = 2,
n_index < Length({18,3})}

Result: 2*nat(c1)

Listing 8.3. Code of method foreachNum, CRS of the loop at program point 1, and result of the
analysis.

41

8.4 Simple while Loop
In this example (method while, see listing 8.4) we have a while loop, which iterates
from 1 to x-2y-1, where the values of x and y are defined by the arguments a and b,
respectively. Here we can again take advantage of the fact that Sample does not make
a difference between for, foreach and while loops when creating the CFG. Because the
loop cost analysis operates on a CFG, this example can be handled in exactly the same
way as example 8.1, where we had a simple for loop.

Here, the loop condition is i < 2y + x, which is a linear relation. Furthermore, we
have the variable update rules i’ = i + 1, x’ = x and y’= y, which are linear as
well. So the analysis is able to find nat(a+2*b-1)*nat(c1) as an upper bound for the
loop cost. This is a correct and precise upper bound.

action while(a: Number, b: Number) {
 $x := $a;
 $y := $b;
 $i := 1;
 while $i < $x + 2 * $y do { // program point 1
 $i := $i + 1;
 }
}

1) A(c1, a, b) = B(c1, a, b, a, b, 1)

2) B(c1, x, y, a, b, i) =
 nat(c1) + B(c1, x’, y’, a, b, i’)

{true}

{x’ = x, y’ = y, i’ = i + 1, x ≥ a,
y ≥ b, i ≥ 1, i < 2y + x}

Result: nat(a+2*b-1)*nat(c1)

Listing 8.4. Code of method while, CRS of the loop at program point 1, and result of the analysis.

42

8.5 while Loop with Decreasing Counter Value
So far, we only looked at examples where the value of the counter variable increases.
Of course, the loop cost analysis is not limited to such cases. In method decreasing
(listing 8.5) we have a variable i with an initial value upper, which is given as an
argument of the method. A while loop is then executed as long as i is equal or larger
than the constant lower, which is also an argument of the method. The value of i is
decreased by 1 in each loop iteration.

By looking at the cost relation system created by the loop cost analysis, we see that
this method can be handled in exactly the same way as some while or for loop where
the value of the iteration variable is increased linearly, such as the simple for loop in
example 8.1. For PUBS it does not make a difference whether the variable update rule
for i is i’ = i – 1 or i’ = i + 1. Both can be handled (since both are linear
equations). However, note that in equation 2) of the cost relation system we now have
to provide some information about the upper bound of i (namely the guard i <
upper). Only when this information is available, PUBS can find a ranking function of
the system, and calculate an upper bound for the loop cost.

action decreasing(upper: Number, lower: Number) returns r: Number {
 $i := $upper;
 while $i >= $lower do { // program point 1
 $i := $i - 1;
 $r := $r + 1;
 }
}

1) A(c1, lower, upper)
 = B(c1, upper, lower, upper)

2) B(c1, i, lower, upper)
 = nat(c1) + B(c1, i’, lower, upper)

{true}

{i’ = i - 1, i < upper, i ≥ lower}

Result: nat(upper-lower+1)*nat(c1)

Listing 8.5. Code of method decreasing, CRS of the loop at program point 1, and result of the analysis.

43

8.6 while Loop with Exponentially Growing Counter Value
So far, we only looked at examples where the values of the loop variables are
increased or decreased linearly. As long as we have such cases (where the update rules
for all involved variables can be explained in terms of linear expressions), we are
almost guaranteed to get a correct and precise upper bound for the loop cost, as PUBS
works well with linear constraints.

Method logarithmic (listing 8.6) executes a while loop as long as the iteration variable
i (which has initially the value 1) is smaller than some constant x. The value of i is
doubled in each iteration of the loop, so it grows exponentially and we can expect the
cost of the loop to be some logarithmic expression. The cost relation system composed
by the loop cost analysis has the well-known structure: The loop condition is i < x,
which is a linear relation, and the variable update rules x’ = x and i’ = 2i are
linear as well. It seems that PUBS is able to find a good ranking function for the
system, as we get log(2,1+nat(a-1))*nat(c1) as an upper bound for the loop cost, which
is a logarithmic expression as expected. It is a correct and precise bound.

action logarithmic(a: Number) returns r: Number {
 $x := $a;
 $i := 1;
 while $i < $x do { // program point 1
 $i := $i * 2;
 $r := $r + 1;
 }
}

1) A(c1, a) = B(c1, 1, a, a)

2) B(c1, i, x, a)
 = nat(c1) + B(c1, i’, x’, a)

{true}

{i’ = 2*i, x’ = x, i ≥ 1, x ≥ a, i < x}

Result: log(2,1+nat(a-1))*nat(c1)

Listing 8.6. Code of method logarithmic, CRS of the loop at program point 1, and result of the analysis.

However, as soon as we make a slight modification to our input method, we do not get
such a nice result any more. Consider method logarithmic2 (listing 8.7), which is
identical to logarithmic up to one additional instruction in the loop body, $x := $x -
1, such that x is not a constant any more. By thinking about the semantics of
logarithmic and logarithmic2, we see that any upper bound for the loop in method
logarithmic must also be an upper bound for the cost of the loop in method
logarithmic2: Because we only decrease the value of x, for the same value of a the

44

loop in logarithmic2 is executed mostly as many times as the one in logarithmic
before x is reached.

action logarithmic2(a: Number) returns r: Number {
 $x := $a;
 $i := 1;
 while $i < $x do { // program point 1
 $i := $i * 2;
 $x := $x - 1;
 $r := $r + 1;
 }
}

1) A(c1, a) = B(c1, 1, a, a)

2) B(c1, i, x, a)
 = nat(c1) + B(c1, i’, x’, a)

{true}

{i’ = 2*i, x’ = x - 1, i ≥ 1, x ≥ a, i < x}

Result: nat(a-1)*nat(c1)

Listing 8.7. Code of method logarithmic2, CRS of the loop at program point 1, and result of the
analysis.

As expected, the cost relation system derived from logarithmic2 looks identical to the
one derived from logarithmic, up to the fact that the update rule for x (x’ = x – 1)
now reflects the modified behavior of x. However, this time we get nat(a-1)*nat(c1) as
an answer from the loop cost analysis, which is correct, but much less precise than the
bound we got for the loop in method logarithmic.

45

8.7 Nested Loops
We already know method nested (listing 8.8) from chapter 6. It contains the typical
construct of two nested loops, an inner one iterating from 0 to b-1, and an outer one
iterating from 0 to a-1. In the cost relation system, equation 3) represents the cost of
the inner loop. Using equations 3) and 4), a precise upper bound for this cost can be
calculated exactly in the same way as in example 8.1. For the outer loop, we also have
the usual equations 1) and 2), but in the cost expression of equation 2) we additionally
have the term C(c2, b), which reflects one execution of the inner loop in each
iteration of the outer loop. For both the inner and the outer loop, we have a simple
linear relation as loop condition, as well as linear variable update rules for the
involved variables, and PUBS can solve the cost relation system without problems.
We get nat(b)*nat(c2) as an upper bound for the cost of the inner loop, and nat(a)*
(nat(c1)+nat(b)*nat(c2)) as an upper bound for the cost of the outer loop. Both bounds
are precise and tight.

action nested(a: Number, b: Number) returns r: Number {
 $r := 0;
 for 0 ≤ i < $a do { // program point 1
 for 0 ≤ j < $b do { // program point 2
 $r := $r + 1;
 }
 }
}

1) A(c1, c2, a, b) = B(c1, c2, 0, b, a, a, b)

2) B(c1, c2, j, j_bound, a, i_bound, i, b)
 = nat(c1) + B(c1, c2, j’, j_bound’, a,
 i_bound’, i’, b) + C(c2, b)

3) C(c2, b) = D(c5, 0, b, b)

4) D(c2, j, j_bound, i, b)
 = nat(c2) + M1(c2, j’, j_bound’, b)

{true}

{i’ = i + 1, i_bound’ = i_bound,
i ≥ 0, i_bound = a, i < i_bound}

{true}

{j’ = j + 1, j_bound’ = j_bound,
j ≥ 0, j_bound = b, j < j_bound}

Result:
nat(b)*nat(c2) (inner loop)
nat(a)*(nat(c1)+nat(b)*nat(c2)) (outer loop)

Listing 8.8. Code of method nested, CRS of the loop at program point 1 (the “outer” loop), and result
of the analysis. Note that the CRS of the loop at program point 2 (the “inner” loop) would simply

consist of cost relations 3 and 4.

46

8.8 Conditional inside Loop
Method if1 (listing 8.9) contains a for loop, which in turn contains a conditional. Both
the condition of the loop and the condition of the conditional depend on the variable i.
The loop is iterated as long as i (which is initially 0, as we have a for loop) is smaller
than a, which is an argument of the method. The if-condition $i ≥ 2 is false in some
loop iterations (namely the first two), such that the else-branch of the conditional
(which is actually empty) is executed. In the other loop iterations, the if-condition is
true, such that the then-branch of the conditional is executed.

action if1(a: Number) returns r: Number {
 for 0 ≤ i < $a do { // program point 1
 if $i ≥ 2 then { // program point 2
 $r := $r + 1;
 }
 }
}

1) A(c1, t2, f2, a) = B(c1, t2, f2, 0, a, a)

2) B(c1, t2, f2, i, i_bound, a)
 = nat(c1) + B(c1, t2, f2, i’,
 i_bound’, a) + C(t2, f2, i)

3) C(t2, f2, i) =
 D(t2, f2, i) + E(c5t, c5f, i)

4) D(t2, f2, i) = nat(t2)

5) E(t2, f2, i) = nat(f2)

{true}

{i’ = i + 1, i_bound’ = i_bound,
i ≥ 0, i_bound ≥ a, i < i_bound}

{true}

{i ≥ 2}

{i < 2}

Result: nat(a)*(nat(c1)+nat(t2)+nat(f2))

Listing 8.9. Code of method if1, CRS of the loop at program point 1, and result of the analysis.

We again have some kind of nesting here, and in fact this method is handled in the
same way as method nested in the previous example. In the cost relation system,
equation 3) represents the cost of the conditional. For the outer loop, we have the usual
equations 1) and 2), where in the cost expression of equation 2) we additionally have
the term C(t2, f2, i), which represents the execution of the conditional in each
iteration of the loop. The loop condition and the if-condition both are simple linear
relations, and the variable update rules of the involved variables i and i_bound are
linear too, and PUBS is able to solve the cost relation system. We get nat(a)*
(nat(c1)+nat(t2)+nat(f2)) as an upper bound for the cost of the loop, which is correct,

47

but not very precise, as it takes into account the cost for executing both the then-
branch (t2) and the else-branch (f2) in each loop iteration.

At least, PUBS is able to detect cases where either the then-branch or the else-branch
of the conditional never gets executed. Consider method if2 (listing 8.10), which is a
slight modification of method if1, where we changed the if-condition to $i ≥ 0.
Obviously, the else-branch of the conditional is never executed, as $i ≥ 0 is an
invariant of the loop. In this case, we get nat(a)*(nat(c1)+nat(t2)) as an upper bound for
the cost of the loop, which is a correct and precise bound.

action if2(a: Number) returns r: Number {
 for 0 ≤ i < $a do { // program point 1
 if $i ≥ 0 then { // program point 2
 $r := $r + 1;
 }
 }
}

1) A(c1, t2, f2, a) = B(c1, t2, f2, 0, a, a)

2) B(c1, t2, f2, i, i_bound, a)
 = nat(c2) + B(c1, t2, f2, i’,
 i_bound’, a) + C(t2, f2, i)

3) C(t2, f2, i) =
 D(t2, f2, i) + E(c5t, c5f, i)

4) D(t2, f2, i) = nat(t2)

5) E(t2, f2, i) = nat(f2)

{true}

{i’ = i + 1, i_bound’ = i_bound,
i ≥ 0, i_bound ≥ a, i < i_bound}

{true}

{i ≥ 0}

{i < 0}

Result: nat(a)*(nat(c1)+nat(t2))

Listing 8.10. Code of method if2, CRS of the loop at program point 1, and result of the analysis.

48

8.9 Composite Loop Condition

So far we only looked at loops which have a basic linear relation as loop condition.
Our loop analysis can additionally handle loops with a loop condition which is any
nested structure of conjunctions, disjunction and negations of such basic relations.

action and1() {
 $i := 0;
 $j := 0;
 while $i < 10 and $j < 20 do { // program point 1
 $i := $i + 1;
 $j := $j + 3;
 }
}

1) A(c1) = B(c1, 0, 0)

2) B(c1, i, j) = C(c1, i, j)

3) C(c1, i, j) = D(c1, i, j)

4) D(c1, i, j) = nat(c1) + B(c1, i’, j’)

{true}

{true}

{i < 10}

{i’ = i + 1, j’ = j + 3, i ≥ 0, j ≥ 0,
j < 20}

Result: 22/3*nat(c1)

Listing 8.11. Code of method and1, CRS of the loop at program point 1, and result of the analysis.

Method and1 (listing 8.11) executes a loop which has a conjunction of two linear
relations as loop condition. The loop is iterated as long as both $i < 10 and $j < 20
hold. Both i and j are increased linearly in each iteration of the loop. Method and2
(listing 8.12) is semantically equivalent to and1, but when we look at its source code
we see that the order of the two basic linear relations is the other way round than in
and1, which also leads to a slightly different cost relation system (see listing 8.12), in
which the order of variables i and j is reversed compared to the cost relation system
for the loop in method and1 (see listing 8.11). When computing an upper bound for
the cost of the loops in and1 and and2, respectively, we can simply ignore one of the
two operands of the conjunction. As we are looking for an overapproximation of the
loop cost, we still get a correct result with this approach, at the cost that the bound we
get might be not precise. It seems that this is exactly what PUBS does in order to solve
the cost relation systems of this example. We see this by looking at the results we get
from the loop cost analysis: For the cost of the loop in and1, we get the correct and
tight bound 22/3*nat(c1) as result, while for the cost of the loop in and2, we get
10*nat(c1), which is correct but not precise.

49

action and2() {
 $i := 0;
 $j := 0;
 while $j < 20 and $i < 10 do { // program point 1
 $i := $i + 1;
 $j := $j + 3;
 }
}

1) A(c1) = B(c1, 0, 0)

2) B(c1, j, i) = C(c1, j, i)

3) C(c1, j, i) = D(c1, j, i)

4) D(c1, j, i) = nat(c1) + B(c2, j’, i’)

{true}

{true}

{j < 20}

{j’ = j + 3, i’ = i + 1, j ≥ 0, i ≥ 0,
i < 10}

Result: 10*nat(c2)

Listing 8.12. Code of method and2, CRS of the loop at program point 1, and result of the analysis.

In method or (listing 8.13) we have a loop with a disjunction of two linear relations as
loop condition. As soon as a disjunction is involved somewhere in the loop condition,
the loop cost analysis is almost never able to find an upper bound for the cost of the
loop, due to PUBS which has problems handling such cases (it can not find a ranking
function). or is one such example. Even though we have simple linear relations on
both sides of the or in the loop condition, and the variable update rules for i and j are
available and linear, we do not get an upper bound as an answer from the analysis.

50

action or() {
 $i := 1;
 $j := 0;
 while $i < 10 or $j < 50 do { // program point 1
 $i := $i + 1;
 $j := $j + 2;
 }
}

1) A(c1) = B(c1, 1, 0)

2) B(c1, i, j) = C(c1, i, j)

3) B(c1, j, i) = D(c1, i, j)

4) C(c1, i, j) = nat(c1) + B(c1, i’, j’)

5) D(c1, i, j) = nat(c1) + B(c1, i’, j’)

{true}

{true}

{true}

{i’ = i + 1, j’ = j + 2, i ≥ 1, j ≥ 0,
i < 10}

{i’ = i + 1, j’ = j + 2, i ≥ 1, j ≥ 0,
j < 50}

Result: no upper bound found

Listing 8.13. Code of method or, CRS of the loop at program point 1, and result of the analysis.

51

8.10 Variable Update Depending on Other Variable
So far, we only looked at examples where the update rule for some variable (e.g. i) had
the form i’ = a*i + b, where a and b are rational constants. But we are not
restricted to this, as long as the variable update rules are linear.

We already know method sumOfSums (listing 8.14) from before. It is an example
where the current value of some variable determines how some other variable is
updated in each iteration of the loop. sumOfSums contains a loop which is iterated as
long as x (which is initially 1), is smaller than some constant a, which is given as an
argument of the method. In the loop we have an auxiliary variable i, whose value is
initially 1 and is increased by 1 in every loop iteration. In each iteration of the loop,
the value of x is increased by the current value of i. This gives us the variable update
rule x’ = x + i for x in the cost relation system created by the loop cost analysis.
The condition of the loop is a simple linear relation, and the update rules for i and x
are linear as well, and PUBS is able to solve the cost relation system. We get nat(a-
1)*nat(c1) as an upper bound for the cost of the loop, which is correct but not precise.

action sumOfSums(a: Number) returns r: Number {
 $x := 1;
 $i := 1;
 while ($x < $a) do { // program point 1
 $i := $i + 1;
 $x := $x + $i;
 }
 $r := $i;

1) A(c1, a) = B(c1, 1, a, 1)

2) B(c1, x, a, i)
 = nat(c1) + B(c1, x’, a, i’)

{true}

{x’ = x + i, i’ = i + 1, x ≥ 1, i ≥ 1,
x < a}

Result: nat(a-1)*nat(c1)

Listing 8.14. Code of method sumOfSums, CRS of the loop at program point 1, and result of the
analysis.

52

9 Case Studies from the TouchDevelop Cloud

In this chapter, we present the result of the loop cost analysis for some selected
scripts from the TouchDevelop cloud. In the code listings in this chapter, we replaced
parts of the code which are not relevant for the loop cost analysis (e.g. parts of long
string literals, implementations of called methods not containing loops themselves,
etc.) by the notation [...]. The original code of a script can be found at

http://www.touchdevelop.com/api/<script_id>/text

where <script_id> must be replaced by the four-letter identifier of the corresponding
script (given in the titles of the following sections).

9.1 Coding Duel (csbl)
Listing 9.1 shows the code of a simple number guessing game. It is a typical example
for a script from the TouchDevelop cloud, as it is rather small (72 lines of code) and
uses only few standard methods. The script contains two loops. Loop 5 is a typical for
loop, simply having a constant as the upper bound for the iteration variable. This type
of loop represents the kind of loop that is most commonly used in scripts published in
the cloud. The loop cost analysis finds 10*nat(c5) as an upper bound for the cost of
loop 5, which is both correct and precise.

The other loop in this script, which we denote by loop 1, is somewhat more
complicated. It contains a construct of three nested conditionals. Still, the loop is easy
to handle, and the loop cost analysis gives us 1000*(c1 + t2 + f2 + t3 + f3 + t4 + t4) as
an upper bound for the cost of this loop. This example illustrates nicely the purpose of
the loop cost analysis as it is presented in the introduction of this thesis: The factor of
1000 in the resulting cost expression indicates that the cost of executing loop 5 might
actually be rather high. If this is the case, it might be a good idea to execute the script
in the TouchDevelop cloud instead of running it locally on the smartphone.

53

meta name "coding duel";
// Can you discover the secret program? [...]

action main() {
 $success_count := 0;
 $failure_count := 0;
 $sample_count := 5;
 for 0 ≤ x < 1000 do { // program point 1
 $secretx := code!secret($x);
 $px := code!puzzle($x);
 $msg := "x := " ∥ $x ∥ " ==> secret :=
 " ∥ $secretx ∥ ", puzzle := " ∥ $px;
 if $px ≠ $secretx then { // program point 2
 $failure_count := $failure_count + 1;
 if $failure_count < $sample_count then { // program point 3
 code!create_error($msg);
 }
 }
 else {
 $success_count := $success_count + 1;
 if $success_count < $sample_count then { // program point 4
 code!create_success($msg);
 }
 }
 }
 if $failure_count > 0 then {
 phone!vibrate(0.1);
 "Try again...\n [...] " !post_to_wall;
 }
 else {
 for 0 ≤ i < 10 do { // program point 5
 "You won!" !post_to_wall;
 }
 }
}

action secret(x: Number) returns r: Number { [...] }

action puzzle(x: Number) returns r: Number { [...] }

var error : Color { [...] }

action create_error(msg: String) { [...] }

var success : Color { [...] }

action create_success(msg: String) { [...] }

Listing 9.1. Code of script csbl (“coding duel”).

54

9.2 Password Generator (hbtn)

In listing 9.2 we see the code of a password generation application. When running the
script, the user can first select one of six predefined password patterns from a list of
strings. Then, the script generates a random password according to the user’s choice
and stores it in a table on the phone. There is a single loop in this script (loop 1), in
which the password gets assembled according to the chosen pattern. The loop directly
contains six conditionals. In each of them, one class of characters that may be used in
a password (e.g. uppercase consonants or lowercase vowels) is handled. It is easy for
the loop cost analysis to compute an upper bound for the cost of the loop: We get
i_bound*(c1 + t2 + f2 + t3 + f3 + t4 + f4 +t5 + f5 + t6 + f6 + t7 +f7) as an answer. Here,
we can see a weakness of the loop cost analysis. The cost expression we get contains
i_bound, which does not appear in the original TouchDevelop program. Instead, we
would prefer to have something like Length(patterns→at(x)) here. This happens
because for the program point just before the loop, the loop cost analysis does not get
a linear relation of the form i_bound = expr (for some linear expression expr) from the
result of the numerical analysis. The absence of such a constraint is not surprising, as
Sample tries to evaluate method calls such as patterns→at(x), which is not possible
statically, as x (the index of the pattern chosen by the user) is only known at runtime.
So the analysis cannot know to which of the six possible strings patterns→at(x)
actually refers, and consequently it can not know to the length of which string i_bound
is equal. Also, the loop cost analysis cannot know that the variable i_bound does not
appear in the original TouchDevelop code, as it operates on the CFG of the main()
method (where i_bound appears, as it was introduced when the for loop was converted
into a control flow graph loop). But even if it would know it, it would not be possible
to replace it by some other expression, because we do not know the initial value of
i_bound, as explained before. So – at least for the moment – we have to live with the
fact that a cost expression returned by the loop cost analysis may contain a variable
name that does not appear in the input script. However, with a better abstraction we
could solve this problem.

55

meta name "Password Gen Pro";
// Generate unique passwords with the ability to change the pattern. [...]

action main() {
 wall!set_subtitle("Generate a unique password. [...] ");
 data!c := "aeiou";
 data!v := "bcdfghjklmnpqrstvwxyz";
 data!n := "1234567890";
 data!s := "$%&";
 $patterns := collections!create_string_collection;
 $patterns!add("vCnscV");
 $patterns!add("cVsnCv");
 $patterns!add("nVcsvC");
 $patterns!add("VCsnVnvC");
 $patterns!add("cVnsvnCv");
 $patterns!add("nCvsVnvv");
 $x := wall!pick_string("Pick a password pattern", "c = consonants, v =
 vowels, n = numbers and s = special characters. \n Uppercase version of
 above means just that.", $patterns);
 $password := collections!create_string_collection;
 // Loop password characters
 for 0 ≤ i < $patterns!at($x)!count do { // program point 1
 $char := $patterns!at($x)!substring($i, 1);
 if $char!equals("c") then { // program point 2
 $password!add(data!c!substring(math!random(data!c!count), 1));
 }
 if $char!equals("C") then { // program point 3
 $password!add(data!c!substring(math!random(data!c!count), 1)
 !to_upper_case);
 }
 if $char!equals("v") then { // program point 4
 $password!add(data!v!substring(math!random(data!v!count), 1));
 }
 if $char!equals("V") then { // program point 5
 $password!add(data!v!substring(math!random(data!v!count), 1)
 !to_upper_case);
 }
 if $char!equals("n") then { // program point 6
 $password!add(data!n!substring(math!random(data!n!count), 1));
 }
 if $char!equals("s") then { // program point 7
 $password!add(data!s!substring(math!random(data!s!count), 1));
 }
 }
 $h := records!history_table!add_row;
 $h!password!set($password!join(""));
 $h!generated!set(time!now);
 $password!join("")!post_to_wall;
 $password!join("")!copy_to_clipboard;
 wall!prompt("Password copied to clipboard.");
}

var c : String { } var v : String { }
var n : String { }
var s : String { }
table history { [...] }

Listing 9.2. Code of script hbtn (“Password Gen Pro”).

56

9.3 Shakespearian Insults Generator (nlqo)
Published TouchDevelop scripts are often not written in the most optimal way, which
is due to the fact that many TouchDevelop users are novice programmers or hobbyists.
See for example the script in listing 9.3. It implements some kind of phrase generator,
which randomly combines adjectives out of three lists (of which two are identical,
probably by mistake) to create a “Shakespearian Insult“. The script contains three
almost identical while loops. In each loop, there is a variable len, and the loop is
iterated as long as len is non-negative. len is initially 0, so the loop body is executed a
first time. In this first loop iteration, len is decreased by one, so it becomes -1, and the
loop terminates. So we can see that these loops are actually superfluous (in the sense
that the statements of the loop body could directly be written in the code, without
being inside a loop), as their bodies are executed exactly once. Although this script is
rather simple, it provides an interesting test case for the loop cost analysis. In fact, we
correctly get nat(c1) as an upper bound for the cost of loop 1 (and, analogously, nat(c2)
and nat(c3) for the other two loops), so we see that the loop cost analysis is able to
correctly handle this border case.

57

meta name "Shakespearian Insults Generator";

action Generate() {
 wall!set_background(colors!chrome);
 wall!prompt("To generate a new insult, refresh the page. [...] ");
 $s := "artless, bawdy, beslubbering, bootless, [...] , yeasty\n";
 $pass := "";
 $len := 0;
 while $len ≥ 0 do { // program point 1
 $charIndex := math!random(50);
 $pass := $pass ∥ $s!split(",")!at($charIndex);
 $len := $len - 1;
 }
 code!Generate2;
 $pass!post_to_wall;
 "Precede each insult with thou." !post_to_wall;
}

action Generate2() {
 $CharMap := "base-court, bat-fowling, [...] , weather-bitten,";
 $pass := "";
 $len := 0;
 while $len ≥ 0 do { // program point 2
 $charIndex := math!random(49);
 $pass := $pass ∥ $CharMap!split(",")!at($charIndex);
 $len := $len - 1;
 }
 code!Generate3;
 $pass!post_to_wall;
}

action Generate3() {
 $charMap := "base-court, bat-fowling, [...] , weather-bitten,";
 $pass := "";
 $len := 0;
 while $len ≥ 0 do { // program point 3
 $charIndex := math!random(49);
 $pass := $pass ∥ $charMap!split(",")!at($charIndex);
 $len := $len - 1;
 }
 $pass!post_to_wall;
}

Listing 9.3. Code of script nlqo (“Shakespearian Insults Generator”).

58

9.4 Text my Location (moji)
In listing 9.4 we see a simple script which first asks the user to choose a phone number
on his smartphone. Then, it sends a short message – containing information about the
current location of the phone – to the selected phone number. The main() method of
the script contains a single while loop (loop 1). When we use the script as input for the
loop cost analysis, it can not find an upper bound for the cost of loop 1. Since the loop
condition data!link!is_invalid may always be false (if the user never enters a valid
phone number), it is possible that the loop does not terminate.

meta name "text my location";
// Send your address and location through messaging

action main() {
 // Grabs location and sends it by sms
 // get a phone number and cache it
 while data!link!is_invalid do { // program point 1
 data!link := phone!choose_phone_number;
 }
 // get the current location
 $loc := senses!current_location_accurate;
 $address := locations!describe_location($loc);
 data!main_tile!set_back_title($address);
 social!send_sms(data!link!address, "we are at " ∥ $address ∥ ", " ∥
$loc!to_string);
}

var main_tile : Tile {
 readonly = true;
}

var link : Link {
}

Listing 9.4. Code of script moji (“text my location”).

We observed that several while loops found in scripts from the TouchDevelop cloud
have the form while(true) or while(“user input is not valid”). For the cost of all these
loops, our analysis can not find an upper bound, as obviously non-termination is
possible for such loops.

59

10 Experimental Results

To assess to quality of our implementation, we ran the loop cost analysis on a large
number of real scripts from the TouchDevelop cloud. We only considered scripts
which actually contain loops, and we only considered root scripts. Remember that a
root script is a script that is not a modified version of some other script. We decided to
use only root scripts because usually these scripts already contain all the loops which
appear in the scripts derived from them. So analyzing all scripts (including derived
scripts) would not give us a representative result since we would re-analyze the same
loops (or even the same, identical scripts) many times. We used a timeout of 5 minutes
when analyzing the scripts.

We ran the analysis on a machine with the following specification: Intel Core 2 Quad
CPU Q9550 2.83GHz, 4 GB RAM, Ubuntu 12.04 LTS 32 bit, Java SE Runtime
Environment 1.7.0_17-b02.

Overall, we analyzed 1737 scripts. The analysis could compute a non-zero upper
bound of the cost of 2144 loops. For 979 loops, the analysis returned 0 as an upper
bound. For 1241 scripts it could not find an upper bound of the cost. Note that the
analysis did actually not fail in many of these cases because of the following points:

In the cases where the analysis returned 0, the Sample analysis (whose result is used
by the loop cost analysis) inferred a bottom state for the program points inside the
loop, which means that they can never be reached. Using this fact, the loop cost
analysis directly returns 0 in such cases, without needing to create a cost relation
system and calling PUBS. We can distinguish two cases:

• It might be that the corresponding loop is never executed, either due to a faulty
implementation of the input program (which actually occurs quite often, as
many TouchDevelop programmers are beginners or hobbyists), or due to full
intention of the programmer. For example, a programmer might use a

while(false) loop instead of commenting out pieces of code, because (as we
observed) there seems to be no easy way to comment out code when using the
TouchDevelop programming environment.

• In all other cases where the analysis returned 0, the Sample analysis wrongly
inferred bottom for the program points inside the loop. This is due to parts of
the semantics of TouchDevelop which are currently under-defined in Sample.
So, in these cases, it is not the part of the loop cost analysis implemented in
this thesis that fails, but a part of Sample on which our implementation relies.

60

Currently, the TouchDevelop semantics in Sample is being extended and
tested, and we expect to fix this issue in the next few weeks.

In the cases where the analysis could not find an upper bound of the cost, we can
analogously distinguish two cases:

• In some (probably most) cases where the analysis could not find an upper
bound of the cost of the loop, there might indeed exist no upper bound. We
saw in section 9.4 that this is the case for a lot of while loops in real
TouchDevelop, such as loops of the form while(true) { ... }.

• In other cases where the analysis could not find an upper bound, it might in
fact be the case that the cost of the loop is bounded, but our analysis failed in
finding an upper bound. As most loops in TouchDevelop tend to have a rather
simple structure, we assume that such cases were rare.

When developing the implementation of the loop cost analysis, we did not pay
attention to optimizing its performance with respect to runtime, memory consumption,
and so on. Still, we would like to present some numbers here, which we measured
when running the analyses on the set of 1737 scripts. Overall, all these analyses
together took:

• 834 seconds for compiling (including the time required to download the scripts
and to augment the control flow graphs)

• 5616 seconds for the numerical analysis
• 1063 seconds for calculating the loop costs (including the generation of the

cost relation systems, and solving the cost relation systems using PUBS)

This means that in average for one script the analysis took:

• 0.48 seconds for compiling
• 3.23 seconds for the numerical analysis
• 0.61 seconds for calculating the loop costs

These results show that the analysis is precise and scales up in practice.

61

11 Related Work
In this chapter, we present some work that is related to this thesis. First, we have a
look at an approach to the cost analysis of object-oriented bytecode programs. Then,
we discuss an approach for solving cost relation systems. PUBS is an implementation
of this approach.

11.1 Cost Analysis of Object-Oriented Bytecode Programs
Developing a precise overapproximation of the cost of a program is a complex
problem that has been (partially) explored in the last few years. Albert et al. [2]
present the first approach to the automatic cost analysis of object-oriented bytecode
programs. Their method takes a bytecode program and a cost model specifying the
resource of interest as input, and returns a set of recursive equations, which capture the
execution cost of the program. In a first step, their approach generates an intermediate
rule-based representation (RBR) from the original bytecode. Then, they use static
analysis to infer linear size relations among program variables at different program
points. As a size abstraction for integer variables they use the value of the variable,
whereas the size abstraction of a data structure x ∈ dom(lv) (where lv denotes some

variable mapping) with respect to some heap is defined as the length of the maximal
path reachable from the reference lv(x) by dereferencing, i.e., following other
references as fields. The path-length of null is defined to be 0, that of a cyclic data
structure is defined to be ∞. The next step consists of finding an appropriate cost
model, which defines how cost is assigned to each execution step (for example, a cost
model counts the number of instructions or the amount of memory consumption).
Then, their method generates a cost relation system from the RBR, the size relations
and the cost model.

The approach described here often relies on unsound assumptions. For instance, Albert
et al. ignore cyclic data structures. When approximating the cost of a program, it is
crucial to find an appropriate abstraction of the heap. A maximal path-length
abstraction as used in their approach might yield good results in some practical cases,
but in other cases it might be unsound or imprecise. For example, consider a cyclic
data structure, which per definition has a size (i.e., maximal path-length) of ∞.
However, it might be the case that in every execution of a given program, this data
structure is traversed in a controlled way such that the actual maximal length of any
path ever taken is some finite number n. In such a case, using the maximal path-length
abstraction would yield a rather imprecise overapproximation of the cost of the
program.

62

11.2 Closed-Form Upper Bounds in Static Cost Analysis
Albert et al. [1] present an approach for obtaining closed form upper bounds for cost
relation systems. PUBS (section 3.2) is an implementation of this approach. Here, we
present a summary of the main ideas of the approach.

Given a cost relation system S, the approach first infers a set of so-called evaluation
trees, where each such tree represents a possible strategy to solve S. Given an
evaluation tree T, the sum of all nodes in T corresponds to the result of solving S using
the evaluation strategy represented by T. PUBS then tries to find the largest cost one
may get from evaluating S using any evaluation tree, which is exactly the upper bound
it is looking for. Note that this cost is not always computable, as there might be
infinite evaluation trees. Next, Albert et al. present an approximation scheme to
actually infer the closed-form upper bounds. It is based on the idea of bounding the
cost of the corresponding evaluation trees. To do this for some evaluation tree T, their
approach computes upper bounds for both the number of nodes of T, as well as for the
cost of the nodes of T.

Given an evaluation tree T for a cost relation C, the number of nodes in T can be
derived from the depth of T and the branching factor of T. At this point, Albert et al.
introduce the notion of a loop in a cost relation C, which is used to model consecutive
calls of C. Intuitively, a loop C(

€

v 1) → C(

€

v 2) means that evaluating C(

€

v 1) may
eventually be followed by an evaluation of C(

€

v 2). In an evaluation tree this means that
the node corresponding to C(

€

v 1) has a child corresponding to C(

€

v 2). Next, the paper
introduces a specific form of ranking functions: A function is a ranking function for a
cost relation C if it is a ranking function for all loops in C. Their approach uses such
ranking functions as an upper bound of consecutive calls (and therefore on the height
of the corresponding evaluation trees). This is justified by the facts that the ranking
function decreases by at least 1 in each iteration and that it is always non-negative.
Intuitively, if their method can find a ranking function for a cost relation C, then it is
able to compute an upper bound for the cost represented by C. The current
implementation of the approach, PUBS, is restricted to linear ranking functions. To
bound the cost of the nodes in an evaluation tree T, their approach relies on loop

invariants: Given a cost relation ⟨C(

€

v) = exp +

€

Di w i()
i=1

k

∑ , P⟩, the approach tries to

find an invariant, in terms of linear constraints, that holds between the arguments at
the initial call of C, and the arguments at each consecutive call of C during the
evaluation of the initial call. Given C and a safe approximation of its loop invariant,
their approach can now compute an upper bound for exp by maximizing its nat
components. Finally, Albert et. al present an extension of the basic approach which

63

may help to obtaining more precise upper bounds for divide and conquer programs. It
is based on counting levels in an evaluation tree rather than counting nodes.

64

12 Conclusion

We successfully developed and implemented an analysis which overapproximates the
cost of TouchDevelop loops. We implemented the loop cost analysis as an extension
of the static analyzer Sample. This gives us the great advantage that we can use
existing heap and value analyses of Sample – in particular a numerical analysis that
uses Apron – to support our loop cost analysis with linear constraints that hold at
specific program points in the program under examination. We found a way to use this
information to create a system of cost relations which represents an overapproximation
of the cost of the loop. To solve such cost relation systems, we included a call to the
solver PUBS in our implementation. This finally gives us a closed form upper bound
of the cost of the loop under examination.

By running the analysis on a series of test input scripts constructed by ourselves, as
well as hundreds of real scripts on the TouchDevelop cloud, we observed that our
analysis produces satisfying results in most cases, and it scales up. The loop cost
analysis uses several existing tools and libraries (Sample, Apron, and the PUBS
solver), so the result of running the analysis strongly depends on the possibilities and
limits of these:

• The numerical analysis we run in Sample, which is used by the loop cost
analysis to infer the cost relation system, plays a central role. First of all, the
loop cost analysis relies on its soundness and precision. Secondly, the loop cost
analysis depends on getting the “right” constraints from the numerical analysis,
i.e., the ones that it can use to generate parts of the cost relation system. For
instance, an equality of the form i = old_i + 1 (for some loop variable i) may
be very helpful for the loop cost analysis (as we saw in chapter 7), while some
other constraint exp > 0 might not be needed at all by the loop cost analysis
because no variable occurring in the expression exp has an influence on the
number of times that the loop under examination is iterated.

• Having a cost relation system which captures the cost of a loop does not
guarantee that we will get a precise bound of the cost of this loop. The quality
of our analysis results depends on the performance of PUBS when it tries to
solve this cost relation system. For instance, we saw in chapter 8 that PUBS
yields precise results for cost relation systems derived only from ‘additive’
variable update rules of the form i = old_i + expr. However, as soon as a cost
relation system additionally contains linear relations derived from variable
update rules of a ‘multiplicative’ kind, such as i = n*old_i + expr, we might
get a less precise answer from PUBS, as we saw for instance in section 8.6.

65

Finally, we would like to think about possible future extensions of our work. A major
point is the cost model. Currently, the loop cost analysis does not use a concrete cost
model, but instead uses symbolic cost parameters. So the result of the analysis is an
abstract cost expression in terms of these cost parameters. The main disadvantage of
such an abstract result is the fact that it can not (or – at least – not directly) be used in
practice. A possible extension of this master thesis would be to develop a more
specific cost model which involves actual values rather than symbolic parameters. For
instance, such cost values might be the number of statements in a control structure, or
the memory or energy consumption needed to execute a TouchDevelop instruction (or
a group of them). Such a cost model would have the following advantages:

• The analysis would return a concrete value (e.g. an amount of energy). This
statically determined value could then be compared with a real, measured
value in order to check the correctness of the analysis. With our parameterized
cost model, we did not have this possibility.

• The loop cost analysis could be used in practice, e.g. to estimate the worst-case
energy consumption when running a script. As stated in the introduction of this
master thesis, we could then attach this cost information to the script and use it
at runtime to decide whether the script should be executed locally on the
smartphone, or in the TouchDevelop cloud.

Another possible extension of our work would be to develop a custom-made
numerical analysis. Currently, the loop cost analysis uses a generic numerical analysis
(Apron linear equalities) which is available in Sample, and which was not adapted in
any way to the needs of the loop cost analysis. As discussed above, the loop cost
analysis depends on getting the “right” linear constraints from the numerical analysis.
With a non-adapted numerical analysis, the loop cost analysis sometimes receives
(possibly non-linear) constraints which are not helpful at all, while other, helpful
constraints might be missing, as they could not be inferred by this particular numerical
analysis. So developing and implementing a new numerical analysis (most probably
based on existing work) which is custom-made for the needs of the loop cost analysis
might help to improve the performances and the quality of the result of the loop cost
analysis.

66

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla. Closed-Form Upper Bounds in

Static Cost Analysis. In Journal of Automated Reasoning, 46 (2), pp. 161–203,
2011.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla and D. Zanardini. Cost Analysis of

Object-Oriented Bytecode Programs. In Journal of Theoretical Computer
Science, 413 (1), pp.142-159, 2012.

[3] G. Costantini, P. Ferrara and A. Cortesi. Static Analysis of String Values. In

Proceedings of ICFEM ‘11, pp. 505-521, 2011.

[4] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proceedings of POPL ’77. ACM Press, 1977.

[5] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.

In Proceedings of POPL ’79. ACM Press, 1979.

[6] P. Ferrara. Static Type Analysis of Pattern Matching by Abstract Interpretation.

In Proceedings of FMOODS ‘10, pp. 186–200, 2010.

[7] P. Ferrara, R. Fuchs and U. Juhasz. TVAL+: TVLA and Value Analyses

Together. In Proceedings of SEFM ‘12, pp. 63-77, 2012.

[8] P. Ferrara and P. Müller. Automatic Inference of Access Permissions. In

Proceedings of VMCAI ‘12, pp. 202-218, 2012.

[9] N. Horspool, J. Bishop, A. Samuel, N. Tillmann, M. Moskal, J. de Halleux and

M. Fähndrich. TouchDevelop – Programming on a Phone. Version 1.1 for
TouchDevelop 2.8, May 2012.

[10] B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for

Static Analysis. In Proceedings of CAV ‘09, pp. 661-667, 2009.

[11] M. Karr: Affine Relationships among Variables of a Program. In Acta

Informatica, pp. 133-151, 1976.

[12] M. Zanioli, P. Ferrara and A. Cortesi. SAILS: Static Analysis of Information

Leakage with Sample. In Proceedings of SAC ‘12, pp. 1308-1313, 2012.

[13] Breadth-first search. http://en.wikipedia.org/wiki/Breadth-first_search,
 accessed on April 6, 2013.

[14] Introduction to Records in TouchDevelop.
 http://az31353.vo.msecnd.net/cpd/ xeuo-records.pdf, accessed on April 6, 2013.

67

[15] TouchDevelop. http://research.microsoft.com/en-us/projects/touchdevelop/,
accessed on April 6, 2013.

[16] Windows Phone. URL: http://www.microsoft.com/windowsphone/,
 accessed on April 6, 2013.

