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Abstract

People observation and counting is of interest in many commercial and non-commercial
scenarios. The number of people entering and leaving shops, the occupancy of office
buildings or the passenger count of commuter trains provide useful information to shop
merchants and marketers, security officials or train operators. To this end, this thesis
develops a distributed people counting system, covering algorithms and their imple-
mentation on wireless sensor nodes.

The algorithms presented address the people counting problem by interpreting the
infrared sensor signal as system state. In particular, a dynamically configurable FSM is
proposed based on regular expressions. In combination with several parameters related
to sensor signal patterns the algorithms are adjustable to a range of deployment sce-
narios. The algorithms are provided as both a simulation model and the corresponding
sensor node implementation.

The prototype implementation provides a setup where each sensor node is equipped
with one passive, dual-element infrared sensor (PIR). For evaluation, a prototyping pro-
cessor board and low-cost PIR sensors were used to build two wireless sensor nodes
from commercially available components. A feature of this implementation is that each
sensor node is able to count, on-system and in real-time, the number of passers-by going
in each direction, while requiring relatively little compute power.

A wireless sensor network is described to monitor the count values of distributed
nodes and collect these data at a base station. The base station transmits the count data
to a web-based data collection server, where it can be made available for further use
to applications and client devices, such as smartphones. To enable the configuration of
the sensor nodes to specific installation scenarios, and for the purpose of performance
analysis, a validation framework is presented.

A stochastic state estimation model is considered to resolve the problem of rela-
tively noisy people count measurements by sensors. In particular, the Kalman Filter
is explored as a first approximation, and the corresponding model is evaluated using
MATLAB.

Keywords: people counting, pir sensor, dual-element pir sensor, pattern matching, reg-
ular expression, kalman filter, wireless sensor network



vi



Contents

Acknowledgements iii

Abstract v

1 Motivation and Related Work 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 People Counting Technology . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Scope and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem Definition 5

2.1 People Counting using Dual-Element PIR Sensors . . . . . . . . . . . . 5

2.2 Monitoring, Data Collection of Distributed People Counting Sensor Nodes 5

2.3 Estimation of Space Occupancy . . . . . . . . . . . . . . . . . . . . . 6

3 Theoretical Background 7

3.1 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Automata and Regular Languages . . . . . . . . . . . . . . . . . . . . 8

3.3 Stochastic State Estimation . . . . . . . . . . . . . . . . . . . . . . . . 11

4 People Counting Algorithm for PIR Sensors 13

4.1 PIR Sensor Signal Basics . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Deriving a People Count . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Signal Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Peak Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Counting Algorithm as a DFA . . . . . . . . . . . . . . . . . . . . . . 21

4.7 Counting Algorithm as a Regular Expression . . . . . . . . . . . . . . 24

4.8 Finalized COUNT Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25



viii CONTENTS

4.9 Summary of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Implementation 27

5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 People Counting Sensor Node . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Space Model, Monitor and Observer . . . . . . . . . . . . . . . . . . . 33

5.4 Validation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Space Occupancy Estimator . . . . . . . . . . . . . . . . . . . . . . . 36

6 Evaluation 41

6.1 COUNT Algorithm Performance . . . . . . . . . . . . . . . . . . . . . 41

6.2 PCSN Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusion 47

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Appendix 49

8.1 Evaluation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2 Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3 Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.4 Implementation Reference . . . . . . . . . . . . . . . . . . . . . . . . 52

8.5 Screenshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55



CHAPTER 1

Motivation and Related Work

1.1 Motivation

The purpose of this thesis is to evaluate the use of passive infrared (PIR) sensors for
people counting, with the sensors deployed in a wireless network. The people counting
problem is an interesting problem as it serves as the basis for many commercial and
security applications.

The specific application that motivated this thesis is the allocation of free space in
commuter trains: When boarding commuter trains in a densely populated sub-urban
area, commuters often find themselves boarding the train into the same passenger car
as many others. Consequently it may be difficult to find a free seating place. While the
train can appear overcrowded from a passenger’s local perspective, there might in fact
be a lot of free seats elsewhere. The situation can also fluctuate with different trains and
days such that it becomes unpredictable for the individual commuter to find an “ideal”
place. Using sensor nodes to count passengers automatically could help to improve the
situation: observing the train occupancy would enable a system to indicate available
seats to passengers, even prior to boarding. Directing commuters towards free seats
would allow more convenience for commuters and make better use of the resources
allocated by the train company. More generally, such a system could be integrated in a
broader scenario linking multiple transport types (trains, buses, private cars) such that
passengers could find the best route at any given time.

While preparing for the thesis, it became clear that a cost-efficient, distributed so-
lution to the people counting problem is a precondition to the realization of the above
application scenario. A first review of the research literature indicated that many tech-
nologies used are either too costly (e.g. video cameras), or apply wireless sensor
networks (WSN) primarily to in-network data analysis and distributed counting algo-
rithms, rather than the communication of actual people counts. In consequence, such
systems hold an inherent level of complexity that increases the cost of deployment and
operation for commercial scenarios. This background motivated us to focus the thesis
on finding methods and algorithms, such that all processing and signal analysis, in re-
spect to the counting process, shall be integrated on each sensor node, and the sensor
network shall be applied to communicating final count data.
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1.2 People Counting Technology

People counting is a widely studied and commercially exploited subject. This section
briefly reviews the typical technologies used for people counting:

Video Cameras In [1] the authors describe an approach to people counting (and local-
ization) using multiple video cameras. The focus lies on extracting the size and
moving patterns of individuals passing. By means of motion histograms based on
frame-differenced images, the histograms classify detected movements. Proba-
bilistic correlation is applied to determine a people count. The results of multiple
cameras are joined in order to form a movement vector for each individual rec-
ognized. In contrast, [2] proposes a solution based on a single ceiling-mounted
camera, which identifies people by background extraction of the camera image.
A non-background “blob” is recognized, and its size is estimated and compared
to previously established bounds of people’s pixel dimensions. A people count is
derived from the results of this analysis. The system reaches a claimed accuracy
of 98.5%. The major disadvantage of a camera-based system is that it requires an
ambient light source and relatively powerful compute resources to perform image
processing.

Ultrasonic Sensors The authors of [3] introduce a system employing ultrasonic sen-
sors. Per each observed area a three-node sensor cluster is established, whereby
each sensor node mounts an ultrasonic sensor. Multiple clusters are joined to
cover a wider area. Nodes in each cluster communicate sensor readings by an
RF link to the cluster’s coordinator node. The latter contributes its own sensor
measurements. By means of a distributed algorithm, nodes decide on whether to
count a detected person. The sensor nodes require clock synchronization at the
millisecond level in order to correlate the data exchanged. Despite the availability
of clock synchronization protocols this imposes a disadvantage to this approach.
The system achieves an overall counting accuracy of 90% using a probabilistic
estimate of the total count, despite individual clusters achieving only around 50-
70% accuracy.

Infrared Sensor Arrays A system using infrared (IR) arrays and pattern recognition
algorithms is described in [4]. IR arrays combine a matrix of IR sensors to form
array detectors. As the name suggests the sensor signals are provided as a matrix,
where each element of the matrix corresponds to one IR sensor. Pattern recog-
nition algorithms are able to detect people moving across the sensor’s view at a
claimed accuracy of 95%. This holds true even if two pedestrian’s paths cross, or
people walk in parallel. IR arrays provide a cost-effective solution and also op-
erate without any ambient light source. IR arrays are widely used in commercial
systems1.

1e.g. http://www.pyreos.com/products/people-and-door-counting.html
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Infrared Motion Sensors A people counting system based on PIR motion detectors is
presented in [5]. For each passage monitored, three PIR sensors are installed at
a distance of 0.8m. The sensors are connected to a coordinator by a wireless RF
link. Sensors detect motion events and send these data to the coordinator. The
coordinator infers a people count from correlating the number, phase and time-
difference of peaks found in the signal. The system achieves a rate of 100% to
detect the direction of movement, and accurately detects 89% of the number of
people passing. PIR sensors provide an alternative to IR sensor arrays, however
the cost and effort of employing multiple sensor nodes for each entry/exit point is
a cost-side disadvantage. The goal of this thesis is to develop a system based on
just one PIR sensor and one sensor node per each observed entry/exit point.

Sensor Fusion Results of a building occupancy estimation system applying different
types of sensors is found in [6]. The system consists of camera, CO2 and PIR sen-
sors. It uses a Hidden Markovian Model (HMM) based on an Extended Kalman
Filter (EKF) in order to derive building occupancy. The approach integrates his-
torical data and current sensor readings to estimate the true state of the system,
adjusting for sensor noise (false observations) and stochastic processes, e.g. un-
certain people movement patterns.

1.3 Related Work

This section reviews different approaches specifically applying PIR sensors.

In [7] the authors evaluate a system of multiple PIR sensors2 mounted in two parallel
rows to detect the pedestrian’s moving direction. The sensors are connected to Tmote
Sky nodes and transmit their data to a base station computer for analysis by an echo-state
neural network. The neural network is trained to recognize moving patterns and derives
people counts accordingly. In this thesis we will present an algorithm that recognizes
patterns of movement by analysing the output of only one PIR sensor, and where the
analysis is carried out by the sensor node itself. As a result, there is no subsequent
analysis step to be executed at the base station. This approach is motivated by the less
complex setup in terms of network protocol and hardware requirements.

Several authors point out that PIR sensor signals contain noise, and thus motivate
the need for signal filtering [8, 9]. A moving average filter is proposed in [9] combined
with a movement detection algorithm that adapts to different noise levels in an outside
environment. The authors observe that signal noise is generally of lower frequency than
the signal of moving targets, and that the noise level depends on weather conditions.
To counter this effect, their algorithm adapts an estimated noise level by probabilistic
methods. This contrasts to our experience using dual-element PIR sensors: such sensors
automatically compensate for changes in the environment, and the noise level in general
is of higher frequency than an actual signal.

2Commercially available from Hygrosens, the same vendor that provided the PIR sensors for this thesis.
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[8] develops signal processing algorithms for two dual-element PIR sensors mounted
such that their field-of-view (FOV) is shifted to face opposite directions. The algo-
rithms extract a sensor signal for each passing person by finding and separating higher-
frequency windows. The direction of movement is derived as a function of the phase
shift of the two sensors’ signals. Accordingly, the people count per each direction is the
number of identified windows for each direction. The authors observe that in case of
multiple people walking in a queue the peaks are no longer separable by this approach.
Our algorithm presented in Section 4.7 is able to detect multiple people walking in a
queue as it does not rely on separating signal frequencies (other than for noise reduc-
tion) or signal phase shift. Instead, it identifies the direction of movement based on the
pattern of the first detected movement, and counts the number of subsequent peaks.

Distributed people counting systems using wirelessly connected sensor nodes are
discussed in [3, 5, 7, 9]. The systems employ existing networking algorithms and pro-
tocols, available as part of the hardware platforms and operating system used (Tmote
Sky, Mica2, TinyOS). The ZigBee protocol and corresponding commercial RF modules
are proposed in [5] because the protocol features a low-power operation mode, uses
low data rates and enables to cover a wide area by means of multi-hop data collection.
The same reasons motivate the use of a ZigBee RF module for our data monitoring and
collection approach presented in Section 5.3.

Estimating the real state of a system based on uncertain measurements, such as peo-
ple counts by PIR sensors, is addressed in [10]. In the context of a building evacuation
scenario a non-linear stochastic process and sensor model is developed. An Extended
Kalman Filter (EKF) is used to estimate the true state of room occupancy based on
previously observed occupancy patterns and current measured sensor data. Likewise, a
linear Kalman Filter is employed in [11] for a person tracking and localization applica-
tion. Motivated by these results, Section 5.5 proposes our solution approach to estimate
the true room occupancy.

1.4 Scope and Outline

The main focus of the thesis is on the development of a self-contained People Counting
Sensor Node (PCSN), based on low-cost hardware and using a single dual-element PIR
sensor. The distributed nature of people counting scenarios is taken into account by the
description and realization of a web-based data collection server, as well as by providing
a solution sketch for the problem of stochastic state estimation.

The remainder of the document is organized as follows. Chapter 2 introduces and
defines the problems addressed. In Chapter 3, theoretical background to our solution ap-
proach is presented. The development of algorithms and the technical realization of the
distributed people counting system are the subject of Chapters 4 and 5. An evaluation
of the proposed algorithm and its sensor node implementation is presented in Chapter
6. The thesis concludes in Chapter 7 with a brief discussion of findings.



CHAPTER 2

Problem Definition

2.1 People Counting using Dual-Element PIR Sensors

We first define the term People Counting:

Definition 1 (People Counting). The process of counting the number of people passing
in and out of an observed area during a period of discrete time k0, ...,kn. At each instance
of time k the process results in two counts ck,in and ck,out subject to the condition ck,out ≤
∑

k−1
j=0(c j,in− c j,out).

Next we define the term Dual-Element PIR Sensors. In particular we emphasize the
difference of one-element and two-element PIR Sensors. Note that for the remainder of
this document the term PIR Sensor refers to dual-element PIR Sensors.

Definition 2 (PIR Sensor). Passive Infrared Sensors (PIR) are commonly known as
movement detectors. Such sensors measure the amount of infrared light radiating from
objects passing in their view; a change in the measurement exceeding some defined
threshold is considered a movement. Dual-element PIR sensors connect two pyroelec-
tric detector elements. The sensor signal is equal to the difference of the elements’
voltages. Combined with Fresnel lenses, focusing infrared light coming from differ-
ent angels, such sensors allow for the extraction of directional information of moving
objects [12].

Using Definition 1 and Definition 2 let us define the first problem as follows:

Problem 3 (People Counting using PIR Sensors). Given a system compromised of a
microcontroller connected to a dual-element PIR sensor, determine the count values
ck,in and ck,out at discrete-time instances k.

2.2 Monitoring, Data Collection of Distributed People Count-
ing Sensor Nodes

Let us define the notion of a People Counting Sensor Node (PCSN) and then give the
problem of monitoring a distributed set of such nodes:
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Definition 4 (People Counting Sensor Nodes, PCSN). A device solving Problem 3.
Distributed PCSNs are defined as a set of a predefined number of such devices connected
to a base station by radio. Multiple base stations can be combined to form a network of
distributed PCSNs.

Next we define the terms Observed Space and Space Occupancy:

Definition 5 (Observed Space, Space Occupancy). A defined spatial area SA with pre-
defined entry and exit points j, each of which is observed by a PCSN c j. All PC-
SNs observing an area SA are connected to the same base station. The occupancy
of an observed space is defined as the total number of people present in this space
occk = ∑

k
i=0 ∑

N
j=1(c j,k,in−c j,k,out) where N is the number of the PCSNs observing space

SA.

Based on Definition 4 and Definition 5 we give the following problems:

Problem 6 (Monitoring). Given a set of distributed PCSNs C = {c j : 1 ≤ j ≤ N}, at
the base station monitor and display the count states c j,k,in and c j,k,out of each PCSN
c j ∈C at discrete-time instances k. k shall be chosen such that there is no interference
by multiple PCSNs, in order to combine a collective state of all monitored devices.

Next we extend the concept of monitoring to a network of distributed PCSNs:

Problem 7 (Data Collection). Given a network of distributed PCSNs, collect the count
states of all PCSNs assigned to an observed space SA and derive a combined occupancy
state for this area.

2.3 Estimation of Space Occupancy

Definition 8 (State Estimation). The process of estimating the true (internal, process)
state of a system at discrete-time instances k in light of noisy measurements, where
the process and measurement noises are within the bounds of some defined probability
distribution function.

Deriving from Definition 5 and Definition 8 we define the following problem:

Problem 9 (Estimation of Space Occupancy). Given the data collection of monitoring
results of observed spaces (measurement state), for each space estimate the true occu-
pancy (process state).



CHAPTER 3

Theoretical Background

This chapter provides a brief review of the theoretical background to the algorithms de-
scribed in Chapter 4. The following sections are based on [13, 14, 15, 16] as referenced
in the respective context.

3.1 Digital Filters

This section reviews the purpose and mathematical background of digital filters. The
purpose of a filter is to separate certain frequencies in a signal in order to either remove
undesired noise or extract information. Digital filters are relevant to the system pre-
sented in this thesis to reduce noise present in the sensor signal, and to extract relevant
information from this signal.

There are several basic types of filters:

• low-pass filters remove all frequencies below a specified frequency.

• high-pass filters remove all frequencies above a specified cut-off frequency.

• band-pass filters remove all frequencies above and below specified lower and
higher pass frequencies, and thus let a certain band of frequencies pass the filter.

• band-reject filters work the same way, but reject the band of frequencies within
the specified lower and higher bounds.

While filters separate frequencies represented in the frequency domain, all filters used
in this thesis operate on the signal in the time domain. Such filters can be implemented
by two distinct methods which are described in the following sections.
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3.1.1 Finite Impulse Response Filters

FIR (finite impulse response) [13] digital filters are based on mathematical convolution
of the filter’s kernel and the input signal, i.e.

y[k] =
M−1

∑
j=0

h[k] · [k− j] (3.1.1)

where x[k] is the sensor signal of discrete time k as converted by the ADC1, h is the
filter kernel, M is the size in samples of h, and y[k] holds the convoluted sum, that is the
filtered sample of discrete time k. The filter kernel defines the impulse response of the
filter, which is its output if the input is a delta function δ . A delta function is an input
signal whose samples ui are zero except for sample u0. Convolution of a signal and a
filter kernel result in the filtered output signal y.

3.1.2 Infinite Impulse Response Filters

IIR filters [13] apply recursion rather than convolution to calculate the filter’s output,
defined as

y[i] = a0x[i]+a1x[i−1]+ ...+anx[i−n]+b1y[i−1]+ ...+bny[i−n] (3.1.2)

where a,b are the vectors of recursion coefficients. Using recursion coefficients a,b
allow a IIR filter to “simulate” a mathematical convolution with less computational
effort. IIR filters calculate the current output sample y[i] by taking into account both
the signal samples x[·] and previously calculated output samples y[i− n], 1 ≤ n ≤ 12,
instead of only unfiltered samples as a FIR filter does. Each coefficient is said to be a
pole of the filter, and the number of coefficients is the number of poles (or order) of
the filter. A single-pole low-pass filter is calculated by using coefficients a,b such that
a0 = 1−x, b1 = x where 0 < x < 1. According to [13], single-pole filters are analogous
to a lower-pass filter implemented as a RC-network in hardware: “x is the amount of
decay between adjacent samples (...), the higher the value of x, the slower the decay.”

Note that the IIR filter described in Section 4.4 is a four-pole Butterworth filter
whose filter coefficients are based on applying the Laplace-transform and z-transform
to an impulse response [13].

3.2 Automata and Regular Languages

This section reviews the concepts of automata and regular languages. Both concepts
are relevant to the people counting system and in particular in relation to a solution of
Problem 3.

1Analog Digital Converter
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3.2.1 Deterministic Finite Acceptors

A Deterministic Finite Acceptor (DFA) [14] is an automaton that accepts a series of
discrete-time events e1, ...,en iff there is a transition function δ defined for the transition
from the current state to the next state as a result of event ek. Formally, the DFA accepts
the input symbol yk generated by event ek iff δ is defined for

δ (qi,yk) = qi+1, i≥ 0 (3.2.1)

where qi defines the current state of the automaton. The automaton is formally specified
by

M = (Q,Σ,δ ,q0,F) (3.2.2)

where Q is the set of all internal states, Σ is the set of valid input symbols (generated by
some event ek), δ : Q×Σ→Q is the transition function, q0 ∈Q is the initial state, and
F ⊆Q is the set of final states.

Alternatively, Σ can be given as Σ∗ to denote a set of strings of symbols in Σ. Then
the transition function becomes δ ∗ : Q×Σ∗→Q, and is said to be the extended transi-
tion function where the second argument is a string rather than just one symbol.

DFAs are often referred to as Finite State Machines (FSM), and we will use the two
terms interchangeably.

3.2.2 Regular Languages and Regular Expressions

An automaton M that accepts all strings defined by symbols in Σ is said to generate
the language L(M) = {w ∈ Σ∗ : δ ∗(q0,w) ∈ F). A language L is said to be regular iff
there exists some DFA such that L = L(M). A regular language is therefore an exact
representation of a DFA, and the two concepts can be used interchangeably.

A regular expression r defines a language L by combining the set of symbols w ∈ Σ

using the following notation. If Σ = {a,b,c} then let the regular expression r define
L(r) as follows:
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r L(r) Meaning of special character

a|b L(r) = {a,b} | denotes alternative of a or b

a?b L(r) = {ab,b} ? denotes optionality of a before b

a+b L(r) = {ab,aab,aaab, ...} + denotes the occurrence of a for
n times, n≥ 1

a∗b L(r) = {b,ab,aab,aaab, ...} ∗ denotes the occurrence of a for n
times, n≥ 0

(ab)+ c L(r) = {abc,ababc,abababc, ...} () denotes grouping of symbols

Table 3.2: Definition of regular languages by regular expressions

Note that the special characters |?∗+() of this notation can be chained by all sym-
bols defined in Σ such that a language of any length can be generated.

In conclusion, regular expressions define DFAs: a regular expression defines a
regular language, and a regular language is the exact representation of a DFA. For
example, let Σ = {a,b,c) and r = (ab) + c∗, which generates the language L(r) =
{abc,ababc,abababc, ...,abc,abcc,abccc, ...}. Then L(r) is the equivalent of the DFA
M = ({q0,q1,q2},{a,b,c},δ ∗,q0,{q2}) where δ ∗ is defined for

δ
∗(q0,ab) = q1

δ
∗(q1,ab) = q1

δ
∗(q1,c) = q2

δ
∗(q2,c) = q2

3.2.3 Graphical Representation

For the graphical representation of a DFA we use vertices to represent states and edges
to represent the transitions between states, as defined by the transition function. For
example, let M = ({q0,q1,q2},{a,b,c},δ ,q0,{q2}) where δ is defined for

f (q0,a) = q0

f (q0,b) = q1

f (q1,c) = q2

Then the following transition graph represents this DFA (Figure 3.1):
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q0

a

q1
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Figure 3.1: A graphical representation of a DFA as a transition graph.

3.3 Stochastic State Estimation

This section reviews the definition and mathematical concepts of discrete-time stochas-
tic systems. In particular, we review the Kalman Filter as a means to minimize the
estimated error in a prediction of the future system state. Stochastic state estimation
is relevant to the people counting system in order to improve the counting accuracy of
multiple sensors, as stated in Problem 9. Section 5.5 makes use of the material presented
here.

3.3.1 Discrete-time Stochastic System

The people counting system presented in this thesis can be seen as a discrete-time
stochastic system [15], defined in its general form as

xk+1 = f (xk,uk,k)+wk (3.3.1)

yk = g(xk,uk,k)+ vk (3.3.2)

where matrix xk denotes the state of the system at discrete-time instance k, which in our
case consists of the true “in” and “out” or “occupancy” scalar values. Matrix yk denotes
the measured state at discrete time k, consisting of the measured “in” and “out” counts
(and possibly other information that is of relevance and can be measured). Function
f (·) denotes the state transition function describing the process transition of state xk
to state xk+1, using input (control) values uk. Function g(·) relates the state xk to the
measurement yk. wk,vk represent the process and measurement noises, respectively.

In words, given the linear or non-linear functions f (·) and g(·), stochastic state
estimation attempts to predict the future state of a system. For the linear case the above
state equations are transformed into the following equations:

xk+1 = Akxk +Bkuk +wk (3.3.3)

yk = Hkxk + vt (3.3.4)

where A is the state transition matrix, B is the input transition matrix, and H is the
measurement matrix which relates the current state xk to the measurement yk. Note that
all variables in these equations are matrices.



12 CHAPTER 3. THEORETICAL BACKGROUND

3.3.2 The Kalman Filter

The Kalman Filter is a stochastic state estimator algorithm which is widely used in in-
dustrial applications to control stochastic systems. The algorithm implements a system
of linear stochastic difference equations, which minimize the error covariance of the
state estimation. The discrete Kalman Filter algorithm consists of five steps at each
time instance k as defined in [16]:

1. State projection:

x′k = Axk−1 +Buk (3.3.5)

2. Estimation error covariance projection:

P′k = APk−1AT +Q (3.3.6)

3. Computation of the Kalman gain (gain of the filter):

Kk = P′kHT (HP′kHT +R)−1 (3.3.7)

4. Correction of the estimate with measurement yk :

xk = x′k +Kk(yk−Hxk) (3.3.8)

5. Correction of the estimation error covariance:

Pk = (I−KkH)P′k (3.3.9)

In the above equations −1 denotes the inverse of a matrix, and T means the transpose of a
matrix. All parameters A,B,P,H,K, I,Qand R are matrices. Note that unlike Equations
3.3.3, 3.3.4, we assume A,B,Q,R to be constant in our scenario. P denotes the current
error covariance of the estimation, I is the identity matrix and K denotes the Kalman Fil-
ter gain. The Kalman Filter assumes a linear system with zero-mean (“white”) Gaussian
process noise covariance Q and measurement noise covariance R. Q and R are defined
as follows:

Q = E[wkwT
k ], R = E[vkvT

k ] (3.3.10)

where E[·] means the expected value of the process and measurement noise. The
Kalman Filter requires random variables wk,vk to be independent of each other at each
time instance k, and zero on average, i.e.

wk ∼ N(0,σ2(w)) (3.3.11)

vk ∼ N(0,σ2(v)) (3.3.12)

Remark. The Extended Kalman Filter (EKF) is the non-linear equivalent of the discrete
Kalman Filter presented above. As this thesis does not make use of the EKF we refer
the reader to [16].



CHAPTER 4

People Counting Algorithm for PIR
Sensors

The focus of this chapter is to analyse the signals by PIR sensors, and to develop an
algorithm for people counting. The chapter is organized as follows. To solve Problem 3,
we start by analysing the signal patterns of PIR sensors, in particular focusing on those
aspects relevant to the people counting problem. Algorithms are developed step-by-
step, taking into account the insights gained in the process. All algorithms are formally
specified and described in pseudo-code.

4.1 PIR Sensor Signal Basics

Typical commercially sold PIR sensors emit a binary signal, where a HIGH (binary 1)
signal indicates no movement, and a LOW (binary 0) signal indicates the detection of
movement by the sensor. For our application this information is of little value, as we
need to detect the direction of the movement. Therefore we use PIR sensors provided
by Hygrosens, which in addition to the digital signal also provide an analogue output
(details see Section 8.2).

PIR sensors are built from two infrared segments, arranged along a horizontal split.
The sensor’s analogue signal equals the difference of the infrared radiation received on
each side of the horizontal split, which allows to detect on where in the sensor’s field
of view a movement originated. Figure 4.1 illustrates the unfiltered analogue signal
emitted from the sensor in the event of a single person passing from left to right and
back again. The signal as shown was sampled at 50Hz. The pattern reflects the IR
radiation, as seen by the sensor, for a single person moving from left to right (range
3000− 4000ms), and right to left (range 6000− 7500ms). The continuous signal is
interpolated for readability.

As is easily visible from the figure the signal pattern has several different compo-
nents:

1. Signal amplitude. The signal amplitude is a function of the distance of the sensed
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Figure 4.1: Unfiltered PIR sensor analogue output for a single person traversing from
left to right and back again. The midpoint of the signal indicates no movement, whereas
signal peaks above and below the midpoint refer to maximum incident IR radiation to
the respective side of the PIR sensor.

object passing in front of the sensor. In general, the closer the object to the sensor,
the higher the amplitude [17], although the speed of the passing object may also
influence the amplitude [8].

2. Signal frequency. The signal frequency is an indication of the speed of the passing
object. According to the vendor documentation, the signal frequency for our PIR
sensors has a bandwidth from 0.2Hz to 10Hz.

3. The phase of the signal (as visible in the time-domain). The phase is an indication
of the side of the sensor where a movement was detected.

The direction of movement can be detected by analysing the phase of the signal. We
simply approximate this information by using the fact that the PIR sensors output a
signal at ≈ VCC/2 while no movement is detected, and the side S of the movement is
given by

S =


le f t ifs≥VCC/2+ v
right ifs≤VCC/2− v
silent otherwise

(4.1.1)

where s indicates the signal’s amplitude and v is a noise threshold above and below VCC
2

[5]. Based on our experiments a threshold of v ∼ 260mV works best. Note that sides
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right, left are relative to the mounting direction and can in practice be exchanged for
each other.

The PIR sensors used in the prototype cover a detection range of r = 12m at a
horizontal angle of ±50°. Consider Figure 4.2: assuming the typical installation sce-
nario will use sensors ceiling- or side-mounted in entrance doorways of maximum
height/width of 2.5m, we can estimate the distance in relation to the sensor’s range
as follows. Let the maximal distance dmax =

(2.5−h)
sin(180−90−50) , 0.5 ≤ h < 2.5 → 0.02 ≤

dmax < 3.2m, where h is the person height. Then the maximum fraction r′ of the sen-
sor’s range covered by our application will be r′ = dmax

r ≤
1
3 r. Even though the sensor’s

amplitude is not strictly linear to the distance [18], we consider the sampled signal for
any movement will be in the range vadc = 80 < d(1− r′) · 2adcw

2 e ≤
2adcw

2 = 512, where
adcw = 10 is the precision of the ADC in bits and vadc = dadcw · v

VCCe is the signal noise
converted to its digital representation. Therefore we choose to ignore the variation of the
sample signal (due to person height) for the purpose of this discussion. Note we use the
signal noise v as a lower bound because the sensors report the difference of the incident
IR radiation between the two IR elements rather than an absolute value for each. Thus,
in practice, the signal can be well below the theoretical minimum of d2

3 ·
2adcw

2 e= 342 at
r′ = 1

3 , however, we consider all signals above the noise level as by Equation 4.1.1.

We will later show that the signal frequency is of marginal importance in our appli-
cation since we are only interested in the fact that a passage has occurred, but not in how
fast this happened. However, the frequency bandwidth is of relevance to the sampling
frequency of the sensor as it provides a natural bound in terms of the Nyquist frequency.
Hence, the sample frequency shall be at least fmax · 2 ≥ 20Hz where 0.2 ≤ f ≤ 10 is
the PIR sensor’s frequency spectrum. Based on our experiments f = 50Hz yields a
sufficient resolution and sample spacing in the time domain.

Figure 4.2: Assumed maximal distances and minimal person height. The distances
allow to approximate the sensor signal strength to fall within a limited range despite
people height. That is, we can ignore variation in the signal due to person height. Note
that this may no longer be true if the door height exceeds the given limits.
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4.2 Deriving a People Count

Consider again Figure 4.1 depicting the PIR sensor output for one person, passing once
in each direction. We can see two distinct peaks at the lowest and highest points of the
amplitude range. The peaks signify the moment of strongest incident IR radiation on
the left or right side of the sensor’s field-of-view, respectively. The passages from left
to right and vice versa are clearly visible: for each passage, the signal peaks on the from
side, next on the to (opposite) side. From this analysis, the people count seems to equal
the number of transitions t( f rom, to). Unfortunately, this rule is not always applicable
in the case of multiple people passing in a queue and with little distance, as will be
discussed next.

Consider Figure 4.3. It depicts the signal output for four people passing by the sen-
sor from left to right. Unlike the single-person example, no specific left/right passages
are visible, except for the first. Further, and unlike the single-person passage, the sig-
nal does not provide clues to separate one person from the other. Clearly, counting the
transitions as in the first example will produce false positives.

Looking further, the signal contains several high frequency ranges. The signal fre-
quency corresponds to the angular speed of each person passing by. Since we are in-
terested in the number of people we might simply count the number of distinct high-
frequency areas. However, this turns out to be impractical as we can see in Figure 4.4:
applying a high-pass filter correctly yields the high-frequency areas, but these areas
are too close to each other to count the number of passers-by. Therefore we conclude
that isolating the high-frequency areas of a sampled signal is not practical to solve our
problem.

Let us consider again Figure 4.3, but this time focus on low-frequency peaks. Four
peaks are clearly visible in the amplitude range of 0 ≤ s ≤ 200 and two peaks in the
range 900≤ s≤ 1023: each of these peaks is a result of one person passing the sensor at
a distance close enough to yield an amplitude above the silent threshold level. The four
peaks exactly reflect the number of people arriving at the passage’s opposite side. Recall
that samples are spaced 1

50 s = 20ms apart, and consider the distance between these
peaks: each person takes between 0.5s and 1s to pass. This is reasonable considering the
sensor’s range we are interested in, the installation height, a walking speed of ∼ 5km/h,
and an average person height of 1.7m.

In conclusion, to count the number of people passing in a queue at short distance,
the sensor signal must be interpreted from the first detected passage, coming from a
silent state. The first change in amplitude indicates the from direction, and the imme-
diate subsequent amplitude peak on the opposite side indicates the to direction. Any
subsequent low-frequency peak indicates one more person passing in line. The counting
sequence completes with a silent phase.
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Figure 4.3: Signal pattern for four people in a row traversing from right to left.

4.3 Basic Algorithm

As shown in the last section the raw sensor signal allows for a visual analysis by count-
ing the number of low-frequency peaks on one side of the sensor, after detecting the
first passage. The COUNT algorithm (Algorithm 1) applies this insight. Assume the
signal has been analysed for low-frequency peaks outside the silent amplitude range.
The algorithm works in two stages:

1. Identify a first passage left/right or right/left. This becomes the direction of move-
ment.

2. Count the number of transitions c = (direction) by counting the peaks on the to
side of the sensor.

While this basic algorithm works correctly for the previously identified patterns of PIR
signals, it is not sufficient for practical applications due to several reasons:

1. Distortions and noise in the signal are not accounted for and will lead to false
peak identification and thus invalid count values. An example is given in Fig-
ure 4.5, where a single person has passed the sensor yet yielding two peaks on
the to side of the amplitude range. Such a pattern may be caused by a rela-
tively slow moving person, where the sensor indicates IR radiation at different
angles. This kind of distortion can be eliminated by filtering the signal to in-
clude only the relatively low-frequency components indicating amplitude shifts.
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Figure 4.4: Signal pattern for four people in a row traversing from right to left, with
high-pass filter applied (filtered signal adjusted for visual overlay).

2. The first transition from an identified from peak to an adjoint to peak must happen
within a limited amount of time, that is below time distance t ≤ tdmax. If too much
time passes between these two peaks the algorithm should ignore the previous
peak and assume it has started from a silent position. Applying this rule simplifies
the handling of fast changes in the direction of movement, such as when a group
of people passes by the sensor in one direction first, followed by another group
that walks in the opposite direction.

3. Multiple peaks in short distance such as in Figure 4.5 may cause false counts. To
limit the number of counts within a sequence, a minimal time distance t ≥ tdmin

between peaks must be observed.

4. To distinguish people standing/waiting in the sensor’s field of view, vs. someone
actually passing it, an absolute distance of peaks in terms of the signal’s amplitude
|s(t)− s(t−1)| ≥ amin should be observed (Figure 4.6).

The following sections discuss improvements to the COUNT algorithm to alleviate these
problems. In particular, Section 4.4 introduces signal filtering to reduce distortions
and noise; Section 4.5 provides a peak detection algorithm; Section 4.6 describes the
implementation of the algorithm as a finite state machine, and Section 4.7 extends this
idea by using regular expressions to enable run-time adjustments of the state machine.
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Algorithm 1 Basic COUNT algorithm

1 f u n c t i o n COUNT( s ) :
2 / / i n i t i a l i z e
3 c ( LEFT ) :=0
4 c (RIGHT) :=0
5 from :=NONE
6
7 / / a n a l y s e s i g n a l
8 f o r t := 1 to l e n g t h ( s )
9 i f s ( t ) i s " s i l e n t " then

10 d i r e c t i o n := SILENT
11
12 / / s t a t e 1 : i d e n t i f y f i r s t peak
13 i f d i r e c t i o n ==SILENT and s ( t ) peaks LEFT and s ( t +1) peaks RIGHT
14 d i r e c t i o n :=LEFT
15 e l s e
16 i f d i r e c t i o n ==SILENT and s ( t ) peaks RIGHT and s ( t +1) peaks LEFT
17 d i r e c t i o n :=RIGHT
18 e l s e
19 d i r e c t i o n := SILENT
20
21 / / S t a g e 2 : d i r e c t i o n i n d i c a t e d , c o u n t t h e number o f p e o p l e
22 i f d i r e c t i o n i s LEFT | RIGHT and s ( t ) peaks LEFT | RIGHT
23 c ( d i r e c t i o n ) += number of peaks on " to " s i d e
24 end
25 r e t u r n c

4.4 Signal Filter

The signal filter’s purpose is to smooth the raw sensor signal such that the COUNT

algorithm is able to identify amplitude peaks. As discussed in the previous sections the
raw signal contains both noise from the sensor’s electrical circuit, and high-frequency
components which originate in the speed of movement of a person or object passing. A
FIR 50-point low-pass (moving-average) filter to remove both noise and high-frequency
components yields signal u as shown in Figure 4.7. Empirical testing indicated the ideal
cut-off frequency of the filter at 1

35 ∼ 0.7Hz to exclude all high-frequency components,
including signal noise. The FILTER algorithm implements this filter of either FIR or IIR
type. Using the filtered signal the COUNT algorithm is able to identify from and to sides
of the signal at any given sample.

4.5 Peak Detection

Peak detection according to [19] is the process of identifying a peak in a given signal
u = {u0, ...,ut} where each sample ut is considered to satisfy a peak condition. For any
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Figure 4.5: PIR signal with multiple peaks for a single person traversing in one di-
rection. The pattern yields two peaks, and thus causes the basic COUNT algorithm
(Algorithm 1) to count two people. This can be alleviated by applying a filter to the
sensor signal, such that there is only one peak.

given sample ut we derive the standard deviation

σt =

√
1

2sw

t+sw

∑
i=t−sw

(u′i−m) (4.5.1)

of all samples u′ = {us : t− sw < s < t+ sw}, where sw is the number of samples before
and after ut (i.e. window width), m is the mean of all samples in u′, that is

m =
1

2sw+1

2sw+1

∑
i=1

u′i (4.5.2)

A peak is identified for all samples ut whose variance vt = |ut −m| ≥ σ . Statistically,
the idea is to identify all samples which exceed the threshold of one standard deviation
of their ±sw neighbours. All peaks within the signal are identified accordingly as P =
{pt : ut ∈ u, vt ≥ σ}. The PEAK algorithm (Algorithm 2) is implemented accordingly.
Note that

p[t] =

{
u[t] if peak identified
⊥ otherwise

, ⊥denotes no peak. (4.5.3)
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Figure 4.6: PIR signal for people waiting in front of sensor (no passage). The signal
peaks are relatively close and decreasing in absolute distance as compared to an actual
passage. This insight can be applied to reduce the number of false counts.

4.6 Counting Algorithm as a DFA

The counting algorithm can be considered a deterministic finite acceptor (DFA)

M = ({SILENT,FROMLEFT,FROMRIGHT,CR,CL},
{M,L,R, I},δ ,SILENT,{SILENT}) (4.6.1)

where δ is defined for

δ (SILENT,L) = FROMLEFT (4.6.2)

δ (SILENT,R) = FROMRIGHT

δ (FROMLEFT,R) =CR

δ (CR,L) = FROMLEFT

δ (CR,R) =CR

δ (CR, I) = SILENT (continued)
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Figure 4.7: Filtered signal using a FIR 50-point moving average filter. Note both the
input signal and the filter output have been interpolated to form continuous lines for
visual emphasis of the differences.

δ (FROMRIGHT,L) =CL

δ (CL,R) = FROMRIGHT

δ (CL,L) =CL

δ (CL, I) = SILENT

δ (FROMLEFT, I) = SILENT

δ (FROMRIGHT, I) = SILENT

Using the output of the PEAK algorithm (Algorithm 2), COUNT assigns each peak pt ∈P
a character ct ∈ Σ according to the rules of Equation 4.1.1, where t is the discrete time.
The symbol I (“ignore”) is used to denote a peak pt which has too large a time distance
to the previous peak, that is for its peak time pti it holds that pti− pti−1 > tdmax. Two
associated counters cright ,cle f t keep track of the number of transitions to states CR and
CL, respectively.

In words, SILENT is the initial state and a state transition to SILENT occurs upon
processing a sample whose time distance to the previous peak is larger than the thresh-
old, tdmax. A state transition to FROMLEFT occurs upon detecting a peak on the left
of the signal amplitude range, and a state transition to CR occurs subsequently as many
times as required, until a transition to SILENT is raised. The same applies respectively
to the states FROMRIGHT and CL.
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Algorithm 2 PEAK algorithm to detect peaks in the signal

1 f u n c t i o n PEAK( u , sw ) :
2 I n i t i a l i z e P={ }
3 f o r u [ t ] in u begin
4 u ’ := {u [ t−sw ] , . . . , u [ t ] , u [ t +sw ] }
5 sd := STDDEV( u ’ )
6 m := MEAN( u ’ )
7 i f | u [ t ]−m| > sd t h e n
8 i n s e r t u [ t ] i n t o P
9 end

10 r e t u r n P

SILENT

FROMLEFT

L

FROMRIGHT

R

CR

R

I

L

R

CL

L

I

R

L

Figure 4.8: The DFA to implement the COUNT algorithm.

Implementation Concerns

Our first implementation of the COUNT algorithm used this DFA as a hard-coded con-
struct. This soon proved to bring with it several disadvantages, in particular:

• Experiments indicated that some installation scenarios might require alternative
state transitions, e.g. due to different spatial characteristics of the environment
where the sensor node is installed. For example, if the sensor node is installed
such that one side of it is exposed to direct sunlight, whereas the other side is in
the shadow. As a result, the signal amplitude for peaks changes. In this case,
the sensor may no longer be able to accurately detect a transition from SILENT
to FROMLEFT, as it would rather indicate a transition from SILENT to a peak
around the midpoint of the sensor’s signal range. Such a scenario would require
the change of the state machine’s implementation.

• Any changes to the state machine are cumbersome and error-prone to implement,
because the code has to be rewritten to match the new scenario, and each state
transition has to be coded explicitly.
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As an alternative the next section considers an implementation where the FSM is im-
plemented by means of a regular expression.

4.7 Counting Algorithm as a Regular Expression

The DFA introduced in Section 4.6 can be described as a regular language. Let

Σ = {ε,R,L, I}. (4.7.1)

define a set of symbols, where ε is the empty input. As in the case of the DFA, algo-
rithms PEAK, COUNT are used to assign each peak pt ∈ P a symbol ct ∈ Σ according
to the rules given by Equation 4.1.1. Again, counters cright and cle f t keep track of the
respective number of transitions. A state string s =

⋃
ct is built and evaluated against

the following regular expressions r f rom:

• Transitions are counted in cle f t given transitions SILENT →FROMLEFT →CR
and any subsequent state CR, which is the equivalent to the regular expression
rle f t = I +LR(L?R)∗

• Transitions cright are counted given transitions SILENT →FROMRIGHT →CL
and any subsequent state CL, which is the equivalent to the regular expression
rright = I +RL(R?L)∗

• State SILENT is equivalent to the regular expression Rsilent = I+

Implementation Concerns

Note the split of the DFA into three partial regular expressions for each state SILENT,
FROMLEFT, FROMRIGHT. This is a result of the requirement to increase the counters
on particular state transitions: using different regular expressions simplifies the test for
each transition to the CR and CL states, respectively1.

Implementing the COUNT algorithm based on regular expressions instead of a hard-
coded automaton has the advantage that modifications become a matter of introducing
respective regular expressions. For new states the alphabet can be easily extended and
aligned with new rules to assign symbols to observed signal patterns. The algorithm as
such is left unchanged.

In the context of our scenario this introduces the possibility to implement a dynamic
configuration mode, whereby a sensor node can be configured at run-time to match a
particular installation’s needs. Thus it is possible to use the same node for multiple
scenarios without the need for reprogramming. Another advantage is that regular ex-
pressions can be implemented efficiently in hardware, hence provide for a cost-optimal
and high-throughput implementation on an embedded system.

1Note some implementations of regular expression matching require to specify start and end-of-string
matchers, that is rle f t and rright start with a caret symbol (^) and rsilent ends with a $ special character.
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4.8 Finalized COUNT Algorithm

Taking into account the previous sections, we can now specify the finalized COUNT

algorithm (Algorithm 3) as follows. The algorithm uses four stages:

1. Apply a low-pass filter to the input signal to reduce signal noise and extract the
information indicating an object passing by the sensor.

2. Identify the signal peaks pt as those samples that identify either the beginning of
a traversal, or a subsequent peak on the opposite side.

3. Assign each peak a character of the regular language alphabet Σ of the counting
state machine, and build a state string s =

⋃
ct .

4. Use the regular expressions Rright , Rle f t , Rsilent to identify patterns in the state
string. On a match, count the respective traversal (or ignore the peak in the case
of a SILENT state).

Algorithm 3 The finalized COUNT algorithm (part 1)

1 FUNCTION COUNT( s ) :
2 # i n i t i a l i z e
3 c ( l e f t , r i g h t ) = 0
4 c ( r i g h t , l e f t ) = 0
5 pt_max = 100 # max# samples between two peaks
6 s = " " # s t a t e s t r i n g
7 s i = 0 # s t a t e s t r i n g i n d e x
8 MIDPOINT = ADC(VCC/ 2 ) # d e f i n e t h e ADC m i d p o i n t
9 MIDTHRES = 80 # +/− 80 (2 x80 <= 169)

10 ABSTHRES = 150 # minimal a m p l i t u d e d i s t a n c e
11 MAXDIST = 100 # maximal t ime d i s t a n c e
12 MATCH_LEFT = / I +LR( L?R) * /
13 MATCH_RIGHT = / I +RL(R?L ) * /
14 MATCH_SILENT = / I +$ / # on ly match a t end of s t r i n g
15 # S t a g e s 1 ,2
16 y = FILTER ( s )
17 p = PEAK( y )
18 # S t a g e 3 ,4 a n a l y s e s i g n a l
19 f o r ( each peak t in p )
20 i f p t [ t ] − p t [ t −1] <= MAXDIST and ( p t−p t [ t −1] > ABSTHRES) then
21 # S t a g e 3
22 s i = s i + 1
23 i f p [ t ] − MIDPOINT > 0 then s [ s i ] = "L"
24 i f p [ t ] − MIDPOINT < 0 then s [ s i ] = "R"
25 i f abs ( p [ t ] − MIDPOINT) <= MIDTHRES then s [ s i ] = "M"
26 ( c o n t i n u e d )



26 CHAPTER 4. PEOPLE COUNTING ALGORITHM FOR PIR SENSORS

Algorithm 4 The finalized COUNT algorithm (part 2)

27 ( c o n t i n u e d from p a r t 1 )
28 # S t a g e 4 a ) l e f t / r i g h t s t a t e s
29 i f matches ( / MATCH_LEFT/ , s ) then
30 c ( l e f t , r i g h t ) += 1
31 e l s e
32 i f matches ( / MATCH_RIGHT/ , s ) then
33 c ( l e f t , r i g h t ) += 1
34 e l s e
35 # i g n o r e t h e sample
36 i f p t [ t ] − p t [ t −1] > pt_max then
37 s [ s i ] = " I "
38 # S t a g e 4 b ) s i l e n t s t a t e
39 i f matches ( / MATCH_SILENT / , s ) then
40 # r e s e t t h e s t a t e s t r i n g ( b u t s t a r t in s t a t e I )
41 s i = 1
42 end f o r
43 r e t u r n c

4.9 Summary of Parameters

Several parameters were introduced for algorithms FILTER, PEAK, COUNT. Table 4.2
provides an overview of all parameters.

Parameter Mnemonic Description

2ADCw

2 MIDPOINT Midpoint value of ADC range, sensor silent state

v MIDTHRES Noise threshold in sensor silent state (in ADC range)

amin ABSTHRES Minimal absolute distance between peaks (in ADC range)

tdmax MAXDIST Maximal time distance between peaks (number of samples)

tdmin MINDIST Minimal time distance between peaks (number of samples)

sw PEAKWDTH 1
2 width of window considered for peak detection (samples)

rle f t MATCH_LEFT Regular expression for states FROMLEFT,CL

rright MATCH_RIGHT Regular expression for states FROMRIGHT,CR

rsilent MATCH_SILENT Regular expression for state SILENT

Table 4.2: Summary of parameters used by algorithms FILTER, PEAK, COUNT.
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Implementation

In this chapter we discuss the implementation of the algorithms in the C-language in
order to program a sensor node, an embedded system with limited computing and mem-
ory resources. An overview of the validation framework is presented, which enables the
comparison and validation of the performance of algorithms as implemented in the C
and R programming languages.

In solving Problem 6 and Problem 7 the technical aspects of a monitoring applica-
tion and a data collection server are summarised. To conclude, we present a solution
sketch to the space occupancy estimation Problem 9. The Appendix lists reference in-
formation and technical details.

5.1 System Overview

Figure 5.1 depicts the architecture of the system. The system consists of the following
elements.

People Counting Sensor Nodes A People Counting Sensor Node (PCSN) uses a double-
element passive infrared sensor (PIR) connected to a microcontroller. The micro-
controller continuously analyses the PIR’s output signal to detect and count the
number of people passing it. A successful pass is a traversal from one side of the
PIR’s field of view (FOV) to the other. Each pass increases the count in either the
left or the right direction as seen from the PCSN’s installation point. The PCSN
periodically transmits the determined number of passes to a base station in the
Sensor Network.

Sensor Network The Wireless Sensor Network (WSN) is a hierarchical or mesh-style
topology of sensor nodes, in particular PCSNs. Each PCSN is connected to a base
station via the ZigBee network protocol1. The protocol provides the infrastructure
for node connection, routing and data collection. The WSN’s base station has a

1Specified by the ZigBee Alliance (http://www.zigbee.org) and based on the IEEE 802.15.4 standard
for low-rate wireless personal area networks.
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double role: First, it acts as the sink node in the sensor network. Second, it is
the gateway to the web-based space observer. It collects the count data from all
PCSNs and forwards these to the web-based Space Observer.

Space Model and Monitor The Space Model defines the physical distribution of PC-
SNs to cover a specific area for which to count people and derive the occupancy
level. The Monitor is an application installed on the WSN’s base station to col-
lect all count data of associated PCSNs, and to forward these observations to the
web-based space observer.

Web-based Space Observer The Space Observer allows for the definition of multiple
(spatial) spaces. For each space the server records the “in” and “out” counts
and calculates the current occupancy of each defined space by use of the Process
Estimator. The occupancy is measured as an absolute number and related as a
percentage to the known capacity of an area.

Occupancy Estimator The space model serves as the basis for the Occupancy Esti-
mator to estimate the occupancy of each space. Because the PCSNs’ count data
are diluted by measurement noise (false counts), the occupancy of a space cannot
simply be calculated. Instead, a stochastic process is assumed, and the occupation
is estimated by the use of a stochastic process estimator, such as the Kalman Filter
(Section 5.5). The space model defines a space as some spatial area that is ob-
served by sensors for the number of people entering (“in”) and leaving (“out”) the
area. The stochastic process assumes noisy measurements of in and out counts
(the process measurement), and derives an estimation of the actual occupation
(process state) for each space. This data can then be used to display an occupa-
tion of spaces to the user e.g. via smartphone user interface.

Smartphone User Interface The Smartphone User Interface is supposed to signify
some end-user device capable of querying the web-based space observer. It is
listed here for completeness but is not realized as part of this thesis.

Validation Framework The validation framework provides the means to analyse the
PCSN’s performance off-line. That is, the validation framework provides algo-
rithms implemented in the R-language and allows to analyse their respective C-
language implementation output based on previously recorded data.

5.2 People Counting Sensor Node

For programming the prototype sensor nodes, the algorithms were transformed from
their R language implementation into the C language. This chapter first introduces the
hardware setup, and next outlines the changes applied due to the specific constraints of
the sensor node as an embedded system.
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ZigBee 802.15.4
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Web (IP-network)
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Figure 5.1: The architecture of the distributed people counting system. The People
Counting Sensor Nodes (PCSNs) are positioned at entry/exit points of an area to be
observed to count the number of people entering and leaving. The Monitor acts as the
network’s base station, and transmits the count values to the web-based Space Observer.
The Occupancy Estimator determines the true occupancy of the system to minimize the
error in the final result. The result is made available to client applications and devices,
e.g. running on smartphones.

5.2.1 Hardware Configuration

For custom-development of the sensor nodes, the Arduino2 platform was used as it pro-
vides a configurable and programmable processor board, which can be easily combined
with commercially available production-quality sensors and other electronic compo-
nents. The sensor nodes evaluated for the PCSN carry 1-2KB of main memory and a
16MHz-operated ATMEGA168 or ATMEGA328 processor. Each sensor node consists
of the processor board, a PIR sensor and a radio module for communication with the
base station. The CPUs operate on a 5V basis, while the radio module operates on 3.3V.
Built-in voltage regulators ensure a stable power source, provided by a 9V PP3 battery.
Both the processor board and the radio module support low-power modes, which we
make no use of in this prototype scenario. Details of all components and the circuit
diagram are shown in Section 8.2 and Section 8.3.

5.2.2 Limiting the Sensor’s Field of View

The PIR sensor uses Fresnel lenses to focus the incident IR radiation, such that the
sensor is enabled to cover a wider area and to detect movement in both the horizontal and
vertical axes. Since we are only interested in signals within a specific horizontal range,
let us restrict the sensor’s coverage by applying a blocking material to the respective
areas of the Fresnel lenses. This effectively limits the covered area by the sensor and
thus reduces the risk of false counts. [12] discusses technical alternatives to blocking

2http://arduino.cc/
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IR radiation such as constructing a blind cover. For the purpose of our experiments we
have found white adhesive office-supply gum to be sufficient.

5.2.3 Need for Iterative Algorithms

The algorithms considered so far operate on the full length of a given signal. On the
sensor node this is unrealistic since the available memory and CPU processing capacity
are limited. It is essential that the algorithms FILTER, COUNT, PEAK are modified, such
that they process one sample at a time and only use a small amount of memory in doing
so.

Processing Scheme The algorithms for the sensor node follow an iterative processing
scheme, such that the signal u[k] is transformed into output c[k] as

c[k] =COUNT (PEAK(FILT ER(u[k]))) (5.2.1)

where u[k] denotes the sample at time k as given by the ATMEGA328’s internal
analogue-digital converter (ADC), and FILTER, PEAK, COUNT are the modified low-
pass filter, peak detection and counter algorithms, respectively. c[k] is a vector to contain
the transition counts, c[k] = [cle f t ,cright ]. The ADC converts the analogue input signal
provided by the sensor at a rate of 50Hz using a timer interrupt. Upon completion of
the conversion, the sampled signal is transferred and processed as defined above.

Ring Buffer for Iterative Algorithms To process the input signal iteratively, FILTER,
PEAK, COUNT need to access both the current input sample u[k] and a certain number
of previously calculated (filtered) output samples y[k]. Due to the memory constraints
on the sensor node, it is infeasible to hold all calculated output samples in memory.
Ring buffers are implemented for the input u, filter output y and peak p vectors. Each
ring buffer is a vector of dimension b which denotes the buffer size as the maximum
number of items stored in the buffer. The ring buffer operates such that the accessed
sample index i = k is calculated as the ring buffer’s vector index i′ given by

i′ =

{
imodb if i≥ 0
b+ i otherwise

, |i| ≤ b (5.2.2)

5.2.4 Iterative FILTER algorithm

A first C-language implementation of the FILTER algorithm using the FIR kernel demon-
strated that this implementation is infeasible given the limits of the sensor nodes. The
algorithm in principle would work sufficiently fast, and does not as such exhaust the
memory. For the filter to work, the data structure requires an array of 50+100−1= 149
entries in order to store both, the samples and the filter kernel. Each sample takes 4 bytes
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of memory (of type float). However, the sensor node also stores the count vector, debug
strings and requires other temporary storage. Thus, the total heap memory requirement
in excess of 1KB memory would break the limits of the ATMEGA168-based sensor
node, which served as a test board.

Based on experiments using the R Signal3 package [20], a recursive implementation
of an infinite impulse response (IIR) was chosen. Several different filters were consid-
ered and compared; Figure 5.2 depicts a comparison of several filters applied to the
same input signal.

The figure depicts in (a) the FIR low-pass filter described in Section 4.4 and the re-
sulting output signal. (b) shows the result of a four-pole Butterworth low-pass filter, (c)
represents the result of a Chebychev four-pole filter. The peaks shown are those found
by the PEAK algorithm. All filters use the same cut-off frequency ( 1

35 of the Nyquist
frequency f/2, equals 0.71Hz at sampling frequency f = 50Hz). The Chebychev filter
has a band-pass ripple of 1%, which is clearly visible in (c) around samples 0-500, 600-
650, and 1250-1500. This ripple is a potential source for the false detection of peaks in
the filtered signal. The Butterworth filter performs best in this respect among all filters
(0% ripple), and also matches the result of FIR filter (a) closely.

5.2.4.1 Iterative PEAK and COUNT algorithms

The PEAK and COUNT algorithms are modified such that they accept a single input
sample u[k], process and store the result y[k] into the respective ring buffer. PEAK

accesses FILTER’s output from ring buffer y, and then stores the identified peaks p[k] in
ring buffer p. COUNT accesses ring buffer p and updates the count values in vector c.
Note that vector c is not a ring-buffer as it holds the scalar sum of the transition counts.

5.2.4.2 Iterative Regular Expression

Building the state string s on the PCSN may lead to buffer overflow or overwriting
of previous states in the ring buffer. The following approach solves this problem by
using a simplified regular expression evaluator, REGEXP: it accepts single characters
iteratively. Thus, there is no need to buffer s. REGEXP is implemented as a C++ class
and works as follows4:

• REGEXP:: make() accepts a regular expression r as an input string. It parses the
regular expression and builds an internal representation of the DFA. The internal
representation equals the language L(r), i.e. the set S = {s0, ...,sn} of all strings

3A MATLAB-equivalent implementation of digital signal processing functions
4REGEXP was implemented as a proof of concept and is not optimized for space nor time complexity.

For example, matchc() has a worst-case time complexity O(n2) where n is the number of states in the DFA.
An improved version using a more efficient internal encoding could perform significantly better, e.g. using
a binary tree to store and access states, reducing matchc()’s worst-time complexity to O(n logn).
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Figure 5.2: comparison of FIR and IIR filters. Different filter kernels result in more or
less number of peaks detected. In particular, the (b) Butterworth filter performs best in
terms of detecting relevant peaks for identification of traversals.

generated by the regular expression. In the general case this is the same as the
input string, i.e. s0 = r. Special characters |? generate new sub-states thus result
in duplication of all previous strings. The special characters for repetition and
grouping +∗ () are not supported.

• REGEXP:: matchc() accepts a single character c as input. Each string si is checked
for equality to c at position vi. If there is a match, vi is increased. If there is no
match, it is set to the missing value ⊥ . If vi reaches the end of string si the full
string was matched and the function returns true, else false.

• REGEXP:: reset() resets all vi = 0.

Using this class, the PCSN is configurable to new installation scenarios by defining
regular expressions rle f t and rright . Because the REGEXP does not currently support
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repetition or grouping, several changes to the C-language implementation of the COUNT

algorithms were necessary:

• The algorithm tracks the states FROMLEFT and FROMRIGHT explicitly.

• The regular expressions are redefined to rle f t = LRL?, rright = RLR?, a match is
only attempted if the time distance pti− pti−1 ≤ tdmax (to compensate for the
missing character I in the regular expressions).

• The regular expression Rsilent is replaced by a direct test for the maximal time
distance tdmax.

• Each time a match occurs on either rle f t or rright the respective instance of REG-
EXP is reset. This is the equivalent of matching the start of the string the next
time around.

5.2.5 Operation Modes of the PCSN

The PCSN implements two modes of operation: a LOGGER mode, which is used to
sample unfiltered values, and a COUNT ER mode which is used to operate the sensor
node as an independent people counter. The LOGGER mode is designed to be used
for experimental data collection: all sensor values are transmitted to and stored by a
PC for subsequent analysis. In this mode, the PCSN does not filter or process the
data in any way. In COUNT ER mode the PCSN only transmits (a) the scalar count
values cle f t , cright , and (b) string s since the last peak was processed. Note that for
debugging purpose, s is amended by + and − signs to mark transitions to CL and CR
states, respectively.

The PCSN accepts a configuration value SERIAL and RF. The SERIAL configura-
tion implies use of the sensor node’s USB port to transmit the data. The RF configura-
tion implies use of the ZigBee radio transmission module.

5.3 Space Model, Monitor and Observer

5.3.1 Monitoring Model

The PCSN is designed to be installed such that the PIR sensor’s left/right sides corre-
spond to an observed space’s entry/exit directions, respectively. If multiple PCSNs are
combined, a larger spatial area can be observed, and the occupancy of the area can be
derived from the total of the count.

Thus, the monitoring model is defined as follows:

Definition 10 (Monitoring Model). A spatial area S of size SA subdivided by N sub-
areas Si,0 < i ≤ N of size SA(i) such that SA = ∑SA(i). Each sub-area Si has a pre-
determined maximal occupancy (number of passengers), and is monitored by a set of
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PCSNs Ci : {c0, ...,ck}. Each node is positioned to monitor one entry/exit point of the
respective sub-area.

By Definition 10, all nodes in a set Ni form a segment of the sensor network with
a local root node acting as the base station for this segment. A segment is defined as
follows:

Definition 11 (Monitoring Segment). A set of PCSNs interconnected as a spanning tree,
where the root node is said to be the base station. At an appropriate frequency, nodes
send their acquired data to the root node. In general, a recursive hierarchy of nodes may
be used to represent segments of segments.

5.3.2 Sensor Monitor (Base Station)

Each base station implements a Sensor Monitor which connects to one or multiple PC-
SNs operated in COUNT ER mode. The Sensor Monitor receives count data via a radio
link. A prototype implementation of two PCSNs connected to a base station has been
implemented as a Java application (SENSMON). For this purpose, both the base sta-
tion and the PCSNs are extended by RF modules using the ZigBee 802.15.4 networking
protocol.

For each PCSN connected, SENSMON displays a visual representation of the count
values, symbolising in/out counts for an observed area, respectively. Upon reception
of a new count value, SENSMON updates the display accordingly (see screenshot in
Subsection 8.5.1).

An extension to SENSMON was added to enable the interfacing with the Data Col-
lection Server described in Subsection 5.3.4.

5.3.3 Sensor Network Data Transmission

The ZigBee 802.15.4 protocol supports star, meshed and hierarchical network topolo-
gies. Note that the RF modules used for the prototype implementation only support the
star topology, which is sufficient for the purpose of the prototype. Each RF module is
assigned a pre-defined node ID. A hardware configuration setting defines the role of
each RF module in the network (client or controller).

A simple application protocol layer was developed to enable the binary transmission
of arbitrary data structures. It is based on the open-source library xbee-arduino5, which
implements an application programming interface (API) to the RF modules. The appli-
cation protocol layer provides the following functions and a message data structure:

• RFMESSAGE is the message data structure for both, requests and responses. The
structure contains a 1-byte field for application use, e.g. to indicate the type of

5http://code.google.com/p/xbee-arduino/
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message exchanged, and a payload field of maximum size RFMESSAGESIZE
(defaults to 10 bytes). The payload field can be accessed as an array of bytes, as
a string of characters, as a 16-bit integer or an unsigned byte.

• getRequest() to receive a packet from the MAC layer; returns a pointer to the
RFMESSAGE structure.

• sendResponse() to send a reply package; uses a RFMESSAGE structure to mar-
shal payload data in little endian coding.

If configured for RF transmission, the PCSN invokes the sendResponse() function pe-
riodically to transmit the content of the transition count vector c. The periodicity is
configurable. If a period (default: 1000ms) has elapsed, the transmission is scheduled,
immediately following completion of the COUNT algorithm. The sendResponse() func-
tion transmits the payload data via serial interface to the RF module, which subsequently
and asynchronously transmits the data.

5.3.4 Data Collection Server

In order to utilize the count data collected by a base station, the data needs to be served
from some central source. For this purpose a prototype implementation of a web-based
data collection server (DCS) has been implemented as a Python web application.

DCS implements the model as specified in Subsection 5.3.1, that is it knows about
spatial areas, called Spaces. For each Space it manages an occupancy count, which is
the delta of all of the in/out counts received for a particular Space. The occupancy count
is adjusted based on observations as reported by base stations. An observation is either
a pre-calculated occupancy value, an in or out count, or a delta count (delta = in−out).
For each observation DCS records a SpaceEvent, which is a log of all observations
received.

DCS provides the following set of JSON-enabled web services. JSON was chosen
as the protocol since there are implementations for many programming languages and
platforms, and thus enables arbitrary clients, e.g. smartphones or tablet PCs, to interact
with the server.

• Observe (/observer/observe) to report an observation for a Space

• Query (/observer/query) to query the occupancy count for a Space

In addition to these web services, the DCS also provides a set of XML-based low-
level web services to support the querying, inserting and updating of specific Space
and SpaceEvent objects (see screenshot in Subsection 8.5.2). These web services also
provide a query interface to search for and list objects qualifying for certain criteria.
The provision of JSON and XML web services are enabled by two open-source libraries
(details see Section 8.2).



36 CHAPTER 5. IMPLEMENTATION

5.4 Validation Framework

Validation of the PCSN requires the capability to analyse raw (unfiltered) sensor read-
ings off-line, to configure and test the FILTER, PEAK AND COUNT algorithms. For this
purpose, a validation framework was developed:

PC Logger Script This bash script is used as the PC-counterpart to the LOGGER
mode of the PCSN. It captures the node’s output into an ASCII file.

Analysis Routines Using the R statistical package, a collection of routines was devel-
oped to analyse the sensor data captured. These routines include implementations
of the FILTER, PEAK, COUNT algorithms in the R-language. Further routines
provide for analysis and visualization of runs of these algorithms, e.g. to com-
pare the performance of different types of filters. For example, Figure 5.2 was
created by the routine plotby f ilter(): it accepts a set of different filters and the
full input signal of an experiment to produce a visualization. Similarly, routine
ex.run() executes these algorithms for multiple experiments and filters, and thus
it allows to compare the performance of the algorithms for multiple scenarios in
a single step. Several helper functions made it possible to work efficiently when
translating algorithms from R- to C-language - e.g. routine f ilter2c() translates
an IIR filter object into the corresponding C structure.

Algorithm Test Driver Recall the sensor node implementation of the algorithms. In
order to evaluate the performance of these routines, a PC-based test driver was
developed. It reads the experiment data output by the LOGGER mode of the
PCSN. Then it calls the C implementations of the algorithms iteratively, as if they
were executed on a sensor node. The outputs of each algorithm are subsequently
stored in a log file to be analysed by the R routine testccode. This yields a direct,
visual comparison of the performance of the R and C implementations. Figure
5.3 depicts an example.

5.5 Space Occupancy Estimator

Remark. This section provides a solution outline to the problem of state estimation in
relation to the people counting scenario. As a first approximation, the idea is to linearize
the people counting problem by making several assumptions about the people counting
process and measurement system. In a more realistic setting, these assumptions are
likely to be inaccurate. In particular, the assumptions about the probability distribution
functions of the process and measurement noises are likely unrealistic in a real scenario
[6].

The counting algorithm presented in Chapter 4 has a fundamental limitation: its
counting is only accurate in regards to some probability function:
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Figure 5.3: Comparison of respective results of the R- and C-language implementations
of the COUNT algorithm. The evaluation framework runs both implementations using
the same input data. The two lines below the title show the state strings and the count
values respectively with the CR and CL state activations annotated by plus and minus
signs. Note that the C-language state string is reduced to the size of the iteration buffer.

• The people count used is polluted by false counts, or measurement noise. While
filtering the signal reduces or even removes the noise present in the sensor signal,
the filter cannot reduce false counts. False counts may occur for many reasons, in-
cluding: as a result of overlaps in the signal, e.g. due to multiple people walking
by the PIR sensor at the same time, or in opposite directions; too many direc-
tional changes below the sensor’s resolution; people waiting in front of the sensor
instead of passing, yet causing a detection of a traversal.

• The measured process - people passing through an entrance door - is itself a
stochastic process. Some sources of the processnoise include: the rate of people
passing through the gate may change intermittently and unexpectedly; some peo-
ple increasing or decreasing their speed while passing, or turning half-way past
the passage; sudden build-up of waiting queues in the observed spatial area due
to some blockage.

The above sources of measurement and process noise cause the individual as well as the
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aggregate people count of any people counting system to be limited within the bounds
of process noise, accuracy of the sensor and performance of the algorithms used.

For the purpose of this discussion we view the people counting process (Definition
1) as a linear system, where the future state solely depends on the present occupancy
(state) and the in and out counts (measurements) at discrete-time instance k.

Consider the model of spatial areas of Definition 10. Assume that for each area SA

and discrete-time instance k, the system collects N measurements of occupation defined
as

occk,i = occk,i−1 +deltak, deltak,i = (ink,i−outk,i), 0≤ i < N,occ0 = 0 (5.5.1)

Then let us model the state space of each spatial area as a column vector

xk,i =

[
occk,i

deltak,i

]
(5.5.2)

(w.l.g. we will subsequently drop the index i).

Further assume we have prior knowledge of the rate of change αk that deltak is
subject to, at timesteps k. ak is assumed to be derived from previously established
measurements or defined by the probability distribution function. Then we define the
process model as

occk+1 = occk +αk ·deltak +w (5.5.3)

where k denotes the discrete-time instance and w is the process noise. Similarly, we
define the measurement model as

deltak+1 = αk ·deltak +w (5.5.4)

Since we know α , it is reasonable to assume that we also have a notion of previous
occupation levels at time instance k. We can use this knowledge to (re-)initialize the
state by “injecting” a control input uk in case of drastic error of the state estimate (such
as an occupation less than zero). Transforming these equations into a linear difference
equation, we have process equation

xk+1 =

[
0 αk
0 αk

]
xk +

[
1
0

]
uk +w (5.5.5)

and measurement equation

yk =

[
0
1

]
xk + v (5.5.6)

The process and noise covariance matrices w and v are assumed to be normally dis-
tributed. These equations form the basis for the Kalman Filter to predict the true space
occupation.

A simulation was implemented using MATLAB based on the above assumptions
and equations as follows:



5.5. SPACE OCCUPANCY ESTIMATOR 39

1. A set of D “known true” deltas ktruedelta and space occupation kocc are ran-
domly defined as the baseline for the measurements. D defines the number of
discrete time steps for the simulation. From these sets the α and α ′change rates
are calculated.

2. To simulate an actual series of observations, a set of D true values of deltas
(truedelta) and occupations (occ), are calculated, assuming a normally distributed
random process noise w.

3. For the duration of D time steps, random measurements yk = truedelta(k)+v, 0<
k < D are generated, assuming a normally distributed random measurement noise
v. The initial state x0 is initialized to control input u0 = ktruedelta(1).

4. Each simulated measurement is processed by the Kalman Filter.

5. The state and measurement matrices x and y are stored for later analysis.

Figure 5.4 represents the result of a simulation run for D = 60 · 4, assuming one mea-
surement per minute during four hours. The plot depicts the occupation as estimated
by the Kalman Filter, the true occupation as given by occ and a naive calculation of the
occupation by simply adding the simulated measurement of delta yk.
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Figure 5.4: A successful simulation run reflecting the space occupancy as estimated
by the Kalman Filter vs. the true situation. The simulation covers a time span of 240
minutes, assuming one measurement per minute.

Unfortunately, the simulation is not stable: as shown in Figure 5.5 the randomiza-
tion can cause drastic estimation errors which the Kalman Filter is unable to correct.
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In particular, an improved definition would need to take into account the constraints
imposed on the occupation occ and delta delta values, that is, at all times it holds that
occ≥ 0, delta≥−occ.
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Figure 5.5: Unstable simulation run of the Kalman Filter. Drastic errors in the estima-
tion occur, which are not corrected by the Kalman Filter. One approach to alleviate this
problem is to constrain the process and measurement models to positive values.



CHAPTER 6

Evaluation

To evaluate the algorithm and the PCSN’s performance, two distinct series of experi-
ments were conducted. The first series was used to capture sensor data resulting from
several different movement patterns, including single-person passages and multiple peo-
ple passing in line. For evaluation, the sensor output was subsequently processed by the
C-implementations of the COUNT, PEAK and FILTER algorithms, using the test driver.
Recall from Section 4.6 that the C implementation uses a restricted regular expression
as a realization of the FSM. To understand the impact of this limitation, one evaluation
applied the R implementation based on a fully specified DFA. All experiments were
timed in order to gauge the effect of higher rates of passages. The same experiments
were conducted using different timing parameters in order to simulate people walking
up-close or at larger distances from one person to the next. The evaluation was con-
ducted in an office room, where the PCSN observed the room’s door to an adjacent
hallway.

The second series of experiments consisted of two installation scenarios a,b of two
installed PCSNs. In scenario a, the PCSNs were installed at two opposite doors of
a meeting room, to count people walking in and out of this room. The nodes were
configured to periodically transmit (interval 1000ms), via the ZigBee RF link, their
respective count values to the Monitor application set-up at the base station. In scenario
b, the PCNSs were mounted to count people entries and exits at the main entrance
of building ETZ at ETH. A concurrent manual count provided the baseline for later
analysis.

6.1 COUNT Algorithm Performance

The following experiments were conducted for each of the time distances d indicated
in Table 6.1. The time distances give an approximate indication of how close to each
other the participants walked in line. The speed at which to walk was not regulated,
however, the lower the distance in between passing events, the quicker each preceding
individual would make space for the next. A timer-based, toggling-LED installed in
view of the participants indicated the time to start walking. As a result of slightly
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differing reaction latencies to this signal among participants the time distances should
be considered approximate values.

Experiment [code] Time distance d between passing

(seconds)

One Person walking back and forth [1cd] 10,5,2.5,1

Queue of four people, all same direction [queue] 10,5,2.5,1,0.5

Queue of four people in each direction [cd] 10,5,2.5,1

Opposite passage of two or more people [od] 10,5,2.5,1

Table 6.1: Experiments

Consider Figure 6.1. The graph depicts the COUNT algorithm’s results cin, cout for
each experiment and in relation to expected count values cexpin, cexpout. The queue
experiment indicates good performance for distances of d = 10,2.5,1s, whereas the
performance for all other distances and experiments is rather poor. The algorithms’
performance can be improved by changing the respective parameters. For reference, the
algorithm parameters for all experiments are provided in the appendix (Table 8.1).

Figure 6.1: Experiment results using algorithm parameters (a) of Table 8.1. The results
are acceptable for some scenarios, however, fail in other scenarios.

Careful consideration of different parameter settings and the cut-off frequency of
the Butterworth low-pass filter resulted in an improved performance as shown in Figure
6.2. These results are mainly due to the parameters MAXDIST , PEAKWDT H, as well
as the filter’s cut-off frequency. The decrease in MAXDIST causes the algorithm to
consider an ignore state sooner, and widening PEAKWDT H results in improved peak
detection. Increasing the cut-off frequency of the low-pass filter helps in detecting more
peaks, in particular for distances smaller than 5s.
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Figure 6.2: Experiment results using improved parameters (b) of Table 8.1. In particu-
lar, setting the cut-off frequency of the low-pass filter at 1Hz, and changing the COUNT

algorithm’s parameters to more appropriate values (e.g. MAXDIST, PEAWIDT H) pro-
duces improved results for most scenarios and time distances.

The people count (y-axis) indicates the total count in each direction. Despite the
improved parameters, some problems persist. Let us consider distance d = 2.5s of the
queue experiment. In this case, the cut-off frequency c f = 1Hz causes the filter to
“over-smooth” the signal, and in turn the algorithm misses to consider relevant peaks.
As a result, the directional counts are invalid, and the total count overshoots by 25%.
A similar pattern is responsible for the result at distance d = 0.5s. Both cases can be
alleviated by setting a higher cut-off frequency, and by applying the regular expression
as implemented by the R version of the COUNT algorithm. However, these changes
result in a much diminished performance for all other experiments.

Consider Figure 6.3 for a normalized comparison of algorithm performance at vari-
ous cut-off frequencies and respective parameters. Across experiments, the parameters
(b) in Table 8.1 work best. For some installation scenarios parameters (c) might be ap-
plicable, e.g. in an area of high-frequency pedestrian or passenger volumes and where
there is mostly one-directional traffic.

6.2 PCSN Performance

For scenario a, two PCSNs were configured using parameters (a) of Table 8.1. Cor-
responding to the respective evaluation of the algorithms (Figure 6.1), the combined
counts were accurate for distances t = 10,5s, and increasingly erroneous for other dis-
tances. Note that people left the room at timed intervals, while the distances at the
room entrance were chosen at random by the participants arriving in line. The doors are
2.1mx0.8m (height x width) in dimension, which is within the assumed specifications
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Figure 6.3: Normalized RMS of people counted and traversing at timed distances. The
figure depicts the result as a function of the filter cut-off frequency (a), (b), (c) and other
parameters as in Table 8.1. Overall, the best results are achieved by a cut-off frequency
of 1Hz. However for distances of 0.5, 2.5Hz and the scenario of people traversing in
line, a low-pass filter of 2.5Hz would improve the results. The COUNT algorithm could
be improved to select the most appropriate filter automatically.

as defined in Section 4.1 For both cases, four people participated. Table 6.2 summarises
these results.

PCSN #1 (entry) PCSN #2 (exit) Total for room

Distance In/Out In/Out In/Out

10s 4/0 0/4 4/4

5s 4/0 0/4 4/4

2.5s 1/2 3/1 4/3

1s 4/0 0/2 4/2

0.5s 4/0 0/1 4/1

Table 6.2: Results of PCSN installation for scenario a

In scenario b, two PCSNs were mounted at the upper frame of the entrance door.
The door is 2.4mx1m in dimension (height x width), which is also within the assumed
specifications. Before performing the evaluation, we tested and configured Sensor 1
for this particular environment by setting the parameters to configuration (b) of Table
8.1, while Sensor 2 used the default configuration (a). The evaluation was conducted
for multiple periods and the count values recorded in intervals of five minutes. The
sensors needed resetting during the experiment due to new insight on the effect of the
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environment. Due to a technical problem and the battery running empty, Sensor 2’s
values were only recorded for one period. Table 6.3 summarises the results of scenario
b.

Time Manual Count Sensor 1 Count Sensor 2 Count Notes

0:00 4 / 3 3 / 4 not recorded

0:05 4 / 1 6 / 4 not recorded left: group

0:10 1 / 2 7 / 4 not recorded

0:15 2 / 3 12 / 4 not recorded

0:20 1 / 3 13 / 4 not recorded right: group

0:25 0 / 2 16 / 4 not recorded

Total 12 / 14 16 / 4 not recorded

Reset sensor regular expression Rle f t

0:30 2 / 2 3 / 0 0 / 1

0:35 2 / 3 4 / 0 0 / 2 right: group

0:40 2 / 1 7 / 0 1 / 2

0:45 1 / 2 10 / 0 2 / 2

Total 6 / 6 7 / 0 2 / 2

Reset sensor viewing angle to 50° /20°

0:45 3 / 1 3 / 1 out of battery

0:55 2 / 0 5 / 1 out of battery

1:00 4 / 4 9 / 2 out of battery right: group

1:05 4 / 4 13 / 2 out of battery right: group

1:10 4 / 1 16 / 4 out of battery

Total 14 / 9 16 / 4 out of battery

Table 6.3: Results of the evaluation at a building entrance door. The results indicate the
need for further analysis of the impact of differences in temperature on the two sides of
the sensor and the traversal pattern of groups of people.

The first evaluation period clearly showed that the directional counts did not work as
expected. Instead, the sensors counted some traversals as if they happened in the same
direction. Closer inspection of the entrance area provided the insight that one side of
the entrance door was warmed by sunlight. As a result, the signal by the dual-element
sensors were biased towards the cooler side, and thus were wrongly interpreted by the
algorithm.
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In order to compensate for this effect, we changed the covering of the PIR sensors
such that the field of view included up to 40° on the cooler side, while we limited the
other side to 20°. In a first attempt, the algorithm’s regular expression was changed to
compensate for the temperature difference by setting Rle f t = LL?R?. Using this expres-
sion, however, resulted in lower sensitivity on the side warmed by sun-light. The next
step was to reset the sensor’s viewing angle, which improved the directional count, but
still did not yield the accuracy expected.

It is apparent from the data that the moving pattern for groups is different than in
the previous section. We assumed that groups would pass the sensor in line. The exper-
iments conducted in this scenario indicate, in contrast, that groups approach the sensor
by two or more people at once, and only then start to pass the sensor one-by-one. We
did not analyse the sensor signal in this particular scenario. The count values indicate
that group passages are either counted as none, or as two people. Concluding from this
experiment, there is a need to further analyse the impact of differences in temperature
on the two sides of the sensor, to better understand the impact of the environment (e.g.
door height, room height), and the traversal pattern of groups of people.
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Conclusion

The goal of this thesis was to develop a distributed people counting system by inexpen-
sive hardware. Dual-element PIR sensors were chosen for their simplicity and effec-
tiveness. This type of sensor has several advantages: it operates at low-power levels,
no ambient light source is required and the effects of slow changes to the environment
are cancelled automatically. In contrast to other approaches used for people counting,
e.g. cameras or infrared arrays, interpreting a PIR sensor signal imposes relatively low
requirements in regards to compute power.

We have considered the people counting problem from different perspectives. This
included the development of algorithms to parse PIR sensor signals, the collection of
results from a distributed network of sensor nodes, and the estimation of a total space
occupancy based on such measurements. The algorithms developed apply a novel ap-
proach to the people counting problem. In particular, the application of a configurable
FSM, based on regular expressions and combined with several other parameters enables
a sensor node to adopt to a range of deployment scenarios. The prototype implementa-
tion of these algorithms on sensor nodes demonstrated their feasibility for deployment
in a wireless sensor network. Using a number of base stations as the gateway to the
web-based data collection server, a setup covering larger areas is possible.

7.1 Future Work

While the evaluation demonstrates the adaptability of the people counting algorithm
to various movement patterns, it reveals several open problems. In a real-life setting,
people cannot be expected to pass an observed passage at presumed or timed intervals.
In consequence, the FILTER and COUNT algorithms should be able to detect the rate of
passages, and adopt the algorithm parameters and filter strategy automatically.

Further, the COUNT algorithm should be changed such that it automatically com-
pensates for temperature differences on either side of the sensor, e.g. by estimating a
signal bias to either side, and by evaluating the relative maximum strength of the sensor
signal amplitude. The algorithm could also be improved to derive and take into account
a probabilistic estimate in relation to the ratio of directional changes it detects.
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In some scenarios the calculated total occupancy for some observed space may be
within acceptable limits of accuracy, despite each sensor node’s count values. Stochastic
state estimation combined with previously recorded statistics can be applied to solve this
problem in principle. However, our solution approach using a linear Kalman Filter is
not sufficiently stable. Future work should include evaluation of non-linear estimation
models.

The prototype implementation of the PCSN does not make use of the dynamic char-
acteristics of the counting algorithms. While the prototype code exposes parameters
to configure the various operating modes and to change run-time parameters, effecting
these changes requires re-programming of each sensor node by USB cable. For real-
istic and productive use, the PCSN needs to be extended such that the algorithms can
be configured through ZigBee. That is, the PCSN requires a management mode, which
can be activated from the base station in order to dynamically apply changes to filter
coefficients and other parameters. This includes the extension of the iterative regular
expression algorithm to support character repetition and grouping.

The ZigBee protocol was chosen for its low-rate, low-power capabilities. The pro-
totype PCSNs do not realize a low-power mode, and hence are inefficient to operate
on battery. In a productive scenario, a low-power mode is required to include both the
CPU and the RF module. The PIR sensors ability to detect motion independent of a host
processor could be exploited as a trigger to wake-up the node.
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Appendix

8.1 Evaluation Parameters

Parameter Value

MIDTHRES 80

MAXDIST 200

MINDIST 20

ABSTHRES 80

PEAKWDTH 5

MATCH_LEFT LRL?

MATCH_RIGHT RLR?

FSM C, simplified

RegExp

Filter Butterworth,

c f = 0.71Hz

Sensor Field

of View

±20°

(a) Results see Figure 6.1

Parameter Value

MIDTHRES 80

MAXDIST 60

MINDIST 5

ABSTHRES 100

PEAKWDTH 10

MATCH_LEFT LRL?

MATCH_RIGHT RLR?

FSM C, simplified

RegExp

Filter Butterworth,

c f = 1Hz

Sensor Field

of View

±20°

(b) Results see Figure 6.2

Parameter Value

MIDTHRES 80

MAXDIST 60

MINDIST 5

ABSTHRES 80

PEAKWDTH 10

MATCH_LEFT ^(I)+LR((L)*R)*$

MATCH_RIGHT ^(I)+RL((R)*L)*$

FSM R, PERL

RegExp

Filter Butterworth,

c f = 2.5Hz

Sensor Field

of View

±20°

(c) Results see Figure 6.3

Table 8.1: Algorithm parameters used in evaluation
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8.2 Technology Overview

The following table provides a list of all third-party technology used for the prototype
implementation.

Area Description Details [software license] Vendor/Source

Hardware Sensor Node

Prototype

Name: Arduino UNO
Microcontroller: ATmega328
Operating Voltage: 5V
Flash Memory: 32KB, SRAM: 2KB
EEPROM: 1KB

Clock Speed: 16MHz

SparkFun Electronics
www.sparkfun.com

Product ID 9950

Sensor Node

Testboard

Microcontroller: ATmega168
Operating Voltage: 5V
Flash Memory: 16KB, SRAM: 1KB

EEPROM: 512 bytes

Dshop Electronics
www.dshop.ch

Product ID ARD2K

Sensor Node

RF Module

ZigBee, 3V

break-out

regulated

DigiKey XBee Series 1
Frequency: 2.4GHz
Standard: IEEE 802.15.4
Operating Voltage: 3.3V, 50mA
Data Rate: 250kbps

Range: 100m

SparkFun Electronics
www.sparkfun.com

Product ID 8664 (XBee module),

9132 (XBee break-out regulated)

PIR Sensor Operating Voltage: 3-12V / 1.4mA
Range: 4-12m
Coverage angle: v :±30°/h :±50°

Signal bandwidth: 0.2Hz−10Hz

Conrad Electronics
www.conrad.ch

Product ID 172500-62

Software Sensor Node Arduino Development Environment
GCC 4.4.5 [GPL]
avr-libc 1.6.8 [Copyleft]

XBee API 0.2 [GPL]

www.arduino.com
http://gcc.gnu.org/
http://www.nongnu.org/avr-libc

http://code.google.com/p/xbee-

arduino/

Sensor

Monitor

Processing 1.5 [GNU]
OpenJDK Java 1.6 [GNU]

Xbee API 0.9 [GNU]

http://processing.org/
http://openjdk.java.net/

http://code.google.com/p/xbee-api/

Data

Collection

Server

Python 2.6.6 [PSF]
appengine-rest-server [Apache]
pyrest [MIT]

mpmath [BSD]

http://python.org/
http://code.google.com/p/appengine-
rest-server/
http://code.google.com/p/pyrest/

http://code.google.com/p/mpmath/

State

Estimator

kalmanf.m [MATLAB Central] www.mathworks.com
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8.3 Circuit Diagram
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8.4 Implementation Reference

The following table provides a summary of all implemented program modules and func-
tions by the validation framework and the prototype.

Area Program/Function Description Programming

Language

Validation

Framework

(Simula-

tion)

countlib.r R implementation of algorithms and helper functions R

ex.run() Run the algorithms for experiment data using

different filters, display count results in tabular

format

R

ex.plotbyfilter() Run algorithms using different filters, plot results R

testccode Run R algorithms and visually compare output to C

implementation’s result

R

hots() Identify peaks in signal using standard deviation

around sw points

R

count() Count peaks according to FSM specification (several

variants of count exist: count_fix, count_fsm,

count_dynfsm) for execution of simple algorithm,

hard coded FSM, regular expression based FSM)

R

count_c() R implementation of C version of count() (restricted

Regular Expression)

R

filter.CArma R implementation of C version of filter() R

filter2c Output C data structure of coefficients of a R filter

defined by the signal package

R

logger.sh Logging routine to act as counterpart to the sensor

node’s LOGGER mode

Bash

Sensor

Node

filter.h Algorithm implementation for C-language C

hots() Identify peaks in signal using standard deviation

around sw points

C

count() Count peaks according to simplified regular

expression

C

filter() IIR signal filter implementation C
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Area Program/Function Description Programming

Language

Sensor

Node (c’td)

BI() Macro for ring-buffer access of C array using

negative indicies

C

RegExp.cpp+.hpp

RegExp::

Simplified regular expression for iterative pattern

matching

C++

RFMessage.c+.h Application-level ZigBee messaging to simplify

Digikey’s XBee API

C

Monitor MonSens.java Monitor application using the Processing framework Java

RFMessage.java Java implementation of application-level ZigBee

messaging

Java

Counter.java Display of in/out counters Java

Data observer.py/main REST and XML interface driver Python

Collection

Server

observer.py/ObserverSvc REST and XML service component Python

observer.py/SpaceObserverPython Kalman Filter implementation (deactivated) Python

space.py/Space Space model implementation (incl. persistency) Python

space.py/SpaceEvent Space model implementation for observation events

(incl. persistency)

Python

State

Estimation

occest.m Occupation estimation based on Kalman Filter MATLAB

kfilter.m Kalman Filter implementation MATLAB
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8.5 Screenshots

8.5.1 Sensor Monitor - SENSMON

Figure 8.1: Monitor display at the base station

8.5.2 Data Collection Server - DCS

Figure 8.2: Event log of the data collection server
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