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Email: {viet.nguyen, ahad.harati, roland.siegwart}@mavt.ethz.ch

Abstract— Simple, fast and lightweight SLAM algorithms
are necessary in many embedded robotic systems which soon
will be used in houses and offices in order to do various
service tasks. In this paper the Orthogonal SLAM algorithm
is presented as an answer to this need. In continuation of our
previous work, the algorithm is extended to generate 3D maps
and empirically validated by mapping the long corridor of
our lab with the accuracy comparable with hand measured
ground truth. The main contribution resides in the idea of
reducing the complexity by using orthogonality constraint in
indoor environments. This is done by mapping only planes that
are parallel or perpendicular to each other which represent
the main structure of most indoor environments. Having this
assumption, we use an inclined sensor setup (fixed 2D SICK
laser range finders) to generate 3D orthogonal maps. The
algorithm is extremely fast since in each step it just processes
one line of laser measurements.

I. I NTRODUCTION

One of the most basic behaviors of an intelligent mobile
robot is autonomous navigation. This capability is realized by
obtaining a suitable representation of the robot surroundings,
which is called mapping.Simultaneous Localization and
Mapping(SLAM) is a complex case where the robot is also
required to remain localized with respect to the portion of the
environment that has already been mapped. Regardless of the
innate complexity, SLAM algorithms are eventually needed
in simple embedded mobile robots with limited processing
power. Many of them are targeted for indoor usage as
medical or housekeeping applications (see for example a
vacuum cleaner platform [1] or a health care robot [2]).

Today there are some techniques for solving SLAM with
reasonable complexity [3] (ex. real-time particle filters, sub-
mapping strategies or hierarchical combination of metric-
topological representations). However, these techniques are
developed having powerful computational resources in mind.
Less research effort has already been spent on development
of lightweight SLAM algorithms which are of vital impor-
tance in many applications of mobile robotics. Considering
indoor environments, in this paper we aim to develop a
lightweight and real-time consistent SLAM algorithm based
on planar surfaces which are the dominant structures. In
our previous work we presentedOrthoSLAM [4] for real-
time mapping of office-like environments. Considering a
very common constraint usually present in many indoor
environments, theorthogonality, we showed that the un-
certainty on the robot orientation can be kept bounded and

knowing the robot orientation, SLAM is reduces to a linear
estimation problem. The simple assumption of orthogonality
on shape of the environment, comes from the fact that in
most indoor engineered environments, major structures, like
walls, windows, cupboards, etc., can be represented by sets
of lines or planes which are parallel or perpendicular to each
other. For reconstruction of the desired map, it is sufficient to
extract and maintain those major features. In fact, ignoring
other lines/planes (arbitrary oriented or non-orthogonal) not
only does not lead to loss of valuable information, but also
brings amazing robustness on the robot orientation and filter
out many dynamic objects.

The assumption of orthogonality as a geometrical con-
straint has already been used by some other researchers,
for example [5], [1]. This geometrical constraint is usually
applied as a post-processing step in order to increase the
precision and consistency of the final map. However, in our
approach the orthogonality assumption is not applied as an
additional post-processing constraint, rather it is used to se-
lect only orthogonal lines as observations. In the orthogonal
framework, lines and planes are represented by just one
distance parameter (no orientation is needed), hence each line
directly provides some information on corresponding plane,
which is then accumulated in a Kalman Filter. The mapping
is performed based on this constraint and in a simplified
framework, rather than applying the constraint as an extra
observation afterward. This is a great difference which leads
to the removal of non-linearities in the observation model
and rather precise and consistent mapping. In this sense our
work is similar to Orthogonal Surface Assignment, the very
recent work of Kohlhepp et al. [6]. Their approach is using
the same constraint in the framework of multi-hypothesis
tracking. However, we construct orthogonal planes from 2D
observations and the whole infrastructure of our algorithm is
much simpler and faster.

The main difference between the work presented here and
majority of the existing efforts in the literature relies in the
way the complexity is reduced. While the other approaches
modify the basic algorithm by some assumptions and approx-
imations, we propose to use a constraint of the environment.
This allows keeping a complete coherent approach that now
is actually applied to a simplified problem. This results in
a better performance for all cases that do not violate the
orthogonality assumption.



To build 3D maps of the environment, apart from stereo
cameras which deliver range information just for textured
part of the scene, usually 3D laser scanners are used. These
3D scanners are usually constructed by rotating a 2D laser
range finder. This can be implemented by nodding, stepwise
or continuous rotation around lateral or radial axis (see [7],
[8], [9], [10], [11], [12]). This common approach provides
rich point clouds which can be used to generate detailed 3D
maps of the environments. However, not always obtaining
a lot of information is necessary or even useful. The first
problem in such cases is the stop and move scenario which
is normally mandatory to obtain consistent 3D observations.
That is inconvenient and sometimes not practical. Another
serious problem is how to segment huge amount of points
into homogeneous regions with reasonable performance.

An alternative approach is to keep the 2D observations and
generate 3D data by the movement of the robot itself. Usually
a horizontally mounted SICK is used for 2D localization and
another vertically mounted SICK accumulates rows of points
in 3D in order to do the mapping (see [13], [14], [15], [16],
[17]). Instead of using two different scanners perpendicular
to each other, it is also possible to get the 3D coordinates
of the scanned points by using only one scanner which is
mounted in a tilted plane (Fig. 1) if we assume the planar
surfaces are perpendicular or parallel to the ground plane. In
fact, this assumption is approximately always true in indoor
environments. Even in most complex parts, like staircases,
still most of the surfaces satisfy this condition. Therefore the
orthogonality constraint also simplifies sensing system and
feature extraction algorithm.

II. ORTHOGONAL PLANES

The main idea of this work relies on the Orthogonality
assumption on the environment. It brings amazing robustness
and precision in the map building process. Estimation of
the robot’s 3D orientation is virtually removed and mapping
of the orthogonal planes is reduced to alinear estimation
problem with one parameter per plane. It is important to
emphasize that the Orthogonality assumption (or constraint)
holds and in fact exists in most man-made environments. In
this paper “Orthogonality assumption” and “Orthogonality
constraint” are used interchangeably.

In OrthoSLAMalgorithm, only planes verifying the Or-
thogonality constraint will be selected and mapped, for
example: walls, ceiling, windows, doors, cupboards, etc.
Orthogonal planes are divided into three distinct groups
XPlanes, YPlanesand ZPlaneswhich are perpendicular to
x-axis, y-axis and z-axis, respectively. Clearly, orthogonal
planes are parallel or perpendicular to each other. Within
a group, the orientation of the planes is known. Thus,
for each orthogonal plane it is necessary to estimate only
one parameter which is the distance from the origin to
the plane (i.e. x coordinate for x-planes and so on). The
estimate elements in a group are statistically correlated but
not correlated with elements in other groups.

To extract planes from the environment, two inclined
laser range finders are mounted in inclination of45o to

Fig. 1. The BiBa robot. The two inclined SICKs at the top are mounted
at 45o to the forward and backward direction.

Fig. 2. Orthogonal plane construction from 3D line segments. Lines 1, 3,
6, 8, 9 make up five x-planes. Lines 2, 4, 5, 7 are perpendicular to both
y-axis and z-axis and thus can be only classified by comparing with already
mapped planes or merging with non-associated line segments.

the forward and backward direction as shown in Fig. 1.
2D line segments are extracted from the scans (in sensor
2D frame) and transformed into the robot 3D coordinate
frame. For each 3D line segment, one orthogonal rectangular
planar patch is constructed by using the line segment as its
diagonal. Obviously rectangular planar patches can not repre-
sent complex surfaces. However, main orthogonal surfaces in
an office-like environments (e.g. walls, doors, ceilings, etc.)
tend to have rectangular shape or compose of several small
rectangular patches. Using 3D line segments as diagonals of
orthogonal planar patches allows very fast and efficient plane
construction.

An example of orthogonal plane construction is shown
in Fig. 2. There are nine line segments extracted from one
observation. By using the Orthogonality constraint, five x-
planes can be constructed from line segments 1, 3, 6, 8,
9. Obviously in order to do that the robot has to know
roughly its current global orientation. Lines 2, 4, 5, 7 are
perpendicular to both y-axis and z-axis, meaning they are
either y-planes or z-planes. This ambiguity is resolved by
comparing with already mapped planes or merging with not-
associated lines in subsequent steps. This process will be
described in the Data Association subsection. In fact, line 4
is from an office wall (y-plane), line 5 is from a door way
(y-plane), lines 2 and 7 are from the ceiling (z-planes). In
this example, there are not any non-orthogonal 3D lines (i.e.
arbitrary lines which are not perpendicular to any axis of the
global frame) to be discarded.
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Fig. 3. Functional structure of theOrthoSLAMalgorithm.

In the above example, due to broken line segments, planes
8 and 9 may come from the same bigger x-plane as they have
approximately the same x coordinate and locate near each
other. This usually happens because of occlusion or openings.
Thus it is a good idea to represent them as two sub-x-planes
from the same big x-plane so that the number of parameters
(one parameter per big plane) to estimate can be reduced
significantly. TheOrthoSLAMimplements this two-levels of
plane features so that each orthogonal plane (plane level 1)
consists of several near and aligned sub-planes (plane level
2). The number of parameters to be estimated is the number
of planes level 1.

In this work, plane boundaries are not estimated statis-
tically as they do not have effect on the precision of the
map. Plane boundaries are only used in the data association.
A simple technique for correcting plane intersections (cor-
ners) is implemented inOrthoSLAMwhich will be briefly
described in the next section.

III. T HE OrthoSLAMALGORITHM

In continuation of the previous work (see [4]), theOr-
thoSLAM algorithm performs 3D mapping using only or-
thogonal planes. The horizontal ground assumption directly
implies that it is sufficient to use the 2D modeling to
represent the robot pose, i.e. (xR, yR, θ). In fact, including
z direction in the mapping does not improve the precision
of the 2D elements of the resulting map. However, having z
elements in the estimates makes the data association much
more robust and also results in a complete 3D map which is
a closer representation of the reality.

The planes are constructed from line segments extracted
from two inclined laser scanners. As already mentioned
above, each orthogonal plane is represented by one parameter
which is the perpendicular distance from the origin to the
plane, i.e. x coordinate for a x-plane, y coordinate for a y-
plane and z coordinate for a z-plane. From now on we denote
this coordinate as plane coordinate.

The OrthoSLAMalgorithm implements the relative map-
ping approach where the estimate elements are the relative
distances between planes in the same group. This mapping
approach has been shown in [18], [19], [4] to have very good
consistency property for map building.

Fig. 3 shows the working structure of theOrthoSLAM
algorithm. It consists of several connecting modules which

will be described in the following subsections. Some of the
modules work with projections of the x-planes, y-planes
on the xy plane. They are implemented similarly to those
explained in [4] and thus will be briefly explained.

2D Line Extraction
Line segments are extracted online from raw 2D laser range
scans coming from the two inclined SICKs. For this task,
the Split-and-Mergealgorithm is selected among other line
extraction algorithms (see [20]). In this implementation, only
line segments having length from30cm are considered.

3D Line Calculation
This module performs the 2D to 3D transformation of
the extracted 2D line segments into the robot frame. The
transformation of the segment end points is directly derived
from the configuration of the inclined sensors.

Data Association (DA)
This module decides the matching for a new observation.
The first step is to divide the new 3D segments into groups.
This can be done easily by using the coordinates of the two
end points. For example, an x-plane’s diagonal should have
approximately equal x coordinates of the two end points.
An ambiguity may happen when two pairs of coordinates
are approximately equal, e.g. both x and z coordinates are
approximately equal. In this case, the segment is stored in
WaitListwhich will be analyzed and merged with other lines
or planes later on. If a line segment is not parallel to any of
the xy/yz/xz planes, or not orthogonal, it is discarded.

Once the types of new lines have been determined, the
matching with the existing planes is performed (see [4]).
The overlapping is determined based on the overlapping
distances in x and z directions for x-planes; y and z directions
for y-planes; x and y directions for z-planes. If two planes
approximately align and overlap, they are matched. Once a
plane has been matched (first level), the association is also
performed in the sub-plane level. At this level however it
is much simpler as the decision is made based on only the
overlapping distances over the two dimensions.

The conceptlocal view(as used in [4]) is also implemented
in OrthoSLAMto reduce the complexity of this module to
constant time.

Orthogonalization
The functionality of this module is, using the Orthogonality



constraint, to locally correct the constructed orthogonal plane
parameters in a new observation after the data association.
Due to noise and imperfect orthogonality of the environ-
ment, extracted 2D line segments (thus predicted orthogonal
planes) are not perfectly orthogonal and may be slightly
deviated.

For the x-planesand y-planes, the projections on the xy
plane of the 3D line segments are first computed. Next, the
projections are rotated on the xy plane around their mid-
points so that they are perfectly orthogonal to each other
as described in [4]. The 3D line segments are then rotated
around their centering vertical axis by the same correction
angle of their corresponding projection. For z-planes, the 3D
line segments are rotated around their mid point so that the
resulting segments are parallel to the xy plane.

Recall from [4] that the orthogonalization is independent
of the robot pose. It is obvious that the corrected lines are
mutually correlated after the orthogonalization, however we
do not consider the correlation as an approximation.

Calculation of Relative Distances between Planes
This module computes the relative distances between planes
in the new observation. The implementation is similar to that
described in [4]. For z-planes, the distances are between the
ground (the xy plane) and the z-planes.

Estimation
This module performs the estimation of relative distances
independently for three groups x-planes, y-planes and z-
planes. The estimation is a linear problem. The implemen-
tation follows the one described in [4]. Since the elements
in each group are correlated, the complexity is cubic. One
can optimize this operation from the fact that the covariance
matrix is very sparse. However it is out of scope of this
paper.

Absolute Map Construction
The absolute map is constructed from the estimate of the dis-
tances (the relative map) and one given x-plane, y-plane and
the ground plane. The time complexity of the construction is
linear on the number of planes. In this implementation, the
plane boundaries are the union of those extracted in each
observation. It is the future work that plane intersections
(corners) will be detected so that plane boundaries will be
accurately computed.

Robot Configuration Update
In principle, the relative mapping approach does not use
the robot configuration in the estimation. The odometry
information is used only in the DA process and in the case
when there are not enough observed features. In a normal
situation, the robot pose is computed using the updated map
after the observation has been fused.

Merge/Align Planes
When two planes of the same group approximately align (i.e.
having approximately equal plane coordinate) and they are
overlapping or near each other, the planes are merged into
one big plane. Their list of sub-planes are appended and

merged if overlapping. Fig. 4 shows an example of three
planes (top view) where planeP2 andP3 align and close to
each other. They are merged into one big plane. Additionally,
the constraintd12 = d13 has to be satisfied and thus to be
applied in order to enforce the relative map consistency (see
next subsection). Finally, one distance eitherd12 or d13 is
removed from the relative map.

When two planes approximately align but they are not
overlapping nor near each other, they are aligned perfectly
to have the same plane coordinate. The alignment is ac-
complished by applying the constraintd12 = d13. In this
implementation, only plane merging is implemented.

This module has a complexity ofO(N2) where N is
the number of planes in a group. However it is called
periodically (e.g. once every50 observation steps) so that
the computational overhead is minimal. To reduce the cost
further, the module keeps track of plane pairs that have been
verified for merging/alignment so that they are not checked
until the next changes made to one of the planes.

P1

P2 P3

d12 d13

Fig. 4. An example (top view): planesP2 and P3 align and near each
other, thus they are subject to be merged. The constraintsd12 − d13 = 0
is applied to improve the relative map consistency by the Relative Map
Geometric Filter.

Relative Map Geometric Filter
This module implements the Relative Map Geometric Filter
- RMGF (see [19]) in order to to improve the relative map
consistency. For the example above, after merging planes
P2 and P3 the constraintd12 − d13 = 0 is to be applied.
Usually the constraint involve more than two map elements
depending on the size of the linking chain between planes
P2 andP3. The number of constraints equals the number of
plane merging. In vector form, we can write the constraint
set asH(d) = 0. If we interpret the vector constraint as a
perfect observationz = H(d), applying the Kalman Filter
equation, we have:

d̂ = d + K (0−H(d))
P̂ = P−K∇HP
K = P∇HT [∇HP∇HT ]−1

whered andP are the map vector and covariance matrix of
the relative map,̂d and P̂ are the updated quantities after
applying the constraints.

Since the relative map elements are correlated, the com-
plexity of the filter isO(N3) whereN is the vector size.
However, this module is called only when there are con-
straints generated by the Merge/Align Planes module.

IV. EXPERIMENTAL RESULTS

For the experiment, we use the Biba robot
(http://www.asl.ethz.ch/) which is equipped with two
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Fig. 5. The laboratory floor. Top picture is the construction drawing. Middle picture is the map built using pure odometry information and raw scans
which is corrupted by the odometry drift. Bottom picture is the 2D view of the map built usingOrthoSLAMalgorithm (ceiling planes are not shown). The
robot’s trajectory is marked on the map going from 1 to 7.

CPUs, two inclined SICK laser scanners (two horizontal
SICKs are not used in this experiment). The two SICKs are
mounted in inclination of45o to the forward and backward
directions as shown in Fig. 1. The robots are running a
real-time operating system (RTAI Linux) with an embedded
obstacle avoidance system and a remote control module via
wireless network.

In our experiment, we use a maximum scan range of7.0m,
an angular resolution of0.5◦ and a sampling rate of2Hz.
We choose our laboratory floor as the testing zone which
consists of a long, narrow hallway and office rooms on both
sides. The floor has a map size of approximately80m ×
15m. A picture of the floor construction drawing is shown in
Fig. 5. Unfortunately we do not have the metric information,
therefore we have to make hand measurements between some
selected reference points for the algorithm evaluation.

The robot navigates along the hallway, visiting places from
1 to 7 as marked on Fig. 5, including several office rooms and
making two closing loops. The average speed of the robot
is about30cm/s. The experiment is carried out during the
working hours so that there are people walking around. In
the whole run the robot performs more than4200 observation
steps. A 2D view of the map obtained by using the pure
odometry information is shown in the middle picture of
Fig. 5. One can see that the map is corrupted by the odometry
drift.

A 2D view of the map built using theOrthoSLAMalgo-
rithm is shown in Fig. 5. A 3D view is depicted in Fig. 6
(left picture) where the ceiling planes are not shown for

clarity. It can be seen that the shape and orientation of
the built map is matched precisely with the construction
drawing. It is an theoretically expected result: by using the
Orthogonality constraint which holds for this environment,
there is no orientation error in the estimate. Fig. 6 (right
picture) shows the mapped planes of room5 where the robot
has visited. The walls, door way, ceiling and windows are
mapped correctly compared to what in the reality. Notice
that moving people, dynamic objects (e.g. opening doors)
and lying around objects (e.g. tables, boxes) mostly do
not appear in the scans since the scanners are facing45o

upwards. Otherwise, they are filtered out by the condition
of minimal segment length, number of occurrences and the
Orthogonality constraint.

The built map has a size of80m×15m and consists of50
x-planes,66 y-planes and19 z-planes. Obviously there are
more planar surfaces in the reality. Nevertheless, the mapped
orthogonal planes clearly represent the main structures of the
laboratory places where the robot has visited. Furthermore,
in term of memory usage, having orthogonal planes as the
map features, including the associated relative map, is clearly
a great advantage over the method using point clouds where
millions of scan points are to be stored.

TheOrthoSLAMalgorithm is performed on a labtop with a
PentiumM-600MHz using the logged data of the experiment.
In term of computational performance, the algorithm is
able to run at10Hz without any special optimization. This
running speed is5 times faster than the input data rate.

Regarding the metric precision, the estimated map has a



Fig. 6. Left: A 3D view of the built map where the ceiling planes are not shown. The red curve in the middle is the estimated robot trajectory. Right: A
zoomed-in picture of room 5. The planes are mapped correctly compared to what in the reality.

length of 82.59m compared to the hand measured value of
82.64m. The difference of5cm is in the uncertainty range of
hand measurements. Furthermore, we compared20 distances
between the selected planes in the resulting map with the
hand measured values. The differences have a mean value of
−0.8cm and a standard deviation of3.5cm. This precision
is acceptable when considering the errors of the sensors and
hand measurements. The largest differences belong to the
relative distances between planes whose locations rely on
the odometry data (i.e. one of the two planes is not observed
simultaneously with any other plane in the map).

V. CONCLUSION

The paper has presented theOrthoSLAMalgorithm as a
simple, fast and lightweight solution to SLAM for indoor
office-like environments. In continuation of the previous
work, the algorithm is extended to generate 3D maps and
empirically validated by mapping our80m × 15m labora-
tory floor with the obtained accuracy comparable to hand
measured ground truth. The main contribution resides in
the idea of reducing the complexity by using the Orthog-
onality constraint (or assumption) existing in most indoor
environments. This is done by mapping only planes that are
parallel or perpendicular to each other which represent the
main structure of most man-made environments. Having this
constraint, we use an inclined sensor setup to generate 3D
orthogonal maps. The algorithm is extremely fast since in
each step it just processes one line of laser measurements.

For future work, it is necessary to implement a plane
intersection detection for a better corner estimation. We plan
to implement at least one other 3D SLAM algorithm for the
comparison purpose. It is also in our plan to extend partially
the Orthogonality to outdoor city-like environments where
the constraint ofvertical planesholds for most buildings.
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