Total Synthesis of Cyclopropyl-Epothilone B Analogs and

 Studies Towards the Total Synthesis of Michaolide E

 Studies Towards the Total Synthesis of Michaolide E}

A dissertation submitted to ETH Zurich

For the degree of
Doctor of Sciences

Presented by
Raphael Schiess
M.Sc. ETH Zurich

Born August $6^{\text {th }} 1978$
Citizen of Herisau AR, Switzerland

Accepted on the recommendation of

Prof. Dr. Karl-Heinz Altmann, examiner
Prof. Dr. Antonio Togni, co-examiner
„Wenn man in der Mitte des Pferderennens merkt, dass man auf einem Esel sitzt, da muss man weitermachen!"

Bernd Stromberg, Capitol, Abteilungsleiter Schadensregulierung L-Z

Danksagung

An erster Stelle möchte ich Prof. Dr. Karl-Heinz Altmann ganz herzlich danken, dass ich meine Doktorarbeit in seiner Forschungsgruppe durchführen konnte. Zudem möchte ich Dir für die hervorragende Betreuung und Dein Vertrauen über die ganze Arbeit hinweg danken. Besonders geschätzt habe ich unsere wissenschaftlichen Gespräche, in welchen ich mein chemisches Wissen erweitern konnte und Deine Bereitschaft, mir jederzeit mit Ratschlägen zur Seite zu stehen.

Ganz herzlich möchte ich Prof. Dr. Antonio Togni für die Übernahme des Korreferats danken. Ich war sehr froh, dass ich meine Arbeit kurzfristig spätabends in Ihren Briefkasten legen konnte und ich danke Ihnen für die angenehme Atmosphäre während der Doktorprüfung.

Einen grossen Dank möchte ich an Kurt Hauenstein richten. Du warst mir eine grosse Hilfe im Labor. Du hast dir immer Zeit genommen, mich zu unterstützen und ich habe oft von Deiner langjährigen Industrieerfahrung profitiert. Zudem hast Du mir in einer ausweglos scheinenden Situation mit dem Lindlar Katalysator den Weg gewiesen. Merci vielmol!

Ein spezieller Dank geht an ehemalige Mitglieder der Forschungsgruppe Altmann. Christian Kuzniewski, Tschabo, du hast mich im ersten Jahr meiner Arbeit stark unterstützt und mich immer wieder angefeuert: „Auf jetzt Räff, jetzt nicht nachlassen!" Philipp Gersbach und Christian Neuhaus möchte ich für die Gründung des Literaturclubs herzlich danken. Die reichhaltigen Buchdiskussionen und Einführungen in neue Themengebiete waren und sind äusserst wertvoll für mich. Oliver Horlacher, meinem langjährigen Laborkollegen, möchte ich herzlich für den intensiven wissenschaftlichen Austausch danken.

Ebenfalls bedanken möchte ich bei allen derzeitigen Mitgliedern der Altmann Gruppe von Brütsch, Gauss, Gausser über Eberhart bis hinüber zu Betschart! Ganz besonders möchte ich Claudio Bomio danken. Mir händ üs ganz starchi Duell glieferet im Badminton und sind s Mass aller Dinge do obe! Isch es mir ä Ehr gsi mit dir dä Titel in Winti zhole und de Gaunt id Wüeschti zschicke! Sobald i mol Ziit ha, versuech i bim Bowser wieder a dir verbi zcho, isch klar! Weiter gilt mein Dank Raffael Schroff. Erisch, Mensch, was haben wir uns für Duelle im Cricket geliefert. Ich hatte die Nase meist vorn, dafür bist du untenrum topfit! Wir sollten wieder einmal zum öligen Thailänder und ein paar Säfte vom Fass mit Umdrehungen trinken. Zuletzt gilt mein Dank Ruben Bartholomäus. Ich finds super, dass wir uns kennengelernt
haben! Wir zogen zusammen eine Tomate hoch, ich war dabei als du von einem Pferd gebissen wurdest, rauchten Nelkenzigaretten - wie die knistern, wenn man so richtig daran zieht - und mieteten je ein Huhn! Zudem hast du mich immer daran erinnert, wenn meine Mundecken noch voller Zahnpasta daherkamen!

Ein besonderer Dank gebührt allen Mitgliedern des UV/VIS-Seminarteams für die mehr oder weniger wöchentlichen wissenschaflichen Treffen. Lukas Kreis, alter Sportsfreund! Üsi gmeinsam Ziit in England bliebt unvergesse, zum Glück han i no de Seiler usgstoche! Am Afang häsch immer wellä Wallace and Gromit go luege, aber nochher häsch die gewaltig gsteigeret. Noch diverse Paintli und öpe me Chicken-Madras bisch du de bescht Chemiker uf de Alpenordsiite worde! Daniel Sprecher, hät de Witmer mol zu mir gseit: „De Sprecher isch eigentlich au no en ganz starche Gsamtpaketler!" Er hät seltä so ä wohrs Wort gsproche! Mir gsehnd üs hoffentlich scho gli i de Frauesauna oder bim Schwendima! David Witmer, ohni dich wärs Studium nöd halbe so starch gsi! Drehmoment und C_{2}-Achse um nur zwei Höhepünkt znenne. Au wenn du privat nüt wotsch mit mir ztue ha, blieb ich am Ball und ich wot scho gli wieder emol mit dir id Todeszone go d Seel eifach mol so chli bambele lo. Mir chönd jo denn au gad de Balsiger und de Merki obenabe ne! Leo Hardegger, häsch du üsi Treffe erscht möglich gmacht, i dinere Abwesenheit hät de Kreisl nüt z Stand brocht. Merci vielmol, dass du dä Witmer und mich immer mit Material versorgt und ä so sichergstellt häsch, dass mir durs Studium chömed. Dank dir sind mir chemisch ziemli fit!

Von Herzen danken möchte ich folgenden Personen, die mich an der ETH vor Ort begleitet haben. Markus Leimbacher, was haben wir gelacht! Öb 15erli, 18erli, Töggele oder Pool, sind üsi Duell immer schwer am Limit gsi. Kenn ich keine, wo sich so liideschaftlich cha is Züg lege wie du und bisch du de einzig, wo mich mit enere Banane i de Hand im Pool gschlage hät. Michael Harder, du hast das, was der Tozzi (vide infra) schon vorausgesagt hat, nämlich der Schiess seie nicht unschlagbar, ebenfalls wahrgemacht! In der Metall-Ecke in Berlin haben wir den Stivi gedrückt und mit dem Mirco Standdart gespielt, bevor du in den Untergrund abgetaucht bist! Sandro Tonazzi, du häsch mir bis hüt no kan Satz abgno und ich befürchte, da wird au so bliebe. Ich bi dir aber nöd nur für da dankbar, sondern au, dass du mir s Sportcenter zeiget häsch.

Carla, han ich mich immer gfreut, wenn du im Rümli verbicho bisch. Häsch du z Esse mitbrocht und hets ohni dich no hunderti vo X i minere Diss. Bisch du mir ä Insle gsi im öde Meer vom Zämäschriebe. Danke vielmol!

Liäbi Mäm, liäbä Däd, bin ich sehr froh, dass ich euren Sohn bi. Es het mir nüd Bessers chöne passiere. Han ich 20 super Johr bi eu verbrocht und chum ich immer wieder gern zu zrug! Ich han eu fescht liäb!

Tschüsèl, chan ich mir kein bessere jüngere Brüäder als dich vorstelle. Isch es mir än Ehr gsi, mit dir de Aztekenplausch zpräsentiere und hoff ich für dich, dass dir d Ostere i Zuäkunft nüme hinder jedem Egge ufluuret!

Deif, chan ich mir kein bessere ältere Brääder als dich vorstelle. Du schenksch mir sit ich dich kenn nur Sache, won ich nöd cha bruche. Du bisch mir aber bim Saftluudi zur Siite gstande, won ich schwer im Gebüsch gsi bi und häsch mich a jedem Seeburglauf agfüüret!

Chlini, bisch du die bescht vo de Fränä und min beschte Fründ! Scho mis halbe Läbä bisch du mir ä grossi Unterstützig. Getting my Point? Holsch du mich ab, wenn ich irgendwo gstrandet bin, häsch du mich immer gförderet, wenn ich stier gsi bin und packsch du mich jede Obig i. Dank ich dir ganz fescht für alles Guäti, wa du scho für mich gmacht häsch! Bin ich sehr froh, dass es dich git!

Khuli, my friend, my best friend! Danke dir für unglaublich starchi füf Johr! Mir hend de eint oder ander Hünze gröschtet und öpe en Fischaug dur de Büsch gleit. I denk do vorallem an Baumeister und Körk.

Fäbi, danke ich dir ganz herzlich, dass du mir ä Päckli is Militär gschickt häsch, mich döt bsuecht häsch, wenn au nur de Schüepp troffe häsch und dass du a mini Maturafiir cho bisch! Müs, han ich mich gfreut, mit dir regelmässig zum Rapido zgo und hoff ich, dass du gli öper zum Brunche findsch. Sind üsi Spanieferie super gsi und wärs schö, wenn mir wieder mol im Blanca chönted uftrete!

Mäx, 4-fache Weltmeister, häsch du mich währed em Studium regelmässig bsuecht, wenn ich am Lerne gsi bi. Han ich mich immer sehr gfreut zum dich zgseh!

Ganz herzlich danke ich meinen beiden Masterstudenten, Rahel Bregy und Stefan Vetterli für ihre engagierte und motivierte Mitarbeit!

Curriculum Vitae

Personal Details

Raphael Schiess, Im Wingert 15, 8049 Zurich, Switzerland.
Born on August 6th 1978 in Kreuzlingen, Switzerland

Education

02.2009-11.2013 Doctoral candidate in the group of Prof. Dr. K.-H. Altmann, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland. PhD thesis entitled:

Stereoselective Synthesis of 12,13-Cyclopropyl-Epothilone B and Side Chain-Modified Analogs and Studies Towards Total Synthesis of Cembranolide E
07.2008-10.2008 Reasearch Project in the group of Prof. Dr. K. Prasad, Indian Institute of Science, Bangalore, India
10.2003-06.2008 MSc in Interdisciplinary Sciences, ETH Zürich, Switzerland
08.2000-08.2003 Matura, TSME Romanshorn, Switzerland
08.1998-08.2000 Commercial apprenticeship in school of administration, Kreuzlingen, Switzerland

Publications

- Metri, P., Schiess, R., Prasad, K. "Total Synthesis of (-)-Bengamide E" Chemistry An Asian Journal 2012,
- Pfeiffer, B., Gaugaz, F. Z., Schiess, R., Altmann, K.-H. "Epothilones as Lead Structures for New Anticancer Drugs" Drug Discovery from Natural Products 2012, 339.
- Schiess, R., Gertsch, J., Schweizer, B. W., Altmann, K.-H. "Stereoselective Synthesis of 12,13-Cyclopropyl-Epothilone B and Side-Chain-Modified Variants" Org. Lett. 2011, 13, 1436.
- Altmann, K.-H., Gaugaz, F. Z., Schiess, R. "Diversity Through Semisynthesis: The Chemistry and Biological Activity of Semisynthetic Epothilone Derivatives" ChemInform 2011, 42, October 11.

Table of Contents

Abstract
Zusammenfassung
List of Abbreviations
1 Total Synthesis of CP-Epo B Analogs and SAR Studies 1
1.1 Introduction 2
1.1.1 Microtubule-Stabilizing Agents as Anticancer Drugs 2
1.1.2 Microtubule Structure and Function 3
1.2 Epothilones 5
1.2.1 Discovery and in vitro Activities 5
1.2.2 Syntheses of Natural Epothilones 7
1.2.3 Analog Syntheses and SAR of Epothilones 11
1.2.3.1 C12/C13 Modifications 11
1.2.3.2 C9/C10 Modifications 14
1.2.3.3 C3 Modifications 16
1.2.3.4 Side Chain Modifications 17
1.2.4 Epothilones in Clinical Trials 20
1.3 Immunoconjugates 23
1.3.1 Mechanism of Action 23
1.3.2 Clinically Approved Immunoconjugates 23
1.4 Aims and Scope 25
1.5 Results and Discussion 27
1.5.1 Cyclopropyl-Epo B and Side Chain-modified Analogs 27
1.5.1.1 Synthetic Planning 27
1.5.1.2 Total Synthesis of CP-Epothilone B (1a) 28
1.5.1.3 Synthesis of Side Chain-modified Analogs of CP-Epo B 38
1.5.1.4 Analogs of 9,10-dehydro Epo B 40
1.5.1.5 Biological Evaluation 44
1.5.1.6 Antibody Drug Conjugates 48
1.5.1.7 Synthesis of Unfunctionalized Heterocycles 78a-e 50
1.5.1.8 Functionalized Thiazole Heterocycles 51
1.5.1.9 Functionalized Isoxazole Heterocycles 53
1.5.1.10 Functionalized Pyrazole Heterocycles 54
1.5.2 Synthesis of Hypermodified Epothilone A Analogs 58
1.5.2.1 Synthesis of Hypermodified Epothilones by C. Kuzniewski 60
1.5.2.2 New Retrosynthesis of 3a and 3b 63
1.5.2.3 Forward Synthesis 64
1.5.2.4 Attempts at Further Synthetic Improvements 70
1.5.2.5 Antibody-Drug Conjugates 72
1.6 Conclusion and Outlook 74
2 Studies Towards the Total Synthesis of Michaolide E 79
2.1 Introduction 80
2.1.1 Isolation and Structural Variants of Cembranes and Cembranolides 80
2.1.2 Biogenesis of Cembranes 82
2.1.3 Biological Activity of Cembranes and Cembranolides 84
2.1.3.1 Antiinflammatory activity 84
2.1.3.2 Cytotoxic activity. 86
2.1.4 Total Synthesis of Cembranes and Cembranolides 89
2.1.4.1 Total Syntheses of Cembrene A 89
2.1.4.2 Total Syntheses of Natural Epoxy Cembrenoids 92
2.1.4.3 Total Synthesis of Cembranolides 95
2.1.4.4 Different cyclization in Synthesis of Cembranoids 98
2.2 Aims and Scope 101
2.2.1 RCM-based Macrocylizations 102
2.3 Results and Discussion 107
2.3.1 RCM at C7/C8; Early Introduction of Lactone 107
2.3.1.1 Forward Synthesis 108
2.3.2 RCM at $\mathrm{C} 7 / \mathrm{C}$; Late Stage Introduction of Lactone 116
2.3.2.1 Forward Synthesis 118
2.3.3 RCM at C11/C12, Johnson-Claisen Rearrangement 130
2.3.3.1 Forward Synthesis 130
2.3.4 Assessment of Asymmetric Transformations 152
2.4 Conclusion and Outlook 157
3 References 159
4 Experimental Part 167
4.1 General Procedures and Analytics 167
4.2 Cyclopropyl-Epo B and Side Chain-modified Analogs 168
4.2.1 Total Synthesis of CP-Epothilone B (1a) 168
4.2.2 Synthesis of Side Chain-modified Analogs of CP-Epo B 203
4.2.3 Analogs of 9,10-dehydro Epo B 234
4.2.4 Antibody Drug Conjugates 276
4.2.5 Synthesis of Unfunctionalized Heterocycles 78a-e 278
4.2.6 Functionalized Thiazole Heterocycles 291
4.2.7 Functionalized Isoxazole Heterocycles 301
4.2.8 Functionalized Pyrazole Heterocycles 307
4.3 Synthesis of Hypermodified Epothilone A Analogs 325
4.3.1 First Synthesis 325
4.3.2 Optimized Synthesis 352
4.4 Towards the Total Synthesis of Michaolide E 371

Abstract

Epothilones (Figure 1) are naturally occuring microtubule-stabilizers that inhibit the growth of human cancer cells at nM or even sub-nM concentrations. Based on their attractive preclinical profile the epothilones have served as important lead structures in the search for improved anticancer drugs. These efforts have led to the identification of nine epothilones that were investigated in clinical trials, with the approval of the epothilone B lactam ixabepilone (Ixempra ${ }^{\circledR}$) for the treatment of breast cancer as the most tangible result.

Figure 1: Naturally occurring epothilones; Epo A and Epo B.

As for other cytotoxic anticancer agents epothilones do not discriminate between cancer and normal cells, thus, increasing their tumor cell selectivity would significantly improve their therapeutic potential. Before this background it was one of the objectives of this PhD thesis to provide new functionalized epothilone analogs for the construction of epothilone-based antibody-drug conjugates (ADC) with enhanced tumor selectivity. In order to ensure maximum potency and metabolic stability, these analogs were derived from 12,13cyclopropyl Epo B as the parent structure, with modifications easily addressable for antibody attachment located in the heterocyclic part of the C 15 side chain (Figure 2).

Figure 2: Target structures 1a, 2a-h as the active drug cargo for the construction of ACD's.

As a first step towards the development of cyclopropyl-epothilone-based ADC's an efficient synthetic route to cyclopropyl-Epo B (1a) and side chain-modified analogs 2a-h was established. Target structures 1a and $\mathbf{2 a} \mathbf{- h}$ were accessed through a convergent approach, which comprised the assembly of the key building blocks 6 and 7 via an esterification/ringclosing metathesis sequence to obtain the macrocyclic core with a truncated side that was amenable to elaboration into cyclopropyl-epothilone B (1a) (thus completing the first total
synthesis of this analog) and side chain-modified variants (2a-h) by Wittig-type chemistry (Scheme 1). All target structures could thus be accessed from a single advanced intermediate.

Scheme 1: Convergent synthesis of target structures 1a and 2a-h.

Cyclopropyl-epothilone B (1a) showed similar antiproliferative activity against human cancer cell lines as natural Epo B. Likewise, several functionalized derivatives 2a-h showed IC_{50} values for the in vitro inhibition of human cancer cell growth in the low nM range, which makes them potential candidates for the construction of epothilone-based ADC.

In addition to the synthesis of $\mathbf{1 a}$ and $\mathbf{2 a - h}$, an optimized synthesis was elaborated for the potent hypermodified Epo A analog 3a, which had been previously identified in the group and which could potentially be conjugated to tumor-targeting antibodies through the selective acylation of the C7 hydroxy group. Key steps of the optimized route towards 3a are a synaldol addition to install the stereocenters at C6 and C7, Julia-Kocienski olefination to establish the C10/C11 bond, ring-closure by Shiina macrocyclization, and a late stage introduction of the heterocycles by means of Wittig olefination (Figure 3).

Figure 3: Structure of hypermodified Epo A (3a) and key retrosynthetic disconnections.

The second part of this thesis describes studies towards the total synthesis of michaolide E (4) (Figure 4), a new highly cytotoxic member of the cembranolide family of natural products. 4 has been isolated from the soft coral Lobophytum michaelae and demonstrated to inhibit the growth of the human colon adenocarcinoma cell line HT-29 with an IC 50 value of 115 nM and the mouse lymphocytic leukemia line P-388 with an IC 50 of 16 nM .

Michaolide E (4)
Figure 4: Structure of michaolide E (4).

To date, no total synthesis of michaolide E (4) has been reported and no structure-activity studies been described. It was an objective of this thesis to establish an efficient and stable synthesis of this interesting natural product in order to provide a starting point for the exploration of michaolide $\mathrm{E}(4)$ as a potential lead structure for anticancer drug discovery. The synthesis discussed in this thesis was based on the following key transformations (Scheme 2): (1) An Evans syn-aldol reaction between aldehyde $\mathbf{1 0}$ and imide $\mathbf{1 1}$ to provide the desired aldol product $\mathbf{1 2}$ as a single isomer; (2) a highly selective Sakurai addition with aldehyde $\mathbf{1 3}$ to establish the C14 stereocenter; (3) ring-closing metathesis (RCM) to construct the 14-membered macrocycle 16, and regioselective lactonization (Scheme 2).

Scheme 2: Synthesis towards michaolide E (4).

Unfortunately, the spectral data of the product 5 obtained after directed epoxidation and final methenylation α to the lactone carbonyl did not correspond with those reported for natural michaolide E (4). At this point we assume that this is a consequence of the formation of the wrong epoxide isomer; however, based on the currently available data it cannot be excluded that the structure of the natural product may have been misassigned.

Zusammenfassung

Die Epothilone (Abbildung 1) sind Naturstoffe mit ausgeprägten Effekten auf das zelluläre Mikrotubuligerüst und einer daraus resultierenen potenten Hemmwirkung auf das Wachstum humaner Krebszellen und Tumore. Aufgrund ihrer interessanten biologischen Aktivität wurden die Epothilone zu vielversprechenden Leistrukturen auf dem Gebiet der Krebsmittelforschung und bis zum heutigen Tag wurden neun Epothilone in klinischen Studien geprüft. Eine dieser Verbindungen, das Epothilon B Analogon Ixabepilone (Ixempra®), wurde 2007 für die Behandlung von Brustkrebs zugelassen.

$\mathrm{R}=\mathrm{H}$: Epothilon A
$R=M e$: Epothilon B
Abbildung 1: Natürlich vorkommende Epothilone; Epo A und Epo B.

Grundsätzlich führt jedoch die fehlende Selektivität der Epothilone gegenüber Krebszellen und die damit verbundenen unerwünschten Nebenwirkungen zu Limitierungen bei deren therapeutischer Anwendung. Eine Möglichkeit dieses Problem zu lösen besteht im Versuch einer zielgerichteten Wirkstoffabgabe im Tumor, wie sie z. B. mittels der Anwendung von Antikörper-Wirkstoff Konjugaten erreicht werden kann. In diesem Kontext ist es ein Ziel dieser Doktorarbeit neue funktionalisierte Epothilon-Analoga herzustellen, welche die Herstellung von Antikörper-Wirkstoff Konjugaten erlauben sollten. Um eine hohe Wirksamkeit und gute metabolische Stabilität dieser Analoga zu gewährleisten, wurden diese als Derivate des 12,13-Cyclopropyl Epo B konzipiert, wobei eine leichte Verknüpfbarkeit mit einem Antikörper durch eine Funktionalisierung der Heterozyklen in der Seitenkette erreicht werden sollte (Abbildung 2).

Abbildung 2: Zielstrukturen 1a und 2a-h, welche als Wirkstoff für die Bildung von AntikörperWirkstoff Konjugaten dienen.

Um eine praktische Grundlage für die Herstellung der entsprechenen Antikörper-Wirkstoff Konjugate zu schaffen, wurde zuerst eine effiziente Synthese des Cyclopropyl-Epo B (1a) und entsprechender seitenkettenmodifizierter Analoga 2a-h ausgearbeitet. Diese Zielstrukturen wurden über eine konvergente Synthese hergestellt, welche auf der Veresterung des sekundären Alkohols (6) und der Säure (7) basiert (Schema 1) und in einer nachfolgenden Macrozyklisierung über eine Ringschluss-Metathese zur Bildung des makrozyklischen Grundgerüst beruht. Das so erhaltene makrozyklische Methylketon wurde dann mittels einer Wittig Reaktion in Cyclopropyl-Epo B oder durch Wittig- wie HWE Reaktionen in die entsprechenden seitenkettenmodifizierten Derivate überführt. Diese Strategie führte zur erstmaligen Totalsynthese des Cyclopropyl-Epo B (1a).

Schema 1: Konvergente Synthese von Zielstrukturen 1a und 2a-h.

Cyclopropyl-Epo B (1a) zeigt eine ähnlich potente antiproliferative Aktivität gegenüber Krebszellen wie das natürliche Epo B. Die verschiedenen funktionalisierten Derivate 2a-h hemmen das Wachstum humaner Krebszellen ebenfalls mit IC_{50} Werten im tiefen nanomolaren Bereich und kommen somit als mögliche Wirkstoffkomponenten für Antikörper-Wirkstoff Konjugate in Betracht.

Zusätzlich zur Synthese der obigen Cyclopropyl-Epo B Analoga wurde eine optimierte Synthese des hochpotenten, hypermodifizierten Epo A Analogons 3a (Abbildung 3) ausgearbeitet, welches bereits früher in der Forschungsgruppe untersucht worden war. Analogon 3a kann über die sekundäre Alkoholgruppierung an C7 mit einem Linker modifizert und dann mit Antikörpern verbunden werden. Die Schlüsselschritte der optimierten Synthese von 3a sind eine syn-Aldol Addition zum Aufbau der Stereozentren an C6 und C7, eine Julia-Kocienski Olefinierung zur Bildung der C10/C11 Bindung, ein Ringschluss über eine Shiina Makrolaktonisierung und die Einführung der Heterozyklen über eine Wittig Reaktion am Schluss der Synthese.

Abbildung 3: Struktur von hypermodifiziertem Epo A (3a) und Schlüsselschritte der Retrosynthese.

Der zweite Teil dieser Doktorarbeit beschreibt erste Studien zur Totalsynthese von Michaolid E (4) (Abbildung 4), einem neuen cytotoxischen Naturstoff aus der Familie der Cembranolide. $\mathbf{4}$ wurde aus der Weichkoralle Lobophytum michaelae isoliert und hemmt das Wachstum der humanen Kolonkarzinom Krebszelllinie HT-29 und der murinen Lymphknoten Krebszelllinie P-388 IC50 Werten von 115 nM bzw. 16 nM .

Michaolid E (4)
Abbildung 4: Struktur von Michaolid E (4).

Bis heute wurde keine Totalsynthese von Michaolid E (4) veröffentlicht und es wurden keine SAR Studien beschrieben. Es war ein weiteres Ziel dieser Doktorarbeit eine effiziente und stabile Synthese dieses interessanten Naturstoffs auszuarbeiten, welche als Basis für die Erforschung von Michaolid E (4) als Leitstruktur für die Wirkstoffforschung gegen Krebs dienen soll. Die in dieser Arbeit beschriebene Synthese umfasst folgende wichtige Transformationen (Schema 2): (1) Eine Evans syn-Aldol Addition zwischen dem α-chiralen Aldehyd $\mathbf{1 0}$ und dem Imid $\mathbf{1 1}$ lieferte das gewünschte Aldolprodukt $\mathbf{1 2}$ als einziges Isomer; (2) eine selektive Sakurai Addition an Aldehyd 13 ermöglichte den Aufbau des Stereozentrums an C14; (3) eine Ringschluss-Metathese zur Bildung des Makrozyklus 16; und (4) eine regioselektive Lactonisierung (Schema 2).

Schema 2: Synthese von Michaolide E (4).

Leider stimmten die spektroskopischen Daten des Produkts 5, welches nach der gerichteten Epoxidierung und abschliessenden Methenylierung α zur Carbonylgruppe des Lactonrings erhalten wurde, nicht mit den Daten für das natürliche Michaolid E (4) überein. Wir nehmen zum jetzigen Zeitpunkt an, dass die Ursache für diese Abweichung auf die Bildung des unerwünschten Epoxidisomers zurückzuführen ist. Jedoch kann aufgrund der vorliegenden Daten ein Fehler in der Strukturzuordnung des Naturstoffs nicht mit Sicherheit ausgeschlossen werden.
Abbreviations
ADC Antibody-drug conjugate
$\mathrm{Ar} \quad$ Aryl
BAIB Bis(acetoxy)iodobenzene
Bn Benzyl
CBS Corey-Bakshi-Shibata catalyst
CPS Cerium(IV)sulfate-phosphomolybdic acid
CSA Camphorsulfonic acid
DCC Dicyclohexylcarbodiimide
dr Diastereomeric ratio
DEAD Diethyl azodicarboxylate
DIBAL Diisobutylaluminum hydride
DIPEA $\quad N, N$-Diisopropyl ethyl amine
DMAP 4-(Dimethylamino)pyridine
DMDO Dimethyl dioxirane
DMF Dimethylformamide
DMP Dess-Martinperiodinane
DMSO Dimethyl sulfoxide
DPPA Diphenylphosphoryl azide
EDCI 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
Epo Epothilone
EtOAc Ethyl acetate
FDA Food and Drug Administration
HF Hydrofluoric acid
HMPA Hexamethylphosphoramide
HOBt Hydroxybenzotriazole
ICs0 Half maximal inhibitory concentration
KHMDS Potassium hexamethyldisilazide
LRMS Low resolution mass spectrometry
LDA Lithium diisopropylamide
LiHMDS Lithium hexamethyldisilazide
m-CPBA $\quad m$-Chloroperoxybenzoic acid
MCDI 1-Cyclohexl-3-(2-morpholinmethyl)carbodiimide metho-p-toluenesulfonate

MeCN	Acetonitrile
MeOH	Methanol
MNBA	2-Methyl-6-nitrobenzoic anhydride
MSA	Microtubule-stabilizing agent
MsCl	Methanesulfonyl chloride
MTBE	Methyl tert-butyl ether
n-BuLi	n-Butyllithium
NaH	Sodium hydride
NaHMDS	Sodium hexamethyldisilazide
NMO	N-methyl morpholine
PDC	Pyridinium dichromate
PMB	p-Methoxybenzyl ether
$p-$-TsOH	p-Toluenesulfonic acid
py	Pyridine
RCM	Ring-closing metathesis
RCAM	Ring-closing alkyne metathesis
rt	Room temperature
SAR	Structure-activity relationship
SM	Starting material
TBAI	Tetrabutylammonium iodide
TBS	$t e r t-B u t y l d i m e t h y l s i l y l ~$
t-BuOH	$t e r t-B u t a n o l$
t-BuOK	Potassium tert-butoxide
TEMPO	$2,2,6,6-$-Tetramethylpiperidinyloxyl
Tf	Trifluoromethanesulfonyl (triflyl)
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TIPS	Triisopropylsilane
TPAP	Tetrapropylammonium perruthenate
TrisNHNH 2	$2,4,6-T r i i s o p r o p y l b e n z e n e s u l f o n o h y d r a z i d e ~$

1.1 Introduction

1.1.1 Microtubule-Stabilizing Agents as Anticancer Drugs

Microtubules are an integral part of the cytoskeleton and as such they play a central role in the process of separating duplicated chromosomes before cell division. As a consequence, the interference with microtubule function leads to inhibition of cell division and proliferation, which has made the tubulin/microtubule system an important and also successful target for anticancer drugs. ${ }^{[1]}$ Depending on the molecular mechanism by which such compounds interfere with the tubulin/microtubule system, they can be grouped into two distinct classes. Either they inhibit the assembly of tubulin heterodimers into microtubule polymers (tubulin polymerization inhibitors) or they stabilize pre-existing microtubules under otherwise nonstabilizing conditions (microtubule stabilizers). ${ }^{[2]}$

Tubulin polymerization inhibitors such as the vinca alkaloids ${ }^{[3],[4]}$ have been employed in cancer therapy for half a century while the clinical history of agents that promote tubulin polymerization and stabilize microtubules dates back only to 1993, when the natural product taxol (17) (paclitaxel; Taxol ${ }^{\circledR}$) (Figure 5) was introduced for the treatment of breast, ovarian, and lung cancer. ${ }^{[5],[6],[7]}$ Three years later followed the FDA approval of the semisynthetic taxol analog docetaxel (Taxotere ${ }^{\circledR}$) .

Figure 5: Structure of taxol (17).

Over the last two decades a variety of substances, both in the field of depolymerizing and polymerizing compounds have been identified. New structures for tubulin depolymerization such as combretastatin (18) or the cryptophycins (19) ${ }^{[2]}$ (Figure 6) and a number of microtubule-stabilizing agents as dictyostatin (20), ${ }^{[9]}$ discodermolide (21), ${ }^{[8]}$ eleutherobin (22), ${ }^{[9]}$ laulimalide (23), ${ }^{[10]}$ peloruside A (24), ${ }^{[1]}$ zampanolide (25) ${ }^{[12]}$ (Figure 7) and the epothilones have been discovered. ${ }^{[13]}$

Combretastatin A-4 (18)

Cryptophycin (19)

Figure 6: Examples of tubulin polymerization inhibitors.

laulimalide (23)

peloruside A (24)

(-)-zampanolide (25)

Figure 7: Examples of microtubule-stabilizing agents.

1.1.2 Microtubule Structure and Function

As indicated above, the biological effects of epothilones are based on their ability to bind to microtubules. Thereby they alter the intrinsic stability and the dynamic properties of the microtubules. ${ }^{[13]}$ Microtubules are one of the major components of the cytoskeleton and as such they play an important role in the development and maintenance of cell shape, in the intracellular transport of vehicles, mitochondria and other components. ${ }^{[14]}$ In the context of cell division and proliferation, they are of critical importance for the segregation of the sister chromatids, which has to precede cyctokinesis, i. e. the final division of the cell into two new daughter cells. ${ }^{[15]}$

Microtubules are polymers of α / β tubulin heterodimers, which are arranged as hollow cylinders composed of 13 protofilaments, i.e. linear strings of head-to-tail arranged α - and β tubulin subunits (Figure 8). A characteristic feature of microtubules is their ability to lengthen and shorten by addition or loss of α / β tubulin from the microtubule ends. This process is
referred to as "dynamic instability". ${ }^{[1],[16],[17]}$ The second dynamic process affecting microtubule dynamics is called "treadmilling". ${ }^{[18],[19],[20]}$ It constitutes the migration of tubulin subunits from the plus end to the minus end of the polymer. In vitro, the growth and shrinkage can take place at both ends of the microtubule cylinder by the addition or loss of α / β-tubulin heterodimers. The plus-end, where β-tubulin is exposed to solvent, is more dynamic than the minus-end terminating with α-tubulin. ${ }^{[1],[16],[21]}$

Figure 8: Polymerization of α / β-tubulin subunits into microtubules and the structure of microtubules.

In contrast, in cells, the minus-end is anchored to the microtubule-organizing center, from which the plus-end is able to grow and shrink. ${ }^{[16]}$ In cell division, the separation of the chromatids proceeds with microtubules, which are emanating from the two spindle poles (Figure 9, prometaphase). The microtubules are attached to the kinetochors of the chromosomes and after alignment of the chromosomes in the center of the cell (Figure 9, metaphase), the chromatids separate in anaphase and migrate towards the opposite poles of the cell guided by microtubules. ${ }^{[15]}$ Thus, microtubule dynamics are fundamental for the proper assembly of the mitotic spindle and for the movement of the sister chromatids to the spindle poles (Figure 9, anaphase). It is therefore not of a surprise that agents interfering with microtubule dynamics have a profound effect on cell division. By suppressing microtubule dynamics the spindle is no longer capable of forming properly and the cell cycle cannot progress from metaphase to anaphase. ${ }^{[22]}$ As a consequence, the cell cycle is blocked and apoptosis is induced. ${ }^{[23]}$

Figure 9: Cell cycle. ${ }^{[24]}$

1.2 Epothilones

1.2.1 Discovery and in vitro Activities

Epothilones are natural products first isolated in 1987 from the myxobacterium Sorangium cellulosum Sc 90 (collected at the banks of the river Zambesi in Southern Africa) by Reichenbach and Höfle at the "Gesellschaft für Biotechnologische Forschung (GBF)" in Braunschweig, Germany (now called the Helmholtz Centre for Infection Research). ${ }^{[25]}$ Based on an activity-guided fractionation process, epothilone A (Epo A) and B (Epo B) (Figure 10) were isolated in the context of an antifungal screening program. Their name reflects their basic structural features, as they contain an epoxide moiety, a thiazole ring and a ketone functionality. ${ }^{[26]}$

Figure 10: Structures of Epo A and B.

The mode of action of the epothilones was unraveled only eight years after the compounds' original discovery by Bollag et al., who demonstrated that they were microtubule-stabilizing agents (MSA). Intriguingly at the time, Epo B was found to be an even more active tubulinpolymerizing agent than the prototypical MSA taxol and it was able to displace taxol from microtubules, thus indicating that both compounds bind to the same site on β-tubulin. ${ }^{[13]}$

Moreover, in contrast to taxol (17), Epo A and B showed low susceptibility to P-glycoproteinmediated drug efflux and, as a consequence, they also inhibited the growth of multidrugresistant cancer cell lines with near to full activity. ${ }^{[13],[27],[28],[29]}$ Subsequently, the compounds were also shown to remain unaffected by tubulin mutations that render taxol inactive. ${ }^{[30]}{ }^{[C}{ }_{50}$ values for the in vitro cancer cell growth inhibition are in the single-digit nanomolar range for Epo A, a potency comparable to that of taxol, whereas IC_{50} values for Epo B can be in the subnanomolar range. In general, the activity of Epo B is ca. ten times higher than that of Epo A (Table 1). ${ }^{[1]}$

Table 1: Inhibition of the growth of human cancer cell lines. ${ }^{[31]}$

Cell line	IC50 [nM]		
	Epo A	Epo B	Taxol
HCT-116 (colon)	2.51	0.32	2.79
A549 (lung)	2.67	0.23	3.19
MCF-7 (breast)	1.49	0.18	1.80
NCI/ADR ${ }^{[\mathrm{a}, \mathrm{b}]}$	27.5	2.92	9105
KB-31 (cervix)	2.10	0.19	2.31
KB-8511 ${ }^{[\mathrm{a}, \mathrm{c}]}$	1.90	0.19	533

[a] Multidrug-resistant cell line. [b] Multiple resistance mechanisms/MDR.
[c] P-gp overexpression/MDR

The epothilones possess better water-solubility than taxol (17), ${ }^{[32]}$ which should in principle allow the use of less problematic clinical formulation vehicles than those required for taxol; ${ }^{[7]}$ taxol is formulated with the surfactant Cremophor EL which is responsible for anaphylactic reactions. ${ }^{[33]}$ Over the last 14 years several epothilone-type agents have entered clinical trials in humans. Epo B itself was developed by Novartis, but the compound was abandoned in 2010 after a Phase III trial in ovarian cancer had not demonstrated superiority over standard of care. ${ }^{[34]}$ In contrast, the epothilone B lactam ixabepilone (26) (BMS-247550; Ixempra ${ }^{\circledR}$) was approved by the FDA for breast cancer treatment in 2007. [35]

Figure 11: Structure of ixabepilone (26); Ixempra ${ }^{\circledR}$.

1.2.2 Syntheses of Natural Epothilones

Only a year after the absolute configuration of Epo A and B had been disclosed by Höfle and co-workers ${ }^{[32]}$ the first total syntheses of Epo A and B were published at the end of 1996 and early 1997 by the groups of Danishefsky, ${ }^{[36]}$ Nicolaou ${ }^{[37],[38],[39],[40]}$ and Schinzer, ${ }^{[41]}$ respectively. Scheme 3 shows the three different approaches to ring closure and other key steps that are characteristic for these total syntheses. The approaches of Schinzer (A) and Nicolaou (B) are similar in so far as they both use an aldol addition between an α-chiral aldehyde and an ethyl ketone to create stereocenters C6 and C7. Schinzer chose RCM (ring closing metathesis) for C12/C13 double bond formation, while Nicolaou made use of a Wittig reaction to create the (Z)-olefin and employed macrolactonization of seco acid 28 to close the macrocycle. Danishefky (C), however, used a Suzuki coupling to create the C11-C12 carboncarbon bond and a surprisingly selective macroaldolization for ring-closure. Ring-closure was followed by final epoxidation of the $\mathrm{C} 12 / \mathrm{C} 13$ cis-double bond to afford the final products Epo A and B.

Scheme 3: Early Retrosyntheses of Epo A by Schinzer and Nicolaou, and Epo B by Danishefsky.

In addition to the macrolactonization approach, Nicolaou et al. published a synthesis of Epo A where the macrocycle was closed at C12/C13 by means of RCM (Scheme 4). ${ }^{[42]}$ The stereocenters at C6 and C7 were installed via aldol addition of the dianion of carboxylic acid $\mathbf{3 0}$ and α-chiral aldehyde $\mathbf{3 1}$ giving acid $\mathbf{3 2}$ as the major isomer (dr 2:1). Subsequent esterification with alcohol $\mathbf{3 3}$ under Steglich ${ }^{[43]}$ conditions yielded diene $\mathbf{3 4}$ and the stage was set for the crucial ring-closing reaction. The macrocycle $\mathbf{3 5}$ formed in satisfying 50% yield together with 35% of the undesired E-isomer. TBS-deprotection was carried out under acidic conditions and final epoxidation with m-CPBA afforded Epo A in 55\% yield together with 20% of the $12 \alpha, 13 \alpha$-epoxide.

Scheme 4: a) LDA, THF, $-78^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, then $31,-78^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, dr $2: 1$; b) DCC, DMAP, toluene, 33, 45% over two steps; c) Grubbs I ($15 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \%$; d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 98 \%$; e) m-CPBA, benzene, $0^{\circ} \mathrm{C}, 55 \%$.

In the following years a number of other approaches to form the macrocycle were reported and only a few of them will be discussed here. Sun and Sinha demonstrated that diene 41 undergoes macrocyclization at C9/C10 in the presence of Grubbs $2^{\text {nd }}$ generation catalyst very efficiently, albeit in an unselective manner (Scheme 5). ${ }^{[44]}$ Note here that prior attempts of the Danishefsky group to close the macrocycle at C9/C10 by ring-closing metathesis, for reasons that remain unexplained, had failed. ${ }^{[45]}$ The preparation of diene 41 by Sun and Sinha is conceptually similar to Nicolaou's approach described above (Scheme 4).

Scheme 5: a) LDA, THF, temperature, yield and selectivity not given; b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH} ;$ d) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; e) $\mathrm{MePPh}_{3} \mathrm{I}, n$-BuLi, THF, 66% over three steps; f) p-TsOH, MeOH; g) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; h) $\mathrm{NaClO}_{2}, 73 \%$ over three steps; i) EDCl, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 82 \%$; j) Grubbs II (20 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 89%, $E / \mathrm{Z} 1: 1$.

The early syntheses of epothilone that involved RCM-based ring-closure at C12/C13 by Danishefsky, ${ }^{[46]}$ Nicolaou ${ }^{[47]}$ (Scheme 4) and Schinzer ${ }^{[4]]}$ (Scheme 3) were characterized by a lack of E / Z selectivity. (This is also true for Sinha's approach, although in this case the configuration of the double bond formed in the RCM step was inconsequential). Fürstner et al. provided a solution to overcome this limitation by applying a ring-closing alkyne metathesis (RCAM) approach to afford macrolide 49, which upon Lindlar hydrogenation was converted exclusively into the Z-isomer (Scheme 6). The synthesis of the dialkyne 48 precursor made use of an aldol addition and esterification as the key steps ${ }^{[48],[49]}$

Scheme 6: a) LDA, THF, $-78{ }^{\circ} \mathrm{C}$, then $44,70 \%$, dr $7: 1$; b) PPTS, $\mathrm{MeOH}, 85 \%$, c) TBSOTf, 2,6-lutidine, 92%; d) CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 78 \%$; e) PDC, DMF, 83%; f) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 81 \%$; g) $\mathrm{Mo}(t-\mathrm{BuN}-3,5 \text {-sylyl })_{3}(10 \mathrm{~mol} \%)$, toluene $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 80^{\circ} \mathrm{C}, 80 \%$; h) Lindlar, quinoline, $\mathrm{H}_{2}(1 \mathrm{~atm})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant; i) aq. $\mathrm{HF}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 79 \%$; j) $\mathrm{DMDO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 70 \%$.

Another epothilone synthesis that deserves special mention was reported by Mulzer and coworkers. ${ }^{[50],[51]}$ In all syntheses before Mulzer's work, the C12/C13 Z-olefin was epoxidized at the final stage of the synthesis. Obviously, this strategy was chosen in order to avoid for the presumably labile epoxide to be carried through a multistep synthesis. Contrary to this concern, Mulzer and co-workers could demonstrate that the epoxide in $\mathbf{5 1}$ could be installed prior to the formation of the $\mathrm{C} 6 / \mathrm{C} 7$ bond via aldol addition and then carried through the synthesis without problems that would be related to the presence of the epoxide moiety (Scheme 7). ${ }^{[50],[51]}$

Scheme 7: a) LDA, THF, -78°, then 51, 92%, dr 20:1.

1.2.3 Analog Syntheses and SAR of Epothilones

The chemistry of epothilones has been extensively explored and several different total syntheses of natural epothilones have been established. At the same time this chemistry was employed for the construction of structurally modified analogs in order to investigate whether structural modifications could be identified that would result in improved activity against human cancer cells and/or would produce compounds with more favorable pharmacological properties in vivo. For structure-activity relationship (SAR) studies a large number of synthetic and semisynthetic analogs with modifications in essentially all sections of the epothilone skeleton have been investigated. These studies have indeed led to more potent derivatives, compounds with better pharmacological properties and analogs that are simpler to synthesize. The corresponding studies have been summarized in several reviews; ${ }^{[52],[53],[54],[55],[56]}$ and in the following only those results and conclusions that are of relevance for this project will be discussed.

1.2.3.1 C12/C13 Modifications

Early SAR investigations were focused on the C12-C13 cis-epoxide moiety. The first structures to be investigated in this context were those that were intermediates in the total synthesis of Epo A or B. An important result that arose from these studies is the fact that deoxyepothilones (Epo C and Epo D, Figure 12: left) showed only slightly reduced biological activity compared to their epoxide containing parent compounds Epo A and B , respectively. ${ }^{[36],[37],[46],[57]}$ In particular, the substrate for the final epoxidation step in the synthesis of Epo B, i.e. the natural product Epo D, emerged as an important analog from early SAR studies.

R = H: Epo C
R = Me: Epo D

Epo D

Figure 12: Structure of deoxyepothilones Epo C and Epo D and key retrosynthetic disconnections .

Scheme 8 summarizes Danishefsky's second generation synthesis of Epo D that was developed in the context of extensive preclinical profiling of the compound. ${ }^{[58],[59]}$ In this improved synthesis of Epo D the critical C6/C7 stereodiad was established by an aldol addition of ethyl ketone 53 to aldehyde 54, which gave the desired aldol product with a selectivity of 5.5:1. Suzuki coupling of terminal olefin $\mathbf{5 5}$ with vinyl iodide $\mathbf{5 6}$ served to construct the C12-C13 Z double bond and a highly selective Noyori reduction ${ }^{[60]}$ of the C3keto group produced the stereocenter at C3. Obviously, this approach also provided improved access to Epo B.

Scheme 8: a) LDA, THF, $-30^{\circ} \mathrm{C}$ to $-120^{\circ} \mathrm{C}$, then $\mathbf{5 4}, 60 \%$, dr $5.5: 1$; b) TrocCl, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, then 0.5 N HCl in $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 87 \%$; c) $9-\mathrm{BBN}$, THF, then 56, $\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right], \mathrm{AsPh}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, $\left.\mathrm{H}_{2} \mathrm{O}, \mathrm{DMF} ; \mathrm{d}\right) 0.4 \mathrm{~N} \mathrm{HCl}$ in $\mathrm{MeOH}, 50 \%$ (over two steps); e) [(R)-(binap) $\left.\mathrm{RuCl}_{2}\right], \mathrm{H}_{2}$ (83 bar), MeOH , $\mathrm{HCl}, 88 \%$, dr $95: 5$; f) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to rt, then $\mathrm{HCl} / \mathrm{MeOH}, 77 \% ; \mathrm{g}$) $2,4,6-$ trichlorobenzoyl chloride, NEt_{3}, DMAP, toluene, 78%; h) SmI_{2}, cat. NiI_{2}, THF, $-78^{\circ} \mathrm{C}, 95 \%$; i) HF pyridine, THF, 98%.

The biological activity of Epo C and D showed that the potent inhibition of the growth of human cancer cells by epothilones did not critically depend on the presence of an epoxide moiety. This conclusion was then confirmed by the investigation of the cyclopropane analogs of Epo A and B, which demonstrated that the substitution of the epoxide ring by a cyclopropane moiety is well tolerated, with the corresponding cyclopropyl analogs of Epo A and B being essentially equipotent with the natural products. ${ }^{[61],[62]}$ Cyclopropyl-epothilones were first prepared by the BMS group via semisynthesis from fermentatively produced Epo A
or B. As shown in Scheme 9 for cyclopropyl-Epo B (1a), the natural products Epo A or B are first deoxygenated to Epo C or D and subsequently the cyclopropane ring is installed. ${ }^{[61]}$

Scheme 9: a) WCl_{6}, n-BuLi, 78%; b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; c) benzyltriethylammonium chloride, 50% aq. $\mathrm{NaOH}, \mathrm{CHBr}_{3}, 45^{\circ} \mathrm{C}, 30 \%$; d) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, 70^{\circ} \mathrm{C}$; e) $20 \% \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-15^{\circ} \mathrm{C}$.

Subsequent to the work at BMS, Nicolaou and co-workers also developed stereoselective synthetic routes to cyclopropyl-epothilones. ${ }^{[62],[63],[64],[65]}$ In addition to the preparation of cyclopropyl-Epo A and B, the approach developed by Nicolaou allowed the late stage attachment of the heterocycle-bearing side chain at C15. As an example, Nicolaou's synthesis of cis-cyclopropyl Epo B analog 69 is shown in Scheme 10. ${ }^{1}$ The cyclopropane moiety was introduced via Charette cyclopropanation ${ }^{[66]}$ of cis-geraniol 59. Cyclopropane 61 was then transformed into iodide 62, which underwent Enders ${ }^{[67]}$ alkylation with (-)-SAMP hydrazone 63. The resulting aldehyde 64 was then connected to ethyl ketone 65 via aldol addition. The aldol product was elaborated into aldehyde 67 through an oxidation and homologation sequence. Aldehyde 67 was subsequently subjected to (non-selective) Nozaki-HiyamaKishi ${ }^{[68],[69]}$ coupling with vinyl iodide 68. The resulting mixture of isomers was cyclized under Yamaguchi conditions. At this stage the isomers could be separated by silica gel chromatography and final deprotection gave targeted cyclopropyl Epo B analog 69. ${ }^{[63]}$ This analog with the methylsulfanyl thiazole ring was chosen as it demonstrated to be a very potent inhibitor of the growth of human cancer cells. This compound is more active than its parent natural product Epo B exhibiting IC_{50} values in the low subnanomolar range as against the human ovarian cancer cell line 1A9 (IC50: 0.1 nM for $\mathbf{6 9}, 0.6 \mathrm{nM}$ for Epo B).

[^0]
Bu

68
$\xrightarrow{\mathrm{s})-\mathrm{v})}$

Scheme 10: a) $\mathrm{ZnEt}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, 59$, DME, 80%, 95% ee; b) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 100 \%$; c) O_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH},-7{ }^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{4},-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 83 \%$; d) $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; e) NaI , acetone, 91% over two steps; f) LDA, THF, $0{ }^{\circ} \mathrm{C}$, then 62, - $78{ }^{\circ} \mathrm{C}$ to $-10{ }^{\circ} \mathrm{C}, 87 \%$; g) MeI, reflux; h) 3 M $\mathrm{HCl} /$ pentane, 91% over two steps; i) LDA, THF/Et $\mathrm{L}_{2} \mathrm{O},-7{ }^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, then $\mathbf{6 4},-78{ }^{\circ} \mathrm{C}, 80 \%$, dr $14: 1$; j) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; k) HF-py, py/THF, $0^{\circ} \mathrm{C}, 86 \%$ over two steps; 1) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3},-78{ }^{\circ} \mathrm{C}$ to $\left.0^{\circ} \mathrm{C} ; \mathrm{m}\right) \mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, 2$-methyl-2-butene, t - $\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$; n) TMSE-OH, EDCI, DMAP, DMF, 73% over three steps; o) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOH} / \mathrm{EtOAc}, 89 \%$; p) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NEt}_{3},-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 99 \%$; q) $\mathrm{MeOCH}_{2} \mathrm{PPh}_{3} \mathrm{Cl}, n$ - $\mathrm{BuLi}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 79 \%$; r) PPTS, dioxane $/ \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}, 81 \%$; s) $\mathrm{CrCl}_{2}, \mathrm{NiCl}_{2}, 4-t$-Bu-py, then 67, DMSO; t) TBAF, THF, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 45 \%$ over two steps; u) NEt_{3}, 2,4,6-trichlorobenzoyl chloride, THF, $0^{\circ} \mathrm{C}$, then DMAP, toluene, $75^{\circ} \mathrm{C}, 32 \%$; v) aq. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 71 \%$.

1.2.3.2 C9/C10 Modifications

As first demonstrated by the Danishefsky group, the incorporation of an E-configured double bond between C9 and C10 in Epo D can result in an increase in antiproliferative activity (KOS-1584 (70); Figure 13), ${ }^{[70],[71]} \mathrm{KOS}-1584$ (70) exhibits an IC_{50} value of 0.9 nM against the T-cell acute lymphoblastic leukemia cell line CCRF-CEM while Epo D was about four times less active ($\mathrm{IC}_{50}: 3.6 \mathrm{nM}$). The corresponding Z-isomer was markedly less active. ${ }^{[72]}$ This observation is in agreement with spectroscopic studies, which indicated that the bioactive conformation of epothilones is characterized by anti-periplanar conformations about
the $\mathrm{C} 9 / \mathrm{C} 10$ and $\mathrm{C} 10 / \mathrm{C} 11$ bonds, respectively. ${ }^{[73]}$ Based on its overall profile KOS-1584 (70) emerged as a very promising candidate for drug development and entered clinical trials. ${ }^{[74]}$

KOS-1584 (70)
Figure 13: Structure of 9,10-dehydro Epo D (70) and key retrosynthetic disconnections.

The Danishefsky synthesis of KOS-1584 (70) made use of an aldol addition of ethyl ketone 71 to aldehyde 37 , giving the desired diastereomer in a $5.6: 1$ ratio, a second aldol addition to establish the chiral center at C3, an esterification to couple acid $\mathbf{7 5}$ and alcohol 76 and a RCM to form the macrocycle; the latter yielding the E-isomer exclusively (Scheme 11). Finally the heterocycle 78 was introduced via HWE olefination to afford KOS-1584 (70). ${ }^{[70],[71]}$ It should be noted that this approach allows the facile attachment also of non-natural heterocycles at the final stage of the synthesis, a feature that was exploited by the Danishefsky group later in the synthesis of iso-fludelone (Section 1.2.3.4, Figure 15).

Scheme 11: a) LDA, THF, $-90^{\circ} \mathrm{C}$, then $\mathbf{3 7}, 78 \%$, dr $85: 15$; b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}$ to $-20{ }^{\circ} \mathrm{C}, 97 \%$; c) p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$ (cat.), $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 64{ }^{\circ} \mathrm{C}, 98 \%$; d) $\mathrm{LDA}, \mathrm{cpTiCl}(\mathrm{OR})_{2}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$, then 72, 86%, dr 20:1; e) TESCl, imidazole, DMF, $0^{\circ} \mathrm{C}$ to rt, 98%; f) H_{2}, $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 83 \%$; g) TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; h) $\mathrm{MePPh}_{3} \mathrm{I}, n$-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to $-5{ }^{\circ} \mathrm{C}, 78 \%$; i) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt; j) EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76,0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 81 \%$ (over two steps); k) Grubbs II, toluene, $110^{\circ} \mathrm{C}, 78 \%$; 1) KHMDS, 78 , THF, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 76 \%$; m) HF pyridine, THF, 97%.

The combination of potent cytotoxicity and improved plasma stability of KOS-1584 (70) over Epo D provided the impetus for Danishefky and co-workers to synthesize substantial amounts of KOS-1584 (70) via the approach outlined in Scheme 11, in order to evaluate its in vivo efficacy. ${ }^{[75]}$ The compound was advanced into clinical development and its safety, tolerability, and activity were evaluated in a Phase I dose escalation study. ${ }^{[74]}$

1.2.3.3 C3 Modifications

Modifications of epothilones at C3 were first investigated jointly by the BMS group and the Höfle research group at the GBF. This included the semisynthesis of 3-deoxy-2,3-didehydro derivates 79 and 80 (Figure 14), which were readily obtained from natural epothilones via bisformylation at O3 and O7 and subsequent treatment of the bis-formyl ester with ammonia. ${ }^{[76]}$ Remarkably, analogs $\mathbf{7 9}$ and $\mathbf{8 0}$ retain almost full activity of the parent products. Before this background Altmann and co-workers synthesized 3-deoxy Epo B $\mathbf{8 2}$ to address the question whether the saturated 3-deoxy derivatives (Figure 14) would be significantly less active.

Figure 14: Structures of 3-deoxy-2,3-didehydro (left) and 3-deoxy derivatives (right).

Aldol addition between ethyl ketone 83 and α-chiral aldehyde $\mathbf{8 4}$ served to install the stereocenters at C6 and C7 (Scheme 12). The formation of the C11/C12 bond was achieved via Suzuki-Miyaura coupling ${ }^{[77]}$ of olefin 85 and vinyl iodide 86. Saponification and subsequent Yamaguchi macrolactonization, ${ }^{[78]}$ followed by TBS-deprotection gave 3-deoxy Epo D. Final epoxidation was carried out using $\mathrm{MeReO}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$ in a pyridine/water solvent mixture to give 3-deoxy Epo B (82) with remarkable selectivity (9:1). ${ }^{[79]}$

Scheme 12: a) LDA, THF, $-78^{\circ} \mathrm{C}, 58 \%$; b) TBSOTf, 2,6-lutidine, $-10^{\circ} \mathrm{C}, 82 \%$; c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$, 97%; d) o- $\mathrm{NO}_{2}-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{SeCN}^{2} \mathrm{PBu}_{3}, \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, 69 \%$; e) $9-\mathrm{BBN}, \mathrm{THF}$, then 86, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, $\left[\mathrm{PdCl}_{2}(\mathrm{dppf})_{2}\right], \mathrm{AsPh}_{3}, \mathrm{DMF},-10{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 55 \%$; f) LiOH , $i-\mathrm{PrOH} /$ water, $60{ }^{\circ} \mathrm{C}, 98 \%$; g) 2,4,6trichlorobenzoyl chloride, NEt_{3}, THF, $0^{\circ} \mathrm{C}$; h) HF py, THF, 90% ($2: 1$ mixture of isomers at C 15); i) $\mathrm{MeReO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{py} /$ water, 72% (9:1 mixture of epoxide isomers).

Intriguingly, analog 82 exhibits potent tubulin-polymerizing activity; it demonstrated to be almost as potent as Epo B and superior to Epo A or taxol (17). In addition, the compound retained high antiproliferative activity with IC_{50} values in the low nanomolar range as against the human epidermoid cancer cell lines KB-31 and KB-8511 (IC50 7.4 nM and 4.0 nM , respectively, versus 0.29 nM and 0.22 nM for Epo B). Thus, its cellular potency is only 25 times lower than that of Epo B but comparable with that of Epo A or taxol (17). This result shows that the presence of the 3-hydroxy group is not crucial for potent biological activity of epothilone-type structures. ${ }^{[79]}$

1.2.3.4 Side Chain Modifications

Modifications of the heterocyclic side chain of epothilones have been extensively investigated. Based on the results of these studies the natural thiazole ring can be substituted by a variety of other heterocycles without loss or even with an improvement in activity. ${ }^{[57],[80]}$ In addition, it was demonstrated that the removal of the allylic methyl group at C16 results only in a minor loss of activity. ${ }^{[31]}$ Different strategies for the introduction of the side chain to the epothilone framework have been reported. Two of them, which rely on a late stage attachment of the heterocycle, have already been discussed here (Scheme 10 and 11). Among
side chain-modified analogs, sagopilone (ZK-Epo (88), ${ }^{[8]}$ C21-amino-Epo B (BMS310705 (89)),,$^{[53],[82]}$ 20-desmethyl-20-methylsulfanyl-Epo B (ABJ879 (90)) ${ }^{[65],[83]}$ and isofludelone (91) ${ }^{[84]}$ have entered clinical trials (Figure 15).

ABJ879 (90)

Figure 15: Structures of sagopilone (88), BMS-310705 (89), ABJ879 (90), and iso-fludelone (91).

The development of the isoxazole based analog iso-fludelone (91) nicely demonstrates how the cellular activity can be improved by the substitution of the natural thiazole ring with an appropriate heterocycle. ${ }^{[84]}$ In order to improve the therapeutic index of KOS-1584 (70) (Figure 13), Danishefsky and co-workers explored replacing the three hydrogen atoms of the 26-methyl group with fluorine atoms. The synthesis discussed above for KOS-1584 (70) (Scheme 11) could be directly applied to the desired fluorinated analog, which has been termed fludelone (92) (Figure 16). This compound indeed proved to be less toxic than KOS1584 (70) but also lost some of the antiproliferative activity in comparison to KOS-1584 (70). The IC_{50} values against the human T-cell lymphoblastic leukemia cancer cell line CCRFCEM are 0.27 nM for 70 and 0.71 nM for fludelone (92); against the human lung carcinoma cell line A549 0.09 nM for 70 and 0.31 nM for fludelone (92). In an attempt to restore some of the potency that had been lost in the transition from KOS-1584 (70) to fludelone (92), the Danishefsky group designed an isoxazole-based analog of fludelone, which they named isofludelone (91) (Figure 16). ${ }^{[84]}$ In fact, iso-fludelone (91) was found to be more potent in vitro than fludelone ($\mathbf{9 2}$) and it is also metabolically more stable. The compound exhibits an IC_{50} value of 0.27 nM against CCRF-CEM and 0.05 nM against A549, respectively. ${ }^{[84]}$

KOS-1584 (70)

Fludelone (92)

Iso-fludelone (91)

Figure 16: Structure of KOS-1584 (70), Fludelone (92) and Iso-fludelone (91).

As previously discussed in section 1.2.3.1, Nicolaou and co-workers developed a synthesis of epothilone analogs that relied on the late stage attachment of the heterocycle side chain (Scheme 10). In the course of an intensive evaluation of the antiproliferative activity of side chain modified epothilone analogs pyrazole-based compounds $\mathbf{9 3}$ and 94 exhibited cellular activity superior to Epo B. Against the human ovarian cancer cell line 1A9 93 exhibited an IC 50 of 0.50 nM and 94 of 0.06 nM versus 0.99 nM for Epo B. The growth of cancer cell line KB-8511 was inhibited with an IC_{50} of 0.19 nM for 93 and with 0.09 nM for 94 while Epo B exhibited an IC_{50} of 0.42 nM .

Figure 17: Structure of pyrazole-based Epo B analogs 93 and 94.

These results indicate that the incorporation of pyrazole heterocycles might result in an increased potency.

1.2.4 Epothilones in Clinical Trials

Nine epothilone-type compounds (Figure 18) have entered clinical trials in humans, including the natural product Epo B (developed by Novartis as EPO906 or patupilone). Patupilone was developed up to Phase III, where it did not show a significant overall survival advantage of patients with advanced ovarian cancer, refractory or resistant to platinum-based therapy, compared to standard therapy. Based on these data Novartis refrained from filing the compound for registration. ${ }^{[34]}$ Clinical trials with KOS-862 (Epo D), KOS-1584 (70), sagopilone (88) (ZK-EPO), BMS-310705 (89) and ABJ879 (90) appear to have been terminated or at least put on hold. Iso-fludelone (91) entered Phase I clinical trials in 2011, but no data on this trial have been reported. Detailed up-to-date information on epothilones in clinical trials can be obtained from the Prous Integrity database. ${ }^{[85]}$

ZK-EPO
(Sagopilone) (88)

Figure 18: Epothilones that have been advanced to clinical trials.

Early pharmacokinetic studies with epothilones in rodents pointed to a distinct vulnerability of the ester bond in the macrocycle to hydrolysis by (rodent) plasma esterases. Although esterase activity in rodent plasma is known to be substantially higher than in humans, these early findings raised concerns about the metabolic stability of natural, macrolactone-based epothilones also in humans. In response to these concerns the group at BMS conceived the metabolically more stable lactam analog of Epo B, i. e. 26, as an alternative for therapeutic applications in humans. ${ }^{[86]}$ This work has resulted in an efficient process for the preparation of the Epo B lactam 26, a compound which was developed into a clinical anticancer drug and is marketed under the trade name Ixempra ${ }^{\circledR}$ (generic name ixabepilone (26), Scheme 13). ${ }^{[35, ~ 87]}$ Ixabepilone (26) is produced by semisynthesis from Epo B by exploiting the allylic nature of the epothilone lactone moiety. The latter can opened by treatment with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in the presence of sodium azide, which leads to the formation of azido acid 95 with complete retention of configuration at C 15 (Scheme 13). ${ }^{[86]}$ Subsequent reduction of the azide moiety under Staudinger conditions ${ }^{[88]}$ followed by macrolactamization gives ixabepilone 26. This semisynthetic route was optimized into a one pot procedure, which yields 26 in a single day in 23% yield. ${ }^{[86]}$

Scheme 13: a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{NaN}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 45^{\circ} \mathrm{C}, 70 \%$; b) $\mathrm{PMe}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 71 \%$; c) DPPA, NaHCO_{3}, DMF, $4^{\circ} \mathrm{C}, 43 \%$ or EDCI, HOBt, MeCN/DMF, rt, 65%.

Danishefsky and co-workers have also reported a fully synthetic route to ixabepilone (26). ${ }^{[89]}$

In addition to the analogs alluded to above, a tumor-targeting Epo A analog-folic acid conjugate 97 (BMS-753493) has entered clinical trials. ${ }^{[90]}$ Receptor-specific targeting is an
approach that enables selective delivery of cytotoxic drugs to cancer cells, thereby avoiding the collateral damage that accompanies their uptake by normal cells. The folate receptor is a cell surface glycoprotein that is expressed in relatively high levels in human epithelial cancers, but has limited expression in normal tissue. ${ }^{[91]}$ It binds folic acid and conjugates tightly (dissociation constant for folic acid $\mathrm{K}_{\mathrm{d}} 10^{-9} \mathrm{M}$). ${ }^{[22]}$ Upon binding the folic acid is internalized by endocytosis: therefore conjugation of an antiproliferative agent to folic acid is a promising strategy to target drugs to tumors. ${ }^{[92],[93]}$ BMS-753493 (97) was advanced to Phase I clinical trials, but seems no longer to be under active development.

Figure 19: Structure of the epothilone-folate conjugate BMS-753493 (97).

1.3 Immunoconjugates

Due to the lack of real selectivity of tubulin modulators against tumor cells and the resulting side effects, a sophisticated antibody-drug conjugate (ADC) that releases the active agent near the tumor cells could be used for directed tumor targeting (for recent reviews see ref ${ }^{[94],[95],[96]}$). As a consequence, the numerous side effects of drugs could be diminished. These immunoconjugates generally consist of three elements: a monoclonal antibody, the active agent and a chemical linker between the two (Figure 20). ${ }^{[96],[97]}$

Figure 20: Schematic representation of an antibody-drug conjugate (ADC).

1.3.1 Mechanism of Action

The antibody part of an ADC either binds to tumor specific antigens that are exclusively expressed on tumor cells or to overexpressed tumor-associated antigens. ${ }^{[98]}$ Conceptually, the accumulation of immunoconjugates at the surface of tumor cells leads to internalization and the intracellular release of the active agent by cleavage of the chemical linker between the drug and the antibody. Immunoconjugates that are not internalized can also release their drug cargo outside of the cell followed by passive diffusion of the small molecule across the tumor cell membrane. For effective tumor targeting of ADC's, certain requirements need to be met, ${ }^{[99]}$ including (1) the availability of a highly specific antibody; (2) IC ${ }_{50}$-values of the active agent in the subnanomolar range; (3) the chemical linker should be stable in the systemic circulation and allow release of the active agent inside the tumor cell or at the cell surface; and (4) the immunoconjugate itself should not cause an immune response.

1.3.2 Clinically Approved Immunoconjugates

Three examples of clinically tested and approved antibody-drug conjugates are Mylotarg ${ }^{\circledR}$ (Manufacturer: Pfizer), Adcetris ${ }^{\circledR}$ (Manufacturer: Seattle Genetics) and Kadcycla® (Manufacturer: Roche). Mylotarg ${ }^{\circledR}$ (Gemtuzumab ozogamicin) is an antibody-drug conjugate
consisting of the cytotoxic drug calicheamicin and a monoclonal antibody against the transmembrane receptor CD33. ${ }^{[100]}$ It was approved in 2001 and used to treat acute myelogenous leukemia (AML) in elderly patients until it was withdrawn from the market in 2010 due to safety concerns and a lack of increased benefit over conventional therapies, ${ }^{[100]}$ but the drug is still available to patients through access programs. Adcetris® (Brentuximab vedotin) is composed of the tubulin polymerization inhibitor monomethyl auristatin E (MMAE, Vedotin) as the active drug moiety and the chimeric monoclonal antibody brentuximab which is directed against the membrane protein CD30. Brentuximab vedotin was approved by the FDA in 2011 for the treatment of anaplastic large cell lymphoma (ALCL) and Hodgkin lymphoma. ${ }^{[101],[102]}$ Kadcycla ${ }^{\circledR}$ (Trastuzumab emtansine) consists of the monoclonal antibody trastuzumab recognizing the HER2 receptor linked by a thioether to the cytotoxic agent maytansine, which binds to tubulin dimers and thereby inhibits tubulin polymerization. ${ }^{[103]}$ Trastuzumab emtansine was approved by the FDA in 2013 for breast cancer treatment. ${ }^{[104]}$

1.4 Aims and Scope

As discussed above, a large number of epothilone analogs have been investigated in SAR studies since the original discovery of Epo A and B. However, one of the fundamental problems associated with cytotoxic anticancer agents, namely the narrow selectivity window between cancer and normal cells, is not fully addressed by any of these analogs, including those that have been advanced to clinical trials. Before this background the construction of epothilone-based ADC's represents one of the long term goals of the work initiated in this PhD thesis. In an initial phase this required the identification of highly potent functionalized analogs that would be suitable for conjugation to tumor-specific antibodies. Thereby, the lack of selectivity of epothilones for cancer cells over normal cells should be addressed. Specifically, this work has focused on functionalized cyclopropyl analogs of Epo B, the most potent natural epothilone, as the active drug cargo of ADC's. As discussed in section 1.2.3.1, 12,13-cyclopropyl (CP) analogs of Epo A and B have been found to be equally potent, or even somewhat more potent than the respective epoxide-based parent compounds. ${ }^{[61]}$ At the same time the replacement of the natural 12,13-epoxide moiety by a cyclopropane ring should lead to enhanced chemical and, in particular, metabolic stability, given the susceptibility of the oxirane ring to undesired chemical transformations ${ }^{[105]}$ and metabolic attack. ${ }^{[106]}$ An E configured double bond might be incorporated at $\mathrm{C} 9 / \mathrm{C} 10$. Such an incorporation resulted in an increase antiproliferative activity as first shown for Epo D. ${ }^{[70],[71]}$ As mentioned in section 1.2.3.4, heterocycles other than the natural thiazole moiety can result in increased activity. ${ }^{[57],[80]}$ In particular, analogs containing isoxazole ${ }^{[84]}$ or pyrazole ${ }^{[107]}$ rings were found to be highly potent.

Figure 21: Target structures 1a, 2a-h of novel epothilone derivatives.

As a first step in the development of cycloproyl-epothilone-based ADC's one of the objectives of this PhD thesis was to establish efficient synthetic access to side chainfunctionalized cyclopropyl-based analogs of Epo B 2a-h (Figure 21). As part of this objective
a new total synthesis of cyclopropyl-Epo B (1a) was to be developed that would form the basis for the synthesis of side chain modified analogs. Conceptually, target structures 1a and 2a-h were to be accessed through a convergent strategy, which comprises the coupling of the two building blocks $\mathbf{6}$ and 7 via an esterification/ring-closing metathesis (RCM) sequence to obtain the macrocyclic core (Scheme 14). The introduction of different heterocycles was to be performed at a late stage of the synthesis, in order to access a variety of side chain-modified analogs from a single advanced intermediate.

Scheme 14: Retrosynthetic strategy.

The questions to be answered in this PhD thesis was whether (1) the previous SAR data, which were all derived from 12,13-epoxide-based analogs, could be extrapolated to cyclopropyl-epothilones, and (2) whether functional groups could be attached to these heterocycles without loss in potency that would allow the selective attachment of tumortargeted antibodies. Such a functional group was thought to be required as the natural hydroxy groups at C3 and C7 were considered not to be reactive enough.

In summary, epothilone analogs of the general structure 1a and 2a-h (Figure 21) were to be targeted for synthesis as potential drug cargo for epothilone-based ADCs. In order to ensure maximum potency these analogs were to be based on the Epo B scaffold, although this would lead to somewhat enhanced synthetic complexity. In order to ensure a high level of flexibility with regard to the specific structure of the heterocycle, the introduction of the side chain heterocycle was to be performed only during the final stages of the synthesis.

1.5 Results and Discussion

1.5.1 Cyclopropyl-Epo B and Side Chain-modified Analogs

1.5.1.1 Synthetic Planning

As discussed in section 1.2.3.1, Nicolaou's synthesis of cyclopropyl-epothilones (CPepothilones) was based on the late stage addition of a side chain vinyl iodide to a C15 aldehyde by means of a Nozaki-Hiyama-Kishi coupling ${ }^{[68]}$ as a key step (Section 1.2.3.1, Scheme 10). ${ }^{[62],[63],[64],[65]}$ Unfortunately, the coupling was essentially nonselective, thus leading to a substantial loss of material at a late stage of the synthesis. In an attempt to overcome this limitation, an alternative strategy to CP-Epo B (1a) and its analogs was planned, where the heteroaryl-vinyl side chain was to be established through HWE olefination chemistry with methyl ketone 98 (Scheme 15). An analogous approach had been employed by Danishefsky and co-workers in the synthesis of 9,10-dehydro Epo D (70) (section 1.2.3.2, Scheme 11) ${ }^{[70],[71]}$ and its 26 -trifluoromethyl variant (fludelone) (92) ${ }^{[75]}$ as well as by Avery and co-workers in their synthesis of Epo A to generate the epoxidation precursor Epo C. ${ }^{[108]}$ Based on these previous reports, the elaboration of ketone 98 into the CP-Epo B (analogs) appeared to be a feasible approach. It should also be noted, however, that Höfle and co-workers had been unable to re-establish Epo A from the corresponding (epoxidecontaining) side chain ketone, in spite of significant optimization attempts, ${ }^{[109]}$ thus indicating that the chemistry employed by Avery and Danishefsky for the synthesis of Epo C and Epo D (derivatives), respectively, might not necessarily be extendable to cyclopropane-containing ketone 98.

As illustrated in Scheme 15, methyl ketone $\mathbf{9 8}$ was to be obtained through RCM between C9 and C 10 of the desired macrocycle followed by the selective reduction of $\mathrm{C} 9 / \mathrm{C} 10$ double bond. The requisite diene precursor for the macrocyclization reaction would be assembled from alcohol 6 and acid 7; the bis-TBS protected version of the latter had been previously synthesized in the group. ${ }^{[110]}$ Very similar to Schinzer's and Fürstner's synthesis of Epo A (section 1.2.2, Scheme 6), the synthesis makes use of an aldol addition of Schinzer ketone 43 and α-chiral aldehyde $\mathbf{1 0 2}$ to install the stereocenters at C6 and C7. The stereoselective establishment of the cyclopropane moiety in 6 was to be achieved through Charette cyclopropanation of allylic alcohol 99 , which would be derived from keto aldehyde $\mathbf{1 0 0}$ by means of Still-Gennari olefination ${ }^{[111]}$. Based on literature precedence it was felt that Still-

Gennari olefination of the aldehyde group would be feasible selectively in the presence of the keto group at C16 in 100, ${ }^{[12]}$ while the latter would have to be protected in subsequent steps. Lastly, aldehyde $\mathbf{1 0 0}$ was planned to be prepared from S-malic acid (101) as a defined source of chirality at C15.[113]

Scheme 15: Retrosynthesis of target structures 1a, 2a-h.

1.5.1.2 Total Synthesis of CP-Epothilone B (1a)

Starting from commercially available S-malic acid (101), α-hydroxy lactone 105 was prepared in a 3 -step literature sequence (Scheme 16). ${ }^{[114],[115],[116]}$ First, 101 was treated with 2,2-dimethoxypropane in the presence of p-TSA to yield acetal 103. Subsequently, the acid in $\mathbf{1 0 3}$ was reduced to the alcohol $\mathbf{1 0 4}$ by the use of BH_{3} THF complex. Upon addition of a catalytic amount of p-TSA the formation of α-hydroxy lactone 105 was triggered, which was TBS protected in the next step. Treatment of $\mathbf{1 0 6}$ with MeLi gave a mixture of cyclic hemiacetal 107 and the corresponding open chain hydroxy ketone 108. Synthetically useful conversion of this mixture into aldehyde $\mathbf{1 0 0}$ could only be achieved by DMP ${ }^{[117]}$ oxidation giving a yield of 67%, while all other oxidation methods investigated did not provide any of the aldehyde (PDC, Swern) or gave only low yields ($\mathrm{py}: \mathrm{SO}_{3}$). Subsequent Still-Gennari olefination ${ }^{[111]}$ with phosphonate $\mathbf{1 0 9}$ furnished the desired Z-isomer $\mathbf{1 1 0}$ exclusively.

Scheme 16: a) 2,2-dimethoxypropane, p-TSA, 77%; b) BH_{3} THF, THF; c) p-TSA, benzene, 56% over two steps; d) TBSCl, imidazole, DMF, 97%; e) MeLi, THF, $-78{ }^{\circ} \mathrm{C}, 89 \%$; f) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 67 \%$; g) KHMDS, $18-\mathrm{C}-6, \mathrm{THF},-78^{\circ} \mathrm{C}$, then $\mathbf{1 0 0},-7{ }^{\circ} \mathrm{C}, 77 \%$.

The requisite the Still-Gennari reagent 109 was synthesized according to literature procedures from commercially available ethylphosphonic dichloride 111 which was first converted into phosphonate 112 (Scheme 17). Subsequent acylation gave the reagent 109. ${ }^{[118]}$

Scheme 17: a) Trifluoroethanol, NEt_{3}, THF, 98%; b) LiHMDS, $\mathrm{ClCO}_{2} \mathrm{Me}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 73 \%$.

The geometry of the double bond in 110 was firmly established by means of NOESY experiments. The presence of the strong NOE between the olefinic proton and the protons at the methyl group attached at the double bond confirmed the formation of the Z-isomer (Figure 22).

Figure 22: NOESY spectrum shows that the olefinic proton is in closed vicinity to the methyl group.

Acetal protection of the ketone functionality in $\mathbf{1 1 0}$ by treatment with ethylene glycol in the presence of triethyl orthoformate and p-TSA followed by reduction of the ester moiety with DIBAL-H led to allylic alcohol 99 in excellent overall yield (94\% for two steps) (Scheme 18). The latter underwent highly stereoselective Charette cyclopropanation (dr 18:1) to afford alcohol $\mathbf{1 1 5}$ in high yield (88% for single isomer). ${ }^{[66]}$ It should be noted here that violent explosions have been reported for Charette cyclopropanations carried out on scales of 8 mmol or higher, due to the exothermicity associated with the formation of $\mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{I}\right)_{2}$. However, careful temperature control during the addition of $\mathrm{CH}_{2} \mathrm{I}_{2}$ to the $\mathrm{Zn}(\mathrm{Et})_{2}$ solution allowed the cylopropanation of $\mathbf{9 9}$ to be carried out safely also on a larger scale. ${ }^{[113]}$

Scheme 18: a) Ethyleneglycol, $\mathrm{CH}(\mathrm{OEt})_{3}, p$-TSA, $40^{\circ} \mathrm{C}, 97 \%$; b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 97 \%$; c) $\mathrm{Zn}(\mathrm{Et})_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathbf{9 9}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 98%, dr 18:1.

The product ratio for the cyclopropanation reaction could be readily determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure 23). Separation of the two diastereomers by silica gel chromatography provided pure 115.

Figure 23: ${ }^{1} \mathrm{H}$-NMR signal of one of the two CH_{2} protons of the two cyclopropane diastereomers.

With this key reaction successfully implemented, our efforts were then directed toward installing the terminal double bond required for RCM-based macrocyclization. After Swern oxidation of $\mathbf{1 1 5}$, the resulting aldehyde 116 was subjected to Wittig-olefination with $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}$ to furnish α, β-unsaturated ester 117 as a single isomer (Scheme 19). Subsequent reduction of the ester moiety with DIBAL-H followed by reduction of the double bond with $\mathrm{NaBH}_{4} / \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{[119]}$ provided saturated alcohol 119.

 c) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 98 \%$; d) $\mathrm{NaBH}_{4}, \mathrm{CoCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH} / \mathrm{DMF}, 95 \%$.

Dissolution of $\mathbf{1 1 8}$ in MeOH and slow evaporation of the solvent resulted in the formation of needles which were suitable for X-ray crystallographic analysis. The crystal structure confirmed the predicted stereochemical outcome of the Charette cyclopropanation (Figure 24). ${ }^{2}$

Figure 24: Crystal structure of allylic alcohol 118.

Finally, the terminal double bond in $\mathbf{1 2 0}$ was installed by means of seleniumoxide eliminiation ${ }^{[120]}$ and subsequent TBS deprotection provided alcohol $\mathbf{6}$ in a total of 12 steps and excellent overall yield (25\%) from commercially available α-hydroxy lactone 105. ${ }^{[113]}$

Scheme 20: a) i. o- $\mathrm{NO}_{2} \mathrm{PhSeCN}^{2} \mathrm{PBu}_{3}$, THF. ii. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaHCO}_{3}, 30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 84 \%$; b) TBAF $3 \mathrm{H}_{2} \mathrm{O}$, THF, $50^{\circ} \mathrm{C}, 93 \%$.

Building block acid 7 was synthesized from the protected β-hydroxy ketone (121) ${ }^{[121]}$ following a protocol that been previously developed in the group (Scheme 21). Cleavage of

[^1]the Oppholzer sultam in $\mathbf{1 2 1}$ with $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O}_{2}$ afforded acid $\mathbf{1 2 2}$, which was reduced to alcohol $\mathbf{1 2 3}$ with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in the presence of stoichiometric amounts of $\mathrm{B}(\mathrm{OMe})_{3}$. Note that if the $\mathrm{B}(\mathrm{OMe})_{3}$ was not distilled freshly before use, the yield of this reaction would drop dramatically. Treatment of $\mathbf{1 2 3}$ with TFA in acetone then provided the desired ketone $\mathbf{4 3}$ in 38% yield for the three-step sequence from β-hydroxy imide 121. ${ }^{[121]}$

Scheme 21: a) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 70 \%$; b) $\mathrm{BH}_{3} \mathrm{SMe}_{2}, \mathrm{~B}(\mathrm{OMe})_{3}, \mathrm{THF}, 15{ }^{\circ} \mathrm{C}, 56 \%$; c) TFA, acetone, 96%.
α-Chiral aldehyde $\mathbf{1 0 2}$ was prepared from Roche ester $\mathbf{1 2 4}$ by PMB protection, reduction of the ester moiety with LAH and reoxidation of the resulting primary alcohol under Swern conditions (Scheme 22). Attempts at the direct conversion of the ester $\mathbf{1 2 5}$ into aldehyde $\mathbf{1 0 2}$ was accompanied by overreduction to alcohol 126 (5\%). ${ }^{3}$

Scheme 22: a) p-Methoxybenzyl trichloroacetimidate, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; b) LAH, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 91 \%$; c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, used without purification.

With ketone $\mathbf{4 3}$ and aldehyde $\mathbf{1 0 2}$ in hand, the stage was set for the crucial aldol addition. Treatment of $\mathbf{4 3}$ with LDA at $-78^{\circ} \mathrm{C}$ followed by addition of $\mathbf{1 0 2}$ gave aldol product $\mathbf{1 2 7}$ in 76% yield and a diastereomeric ratio of $8: 1$ (Scheme 23). The undesired syn-isomer could be removed from the desired diastereomer $\mathbf{1 2 7}$ by silica gel chromatography. Cleavage of the acetal moiety under acidic conditions to give diol $\mathbf{1 2 8}$ followed by (re)protection of all free hydroxy functionalities as TBS-ethers gave $\mathbf{1 2 9}$ in 94% yield overall two steps. Quite surprisingly, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR analysis of the tris-TBS ether $\mathbf{1 2 9}$ indicated this material to be an inseparable 6:1 mixture of isomers, which was assumed to be the result of racemization of

[^2]aldehyde $\mathbf{1 0 2}$ prior to aldol addition. ${ }^{4}$ This tentative assignment of the minor component of this mixture as the $6 S, 7 R, 8 R$ isomer of $\mathbf{1 2 9}$ was based on the fact that split signals were observed only for a few resonances, thus indicating the presence of stereoisomers. In principle, racemization of $\mathbf{1 0 2}$ prior to aldol addition should also have led to the formation of small quantities of a fourth ($6 R, 7 S, 8 R$) diastereomer, which was, however, not detectable. Presumably this isomer is present only in quantities below the detection limit of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis; alternatively, it may have been removed by chromatography. It was anticipated that the minor diastereomer would be separable from the desired product at a later stage of the synthesis. Catalytic hydrogenation of $\mathbf{1 2 9}$ gave primary alcohol $\mathbf{1 3 0}$, which was oxidized to aldehyde 131 with TPAP/NMO (Scheme 23). ${ }^{[122]} 131$ underwent Wittig olefination, thus establishing the terminal double bond required for the RCM reaction. Selective deprotection of $\mathbf{1 3 2}$ followed by oxidation of the resulting free primary hydroxy group to the carboxylic acid stage produced 7, which was thus obtained in 57% overall yield from aldol product 127. Unfortunately, the undesired diastereomer formed in the aldol step could not be removed in any of the steps leading from $\mathbf{1 2 7}$ to acid $\mathbf{7}$, and the latter was still present as an 8.5:1 diastereomeric mixture.

Scheme 23: a) LDA, THF, $-78{ }^{\circ} \mathrm{C}, 76 \%$, dr 8:1; b) PPTS, MeOH, 96%; c) TBSOTf, 2,6-ludidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ}, 98 \%$; d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOH, 92%; e) TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \AA$ mol. sieves, used without purification; f) $\mathrm{MePPh}_{3} \mathrm{Br}$, LiHMDS, 131, THF, $0{ }^{\circ} \mathrm{C}, 89 \%$; g) CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 89 \%$; h) PDC , DMF, 82\%.

[^3]Alcohol 6 and acid 7 were subjected to esterification under Yamaguchi conditions ${ }^{[78]}$ giving ester 134 in 94% yield (Scheme 24); the use of EDCI only afforded 60% of 134. Initial attempts at RCM of $\mathbf{1 3 4}$ using the Grubbs $2^{\text {nd }}$ generation catalyst in toluene at $85^{\circ} \mathrm{C}$ suffered from long reaction times (until full consumption of diene 134) and from very low yields $(<10 \%)$. The same was true for the Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst, while Grubbs $1^{\text {st }}$ generation catalyst did not trigger any cyclization. Delightfully, a change of the solvent from toluene to dichloromethane provided the solution to both problems, the long reaction times as well as the low yield. Diene $\mathbf{1 3 4}$ underwent cyclization in the presence of Grubbs $2^{\text {nd }}$ generation catalyst ($12 \mathrm{~mol} \%$) in refluxing dichloromethane in 80% yield and with excellent selectivity ($E /$ Z 12:1) within 8 hours (Scheme 24). ${ }^{[113]}$

Scheme 24: a) 2,4,6-trichlorobenzoyl chloride, NEt 3 , DMAP, benzene, 94%; b) Grubbs II ($12 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 80%, E / Z 12:1.

Fortunately, the undesired $6 S, 7 R, 8 R$ isomer originating from the aldol addition could finally be removed at the stage of the macrocycle 135. In the next step the C9/C10 double bond formed in the macrocyclization step was to be reduced, a transformation that proved to be highly challenging. In a first series of experiments the use of triisopropylbenzylsulfonylhydrazide (TrisNHNH2) was investigated in different solvents and the base was varied (Table 2, Entries 1 to 3). The conversion for the reaction was very slow and little product was formed that could not be purified. With $\mathrm{KCO}_{2} \mathrm{~N}=\mathrm{NCO}_{2} \mathrm{~K}$ (PADA) (24 to 50 eq.) as a hydrogen source only little conversion was observed after 24 hours and the reaction did not proceed any further. At the same time hydrogenations suffered from simultaneous cyclopropane ring-opening. Thus, catalytic hydrogenation over palladium on activated charcoal gave the desired product in 45% yield together with substantial amounts of the cyclopropane opened side product. ${ }^{5}$ Similar observations were made with Crabtree catalyst; ${ }^{[123]}$ the reaction was somewhat slower, but more selective for the reduction of the

[^4]double bond, leading to a yield of 56%. For both methods, variations in pressure and/or catalyst loading did not result in better yields, they only influenced the rate of the reaction. No reaction was observed with the Wilkinson catalyst. ${ }^{[124]}$ After extensive optimization, hydrogenation over Lindlar catalyst at a hydrogen pressure of 7.5 bar was found to provide the saturated macrocycle most efficiently (80% yield). While cyclopropane ring-opening could not be avoided completely even under these conditions, it occurred at a much slower rate than double bond reduction (Table 2, Entry 9).

Table 2: Reduction of the C9/C10 double bond.

Entry	Reagent		Solvent	Reaction
1	TrisNHNH 2 (10-30 eq.)	NEt_{3}	DCE	little product formation
2	TrisNHNH2 (30 eq.)	$\mathrm{K}_{3} \mathrm{PO}_{4}$	THF	little product formation
3	TrisNHNH2 (30 eq.)	$\mathrm{K}_{3} \mathrm{PO}_{4}$	MeCN	no product formed
4	PADA (24 eq.)	AcOH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8\% conversion after 12 h , reisolated SM
5	PADA (50 eq.)	AcOH	MeOH	10% conversion after 12 h , reisolated SM
6	Pd / C (0.05-0.4 eq.)	$7.5 \operatorname{bar~H} \mathrm{H}_{2}$	EtOH	45% product for 0.4 eq. catalyst used (12 h)
7	Crabtree cat (0.05-0.4 eq.)	7.5 bar H_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	56% product for 0.4 eq. catalyst used (24 h)
8	Wilkinson cat. (1.2 eq.)	7.5 bar H_{2}	THF	no product formed
9	Lindlar cat (0.5 eq.)	7.5 bar H_{2}	EtOH	80\% product (14 h)

With this obstacle removed the next challenge was the hydrolysis of the acetal moiety in $\mathbf{1 3 6}$ in the presence of the two TBS-ethers at C3 and C7. Unfortunately, the selective hydrolysis/removal of the cyclic acetal could not be accomplished under a variety of conditions investigated (Table 3). ${ }^{[13]}$

Table 3: Attempts to selectively hydrolyze the acetal in $\mathbf{1 3 6}$.

Entry	Reagent	Solvent	Reaction
1	PPTS (0.1-2 eq.)	acetone	product misses one TBS-group
2	AcOH	THF/ $\mathrm{H}_{2} \mathrm{O}$	4 different products (unkown)
3	$\mathrm{PPh}_{3}, \mathrm{CBr}_{4}$	THF	one product (unkown)
4	$\mathrm{CuCl} 2 \mathrm{H}_{2} \mathrm{O}$	MeCN	4 different products (unknown)
5	$\mathrm{FeCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$ (1.2-3.5 eq.)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	TBS groups lost, some acetal hydrolyzed
6	p-TSA (1.3 eq.)	acetone $/ \mathrm{H}_{2} \mathrm{O}$	TBS groups lost, acetal remained
7	$\mathrm{HCl}(2 \mathrm{M})$	THF	one TBS group lost, acetal uncleaved
8	$\mathrm{NaI}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$	one TBS group lost, little acetal hydrolyzed
9	Montmorrilonite K10	benzene	one TBS group lost, little acetal hydrolyzed
10	Thiourea	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	no reaction
11	$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$	acetone	one TBS group lost, little acetal hydrolyzed

In response to these difficulties the reduction product 136 was submitted to global deprotection (which was to be followed by reprotection of the hydroxy groups). While selectivity was no longer an issue, most attempted conditions did not yield the deprotected product 138 in good yield (Table 4). It was best achieved with $\mathrm{FeCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$.

Table 4: Global deprotection of $\mathbf{1 3 6}$.

Entry	Reagent	Solvent	Reaction
1	Montmorrilonite K10	benzene	product formed in low yield
2	Amberlyst 15	dioxane $/ \mathrm{H}_{2} \mathrm{O}$	only TBS groups got deprotected
3	$\mathrm{CSA}(3.5-10$ eq. $)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$	product formed in low yield
4	TMSI, NaI	MeCN^{2}	product formed in low yield
5	$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5$ eq. $)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	85% yield

As there are a few literature examples of Wittig reactions in the presence of free secondary hydroxy groups, ${ }^{[125],[126]}$ it was attempted to attach the thiazole heterocycle to methyl ketone 138 (Scheme 25). First, NaHMDS was used as a base, but this did not result in any product formation. ${ }^{6}$ Next, KHMDS was used as a base together with 6 equivalents of the ylide; these conditions afforded CP-Epo B 1a in 26\% yield. Attempts to improve the yield by varying the number of equivalents of the ylid (4 and 9 eq.) failed and only traces of $\mathbf{1 a}$ could be isolated. In light of the moderate yield achieved with ketone 138, subsequent reactions were conducted with protected hydroxy groups. ${ }^{[13]}$

Scheme 25: a) KHMDS, $\mathbf{1 3 8}$, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 0-26 \%$.

While TMSCl turned out not to be reactive enough to protect both alcohol moieties, the use of TMSOTf gave bis silylether $\mathbf{9 8}$ in good yield without causing any racemization at C15 (Scheme 26). 98 underwent Wittig olefination in reasonable yield and selectivity to give thiazole derivate $\mathbf{1 3 9}$ in 67% yield and an E / Z ratio of 6:1. Final deprotection under acidic conditions afforded CP-Epo B (1a). In summary, the first total synthesis of CP-Epo B (1a) was developed in 8% overall yield and 19 steps in the longest linear sequence. CP-Epo B (1a) has been previously prepared by semisynthesis from Epo D, albeit in low yield. ${ }^{[61]}$

Scheme 26: a) TMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 100 \%$; b) KHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathbf{9 8}$, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 67 \%, E / Z 6: 1$; c) Citric acid, $\mathrm{MeOH}, 93 \%$.

[^5]
1.5.1.3 Synthesis of Side Chain-modified Analogs of CP-Epo B

As illustrated in Scheme 27 and Table 5, methyl ketone $\mathbf{9 8}$ proved to be a highly suitable substrate for heterocycle attachment via Wittig olefination not only for the preparation of CPEpo B (1a), but also for a series of different analogs. In all cases investigated, the reactions proceeded with good selectivity in favor of the desired E isomers which could be isolated in acceptable to good yields (Table 5). However, distinct differences were observed between different phosphoranes with regard to selectivity and also reactivity (Table 5). Thus, while 139a-c were already formed upon warming of the reaction mixture to $-20^{\circ} \mathrm{C}$ (after deprotonation of the phosphonium salts at $-78^{\circ} \mathrm{C}$ and addition of $\mathbf{9 8}$ at the same temperature), the reaction of $\mathbf{9 8}$ with the phosphoranes derived from 78d and 78e required temperatures of $25{ }^{\circ} \mathrm{C}$ and, quite remarkably, $75^{\circ} \mathrm{C}$, respectively. Attempts to accelerate the reaction of 98 with the phosphorane derived from $\mathbf{1 3 9 d}$ by raising the temperature to $75{ }^{\circ} \mathrm{C}$ resulted in decomposition. ${ }^{[113]}$

a) 93%
$\xrightarrow[\mathrm{MeOH}]{\text { citric acid }}$

b) 82%
c) 83%
d) 88%
e) 84%

Het:

Scheme 27: Synthesis of target structures 1a-e.

Table 5: Wittig reactions with ketone 98.

Wittig salt	Base	Temperature	Product	$\boldsymbol{E} / \mathbf{Z}$	Yield
$\mathbf{7 8 a}$	KHMDS	-78 to $-20^{\circ} \mathrm{C}$	1a	$6: 1$	$67 \%^{a}$
78b	KHMDS	-78 to $-20^{\circ} \mathrm{C}$	1b	$17: 1$	$74 \%^{a}$
78c	$n-\mathrm{BuLi}$	-78 to $-20{ }^{\circ} \mathrm{C}$	1c	$13: 1$	$85 \%^{a}$
78d	$n-\mathrm{BuLi}$	-78 to $25^{\circ} \mathrm{C}$	1d	$10: 1$	$90 \%^{b}$
78e	$n-\mathrm{BuLi}$	-78 to $75^{\circ} \mathrm{C}$	$\mathbf{1 e}$	$7: 1$	$54 \% 0^{b, c}$

${ }^{a}$ Mixture of \bar{E} and Z isomers. ${ }^{b}$ Mixture of E isomer and presumed C15 epimer (see text). ${ }^{c} 77 \%$ based on recovered starting material.

Noteworthy, after chromatographic separation of $\mathbf{1 d}$ and $\mathbf{1 e}$ from the corresponding Z isomers, their ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra still indicated the presence of an isomeric impurity that could not be separated (ca. 12\%). The identity of this impurity was not established, but it is well conceivable that the stereocenter at C15 partially epimerizes under the more forcing conditions of the Wittig reaction required for $\mathbf{1 d}$ and $\mathbf{1 e} .{ }^{[113]}$

As for CP-Epo B (1a) deprotection of 1b-e was achieved with citric acid to provide CP-Epo B analogs 1b-e in excellent yields (Scheme 27). For 1d, the minor isomer formed in the Wittig reaction could be removed by preparative HPLC, whereas $\mathbf{1 e}$ could only be obtained as a 10:1 mixture of the desired structure and its presumed C15 epimer (and was evaluated as such in cellular experiments).

In a next phase, the HWE reaction of methyl ketone 98 with functionalized isoxazole heterocycles 140 b and 141 was investigated, in order to provide derivates that would be suitable for antibody conjugation (Scheme 28, for the synthesis of $\mathbf{1 4 0 b}$ and $\mathbf{1 4 1}$ vide infra). Phosphonate 140b was coupled to methyl ketone $\mathbf{9 8}$ to provide $\mathbf{1 4 2}$ as a separable $3: 1 \mathrm{E} / \mathrm{Z}$ mixture in 97% yield; the E-isomer was isolated in 68% yield and the Z-isomer in 28% yield. The E and Z isomer were individually deprotected with CSA to give functionalized CP-Epo B analogs $\mathbf{2 a}$ and $\mathbf{2 Z a}$ (only shown for $\mathbf{2 a}$ in Scheme 28). The reaction of mono-Boc protected phosphonate 141 with methyl ketone 98 surprisingly did not yield the expected coupling product, instead the C2/C3 elimination product $\mathbf{1 4 3}$ was formed in 28% yield (inseparable mixture of an C16/C17 E/Z 4:1 mixture). The mixture was deprotected with TFA to yield 3-deoxy-2,3-dehydro CP-Epo B analog 144 in 94\% yield; silica gel chromatography gave 69% of the desired C16/C17 E isomer.

Scheme 28: a) LiHMDS, THF, $-78{ }^{\circ} \mathrm{C}, \mathbf{9 8},-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 97 \%, E / Z 3: 1$; b) $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$, 90%; c) n - $\mathrm{BuLi}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}, 98,-78^{\circ} \mathrm{C}$ to rt, $28 \%, E / Z 4: 1$; d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$.

Varying the base used did not allow suppression of the elimination. As it was felt that the NH proton in $\mathbf{1 4 1}$ could be responsible for the observed elimination, the amino group in $\mathbf{1 4 1}$ was double-Boc protected; HWE olefination with the doubly protected phosphonate $\mathbf{1 4 5 g}$ resulted only in the formation of the desired coupling product 146 , which was obtained in 52% yield as a single isomer (Scheme 29). No elimination products were observed in this reaction. Final deprotection using TFA gave CP-Epo B analog 2B.

Scheme 29: a) LiHMDS, THF, $-78^{\circ} \mathrm{C}, 98,-78^{\circ} \mathrm{C}$ to rt, 52%, single isomer; b) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$.

1.5.1.4 Analogs of 9,10-dehydro Epo B

As discussed in section 1.2.3.2, the incorporation of an E double bond at C9/C10 in Epo B or D leads to enhanced antiproliferative activity or the corresponding dehydro compounds are at least equipotent with the corresponding saturated variants. As shown above, the ringclosing metathesis reaction of diene 134 not only gave the macrocyclic product in good yield, but also with high selectivity in favor of an E-configured isomer that was separable from the minor Z isomer. This led us to prepare a series of side chain modified analogs of

C9/C10-dehydro CP-Epo B and to evaluate their biological activity and potential suitability for antibody conjugation.
As illustrated in Scheme 30, the global deprotection of macrolactone $\mathbf{1 3 5}$ was again carried out with $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The resulting diol 147 was double TMS-protected to give methyl ketone 148 in 83% yield over two steps.

Scheme 30: a) $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; b) TMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 98 \%$.

In order to establish a reference point for the activity of 9,10-dehydro CP-Epo B analogs thiazole-derived analog $\mathbf{1 f}$ was synthesized first (Scheme 31). The Wittig reaction of methylketone 148 with the phosphorane generated from 78a gave 149 in 79% yield as an inseparable 7:1 E/Z mixture; deprotection with citric acid then delivered 9,10-dehydro CPEpo B analog 1f together with its $\mathrm{C} 16 / \mathrm{C} 17 \mathrm{Z}$ isomer in 92% yield. The Z isomer resulting from the Wittig reaction could be separated by preparative HPLC. Compound $\mathbf{1 f}$ demonstrated to be about 2 -fold more active than its saturated analog $\mathbf{1 a}$.

Scheme 31: a) KHMDS, THF, $-78^{\circ} \mathrm{C}, \mathbf{1 4 8},-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}, 79 \%, E / Z 7: 1$; b) citric acid, MeOH , 92\%.

The coupling of the functionalized thiazole heterocycle to methyl ketone 148 was first attempted using the phosphonate 150, which had already been synthesized in sufficient amounts (Section 1.5.1.9, Scheme 41). However, independent of the base used only decomposition was observed in the reaction and no product was formed. Hence, the Wittig salt 140a was synthesized and subjected to reaction with methyl ketone 148. This approach produced the desired product in 75% yield as a separable $7: 1$ mixture of E / Z isomers
(Scheme 32, Table 6). Deprotection of 151a with CSA gave thiazole-based 9,10-dehydro CPEpo B analog 2 a in quantitative yield.
A remarkable observation was made for the coupling of isoxazole-based phosphonate 140b to the ketone 148. If KHMDS was used as a base, none of the desired product was formed, but the C2/C3 elimination product was isolated in 78% yield as a $1: 1$ mixture of C16/C17 E/Z isomers. As the incorporation of an E double bond at $\mathrm{C} 2 / \mathrm{C} 3$ in epothilones is known to be well tolerated in terms of biological activity (Section 1.2.3.3), ${ }^{[76]}$ the inseparable mixture was deprotected under acidic conditions and the resulting 2,3-dehydro analogs 2d and $\mathbf{2 e}$ were separated by preparative HPLC. Quite intriguingly, a simple change of the counter ion of the base employed in the HWE reaction reversed the outcome. Thus, if LiHMDS was used as a base only the HWE product 151b was formed in excellent yield of 95%, albeit in an unselective manner ($E / Z 1: 1$, separable mixture). Both isomers were individually deprotected in the presence of CSA to give isoxazole-based analogs $\mathbf{2 b}$ and its C16/C17 Z isomer 2Zb in yields of 56% (E isomer) and 67% (Z isomer).

The pyrazole-based Wittig salt 140c underwent olefination with methyl ketone 148 in 48% yield to deliver a separable $2: 1$ mixture of E / Z isomers. The E isomer was deprotected with CSA to give pyrazole-based 9,10-dehydro CP-Epo B analog $\mathbf{2 c}$ in 74% yield.

$R=H$ for $2 a-c$
$R=T B S$ for 140a-c and 151a-c

Scheme 32: Synthesis of target structures 2a-c.

Table 6: Wittig and HWE reactions with ketone 148.

	base	temperature	product	$\boldsymbol{E} / \mathbf{Z}$	yield
Wittig salt 140a	$n-\mathrm{BuLi}$	$-78{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$	$\mathbf{2 a}$	$7: 1$	$75 \% 0^{\mathrm{a}}$
Phosphonate 140b	LiHMDS	$-78{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$	$\mathbf{2 b}$	$1: 1$	$95 \%^{a}$
Wittig salt 140c	$n-\mathrm{BuLi}$	$-78{ }^{\circ} \mathrm{C}$ to rt	$\mathbf{2 c}$	$2: 1$	$48 \%^{a}$

${ }^{a}$ Mixture of E and Z isomers.

The synthesis of analogs bearing free amino groups employed phosphonates derived from the corresponding double-Boc protected aminoalkyl heterocycles. In analogy to previous observations in the synthesis of 2B the coupling of mono-protected amines only led to elimination of water across the C2/C3-bond or/and gave only very low yields of the desired coupling product and the elimination product. Thus, double-Boc protected thiazole phosphonate $\mathbf{1 4 5 f}$ underwent $H W E$ olefination with methyl ketone $\mathbf{1 4 8}$ to give the desired product in 42% yield as a single isomer (Scheme 33, Table 7). This contrasts with the behaviour of the corresponding TBS protected phosphonate $\mathbf{1 5 0}$ (Section 1.5.1.9, Scheme 41), where only decomposition was observed in the attempted reaction with 148. Removal of the Boc groups by the use of hydrochloric acid in EtOAc yielded $\mathbf{2 f}$ in 67% yield.

In contrast to thiazole-derived phosphonate 145f, coupling of the isoxazole derivate 145g to the macrocycle yielded 78% of a $3.5: 1$ mixture of separable E / Z isomers. Both isomers were individually deprotected with hydrochloric acid to give isoxazole-based analog $\mathbf{2 g}$ in 67% yield and its C16/C17 Z isomer 2Zg in 93% yield.
Pyrazole-derived Wittig salt $\mathbf{1 4 5}$ h only underwent olefination in 20% yield with a $10: 1$ ratio of inseparable E / Z isomers. It is well conceivable that the phosphonate corresponding to $\mathbf{1 4 5 h}$ would have been the better choice for the elaboration of the aminoethyl pyrazole side chain in 2h. However, as sufficient material was obtained with the phosphorane this possible way to improve the yield of the coupling reaction was not evaluated. Deprotection using hydrochloric acid in EtOAc gave the corresponding pyrazole-based analog $\mathbf{2 h}$ in 85% yield as a single isomer. All 9,10-dehydro CP-Epo B analogs 2f-h were obtained as hydrochlorides.

Scheme 33: Synthesis of target structures 2f-h.

Table 7: Wittig and HWE reactions with ketone 148.

\mathbf{X}	Base	Temperature	Product	$\boldsymbol{E} / \mathbf{Z}$	Yield
Phosphonate 145f	LiHMDS	$-78{ }^{\circ} \mathrm{C}$ to rt	$\mathbf{2 f}$	single isomer	42%
Phosphonate 145g	LiHMDS	$-78{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$	$\mathbf{2 g}$	$3.5: 1$	$78 \% 0^{a}$
Wittig salt 145h	$n-\mathrm{BuLi}$	$-78{ }^{\circ} \mathrm{C}$ to rt	$\mathbf{2 h}$	$10: 1$	$20 \% 0^{a}$

${ }^{a}$ Mixture of E and Z isomers.

1.5.1.5 Biological Evaluation

All compounds were evaluated for their antiproliferative activity against the human cancer cell lines A549 (lung), MCF-7 (breast) and HCT116 (colon). These experiments were carried out in collaboration with Prof. Jürg Gertsch, University of Berne. Cells were exposed to the compounds for 72 h .

As for CP-Epo B (1a) and its analogs with unfunctionalized heterocycles in their side chains (1b-e), all compounds are potent inhibitors of cancer cell proliferation, with IC50 values in the single digit nM or even sub-nM range (Table 8).

Table 8: Antiproliferative activity of Cp-Epo B analogs 1a-e (IC_{50} values $[\mathrm{nM}]$).

Cell line	$\mathbf{1 a}$	$\mathbf{1 b}$	$\mathbf{1 c}$	$\mathbf{1 d}$	$\mathbf{1 e}$
A549	0.70 ± 0.2	0.30 ± 0.07	4.7 ± 0.8	0.90 ± 0.13	1.7 ± 0.15
MCF-7	0.80 ± 0.3	0.40 ± 0.06	8.5 ± 1.5	0.80 ± 0.19	1.9 ± 0.23
HCT116	1.30 ± 0.2	0.30 ± 0.03	3.8 ± 0.7	0.40 ± 0.08	0.9 ± 0.07

${ }^{a} \mathrm{IC}_{50}$ values of $0.33,0.34$, and 0.16 nM have been reported for Epo B against the A549, MCF-7, and HCT116 cell lines respectively. ${ }^{[127]}$

Compared to Epo B, CP-Epo B (1a) appears to be 2-8-fold less active; IC 50 values similar to the corresponding epoxide-based analogs ${ }^{7}$ were also observed for $\mathbf{1 d} / \mathbf{1 e}(<3$-fold difference in all cases), although $\mathbf{1 d}$ and $\mathbf{1 e}$ showed a tendency for slightly enhanced activity. The most potent compound investigated was isoxazole derivative $\mathbf{1 b}$, which is in line with previous findings by the Danishefsky group on the activity of isoxazole-containing variants of 9,10-dehydro-12,13-deoxy-epothilones. ${ }^{[84]}$ In light of its sub-nM potency $\mathbf{1 b}$ is an attractive candidate for the construction of ADC's.

With regard to CP-Epo B analogs 2A, 2ZA, 2B, which bear a hydroxy- or aminomethyl group attached to the heterocycle, compound $\mathbf{2 A}$, quite intriguingly was found to be about as active as Epo B and its parent unfunctionalized isoxazole CP-Epo B (1b). Unfortunately, the corresponding amine $2 \mathbf{B}$ is about 10 -fold less active than $\mathbf{2 A}$. A further significant decrease in activity (>100-fold) is then observed for the $\mathrm{C} 16 / \mathrm{C} 17 \mathrm{Z}$ isomer 2ZA (Table 9).

[^6]Table 9: Antiproliferative activity of functionalized Cp-Epo B analogs 2A, 2ZA, 2B ($\mathrm{IC}_{50}{ }^{\prime}$ s $\left.[\mathrm{nM}]\right)$.

cell line	$\mathbf{2 A}$	$\mathbf{2 Z A}$	$\mathbf{2 B}$
A549	0.19 ± 0.09	148 ± 14	1.8 ± 0.31
MCF-7	0.43 ± 0.17	203 ± 31	2.1 ± 0.70
HCT116	0.20 ± 0.10	170 ± 12	1.5 ± 0.92

IC_{50} values of $0.33,0.34$, and 0.16 nM have been reported for Epo B against the A549, MCF-7, and HCT116 cell lines respectively.

Based on its sub-nM potency $\mathbf{2 A}$ was selected as an attractive candidate for the construction of ADC's (see below).

As for the effect of desaturation of CP-Epo B analogs at the $\mathrm{C} 9 / \mathrm{C} 10$ position, the $9,10-$ deyhdro analogs of CP-Epo B 1f and hydroxymethyl CP-Epo B 2b appear to be as potent as their saturated, unfunctionalized parent compounds, which demonstrates that the incorporation of the hydroxy moiety is well tolerated and leads to equipotent analogs (Table 10). The 2,3-deyhdro isoxazole analog $\mathbf{2 d}$ retains most of the activity of $\mathbf{2 b}$, which confirms previous observations by Vite and co-workers with Epo A/B and the corresponding C2/C3-dehydro analogs (Section 1.2.3.3, Figure 14). ${ }^{[76]}$

Table 10: Antiproliferative activity of Cp-Epo B analogs 2a-h (IC_{50} values [nM$]$)

For the three amino group-containing analogs $\mathbf{2 f}, \mathbf{2 g}$, and $\mathbf{2 h}$ the picture looks different. While thiazole-derivative $\mathbf{2 f}$ was as active as alcohol 2a, the aminomethyl isoxazole CP-Epo B (2g) was about 10 -fold less active than alcohol $\mathbf{2 b}$, which was in line with previous observations for the corresponding 9,10-saturated compounds (see Table 9). The substitution of the
pyrazole alcohol 2c by an amine leads to almost inactive compound amine $\mathbf{2 h}$. Thus, the substitution of the hydroxy group in 2c by an amino group leads to a >100-fold loss in potency.
The two C16/C17 Z isomers investigated, $\mathbf{2 Z b}$ and $\mathbf{2 e}$, are both significantly less active than the corresponding E isomers, but they still exhibit IC_{50} values in the low nM range.
The conclusions derived from the cellular experiments described above can be summarized as follows:

- In accordance with literature data for Epo, the substitution of the epoxide ring in Epo B by a cyclopropane moiety does not lead to any substantial change in antiproliferative activity. ${ }^{[61]}$
- Likewise, the incorporation of an E double bond at C9/C10 in side chain-modified CPEpo B analogs maintains full activity or even leads to slightly more active analogs.
- The replacement of the thiazole heterocycle in CP-Epo B by an isoxazole moiety results in enhanced antiproliferative activity (similar to the effect of the same modification in fludelone (92)). ${ }^{[84]}$
- 3-Deoxy-2,3-didehydro CP-Epo B analogs retain almost the full activity of their parent compounds. This effect is again similar to what is observed for epoxide-based epothilones. ${ }^{[76]}$
- The introduction of hydroxyalkyl-modified heterocycles such as 2a and 2b is very well tolerated and produces analogs with potencies comparable to those of analogs with non-functionalized heterocycles for all attempted.
- In contrast, heterocycles bearing primary amino groups are clearly less potent than the corresponding primary alcohols. The reasons for this effect are unknown at this point, but similar observations have been reported for benzimidazole-based Epo B analogs with pendant aminoethyl or hydroxyethyl substituents on one of the benzimidazole nitrogens.
- The $\mathrm{C} 16 / 17 \mathrm{Z}$ isomers do not lose all activity but are still potent inhibitors of cancer cell proliferation with IC_{50} values in the low nM range.

1.5.1.6 Antibody Drug Conjugates

Based on its potent antiproliferative activity hydroxymethyl isoxazole CP-Epo B 2A (Scheme 34) was selected for orientating experiments on the evaluation of antibody-drug conjugate. The conjugation work and the preliminary biological evaluation of the resulting ADC were carried out by Elena Perrino in the group of Prof. Neri at the ETH Zurich and shall be briefly summarized here. The antibody selected for this work was the SIP-F8 fragment, a small immunoprotein (SIP) consisting of two scFv fragments linked by five amino acids that recognizes the alternatively spliced extra-domain A (EDA) of fibronectin with high specificity. ${ }^{[128]}$ This domain is overexpressed on neo-vasculature structures of solid tumors and is a well characterized marker of tumor angiogenesis. ${ }^{[129]}$ As angiogenesis is a feature of the most aggressive solid cancers and the structures are accessible through the bloodstream, SIP-F8 is a promising candidate for directed tumor targeting. ${ }^{[128],[129]}$ SIP-F8 contains one cystine disulfide bridge which can be reduced to the corresponding cysteines. The thiol groups of the cysteine side chains are sufficiently nucleophilic to undergo 1,4-addition reactions with suitable acceptor molecules. Therefore, a linker moiety bearing such an acceptor group was attached to CP-Epo B analog through the primary alcohol functionality in 2A, which was esterified with acid 153 (Scheme 34). Conceptually, it was expected that the drug would be released from the ADC construct by slow hydrolysis in the tumor vasculature. ${ }^{[130]}$ The esterification was carried out under Yamaguchi conditions giving ester 154 in 44% yield. Surprisingly, it turned out that ester 154 is not stable under the reaction conditions and yields of the reaction decreased with longer reaction times. If the reaction was quenched after 0.5 h the desired product 154 was isolated in 23% yield. A shorter reaction time of 20 min gave a yield of 44%. Further reduced reaction times might have resulted better yields, but this was not investigated. With an excess of the reagents, very surprisingly, esterification of the C7-hydroxy group was also observed. This observation indicated that the secondary alcohol moiety at C 7 per se is nucleophilic enough to undergo esterification and, as a consequence, functionalized heterocycles may not be a requirement for the construction of epothilone-based ADCs.

Scheme 34: 2,4,6-Trichlorobenzoyl chloride, NEt_{3}, DMAP, benzene, 44%.

Ester 154 could be successfully attached to the SIP-F8 antibody as demonstrated by mass spectrometry (ESI) (Figure 25). (Work carried out by Elena Perrino).

SIP-F8

Figure 25: MS (ESI) of the SIP-F8 antibody; MS of the ADC (right).

Initial in vivo experiments with the ADC indicated a measurable antitumor effect of the conjugate (murine teratocarcinoma, $1.9 \mathrm{nmol} / \mathrm{mouse}$ a day). As the tumors were still growing, however, the dose of the ADC was increased ($5.7 \mathrm{nmol} /$ mouse a day) in a second experiment, but this resulted in body weight loss of the mice and, hence, the experiments had to be abandoned. No further evaluation of this particular ADC was undertaken.

1.5.1.7 Synthesis of Unfunctionalized Heterocycles 78a-e

Phosphonium salts 78a and 78b were prepared from the corresponding commercially available chlorides $\mathbf{1 5 5}$ and $\mathbf{1 5 6}$ in high yield by heating the latter with PBu_{3} in toluene or DMF, respectively (Scheme 35).

Scheme 35: a) $\mathrm{PBu}_{3}, 40^{\circ} \mathrm{C}$, toluene, 93%; b) $\mathrm{PBu}_{3}, 40^{\circ} \mathrm{C}$, DMF, 84%.

At the time the pyrazole-derived phosphonium salt 78c was synthesized, a synthesis for the functionalized pyrazole-based phosphonium salt 140c (Section 1.5.1.10, Scheme 50) had already been established. Thus, the same synthetic strategy could be followed. The four step sequence started from ethyl acetopyruvate 157 (Scheme 36). The latter was treated with methylhydrazine 158 to produce pyrazole 159 in 32% yield. Unfortunately, the undesired regioisomer $\mathbf{1 6 0}$ was the favoured product of the reaction and could be isolated in 62% yield. Variation of the temperature within the range from $-78^{\circ} \mathrm{C}$ up to 60° did not change the isomer ratio significantly. The presence or the absence of a NOE between the protons at the two methyl groups in $\mathbf{1 5 9}$ and $\mathbf{1 6 0}$ helped to assign the regioisomers. Although $\mathbf{1 5 9}$ was obtained only in moderate yield, in light of the very cheap starting materials this was considered acceptable. DIBAL-H reduction of ester 159 gave alcohol 161, which was converted into chloride $\mathbf{1 6 2}$ with SOCl_{2}. Noteworthy, chloride $\mathbf{1 6 2}$ was found to be volatile. Finally, reaction of $\mathbf{1 6 2}$ with tributylphophine gave phosphonium salt $\mathbf{7 8} \mathrm{c}$.

Scheme 36: a) EtOH, $0{ }^{\circ} \mathrm{C}$, 94%; b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 72 \%$; c) $\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 99 \%$; d) PBu_{3}, DMF, 82\%.

Pyrimidine-derived phosphonium salt 78d was synthesized from chloroacetimidate hydrochloride (163) and 1,1,3,3-tetramethoxypropane which reacted to give 2-(chloromethyl)pyrimidine $\mathbf{1 6 4}$ in 35\% yield (Scheme 37). It should be noted that chloride

164 is volatile, which was unexpected and may have contributed to the moderate isolated yield; in contrast, 4-(chloromethyl)pyrimidine (166) (Scheme 38) is non-volatile. In spite of this unanticipated problem, a sufficient amount of chloride 164 was obtained, which was then transformed into phosphonium salt 78d by treatment with tributylphosphine.

Scheme 37: a) 1,1,3,3-tetramethoxypropane, 35%; b) PBu_{3}, DMF, 91%.

The synthesis of 4-pyrimidine derivative 78e in the first step involved the addition of trichloroisocyanuric acid to 4-methyl pyrimidine 165, which furnished chloride 166 in 48\% yield. 15% of the dichloro product was also isolated, while unconverted starting material accounted for the remainder of the mass balance. The yield of 48%, although seemingly moderate, is probably close to the optimum for the reaction, since chloride $\mathbf{1 6 6}$ is more reactive than the starting material. Treatment of $\mathbf{1 6 6}$ with tributylphophine gave Wittig salt 78e.

Scheme 38: a) Trichloroisocyanuric acid, $\mathrm{CHCl}_{3}, 48 \%$; b) $\mathrm{PBu}_{3}, \mathrm{DMF}, 98 \%$.

1.5.1.8 Functionalized Thiazole Heterocycles

Our initial approach to hydroxymethyl thiazole-derived phosphonium salt 140a was to proceed through 2-hydroxymethyl-4-chloromethyl-thiazole (169) (Scheme 39). The latter was initially thought to be obtained by reaction of 2-hydroxythioacetamide 168 with 1,3-dichloroacetone. However, while 168 was accessible from commercially available 2-hydroxyacetamide 167 by sulfurization with Lawesson's reagent ${ }^{[131]}$ in moderate yield (28%), the subsequent reaction of 1,3-dichloroacetone with the thioamide $\mathbf{1 6 8}$ did not lead the formation of the desired substituted heterocycle 169.

Scheme 39: a) Lawesson's reagent, dioxane, reflux, 28\%; b) 1,3-dichloroacetone, EtOH, no product formed.

It was suspected that protection of the alcohol functionality in 167 would enable the formation of the thiazole ring. Hence, the hydroxy group in amide $\mathbf{1 6 7}$ was protected as a TBS-ether in 96\% yield; (Scheme 40); a TBS-protecting group was chosen as this would allow global deprotection of the ultimate target molecule in a single step. As for the introduction of the protecting group before the thiation step, it was hoped that would also lead to improved yields of the corresponding thioamide 171 over the unprotected thioamide 168 . Formation of the 2-TBSoxy thioacetamide 171 was most efficient in refluxing dioxane (67%; Scheme 40); toluene at $65{ }^{\circ} \mathrm{C}$ gave 49% of 171 and only 14% under reflux conditions. Subsequently, addition of 1,3-dichloroacetone to $\mathbf{1 7 1}$ gave exclusively the deprotected thiazole derivate $\mathbf{1 6 9}$ in 50% yield. In order to neutralize the hydrochloric acid formed during the reaction, pyridine (1.2 eq.) was added to the reaction mixture, which allowed the isolation of 10% of the TBSprotected thiazole derivate together with 20% of $\mathbf{1 6 9}$. The addition of an excess of pyridine (10 eq .) resulted in complete decomposition of both products.

Scheme 40: a) TBSCl, imidazole, DMF, 96\%; b) Lawesson's reagent, dioxane, reflux, 67\%; c) 1,3-dichloroacetone, $\mathrm{EtOH}, 50 \%$.

No further efforts were made to optimize the cyclization reaction. Rather, 169 was reprotected (Scheme 41). Finally, Arbuzov reaction of $\mathbf{1 7 2}$ with $\mathrm{P}(\mathrm{OEt})_{3}$ afforded phosphonate 150, albeit in low yield, while the formation of the Wittig salt 140a proceeded in higher yield.

Scheme 41: a) TBSCl, imidazole, DMF, 91%; b) $\mathrm{P}(\mathrm{OEt})_{3}, 160^{\circ} \mathrm{C}, 19 \%$; c) PBu_{3}, DMF, 94%.

The synthesis of protected aminomethyl thiazole-based phosphonate $\mathbf{1 4 5 f}$ followed the same approach as for 140a. Treatment of commercially available thioacetamide 173 with 1,3-dichloroacetone gave chloride 174 in moderate yield, which was then transformed into phosphonate 175 under Arbuzov conditions in 87% yield (Scheme 42). As the Wittig reaction
of mono-Boc protected heterocycles caused severe problems (vide supra) the amine was converted into the bis-Boc derivative $\mathbf{1 4 5 f}$ by treatment with $\mathrm{Boc}_{2} \mathrm{O}$ in 97% yield.

Scheme 42: a) 1,3-dichloroacetone, EtOH, 35%; b) P(OEt $)_{3}, 160^{\circ} \mathrm{C}, 87 \%$; c) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{MeCN}$, 97\%.

1.5.1.9 Functionalized Isoxazole Heterocycles

Initial attempts at the synthesis of the isoxazole derivative $\mathbf{1 4 0 b}$ were based on the idea to establish the hydroxymethyl group by functionalization of an existing heterocycle. Thus, isoxazole derivate $\mathbf{1 7 6}$ was brominated with NBS to give bromide 177, but the reaction suffered from low reproducibility, with yields varying between 20% and 60%. After the starting material had been consumed by about two thirds, dibromination would usually set in. As the yield tended to be lower on larger scale, the installation of an aldehyde functionality was investigated as an alternative to bromination, to provide a precursor for the hydroxymethyl group (Scheme 43). Unfortunately, selenoxide did not effect the desired transformation under a variety of conditions investigated.

Scheme 43: a) $\mathrm{P}(\mathrm{OEt})_{3}, 90 \%$; b) $\mathrm{NBS}, \mathrm{AIBN}, \mathrm{CCl}_{4}, 20 \%$ to 60%; c) SeO_{2}, dioxane, reflux, no product.

In light of these difficulties, an alternative strategy was elaborated, which relied on a 1,3-dipolar cycloaddition to construct the isoxazole heterocycle as reported by Lee and coworkers (Scheme 44). ${ }^{[132]}$ The phosphonate group was installed at an early stage of the synthesis via Arbuzov reaction between bromide $\mathbf{1 8 0}$ and $\mathrm{P}(\mathrm{OEt})_{3}$ which provided $\mathbf{1 8 1}$ in $\mathbf{7 0 \%}$ yield. Hydrolysis of the acetal group in 181 gave aldehyde 182, which was transformed into
the oxime $\mathbf{1 8 3}$ by addition of hydroxyamine in 75% yield. The stage was now set for ring construction by a cycloaddition reaction. Treatment of $\mathbf{1 8 3}$ with NCS in the presence of NEt 3 served to form the nitrile oxide in situ, which underwent 1,3-dipolar cycloaddition with propargylic alcohol to give isoxazole derivate $\mathbf{1 8 4}$ as the only regioisomer in 45% yield. Finally, the free hydroxyl group was TBS-protected to afforded the desired phosphonate $\mathbf{1 4 0 b}$ in 21% overall yield from bromide 180.

Scheme 44: a) $\mathrm{P}(\mathrm{OEt})_{3}, 70 \%$; b) aq. $\mathrm{HCl}(2 \%), 94 \%$; c) $\mathrm{NH}_{2} \mathrm{OH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}, 75 \%$; d) $\mathrm{NCS}, \mathrm{NEt}_{3}$, CHCl_{3}, then propargylic alcohol, 45%; e) TBSCl, imidazole, DMF, 94%.

In order to access aminomethyl isoxazole $\mathbf{1 4 5}$ g, the nitrile oxide derived in situ from oxime 183 (Scheme 45) was submitted to 1,3-cycloaddition with N-Boc-propargyl amine, to give isoxazole 185 selectively in 55% yield. Reaction with $\mathrm{Boc}_{2} \mathrm{O}$ then gave the desired bis-BOC derivative $\mathbf{1 4 5 g}$ in 85% yield.

Scheme 45: a) NCS, $\mathrm{NEt}_{3}, \mathrm{CHCl}_{3}$, then N-Boc-propargyl amine, 55%; b) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, MeCN, 85\%.

1.5.1.10 Functionalized Pyrazole Heterocycles

The initial approach towards the synthesis of pyrazole-derived phosphonates $\mathbf{1 4 0 c}$ and $\mathbf{1 4 5 g}$ was based on the formation of the chloromethyl pyrazole precursor $\mathbf{1 8 8}$ by the reaction of ethyl 2-hydrazinylacetate with 1,3-diketone 187 (Scheme 46). The latter was obtained by quenching the lithium enolate of acetone (186) with ethyl chloroacetate in 25% yield. The early introduction of the phosphonate group via Arbuzov reaction with the chloride failed, most probably due to the limited thermal stability of chloride 187. Regrettably, addition of
ethyl 2-hydrazinylacetate to $\mathbf{1 8 7}$ did not result in the formation of the pyrazole heterocycle 188.

Scheme 46: a) LDA, ethyl chloroacetate, THF $-78{ }^{\circ} \mathrm{C}, 25 \%$; b) Ethyl 2-hydrazinylacetate, EtOH, reflux, no product formed.

Likewise, attempts to construct pyrazole derivative 191 by reaction of hydrazine with ynone 190 were unsuccessful (Scheme 47).

Scheme 47: a) n - $\mathrm{BuLi}, \mathrm{ZnCl}_{2}$, acetyl chloride, THF, $-78{ }^{\circ} \mathrm{C}, 60 \%$; b) hydrazine, MeOH , no product formed.

A very similar addition would have been the pivotal step in the following reaction sequence (Scheme 48). Glycolic acid (192) was doubly TBS-protected to give 193, which was transformed into the corresponding acid chloride 194 by treatment with oxalyl chloride in DMF. After formation of Weinreb amide 195, the latter was converted into ynone 196 with MeCCMgBr. Unfortunately, reaction of $\mathbf{1 9 6}$ with ethyl 2-hydrazinylacetate failed to give any of the desired pyrazole derivate 197.

Scheme 48: a) TBSCl, imidazole, DMF, 86%; b) $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMF}, 0^{\circ} \mathrm{C}$; c) (OMe) $\mathrm{MeNH} H \mathrm{HCl}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \%$ over two steps; d) MeCCMgBr, THF, $0^{\circ} \mathrm{C}, 51 \%$; e) Ethyl 2-hydrazinylacetate, EtOH , reflux, no product formed.

A successful approach to the required pyrazole phosphonium salt 140 c could finally be developed based on the reaction of ethyl acetopyruvate 157 with 2-hydroxyethylhydrazine, to afford pyrazole derivate 198 in 58% yield, together with its separable regioisomer 199 (28\%) (Scheme 49). A strong NOE between the methyl group and the CH_{2} protons attached to the
nitrogen of the side chain was observed for 198, which established the desired regiochemistry. In contrast, no NOE between these protons was observed for the minor regioisomer 199. This assignment was finally confirmed by an X-ray crystallographic analysis of the minor regiosiomer 199. Remarkably, the addition of methyl hydrazine to ethyl acetopyruvate 157, which was carried out later, led to the preferential formation of the regioisomer corresponding to 199 (Section 1.5.1.7, Scheme 36).

Scheme 49: a) 2-Hydrazinylethanol, EtOH, $60^{\circ} \mathrm{C}, 58 \%$.

TBS-protection of the primary hydroxy group in 198 followed by reduction of the ester moiety with DIBAL-H gave primary alcohol 202 in 98% yield (Scheme 50). Mesylation and in situ displacement of the mesyloxy group by chloride anion then gave 203 (73%). Note that chloride formation from 202 with thionyl chloride led to concurrent deprotection of the primary hydroxy group. Finally, the phosphonium salt 140c was obtained by treatment of chloride 203 with tributylphosphine. Attempts to furnish the corresponding phosphonate suffered from low yields.

Scheme 50: a) TBSCl, imidazole, DMF, 94%; b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 98 \%$; c) $\mathrm{MsCl}, 2,6-$ lutidine, $\mathrm{LiCl}, \mathrm{DMF}, 73 \%$; d) PBu_{3}, DMF, 98%.

Primary alcohol 198 was also converted into azide 204 by mesylation and subsequent reaction of the mesylate with sodium azide in 96% yield (Scheme 51). Introduction of the azide group in a single step by means of DPPA was less efficient, as $\mathbf{2 0 4}$ was very difficult to purify from the reaction mixture. Reduction of $\mathbf{2 0 4}$ by catalytic hydrogenation yielded amine $\mathbf{2 0 5}$ in 88%
yield, ${ }^{8}$ which was mono-Boc protected. Subsequent DIBAL-H reduction of the ester moiety gave primary alcohol 207 , which was transformed into chloride 208 by reaction with thionyl chloride. Treatment of $\mathbf{2 0 8}$ with tributylphosphine gave phosphonium salt 209, which was finally converted into its bis-Boc derivative 145g in 97% yield.

Scheme 51: a) i. $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii. $\mathrm{NaN}_{3}, \mathrm{DMF}, 96 \%$; b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, 88 \%$; c) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NEt}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 89 \%$; d) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 89 \%$; e) $\mathrm{SOCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$; f) PBu_{3}, DMF, $40^{\circ} \mathrm{C}$, 93%; g) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, MeCN, 97%.

It should be noted here that attempts to functionalize preformed pyrazole derivative $\mathbf{2 1 1}$ were unsuccessful. As for isoxazole 177, treatment of 211 with NBS under radical conditions did not produce any of the desired product 212 (Scheme 52).

Scheme 52: a) Ethyl 2-hydrazinylacetate, EtOH, reflux, 27\%; b) NBS, benzoyl peroxide, CCl_{4}, reflux, no product formed.

[^7]
1.5.2 Synthesis of Hypermodified Epothilone A Analogs

Given the complex synthesis of the CP-Epo B analogs discussed in the previous sections, these compounds may be suboptimal drug cargos for ADC development. Clearly, compounds that would be synthetically more readily accessible would be more desirable for this purpose. In this context hypermodified epothilone analogs as they have been previously developed in our group may be of significant relevance, as they combine high potency with simplified structural features. ${ }^{[133]}$

An example of a hypermodified Epo A analog is isoxazole derivative 3a (C. N. Kuzniewski, O. Horlacher, K.-H. Altmann, unpublished results) (Figure 26).

Figure 26: Hypermodified Epo A analog 3a.

Compared to natural epothilones, and in particular to Epo B as the most active natural epothilone, analog 3a is characterized by a number of structural modifications. These include:

- The removal of the hydroxy group at position C3, which eliminates one of seven chiral centers from the core structure and thus simplifies the synthesis.
- Removal of the side chain methyl group at position C16, which results in synthetic simplification.
- The presence of a trans-substituted cyclopropane ring in place of the natural cisepoxide moiety. The epoxide to cyclopropane exchange is expected to lead to enhanced metabolic stability. Compared to the CP-Epo B analogs discussed above, which incorporate a trisubstituted cyclopropane moiety, trans-disubstituted cyclopropanes are more readily accessible.

3a showed profound growth inhibition against three different tumor cell lines A549 (lung), MCF-7 (breast), and HCT116 (colon) with IC_{50} values in the sub-nM range (Table 11, collaboration with Prof. Juerg Gertsch, University of Berne, unpublished data).

Table 11: Antiproliferative activity of hypermodified CP-Epo A analog 3a (IC_{50} values [nM]).

	A549	MCF-7	HCT116
3a	0.94 ± 0.08	0.89 ± 0.14	0.72 ± 0.09

IC_{50} values of $0.33,0.34$, and 0.16 nM have been reported for Epo B against the A549, MCF-7, and HCT116 cell lines respectively.

In light of its structural and biological properties hypermodified 3a could be a promising candidate for the construction of ADCs. The specific objective of the particular sub-project pursued in this thesis was the elaboration of an efficient and economic strategy for the synthesis of $\mathbf{3 a}$ or $\mathbf{3 b}$. This work was carried out as part of the Master theses of Stefan Vetterli and Rahel Bregy.

Conceptually, the synthesis should be based on the approach previously developed in the group by C. Kuzniewski as part of his PhD thesis ${ }^{[134]}$ (Section 1.5.2.1, Figure 28), but it should avoid the use of expensive catalysts (e.g. Grubbs' catalyst) and allow to synthesize either structure 3a or 3b (Figure 27) on a multigram scale. Analog 3b is a (additionally) functionalized variant of 3a and while the latter would have to be esterified via the hydroxy group at C7 for the construction of ADC's (vide supra), 3b incorporates an extra hydroxy functionality, which could be used as coupling site for the attachment of an antibody.

3a

3b

Figure 27: Target structures 3a and 3b.

1.5.2.1 Synthesis of Hypermodified Epothilones by C. Kuzniewski

The Kuzniewski synthesis of hypermodified Epo A analog 213, which is closely related to the target structure addressed in this thesis, made use of a syn-aldol addition to install the stereocenters at C6 and C7, an esterification/RCM sequence to construct the macrocycle and a late stage introduction of the heterocycle via Wittig olefination (Figure 28).

Figure 28: Structure of thiazole-based hypermodified Epo A analog 213 and key retrosynthetic disconnections.

In the actual synthesis the critical aldol reaction was performed between α-chiral aldehyde $\mathbf{8 4}$ (obtained in 5 steps and 15% overall yield from δ-valerolactone) ${ }^{[121]}$ and the titanium enolate of keto acid $\mathbf{4 3}$ which gave the desired product 214 in 55% yield and a diastereomeric ratio of 5:1 (Scheme 53). TBS protection of the newly formed secondary hydroxy group, simultaneous benzyl ether cleavage and double bond reduction by catalytic hydrogenation, Grieco-Sharpless elimination, ${ }^{[120]}$ and final ester hydrolysis provided acid 215 in 27% overall yield from aldehyde 84. Yamaguchi esterification of acid 215 with alcohol 216 gave diene 217 in quantitative yield, which cyclized in the presence of Hoveyda-Grubbs $1^{\text {st }}$ generation catalyst to form macrocycle 218 as a mixture of isomers in 68% yield (E / Z 1.3:1) (Scheme 53). Subsequent benzyl ether cleavage with $\mathrm{BCl}_{3} \mathrm{SMe}_{2}$ (65% yield), reduction of the double bond with TrisNHNH2, and oxidation of the primary hydroxy group gave aldehyde 219. The latter underwent Wittig olefination to afford the desired coupling product 220 in 53% yield as a single isomer. Final deprotection was achieved with HF pyridine to yield hypermodified Epo A analog 213 in 73\% yield.

Scheme 53: a) $\mathrm{TiCl}_{4}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 55 \%$, dr 5:1; b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 92 \%$; c) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 97 \%$; d) $o-\mathrm{NO}_{2} \mathrm{PhSeCN}^{2} \mathrm{PBu}_{3}, \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF}, 30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 73 \%$; e) $\mathrm{LiOH}, i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$, quant.; f) 2,4,6-Trichlorobenzoyl chloride, NEt_{3}, benzene, 216, DMAP, quant; g) Hoveyda-Grubbs I (5 mol \%), toluene, $60^{\circ} \mathrm{C}, 68 \%, E / Z 1.3: 1$); h) $\mathrm{BCl}_{3} \cdot \mathrm{SMe}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \%$; i) $\operatorname{TrisNHNH} H_{2}, \mathrm{NEt}_{3}, \mathrm{DCE}, 50^{\circ} \mathrm{C}, 76 \% ;$ j) TPAP, $\left.\mathrm{NMO}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{k}\right) \mathrm{K}-\mathrm{tOBu}, \mathrm{THF}$, $0^{\circ} \mathrm{C}$; then 219, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 53 \%$; 1) $\mathrm{HF} \cdot \mathrm{Py}, 77 \%$.

As shown in Scheme 54 the key steps in the synthesis of alcohol 216 were a stereoselective Brown allylation ${ }^{[135]}$ of aldehyde 222, to form allylic alcohol $\mathbf{2 2 3}$ with 80% yield and good enantioselectivity, and the Charette cyclopropanation of allylic alcohol 224. The latter transformation gave the desired cyclopropane derivate $\mathbf{2 2 5}$ in 61% yield and a diastereomeric ratio of 10:3. Building block 216 was obtained in 11 steps and an overall yield of 6% based on 1,4-butendiol (221).

Scheme 54: a) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 82 \%$; b) $\mathrm{O}_{3}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{SMe}_{2},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 77 \%$; c) (-)-(Ipc) ${ }_{2} \mathrm{~B}$-allyl, $\mathrm{Et}_{2} \mathrm{O},-100^{\circ} \mathrm{C}$, then ethanolamine, rt, 80%; d) TBSCl, imidazole, DMF, 0 ${ }^{\circ} \mathrm{C}$ to rt, 91%; e) O_{3}, $\mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$,; then $\mathrm{SMe}_{2},-78{ }^{\circ} \mathrm{C}$ to rt, 73%; f) $\mathrm{Ph}_{3} \mathrm{PCHCOOEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 94%; g) DIBAL- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 84 \%$; h) $\mathrm{ZnEt}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{DME}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 61 \%$; i) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-78{ }^{\circ} \mathrm{C}$, to $0^{\circ} \mathrm{C}, 57 \%$; j) $\mathrm{MePPh}_{3} \mathrm{Br}, n-\mathrm{BuLi}, \mathrm{THF},-10{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 95 \%$; k) $\mathrm{CSA}, \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 91 \%$.

The described synthesis is certainly stable and not inefficient, nevertheless, it suffers from a few drawbacks. Several reaction yields are only moderate as for example the aldol addition (55\%), the macrocyclization by means of RCM (68\%) or the cleavage of the benzyl ether with $\mathrm{BCl}_{3} \mathrm{SMe}_{2}(65 \%)$. In addition, in the synthesis of the alcohol 216 (Scheme 54) the Charette cyclopropanation $(61 \%$, dr $10: 1)$ as well as the subsequent Swern oxidation (57%) of the primary hydroxy group in cyclopropane derivate 225 are rather low yielding. Furthermore, the synthesis makes use of toxic reagents like the $o-\mathrm{NO}_{2} \mathrm{PhSeCN}$ used for the elimination or rather expensive catalysts as the Hoveyda-Grubbs $1^{\text {st }}$ generation catalyst necessary to form the macrocycle 218.

In an attempt to optimize the Kuzniewski synthesis the named drawbacks should be avoided and an efficient synthesis, which ignores the use of toxic or expensive reagents was to be established.

1.5.2.2 New Retrosynthesis of 3a and 3b

In contrast to the synthesis developed by C. Kuzniewski for analogs of type 3a and 3b, the (alternative) strategy envisioned for the Master theses of Stefan Vetterli and Rahel Bregy (Scheme 55) would be based on ring-closure by macrolactonization rather than by RCM to construct the 16 -membered macrocycle. A second key step in our approach was a JuliaKocienski olefination, ${ }^{[136]}$ which would combine sulfone 227 with aldehyde $\mathbf{2 2 8}$ to establish the $\mathrm{C} 10 / \mathrm{C} 11$ bond and thus the entire carbon framework of the macrocyclic core structure. Sulfone 227 would be accessible via a Mitsunobu reaction ${ }^{[137]}$ of 231 with 1-phenyl-1H-tetrazole-5-thiol and subsequent oxidation of the sulfide to the sulfone. As for the Kuzniewski synthesis, the C6-C7 bond would be formed by a syn aldol reaction between ethyl ketone $\mathbf{8 3}$ and α-chiral aldehyde $\mathbf{2 3 2}$ and the cyclopropane ring would be obtained by a stereoselective Charette cyclopropanation of allylic alcohol 224. Finally, aldehyde 229 was to be obtained via hydrolysis of the corresponding thioacetal, which was readily accessible from commercially available (R)-(+)-glycidol (230).
Julia-Kocienski olefination

3a, 3

Charette cyclopropanation

Scheme 55: Retrosynthesis of target structures 3a, 3b.

1.5.2.3 Forward Synthesis

The known ethyl ketone 83 was synthesized from isobutyraldehyde (233) in a three-step sequence in 28% overall yield (Scheme 56). ${ }^{[138]}$

Scheme 56: a) Morpholine, $p-\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to reflux, 89%; b) Propionyl chloride, MTBE, rt to reflux, 35%; c) Trimethyl phosphonoacetate, n-BuLi, THF, $-78^{\circ} \mathrm{C}$ to rt, 90%. E/Z 20:1.
α-Chiral aldehyde 232 was synthesized starting from 1,4-butanediol (236), which was monobenzylated with benzyl bromide (Scheme 57). The free hydroxy group in 237 was then oxidized sequentially to acid 239 by Swern oxidation and subsequent Pinnick oxidation ${ }^{[139]}$ of the ensuing aldehyde. ${ }^{[140]}$ Alternatively, $\mathbf{2 3 9}$ was accessed by ring-opening of γ-butyrolactone with KOH and protection of the resulting hydroxy group by treatment with benzyl bromide in 98% yield. This route is two steps shorter than the synthesis from 1,4-butanediol (236), but it suffers from the drawback of a five day synthesis procedure. ${ }^{[141]}$ Acid $\mathbf{2 3 9}$ was then converted into imide 240 by activation as a mixed anhydride and reaction with the (S)-4-Benzyl-2oxazolidinone in the presence of $n-\mathrm{BuLi}^{[142]}$ Deprotonation of imide $\mathbf{2 4 0}$ with NaHMDS at $-78{ }^{\circ} \mathrm{C}$ and reaction with MeI gave 241 with a dr of $14: 1$. Reductive cleavage of the Evansauxiliary with LiBH_{4} followed by Swern oxidation then yielded the desired α-chiral aldehyde 232 (Scheme 57). Aldehyde 232 was found to be highly unstable and to decompose within a few hours; it was thus used rapidly and without purification for the following aldol reaction.

Scheme 57: a) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{TBAI}, \mathrm{THF}, 98 \%$; b) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 94 \%$; c) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, 2-methyl-2-butene, $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}, 78 \%$; d) i. $\mathrm{EtOCOCl}, \mathrm{NEt}_{3}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$. ii. n-BuLi, (S)-4-Benzyl-2-oxazolidinone, THF, $-78{ }^{\circ} \mathrm{C}, 93 \%$; e) NaHMDS, MeI, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, dr $14: 1,88 \%$; f) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 80 \%$; g) $(\mathrm{COCl})_{2}, \mathrm{DMSO}^{2}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to rt, 90\%.

The synthesis of cyclopropane-containing aldehyde 228 started form commercially available $(R)-(+)$-glycidol (230), which was benzylated with benzyl bromide to afford 243 in 88% yield (Scheme 58). Regioselective opening of the epoxide with lithiated 1,3-dithiane followed by TBS protection of the resulting secondary alcohol gave TBS-ether $\mathbf{2 4 5}$ in 84% yield over two steps. Cleavage of the thioacetal moiety was achieved by treatment of 245 with $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in 92% yield, while NBS and HgCl_{2} remained ineffective. ${ }^{[143]}$ The resulting aldehyde 229 underwent Wittig olefination with $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}$ to afford E olefin 246 with 19:1 selectivity over the corresponding Z isomer. In contrast, HWE olefination with trimethylphosphono acetate gave about the same yield, but was less selective (E / Z 5:1). Subsequent DIBAL-H reduction of the ester moiety in 246 gave allylic alcohol 224 in 90\% yield, which was subjected to Charette cyclopropanation. The desired cyclopropane derivate 247 formed with an excellent yield of 98% and selectivity (dr 20:1) (Scheme 58).

Scheme 58: a) NaH, BnBr, DMF, $0^{\circ} \mathrm{C}$ to rt, 88%; b) n-BuLi, 1,3 -Dithiane, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 87 \%$; c) TBSCl , imidazole, DMF, 96%; d) $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{CaCO}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 92 \%$; e) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2}{\mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, }}^{2}$ $0^{\circ} \mathrm{C}$ to rt, $94 \%, E / \mathrm{Z} 19: 1$; f) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 90 \%$; g) $\mathrm{ZnEt}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathbf{2 2 4}, 0^{\circ} \mathrm{C}, 98 \%$, dr 20:1; h) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 97 \%$.

The final oxidation to aldehyde $\mathbf{2 2 8}$ was best achieved with DMP, while other oxidation procedures, such as Swern oxidation, or the use of PDC ${ }^{[144]}$ or Tempo ${ }^{[145]}$ gave $\mathbf{2 2 8}$ in lower yield $(50-65 \%)$. This is in line with the fact that Kuzniewski reported the oxidation of 247 under Swern conditions to deliver aldehyde 228 in a yield of 56\%. Important improvements could also be realized in the Charette-cyclopropanation step. By running the reaction at a constant temperature of $0{ }^{\circ} \mathrm{C}$, the yield could be improved from 61% to 98% and the diastereoselectivity was enhanced from 10:3 to 20:1. ${ }^{[133]}$ In conclusion, a highly efficient
route to cyclopropane-containing aldehyde $\mathbf{2 2 8}$ was established, which gave the desired building block with an overall yield of 54% over 8 steps from $(R)-(+)$-glycidol (230). Several grams of $\mathbf{2 2 8}$ were synthesized.
With key building blocks $\mathbf{8 3}, \mathbf{2 2 8}$ and $\mathbf{2 3 2}$ in hand the focus was put on the assembly of these fragments. Thus, ethyl ketone $\mathbf{8 3}$ was treated with TiCl_{4} and DIPEA to form preferentially the Z-enolate, which was then reacted with the α-chiral aldehyde $\mathbf{2 3 2}$ to give the syn aldol product 248 in a diastereomeric ratio of $3.7: 1$ and a yield of 56% (Scheme 59). Other conditions explored for enolate formation, such as $\mathrm{LDA}, \mathrm{Sn}(\mathrm{OTf})_{2} / \mathrm{NEt}_{3}$ and $n-\mathrm{Bu}_{2} \mathrm{BOTf} / \mathrm{DIPEA}$ proved to be inferior to the $\mathrm{TiCl}_{4} /$ DIPEA approach, both with regard to yield and selectivity. As mentioned earlier, aldehyde $\mathbf{2 3 2}$ is unstable as well as volatile and, hence, is difficult to purify. This might be part of the reason for the moderate yield obtained for the aldol addition. 248 was then protected as TIPS-ether 249 by reaction with TIPSOTf in 94% yield (TIPSCl proved to be unreactive). A side product was isolated in this reaction in small amounts ($<$ 5%), originating from the intramolecular addition of the C7-hydroxy group to the α, β unsaturated ester moiety in 248 to form a 6 -membered ring. Palladium catalyzed hydrogenation served to remove the benzyl group and to reduce the $\mathrm{C} 2 / \mathrm{C} 3$ double bond in the same step. The resulting primary alcohol $\mathbf{2 5 0}$ was then transformed into the sulfide $\mathbf{2 5 1}$ by means of a Mitsunobu reaction ${ }^{[146]}$ with 1-phenyl-1H-tetrazole-5-thiol in 96% yield. Finally, m-CPBA oxidation of the sulfide resulted in the precursor $\mathbf{2 2 7}$ for the critical Julia-Kocienski olefination (94\%). Apart from the aldol reaction, which only worked in a moderate yield of 56%, all other steps leading to sulfone 227 were high-yielding. Consequently, this fragment could also be synthesized on a multigram scale.

Scheme 59: a) TiCl_{4}, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 56 \%$, dr 3.7:1; b) TIPSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 94 \%$; c) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, $\mathrm{MeOH}, 88 \%$; d) 1-Phenyl-1 H -tetrazole-5-thiol, PPh_{3}, DEAD, THF, $0{ }^{\circ} \mathrm{C}$, 96%; e) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$.

The stage was thus set to explore the pivotal Julia-Kocienski olefination between sulfone $\mathbf{2 2 7}$ and aldehyde 228. It was observed that the sulfone 227, if deprotonated before the addition of aldehyde 228, underwent an intramolecular cyclization reaction to form 252 (Scheme 60). Therefore, sulfone 227 was deprotonated in the presence of aldehyde 228 (Barbier conditions) ${ }^{[136]}$ which completely surpressed the undesired cyclization reaction and afforded olefin 253 in an excellent 90% yield. The moderate selectivity of the reaction with an E / Z ratio of $3: 1$ was inconsequential, as the double bond was to be reduced in the next step.

Scheme 60: a) LiHMDS, THF, $-78^{\circ} \mathrm{C}$, then 228, 46%; b) LiHMDS, THF, $-78^{\circ} \mathrm{C}, 90 \%, E / Z 3: 1$.

The reduction of the double bond in $\mathbf{2 5 3}$ proved to be troublesome (Table 12). Wilkinson's catalyst and hydrazine $/ \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{Cu}($ II $)$ gave no conversion of starting material, while catalytic hydrogenations over Pd / C or Lindlar catalyst suffered from concomitant reductive opening of the cyclopropane moiety. ${ }^{9}$ To our delight, the double bond could be reduced in a fully selective way by making use of the diimide source $\mathrm{TrisNHNH}_{2}$ in an excellent yield of 95%.

Table 12: Reduction of double bond in 253.

Entry	Reagent		Solvent	Reaction
1	Wilkinson cat. (1.2 eq.)	6.5 bar H_{2}	THF	no conversion
2	Hydrazine $/ \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cu}(\mathrm{II})$		MeOH	no conversion
3	Pd / C	6.5 bar H_{2}	MeOH	15% product, 35% cyclopropane opened based on LRMS
4	Lindlar cat. (0.5 eq.)	6.5 bar H_{2}	EtOH	28% product, 18% cyclopropane opened based on LRMS
5	TrisNHNH		NEt_{3}	DME

[^8]The TBS group in $\mathbf{2 5 4}$ was then selectively removed with CSA to yield secondary alcohol $\mathbf{2 5 5}$ in 95% yield (Scheme 61). Initial attempts to saponify the ester moiety in $\mathbf{2 5 5}$ with $\mathrm{LiOH}^{*} \mathrm{H}_{2} \mathrm{O}$ in THF/ $\mathrm{H}_{2} \mathrm{O}$ gave no conversion, while the use of isopropanol $/ \mathrm{H}_{2} \mathrm{O}$ as the solvent mixture led to the formation of a transesterification side product. It was reasoned that the use of a sterically more hindered alcohol like $t-\mathrm{BuOH}$ would not induce any transesterification. This assumption proved to be valid and saponification of $\mathbf{2 5 5}$ with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ produced carboxylic acid $\mathbf{2 5 6}$ in quantitative yield. Macrolactonization was then achieved by Yamaguchi esterification, ${ }^{[78]}$ which gave macrolactone 218 in 75% yield. Subsequent removal of the benzyl protecting group with $\mathrm{BCl}_{3}{ }^{*} \mathrm{SMe}_{2}$ (the conditions that had worked best in Kuzniewski's synthesis) turned out to be problematic, due to translactonization of the desired product 257 , which formed the undesired macrolactone in up to 30% yield. As this side reaction could not be avoided, different conditions for benzyl ether cleavage were explored. While DDQ provided the desired product only in very moderate yield ($30-35 \%$), $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ only led to cleavage of the TIPS-ether and $\mathrm{AlCl}_{3} / \mathrm{N}, \mathrm{N}$-dimethylaniline remained ineffective. Ultimately, cleavage of the benzyl ether was still best performed with $\mathrm{BCl}_{3}{ }^{\circ} \mathrm{SMe}_{2}$, which under optimized conditions delivered the free alcohol 257 in 48% yield. Oxidation of $\mathbf{2 5 7}$ with TPAP/ $\mathrm{NMO}^{[122]}$ gave the corresponding aldehyde, which was immediately reacted with phosphonate 140b to give the protected hypermodified epothilone 258, albeit only in a moderate yield of 20% over two steps and as an inseparable $1: 1$ mixture of E / Z isomers (Scheme 61). The yield could be increased to 40% if the primary alcohol 257 was oxidized by means of DMP. ${ }^{[17]}$ The use of LiHMDS to deprotonate phosphonate $\mathbf{1 4 0 b}$ gave none of the desired coupling product (no conversion). Final deprotection was carried out with HF pyridine to yield target structure 3b in 77% yield as $1: 1$ mixture of E / Z isomers that was inseparable by silica gel chromatography. Separation of the isomers was finally achieved by means of preparative HPLC.

Scheme 61: a) 2,4,6-Trisisopropylbenzenesulfonohydrazide, NE_{3}, $\mathrm{DME}, 5{ }^{\circ} \mathrm{C}, 95 \%$; b) CSA , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95 \%$; c) $\mathrm{LiOH}^{*} \mathrm{H}_{2} \mathrm{O}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$, quant.; d) $2,4,6$-Trichlorobenzoyl chloride, NEt_{3}, DMAP, THF, 75%; e) $\mathrm{BCl}_{3}{ }^{\circ} \mathrm{SMe}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 48 \%$; f) i. DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii. t-BuOK, 140b, , THF, 40% over two steps, $E / Z 1: 1 ; \mathrm{g})$ HF*pyridine, THF, 77%, E/Z 1:1.

Target structure 3a was synthesized in the same way. Gratifyingly, the Wittig reaction between aldehyde $\mathbf{2 5 9}$ and the phosphorane derived from phosphonium salt 78b gave the desired hypermodified epothilone analog 3a in 91% yield over two steps as a single isomer (Scheme 62). Final removal of the TIPS group was achieved with $\mathrm{FeCl}_{3}{ }^{\circ} 6 \mathrm{H}_{2} \mathrm{O}$ to afford 3a in 74% yield or with HF pyridine, which gave 3a in 68% yield.

Scheme 62: a) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; b) t-BuOK, 259, THF, 91% over two steps, single isomer; c) $\mathrm{FeCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}{ }^{\prime} \mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$.

While the syntheses described above provide reasonably efficient access to the targeted hypermodified Epo A analogs and are clearly superior to Kuzniewski's approach, they still
suffer from the serious shortcoming that half of the valuable macrocycle 218 is lost in the course of the debenzylation reaction. As the efficiency of the deprotection was not amenable to any improvement, the use of a PMB group was investigated as an alternative to a plain benzyl group; the former should be susceptible to oxidative cleavage with DDQ. This idea was encouraged by the fact that benzyl ether cleavage in 218 using a large excess of DDQ (10 eq.), although only moderately efficient, only produced very small amounts of the translactonization side product.

1.5.2.4 Attempts at Further Synthetic Improvements

In order to explore the usefulness of a PMB group for the protection of the hydroxymethyl group on C 15 of the macrocycle, aldehyde $\mathbf{2 6 8}$ was required. The latter could be prepared from PMB-protected R-glycidol in analogy to the synthesis of aldehyde 228 in 52% overall yield (8 steps; Scheme 63).

Scheme 63: a) $\mathrm{NaH}, \mathrm{PMBCl}, \mathrm{DMF}, 89 \%$; b) n-BuLi, 1,3 -Dithiane, THF, $-78{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}, 84 \%$; c) TBSCl , imidazole, DMF, quant.; d) $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}, \mathrm{CaCO}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 90 \%$; e) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 86 \%$, sinlge isomer; f) DIBAL- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}, 94 \%$; g) $\mathrm{ZnEt}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathbf{2 6 6}, 0{ }^{\circ} \mathrm{C}, 99 \%$, dr 15:1; h) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$.

Pleasingly, the subsequent crucial coupling of the aldehyde 268 and sulfone 227 provided olefin 269 in an excellent yield of 92% (Scheme 64). All subsequent steps could be performed with similar efficiencies as for the corresponding benzyl-protected intermediates up to the stage of seco acid 272. Surprisingly, macrolactonization of 272 under Yamaguchi conditions
gave only moderate yields of $40-45 \%$ in comparison to 75% for the benzyl protected seco acid 256. In the context of optimizing the established prior synthesis of $\mathbf{3 a}$ and $\mathbf{3 b}$, this yield was not deemed acceptable and alternatives were evaluated. Very much to our delight, the use of the Shiina macrolactonization protocol ${ }^{[147]}$ yielded the macrocycle $\mathbf{2 7 3}$ in 97% yield.

Scheme 64: a) LiHMDS, THF, $-78^{\circ} \mathrm{C}, 92 \%, E / Z 4.5: 1$; b) TrisNHNH $_{2}$, NEt $_{3}$, DME, $50{ }^{\circ} \mathrm{C}, 95 \%$; c) $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90 \%$; d) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}, t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$, quant.; e) MNBA, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 97 \%$.

The final question to be answered was whether the removal of the PMB group from 273 would indeed be more efficient, i. e. higher-yielding than the debenzylation of 218. Very much to our satisfaction, treatment of PMB-ether $\mathbf{2 7 3}$ with DDQ allowed the isolation of the desired primary alcohol 274 in 84\% yield (Scheme 65).

Scheme 65: a) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate buffer $\mathrm{pH} 7,84 \%$.

In conclusion, a highly efficient synthesis of hypermodified epothilone analogs such as 3a and 3b has been established. This approach is clearly superior to the approach previously elaborated for these types of analogs by Kuzniewski and it has allowed the synthesis of several grams of the macrocycle 273.

1.5.2.5 Antibody-Drug Conjugates

As discussed in section 1.5.1.6, there was some indication that the C7-hydroxy group was sufficiently reactive to serve as an attachment point for a linker to a tumor-targeting antibody (see text to Scheme 34). For the construction of $\mathbf{3 a}$-derived ADCs a self-immolative disulfide linker was selected that has been extensively studied by the Ojima group, who found this linker to be stable in the bloodstream and to be efficiently cleaved by glutathione (Figure 29). ${ }^{[148]}$

Figure 29: Self-immolative disulfide linker according to Ojima et al. ${ }^{[148]}$

The esterification of 3a with acid $\mathbf{2 7 5}$ was first attempted using the DCC/DMAP protocol, ${ }^{[43]}$ which gave ester 276 in a moderate yield of 16% due to low conversion. The use of EDCI as a coupling agent turned out to be even less efficient, providing ester 276 in only 10% yield, while the Yamaguchi protocol did not lead to any product formation. In all cases the unconsumed starting material $\mathbf{3 a}$ could be reisolated.

Scheme 66: a) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 16 \%$.

Despite the low yield the esterification reaction, sufficient amounts of ester 276 could be obtained for initial coupling experiments with an antibody. These experiments were carried out by Martina Steiner in the group of Prof. Neri. Conjugation of $\mathbf{2 7 6}$ to the SIP-F8 antibody was attempted via disulfide exchange, ${ }^{[130]}$ but, unfortunately ester $\mathbf{2 7 6}$ showed such low water solubility that no conjugation was observed in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ 9:1 solvent mixtures.

As an alternative to disulfide exchange, Neri and co-workers have also developed a novel conjugation protocol that involves the coupling of aldehydes to antibodies without the need of a chemical linker (Figure 30). ${ }^{[149]}$ The aldehyde drug undergoes thiazolidine formation by reacting with the 1,2 -aminothiol functionality introduced in the antibody by engineering of the N terminus. ${ }^{[150]}$ Upon thiazolidine cleavage the free drug and native antibody are restored, which limits immunogenic reactions, which may be associated with the presence of residual linker moieties on the antibody. ${ }^{[151]}$

N -terminus
Figure 30: Linkage of the drug to the antibody via thiazolidine formation.

It was thus attempted to couple aldehyde 277 through thiazolidine formation; 277 was accessible through oxidation of alcohol $\mathbf{3 b}$ and was anticipated to be more water soluble than 276 as the compound features two free hydroxy groups (as opposed to only one in 276). (Scheme 67).

Scheme 67: a) Tempo, BAIB, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 71 \%$.

Unfortunately, even aldehyde 277 was not sufficiently soluble in the required solvent mixtures for a conjugation reaction to proceed.

This is the status of this project at the time of writing of this thesis. Possible ways to overcome the solubility problem will be briefly discussed in the Conclusion and Outlook section.

1.6 Conclusion and Outlook

As a prelude for the construction of epothilone-based ADC's the first total synthesis of CPEpo B (1a) has been developed, based on efficient RCM-mediated macrocyclization and the late stage elaboration of the thiazole-bearing side chain. While the acid building block 7 could be obtained according to literature procedures, alcohol 6 was synthesized from commercially available (S)-(-)- α-hydroxy- γ-butyrolactone in 12 steps and 25% overall yield (Scheme 68). 1a was ultimately obtained in 19 steps for the longest linear sequence in 8% overall yield.

Scheme 68: Synthesis of CP-Epo B (1a).

Methyl ketone 98 and its 9,10-dehydro analog 148 served as common advanced precursors for the synthesis of a variety of side chain-modified CP-Epo B analogs, including (additionally) functionalized derivatives 2a-h.

Figure 31: Selection of CP side chain-modified Epo B analogs.

All compounds shown in Figure 31 are nM or sub-nM inhibitors of cancer cell proliferation, which makes them interesting candidates for the construction of epothilone-based ADCs. In particular, hydroxymethyl isoxazole CP-Epo B (2A) (Figure 32) was found to be more potent than natural Epo B, exhibiting IC_{50} values of 0.25 nM and 0.36 nM against the human lung cancer cell line A549 and the human breast cancer cell line MCF-7, respectively. Thus, 2A was chosen for the construction of an ADC. A linker bearing a maleimido functionality was attached to $\mathbf{2 A}$ via esterification of the primary hydroxy group and the thiols of the cysteine side chains of the SIP-F8 antibody underwent 1,4-addition to form the ADC (Figure 32).

Figure 32: Antibody-drug conjugate with hydroxymethyl isoxazole CP-Epo B 2A as the drug cargo.

Initial in vivo experiments with 2A-ADC indicated a measurable antitumor effect. As the tumors were still growing, however, the dose of the 2A-ADC was increased in a second experiment, which resulted in body weight loss of the mice. As a consequence, the experiments had to be abandoned and no further evaluation was undertaken.

In light of the rather complex synthesis of the above CP-Epo B analogs, structurally simplified epothilone analogs were investigated. Hypermodified isoxazole Epo A analog 3a (Figure 33) had previously been identified in our group as an attractive lead structure, as it combines high potency with simplified structural features.

Figure 33: Hypermodified Epo A analog 3a and 3b.

In this thesis an efficient synthesis of 3a and it hydroxymethyl derivative $\mathbf{3 b}$ was elaborated that provides access to these compounds on a multigram scale. Key steps in the assembly of these hypermodified epothilones were (1) a Julia-Kocienski olefination between sulfone 227 and aldehyde 228, (2) ring-closure by Shiina macrolactonization to afford 273 in almost quantitative yield, and (3) Wittig olefination of aldehyde 259 with the isoxazole-based phosphoranes to elaborate the C15 side chain (Scheme 69).

Scheme 69: Synthesis of hypermodified Epo A analogs 3a and 3b.

Hypermodified Epo A analog 3a could be esterified with acid 275 to give activated disulfide 276. Conjugation of 276 to the SIP-F8 antibody was attempted via disulfide exchange, but failed because of the low water solubility of $\mathbf{2 7 6}$. Likewise, conjugation by thiazolidine formation between engineered N -terminal 1,2-aminothiol functionality in the SIP-F8 antibody and aldehyde 277 was unsuccessful because of insufficient solubility of $\mathbf{2 7 7}$.

Figure 34: Structure of activated disulfide 276 and aldehyde 277.

Future work on the construction of epothilone-derived ADC will have to address this solubility issue. A possible approach to overcome this problem would be the attachment of one or several polar, solubilizing moieties to the phenyl ring of the self-immolative chemical linker in 276 (Figure 35). The investigation of this strategy was, however, outside of the scope of this PhD project.

Figure 35: Attachment of a polar moiety at the self-immolative chemical linker in 276.

2

2 Studies Towards the Total Synthesis of Michaolide E

2.1 Introduction

2.1.1 Isolation and Structural Variants of Cembranes and Cembranolides

Cembranes and cembranolides are cyclic diterpenes. The first member of this group of natural products was described in 1951, when Haagen-Smit and co-workers reported the isolation of cembrene (277) (Figure 36), a crystalline diterpene, from the oleoresin of Pinus Albicaulis. ${ }^{[152]}$ About a decade later, studies by Dauben et al., ${ }^{[153]}$ as well as by Kobayashi and Akiyoshi ${ }^{[154]}$ established the structure of this compound as the first member of a new family of diterpenes, which were named cembranes. Since then, the number of cembranes has grown continuously and to date hundreds of cembranes and cembranolides have been described in literature.

Figure 36: Cembrene (277): the first isolated member of the cembrane family of natural products.

Dauben et al. showed that the first isolated cembrane 1, $\mathrm{C}_{20} \mathrm{H}_{32}$, contained four double bonds and one ring. ${ }^{[155]}$ Chemical reduction of 277 with lithium in liquid ammonia mainly gave compound 278, which upon ozonolysis followed by oxidative work-up resulted in the formation of three different acids (Scheme 70). They were characterized as levulinic (279), 2-isopropyl-5-oxohexanoic (281) and 2-methylglutaric acid (280), respectively. The fact that each of these acids was difunctional and all three together accounted for twenty carbon atoms, led to the conclusion that cembrene $\mathbf{1}$ consisted of an isoprenoid-type fourteen-membered carbocyclic ring. ${ }^{[155]}$

Scheme 70: Chemical modification of cembrene (277) to elucidate its structure. ${ }^{[155]}$

A few natural cembranes have been found in the animal kingdom but many more have been isolated from plants. ${ }^{[156]}$ Those originating from terrestrial plants have been mainly found in pines and tobacco. While the oleoresins of conifers are common sources of hydrocarbons and simple alcohols in the cembrane series, the tobacco plant allows the isolation of chemically more complex natural products like di- and tri-oxygenated derivatives. A much larger number of cembranoids, and typically of a much greater chemical diversity, has been encountered in marine invertebrates, namely the Caribbean gorgonians and the Pacific soft corals. Cembrane diterpenoids from these marine sources mostly bear alcohol functionalities at several positions, they may contain one or more epoxide rings, and often include a lactone moiety. ${ }^{[157],[158]}$ These latter cembrane diterpenoids are named cembranolides. Since the cembrane-type diterpenoids are a large and structurally varied family of natural products, they have been classified. All cembranes and cembranolides share a 14 -membered carbon macrocycle as a common structural feature. Different types of cembranes are depicted in Figure 37 to illustrate their structural diversity. The simplest group of cembranes includes isopropyl and isopropenyl cembranes such as $\mathbf{2 8 2}$ and $\mathbf{2 8 3}$ and the somewhat more complex isopropyl or isopropenyl acid cembranes such as 284. ${ }^{[157]}$ The structurally more complex cembranolides contain of a five-, six-, or seven-membered lactone ring fused to the macrocycle (as exemplified by 285). Another group of cembranes are the furanocembranoids (286). They consist of the 14-membered carbon macrocycle as well as a furan heterocycle. ${ }^{[157]}$

Figure 37: Structural variants of the cembrane family of diterpenes.

New highly cytotoxic members of the cembranolide family were isolated from the soft coral Lobophytum michaelae by Wang and co-workers in 2001. ${ }^{[159]}$ The dichloromethane extract of Lobophytum michaelae showed significant cytotoxic activity against the human colon adenocarcinoma cell line HT-29 and against the mouse lymphocytic leukemia line P-388. Fractionation of the dichloromethane extract led to the isolation of eleven new cytotoxic cembranolides, namely michaolides A-K and the known crassolide 287. ${ }^{[156]}$ The most potent of these cembranolides, michaolide E (4) and crassolide (Figure 38) exhibit IC_{50} values against HT-29 and P-388 cancer cell lines in the low nanomolar range. ${ }^{[159]}$

Michaolide E (4)

Crassolide (287)

Figure 38: Highly cytotoxic members of the cembranolide family.

Thus, michaolide E (4) was demonstrated to inhibit the growth of HT-29 and P-388 cells with IC50's of 115 nM and 16 nM , respectively, while crassolide (287) was equipotent with michaolide E (4) against HT-29 cells ($\mathrm{IC}_{50} 102 \mathrm{nM}$) and slightly less potent against P-388 cells (82 nM). Due to its interesting biological activity, its dense arrangement of stereogenic centers and its bicyclic overall structure that features a 5-membered lactone trans-fused to a 14-membered macrocycle, michaolide E (4) is an attractive and challenging target for total synthesis.

2.1.2 Biogenesis of Cembranes

Cembrene A (288) is produced via the classical mevalonate pathway for terpene biosynthesis. ${ }^{[160]}$ The extensive family of isoprenoid compounds is derived from two basic building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) (Scheme 71). These two precursors are produced from acetyl-coenzyme A (AcCoA) via mevalonic acid as the key intermediate (Scheme 71). ${ }^{[161]}$

Scheme 71: The mevalonate pathway of the biosynthesis of terpenoids. Enzymes involved in the individual steps are as follows: a) Acetoacetyl-CoA-thiolase; b) 3-hydroxy-3-methyl-glutaryl (HMG)-CoA-synthase; c) HMG-CoA-reductase; d) mevalonate-5-phospho transferase; e) phosphomevalonate kinase; f) pyrophosphate mevalonate decarboxylase; g) IPP-isomerase.

All carbon skeletons of linear isoprenoids are assembled by repetitive head-to-tail connections of IPP with DMAPP. The formation of diterpenes requires the linear assembly of four C5 building blocks (Scheme 72). Coupling of IPP to DMAPP gives geranyl diphosphate (GPP, C_{10}). Addition of IPP to GPP affords farnesyl diphosphate (FPP), which provides is the carbon skeleton of the sesquiterpenes $\left(\mathrm{C}_{15}\right)$. Upon further coupling of IPP to FPP, the geranylgeranyl diphosphate is formed (GGPP), which is the parent compound of all diterpenes $\left(\mathrm{C}_{20}\right) .{ }^{[161]}$

Scheme 72: Linear precursor in diterpene biosynthesis. Enzymes involved in the individual steps are as follows: a) Geranyl diphosphate synthase; b) farnesyl diphosphate synthase; c) geranylgeranyl diphosphate synthase.

The biogenesis of cyclic and polycyclic terpenes is usually assumed to proceed via carbocation intermediates. In the following the biosynthesis of cembrane A (288) - which serves as a pheromone of various termites ${ }^{[162]}$ - is used to exemplify how the 14 -membered ring is constructed. ${ }^{[160]}$ Upon dissociation of the pyrophosphate anion from GGPP a resonance-stabilized allylic carbocation is formed, which triggers the cyclization to the fourteen-membered ring skeleton of cembrene A (288). The resulting tertiary carbokation is transformed into the cembrene (288) via abstraction of a proton from one of the two methyl groups attached to the cationic center (Scheme 73). ${ }^{[163]}$

Scheme 73: Formation of the cembrene A (288) via cyclization of GGPP.

2.1.3 Biological Activity of Cembranes and Cembranolides

Not only are there many structural variants of the cembranes and cembranolides known, they also display a wide range of biological activities. ${ }^{[164]}$ Thus, cembranes can serve a physiological role as insect trail pheremones, the can display antiinflammatory activity, or they can potently inhibit the proliferation of cancer cells. ${ }^{[158],[159],[164],[165]}$ It would be beyond the scope of this section to discuss every cembranolide for which biological data appeared in literature. Rather, the following discussion will focus on compounds exhibiting superior biological activity and members of each class of cembranes and cembranolides will be considered.

2.1.3.1 Antiinflammatory activity

Inflammation is the physiological response to the injury of tissues. ${ }^{[166]}$ Macrophages constitute a main component of the immune system and exhibit a pivotal role in inflammatory responses. They can secrete a variety of inflammatory mediators, such as nitric oxide (NO), prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ and cytokines. ${ }^{[167],[168]}$ The production of NO is controlled by nitric oxid synthases (NOS), which include endothelial NOS, neuronal NOS and inducible NOS (iNOS). During inflammation iNOS induces high levels of NO in macrophages. ${ }^{[169]} \mathrm{PGE}_{2}$, which functions as a mediator of the inflammatory response and induces pain is produced from arachidonic acid through catalysis of cyclooxygenase-2 (COX-2). ${ }^{[170],[171]}$ Hence, the reduction of NO and PGE_{2} in macrophages by suppressing the expression of iNOS and COX-2 or by inhibiting their enzymatic activities represents a promising (and also validated) approach for the development of antiinflammatory drugs. ${ }^{[172]}$ In the following the ability of cembranes and cembranolides to reduce the level of iNOS and COX-2 in murine macrophages (RAW 264.7 cells) will be discussed.

In the group of isopropyl cembranes a few members demonstrated antiinflammatory activity such as $\mathbf{2 8 9}$, which has been isolated from the Formosan soft corals of the genus Sinularia in 2008 by Ahmed and co-workers (Figure 39). ${ }^{[173]}$

289
Figure 39: Isopropyl cembrane 289 exhibiting antiinflammatory activity.

This compound was found to inhibit the accumulation of the pro-inflammatory iNOS protein in LPS-stimulated RAW 264.7 cells by about 30% at $50 \mu \mathrm{M}$ concentration, while it was inactive toward the expression of COX-2 protein.

Among cembranolides a number of compounds show antiinflammatory activity that is superior to that of cembranes. ${ }^{[165]}$ For example, Cembranolide 290, which was isolated from the Formosan soft coral Sarcophyton crassocaule in 2010 by Lin and co-workers (Figure 40), reduced the level of iNOS protein to 4.6% at a concentration of $10 \mu \mathrm{M}$; in addition, the expression of COX-2 was also significantly reduced (to 3.9%). ${ }^{[174]}$ The group of Chen isolated cembranolides 291 and 292 in 2008 (Figure 40). At a concentration of $10 \mu \mathrm{M}$, both compounds suppressed iNOS expression almost completely (to 1.4% and 0.0%, respectively) and to some extent were also able to reduce COX-2 levels (to 42.9% and 42.5%, respectively) ${ }^{[175]}$ Extraction of the soft coral Lobophytum durum by the same group resulted in the isolation of cembranolide 293 (Figure 40), which exhibited antiinflammatory activity in a similar range as 291. ${ }^{[176]}$ In the same year cis-cembranolide 294 was isolated from the Formosan soft coral Sarcophyton crassocaule by Chao and co-workers (Figure 40). This compound reduced the level of iNOS to 2.3% and of COX-2 to 34.5% at a concentration of $10 \mu \mathrm{M} .{ }^{[177]}$

290

291

292

293

294

Figure 40: Cembranolides 290-294 exhibiting significant antiinflammatory activity.

In 2009 Cheng and co-workers reported the isolation of 6-membered lactone cembranolides from the soft coral Lobophytum durum. This included compounds 295 and 296 (Figure 41), which reduced the levels of iNOS to 11.0% and 0.0% and of COX-2 to 66.7% and 34.7%, respectively at a concentration of $10 \mu \mathrm{M} .{ }^{[178]}$

Figure 41: 6-membered lactone cembranolides 295 and 296 exhibiting antiinflammatory activity.

Regarding the structural features associated with cembranolides with potent antiinflammatory activity, it appears that the presence of the α-methylene- γ-lactone functionality is required to significantly reduce the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. Based on this observation it may be speculated that a covalent interaction of the compounds with the proteins via the Michael acceptor system occurs.

2.1.3.2 Cytotoxic activity

Among the isopropyl cembranes a few members are found that exhibit cytotoxic activity as for example neocrotocembraneic acid (297) and neocrotocembraneic aldehyde (298), which were isolated from the stem bark of Croton oblongifolius by Roengsumran in 1999 (Figure 42). ${ }^{[179]}$ Their cytotoxic activity against the mouse leukemia line P-388 was evaluated, with acid 297 exhibiting an IC50 value of $137 \mu \mathrm{M}$, while aldehyde 298 was about 6 times more potent $(23 \mu \mathrm{M}) .{ }^{[180]}$

297

298

Figure 42: Isopropyl cembrane 297 and 298 exhibiting moderate cytotoxic activity.

In the same year isopropenyl cembrane 299 was isolated from the soft coral Nephthea brassica by Duh and co-workers (Figure 43). This compound showed antiproliferative activity against human cancer cell lines in the low micromolar range, exhibiting IC ${ }_{50}$'s of $11.9 \mu \mathrm{M}$ against human lung carcinoma cell lines A549, $9.0 \mu \mathrm{M}$ against the human colon carcinoma cell lines HT-29 and $1.3 \mu \mathrm{M}$ against the mouse leukemia cell line P-388. ${ }^{[181]}$ The
group of Ortega isolated isopropenyl cembrane $\mathbf{3 0 0}$ from the gorgonian Leptogorgia laxa in 2008 (Figure 43). The compound was demonstrated to be about as active as 299 (IC50 values of $5.6 \mu \mathrm{M}$ and $10.9 \mu \mathrm{M}$ against A549 and HT-29 cells, respectively). ${ }^{[182]}$

299

300

Figure 43: Epoxy-isopropyl cembranes 299 and 300. These compounds exhibit moderate cytotoxic activity.

In the course of investigations on the chemical diversity of soft corals in the South China Sea, Ma and co-workers collected an unidentified species of the genus Dendronephtya. This led to the isolation of three cytotoxic isopropenyl acid cembranes 301-303 (Figure 44). All compounds showed selective and significant inhibition of the growth of the human cancer cell line BGC-823 with IC_{50} values of 136 nM (301), 47 nM (302), and 466 nM (303), respectively), while no activity was observed against other cancer cell lines (HCT8, Bel-7402, A549, and A2780). ${ }^{[183]}$

301

302

303

Figure 44: Isopropenyl acid cembrane 301-303 exhibiting cytotoxic activity.

The most active compounds of these natural products are found among the cembranolides. Iwashima and co-workers isolated α-methylene γ-lactone cembranolide 304 from Clavularia koellikeri in 2000 (Figure 45). The antiproliferative activity of this compound was examined against the human colorectal adenocarcinoma cell line (DLD-1) and human T-lymphocyte leukemia cells (MOLT-4). 304 showed IC $_{50}$ values of $8.9 \mu \mathrm{M}$ (DLD-1) and $1.9 \mu \mathrm{M}$ (MOLT4). ${ }^{[184]}$ The first chemical investigation of the gorgonian octocoral Eunicea pinta by the group of Shi resulted in the isolation of α-methylene γ-lactone cembranolides 305 and 306 (Figure 45). While compound $\mathbf{3 0 5}$ was demonstrated to exhibit significant cytotoxic activity against the non-small cell lung cancer cell line NCI 60 (IC50 $2.7 \mu \mathrm{M}$) and TK-10 renal cancer cells (IC50 $0.4 \mu \mathrm{M}$), compound $\mathbf{3 0 6}$ displayed strong growth inhibition of human T lymphocytic leukemia cells (MOLT-4, IC 5026 nM). ${ }^{[185]}$

Figure 45: Cembranolides 304-306 exhibiting significant cytotoxic activity.

307 and 308 belong to the most active compounds among the furanocembranoids (Figure 46). They were isolated by Pudhom and co-workers in 2007 as part of an effort to isolate biologically active compounds from Croton oblongifolius. Both compounds showed broad cytotoxic activity against all cell lines tested (BT474, CHAGO, HEP-G2, KATO-3, SW-620) with IC s $_{5}$'s around $20 \mu \mathrm{M} .{ }^{[186]}$

307

308

Figure 46: Furanocembranoids $\mathbf{3 0 7}$ and $\mathbf{3 0 8}$ exhibiting cytotoxic activity.

Based on the available structure-activity data, the presence of an α-methylene γ-lactone ring is not absolutely required for antiproliferative activity against human cancer cells by cembranolides. However, as for cembranolides with antiinflammatory activity, the most active compounds do include this structural element.

2.1.4 Total Synthesis of Cembranes and Cembranolides

In this section, previous total syntheses of cembranes and cembranolides will be briefly reviewed. Again, it is not the intention of this chapter to provide a comprehensive account of all syntheses that have been developed. Rather, the different concepts and approaches that have been pursued to access natural products of the cembrane and cembranolide families will be highlighted for specific examples. In particular, the last section of this chapter will provide an overview of the different strategies that have been employed to close the 14 -membered carbon macrocycle.

2.1.4.1 Total Syntheses of Cembrene A

One of the first syntheses of a cembrane-type natural product was reported in 1975 by Kodama and co-workers, who prepared cembrene A (288) by making use of an intramolecular nucleophilic addition of a sulfur-stabilized carbanion to an epoxide (Scheme 4). ${ }^{[187]}$ Trans,trans-geranyllinalool $\mathbf{3 0 9}$ was converted into the thioether $\mathbf{3 1 0}$ via an Appel ${ }^{[188]}$ reaction and subsequent nucleophilic displacement of the bromide substituent. Van Tamelen's procedure ${ }^{[189]}$ allowed the selective epoxidation of the terminal double bond in moderate yield (42%). Upon treatment of thioether 311 with n-BuLi the cyclization was triggered to give macrocycle 312 in 62% yield. Reductive cleavage of the thioether gave nepthenol (313). Finally, dehydration of the tertiary alcohol afforded the Hofmann product (\pm)-cembrane A (288).

Scheme 74: a) PBr_{3}; b) $\mathrm{NaSPh}, 73 \%$ over two steps; c) i) NBS, aq. THF; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 42 \%$; d) n-BuLi, DBU, THF, $-78{ }^{\circ} \mathrm{C}, 62 \%$; e) $\mathrm{Li}, \mathrm{EtNH}_{2},-78{ }^{\circ} \mathrm{C}, 30 \%$; f) $\mathrm{SOCl}_{2}, \mathrm{py}, 95 \%$.

Racemic cembrene A (288) was also synthesized by Takayanagi and co-workers in 1978, using a convergent route with a regiospecific coupling of two functionalized geranyl units as the key step (Scheme 75). The advantage of this approach is that functional groups can be introduced regioselectively prior to cyclization. ${ }^{[190]}$ Treatment of chloride $\mathbf{3 1 4}$ in the presence of sulfone 315 and SnCl_{4} as a Lewis acid produced tertiary chloride 316. The subsequent elimination was carried out by spraying the tertiary chloride onto a silica plate that was kept at room temperature for four days. If the dehydrochlorination was induced by addition of LiBr and $\mathrm{Li}_{2} \mathrm{CO}_{3}$, the more stable Zaitsev product was formed in 80% yield. Subsequent LAH reduction of the ester moiety gave the corresponding allylic alcohol, which was converted into the bromide 318 by making use of the Appel reaction in 14% overall yield from 317. Macrocycle formation was then induced by addition of LDA to afford 319. Final reductive cleavage of the sulfonyl group gave (\pm)-cembrene A (288).

Scheme 75: a) $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-94{ }^{\circ} \mathrm{C}, 44 \%$; b) silica gel, 80%; c) LAH, THF, $-20^{\circ} \mathrm{C}$, quant.; d) PPh_{3}, $\mathrm{CBr}_{4}, \mathrm{MeCN}$; e) LDA, THF, $-78^{\circ} \mathrm{C}, 56 \%$ over two steps; f) Li, $\mathrm{EtNH}_{2},-78^{\circ} \mathrm{C}, 69 \%$.

The first enantioselective total synthesis of R-(-)-cembrene A (288) was reported by Schwabe and co-workers in 1988. ${ }^{[191]}$ As for the Kodama synthesis of racemic cembrene A (288) (Scheme 75), their convergent synthesis employed an intramolecular nucleophilic addition of a sulfur-stabilized anion to an epoxide, but in this case the epoxide moiety was chiral (Scheme 76). Coupling of the sulfonyl fragment 319 with the allylic bromide 320, which was synthesized from L-serine in 12 steps and 17% overall yield, ${ }^{[192]}$ gave the linear precursor. Subsequently, the sulfonyl group was removed reductively to give the allylic alcohol 321, which was transformed into thioether 322. After cleavage of the acetonide moiety the formation of the required epoxide was triggered by treatment of the resulting diol with MsCl in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$. Subsequent addition of n - BuLi to $\mathbf{3 2 3}$ then induced cyclization. Finally, the thioether was removed and the tertiary alcohol was eliminated using SOCl_{2} in pyridine to produce R-(-)-cembrane A (288).

Scheme 76: a) n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}, 81 \%$; b) $\mathrm{Na} / \mathrm{Hg}$, EtOH, reflux, 90%; c) PBr_{3}, py, $\mathrm{Et}_{2} \mathrm{O},-10{ }^{\circ} \mathrm{C}$;
d) $\mathrm{NaSPH}, \mathrm{MeOH}, 81 \%$ over two steps; e) Amberlite IR-120, ethylenglykol/DME, $60^{\circ} \mathrm{C}, 91 \%$; f) i) MsCl, py; ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 32 \%$; g) n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}, 27 \%$; h) Na, t-BuOH, $90{ }^{\circ} \mathrm{C}, 55 \%$; i) $\mathrm{SOCl}_{2}, \mathrm{py}, 45 \%$.

2.1.4.2 Total Syntheses of Natural Epoxy Cembrenoids

Out of the group of epoxy cembrenoids (+)-3,4-epoxycembrene A (325) shall serve as an example. It was first isolated in 1981 by Bowden et al. ${ }^{[193]}$ from the Australian soft coral Sinularia facile. The absolute configuration of this epoxy derivative of cembrane R-(-)-cembrene A (288) (vide supra, Scheme 76) was determined by means chemical degradation and spectroscopic techniques. $\mathbf{3 2 5}$ demonstrated to inhibit the growth of human cancer cell lines with moderate potency in the low micromolar range. ${ }^{[181]}$ In 2001 Liu et al. reported the first total synthesis of (+)-3,4-epoxycembrene A (325) making use of a chiral pool protocol and a Sharpless asymmetric epoxidation ${ }^{[194]}$ to install the chiral centers (Scheme 77). ${ }^{[195]}$ The assembly of the carbon skeleton of $\mathbf{3 2 5}$ commenced with the addition of the lithium derivative of bromide $\mathbf{3 2 6}$ to cyclopropyl methyl ketone $\mathbf{3 2 7}$ which gave cyclopropane $\mathbf{3 2 8}$ in 84% yield. ${ }^{[196]}$ Treatment of $\mathbf{3 2 8}$ with LiBr in the presence of TMSCl then provided the rearranged homoallylic bromide $\mathbf{3 2 9}$ in 79% overall yield. ${ }^{[197]}$ Subsequent alkylation of $\mathbf{3 2 9}$ gave phosphonate 330, which underwent Horner-Wadsworth-Emmons (HWE) olefination with aldehyde 331 (derived from $R-(+)$-limonene by ozonolysis ${ }^{[198]}$) to form a mixture of E / Z isomers in a 1:2 ratio. Deprotection of the primary hydroxy group with
followed by PCC oxidation gave keto aldehyde 333, which was subjected to McMurry olefination ${ }^{[199]}$ to achieve cyclization. The reaction proceeded in 41% yield and gave a mixture of $\mathrm{C} 11 / \mathrm{C} 12 \mathrm{E} / \mathrm{Z}$ isomers in a 5:2 ratio. At this stage the undesired $\mathrm{C} 3 / \mathrm{C} 4 E$-isomer could be separated. DIBAL-H reduction of the ester moiety in $\mathbf{3 3 4}$ gave the corresponding allylic alcohol as a separable 5:2 mixture of C11/C12 isomers. Subsequent Sharpless asymmetric epoxidation of the desired isomer afforded epoxide 335 (90%, dr 20:1). Finally, the alcohol $\mathbf{3 3 5}$ was transformed into the corresponding iodide by means of an Appel reaction; the latter was then reductively dehalogenated to yield (+)-3,4-epoxycembrene-A (325).

Scheme 77: a) Li , THF, then 327, 84%; b) $\mathrm{LiBr}, \mathrm{TMSCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 79 \%$; c) NaH , (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, DMF, $60^{\circ} \mathrm{C} 79 \%$; d) n-BuLi, THF, $-78^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, then 331, $-20^{\circ} \mathrm{C}, 70 \%$; e) p-TsOH, MeOH; f) PCC, $\mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$ over two steps; g) $\mathrm{TiCl}_{3}, \mathrm{Zn}-\mathrm{Cu}$, DME, reflux, 41%; h) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 92 \%$; i) $\mathrm{Ti}(\mathrm{OiPr})_{4}, D-(-)-\mathrm{DET}, t-\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 90 \%$; j) PPh_{3}, imidazole, py, $\mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN}, 0^{\circ} \mathrm{C}$; k) $\mathrm{NaBH}_{3}(\mathrm{CN})$, HMPA/THF, $60^{\circ} \mathrm{C}, 77 \%$ over two steps.

Another member of the epoxy cembrenoids is (+)-11,12-epoxysarcophytol A (336). Its synthesis will be briefly discussed as it demonstrates that the epoxide moiety is stable enough to be carried through a multistep synthesis. $\mathbf{3 3 6}$ had been isolated by Bowden and co-workers
from an Australian marine soft coral Lobophytum in 1983. ${ }^{[200]}$ The configuration of the hydroxy group at C14 was assigned as S by a zinc-copper-mediated reductive elimination of the epoxide moiety, which results in the formation of the known cembrane diterpenoid sarcophytol A (337) (Scheme 78). ${ }^{[201]}$

Scheme 78: a) zinc dust, $\mathrm{CuSO}_{4}, \mathrm{EtOH}$, reflux.

Li and co-workers reported the first total synthesis of 336, which includes a Sharpless asymmetric epoxidation, an intramolecular cyanohydrin alkylation and CBS reduction as the key transformations (Scheme 79). ${ }^{[202]}$ The synthesis started from readily available trans,transfarnesol derivative 338, which underwent a Sharpless asymmetric epoxidation to give epoxide 339 ($95 \%, 98 \%$ ee) The resulting alcohol 339 was then converted into the corresponding bromide, followed by a deprotection/oxidation sequence which resulted in the formation of enal $\mathbf{3 4 0}$ in 75% overall yield from epoxy alcohol 339. The aldehyde was then condensed with 3-methyl-2-(diethylphosphono) butanenitrile under HWE conditions to yield the desired Z olefin 341. ${ }^{[203],[204],[205]}$ Reduction of the cyano group gave an imine that was hydrolyzed under aqueous acidic conditions to provide unsaturated aldehyde 342. ${ }^{[206]}$ Treatment of $\mathbf{3 4 2}$ with TMSCN gave the cyanohydrin trimethylsilyl ether 343, which upon addition of LiHMDS formed the desired macrocycle. Subsequent treatment of the crude cyclization product with a catalytic amount of TBAF gave epoxy ketone 344. Selective CBS reduction finally led to the natural product 336.

Scheme 79: a) $\mathrm{Ti}(\mathrm{OiPr})_{4}, L-(+)-\mathrm{DET}, t-\mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}, 95 \%, 98 \%$ ee; b) $\mathrm{MsCl}, \mathrm{NEt}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$; c) LiBr , acetone, $50^{\circ} \mathrm{C}, 82 \%$ over two steps; d) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; e) MnO_{2}, hexane, 91% over two steps; f) LiHMDS, $(\mathrm{Me})_{2} \mathrm{CHCH}(\mathrm{CN}) \mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$, toluene, $-78{ }^{\circ} \mathrm{C}$, then $\mathbf{3 4 0}$, 90%; g) DIBAL-H, hexane, $-78^{\circ} \mathrm{C}$, then 10% aq. oxalic acid, $0^{\circ} \mathrm{C}, 88 \%$; h) TMSCN, cat. KCN/18-C6, THF; i) LiHMDS, reflux, then TBAF, 10% aq. THF, 85% over two steps; j) $\mathrm{BH}_{3} \mathrm{SMe}_{2}, \mathrm{CBS}$ (10 mol\%), toluene, $0^{\circ} \mathrm{C}, 88 \%$.

2.1.4.3 Total Synthesis of Cembranolides

Marshall and Crooks total synthesis of (\pm)-cis-cembranolide 345, published in 1987, deserves special mentioning as it features the addition of lithium dimethyl cuprate to an ynone and an α-alkoxy allylstannane macrocyclization (Scheme 80). ${ }^{[207],[208],[209]}$ The initial steps of the synthesis involved the elaboration of oxidized geranyl acetate 346 into allylic alcohol 347, ${ }^{[207]}$ which was then oxidized to the corresponding enal. Subsequently, LiSnBu_{3} was added to the α, β-unsaturated aldehyde and the resulting alcohol was MOM-protected to give 348. After TIPS-removal, deprotonation of the terminal alkyne moiety with LDA and quenching of the alkyne anion with paraformaldehyde led to the formation of a propargylic alcohol, which was oxidized to the ynone 349 . Treatment of 349 with the Lewis acid $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ afforded the macrocycle $\mathbf{3 5 0}$ in good yield as a 7:1 diastereomeric mixture in favour of the desired $1 R, 2 S$ isomer. Propargylic alcohol 350 was then oxidized to the ynone, which underwent a nonselective cuprate addition with LiCuMe_{2} to give a $1: 1$ mixture of the E and Z isomeric addition products. The Z isomer could be isomerized by addition of isopropyl thiolate to give
the E isomer 351 as the sole product. Acidic removal of the MOM-protecting group was followed by oxidation of the ensuing aldehyde to the acid; the latter was esterified by treatment with diazomethane to give ester 352. Finally, the keto group was reduced with NaBH_{4} to provide a $10: 1$ mixture of lactones in favour of the desired cis-fused system. Installation of the methylene group by hydroxymethylation with LDA and paraformaldehyde and subsequent dehydration then gave the natural product $\mathbf{3 4 5}$.

Scheme 80: a) $\left(\mathrm{COCl}_{2}, \mathrm{DMSO}^{2}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}\right.$ to RT; b) $\mathrm{LiSnBu}_{3}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$; c) MOMCl, ${ }_{i P r}{ }_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; d) LDA, THF, $-78{ }^{\circ} \mathrm{C}$, then $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, 50 \%$ over four steps; e) 1,1 '-azodicarbonyldipiperidine, t - BuOMgBr , THF, $0^{\circ} \mathrm{C}, 85 \%$; f) $\mathrm{BF}_{3} \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 88 \%$, dr $7: 1 ;$ g) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}$ to RT, 87%; h) LiCuMe_{2}, THF, $0{ }^{\circ} \mathrm{C}, 97 \%$, dr 1:1; i) $\mathrm{LiSiPr}, \mathrm{THF}, 90 \%$; j) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, 83 \%$; k) PDC, DMF, 78%; 1) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 95 \%$; m) NaBH_{4}, EtOH, 70%, dr $10: 1$; n) LDA, THF, $-78{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, then $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, 66 \%$; o) MCDI, $\mathrm{CuCl}_{2}, \mathrm{MeCN}$, $60^{\circ} \mathrm{C}, 69 \%$.

With regard to the above discussed synthesis of (\pm)-cis-cembranolide 345 the asymmetric total synthesis of its trans analogue (-)-trans-cembranolide $\mathbf{3 5 3}$ by Taber and Song shall be shown. The key transformation of the synthesis is a diastereoselective Rh-mediated cyclization of diazo ester $\mathbf{3 5 8}$ to form a tetrahydrofuran ring (Scheme 81). ${ }^{[210]}$ The latter was obtained from epoxide 355, which was opened with the lithium anion derived from hydrazone 354. The resulting γ-hydroxy hydrazone 356 was then alkylated with trans,transfarnesyl bromide. Subsequent treatment with aqueous acid afforded ketone 357, which upon treatment with dimethyl carbonate and NaH , followed by exposure to DBU and 4-nitrobenzenesulfonlyl azide gave α-diazo ester 358. ${ }^{[211]}$ Treatment of $\mathbf{3 5 8}$ with catalytic
amounts of rhodium octanoate triggered cyclization to tetrahydrofuran derivates $\mathbf{3 5 9}$ and $\mathbf{3 6 0}$ in a $2: 1$ ratio. The lack of stereocontrol in the cyclization was not an issue, since the minor diastereomer $\mathbf{3 5 9}$ could be epimerized to $\mathbf{3 6 0}$ with NaOMe . After the introduction of the sulfone moiety via nucleophilic substitution, one of the terminal methyl groups was oxidized with SeO_{2} and the resulting allylic alcohol was transformed into bromide 361. Sulfone $\mathbf{3 6 1}$ cyclized on exposure to $\mathrm{LDA}^{[190]}$ and subsequent treatment of the macrocycle with Na in liquid ammonia removed both the phenylsulfonyl group and the benzyl group to give primary alcohol 362. Oxidative cleavage of $\mathbf{3 6 2}$ with PDC led to the lactone. ${ }^{[212],[213]}$ Final methenylation α to the carbonyl group of the lactone gave (-)-trans-cembranolide 353 in 1.2% overall yield from epoxide 355. ${ }^{[214]}$

Scheme 81: a) LiHMDS, toluene, $0^{\circ} \mathrm{C}$, then $\mathbf{3 5 5}$, $\mathrm{Y}(\mathrm{OTf})_{3}, 80 \%$; b) NaH , THF, $0^{\circ} \mathrm{C}$, then farnesyl bromide, TBAI; c) aq. HCl, THF, 59% over two steps; d) NaH, dimethylcarbonate, DME, then DBU, p-NBSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{RT}, 63 \%$; e) $\mathrm{Rh}(\mathrm{Oct})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 58 \%$; f) $\mathrm{NaOMe}, \mathrm{MeOH}, 88 \%$; g) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}, 84 \%$; h) TosCl, NEt 3 , DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; i) TBAI, $\mathrm{NaSO}_{2} \mathrm{Ph}$, THF, reflux, 84% over two steps; j) SeO_{2}, salicylic acid, $t \mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ k) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 50 \%$ over two steps; 1) LDA, THF, $\left.-78^{\circ} \mathrm{C} ; \mathrm{m}\right) \mathrm{Na}, \mathrm{NH}_{3}, \mathrm{THF} / \mathrm{EtOH},-78{ }^{\circ} \mathrm{C}, 61 \%$ over two steps; n) PDC, $\mathrm{Ac}_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{DMF}, 58 \%$; o) (OMe) CH $\left(\mathrm{NMe}_{2}\right)_{2}, 90^{\circ} \mathrm{C}$; p) DIBAL-H, THF, $-78^{\circ} \mathrm{C}, 64 \%$ over two steps.

2.1.4.4 Different cyclization in Synthesis of Cembranoids

Since the formation of the 14-membered macrocycle is a crucial step in the synthesis of all cembranoids, the different strategies that have been pursued to achieve macrocyclization shall be briefly discussed in this section. The examples discussed in the preceding section have already illustrated the utility of sulfide/sulfo-stabilized carbanion alkylations, the $\mathrm{Ti}(0)$ induced McMurry olefination, cyanohydrin-stabilized carbanion alkylations and α-alkoxy allylstannane-based macrocyclizations for the construction of the 14-membered ring.

Yet another approach to macrocycle formation has been employed by Wender and co-workers in their synthesis of (-)-3Z-cembrene A (365), where they made use of a ring expansion reaction ${ }^{[215],[216]}$ to construct the macrocyclic ring (Scheme 82). ${ }^{[217]}$

Scheme 82: a) KH, 18-C-6, THF, 55\%.

In contrast, Marshall employed a rather ingenious a ring contraction strategy to establish the macrocycle in the synthesis of epi-mukulol (368) (Scheme 83). ${ }^{[218]}$ In this case, deprotonation of ether $\mathbf{3 6 6}$ triggers a stereoselective Wittig rearrangement. ${ }^{[219]}$

Scheme 83: a) n-BuLi, THF/HMPA 3:1, $-78^{\circ} \mathrm{C}, 85 \%$, dr 4.5:1.

The effectiveness of the HWE reaction to construct the macrocycle in cembranoids has been demonstrated in the total synthesis of (+)-deoxyasperdiol (371) by Tius and Fauq in 1986 (Scheme 84). ${ }^{[220]}$ The conditions developed by Masamune, Roush and Rathke, ${ }^{[221],[222]}$ which entail the use DBU and lithium chloride in acetonitrile, produced trisubstituted olefin $\mathbf{3 7 0}$ as a 2:1 mixture of trans/cis-isomers from phosphonate 369.

Scheme 84: a) DBU, LiCl, MeCN, 30\%, E/Z 2:1.

A similar approach as that followed by Marshall (Section 2.1.4.3, Scheme 80) was employed by Nishitani and co-workers in their synthesis of (\pm)-cis-cembranolide 345. However, instead of using an α-alkoxy allylstannane-based macrocyclization, Nishitani and co-workers made use of a $\mathrm{Cr}(\mathrm{II})$-mediated intramolecular coupling reaction between an allylic chloride and an aldehyde moiety in 372, which gave the desired anti-substituted macrocycle 373 in good yield and selectivity (Scheme 85). ${ }^{[223],[224]}$

Scheme 85: a) CrCl_{2}, DMF, 81%.
(\pm)-cis-cembranolide 345 has also been prepared via Friedel-Crafts-type acylation reaction by Kato and co-workers (Scheme 86). ${ }^{[225]}$ Remarkably, the reaction proceeded in high yield, giving chloride 375 as the exclusive cyclization product, although the formation of a 10 membered ring would also have been conceivable.

Scheme 86: a) $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 71 \%$.

Of particular relevance for the work described in this PhD thesis, Tietze et al. in 2008 reported a total synthesis of the polyoxygenated cembrene (378) that was based on ring-closure by means of ring-closing metathesis (RCM) (Scheme 87). Remarkably, the macrocycle was formed in high yield and exclusively as the Z-isomer (377) in the presence of Grubbs $2^{\text {nd }}$ generation catalyst. Some general aspects of RCM-based macrocyclizations that involve the
formation of trisubstituted double bonds in the cyclization step will be discussed in greater detail in next section.

Scheme 87: a) Grubbs II(7 mol\%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 89%.

2.2 Aims and Scope

As indicated in the introduction, michaolide E (4) has recently been identified as a new member of the cembranolide family of natural products, which displays highly potent antiproliferative activity against human cancer cells in vitro. So far, no total synthesis of michaolide E (4) has been reported in the literature and neither has any structure-activity work been described around this interesting natural product. In order to provide a basis for the exploration of michaolide $\mathrm{E}(4)$ as a potential lead structure for anticancer drug discovery, it was an objective of this thesis to establish an efficient and stable synthesis of this natural product. The chemistry developed in the course of the total synthesis work should then be exploited in a subsequent phase for the synthesis of analogs for structure-activity relationship (SAR) studies (although this would be outside of the scope of this PhD thesis). At the level of synthesis strategy, the work was also to explore the possibility of constructing the 14-membered macrocycle in michaolide $\mathrm{E}(4)$ by means of RCM between $\mathrm{C} 7 / \mathrm{C} 8$ or $\mathrm{C} 11 / \mathrm{C} 12$, as this was felt to provide a particular efficient approach to the target structure (Scheme 88).

Michaolide E (4)
Scheme 88: Intended RCM at C7/C8 or at C11/C12.

However, it was far from clear whether this strategy could be implemented successfully. Apart from the general issue if efficient ring-closure could be achieved, the stereochemical outcome of the cyclization reaction was open to question. As discussed above, only one RCM-based cembranolide synthesis has been reported so far, which afforded exclusively the Z-isomer (i. e. the undesired isomer in our approach). In order to put these questions into perspective, the next section will provide a brief overview of the examples of RCM-based macrocyclizations leading to 13 -membered or larger rings by the formation of trisubstituted double bonds.

2.2.1 RCM-based Macrocylizations

Unsuccessful attempts at the cyclization of diene $\mathbf{3 7 9}$ have been reported by Hiersemann and co-workers in the presence of both $1^{\text {st }}$ and $2^{\text {nd }}$ generation Grubbs and Hoveyda-Grubbs catalysts (in the context of a projected synthesis of 15-acetyl-3-propionyl-characiol) (Scheme 89). In contrast, diene 380, which lacks the C17 methyl group, yielded the macrocycle $\mathbf{3 8 2}$ in 75% yield using Grubbs $2^{\text {nd }}$ generation catalyst. ${ }^{[226]}$ This outcome indicates that steric reasons may be responsible for the failure of diene 379 to cyclize, which would have involved the formation of a trisubstituted double bond.

Scheme 89: a) Grubbs II, DCE, $60^{\circ} \mathrm{C}$.

As for the example above, Hoye and Zhao as part of their studies towards the synthesis of callipeltoside A revealed the unsuccessful construction of a 14-membered macrocycle from diene $\mathbf{3 8 3}$ by means of RCM (Scheme 90). ${ }^{[227]}$

Scheme 90: a) Grubbs I and II.

Unsuccessful cyclization attempts have also been reported for 16-membered macrocycles as target structures. Thus, Mulzer and co-workers attempted to form a 16 -membered macrocycle in the course of their studies towards the total synthesis of (-)-kendomycin. ${ }^{[228]}$ None of the depicted dienes 384-388 underwent cyclization using Grubbs $2^{\text {nd }}$ generation or Schrock catalyst (Scheme 91).

$R=H, 384$
R = MOM, 385
$R=A c, 386$

387

no cyclization product detected

Scheme 91: a) Grubbs II or Schrock catalysts.

In the context of their total synthesis of $(+)$-geldanamycin $M a$ and co-workers attempted to close a 19-membered ring by means of RCM using Grubbs $2^{\text {nd }}$ generation catalyst under a variety of conditions to no avail (Scheme 92). ${ }^{[229]}$

Scheme 92: a) Grubbs II.

However, in addition of the examples discussed above, a number of cases have been reported in the literature where RCM-based macrocyclization with the formation of a trisubstituted double bond in a >13-membered ring has been executed successfully. Four of these reports describe the exclusive formation of the Z-isomer including Tietze's work on polyoxygenated cembrene (378) (Section 2.1.4.4, Scheme 87), where the Z olefin was the desired product. ${ }^{[230]}$ Another successful example where a Z olefin was intended to be installed by RCM was described by Hoveyda and co-workers (Scheme 93). ${ }^{[231]}$

Scheme 93: a) Schrock catalyst, benzene, 90%.

In the two other cases of selective Z isomer formation the desired product had in fact been the E-isomer, as in the context of the total synthesis work on (-)-kendomycin by Smith et al. (Scheme 94). ${ }^{[232]}$ However, it is remarkable that the RCM furnished the macrocycle at all, since Mulzer et al. failed to close the ring with a very similar substrate (Scheme 91).

Scheme 94: a) Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 57%.

Undesired Z isomer formation was also observed by Vilarrasa and co-workers in the course of their work on the total synthesis of amphidinolide X. The attempt to cyclize diene 394 using different amounts of Grubbs $2^{\text {nd }}$ and Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst only gave the undesired Z-isomer in moderate yield (Scheme 95). ${ }^{[233]}$

Scheme 95: a) Grubbs II or Hoveyda-Grubbs II, 30-40\%.

In contrast to Villarasa's finding's, He and co-workers reported the formation of detectable amounts of the E isomer upon RCM with diene 396 - structurally very similar to 394 although the Z isomer was still the predominant product (Scheme 96). ${ }^{[234]}$

Scheme 96: a) Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $50 \%, \mathrm{Z} / E$ 2.5:1.

In other cases macrocyclizations mediated by means of RCM proceeded in an essentially unselective manner. For example, in their total synthesis of epothilone B Grieco and May isolated a 1:1 mixture of E - and Z-isomers using Schrock catalyst (Scheme 97). ${ }^{[235]}$

Scheme 97: a) Schrock catalyst, benzene, $55^{\circ} \mathrm{C}, 55 \%, Z / E 1: 1$.

In Leighton's synthesis of Dolabelide D a 24 -membered ring was to be closed. The macrocycle formed with low stereoselectivity ($E / Z 1.3: 1$), but in reasonable yield (Scheme 98). ${ }^{[236]}$

Scheme 98: a) Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 55%, E / Z 1.3:1.

Surprisingly, Dai and co-workers have reported an E-selective RCM with diene 402 (Scheme 99), ${ }^{[237]}$ which is structurally related to the dienes $\mathbf{3 9 4}$ and $\mathbf{3 9 6}$ that were investigated by Villarasa and He, respectively (Scheme 95 and 96), and which were favouring formation of the Z isomer. This observation highlights the fact that even small changes in substrate structure can have a major impact on the stereochemical outcome of RCM reactions.

Scheme 99: a) Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 40%.

Finally, Lee and co-workers reported the cyclization of diene $\mathbf{4 0 4}$ to macrocycle $\mathbf{4 0 5}$ as the only isomer in acceptable yield as part of their synthesis of (-)-dactylolide (Scheme 100). ${ }^{[238]}$

Scheme 100: a) Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 45%.

The described reports clearly demonstrate that the outcome of a macrocyclization mediated by means of RCM resulting in a trisubstituted double bond is not predictable in terms of yield as well as E to Z stereoselectivity. Nevertheless, the existence of successful cyclizations by RCM favouring the E isomer and the fact that there are two trisubstituted double bonds in the target molecule, which means that the macrocyclization could be attempted on different substrates, was hope enough to follow that risky strategy.

2.3 Results and Discussion

2.3.1 RCM at C7/C8; Early Introduction of Lactone

From a retrosynthetic perspective it was planned to introduce the methylene group on the γ-lactone ring at the very end of the synthesis, following the guiding principle that a reactive moiety should be introduced into a target structure as late as possible. As indicated in section 2.2 the macrocyclic ring was to be closed by a ring-closing metathesis (RCM) between $\mathrm{C} 7 / \mathrm{C} 8$. The epoxide moiety in $\mathbf{4 0 6}$ was to be introduced by a directed epoxidation subsequent to macrocycle formation. Lactone $\mathbf{4 0 7}$ was envisioned to be obtained by nucleophilic addition of metalated allylic bromide $\mathbf{4 0 9}$ to aldehyde 408; which should be accessible from Weinreb amide 410 via an ozonolysis/lactonization/reduction sequence. Evans syn-aldol addition would serve to install the two adjacent stereocenters of $\mathbf{4 1 0}$ with a syn relationship and the α, β-unsaturated aldehyde $\mathbf{4 1 1}$ required for this aldol reaction would be derived from methyl ketone $\mathbf{4 1 2}$ by means of HWE olefination, which is accessible from D-malic acid exploiting a reaction sequence discussed earlier in this thesis in the context of the synthesis of side chainmodified cyclopropyl-Epo B analogs (Section 1.5.1.2, Scheme 16). ${ }^{[113]}$

Scheme 101: Retrosynthetis of michaolide E (4). First generation approach.

As for the addition of metalated 409 to aldehyde 408, a similar transformation had been reported in the literature with a stereochemical outcome that was also required for the synthesis of michaolide E (4). While the authors did not discuss the possible reasons for the observed selectivity, a plausible explanation would be that the aldehyde group orientates in such a way as to minimize the dipole moment of the lactone 408 and with the nucleophile preferentially attacking to enter from the exo side of the 5 -membered ring, which constitutes to a Re-face attack (Figure 47).

408

408

Figure 47: Re-face attack of a nucleophile on aldehyde 408.

A second issue that needed to be addressed for the nucleophilic addition of metalated allylic bromide $\mathbf{4 0 9}$ to aldehyde $\mathbf{4 0 8}$ was the regioselectivity of the reaction. According to a method developed very recently by Zhang and co-workers the α-adduct 414 is favoured in zincmediated additions in the presence of HMPA, albeit at very high temperatures (Scheme 102). However, higher temperatures were expected to compromise the stereoselectivity of the addition and the question was whether proper conditions would be found that would satisfy both, the stereo- as well as the regiochemical requirements for this transformation.

Scheme 102: γ-addition versus α-addition of metalated allylic systems.

2.3.1.1 Forward Synthesis

The transformation of L-malic acid into α-hydroxy lactone 105 (Section 1.5.1.2, Scheme 16) is known in the literature. ${ }^{[114],[115],[239],[116]}$ For the synthesis of methyl ketone 412, the sequence was started with D-malic acid (416), which was transformed into α-hydroxy lactone 417. ${ }^{10}$ TBS-protection of 417 was followed by treatment with methyllithium to give a

[^9]mixture of TBS-protected hemiacetal 419 and hydroxy ketone $\mathbf{4 2 0}$ (Scheme 103). Treatment of the mixture with TBSCl led to the formation of bis-silyl-protected methyl ketone 412, which underwent $H W E$ olefination in high yield and good selectivity. At $65^{\circ} \mathrm{C}$ an E / Z selectivity of $10: 1$ was observed. This ratio could be improved by lowering the temperature at the expense of longer reaction times. If the reaction was carried out at $45^{\circ} \mathrm{C}$, a selectivity of 12:1 was achieved and conversion was complete within 16 hours. The resulting α, β unsaturated ester $\mathbf{4 2 2}$ was subsequently reduced to the allylic alcohol 423; MnO_{2} oxidation of 423 yielded α, β-unsaturated aldehyde 411 in 62% overall yield from α-hydroxy lactone 417.

Scheme 103: a) TBSCl, imidazole, DMF, 96%; b) MeLi, THF, $-78{ }^{\circ} \mathrm{C}, 89 \%$; c) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 98 \%$; d) $\mathrm{NaH}, \mathbf{4 2 1}$, THF, then $\mathbf{4 1 2}, 45^{\circ} \mathrm{C}, 91 \% \mathrm{E} / \mathrm{Z} 12: 1$; e) DIBAL- $\mathrm{H}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 89 \%$; f) $\mathrm{MnO}_{2}, \mathrm{Et}_{2} \mathrm{O}, 91 \%$.

The stage was now set to carry out the Evans syn-aldol addition. The Evans-auxiliary derivate 425 was synthesized in one step according to the literature (Scheme 104). ${ }^{[240]}$

Scheme 104: a) n-BuLi, pentenoyl chloride, THF, $-78^{\circ} \mathrm{C}, 86 \%$.

Boron-mediated aldol addition of $\mathbf{4 2 5}$ with aldehyde $\mathbf{4 1 1}$ gave the syn-aldol product in good yield and with excellent selectivity (Scheme 105). Quite surprisingly, however, the subsequent cleavage of the auxiliary with simultaneous formation of the Weinreb amide turned out to be extremely difficult. ${ }^{11}$

[^10]

Scheme 105: a) 425, $\mathrm{Bu}_{2} \mathrm{BOTf}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 80 \%$, dr $30: 1$; b) AlMe_{3}, $\mathrm{Me}(\mathrm{OMe}) \mathrm{NH} \cdot \mathrm{HCl}$, THF, $-40^{\circ} \mathrm{C}, 23 \%$.

The highest achievable yield was 23%. Up to 6 eq. of AlMe_{3} - the use of $\mathrm{Me}_{2} \mathrm{AlCl}$ did not trigger any transamidation - were required to get full conversion. It was reasoned that the secondary hydroxy group might be sterically hindered due to its close proximity to the methyl group attached to the double bond. As a consequence, the amide carbonyl group is not activated by complexation as depicted in \mathbf{A} (Figure 48, A). Rather, complexation and, thus, activation towards nucleophilic attack might involve the carbonyl group of the oxazolidinone ring, resulting in the formation of 428, which is partially hydrolyzed to 427 during work-up. Alternatively, complexation of the exocyclic imide carbonyl group may have occurred, but the addition of the nucleophile to the amide was sterically hindered (Figure 48, B).

Figure 48: Explanations for the outcome of the removal of the auxiliary.

Instead of installing the Weinreb amide it was attempted to produce the ester by treating the aldol product 426 with sodium methoxide (Scheme 106).

Scheme 106: $\mathrm{NaOMe}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 29 \%$.

However, as observed for the transamidation reaction the desired product was formed in low yields only and two side products were isolated that originated from the addition of the methoxide ion to the carbonyl group of the oxazolidinone ring.

Another possibility to attain the Weinreb amide 426 was via the corresponding acid 431 (Scheme 107). Albeit not very elegant, this route was hoped to provide enough material so that the subsequent steps could be elaborated.

Scheme 107: a) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF/ $\mathrm{H}_{2} \mathrm{O}, 47 \%$; b) Isobutyl chloroformate, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, then $\mathrm{Me}(\mathrm{OMe}) \mathrm{NH} \cdot \mathrm{HCl}, 16 \%$.

Treatment of 426 with LiOH in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ resulted in the formation of acid 431 in moderate yield, but the subsequent condensation with the Weinreb amine gave the Weinreb amide 410 only in a very low yield. With the EDCI protocol 410 yields were even lower.

As 426 could not be converted into the desired Weinreb amide in a satisfactory manner, the Evans auxiliary was exchanged for the Crimmins-auxiliary, ${ }^{12}$ which has been reported to be cleaved more readily. ${ }^{[241]}$ While the corresponding aldol reaction gave the desired product 433 in good yield, the selectivity of the reaction, unfortunately, was poor and the conversion of 433 into Weinreb amide 410 did not work any better than for 426 (Scheme 108).

Scheme 108: a) 432, TiCl_{4} (2 eq.), DIPEA (1 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 80 \%$, dr $2.5: 1$; b) $\mathrm{Me}(\mathrm{OMe}) \mathrm{NH} \cdot \mathrm{HCl}$, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \%$.

The Evans auxiliary derivate $\mathbf{4 2 5}$ assumes a conformation that minimizes its dipole moment when exposed to Bu_{2} BOTf and DIPEA (Figure 49, A). ${ }^{[242]}$ Considerations of dipole moment are less relevant for the Crimmins auxiliary derivate 432, which bears a poorly polarizable thiocarbonyl group on the ring. ${ }^{[241]}$ Nevertheless, the deprotonated acyl residue of $\mathbf{4 3 2}$ will orientate in the same way as in \mathbf{A}, as long as an excess (2.5 eq .) of the amine base is used relative to the Lewis acid TiCl_{4}. The second equivalent of the base will coordinate to the metal center, thus preventing coordination of the thiocarbonyl to the metal. The facial selectivity is reversed if the Lewis acid is used in excess (2 eq.) relative to the amine base. ${ }^{[241]}$ The enolate now prefers to chelate with the metal via the thiocarbonyl group (Figure 49, B) which leads to the formation of the non-Evans syn aldol adduct. [241]

A

B

Figure 49: Evans enolate (A) and Crimmins enolate (B).

[^11]Regardless of not having found a reaction sequence that would allow access to the Weinreb amide $\mathbf{4 1 0}$ in reasonable yield, sufficient amounts of this intermediate were obtained to carry out the subsequent steps (Scheme 109). At first, the terminal double bond was to be transformed into the corresponding aldehyde, which was expected to trigger the formation of lactol 434. Not unexpected, attempts to achieve this transformation by ozonolysis failed; instead, methyl ketone $\mathbf{4 1 2}$ was produced by preferential cleavage of the internal double bond (Scheme 109).

Scheme 109: a) $\mathrm{O}_{3}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}$, no product formed.

Fortunately, the use of OsO_{4} and NaIO_{4} yielded the desired lactol 434 in 84% yield (Scheme 110). Subsequent oxidation of $\mathbf{4 3 4}$ with PDC furnished lactone $\mathbf{4 3 5}$ very efficiently. Reduction of the Weinreb amide to the aldehyde $\mathbf{4 0 8}$ in the presence of the lactone moiety was first attempted by treatment of $\mathbf{4 0 8}$ with LAH, but this only led to decomposition. ${ }^{[243]}$ DIBAL-H reduction resulted in the formation of three products, lactol aldehyde 436, lactol Weinreb amide 434, and diol aldehyde 437 (Scheme 110), thus, indicating that Weinreb amide 435 could not be reduced selectively.

Scheme 110: a) $\mathrm{OsO}_{4}, 2,6$-lutidine, 1,4-dioxane, $\mathrm{H}_{2} \mathrm{O}$, then $\mathrm{NaIO}_{4}, 84 \%$; b) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$;
c) LAH, $\mathrm{Et}_{2} \mathrm{O},-45^{\circ} \mathrm{C}$, decomposition; d) DIBAL-H, THF, $-78^{\circ} \mathrm{C}$, side products formed only.

Based on this finding the strategy had to be adjusted slightly. The idea was to install the aldehyde prior to the formation of the lactone ring, in order to circumvent the selectivity issue in the reduction step. Therefore, the auxiliary was reductively cleaved to provide primary alcohol $\mathbf{4 3 8}$ in 73% yield. However, attempted oxidation of $\mathbf{4 3 8}$ either with PDC or DMP ${ }^{[117]}$ afforded exclusively the α, β-unsaturated ketone 440 (Scheme 111).

 but

Scheme 111: a) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 73 \%$; b) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, only enone formed; c) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, only enone formed.

The allylic secondary hydroxy group thus proved to be more reactive than the (non-allylic) primary one. It was reasoned that the use of a sterically hindered oxidizing agent like TEMPO ${ }^{[145],[244]}$ would shift the preference for oxidation to the primary hydroxy site. This was true to a large extent and allowed the preparation of aldehyde 439 in 73% yield (Scheme 112). In order to transform 439 into lactol 436, dichloromethane saturated with ozone was slowly added to $\mathbf{4 3 9}$ at low temperature, but as for $\mathbf{4 1 0}$ the internal double bond was cleaved more readily than the terminal one. Unfortunately, the route via the diol, obtained with $\mathrm{OsO}_{4} / \mathrm{NaIO}_{4}$, led to the exclusive formation of the undesired lactol 441 , which could not be reacted further to the targeted lactol 436.

Scheme 112: a) BAIB, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 73 \%$; b) $\mathrm{O}_{3}, \mathrm{SMe}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, cleavage of internal double bond; c) $\mathrm{OsO}_{4}, 2,6$-lutidine, $\mathrm{NaIO}_{4}, 1,4$-dioxane $/ \mathrm{H}_{2} \mathrm{O}$, lactol 441 formed; d) $\mathrm{Pb}(\mathrm{OAc})_{4}$, toluene, no product formed.

To overcome the problem that the diol formed from the terminal double bond reacts instantly with the aldehyde by forming the undesired lactol 441 , the primary hydroxy group in $\mathbf{4 3 8}$ was protected and oxidization to the aldehyde was postponed to a later stage. A TMS or a TES protection group were chosen, since these would allow the deprotection and oxidation to the aldehyde in one pot. TMS protection was found to be difficult because of the enhanced reactivity of the allylic secondary hydroxy group. Treatment of the diol $\mathbf{4 3 8}$ with TMSOTf gave the desired mono-protected isomer 442 in only 25% yield, with substantial amounts of the doubly protected product being formed. Neither the use of the less reactive TMSCl nor the addition of a sterically hindered base like 2,6-lutidine gave a reasonable yield of $\mathbf{4 4 2}$. In contrast, TES protection to $\mathbf{4 4 3}$ proceeded in acceptable yield (Table 13).

Table 13: TMS or TES protection of primary alcohol 438.

Entry	Reagent	Base	Temperature	Yield
1	TMSOTf	NEt_{3}	$-78^{\circ} \mathrm{C}$	25%
2	TMSOTf	$2,6-$ lutidine	$-78^{\circ} \mathrm{C}$	30%
3	TMSCl	imidazole	rt	35%
4	TESCl	imidazole	$-25^{\circ} \mathrm{C}$	56%

The terminal double bond was then cleaved with $\mathrm{OsO}_{4} / \mathrm{NaIO}_{4}$ which provided lactol 444 in a moderate yield of 54%, due to limited stability of the TES group under the dihydroxylation/diol cleavage conditions. Oxidation of the lactol 444 to the lactone 445 worked only in poor yield, in spite of the fact that the reaction looked very clean on TLC (Scheme 113). Probably some of the lactone 445 was lost during purification on silica gel. Likewise the subsequent one-pot deprotection/oxidation sequence gave aldehyde $\mathbf{4 0 8}$ only in 33% yield.

Scheme 113: a) TESCl , imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 56 \%$; b) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 1,4$-dioxane $/ \mathrm{H}_{2} \mathrm{O}, 54 \%$; c) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 33 \%$; d) $(\mathrm{COCl})_{2}, \mathrm{DMSO}_{2} \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 33 \%$.

In principle, attempts could have been made to optimize this first generation route. However, given the fact that the sequence at this point had included several low yielding steps and in light of indications for the limited stability of lactone $\mathbf{4 4 5}$ on silica gel, a change in the overall strategy appeared to be more sensible and promising.

2.3.2 RCM at C7/C8; Late Stage Introduction of Lactone

The revised retrosynthesis of michaolide E (4) (Scheme 114) was based on the same disconnections as the original approach except that the lactone ring would be introduced at the very end of the synthesis. The ring was also planned to be closed by a RCM between C7/C8 and the epoxide was to be introduced by a directed epoxidation. The diene 447 was envisioned to be obtained by nucleophilic addition of metalated allylic bromide $\mathbf{4 0 9}$ to aldehyde 448, which should be accessible from thioester 449 . Thioester 449 would be derived from methyl aldehyde 411 via Evans syn-aldol addition, while aldehyde 411 would be obtained from methyl ketone $\mathbf{4 1 2}$ by means of HWE olefination. It should be noted that if the nucleophilic addition of the transmetalated allylic bromide $\mathbf{4 0 9}$ would not work reasonably, a methallyl addition to the corresponding aldehyde 448 was planned, which would entail that the ring is closed between $\mathrm{C} 11 / \mathrm{C} 12$ rather than $\mathrm{C} 7 / \mathrm{C} 8$.

Evans syn-aldol

Scheme 114: Revised retrosynthetic analysis of Michaolide E (4).

As a consequence, the nucleophilic addition that would establish the chiral center at the future C14 of michaolide E (4) would not be carried out in the presence of the lactone ring (Figure 50 , left: A), but rather on an acyclic substrate 448. To achieve this, the secondary hydroxy group in β-position to the aldehyde functionality was to be protected with an ether protecting group that would allow β-chelation, in order to direct the nucleophile attack (Figure 50, right: B). The group of choice was the benzyl group, which was assumed to be cleavable in the presence of the internal double bonds at a later stage of the synthesis either by catalytic hydrogenation ${ }^{[245]}$ or by means of a Lewis acid like BCl_{3}.

408

A

B

Figure 50: Proposed preferred conformations of 408 and 448 and trajectoris for nucleophilic attack on the aldehyde group. A: The aldehyde group orientates in a way as to minimize the overall dipole moment of A. B: β-Chelation model.

2.3.2.1 Forward Synthesis

In order to implement the small changes in synthetic strategy the acyl oxazolidinone $\mathbf{2 4 0}$ was synthesized starting from 1,4-butanediol (236) as described in section 1.5.2.3. ${ }^{[141],[246]}$

\qquad

Scheme 115: a) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{TBAI}, \mathrm{THF}, 96 \%$; b) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, 93%; c) EtOCOCl, NEt_{3}, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, then $\mathbf{4 2 4}, n$-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 85 \%$.

Addition of aldehyde $\mathbf{4 1 1}$ to $\mathbf{2 4 0}$ in the presence of Bu2BOTf and DIPEA gave the syn-aldol product $\mathbf{4 5 0}$ in good yield as the only isomer (Scheme 116). Attempts to protect the newly formed secondary hydroxy group as a benzyl ether under basic conditions only gave the α-benzylated amide 452 in low yield (20\%). In addition, TLC showed about a 1:1 mixture of starting material and a new product of the same mass shortly after the addition of sodium hydride. Most likely, this finding reflects epimerization of the starting material, due to preferential enolate formation rather than deprotonation of the secondary hydroxy group.

Scheme 116: a) 240, $\mathrm{Bu}_{2} \mathrm{BOTf}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 76 \%$, only isomer; b) NaH , TBAI, BnBr , THF, no product formed.

Thus, benzyl protection was attempted under acidic conditions with benzyl trichloroacetimidate (Bn imidate) (Scheme 117), ${ }^{[247]}$ which gave 451 in 59% yield. In order for the reaction of be successful, the triflic acid had to be added slowly over a period of hours to avoid elimination.

Scheme 117: a) Benzyl 2,2,2-trichloroacetimidate, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 59 \%$.

Surprisingly, and in contrast to imide 410 (Section 2.3.1.1, Scheme 111), the subsequent reductive removal of the auxiliary in $\mathbf{4 5 2}$ was very sluggish, requiring up to 50 eq. of LiBH_{4} to get full conversion and affording alcohol $\mathbf{4 5 3}$ only in moderate yield (40\%). One possible reason for the different behavior of $\mathbf{4 5 2}$ compared to similar substrates investigated in this thesis (Scheme 118) could have been that the carbonyl group of the oxazolidinone ring was reduced first and that the reduction of the resulting amide to the desired alcohol required a large excess of LiBH_{4}. If so, lithium aluminium hydride was considered as the better reducing agent for the conversion of $\mathbf{4 5 1}$ into $\mathbf{4 5 3}$, but the reaction only led to decomposition.

Scheme 118: a) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 40 \%$.

Due to the fact that the auxiliary could only be removed in low yields, there was a need for an alternative route to produce aldehyde 448 and a plausible approach was the use of thioester 455 as an intermediate (Scheme 119). After some optimization the installation of the thioester moiety could be accomplished in reasonable yield (70\%), but the subsequent benzylation of the secondary hydroxy group suffered from low yields (Table 14).

Scheme 119: a) n - $\mathrm{BuLi}, \mathrm{BnSH}, \mathrm{AlMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}, 70 \%$; b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 75 \%$.

Table 14: Benzyl protection of secondary alcohol 455.

Entry	Reagent	Activation	Solvent	Temperature	Yield
1	Bn trichloroacetimidate	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (slowly)	cyclohexane	rt	30%
2	BnBr	$\mathrm{Ag}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$50^{\circ} \mathrm{C}$	no conversion
3	Bn trichloroacetimidate	$\mathrm{Sc}(\mathrm{OTf})_{3}$	toluene	rt to reflux	no conversion

The best results were obtained by using benzyl 2,2,2-trichloroacetimidate and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, but even if the addition of the acid was carried out over a very long time period, the elimination could not be surpressed completely. The reduction of thioester 456 to the aldehyde 448 proceeded in good yield (75\%) and without any detectable overreduction to the alcohol.

However, because of the low yield in the benzylation step an alternative route to aldehyde 448 was investigated that involved direct reduction of amide $\mathbf{4 5 0}$ to diol $\mathbf{4 5 7}$ and its subsequent protection as a benzylidene acetal 458. The latter was obtained in 53% overall yield from aldol product 450 (Scheme 120).

Scheme 120: a) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF},{ }^{\circ} \mathrm{C}, 75 \%$; b) Benzaldehyde dimethyl acetal, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 70%.

The subsequent conversion of benzylidine acetal $\mathbf{4 5 8}$ into the desired free primary alcohol 453 required substantial optimization. Only the use of DIBAL-H allowed the isolation of the desired primary alcohol 453, while all other conditions applied either led to decomposition or did not yield any conversion (Table 15). Without addition of a Lewis acid, DIBAL-H did not give full conversion, even if a large excess was used and the reaction was carried out at higher temperatures. When DIBAL-H was added to a solution of AlMe_{3} and 458, full conversion was observed, but the reaction suffered from low yield, as the Lewis acid caused partial cleavage of the primary TBS-ether. If the order of addition was reversed and AlMe_{3} was slowly added to a solution of DIBAL-H and the benzylidene acetal $\mathbf{4 5 8}$ at $-20^{\circ} \mathrm{C}$, the yield could be improved to 60% (Table 15, Entry 9). Varying the temperature in either direction resulted in lower yields. In light of these findings, a weaker Lewis acid was sought that would not result in loss of the TBS-group, but was still capable of activating the benzylidene acetal towards reductive opening. Fortunately, $\mathrm{Me}_{2} \mathrm{AlCl}$ met these criteria and its use resulted in an increased yield of 76% when added at $-20^{\circ} \mathrm{C}$. To the best of your knowledge, these conditions have not been reported in literature to date.

Table 15: Reductive opening of benzylidene acetal 458.

Entry	Reagent	Lewis acid	Solvent	Temperature	Yield
1	DIBAL-H		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$ to rt	20\%
2	$\mathrm{Et}_{3} \mathrm{SiH}$	PhBCl_{2}	DCE	$-78{ }^{\circ} \mathrm{C}$	decomposition
3	BH_{3}	$\mathrm{Bu}_{2} \mathrm{BOTf}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-15 to $0^{\circ} \mathrm{C}$	decomposition
4	BH_{3}	ZnEt_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$	decomposition
5	LAH	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{Et}_{2} \mathrm{O}$	$0^{\circ} \mathrm{C}$	decomposition
6	Red-Al		$\mathrm{Et}_{2} \mathrm{O}$	$0{ }^{\circ} \mathrm{C}$ to reflux	no reaction
7	$\mathrm{NaBH}_{3} \mathrm{CN}$	TiCl_{4}	MeCN	$0{ }^{\circ} \mathrm{C}$	primary TBS group lost
8	DIBAL-H	AlMe_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$	30\%
9	DIBAL-H	AlMe_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20 to $0^{\circ} \mathrm{C}$	60\%
10	DIBAL-H	$\mathrm{Me}_{2} \mathrm{AlCl}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-20^{\circ} \mathrm{C}$	76\%

Having successfully implemented the reductive opening of the benzylidene acetal 458, the resulting primary alcohol was oxidized to the aldehyde 448 using TEMPO (Scheme 121). Swern conditions only led to decomposition. With aldehyde 448 in hand, the stage was then set for the nucleophilic addition reaction.

Scheme 121: a) DIBAL-H, $\mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 76 \%$; b) BAIB, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 85 \%$.

The allylic bromide 462, which was to be transformed into a nucleophile by halogen-metal exchange, was synthesized according to the literature (Scheme 122). ${ }^{[248]}$

Scheme 122: a) CuI, THF, $-30^{\circ} \mathrm{C}, 81 \%$; b) MsCl, LiBr, THF, 85%.

Initial attempts at the addition of metalated 409 to aldehyde 448 were carried out in the noncoordinating solvent dichloromethane and with $\mathrm{Me}_{2} \mathrm{AlCl}$ as the Lewis acid, in order to enable β-chelation. Unfortunately, the desired product was not observed under these conditions (Scheme 123).

Scheme 123: a) $\mathrm{Me}_{2} \mathrm{AlCl}, \mathbf{4 0 9}, \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathbf{4 4 8}$, no product formed.

In the following, the reactivity of aldehyde 448 towards nucleophiles was elaborated by the addition of methallyl magnesium chloride. This reaction produced two diastereomers 463 and 464 in a $2: 1$ ratio in 88% total yield; it could be assumed at the time that the Felkin-Ahn product $\mathbf{4 6 4}$ was favoured (Scheme 124). ${ }^{13}$

Scheme 124: a) methallyl magnesium bromide, THF, $-78^{\circ} \mathrm{C}, 88 \%$, dr 1:2.

[^12]In order to promote a β-chelation path over Felkin-Ahn control, the reaction had to be run in a non-coordinating solvent and a suitable combination of a methallyl nucleophile as well as a Lewis acid had to be found. The use of methallyl trimethyl silane as a nucleophile was investigated. In the presence of MeAlCl_{2} the desired secondary alcohol 463 was obtained in 40% yield as a 9:1 diastereomeric mixture in favour of the diastereomer that had been the minor product in the addition of methallylmagnesium bromide, thus, indicating that the pathway via the β-chelation was operative dominantly (Scheme 125).

Scheme 125: a) MeAlCl_{2}, methallyl trimethyl silane, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 40 \%$, dr 9:1.

Although the yield of the reaction was moderate, this outcome was very encouraging and this approach was considered to be worth further investigation. A successful implementation of the methallyl addition would mean that the ring would be closed between $\mathrm{C} 11 / \mathrm{C} 12$ rather than at C7/C8.
In the above reaction, according to MS analysis and NMR data oxetane $\mathbf{4 6 5}$ was formed as a major side product in 50% yield, which surprisingly could not be reacted further to the product (Scheme 126).

Scheme 126: a) HCl, EtOAc; b) citric acid, MeOH; c) TBAF, THF.

In the absence of a Lewis acid the side product 465 was formed exclusively; hence, it was reasoned that a stronger Lewis acid might favour the formation of the desired product 463 over the side product 465 (Table 4). With TiCl_{4} the secondary alcohol 463 was obtained in 37% yield and with $15: 1$ selectivity. The low yield was a consequence of TiCl_{4}-mediated TBS ether cleavage in the starting material 448 as well as the product $\mathbf{4 6 3}$. When SnCl_{4} was used as the Lewis acid, $\mathbf{4 6 3}$ was produced with excellent selectivity of $20: 1$, but only in 37% yield, if the methallyl trimethyl silane was added 10 min after the Lewis acid. When the time difference between the additions was shortened to 2 min , the yield could be improved to 76% (Table 16). No such improvement was observed with TiCl_{4}. For SnCl_{4} a further reduction of the time delay or even a reversal of the order of addition resulted in lower yield, because
increasing amounts of the side product 465 were formed. The diastereomeric ratio could be increased up to $25: 1$ by lowering the temperature to $-90^{\circ} \mathrm{C}$.

Table 16: Methallyl addition to aldehyde 448.

Entry	Reagent	Lewis acid	Solvent	Temperature	Yield, dr
1	methallyl magnesium chloride	$\mathrm{Me}_{2} \mathrm{AlCl}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$	$88 \%, 1: 2$
2	methallyl trimethyl silane	$\mathrm{Me}_{2} \mathrm{AlCl}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$	$40 \%, 9: 1$
3	methallyl trimethyl silane	TiCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0{ }^{\circ} \mathrm{C}$	$45 \%, 15: 1$
4	methallyl trimethyl silane	$\mathrm{SnCl}_{4}(10 \mathrm{~min})$.	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$	$37 \%, 20: 1$
5	methallyl trimethyl silane	$\mathrm{SnCl}_{4}(5 \mathrm{~min})$.	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-90^{\circ} \mathrm{C}$	$70 \%, 25: 1$
	methallyl trimethyl silane	$\mathrm{SnCl}_{4}(2 \mathrm{~min})$.	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-90^{\circ} \mathrm{C}$	$76 \%, 25: 1$

In order to prove that the addition had indeed delivered the desired isomer 463, Mosher ester analysis was carried out on the addition product (Figure 51). ${ }^{[249]}$ The analysis gave a coherent picture with all values of dsR being larger than 0 for R_{1} and being smaller than 0 for R_{2}. These data clearly confirm the desired stereochemical outcome of the methallyl addition.

Figure 51: Mosher ester analysis of the secondary alcohol 463.

With the successful implementation of the selective methallyl addition to aldehyde 448 the synthetic strategy was modified slightly, such that the projected site of ring closure was shifted from $\mathrm{C} 7 / \mathrm{C} 8$ to $\mathrm{C} 11 / \mathrm{C} 12$. As a consequence, the nucleophilic addition of metalated allylic bromide 409 to aldehyde 448, a reaction which was considered to be difficult to establish in any case, was not further pursued.

The modified strategy is depicted in Scheme 127 and following the successful assembly of alcohol $\mathbf{4 6 3}$ was to involve the protection of the newly formed hydroxy group as an acetate, a reaction that proceeded in good yield. It was then planned to cleave the primary TBS-ether and then elaborate the molecule into the required diene $\mathbf{4 6 7}$ for the ring closing metathesis (Scheme 127).

Scheme 127: a) NEt 3 , DMAP, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{MeCN}, 94 \%$.

Somewhat unexpectedly, treatment of $\mathbf{4 6 6}$ either with CSA or TBAF led to the double deprotected product 469 (Scheme 128). However, instead of exploring further conditions, it was felt that the diol 469 could be processed further by directed epoxidation, with the introduction of the epoxide moiety then simply preceding ring closure. Thus, asymmetric Sharpless epoxidation of $\mathbf{4 6 9}$ yielded a single isomer of an epoxide in good yield and assuming this material to be epoxide $\mathbf{4 7 0}$ it was reacted with PDC to produce the desired aldehyde 471. Very surprisingly, however, this oxidation did not give aldehyde 471 (Scheme 128) but yielded exclusively hemiacetal 473 (Scheme 129).

Scheme 128: a) TBAF, THF, $0^{\circ} \mathrm{C}, 86 \%$; b) (+)-DET, $\mathrm{Ti}(i-\mathrm{OPr})_{4}, t-\mathrm{BuOOH}, 4 \mathrm{~A}-\mathrm{mol}$. sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-20^{\circ} \mathrm{C}$; c) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

This surprising outcome can be explained by a Payne rearrangement, ${ }^{[250]}$ which must have occurred during the Sharpless epoxidation. The acidic work-up carried out after the actual epoxidation reaction triggered the Payne rearrangement, thus resulting in the formation of epoxide 472; the same product was obtained upon oxidation under unbuffered m-CPBA conditions (Scheme 129). PDC oxidation of the primary alcohol then led to the formation of the hemiacetal 473.

Scheme 129: a) (+)-DET, $\mathrm{Ti}(\text { (i-OPr) })_{4}, t$ - $\mathrm{BuOOH}, 4 \mathrm{~A}$-mol. sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-2{ }^{\circ} \mathrm{C}, 73 \%$; c) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \%$.

Fortunately, the two epoxides 470 and 472 exhibit different R_{f} values so that the rearrangement could be followed on TLC. When a neutral work-up was applied the rearrangement did not take place and the desired epoxide $\mathbf{4 7 0}$ could be isolated in 65% yield as a single isomer. DMP oxidation ${ }^{[117]}$ of the primary alcohol afforded aldehyde 471 in 60% yield. Using the TEMPO protocol ${ }^{[145]}$ resulted in the same yield. If the DMP oxidation was not buffered with NaHCO_{3}, the major product observed was again hemiacetal 473. Attempts to protect the secondary hydroxy in aldehyde $\mathbf{4 7 1}$ as an acetate only resulted in the formation of α, β-unsaturated aldehyde 475, which was obtained in 40% yield (Scheme 130). The acetate was chosen as a protecting group as it is present in the natural product.

Scheme 130: a) (+)-DET, $\mathrm{Ti}(\mathrm{i}-\mathrm{OPr})_{4}$, t-BuOOH, 4A-mol. sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$ b) $\mathrm{DMP}, \mathrm{NaHCO}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 60%; or BAIB, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 60 \%$; c) NEt_{3}, DMAP, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{MeCN}$, no product isolated.

In light of the problem faced with the acetate protection the original silyl-based protecting group strategy was revised, but with the primary hydroxy group protected as a TES ether, which was expected to be cleavable selectively in the presence of the TBS protected allylic secondary alcohol (Scheme 131). ${ }^{[251]}$ This would also allow the installation of the epoxide moiety at a later stage of the synthesis, as it had been planned originally. The synthesis of the corresponding intermediate $\mathbf{4 8 1}$ paralleled that of the bis-TBS ether $\mathbf{4 5 7}$ (Section 2.3.2.1), but installation of the benzylidene acetal moiety $\mathbf{4 8 2}$ in the presence of $5 \mathrm{~mol} \%$ CSA was then accompanied by loss of the TES group and the free primary alcohol 482 was isolated in 70% yield (Scheme 131).

Scheme 131: a) TESCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$; b) $\mathrm{NaH}, \mathbf{4 2 1}$, THF, then $\mathbf{4 7 6}, 45^{\circ} \mathrm{C}, 92 \%, E / Z 25: 1$; c) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 92 \%$; d) $\mathrm{MnO}_{2}, \mathrm{Et}_{2} \mathrm{O}, 90 \%$; e) 240, Bu ${ }_{2} \mathrm{BOTf}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, 76%, dr $10: 1$; f) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 70 \%$; g) benzaldehyde dimethyl acetal, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 70%.

In response to this unexpected development, elaboration of the left hand side of the molecule was pursued before reduction of the acetal moiety. Thus, the primary hydroxy group in $\mathbf{4 8 2}$ was oxidized to the aldehyde 486. Subsequent reaction with Wittig salt 485, which was synthesized from bromide $\mathbf{4 8 3}$ in a two step sequence, gave trisubstituted olefin 487 in $\mathbf{3 5 \%}$ yield as a 1.5:1 mixture of separable double bond isomers (Scheme 132). No effort was made to assign the individual isomers.

Scheme 132: a) $\mathrm{PPh}_{3}, \mathrm{MeCN}, 81 \%$; b) n-BuLi, MeI, THF, $0{ }^{\circ} \mathrm{C}, 96 \%$; c) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$ to rt, 84%; d) $\mathbf{4 8 5}, n-\mathrm{BuLi}$, THF, $-78^{\circ} \mathrm{C}$, then $\mathbf{4 8 6}, 35 \%, 68 \%$ brsm, $1.5: 1$ mixture of double bond isomers.

Since some starting material was reisolated from the Wittig reaction, the yield could likely be improved by using an excess of the ylid derived from 485, but the low E / Z selectivity, which was not entirely unexpected, ${ }^{[252]}$ was deemed to be rather difficult to be altered. As an alternative to Wittig chemistry, the trisubstituted trans double bond was then attempted to be installed by means of cross metathesis (Scheme 133). The disubstituted olefin 491 was synthesized starting from δ-valerolactone 488 by treatment with methyllithium and subsequent Wittig olefination. ${ }^{[253]}$ The monosubstituted olefin 492 derived from aldehyde 491 via another Wittig olefination is thought to be more reactive and the homodimer will be formed initially. ${ }^{[254]}$ By addition of an excess (5 eq.) of the less reactive and synthetically undemanding disubstituted olefin 491 the homodimer was partially cleaved and the formation of the desired heterodimer 493 was observed. ${ }^{[254]}$

Scheme 133: a) MeLi, $\mathrm{Et}_{2} \mathrm{O}, 30 \%$; b) methyl triphenyl phosphonium bromide, $n-\mathrm{BuLi}, \mathrm{THF}, 82 \%$; c) methyl triphenyl phosphonium bromide, LiHMDS, THF, 88%; d) 491, Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40{ }^{\circ} \mathrm{C}$, $40 \%, 1.4: 1$ mixture of double bond isomers.

The product 493 was isolated in a yield of 40% together with 35% of the homodimer derived form 492. This implies that the yield could be improved, but unfortunately the reaction suffered from a low selectivity (1.4:1 mixture of double bond isomers), and it was not clear how this problem could possibly be overcome. Again, no effort was made to assign the individual isomers.

At this stage all material was consumed and the question arose whether yet another protecting group strategy should be explored as part of the resynthesis of the intermediates. After carefully weighting different options, a strategy that would continue to rely on silyl ether protecting groups was deemed as most promising, although more stable silyl ether variant than those previously employed were considered necessary. More important perhaps was the need to find an efficient way to install the trisubstituted trans double bond at $\mathrm{C} 7 / \mathrm{C} 8$ in order to get access to the diene, which would allow the exploration of the crucial macrocyclization by RCM.

2.3.3 RCM at C11/C12, Johnson-Claisen Rearrangement

Based on the experimental findings discussed in the preceding sections, the previous retrosyntheses (Section 2.3.1, Scheme 101 and Section 2.3.2, Scheme 114) were modified such that most of the main disconnections would remain the same, except for one major change. In light of the fact that the Sakurai addition of trimethyl methallyl silane to aldehyde 448 (Section 2.3.2.1, Table 15) had proven to allow the installation of the C 14 chiral center (michaolide numbering) with excellent selectivity, the projected site for RCM-based macrocyclization was shifted to $\mathrm{C} 11 / \mathrm{C} 12$ (Scheme 134). In this modified retrosynthesis, the epoxide was to be introduced at the very end by directed epoxidation and the lactone would be also closed in a late stage of the synthesis. As mentioned above, the ring was planned to be closed between C11/C12 by means of RCM and the chiral center was to be installed by addition of trimethyl methallyl silane to aldehyde 496. The establishment of the trisubstituted trans double bond at C7/C8 in 496 was envisioned to be accomplished either by a Pdmediated cross coupling reaction or by a Johnson-Claisen rearrangement of an appropriate precursor. Evans syn-aldol addition to aldehyde 498, which in turn is derived from methyl ketone 499 via HWE olefination, would serve to install the two adjacent stereocenters in 497.

Scheme 134: Retrosynthesis.

2.3.3.1 Forward Synthesis

In order to increase protecting group stability, this third generation approach relied on the use of a TBDPS-group for protection of the secondary hydroxy group on C5 and a TBS-group for
the primary one on C 7 . This approach was expected to allow uncomplicated selective deprotection of the primary OH -group without loss of the protecting group from the C 5 alcohol. ${ }^{[251]}$ In addition, both protecting groups should be stable enough to be carried through the synthesis to the point of deliberate cleavage. Starting from α-hydroxy lactone 417 (Section 2.3.1.1, Scheme 103) imide $\mathbf{5 0 4}$ was prepared by the same sequence of reaction as for $\mathbf{4 5 0}$ (Scheme 135). For every single step yields were at least equal to or even higher than those obtained for the corresponding transformations in the synthesis of 450. Noteworthy, the reaction of aldehyde $\mathbf{4 9 8}$ with imide $\mathbf{2 4 0}$ gave the desired syn-aldol product 504 in 90% yield as the only isomer, which was superior to all of the analogous aldol reactions previously described.

Scheme 135: a) TBDPSCl, imidazole, DMF, 96%; b) MeLi, THF, $-78{ }^{\circ} \mathrm{C}, 94 \%$; c) TBSCl, imidazole, DMF, 96%; d) 421, NaH, THF, $0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}, 94 \%$, only isomer; e) DIBAL- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 96 \%$; f) $\mathrm{MnO}_{2}, \mathrm{Et}_{2} \mathrm{O}, 91 \%$; g) 240, $\mathrm{Bu}_{2} \mathrm{BOTf}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 90 \%$, single isomer.

After successful installation of the benzylidene acetal moiety in $\mathbf{5 0 6}$ (Scheme 136), the focus was shifted towards the construction of the trisubstituted trans double bond at C7/C8 prior to reduction of the acetal and further elaboration of the right-hand side of this fragment. Acidic removal of the TBS-group gave primary alcohol $\mathbf{5 0 7}$, which was oxidized with DMP; the resulting aldehyde 497 then underwent Corey-Fuchs homologation ${ }^{[255]}$ to afford alkyne 509 in good yield (88 \%).

Scheme 136: a) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, 76 \%$; b) benzaldehyde dimethyl acetal, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%$; c) PPTS, $\mathrm{EtOH}, 70 \%$; d) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; e) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 79 \%$; f) n-BuLi, MeI, THF, $-78^{\circ} \mathrm{C}, 88 \%$.

Attempted hydrozirconation-iodination of $\mathbf{5 0 9}$ using the Schwartz reagent ${ }^{[256]}$ did not yield the desired vinyl iodide 510 in a satisfactory way (Scheme 137). When carried out in THF, the vinyl iodide $\mathbf{5 1 0}$ could be isolated in 40% along with an unkown inseparable impurity ${ }^{14}$ (no formation of the regioisomer $\mathbf{5 1 1}$ was observed), while the use of benzene as the solvent gave an inseparable $1 / 1$ mixture of regioisomers $\mathbf{5 1 0}$ and $\mathbf{5 1 1}$ in 80% yield. It has been reported that isomerization to the more stable, less sterically crowded alkenylzirconium species may be effected in the presence of an excess of Schwartz reagent at elevated temperatures. ${ }^{[257],[258]}$ However, neither varying the equivalents of the reagents employed nor conducting the reaction at different temperatures led to any improvement. The significantly different outcome of the reaction depending on the solvent employed is remarkable, although the reason for this remains unclear. On the other hand, the formation of the undesired vinyl iodide 511 in benzene is not a surprise, since α-unbranched alkynes often suffer from low regioselectivity. ${ }^{[259]}$

a) 40%
a) 0%
b) 40%
b) 40%

Scheme 137: a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, then $\mathrm{I}_{2}, \mathrm{THF}, 50^{\circ} \mathrm{C}, 40 \%$; b) $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, then I_{2}, benzene, $50^{\circ} \mathrm{C}, 40 \%$.

[^13]Because of the deficiencies of the hydrozirconation-iodination reaction, it was tried to alkylate the dibromide $\mathbf{5 1 4}$ sequentially by two subsequent Pd-mediated couplings. ${ }^{[260],[261]}$ This viability of this strategy was explored with the simpler model substrate 514, as none of the aldehyde $\mathbf{4 9 7}$ was available anymore at this point (Scheme 138). The synthesis of $\mathbf{5 1 4}$ made use of the previously described intermediate $\mathbf{5 0 2}$. Selective deprotection of the primary alcohol afforded 512, which was subsequently oxidized under DMP conditions. The resulting aldehyde $\mathbf{5 1 3}$ then underwent Corey-Fuchs homologation in 95% yield to give dibromide 514.

Scheme 138: a) AcOH, THF, $\mathrm{H}_{2} \mathrm{O}, 96 \%$; b) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$; c) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 95%; d) 514, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, ethanedibromide, THF, $\mathbf{5 1 5}, \mathrm{ZnCl}_{2}, \mathrm{Mg}, \mathrm{I}_{2}, \mathrm{THF}$, no product formed.

The attempted Negishi type couplings ${ }^{[262]}$ of $\mathbf{5 1 4}$ with $\mathbf{5 1 5}$ did not afford any off the desired product $\mathbf{5 1 6}$ as most of the starting material remained unaffected.

In light of the difficulties met in the iodination of alkyne $\mathbf{5 0 9}$ as well as in the model reaction for a Negishi type coupling, the cross-coupling approach for the installation of the C7/C8 double bond was abandoned (at least temporarily at that time). Instead, the Johnson-Claisen rearrangement ${ }^{[263]}$ was explored as an alternative, an approach that has already included in the synthetic planning for the third generation approach towards michaolide E (4) (Section 2.3.3, Scheme 134)

Because workable amounts of aldehyde $\mathbf{5 1 3}$ were still available when the decision was made to explore this approach also experimentally, the Johnson-Claisen rearrangement was attempted on a model substrate derived from this aldehyde 513. Thus, $\mathbf{5 1 3}$ was converted into secondary alcohol 517 (Scheme 139), which upon heating with triethyl orthoacetate in the presence of catalytic amounts of propionic acid underwent smooth Johnson-Claisen rearrangement to deliver ester $\mathbf{5 1 8}$ in $\mathbf{9 2 \%}$ yield

Scheme 139: a) Isopropenyl magnesium bromide, THF, $-78{ }^{\circ} \mathrm{C}, 91 \% ; \mathrm{MeC}(\mathrm{OEt})_{3}$, propionic acid, toluene, reflux, 92%.

The successful rearrangement of the model substrate led us follow this strategy for the incorporation of the C7/C8 double bond in michaolide E (4). Thus, ester 502 (Scheme 140) was elaborated into aldehyde 497 as described in Scheme 135; the latter then underwent Grignard addition with isopropenyl magnesium bromide to give a mixture of secondary alcohols 519 in an acceptable yield of 76%. Treatment of $\mathbf{5 1 9}$ with triethyl orthoacetate in the presence of catalytic amounts of propionic acid triggered the Johnson-Claisen rearrangement to give ester $\mathbf{5 2 0}$ in 70% yield. Subsequent reduction of the ester moiety with one equivalent of DIBAL-H afforded aldehyde $\mathbf{5 2 1}$ in 81% yield. Little overreduction to the alcohol was observed, which could be isolated and oxidized to the aldehyde $\mathbf{5 2 1}$ under Swern conditions in 95% yield. Aldehyde $\mathbf{5 2 1}$ then underwent Wittig homologation to furnish terminal olefin 522.

Scheme 140: a) Isopropenyl magnesium bromide, $\mathrm{THF}, 76 \%$; b) $\mathrm{MeC}(\mathrm{OEt})_{3}$, propionic acid, toluene, reflux, 70%; c) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 81 \%$; d) Methyl triphenylphosphonium bromide, LiHMDS, THF, 75\%.

With one of the double bonds required for RCM-based ring-closure installed, what needed to be done next was the proper elaboration of the other end of the molecule. The reductive opening of the benzylidene acetal $\mathbf{5 2 2}$ under the conditions that had been established earlier
yielded primary alcohol 523 in an excellent yield of 92%, which reflects the enhanced stability of the silyl ether protecting groups over those employed in the earlier approaches. Subsequent TEMPO oxidation gave aldehyde 495 (Scheme 141).

Scheme 141: a) DIBAL-H, $\mathrm{AlMe}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$; b) BAIB, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 85 \%$; c) methallyl trimethyl silane, $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-90{ }^{\circ} \mathrm{C}, 92 \%$, dr 25:1.

Sakurai addition of methallyl trimethyl silane to aldehyde 495 yielded secondary alcohol 496 in very good yield (92%) if the silane was added 4 minutes after the Lewis acid SnCl_{4}. If the silane was added 2 or 6 minutes after the SnCl_{4}, the yield dropped to $50-60 \%$. This narrow time range could be an issue if the reaction was to be carried out on larger scale, but did not pose a problem in the context of this PhD work. Having the diene 496 in hand, the stage was now set for the ring-closing metathesis. Several conditions were tested (Table 17).

Table 17: Different conditions tested for the RCM of diene 496.

Entry	Catalyst	Solvent	Temperature	Yield
1	Grubbs II	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	little product formation
2	Grubbs II	benzene	$65^{\circ} \mathrm{C}$	52%
3	Hoveyda-Grubbs II	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	little product formation
4	Hoveyda-Grubbs II	benzene	$65^{\circ} \mathrm{C}$	60%
5	Piers (525)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	little product formation
6	Bromo-pyridine (526)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	little product formation

In Figure 52 the not very often used RCM catalysts Piers and bromo-pyridine are shown.

Piers (525)

bromo-pyridine (526)

Figure 52: Piers catalyst (left) and bromo-pyridine catalyst (right).

Very much to our delight, the ring-closed product 524 was isolated in 52% yield using Grubbs $2^{\text {nd }}$ or in 60% yield using Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst, both in benzene at $65^{\circ} \mathrm{C}$. All four conditions investigated led to product formation (Table 16), although with clearly different efficiencies. In refluxing dichloromethane the conversion was very slow in comparison to benzene at $65^{\circ} \mathrm{C}$. Only one isomer was observed and according to NOESY and ROESY experiments the desired trans double bond was formed selectively (Figure 53). The absence of an NOE between the olefinic proton attached to C11 at the newly formed double bond and the three protons of the methyl group on C12 together with the detection of an NOE between the methyl protons protons and the two protons at C10 strongly suggest that the E-isomer was formed.

Figure 53: NOE signals of ring-closed product 524.

With the feasibility of the RCM-mediated ring-closure demonstrated, we then turned our attention to the removal of the various protecting groups; in particular, the cleavage of the two benzyl ethers in the presence of the three internal trisubstituted double bonds was felt to pose a major challenge. In a first step, the TBDPS group in $\mathbf{5 2 4}$ could be removed with an excess of TAS-F in MeCN in good yield (70\%), while other fluoride sources did not yield any (TBAF) or only traces of product (HF-pyridine) (Scheme 142).

Scheme 142: a) TAS-F, $\mathrm{MeCN}, 80^{\circ} \mathrm{C}, 70 \%$.

The more difficult task to selectively remove the two benzyl groups was initially approached by treatment of $\mathbf{5 2 4}$ with DDQ , which only led to decomposition (Table 18). The use of BCl_{3} did allow the isolation of a mono-deprotected product in yields of $30-40 \%$ but the addition of further equivalents of the Lewis acid in order to remove the benzyl group on the secondary hydroxy group triggered elimination across the C2-C3 bond. Other Lewis acids investigated were TMSI, which only led to decomposition, and TiCl_{4}, which only induced elimination at both, C2 and C5. Catalytic hydrogenation over palladium on activated charcoal, in addition to cleavage of the benzyl ethers, reduced at least one of the double bonds, if carried out in EtOAc or MeOH. In THF the reduction of the double bond was slower so that at least the primary benzyl ether could be cleaved selectively in yields varying between 40-55\%. ${ }^{[251]}$ But any attempt to cleave the secondary benzyl ether by addition of more catalyst or by applying higher hydrogen pressure predominately resulted in the reduction of the double bonds.

Table 18: Different conditions investigated for the removal of benzyl groups from $\mathbf{5 2 4}$.

Entry	Reagent	Solvent	Temperature	Reaction
1	DDQ	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	decomposition
2	BCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	mono-deprotection, elimination at C 2
3	TMSI^{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0{ }^{\circ} \mathrm{C}$	decomposition
4	TiCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$	double elimination at C 2 and C 5
5	$\mathrm{Raney}^{2} \mathrm{Ni}$	EtOH^{2}	$70^{\circ} \mathrm{C}$	no conversion
6	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$	EtOAc	rt	mono-deprotection, double bond gets reduced
7	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$	MeOH	rt	mono-deprotection, double bond gets reduced
8	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$	THF	rt	mono-deprotection selective, then one double bond gets reduced

This outcome strongly suggested that a mode of protection other than a benzyl ether would be necessary, at least for the secondary allylic hydroxy group at C2. Since the Sakurai addition requires a coordinating protecting group, the best choice at this point seemed to be the PMB group. In order for both ether protecting groups to be removable in one step, both the secondary and the primary hydroxy group were to be protected as PMB ethers and deprotection was expected to be feasible with DDQ .

In order to implement this modified strategy, acylated Evans-auxiliary $\mathbf{5 3 2}$ bearing a PMB group on the primary hydroxy function was required. This compound was synthesized from 1,4-butandiol (236) as described in the literature (Scheme 143). ${ }^{[264]}$

532
Scheme 143: a) PMBCl, NaH, TBAI, THF, 96%; b) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, 93%; c) EtOCOCl, NEt_{3}, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 42 \%$.

Rather surprisingly, $\mathbf{5 3 2}$ behaved very differently from its benzyl-protected variant $\mathbf{2 4 0}$ in the aldol addition with aldehyde 498. The formation of the enolate had to be carried out at $-78{ }^{\circ} \mathrm{C}$ rather than at room temperature as it was the case for $\mathbf{2 4 0}$, at higher temperatures the enolate derived from 532 was not stable as indicated by TLC analysis and no addition took place. If the aldehyde was added at $-78^{\circ} \mathrm{C}$, the aldol product $\mathbf{5 3 3}$ was isolated in 40% yield with a low dr of $2: 1$. Lowering the temperature to $-100^{\circ} \mathrm{C}$ improved the selectivity up to $4: 1$, but left the yield unchanged at 40% (Scheme 144).

Scheme 144: a) 532, $\mathrm{Bu}_{2} \mathrm{BOTf}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, then 532, $-100^{\circ} \mathrm{C}, 40 \%$, dr 4:1.

As a consequence of the inacceptable yield of the aldol addition, it was decided to maintain the benzyl protection of the primary hydroxy group and use the PMB group only for the protection of the secondary alcohol function. As discussed above (Table 19), there was some indication that the primary benzyl ether could be cleaved in the presence of the double bonds either with BCl_{3} or by catalytic hydrogenation over Pd on activated charcoal in THF.

The issue to clarify then was whether the Sakurai addition with a PMB ether as coordinating group would still give reasonable selectivity. In the synthesis the addition was planned to be carried out with the aldehyde $\mathbf{4 9 5}$ having the terminal olefin already in place (Section 2.3.3, Scheme 134) but it was felt that the feasibility of the addition could also be investigated on the synthetically easier accessible intermediate 536 that was synthesized in three steps from diol 505 (Scheme 145).
The latter was first converted into its PMB acetal; subsequent reductive opening of the acetal moiety gave primary alcohol $\mathbf{5 3 5}$, which was oxidized to the aldehyde $\mathbf{5 3 6}$ using TEMPO. Aldehyde 536 then underwent Sakurai addition in a reasonable yield of 60%, but more importantly, with a dr of $12: 1$ the addition was still selective.

Scheme 145: a) PMB aldehyde dimethyl acetal, CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; b) DIBAL- $\mathrm{H}, \mathrm{Me}_{2} \mathrm{AlCl}_{1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-20{ }^{\circ} \mathrm{C}, 90 \%$; c) BAIB, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 89 \%$; d) methallyl trimethyl silane, $\mathrm{SnCl}_{4},-90{ }^{\circ} \mathrm{C}$, 60%, dr 12:1.

In light of this success, the synthetic strategy involving combined $\mathrm{Bn} / \mathrm{PMB}$ protection was further pursued. Attempts to remove the TBS-group in 534, on route to the intended installation of the terminal double turned out to be troublesome (Scheme 146). While TBAF, buffered TBAF, TAS-F and HF-pyridine only led to decomposition, treatment of $\mathbf{5 3 4}$ with FeCl_{3} only formed the elimination product 539. Bronsted acids like CSA, PTSA, PPTS and AcOH exclusively afforded the fully deprotected product 540 independent of the amounts of acid used.

fully deprotected product:

Scheme 146: Deprotection of TBS-ether 534.

This problem could be overcome, however, by changing the order of steps, i. e. by removing the TBS-group from the diol $\mathbf{5 0 5}$ and converting the resulting free triol 541 into acetal 542, which leaves the number of steps unchanged (Scheme 147).

Scheme 147: a) AcOH, THF, $\mathrm{H}_{2} \mathrm{O}, 81 \%$; b) PMB aldehyde dimethyl acetal, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$.

The free primary alcohol $\mathbf{5 4 2}$ was then oxidized using TEMPO in 91% yield - DMP gave a slightly lower yield (71\%) - and the resulting aldehyde 543 was reacted with isopropenylmagnesium bromide to give a mixture of secondary alcohols 544 (Scheme 148). Treatment of this mixture with triethyl orthoacetate then induced the Johnson-Claisen rearrangement to afford ester 545. Reduction of the ester moiety with one equivalent of DIBAL-H gave aldehyde 546 in 83% yield. Again, there was some overreduction to the alcohol; this compound could be isolated and reoxidized to the aldehyde 546 in a subsequent step. Installation of the terminal double bond under Wittig conditions proceeded in an excellent yield of 87% using n - BuLi as a base. The use of LiHMDS only afforded 70% of the olefin 547. Opening of the PMB acetal moiety in $\mathbf{5 4 7}$ under the conditions that had been established for the corresponding benzyl acetal 458 (Section 2.3.2.1, Scheme 121) gave primary alcohol 548 almost quantitavely (Scheme 148).

Scheme 148: a) BAIB, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 91 \%$; b) Isopropenyl magnesium bromide, THF -78 ${ }^{\circ} \mathrm{C}, 93 \%$; c) $\mathrm{MeC}(\mathrm{OEt})_{3}$, propionic acid, toluene, reflux, 85%; d) DIBAL- $\mathrm{H}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 83 \%$; e) Methyl triphenylphosphonium iodide, n-BuLi, THF, 87%; f) DIBAL- $\mathrm{H}, \mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, 99\%.

Subsequent DMP oxidation of the primary hydroxy group gave aldehyde $\mathbf{5 4 9}$ in good yield (82%; TEMPO turned out to be less efficient). Gratifyingly, the following Sakurai addition showed the same efficiency as had been observed with aldehyde 536 (Scheme 145) and gave secondary alcohol 550 in very good yield (84\%) and with a reasonable dr of 10:1 (Scheme 149). Note that the benzyl protected aldehyde 495 (Scheme 141) had given a similar yield but an enhanced dr of 25:1.

Scheme 149: a) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$; b) Methallyl trimethyl silane, $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-90^{\circ} \mathrm{C}, 84 \%, 96 \%$ brsm, dr 10:1.

Secondary alcohol $\mathbf{5 5 0}$ was esterified with both enantiomers of the Mosher acid. The analysis of the resulting esters gave a very coherent picture and confirmed the desired stereochemical outcome of the addition (Figure 54).

$\mathrm{dS}-\mathrm{dR}=\mathrm{d}_{\mathrm{SR}}$
for R_{1} : $d_{S R}$ larger 0
for R_{2} : $d_{S R}$ smaller 0

Figure 54: Mosher ester analysis of secondary alcohol $5 \mathbf{5 0}$.

At this point the stage was again set for the critical RCM reaction. Very gratifyingly, the treatment of $\mathbf{5 5 0}$ with the $2^{\text {nd }}$ generation Hoveyda-Grubbs catalyst in benzene at $65^{\circ} \mathrm{C}$ gave the macrocycle in 68% yield as a single isomer (Scheme 150).

Scheme 150: a) Hoveyda-Grubbs II, benzene, $65^{\circ} \mathrm{C}, 68 \%, 78 \%$ brsm, single isomer.

After TBDPS-protection of the secondary hydroxy group in $\mathbf{5 5 1}$ with TBDPSOTf (TBDPSCl was inefficient), the removal of the benzyl group was attempted under different conditions (Scheme 151, Table 19). Unfortunately, BCl_{3} only resulted in the formation of the elimination product 554, while catalytic hydrogenation under different conditions gave no conversion.

Scheme 151: a) TBDPSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 94 \%$.

Table 19: Different conditions exploited to remove the benzyl group on 552.

| Entry | Reagent | Solvent | Temperature/
 pressure | Reaction |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | BCl_{3} | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $0{ }^{\circ} \mathrm{C}$ | Elimination |
| 2 | $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ | THF | rt , balloon | no reaction |
| 3 | $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ | THF | $\mathrm{rt}, 4$ bar | One double bond gets reduced,
 little formation of product |
| 4 | $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ | EtOAc | $65^{\circ} \mathrm{C}, 4 \mathrm{bar}$ | no reaction |

Based on the hypothesis that the bulky silyl ether group on C14 could sterically hinder the palladium (or other agents for that matter) to approach the benzyl group, the deprotection was attempted on the unprotected secondary alcohol 551 (Table 20).

Table 20: Different conditions exploited to remove the benzyl group on $\mathbf{5 5 1}$.

Entry	Reagent	Solvent	Temperature/ pressure	Reaction
1	BCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	elimination
2	$\mathrm{BF}_{3}, \mathrm{EtSH}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	no reaction
3	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$	THF	rt, balloon	52%

With this substrate the removal of the benzyl group from $\mathbf{5 5 1}$ was possible by catalytic hydrogenation in THF, which gave the desired product 555 in 52% yield (Table 19), thus indicating that the sterically less hindered substrate $\mathbf{5 5 1}$ was indeed more susceptible towards hydrogenation. However, on a larger scale ($20-30 \mathrm{mg}$) this result was not reproducible and the yield dropped to 35% at the expense of the reduction of a double bond. This observation may be explained by the lower uptake of hydrogen on a larger scale, which results in prolonged reaction times and thus more extensive exposure of the three double bonds present in both the starting material as well as the product to the reducing conditions.

In light of the troublesome removal of the benzyl group, the decision was taken to investigate cleavage of the PMB-ether prior to benzyl removal, hoping that the benzyl ether would then become sterically more accessible (Table 20). However, treatment of $\mathbf{5 5 2}$ with DDQ resulted
in the isolation of the desired secondary alcohol 556 in no more than 10% yield. Varying the solvent composition or addition of di-tert-butyl pyridine did not improve the yield. Lewis acids like $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ or SnCl_{2} remained ineffective. The best yield was obtained by treatment of $\mathbf{5 5 2}$ with CAN, which gave $\mathbf{5 5 6}$ in 27% yield (Table 21, Entry 9), but this was still far from acceptable.

Table 21: Different conditions exploited to remove the PMB group on 552.

Entry	Reagent	Solvent	Temperature	Yield
1	DDQ	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$	$0{ }^{\circ} \mathrm{C}$	10%
2	DDQ	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate buffer $9: 1$	rt	8%
3	DDQ	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate buffer $4: 1$	rt	decomposition
4	DDQ, ditertbutyl py	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	decomposition
5	DDQ, diterbutyl py	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 8: 1$	rt	10%
6	$\mathrm{MgBr}_{2} \mathrm{OEt}_{2}, \mathrm{SMe}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	decomposition
7	$\mathrm{SnCl}_{2}, \mathrm{PhOCh}_{2} \mathrm{COCl}^{2}$	${\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}}^{8}$	Trisparabromophenyl	MeCN^{2}
9	CAN	rt	elimination	

At this stage the synthetic strategy was at a critical juncture. Neither of the two ether protecting group could be removed in a satisfactory way and there was significant doubt whether the synthesis could be finished in a reasonable way. In order to explore all conceivable options, it was decided to attempt removal of the PMB-group on the linear substrate 550, i. e. prior to the RCM (Table 21). While treatment of $\mathbf{5 5 0}$ with SnCl_{4} resulted in decomposition and DDQ under standard conditions delivered the diol 557 only in 10% yield, the use of 2 eq. CAN in a mixture of MeCN and water ($9: 1$) increased the yield up to 52% (Table 22, Entry 7). Changing the composition of the solvent mixture did not lead to any improvement, but if the deprotection was carried out with 2.7 eq. of CAN and the reaction was stopped prior to full conversion, 557 was obtained in 56% yield. Exposure of the reisolated starting material to the same conditions then provided 557 in an overall yield of 74%. If the reaction was quenched at the point of full conversion, the yield was 56%.

Table 22: Different conditions exploited to remove the PMB group on the linear substrate $\mathbf{5 5 0}$.

Entry	Catalyst	Solvent	Temperature	Yield
1	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0{ }^{\circ} \mathrm{C}$	decomposition
2	$\mathrm{DDQ} / \mathrm{FeCl}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 9: 1$	rt	decomposition
3	$\mathrm{DDQ} / \mathrm{NaHCO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 9: 1$	rt	10%
4	DDQ	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate buffer 4:1	rt	elimination
5	DDQ	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate buffer 6:1	rt	elimination
6	DDQ	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ phosphate buffer 9:1	rt	10%
7	$\mathrm{CAN} \mathrm{(2.0} \mathrm{eq)}$	${\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 9: 1}^{8}$	$\mathrm{CAN} \mathrm{(2.0} \mathrm{eq)}$	$\mathrm{MeNO}_{2} / \mathrm{H} 2 \mathrm{O} 9: 1$
9	$\mathrm{CAN} \mathrm{(2.0} \mathrm{eq)}$	${\mathrm{acetone} / \mathrm{H}_{2} \mathrm{O} 9: 1}^{\mathrm{Crt}}$	52%	
10	$\mathrm{CAN} \mathrm{(2.7} \mathrm{eq)}$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} 9: 1$	rt	no reaction

With this result in hand, it was investigated whether these conditions might allow cleavage of the PMB-group at the stage of the macrocycle in the absence of the bulky TBDPS-group (Scheme 152). The silyl ether protecting group was removed from $\mathbf{5 5 1}$ with TAS-F to give allylic alcohol 558. Subsequent oxidative cleavage of the PMB-group with CAN, however, was far less efficient than on the linear substrate 550. In addition, DDQ led to exclusive formation of the enone, a side reaction which is known to occur with allylic alcohols. ${ }^{[265],[266],[267]}$ This outcome definitely made it clear that the PMB-group had to be removed prior to ring-closure.

551

558

559

Scheme 152: a) TAS-F, $\mathrm{MeCN}, 8{ }^{\circ} \mathrm{C}, 94 \%$; b) CAN, MeCN/ $\mathrm{H}_{2} \mathrm{O} 9: 1,10 \%$; c) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ buffer pH 7 , no product, only enone formed.

In contrast to diene 550, with a single free hydroxy group, diene 557, quite surprisingly, did not undergo cyclization in the presence of Grubbs $2^{\text {nd }}$ or Hoveyda-Grubbs $2^{\text {nd }}$ generation
catalysts, either in benzene or in dichloromethane (Scheme 153). The free hydroxy groups were thus TMS protected and the fully protected diene was subjected to RCM conditions (Scheme 154).

Scheme 153: a) Grubbs II, benzene, $65^{\circ} \mathrm{C}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; b) Hoveyda-Grubbs II, benzene, $65^{\circ} \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.

To our delight, bis-silyl ether $\mathbf{5 6 1}$ could be converted into macrocycle $\mathbf{5 6 2}$ as a single isomer in a remarkable yield of 94% with the $2^{\text {nd }}$ generation Hoveyda-Grubbs catalyst (Scheme 154). To the best of our knowledge, there is no report in the literature of a similarly efficient RCMmediated ring-closure to a trisubstituted olefin product. Only a very weak NOE between the methyl group and the olefinic proton at newly formed double bond was observed, which strongly indicated that the ring had closed with a trans geometry of this double bond. Subsequent treatment of macrocycle $\mathbf{5 6 2}$ with citric acid yielded diol $\mathbf{5 6 3}$ in $\mathbf{9 2 \%}$ yield.

Scheme 154: a) CAN, MeCN/ $\mathrm{H}_{2} \mathrm{O} 9: 1,74 \%$ overall; b) TMSOTf, 2,6 -lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ}, 94 \%$; c) Hoveyda-Grubbs II, benzene, $65^{\circ} \mathrm{C}, 94 \%$, single isomer; d) Citric acid, MeOH, 92%; e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, hexanol, 76\%.

At this stage the benzyl group had to be removed so that the lactonization could be induced by oxidation of the resulting primary alcohol $\mathbf{4 9 4}$. Out of the many different conditions that had
been evaluated on similar substrates previously (Table 20) catalytic hydrogenation in THF afforded triol 494 in 53% yield on small scale (5 mg), but as previously observed for other cases, the reaction suffered from poor reproducibility even on a slightly larger scale (20 mg). It was found that hexanol was the solvent of choice for the hydrogenation, yielding triol 494 in 76%, but even with this solvent the reaction could not be scaled up. As a consequence, and even though the chances of success were considered to be low, Birch conditions were also investigated for the removal of the benzyl group. Very much to our surprise, the reduction afforded the triol 494 in 83% yield (Scheme 155). Experimentally, liquid ammonia was condensed in a flask and a solution of benzyl ether $\mathbf{5 6 3}$ in THF was added at $-78^{\circ} \mathrm{C}$. Very small pieces of sodium were then added cautiously to the solution and the reaction was quenched immediately after the mixture had turned blue. If the reaction mixture was stirred longer, one double bond was also reduced. With this obstacle left behind, the next question to be answered was whether the triol $\mathbf{4 9 4}$ would form the desired lactone $\mathbf{5 6 4}$ upon oxidation of the primary hydroxy group. It was assumed that the allylic hydroxy group on C 2 would be more nucleophilic than the one on C14, thereby leading to the formation of the targeted lactol, which would then be further oxidized to the lactone $\mathbf{5 6 4}$, but this outcome was by no means certain. Initial attempts at oxidation of $\mathbf{4 9 4}$ involved treatment with TPAP, which led to the formation of enone as the only observable product. To avoid this reaction path, a sterically more demanding reagent was explored and TEMPO oxidation did indeed induce the formation lactone 564 in an excellent yield of 75% (via the corresponding lactol) (Scheme 155).

Scheme 155: a) $\mathrm{Na}, \mathrm{NH}_{3}$, THF, $-78{ }^{\circ} \mathrm{C}, 83 \%$; b) BAIB, TEMPO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 75 \%$; c) TAS-F, $\mathrm{MeCN}, 80^{\circ} \mathrm{C}, 77 \%$; d) $\mathrm{VO}(\mathrm{acac})_{2}, t$-BuOOH, benzene, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 52 \%$, single isomer; e) NEt_{3}, DMAP, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{MeCN}, 84 \%$.

The chemical shift of the allylic proton at C 2 strongly indicated that lactonization had taken place through the allylic hydroxy group. While a shift of 5.30 ppm is in fact expected for such a proton, it would be too far downfield for an allylic alcohol (Figure 55).

Figure 55: Comparison of the two possible lactone variants.

Removal of the TBDPS-group was achieved by treatment of $\mathbf{5 6 4}$ with TAS-F in acceptable yield. This was followed by directed epoxidation of $\mathbf{5 6 5}$ with $\mathrm{VO}(\mathrm{acac})_{2}$, which gave epoxide 566 in 52% as a single isomer (see, however, below). A substantial amount (30\%) of a diepoxide was also isolated, which arises from additional epoxidation of the double bond of one of two homo-allylic alcohol system.

Attempts to surpress the formation of the di-epoxide side product by changing the solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, toluene) or lowering the temperature (to between $-78{ }^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$) were not successful. As only limited amounts of $\mathbf{5 6 5}$ were left at this stage, it was decided to convert all of this material into epoxide $\mathbf{5 6 6}$ following the above procedure, rather than to evaluate alternative epoxidation conditions, such as the use of m-CPBA or Sharpless asymmetric epoxidation. Acetylation of mono-epoxide 566 with $\mathrm{Ac}_{2} \mathrm{O}$ gave diacetate 567 in high yield (84\%) (Scheme 155). The (seemingly) final question to be addressed in the synthesis of michaolide E (4) was the selective methenylation of 567α to the lactone carbonyl in the presence of two acetate esters. When $\mathbf{5 6 7}$ was exposed to LiHMDS at $-78^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ and quenching with $\mathrm{D}_{2} \mathrm{O}$, deuterium was exclusively incorporated at the desired position in the lactone ring. This demonstrated that the two acyl groups would not interfere with the methenylation. Indeed, when the lithium enolate of $\mathbf{5 6 7}$ was reacted with Eschenmoser's salt at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was then allowed to reach $0{ }^{\circ} \mathrm{C}$ (Scheme 156), the presumably final product 4 could already be observed by TLC without addition of MeI (which is commonly employed to affect the elimination of trimethylamine after addition of the reagent to an enolate). However, based on MS analysis the reaction mixture still contained quantities of the initially formed tertiary amine; thus, after extractive
work-up, the residue was taken up in MeOH and treated with MeI. The seemingly final product $\mathbf{4}$ could be isolated in 40% yield.

Scheme 156: a) LiHMDS, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C},-78^{\circ} \mathrm{C}$, then Eschenmoser's salt, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, MeI, $\mathrm{MeOH}, 40 \%$.

Unfortunately, comparison of the NMR-data of 5 with the data published for michaolide E (4) in the context of the original isolation work ${ }^{[159]}$ revealed significant differences for a number of chemical shift values but also for some coupling constants (Table 23). Based on the spectroscopic data it is clear that synthetic 5 and natural michaolide E (4) have different structures. Whether this is due to the fact that the structure of the natural product was misassigned or whether 5 has not the proposed and expected structure remains to be determined. In order to convey a sense for the solidity of the stereochemical assignments for the various stereocenters in $\mathbf{5}$, all chiral transformations from the reaction sequence shall be analyzed at the end of this section.

Table 23: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data (chemical shifts) of 5 and michaolide E (4). Recorded in CDCl_{3} (assigned by COSY, HSQC, and HMBC experiments). J values (in Hz) in parentheses.

Protons	5	Michaolide E (4)
1	3.23 ddd (1.6, 1.6, 1.5)	3.30 m
2	4.56 dd (8.2, 1.5)	4.99 m
3	3.05 d (8.2)	2.87 d (3.6)
5	$5.20 \mathrm{dd}(5.0,4.0)$	$4.46 \mathrm{dd}(3.9,11.4)$
6	2.42 m	2.18 m
	2.42 m	2.45 m
7	5.08 m	4.97 m
9	2.01 m	2.00 m
	2.29 m	2.27 m
10	2.19 m	2.12 m
	2.28 m	2.30 m
11	5.11 m	5.25 m
13	2.21 m	2.26 m
	2.43 m	2.43 m
14	5.10 m	5.26 m
16	5.80 d (1.6)	5.73 d (2.7)
	6.42 d (1.6)	6.40 d (2.1)
18	1.42 s	1.45 s
19	1.60 s	1.67 s
20	1.69 s	1.76 s
5-OAc	2.03 s	2.11 s
14-OAc	1.99 s	2.01 s

Another question to be addressed is the presence of a similar set of signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of about 17% in 5 (Figure 56). It could not be removed by HPLC purification, which led to the idea that it might be a conformer. However, this set of signals remains unchanged upon heating indicating that is not originating from a conformer but maybe rather from an isomer.

What kind of isomer it is and how it could appear in the last reaction remains unclear up to now.

Figure 56 : ${ }^{1} \mathrm{H}$-NMR spectrum of 5.

2.3.4 Assessment of Asymmetric Transformations

In the course of the synthesis of $\mathbf{4}$ three different methods were explored to install the trisubstituted trans double bonds between $\mathrm{C} 3 / \mathrm{C} 4, \mathrm{C} 7 / \mathrm{C} 8$, and $\mathrm{C} 11 / 12$, respectively. First, $\alpha, \beta-$ unsaturated ester $\mathbf{5 0 2}$ was synthesized by means of an HWE olefination reaction (Scheme 157). The ester $\mathbf{5 0 2}$ formed as a single isomer and although HWE olefinations with ketones exhibit poor to modest E-selectivity only, the situation with methyl ketones looks different. Methyl ketones undergo HWE olefinations with reasonable to excellent Eselectivity. ${ }^{[268],[269],[270],[63]}$ In addition, no NOE between the olefinic proton and the protons at the methyl group, which is attached to the double bond, was observed, so that the exclusive formation of the Z isomer can safely be excluded.

Scheme 157: a) 421, $\mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to rt, 94%.

The second trisubstituted trans double bond was installed making use of a Johnson-Claisen rearrangement giving olefin $\mathbf{5 4 5}$ as a single isomer (Scheme 158).

Scheme 158: $\mathrm{MeC}(\mathrm{OEt})_{3}$, propionic acid, toluene, reflux, 85%.

As depicted in Figure 57 the rearrangement proceeds via two possible six-membered chairlike transition states, both of which give the same trans olefin, because of the fact that R_{L} prefers to occupy an equatorial position. ${ }^{[263]}$ Many examples of this kind of rearrangement are reported in literature to be E-selective.

Figure 57: Johnson-Claisen rearrangement giving trans olefin.

The third trisubstitued trans olefin was formed by RCM and this reaction has been extensively discussed in previous sections. The NOE's observed for the different cyclization products strongly indicated the formation of the trans-isomer in all cases (Scheme 159), although a cis configuration of the double bond cannot be rigorously excluded based on the absence of an NOE.

Scheme 159: a) Hoveyda-Grubbs II, benzene, $65^{\circ} \mathrm{C}, 94 \%$, only isomer.

To install the two adjacent stereocenters at C6 and C7 which exhibit a syn relationsship, an asymmetric aldol addition was carried between aldehyde 498 and imide 240. The aldol product 504 was formed as a single isomer (Scheme 160). This type of reaction is very well established and exclusive formation of the undesired syn or even an anti diastereomer is more than unlikely. ${ }^{[242]}$

Scheme 160: a) 240, $\mathrm{Bu}_{2} \mathrm{OTf}$, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 90 \%$, only isomer.

A selective Sakurai addition to aldehyde 549 was exploited to arrive at the secondary alcohol 550 (Scheme 161). The very coherent picture provided by the Mosher ester analysis
of the addition product (Section 2.3.3.1, Figure 54) confirmed the desired stereochemical outcome of this reaction.

Scheme 161: a) methallyl trimethyl silane, $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-90^{\circ} \mathrm{C}, 84 \%, 96 \%$ brsm, dr 10:1.

The last asymmetric transformation in the synthesis was a directed epoxidation of allylic alcohol 565 mediated by $\mathrm{VO}(\mathrm{acac})_{2}$ to provide a single isomer of an epoxide $\mathbf{5 6 6}$ (Scheme 162). ${ }^{[271]}$

Scheme 162: a) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}$, benzene, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 52 \%$, single isomer.

According to Sharpless the predicted dihedral angle $\mathrm{O}-\mathrm{C}-\mathrm{C}=\mathrm{C}$ for the V -coordinated intermediate in the $t-\mathrm{BuOOH} / \mathrm{VO}(\mathrm{acac})_{2}$-catalyzed epoxidation of allylic alcohols is approximately $50{ }^{\circ} .{ }^{[272]}$ In Figure 58 the two transition states leading to the threo (desired) and to the erythro (undesired) product are depicted.

Figure 58: a) $\mathrm{VO}(\mathrm{acac})_{2}, t-\mathrm{BuOOH}$; Transition states leading to threo and erythro product, respectively.

For cyclic allylic alcohols bearing a methyl group attached to a double bond α to the hydroxy moiety (Figure 58, motif present in 565) the stereochemical outcome of the epoxidation is hard to predict. For linear substrates, depending on the most stable conformation either the threo (Figure 58, oxygen is positioned beneath the double bond) or the erythro (Figure 58, oxygen positioned above the double bond) product is favoured. Due to the fact that in cyclic substrates as the allylic alcohol $\mathbf{5 6 5}$ the rotational freedom around the $\mathrm{C}-\mathrm{C}$ bond considered in
the Newman projection is likely to be restricted, dihydral angles other than $50^{\circ} \mathrm{C}$ might have to be taken into account. Both stereochemical outcomes have been reported for the few related (cyclic) systems found in literature. ${ }^{[273],[274]}$

Comparison of the NMR data summarized in Table 22 (Section 2.3.3.1) clearly shows that the coupling constant with largest deviation between 5 and michaolide $E(4)$ is associated with the coupling between the protons at C2 and C3 (Figure 59). While synthetic 5 shows a coupling constant of 8.2 Hz , the coupling constant of natural michaolide E is only 3.6 Hz .

4
Figure 59: The epoxide proton in $\mathbf{5}$ exhibits the largest difference in coupling constant compared to natural michaolide E (4).

In light of this observation the literature was searched thoroughly for structurally related epoxides and their NMR properties. Crassolide (287), a natural product that was isolated together with michaolide E (4) from the soft coral Lobophytum michaelae exhibits the very same structure as 4 apart from an additional acetylated hydroxy group at C9 (Figure 60). Its structure was confirmed by X-ray crystallography and the proton at the epoxide moiety exhibits a coupling constant of 3.6 Hz .

Figure 60: Crassolide (287), the epoxide proton exhibits a coupling constant of 3.6 Hz .

The structure of trans fused cembranolide $\mathbf{5 6 9}$ from Lobophytum cristigalli was determined by X-ray crystallography. ${ }^{[275]}$ In comparison to michaolide E (4) and crassolide (287) the epoxide has the opposite configuration; likewise, the configuration of C14, bearing one of the acetylated hydroxy groups is inverted. The relevant coupling constant is reported as 9.0 Hz , which makes it almost identical with the one observed for synthetic $\mathbf{5}$ (Figure 61).

Figure 61: In trans fused cembranolide (569) the epoxide proton exhibits a coupling constant of 9.0 Hz .

The above analysis in combination with the uncertainties associated with the predicted stereochemical outcome of the directed epoxidation of the cyclic allylic alcohol 567 suggests that the latter transformation delivered the undesired R / S isomer.

2.4 Conclusion and Outlook

In summary, studies on the enantioselective total synthesis of the cembranolide michaolide $\mathrm{E}(4)$ have been undertaken. In the initial part of the synthesis commercially available α-hydroxy lactone 417 was elaborated into aldehyde 549, which underwent selective methallyl addition under β-chelation control (Scheme 162). After a deprotection-protection sequence the pivotal RCM gave all-carbon macrocycle 562 in excellent yield as a single isomer. To the best of our knowledge, this represents the most efficient cyclization to a trisubstituted macrocyclic olefin by means of RCM reported to date. Deprotection of $\mathbf{5 6 2}$ gave triol 494 which upon oxidation formed the lactone 564 regioselectively. Directed epoxidation and final methenylation gave final product 5.

Scheme 163: Studies towards the synthesis of michaolide E (4).

The NMR-data of the final product 5 of our synthesis did not match with the reported data of the isolated natural product. The question whether the structure was misassigned or whether a chiral transformation in the synthetic sequence produced an undesired outcome will be addressed in the near future. Based on the evaluation of relevant literature data for related systems there is reason to believe that the directed epoxidation of the cyclic allylic alcohol 565 produced the undesired R / S epoxide isomer. Thus, in a next step the established reaction sequence from D-malic acid (416) to the cyclic allylic alcohol 565 should be repeated and the epoxidation should be carried with, e. g., m-CPBA or under Sharpless asymmetric epoxidation conditions (Scheme 163). This should provide the epoxide exhibiting the
configuration opposite to that obtained with $\mathrm{VO}(\operatorname{acac})_{2} / t-\mathrm{BuOOH}$. Completion of the synthesis as established would then be expected to provide michaolide E (Scheme 163).

Scheme 163: a) m-CPBA; b) Sharpless epoxidation.

3 References

[1] M. A. Jordan, L. Wilson, Nat. Rev. Cancer 2004, 4, 253-265.
[2] E. Hamel, Med. Res. Rev. 1996, 16, 207-231.
[3] M. A. Jordan, D. Thrower, L. Wilson, Cancer Res. 1991, 51, 2212-2222.
[4] I. S. Johnson, J. G. Armstrong, J. P. Burnett, M. Gorman, Cancer Res. 1963, 23, 1390-\&.
[5] S. B. Horwitz, Trends Pharmacol. Sci. 1992, 13, 134-136.
[6] P. B. Schiff, J. Fant, S. B. Horwitz, Nature 1979, 277, 665-667.
[7] E. K. Rowinsky, Annu. Rev. Med. 1997, 48, 353-374.
[8] E. terHaar, R. J. Kowalski, E. Hamel, C. M. Lin, R. E. Longley, S. P. Gunasekera, H. S. Rosenkranz, B. W. Day, Biochemistry 1996, 35, 243-250.
[9] B. H. Long, J. M. Carboni, A. J. Wasserman, L. A. Cornell, A. M. Casazza, P. R. Jensen, T. Lindel, W. Fenical, C. R. Fairchild, Cancer Res. 1998, 58, 1111-1115.
[10] S. L. Mooberry, G. Tien, A. H. Hernandez, A. Plubrukarn, B. S. Davidson, Cancer Res. 1999, 59, 653-660.
[11] K. A. Hood, L. M. West, B. Rouwe, P. T. Northcote, M. V. Berridge, S. J. Wakefield, J. H. Miller, Cancer Res. 2002, 62, 3356-3360.
[12] J. J. Field, A. J. Singh, A. Kanakkanthara, T. Halafihi, P. T. Northcote, J. H. Miller, J. Med. Chem. 2009, 52, 7328-7332.
[13] D. M. Bollag, P. A. Mcqueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, C. M. Woods, Cancer Res. 1995, 55, 2325-2333.
[14] S. Inoue, J. Struct. Biol. 1997, 118, 87-93.
[15] B. Alberts, in Mol. Biol. Cell, 4th., Garland Science, New York 2002, pp. 983.
[16] L. A. Amos, Org. Biomol. Chem. 2004, 2, 2153-2160.
[17] O. Valiron, N. Caudron, D. Job, Cell. Mol. Life Sci. 2001, 58, 2069-2084.
[18] R. L. Margolis, L. Wilson, Cell 1978, 13, 1-8.
[19] D. Panda, H. P. Miller, L. Wilson, Mol. Biol. Cell 1998, 9, 272a-272a.
[20] S. L. Shaw, R. Kamyar, D. W. Ehrhardt, Science 2003, 300, 1715-1718.
[21] T. Mitchison, M. Kirschner, Nature 1984, 312, 237-242.
[22] M. A. Jordan, R. J. Toso, D. Thrower, L. Wilson, Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 9552-9556.
[23] M. A. Jordan, K. Wendell, S. Gardiner, W. B. Derry, H. Copp, L. Wilson, Cancer Res. 1996, 56, 816-825.
[24] B. Alberts, in Mol Biol Cell, 4th ed., Garland Science, New York, 2002, pp. 983, [1548] p.
[25] www.helmholtz-hzi.de/en/.
[26] K. H. Altmann, G. Höfle, R. Müller, J. Mulzer, K. Prantz, Progress in the Chemistry of Organic Natural Products 2009, Springer-Verlag/Wien.
[27] K. H. Altmann, M. Wartmann, T. O'Reilly, Bba-Rev Cancer 2000, 1470, M79-M91.
[28] R. J. Kowalski, P. Giannakakou, E. Hamel, J. Biol. Chem. 1997, 272, 2534-2541.
[29] A. Wolff, A. Technau, G. Brandner, Int. J. Oncol. 1997, 11, 123-126.
[30] P. Giannakakou, D. L. Sackett, Y. K. Kang, Z. R. Zhan, J. T. M. Buters, T. Fojo, M. S. Poruchynsky, J. Biol. Chem. 1997, 272, 17118-17125.
[31] K. H. Altmann, G. Bold, G. Caravatti, N. End, A. Florsheimer, V. Guagnano, T. O'Reilly, M. Wartmann, Chimia 2000, 54, 612-621.
[32] G. H. Hofle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth, H. Reichenbach, Angewandte Chemie-International Edition in English 1996, 35, 1567-1569.
[33] L. D. Irizarry, T. H. Luu, J. M. McKoy, A. T. Samaras, M. J. Fisher, E. E. Carias, D. W. Raisch, E. A. Calhoun, C. L. Bennett, Community Oncology 2009, 132-134.
[34] i. P. R. Novartis, 2010, http://www.novartis.com/newsroom/mediareleases/en/2010/1419057.shtml.
[35] http://www.cancer.gov/cancertopics/druginfo/fda-ixabepilone.
[36] D. S. Su, D. F. Meng, P. Bertinato, A. Balog, E. J. Sorensen, S. J. Danishefsky, Y. H. Zheng, T. C. Chou, L. F. He, S. B. Horwitz, Angewandte Chemie-International Edition in English 1997, 36, 757-759.
[37] K. C. Nicolaou, N. Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y. He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, Nature 1997, 387, 268-272.
[38] K. C. Nicolaou, F. Sarabia, S. Ninkovic, Z. Yang, Angewandte Chemie-International Edition in English 1997, 36, 525-527.
[39] K. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H. Vallberg, M. R. V. Finlay, Z. Yang, J. Am. Chem. Soc. 1997, 119, 7974-7991.
[40] K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, F. Roschangar, F. Sarabia, S. Ninkovic, Z. Yang, J. I. Trujillo, J. Am. Chem. Soc. 1997, 119, 7960-7973.
[41] D. Schinzer, A. Limberg, A. Bauer, O. M. Bohm, M. Cordes, Angewandte ChemieInternational Edition in English 1997, 36, 523-524.
[42] Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angewandte ChemieInternational Edition in English 1997, 36, 166-168.
[43] B. Neises, W. Steglich, Angewandte Chemie-International Edition in English 1978, 17, 522-524.
[44] J. Sun, S. C. Sinha, Angew Chem Int Edit 2002, 41, 1381-1383.
[45] D. F. Meng, P. Bertinato, A. Balog, D. S. Su, T. Kamenecka, E. J. Sorensen, S. J. Danishefsky, J. Am. Chem. Soc. 1997, 119, 10073-10092.
[46] D. F. Meng, D. S. Su, A. Balog, P. Bertinato, E. J. Sorensen, S. J. Danishefsky, Y. H. Zheng, T. C. Chou, L. F. He, S. B. Horwitz, J. Am. Chem. Soc. 1997, 119, 2733-2734.
[47] K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, Z. Yang, Angewandte ChemieInternational Edition in English 1996, 35, 2399-2401.
[48] A. Furstner, C. Mathes, K. Grela, Chem. Commun. (Cambridge, U. K.) 2001, 10571059.
[49] A. Furstner, C. Mathes, C. W. Lehmann, Chem-Eur J 2001, 7, 5299-5317.
[50] H. J. Martin, M. Drescher, J. Mulzer, Angew Chem Int Edit 2000, 39, 581-+.
[51] H. J. Martin, P. Pojarliev, H. Kahlig, J. Mulzer, Chem-Eur J 2001, 7, 2261-2271.
[52] C. R. Harris, S. J. Danishefsky, J. Org. Chem. 1999, 64, 8434-8456.
[53] R. M. Borzilleri, G. D. Vite, Drugs Future 2002, 27, 1149-1163.
[54] K. H. Altmann, Org. Biomol. Chem. 2004, 2, 2137-2152.
[55] K. H. Altmann, Curr. Pharm. Des. 2005, 11, 1595-1613.
[56] K. H. Altmann, B. Pfeiffer, S. Arseniyadis, B. A. Pratt, K. C. Nicolaou, ChemMedChem 2007, 2, 396-423.
[57] K. C. Nicolaou, D. Vourloumis, T. H. Li, J. Pastor, N. Winssinger, Y. He, S. Ninkovic, F. Sarabia, H. Vallberg, F. Roschangar, N. P. King, M. R. V. Finlay, P. Giannakakou, P. VerdierPinard, E. Hamel, Angewandte Chemie-International Edition in English 1997, 36, 2097-2103.
[58] A. Balog, C. Harris, K. Savin, X. G. Zhang, T. C. Chou, S. J. Danishefsky, Angew Chem Int Edit 1998, 37, 2675-2678.
[59] C. R. Harris, S. D. Kuduk, A. Balog, K. Savin, P. W. Glunz, S. J. Danishefsky, J. Am. Chem. Soc. 1999, 121, 7050-7062.
[60] R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. 1987, 109, 5856-5858.
[61] J. Johnson, S. H. Kim, M. Bifano, J. DiMarco, C. Fairchild, J. Gougoutas, F. Lee, B. Long, J. Tokarski, G. Vite, Org. Lett. 2000, 2, 1537-1540.
[62] K. C. Nicolaou, K. Namoto, J. Li, A. Ritzen, T. Ulven, M. Shoji, D. Zaharevitz, R. Gussio, D. L. Sackett, R. D. Ward, A. Hensler, T. Fojo, P. Giannakakou, ChemBioChem 2001, 2, 69-75.
[63] K. C. Nicolaou, P. K. Sasmal, G. Rassias, M. V. Reddy, K. H. Altmann, M. Wartmann, A. O'Brate, P. Giannakakou, Angew Chem Int Edit 2003, 42, 3515-3520.
[64] K. C. Nicolaou, K. Namoto, A. Ritzen, T. Ulven, M. Shoji, J. Li, G. D'Amico, D. Liotta, C. T. French, M. Wartmann, K. H. Altmann, P. Giannakakou, J. Am. Chem. Soc. 2001, 123, 9313-9323.
[65] K. C. Nicolaou, A. Ritzen, K. Namoto, R. M. Buey, J. F. Diaz, J. M. Andreu, M. Wartmann, K. H. Altmann, A. O'Brate, P. Giannakakou, Tetrahedron 2002, 58, 64136432.
[66] A. B. Charette, H. Juteau, H. Lebel, C. Molinaro, J. Am. Chem. Soc. 1998, 120, 11943-11952.
[67] D. Enders, M. Klatt, Synthesis-Stuttgart 1996, 1403-\&.
[68] K. Takai, K. Kimura, T. Kuroda, T. Hiyama, H. Nozaki, Tetrahedron Lett 1983, 24, 5281-5284.
[69] H. Jin, J. Uenishi, W. J. Christ, Y. Kishi, J. Am. Chem. Soc. 1986, 108, 5644-5646.
[70] A. Rivkin, F. Yoshimura, A. E. Gabarda, T. C. Chou, H. J. Dong, W. P. Tong, S. J. Danishefsky, J. Am. Chem. Soc. 2003, 125, 2899-2901.
[71] A. Rivkin, F. Yoshimura, A. E. Gabarda, Y. S. Cho, T. C. Chou, H. J. Dong, S. J. Danishefsky, J. Am. Chem. Soc. 2004, 126, 10913-10922.
[72] J. D. White, R. G. Carter, K. F. Sundermann, M. Wartmann, J. Am. Chem. Soc. 2001, 123, 5407-5413.
[73] T. Carlomagno, M. J. J. Blommers, J. Meiler, W. Jahnke, T. Schupp, F. Petersen, D. Schinzer, K. H. Altmann, C. Griesinger, Angew Chem Int Edit 2003, 42, 2511-2515.
[74] E. T. Lam, S. Goel, L. J. Schaaf, G. F. Cropp, A. L. Hannah, Y. Q. Zhou, B. McCracken, B. I. Haley, R. G. Johnson, S. Mani, M. A. Villalona-Calero, Cancer Chemother. Pharmacol. 2012, 69, 523-531.
[75] T. C. Chou, H. J. Dong, A. Rivkin, F. Yoshimura, A. E. Gabarda, Y. S. Cho, W. P. Tong, S. J. Danishefsky, Angew Chem Int Edit 2003, 42, 4761-4767.
[76] A. Regueiro-Ren, K. Leavitt, S. H. Kim, G. Hofle, M. Kiffe, J. Z. Gougoutas, J. D. DiMarco, F. Y. F. Lee, C. R. Fairchild, B. H. Long, G. D. Vite, Org. Lett. 2002, 4, 3815-3818.
[77] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett 1979, 20, 3437-3440.
[78] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993.
[79] F. Cachoux, T. Isarno, M. Wartmann, K. H. Altmann, Angew Chem Int Edit 2005, 44, 7469-7473.
[80] D. S. Su, A. Balog, D. F. Meng, P. Bertinato, S. J. Danishefsky, Y. H. Zheng, T. C. Chou, L. F. He, S. B. Horwitz, Angewandte Chemie-International Edition in English 1997, 36, 2093-2096.
[81] U. Klar, B. Buchmann, W. Schwede, W. Skuballa, J. Hoffinann, R. B. Lichtner, Angew Chem Int Edit 2006, 45, 7942-7948.
[82] A. Kolmann, Curr. Opin. Invest. Drugs 2004, 5, 1292-1297.
[83] M. Wartmann, J. Loretan, R. Reuter, M. Hattenberger, M. Muller, J. Vaxelaire, S. M. Maira, A. Flörsheimer, T. O'Reilly, K. C. Nicolaou, K. H. Altmann, in Proceedings of the American Association for Cancer Research,
Vol. 45 Abstract \#5440 2004.
[84] T. C. Chou, X. Zhang, Z. Y. Zhong, Y. Li, L. Feng, S. Eng, D. R. Myles, R. Johnson, N. Wu, Y. I. Yin, R. M. Wilson, S. J. Danishefsky, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13157-13162.
[85] http://www.prous.com/integrity/.
[86] R. M. Borzilleri, X. P. Zheng, R. J. Schmidt, J. A. Johnson, S. H. Kim, J. D. DiMarco, C. R. Fairchild, J. Z. Gougoutas, F. Y. F. Lee, B. H. Long, G. D. Vite, J. Am. Chem. Soc. 2000, 122, 8890-8897.
[87] A. Conlin, M. Fornier, C. Hudis, S. Kar, P. Kirkpatrick, Nat. Rev. Drug Discovery 2007, 6, 953-954.
[88] H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635-646.
[89] S. J. Stachel, C. B. Lee, M. Spassova, M. D. Chappell, W. G. Bornmann, S. J. Danishefsky, T. C. Chou, Y. B. Guan, J. Org. Chem. 2001, 66, 4369-4378.
[90] http://clinicaltrials.gov/ct2/show/NCT00546247.
[91] N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low, C. P. Leamon, Anal. Biochem. 2005, 338, 284-293.
[92] C. P. Leamon, Curr Opin Invest Dr 2008, 9, 1277-1286.
[93] C. A. Ladino, R. V. J. Chari, L. A. Bourret, N. L. Kedersha, V. S. Goldmacher, Int. J. Cancer 1997, 73, 859-864.
[94] I. Sassoon, V. Blanc, in Antiobdy Drug Conjugates, Methods in Molecular Biology, pp. 12013.
[95] E. L. Sievers, P. D. Senter, Annual Review of Medicine, Vol 64 2013, 64, 15-29.
[96] V. S. Goldmacher, T. Chittenden, R. V. J. Chari, Y. V. Kovtun, J. M. Lambert, Annual Reports in Medicinal Chemistry, Vol 47 2012, 47, 349-366.
[97] R. V. J. Chari, Acc. Chem. Res. 2008, 41, 98-107.
[98] K. Murphy, P. Travers, M. Walport, Janeway's immunobiology, 7th ed., Garland Science, New York, 2008.
[99] H. S. Xie, W. A. Blatter, Exp. Opin. on Biol. Therapy 2006, 6, 281-291.
[100] P. F. Bross, J. Beitz, G. Chen, X. H. Chen, E. Duffy, L. Kieffer, S. Roy, R. Sridhara, A. Rahman, G. Williams, R. Pazdur, Clinical Cancer Research 2001, 7, 1490-1496.
[101] J. A. Francisco, C. G. Cerveny, D. L. Meyer, B. J. Mixan, K. Klussman, D. F. Chace, S. X. Rejniak, K. A. Gordon, R. DeBlanc, B. E. Toki, C. L. Law, S. O. Doronina, C. B. Siegall, P. D. Senter, A. F. Wahl, Blood 2003, 102, 1458-1465.
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction= Search.Overview\&DrugName=ADCETRIS\&CFID=17338918\&CFTOKEN=aab5a9103 d054783-289BE33B-EE5A-92D6-B3CCE8E7F06509B7.
[103] I. Niculescu-Duvaz, Curr Opin Mol Ther 2010, 12, 350-360.
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction= Search.DrugDetails.
[105] X. H. Xu, J. N. Zeng, W. Mylott, M. Arnold, J. Waltrip, L. Iacono, T. Mariannino, B. Stouffer, Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2010, 878, 525-537.
[106] S. N. Comezoglu, V. T. Ly, D. L. Zhang, W. G. Humphreys, S. J. Bonacorsi, D. W. Everett, M. B. Cohen, J. Gan, J. H. Beumer, J. H. Beijnen, J. H. M. Schellens, G. Lappin, Drug Metab. Pharmacokinet. 2009, 24, 511-522.
[107] K. C. Nicolaou, B. A. Pratt, S. Arseniyadis, M. Wartmann, A. O'Brate, P. Giannakakou, ChemMedChem 2006, 1, 41-+.
[108] R. M. Hindupur, B. Panicker, M. Valluri, M. A. Avery, Tetrahedron Lett 2001, 42, 7341-7344.
[109] M. Sefkow, M. Kiffe, D. Schummer, G. Hofle, Bioorg. Med. Chem. Lett. 1998, 8, 30253030.
[110] F. Feyen, A. Jantsch, K. Hauenstein, B. Pfeiffer, K. H. Altmann, Tetrahedron 2008, 64, 7920-7928.
[111] W. C. Still, C. Gennari, Tetrahedron Lett 1983, 24, 4405-4408.
[112] A. Seifert, S. Vomund, K. Grohmann, S. Kriening, V. B. Urlacher, S. Laschat, J. Pleiss, ChemBioChem 2009, 10, 853-861.
[113] R. Schiess, J. Gertsch, W. B. Schweizer, K. H. Altmann, Org. Lett. 2011, 13, 14361439.
[114] S. E. Denmark, S. M. Yang, J. Am. Chem. Soc. 2002, 124, 15196-15197.
[115] J. Mulzer, A. Mantoulidis, E. Ohler, J. Org. Chem. 2000, 65, 7456-7467.
[116] D. L. C. Green, J. J. Kiddle, C. M. Thompson, Tetrahedron 1995, 51, 2865-2874.
[117] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156.
[118] C. Patois, P. Savignac, E. Aboutjaudet, N. Collignon, Synth. Commun. 1991, 21, 2391-2396.
[119] R. He, M. Z. Deng, Tetrahedron 2002, 58, 7613-7617.
[120] P. A. Grieco, S. Gilman, M. Nishizawa, J. Org. Chem. 1976, 41, 1485-1486.
[121] K. H. Altmann, G. Bold, G. Caravatti, D. Denni, A. Florsheimer, A. Schmidt, G. Rihs, M. Wartmann, Helv. Chim. Acta 2002, 85, 4086-4110.
[122] S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden, Synthesis-Stuttgart 1994, 639666.
[123] R. Crabtree, Acc. Chem. Res. 1979, 12, 331-338.
[124] J. A. Osborn, F. H. Jardine, J. F. Young, Wilkinso.G, J Chem Soc A 1966, 1711-\&.
[125] T. B. Towne, F. E. McDonald, J. Am. Chem. Soc. 1997, 119, 12699-12699.
[126] H. Takahata, Y. Uchida, T. Momose, J. Org. Chem. 1994, 59, 7201-7208.
[127] S. A. Dietrich, R. Lindauer, C. Stierlin, J. Gertsch, R. Matesanz, S. Netararigo, J. F. Diaz, K. H. Altmann, Chem-Eur J 2009, 15, 10144-10157.
[128] A. Villa, E. Trachsel, M. Kaspar, C. Schliemann, R. Sommavilla, J. N. Rybak, C. Rosli, L. Borsi, D. Neri, Int. J. Cancer 2008, 122, 2405-2413.
[129] J. N. Rybak, C. Roesli, M. Kaspar, A. Villa, D. Neri, Cancer Res. 2007, 67, 1094810957.
[130] G. J. L. Bernardes, G. Casi, S. Trussel, I. Hartmann, K. Schwager, J. Scheuermann, D. Neri, Angew Chem Int Edit 2012, 51, 941-944.
[131] H. Z. Lecher, R. A. Greenwood, K. C. Whitehouse, T. H. Chao, J. Am. Chem. Soc. 1956, 78, 5018-5022.
[132] K. S. Lee, Y. K. Kang, K. H. Yoo, D. C. Kim, K. J. Shin, Y. S. Paik, D. J. Kim, Bioorg. Med. Chem. Lett. 2005, 15, 231-234.
[133] C. N. Kuzniewski, J. Gertsch, M. Wartmann, K. H. Altmann, Org. Lett. 2008, 10, 1183-1186.
[134] C. N. Kuzniewski, Diss. ETH 189212010.
[135] H. C. Brown, P. K. Jadhav, Abstr. Pap. Am. Chem. Soc. 1983, 186, 175-ORGN.
[136] P. R. Blakemore, J Chem Soc Perk T 1 2002, 2563-2585.
[137] O. Mitsunobu, Synthesis-Stuttgart 1981, 1-28.
[138] M. Noack, R. Gottlich, Eur. J. Org. Chem. 2002, 3171-3178.
[139] B. O. Lindgren, T. Nilsson, Acta Chem. Scand. 1973, 27, 888-890.
[140] B. S. Bal, W. E. Childers, H. W. Pinnick, Tetrahedron 1981, 37, 2091-2096.
[141] J. A. Lafontaine, J. W. Leahy, Tetrahedron Lett 1995, 36, 6029-6032.
[142] F. Calo, J. Richardson, A. G. M. Barrette, J. Org. Chem. 2008, 73, 9692-9697.
[143] Y. Guindon, F. Soucy, C. Yoakim, W. W. Ogilvie, L. Plamondon, J. Org. Chem. 2001, 66, 8992-8996.
[144] E. J. Corey, G. Schmidt, Tetrahedron Lett 1979, 399-402.
[145] S. Barriga, Synlett 2001, 563-563.
[146] Mitsunob.O, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380-\&.
[147] I. Shiina, M. Kubota, H. Oshiumi, M. Hashizume, J. Org. Chem. 2004, 69, 1822-1830.
[148] I. Ojima, Acc. Chem. Res. 2008, 41, 108-119.
[149] G. Casi, N. Huguenin-Dezot, K. Zuberbuhler, J. Scheuermann, D. Neri, J. Am. Chem. Soc. 2012, 134, 5887-5892.
[150] G. J. L. Bernardes, M. Steiner, I. Hartmann, D. Neri, G. Casi, Nat. Protoc. 2013, 8, 2079-2089.
[151] T. Buskas, Y. H. Li, G. J. Boons, Chem-Eur J 2004, 10, 3517-3524.
[152] A. J. Haagensmit, T. H. Wang, N. T. Mirov, J Am Pharm Assoc Sci 1951, 40, 557559.
[153] W. G. Dauben, W. E. Thiessen, P. R. Resnick, J. Am. Chem. Soc. 1962, 84, 20152016.
[154] H. Kobayashi, S. Akiyoshi, Bull. Chem. Soc. Jpn. 1962, 35, 1044-1045.
[155] W. G. Dauben, W. E. Thiessen, P. R. Resnick, J. Org. Chem. 1965, 30, 1693-\&.
[156] B. Tursch, J. C. Braekman, D. Daloze, H. Dedeurwaerder, R. Karlsson, Bull. Soc. Chim. Belg. 1978, 87, 75-81.
[157] A. J. Weinheimer, C. W. J. Chang, J. A. Matson, Progress in the Chemistry of Organic Natural Products 1979, 36, 285-387.
[158] M. A. Tius, Chem. Rev. (Washington, DC, U. S.) 1988, 88, 719-732.
[159] L. T. Wang, S. K. Wang, K. Soong, C. Y. Duh, Chem. Pharm. Bull. 2007, 55, 766770.
[160] E. Breitmaier, Terpene : Aromen, Düfte, Pharmaka, Pheromone, Editor Wiley VCH 2005.
[161] P. M. Dewick, Nat. Prod. Rep. 2002, 19, 181-222.
[162] A. J. Birch, W. V. Brown, J. E. T. Corrie, B. P. Moore, J Chem Soc Perk T 1 1972, 2653-\&.
[163] T. W. Goodwin, Ansell, M. F. (Ed.) Rodd's Chemistry of Carbon Compounds IIc Supplement, Elsevier, Amsterdam 1974.
[164] Y. Li, L. Peng, T. Zhang, Medicinal Chemistry of Bioactive Natural Products 2006.
[165] B. Yang, X. F. Zhou, X. P. Lin, J. Liu, Y. Peng, X. W. Yang, Y. H. Liu, Curr. Org. Chem. 2012, 16, 1512-1539.
[166] S. Zedler, E. Faist, Curr Opin Crit Care 2006, 12, 595-601.
[167] K. M. Shin, Y. H. Kim, W. S. Park, I. S. Kang, J. Ha, J. W. Choi, H. J. Park, K. T. Lee, Biol. Pharm. Bull. 2004, 27, 538-543.
[168] C. H. Woo, J. H. Lim, J. H. Kim, J. Immunol. 2004, 173, 6973-6980.
[169] D. L. Laskin, K. J. Pendino, Annu. Rev. Pharmacol. Toxicol. 1995, 35, 655-677.
[170] M. K. Obanion, V. D. Winn, D. A. Young, Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 4888-4892.
[171] F. Giuliano, T. D. Warner, J. Pharmacol. Exp. Ther. 2002, 303, 1001-1006.
[172] M. Jin, S. J. Suh, J. H. Yang, Y. Lu, S. J. Kim, S. Kwon, T. H. Jo, J. W. Kim, Y. I. Park, G. W. Ahn, C. K. Lee, C. H. Kim, J. K. Son, K. H. Son, H. W. Chang, Food Chem. Toxicol. 2010, 48, 3073-3079.
[173] A. F. Ahmed, S. H. Tai, Z. H. Wen, J. H. Su, Y. C. Wu, W. P. Hu, J. H. Sheu, J. Nat. Prod. 2008, 71, 946-951.
[174] W. Y. Lin, J. H. Su, Y. Lu, Z. H. Wen, C. F. Dai, Y. H. Kuo, J. H. Sheu, Bioorg. Med. Chem. 2010, 18, 1936-1941.
$[175]$ S. Y. Cheng, Z. H. Wen, S. F. Chiou, C. H. Hsu, S. K. Wang, C. F. Dai, M. Y. Chiang, C. Y. Duh, Tetrahedron 2008, 64, 9698-9704.
[176] S. Y. Cheng, Z. H. Wen, S. K. Wang, S. F. Chiou, C. H. Hsu, C. F. Dai, C. Y. Duh, Bioorg. Med. Chem. 2009, 17, 3763-3769.
[177] C. H. Chao, Z. H. Wen, Y. C. Wu, H. C. Yeh, J. H. Sheu, J. Nat. Prod. 2008, 71, 1819-1824.
[178] S. Y. Cheng, Z. H. Wen, S. K. Wang, S. F. Chiou, C. H. Hsu, C. F. Dai, M. Y. Chiang, C. Y. Duh, J. Nat. Prod. 2009, 72, 152-155.
[179] S. Roengsumran, S. Achayindee, A. Petsom, K. Pudhom, P. Singtothong, C. Surachetapan, T. Vilaivan, J. Nat. Prod. 1998, 61, 652-654.
[180] S. Roengsumran, P. Singtothong, K. Pudhom, N. Ngamrochanavanich, A. Petsom, C. Chaichantipyuth, J. Nat. Prod. 1999, 62, 1163-1164.
[181] C. Y. Duh, S. K. Wang, Y. L. Weng, M. Y. Chiang, C. F. Bai, J. Nat. Prod. 1999, 62, 1518-1521.
[182] M. J. Ortega, E. Zubia, M. C. Sanchez, J. L. Carballo, J. Nat. Prod. 2008, 71, 16371639.
[183] A. Ma, Z. Deng, L. van Ofwegen, M. Bayer, P. Proksch, W. Lin, J. Nat. Prod. 2008, 71, 1152-1160.
[184] M. Iwashima, Y. Matsumoto, H. Takahashi, K. Iguchi, J. Nat. Prod. 2000, 63, 16471652.
[185] Y. P. Shi, A. D. Rodriguez, C. L. Barnes, J. A. Sanchez, R. G. Raptis, P. Baran, J. Nat. Prod. 2002, 65, 1232-1241.
[186] K. Pudhom, T. Vilaivan, N. Ngamrojanavanich, S. Dechangvipart, D. Sommit, A. Petsom, S. Roengsumran, J. Nat. Prod. 2007, 70, 659-661.
[187] M. Kodama, Y. Matsuki, S. Ito, Tetrahedron Lett 1975, 3065-3068.
[188] R. Appel, Angewandte Chemie-International Edition in English 1975, 14, 801-811.
[189] E. E. Vantamelen, A. Storni, E. J. Hessler, M. Schwartz, J. Am. Chem. Soc. 1963, 85, 3295-\&.
[190] H. Takayanagi, T. Uyehara, T. Kato, J Chem Soc Chem Comm 1978, 359-360.
[191] R. Schwabe, I. Farkas, H. Pfander, Helv. Chim. Acta 1988, 71, 292-297.
[192] R. Dumont, H. Pfander, Helv. Chim. Acta 1983, 66, 814-823.
[193] B. F. Bowden, J. C. Coll, S. J. Mitchell, R. Kazlauskas, Aust. J. Chem. 1981, 34, 1551-1556.
[194] T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974-5976.
[195] Z. S. Liu, W. Z. Li, Y. L. Li, Tetrahedron-Asymmetr 2001, 12, 95-100.
[196] G. Pattenden, L. Roberts, A. J. Blake, J Chem Soc Perk T 1 1998, 863-868.
[197] G. Balme, G. Fournet, J. Gore, Tetrahedron Lett 1986, 27, 1907-1908.
[198] W. Knoll, C. Tamm, Helv. Chim. Acta 1975, 58, 1162-1171.
[199] J. E. Mcmurry, M. P. Fleming, J. Org. Chem. 1976, 41, 896-897.
[200] B. F. Bowden, J. C. Coll, D. M. Tapiolas, Aust. J. Chem. 1983, 36, 2289-2295.
[201] M. Kobayashi, T. Nakagawa, H. Mitsuhashi, Chem. Pharm. Bull. 1979, 27, 23822387.
[202] J. Lan, Z. S. Liu, H. Yuan, L. Z. Peng, W. D. Z. Li, Y. Li, Y. L. Li, A. S. C. Chan, Tetrahedron Lett 2000, 41, 2181-2184.
[203] M. L. Raggio, D. S. Watt, J. Org. Chem. 1976, 41, 1873-1875.
[204] R. W. Freerksen, S. J. Selikson, R. R. Wroble, K. S. Kyler, D. S. Watt, J. Org. Chem. 1983, 48, 4087-4096.
[205] H. Takayanagi, Tetrahedron Lett 1994, 35, 1581-1584.
[206] D. A. Evans, J. M. Hoffman, Truesdal.Lk, J. Am. Chem. Soc. 1973, 95, 5822-5823.
[207] J. A. Marshall, B. S. Dehoff, S. L. Crooks, Tetrahedron Lett 1987, 28, 527-530.
[208] J. A. Marshall, S. L. Crooks, Tetrahedron Lett 1987, 28, 5081-5082.
[209] J. A. Marshall, S. L. Crooks, B. S. Dehoff, J. Org. Chem. 1988, 53, 1616-1623.
[210] D. F. Taber, Y. Song, J. Org. Chem. 1997, 62, 6603-6607.
[211] D. F. Taber, K. You, Y. Song, J. Org. Chem. 1995, 60, 1093-1094.
[212] J. N. Kim, E. K. Ryu, Tetrahedron Lett 1992, 33, 3141-3144.
[213] D. F. Taber, Y. Song, J. Org. Chem. 1996, 61, 7508-7512.
[214] F. E. Ziegler, J. M. Fang, J. Org. Chem. 1981, 46, 825-827.
[215] P. A. Wender, S. M. Sieburth, J. J. Petraitis, S. K. Singh, Tetrahedron 1981, 37, 3967-3975.
[216] P. A. Wender, S. M. Sieburth, Tetrahedron Lett 1981, 22, 2471-2474.
[217] P. A. Wender, D. A. Holt, J. Am. Chem. Soc. 1985, 107, 7771-7772.
[218] J. A. Marshall, T. M. Jenson, B. S. Dehoff, J. Org. Chem. 1986, 51, 4317-4319.
[219] G. Wittig, H. Doser, I. Lorenz, Annalen Der Chemie-Justus Liebig 1949, 562, 192205.
[220] M. A. Tius, A. H. Fauq, J. Am. Chem. Soc. 1986, 108, 1035-1039.
[221] M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune, W. R. Roush, T. Sakai, Tetrahedron Lett 1984, 25, 2183-2186.
[222] M. W. Rathke, M. Nowak, J. Org. Chem. 1985, 50, 2624-2626.
[223] K. Nishitani, T. Konomi, Y. Mimaki, T. Tsunoda, K. Yamakawa, Heterocycles 1993, 36, 1957-1960.
[224] K. Nishitani, T. Konomi, K. Okada, K. Yamakawa, Heterocycles 1994, 37, 679-681.
[225] T. Kato, M. Suzuki, T. Kobayashi, B. P. Moore, J. Org. Chem. 1980, 45, 1126-1130.
[226] H. Helmboldt, D. Kohler, M. Hiersemann, Org. Lett. 2006, 8, 1573-1576.
[227] T. R. Hoye, H. Y. Zhao, Org. Lett. 1999, 1, 169-171.
[228] J. Mulzer, S. Pichlmair, M. P. Green, M. M. B. Marques, H. J. Martin, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11980-11985.
[229] M. B. Andrus, E. L. Meredith, E. J. Hicken, B. L. Simmons, R. R. Glancey, W. Ma, J. Org. Chem. 2003, 68, 8162-8169.
[230] L. F. Tietze, C. C. Brazel, S. Holsken, J. Magull, A. Ringe, Angew Chem Int Edit 2008, 47, 5246-5249.
[231] Z. M. Xu, C. W. Johannes, A. F. Houri, D. S. La, D. A. Cogan, G. E. Hofilena, A. H. Hoveyda, J. Am. Chem. Soc. 1997, 119, 10302-10316.
[232] A. B. Smith, E. F. Mesaros, E. A. Meyer, J. Am. Chem. Soc. 2006, 128, 5292-5299.
[233] C. Rodriguez-Escrich, F. Urpi, J. Vilarrasa, Org. Lett. 2008, 10, 5191-5194.
[234] W. M. Dai, Y. L. Chen, J. Jin, J. L. Wu, J. S. Lou, Q. J. He, Synlett 2008, 1737-1741.
[235] S. A. May, P. A. Grieco, Chem. Commun. (Cambridge, U. K.) 1998, 1597-1598.
[236] P. K. Park, S. J. O'Malley, D. R. Schmidt, J. L. Leighton, J. Am. Chem. Soc. 2006, 128, 2796-2797.
[237] J. Jin, Y. L. Chen, Y. N. Li, J. L. Wu, W. M. Dai, Org. Lett. 2007, 9, 2585-2588.
[238] S. Y. Yun, E. C. Hansen, I. Volchkov, E. J. Cho, W. Y. Lo, D. Lee, Angew Chem Int Edit 2010, 49, 4261-4263.
[239] J. D. White, P. Hrnciar, J. Org. Chem. 2000, 65, 9129-9142.
[240] L. F. Peng, B. Z. Stanton, N. Maloof, X. Wang, S. L. Schreiber, Bioorg. Med. Chem. Lett. 2009, 19, 6319-6325.
[241] M. T. Crimmins, B. W. King, E. A. Tabet, K. Chaudhary, J. Org. Chem. 2001, 66, 894902.
[242] D. A. Evans, J. M. Takacs, L. R. Mcgee, M. D. Ennis, D. J. Mathre, J. Bartroli, Pure Appl. Chem. 1981, 53, 1109-1127.
[243] R. Csuk, B. Woeste, Tetrahedron 2008, 64, 9384-9387.
[244] O. L. Lebedev, S. N. Kazarnovskii, Zh Obshch Khim+ 1960, 30, 1631-1635.
[245] C. W. Wullschleger, J. Gertsch, K. H. Altmann, Org. Lett. 2010, 12, 1120-1123.
[246] F. Calo, J. Richardson, A. G. M. Barrett, J. Org. Chem. 2008, 73, 9692-9697.
[247] T. Iversen, D. R. Bundle, J Chem Soc Chem Comm 1981, 1240-1241.
[248] D. Yang, M. Xu, Org. Lett. 2001, 3, 1785-1788.
[249] T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451-2458.
[250] G. B. Payne, J. Org. Chem. 1962, 27, 3819-\&.
[251] T. W. Greene, P. G. M. Wuts, New York: John Wiley \& Sons 1999, 114.
[252] H. Nagaoka, Y. Kishi, Tetrahedron 1981, 37, 3873-3888.
[253] A. K. Ghosh, D. R. Nicponski, Org. Lett. 2011, 13, 4328-4331.
[254] A. K. Chatterjee, T. L. Choi, D. P. Sanders, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 11360-11370.
[255] E. J. Corey, P. L. Fuchs, Tetrahedron Lett 1972, 3769-\&.
[256] D. W. Hart, J. Schwartz, J. Am. Chem. Soc. 1974, 96, 8115-8116.
[257] J. S. Panek, T. Hu, J. Org. Chem. 1997, 62, 4912-4913.
[258] W. Felzmann, D. Castagnolo, D. Rosenbeiger, J. Mulzer, J. Org. Chem. 2007, 72, 2182-2186.
[259] D. W. Hart, T. F. Blackburn, J. Schwartz, J. Am. Chem. Soc. 1975, 97, 679-680.
[260] D. A. Evans, J. T. Starr, Angew Chem Int Edit 2002, 41, 1787-+.
[261] J. Marjanovic, S. A. Kozmin, Angew Chem Int Edit 2007, 46, 8854-8857.
[262] A. O. King, N. Okukado, E. I. Negishi, J Chem Soc Chem Comm 1977, 683-684.
[263] W. S. Johnson, Werthema.L, W. R. Bartlett, T. J. Brocksom, T. T. Li, D. J. Faulkner, M. R. Petersen, J. Am. Chem. Soc. 1970, 92, 741-\&.
[264] K. Hirai, H. Ooi, T. Esumi, Y. Iwabuchi, S. Hatakeyama, Org. Lett. 2003, 5, 857-859.
[265] E. A. Braude, R. P. Linstead, K. R. Wooldridge, J Chem Soc 1956, 3070-3074.
[266] Y. Oikawa, T. Yoshioka, O. Yonemitsu, Tetrahedron Lett 1982, 23, 885-888.
[267] B. M. Trost, J. Y. L. Chung, J. Am. Chem. Soc. 1985, 107, 4586-4588.
[268] W. D. Li, Y. Li, Y. L. Li, Bull. Soc. Chim. Belg. 1993, 102, 503-505.
[269] J. Zhao, K. Burgess, J. Am. Chem. Soc. 2009, 131, 13236-+.
[270] Y. Suhara, A. Wada, T. Okano, Bioorg. Med. Chem. Lett. 2009, 19, 1054-1057.
[271] T. Itoh, K. Jitsukawa, K. Kaneda, S. Teranishi, J. Am. Chem. Soc. 1979, 101, 159169.
[272] K. B. Sharpless, T. R. Verhoeven, Alrichimica Acta 1979, 12, 63-71.
[273] T. Zhang, Z. S. Liu, Y. L. Li, Synthesis-Stuttgart 2001, 393-398.
[274] E. J. Corey, L. O. Weigel, A. R. Chamberlin, H. Cho, D. H. Hua, J. Am. Chem. Soc. 1980, 102, 6613-6615.
[275] B. F. Bowden, J. C. Coll, M. S. L. Decosta, M. F. Mackay, M. Mahendran, E. D. Desilva, R. H. Willis, Aust. J. Chem. 1984, 37, 545-552.

4 Experimental Part

4.1 General Procedures and Analytics

All solvents used for reactions were purchased as anhydrous grade from Sigma-Aldrich (puriss., dried over molecular sieves. $\mathrm{H}_{2} \mathrm{O}<0.005 \%$). Solvents for extractions, flash column chromatography and thin layer chromatography (TLC) were purchased as commercial grade and distilled prior to use. All non-aqueous reactions were performed under an argon atmosphere using flame-dried glassware and standard syringe/septa techniques. Commercially available reagents were used without further purification, unless otherwise noted. In general, reactions were magnetically stirred and monitored by TLC performed on Merck TLC aluminum sheets (silica gel 60 F254). Spots were visualized with UV light $(\lambda=254 \mathrm{~nm})$, through staining with $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3} /$ phosphomolybdic acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ (CPS) or $\mathrm{KMnO}_{4} / \mathrm{K}_{2} \mathrm{CO}_{3}$. Chromatographic purification of products was performed using Fluka silica gel 60 for preparative column chromatography (particle size $40-63 \mu \mathrm{~m}$).
${ }^{1} \mathbf{H}$ - and ${ }^{13} \mathbf{C}$-NMR spectra were recorded in CDCl_{3} on Bruker AV-400 400 MHz and AV-500 500 MHz instruments at room temperature. Chemical shifts (δ) are reported in ppm and are referenced to the solvent signal as an internal standard $\left(\mathrm{CDCl}_{3} \delta 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}, \delta 77.16 \mathrm{ppm}$ for $\left.{ }^{13} \mathrm{C}\right)$. All ${ }^{13} \mathrm{C}$ NMR spectra were measured with complete proton decoupling. Data for NMR spectra are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signal, $J=$ coupling constant in Hz. Infrared spectra (IR) were recorded on a Jasco FT/IR-6200 instrument as thin film. Resonance frequencies are given as wavenumbers in cm^{-1}. Optical rotations were measured on a Jasco P-1020 polarimeter operating at the sodium D line with a 10 mm or 100 mm path length cell at $20^{\circ} \mathrm{C}$ and are reported as follows: $[\alpha]^{\mathrm{T}} \mathrm{D}$, concentration ($\mathrm{g} / 100 \mathrm{~mL}$), and solvent. Mass spectra were recorded by the ETH Zürich MS service. HRMS (ESI) spectra were obtained on a Bruker Daltonics maxis (UHR-TOF) and HRMS (EI) on a Waters Micromass AutoSpec Ultima intstrument.

4.2 Cyclopropyl-Epo B and Side Chain-modified Analogs

4.2.1 Total Synthesis of CP-Epothilone B

106
(R)-3-(tert-butyldimethylsilyloxy)dihydrofuran-2(3H)-one (106). To a solution of (S)- α hydroxybutyrolactone ($2.00 \mathrm{~g}, 19.59 \mathrm{mmol}$) and imidazole ($2.94 \mathrm{~g}, 43.19 \mathrm{mmol}$) in DMF $(15 \mathrm{~mL})$ was added $\mathrm{TBSCl}(3.25 \mathrm{~g}, 21.56 \mathrm{mmol})$ at room temperature and the mixture was stirred for 22 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 10:1) afforded $4.11 \mathrm{~g}(97 \%)$ of silyl ether 106 as a colorless oil which turned into a white solid upon storage at $-20^{\circ} \mathrm{C}$.

TLC: $\mathrm{R}_{f} 0.36$ (hexane/EtOAc 10:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}:=-32.6^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.41$ (dd, $\left.J=8.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.39$ (ddd, $J=9.1,8.4$, $3.4 \mathrm{~Hz}), 4.19(\mathrm{td}, J=9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dddd}, J=12.7,7.7,6.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dddd, $J=12.7,9.1,8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.0,68.4,64.9,32.5,25.8,18.4,-4.5,-5.1$.
IR (film): v 2954, 2931, 2858, 1786, 1469, 1359, 1255, 1220, 1152, 1109, 1021, 1000, 945, 840, 781, 698, 671.
HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$239.1074, found 239.1075.

(2R,3R)-3-(tert-butyldimethylsilyloxy)-2-methyltetrahydrofuran-2-ol (107).
(2S,3S)-3-(tert-butyldimethylsilyloxy)-2-methyltetrahydrofuran-2-ol (107).
(S)-3-(tert-butyldimethylsilyloxy)-5-hydroxypentan-2-one (108). To a solution of silyl ether $\mathbf{1 0 6}(2.94 \mathrm{~g}, 13.59 \mathrm{mmol})$ in THF (55 mL) was added $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 10.19 \mathrm{~mL}$, 16.31 mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 h at this temperature. The cooling bath was removed and the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The mixture was diluted with saturated aqueous Rochelle salt $(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to yield $2.81 \mathrm{~g}(89 \%)$ of a mixture of cyclic acetal 107 and linear alcohol 108 as white crystals.
Note: No investigations have been carried out to assign the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR signals to the single alcohols.

TLC: $\mathrm{R}_{f} 0.22$ (hexane/EtOAc 5:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:+24.2^{\circ}\left(c=0.41, \mathrm{CHCl}_{3}\right)$.
mp: $52-54^{\circ} \mathrm{C}$.
IR (film): v 3418 br, 2955, 2930, 2858, 1717, 1472, 1464, 1376, 1254, 1109, 837, 776.
HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 255.1387$, found 255.1397.

100
(S)-3-(tert-butyldimethylsilyloxy)-4-oxopentanal (100). To a solution of alcohols 107 and $108(4.04 \mathrm{~g}, 17.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DMP $\left(15 \%\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 72.1 \mathrm{~mL}$, 34.77 mmol) at room temperature over a period of 15 min whereupon the reaction mixture turned milky. The reaction mixture was stirred for 1.5 h at room temperature and the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$. Stirring was continued for 30 min , when two almost clear phases had formed. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 7:1) yielded 2.69 g (67%) of aldehyde $\mathbf{1 0 0}$ as a colorless oil.

Note: Because of its behaviour on silica, aldehyde $\mathbf{1 0 0}$ was difficult to purify to homogeneit. The remaining impurities were removed in the next step.
TLC: $\mathrm{R}_{f} 0.40$ (hexane/EtOAc 4:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathrm{D}}:-1.5^{\circ}\left(c=0.56, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.73(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddd, $J=5.6,1.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100 MHz, CDCl_{3}): $\delta=210.5,198.9,74.2,48.2,26.1,25.8,18.1,-4.8,-4.9$.
IR (film): v 2954, 2931, 2859, 1719, 1473, 1362, 1255, 1118, 1006, 938, 838, 779.
HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+]^{+} 230.1338$, found 230.1562.
MS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$253.1230, found 253.06.

(S,Z)-methyl 5-(tert-butyldimethylsilyloxy)-2-methyl-6-oxohept-2-enoate (110). To a solution of phosphonate $109(3.58 \mathrm{~g}, 10.79 \mathrm{mmol})$ and 18 -crown- $6(7.78 \mathrm{~g}, 29.43 \mathrm{mmol})$ in THF (120 mL) was added KHMDS $2.15 \mathrm{~g}, 10.79 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ in five portions over a period of 15 min . The solution was stirred for 30 min at this temperature and was then
transferred dropwise at $-78{ }^{\circ} \mathrm{C}$ to a solution of aldehyde $100(2.26 \mathrm{~g}, 9.81 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ using a cannula. The reaction mixture was stirred for 1 h at this temperature and the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to yield $2.09 \mathrm{~g}(72 \%)$ of unsaturated ester $\mathbf{1 1 0}$ as a colorless oil.

Note: The Z-configuration of the double bond was firmly established by NOESY-experiment.
TLC: $\mathrm{R}_{f} 0.57$ (hexane/EtOAc 4:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-11.8^{\circ}\left(c=0.75, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.95(\mathrm{tq}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 2.84(\mathrm{ddq}, J=7.4,6.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dt}, J=1.4,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ $(\mathrm{s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=211.3,168.1,137.3,129.5,78.5,51.5,34.7,25.8,25.5$, 20.8, 18.2, -4.8, -4.8.

IR (film): v 2954, 2931, 2858, 1718, 1457, 1362, 1253, 1219, 1108, 839, 776, 669.
HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 323.1649$, found 323.1645.

113
(S,Z)-methyl 5-(tert-butyldimethylsilyloxy)-2-methyl-5-(2-methyl-1,3-dioxolan-2-yl)pent-2-enoate (113). To a solution of ketone $\mathbf{1 1 0}(4.15 \mathrm{~g}, 13.81 \mathrm{mmol})$ in ethylene glycol (21 mL) and triethyl orthoformate (21 mL) was added p-TSA ($53 \mathrm{mg}, 0.28 \mathrm{mmol}$) at room temperature. The reaction mixture was then heated to $40{ }^{\circ} \mathrm{C}$ and stirred for 2 h at this temperature. The reaction mixture was then allowed to reach room temperature and the reaction was cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 10:1) gave $4.62 \mathrm{~g}(97 \%)$ of acetal 113 as a colorless oil.
Note: Since ketone $\mathbf{1 1 3}$ and acetal $\mathbf{1 1 0}$ show the same R_{f}-value, the reaction was followed by MS analysis.

TLC: $\mathrm{R}_{f} 0.57$ (hexane/EtOAc 4:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}:=-27.9^{\circ}\left(c=0.65, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.12(\mathrm{tq}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}$, 3 H), 3.62 (dd, $J=8.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dddq, $J=15.6,7.3,3.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dddq, $J=15.6,8.1,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dt}, J=1.4,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08$ $(\mathrm{s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.5,141.1,127.5,111.0,75.8,65.2,64.8,51.3,33.5$, 26.0, 20.9, 19.7, 18.3, -4.3, -4.7.

IR (film): v 2954, 2931, 2857, 1717, 1457, 1362, 1253, 1219, 1105, 835, 776, 669.
HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O} 5 \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 367.1911$, found 367.1925.

\qquad

99
(S,Z)-5-(tert-butyldimethylsilyloxy)-2-methyl-5-(2-methyl-1,3-dioxolan-2-yl)pent-2-en-1ol (99). To a solution of ester $\mathbf{1 1 3}(4.45 \mathrm{~g}, 12.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 28.4 \mathrm{~mL}, 28.4 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt (250 mL). The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to yield 3.95 g (97%) of allylic alcohol 99 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.29$ (hexane/EtOAc 4:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=-2.1^{\circ}\left(c=0.69, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.36(\mathrm{tq}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.05 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.00-3.83 (m, 4H), $3.50(\mathrm{dd}, J=8.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}$, 2 H), $1.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=1.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$, 0.02 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.3,125.8,111.2,75.8,65.1,64.6,62.0,31.9,26.1$, 22.1, 19.4, 18.4, -4.3, -4.4.

IR (film): v 3420 br, 2955, 2930, 2856, 1473, 1253, 1219, 1106, 1057, 1006, 949, 835, 776.
HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 339.1962$, found 339.1964.

115
((1S,2S)-2-((S)-2-(tert-butyldimethylsilyloxy)-2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-1methylcyclopropyl)methanol (115). To a solution of $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexane, 36.97 mL , $36.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{CH}_{2} \mathrm{I}_{2}(5.96 \mathrm{~mL}, 73.93 \mathrm{mmol})$ over a period of 15 min (the interior temperature rose from $0^{\circ} \mathrm{C}$ to $2.5^{\circ} \mathrm{C}$). The milky suspension
was stirred for 10 min at this temperature and a preformed solution of $(+)-(R, R)$-2-butyl$N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,3,2-dioxaborolane-4,5-dicarboxamide (Charette ligand) (1.86 mL , $7.39 \mathrm{mmol})$ and allylic alcohol $99(1.95 \mathrm{~g}, 6.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was rapidly added via syringe, whereupon the reaction mixture turned clear. The solution was allowed to reach room temperature and stirred for 1.5 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{ml})$, the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{ml})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1 \rightarrow 5:1) to afford $1.79 \mathrm{~g}(88 \%$, dr 18:1) of cyclopropyl alcohol 115 as a single isomer as a colorless oil.
Note: Since allylic alcohol $\mathbf{9 9}$ and cyclopropyl alcohol 115 show the same R_{f}-value, the reaction was followed by MS analyis.

According to ref. the exothermicity of the formation of $\mathrm{Zn}\left(\mathrm{CH}_{2} \mathrm{I}\right)_{2}$ the above procedure sometimes led to violent explosions on a larger scale (8 mmol). In our experience, if the interior temperature is carefully monitored during addition of $\mathrm{CH}_{2} \mathrm{I}_{2}$ to the Et2 Zn solution, the reaction can be conducted on a larger scale (>>8 mmol) safely.
TLC: $\mathrm{R}_{f} 0.29$ (hexane/EtOAc 4:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-45.3^{\circ}\left(c=0.57, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.00-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=11.7$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=7.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=11.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=8.7$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.77(\mathrm{~m}, 1 \mathrm{H})$, $0.44(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{dd}, J=5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=111.0,76.1,67.2,65.2,64.5,32.4,26.3,23.2,22.9,21.3$, 19.1, 18.5, 17.1, -3.9, -4.2.

IR (film): v 3433 br, 2954, 2931, 2858, 1469, 1379, 1252, 1107, 1033, 834, 776.
HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 353.2119$, found 353.2114 .

116
(1S,2S)-2-((S)-2-(tert-butyldimethylsilyloxy)-2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-1methylcyclopropanecarbaldehyde (116). To a solution of oxalyl chloride ($36 \mu \mathrm{~L}, 0.42$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added DMSO $(80 \mu \mathrm{~L}, 1.13 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. The
reaction mixture was stirred for 5 min at this temperature and alcohol 115 ($93 \mathrm{mg}, 0.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added. Stirring was continued for 15 min at $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(136$ $\mu \mathrm{L}, 0.98 \mathrm{mmol}$) was added. The cooling bath was removed and the reaction mixture was stirred for 2.5 h at room temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic phases were washed with brine (5 mL), dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 10:1) afforded 91 mg (98%) of aldehyde 116 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.34$ (hexane/EtOAc 8:1, CPS).
$\left[\boldsymbol{\alpha} \boldsymbol{]}^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=-75.2^{\circ}\left(c=0.71, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.17(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.52$ (dd, $J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=13.6,8.2,5.41 \mathrm{H}), 1.72(\mathrm{ddd}, J=13.6,9.2,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.52$ (dddd, $J=9.2,8.0,7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{dd}, J=7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{dd}, J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (100 MHz, CDCl_{3}): $\delta=203.2,110.9,75.6,65.1,64.6,32.5,32.3,28.9,26.1,22.4$, 19.0, 18.4, 18.2, -4.1, -4.6.

IR (film): v 2955, 2931, 2886, 2858, 2735, 1706, 1469, 1381, 1252, 1107, 1053, 940, 833, 777.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 351.1962$, found 351.1956 .

117
(E)-ethyl 3-((1S,2S)-2-((S)-2-(tert-butyldimethylsilyloxy)-2-(2-methyl-1,3-dioxolan-2$\mathbf{y l}$)ethyl)-1-methylcyclopropyl)acrylate (117). To a solution of aldehyde $\mathbf{1 1 6 (3 . 1 1 ~ g , ~} 9.47$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(72 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(6.60 \mathrm{~g}, 18.93 \mathrm{mmol})$ in one portion at room temperature and the reaction mixture was heated to reflux for 72 h . Additional $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}(2.48 \mathrm{~g}, 7.10 \mathrm{mmol})$ was then added in one portion and the reaction mixture was heated to reflux for 24 h . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography (hexane/EtOAc 15:1) to furnish 3.72 g (99%) of unsaturated ester 117 as a white solid.

TLC: $\mathrm{R}_{f} 0.42$ (hexane/EtOAc 8:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-66.4^{\circ}\left(c=0.53, \mathrm{CHCl}_{3}\right)$.
mp: $61-63{ }^{\circ} \mathrm{C}$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-$ $4.13(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=8.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (ddd, $J=13.7,8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, J=13.7,9.7,3.8,1 \mathrm{H}), 1.32(\mathrm{dddd}, J=9.7,8.4,6.3$,
$4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{dd}, J=8.4,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.69(\mathrm{dd}, J=6.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.0,154.6,118.5,111.0,75.5,65.1,64.5,60.2,33.5$, 27.8, 26.2, 24.1, 23.4, 22.6, 19.1, 18.4, 14.5, -4.2, -4.6.

IR (film): v 2954, 2932, 2886, 2858, 1715, 1637, 1468, 1380, 1251, 1169, 1106, 1043, 947, 834, 776.

HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O} 5 \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 421.2381$, found 421.2370.

(E)-3-((1S,2S)-2-((S)-2-(tert-butyldimethylsilyloxy)-2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-1-methylcyclopropyl)prop-2-en-1-ol (118). To a solution of ester 117 ($158 \mathrm{mg}, 0.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added DIBAL- $\mathrm{H}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.01 \mathrm{~mL}, 1.01 \mathrm{mmol}\right)$ dropwise at $78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at this temperature and the reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt (10 mL). The solution was allowed to warm to room temperature and was left stirring vigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to give 142 mg (98\%) of allylic alcohol 118 as a white solid.

TLC: $\mathrm{R}_{f} 0.41$ (hexane/EtOAc 2:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}:=-65.8^{\circ}\left(c=0.60, \mathrm{CHCl}_{3}\right)$.
mp: $92-93{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.66(\mathrm{dt}, J=15.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dt}, J=15.4,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=8.9,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{ddd}, J=13.7,8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{ddd}, J=13.7,9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{dddd}, J=9.9,8.2,5.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.69$ (dd, $J=8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{dd}, J=5.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.7,127.2,111.2,75.7,65.1,64.5,64.3,33.2,26.2$, 25.0, 23.7, 22.0, 21.4, 19.0, 18.5, -4.1, -4.5.

IR (film): v 3483, 2952, 2929, 2888, 2858, 1653, 1461, 1377, 1252, 1159, 1114, 1064, 971, 837, 776.
HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 379.2275$, found 379.2285.

119
3-((1S,2S)-2-((S)-2-(tert-butyldimethylsilyloxy)-2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-1-methylcyclopropyl)propan-1-ol (119). To a solution of allylic alcohol 118 ($2.46 \mathrm{~g}, 6.90$ $\mathrm{mmol})$ in $\mathrm{MeOH}(125 \mathrm{ml})$ was added $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.31 \mathrm{~g}, 5.51 \mathrm{mmol})$ in one portion at room temperature and the red solution was left stirring for 25 min at this temperature. NaBH_{4}
($3.13 \mathrm{~g}, 82.79 \mathrm{mmol}$) in DMF (50 mL) was then added dropwise whereupon the solution turned black. Stirring was continued for 3 h at room temperature and the reaction was then quenched by addition of water $(100 \mathrm{ml})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 150 \mathrm{ml}$), the combined organic phases were washed with brine (250 mL), dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 5:1) yielded 2.34 g (95\%) of alcohol 119 as a white solid.
TLC: $\mathrm{R}_{f} 0.41$ (hexane/EtOAc 2:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}:=-54.7^{\circ}\left(c=0.35, \mathrm{CHCl}_{3}\right)$.
mp: $60-62{ }^{\circ} \mathrm{C}$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.50(\mathrm{dd}, J=9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=13.6,9.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.37-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{ddd}, J=13.6,10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, 9 H), 0.78 (dddd, $J=10.5,8.4,5.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.35(\mathrm{dd}, J=8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, 0.07 (s, 3H), $-0.09(\mathrm{dd}, J=5.4,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=111.2$ 76.3, $65.0,64.5,63.6,32.6,30.7,30.5,26.2,24.8$, 22.8, 19.8, 19.4, 19.1, 18.5, -4.1, -4.4.

IR (film): v 3389, 2952, 2929, 2857, 1468, 1380, 1251, 1163, 1106, 1054, 834, 775.
HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 381.2432$, found 381.2435 .

120
((S)-2-((1S,2S)-2-allyl-2-methylcyclopropyl)-1-(2-methyl-1,3-dioxolan-2-yl)ethoxy)(tertbutyl)dimethylsilane (120). To a solution of alcohol $119(2.48 \mathrm{~g}, 6.91 \mathrm{mmol})$ and 2nitrophenyl selenocyanate $(7.06 \mathrm{~g}, 31.07 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{P}(7.67 \mathrm{~mL}$, 31.07 mmol) dropwise at $30^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for $90 \mathrm{~min} . \mathrm{NaHCO}_{3}(17.40 \mathrm{~g}, 207.15 \mathrm{mmol})$ was then added in one portion and a solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water $(30 \%, 24.8 \mathrm{~mL})$ was added dropwise. The reaction mixture was further heated to $45-50^{\circ} \mathrm{C}$ and stirring was continued for 45 min at this temperature. The reaction mixture was then poured into a mixture of water (20 mL), saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$. The whole mixture was stirred vigorously for 15 min , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to yield $1.97 \mathrm{~g}(84 \%)$ of olefin $\mathbf{1 2 0}$ as a slightly yellow oil.

TLC: $\mathrm{R}_{f} 0.38$ (hexane/EtOAc 20:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=-50.0^{\circ}\left(c=0.51, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.83(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dm}, J=17.1$
$\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=9.5$,
$2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddd}, \mathrm{J}=13.6,9.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.21$ (ddd, $J=13.6,10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{dddd}, J=10.5,8.4,5.4,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.37(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{dd}, J=5.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.6,115.7,111.2,76.3,65.0,64.5,39.1,32.9,26.2$, 24.8, 22.4, 19.7, 19.1, 19.0, 18.5, -4.1, -4.4.

IR (film): v 3076, 2955, 2928, 2856, 1641, 1467, 1379, 1251, 1105, 1057, 834, 776.
HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 363.2326$, found 363.2326.

(S)-2-((1S,2S)-2-allyl-2-methylcyclopropyl)-1-(2-methyl-1,3-dioxolan-2-yl)ethanol (6). To a solution of silyl ether $\mathbf{1 2 0}(1.45 \mathrm{~g}, 4.26 \mathrm{mmol})$ in THF (20 mL) was added TBAF• $3 \mathrm{H}_{2} \mathrm{O}$ $(2.28 \mathrm{~g}, 7.24 \mathrm{mmol})$ in one portion at $0^{\circ} \mathrm{C}$ and the reaction mixture was heated to $50^{\circ} \mathrm{C}$. After 11 h at this temperature the solution was allowed to reach room temperature and the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 5:1) to yield $0.90 \mathrm{~g}(93 \%)$ of alcohol 6 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.28$ (hexane/EtOAc 4:1, CPS).
$\left[\boldsymbol{\alpha} \boldsymbol{]}^{\mathbf{2 0}} \mathbf{D} \mathbf{D}:=-82.3^{\circ}\left(c=0.45, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.85(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dm}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.02(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{dd}, J=10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (br s, 1H), $2.06(\mathrm{dq}, J=6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{ddd}, J=14.2,10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, 1.26 (ddd, $J=14.2,9.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.87$ (dddd, $J=9.9,8.4,5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 0.45 (dd, $J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.00(\mathrm{dd}, J=5.5,4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.4,115.8,110.6,75.6,65.5,65.1,39.0,31.1,24.6$, 22.0, 19.5, 19.4, 18.7.

IR (film): v 3482, 3057, 2984, 2955, 2923, 2886, 1638, 1446, 1378, 1296, 1220, 1165, 1057, 995, 949, 911, 877.
HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$249.1461, found 249.1457.

134
(3S,6R,7S,8S)-((S)-2-((1S,2S)-2-allyl-2-methylcyclopropyl)-1-(2-methyl-1,3-dioxolan-2-
yl)ethyl) 3,7-bis(tert-butyldimethylsilyloxy)-4,4,6,8-tetramethyl-5-oxodec-9-enoate (134).

To a solution of acid $7(1.73 \mathrm{~g}, 3.45 \mathrm{mmol})$ in benzene (34 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.96 \mathrm{~mL}$, $6.91 \mathrm{mmol})$ and $2,4,6$-trichlorobenzoyl chloride $(0.56 \mathrm{~mL}, 3.80 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 1 h . Alcohol $6(0.82 \mathrm{~g}, 3.63 \mathrm{mmol})$ in benzene $(21 \mathrm{~mL})$ and DMAP $(0.55 \mathrm{~g}, 4.49 \mathrm{mmol})$ in benzene $(13 \mathrm{~mL})$ were then added and the reaction mixture was stirred for 2 h at room temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford $2.31 \mathrm{~g}(94 \%)$ of diene 134 as a colorless oil. Note: Acid 7 was an 8:1 mixture of diastereomers most likely caused by racemization of the aldehyde used in the aldol reaction in the synthesis of the acid 7. As a result of that, diene $\mathbf{1 3 4}$ is also an $8: 1$ mixture of diastereomers. The undesired diastereomer was removed in the subsequent RCM step. Racemization can be avoided when the aldehyde is formed directly by reduction of the ester using DIBAL-H rather than by oxidation of the corresponding alcohol under Swern conditions.
TLC: $\mathrm{R}_{f} 0.34$ (hexane/EtOAc 20:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-32.3^{\circ}\left(c=1.08, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.92$ (ddd, $\left.J=17.6,10.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.81$ (ddt, $J=17.0$, $10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 5 \mathrm{H}), 4.38(\mathrm{dd}, J=5.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.83$ (dd, $J=6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dq}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=17.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (dd, $J=17.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{qdd}, J=7.0,6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dq}, J=6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.77 (ddd, $J=14.3,10.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{ddd}, J=14.3,9.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.21$ (s, 3H), $1.09(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}$, $9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.58$ (dddd, $J=9.8,8.4,5.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $0.12(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{dd}, J=5.2,4.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=218.0,171.7,140.1,137.2,115.9,115.5,109.3,76.4,75.4$, $73.8,65.5,64.9,53.6,46.2,43.7,40.4,39.0,29.6,26.4,26.2,24.5,23.4,21.6,20.5,20.5$, 19.6, 18.9, 18.8, 18.7, 18.3, 15.3, -3.4, -3.7, -4.0, -4.7.

IR (film): v 2956, 2888, 2858, 1742, 1696, 1471, 1382, 1294, 1254, 1175, 1081, 1046, 988, 913, 874, 836, 776.
HRMS (ESI): calculated for $\mathrm{C}_{39} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 731.4709$, found 731.4726.

135
(1S,3S,7S,10R,11S,12S, 16R,E)-7,11-bis(tert-butyldimethylsilyloxy)-8,8,10,12,16-pentamethyl-3-(2-methyl-1,3-dioxolan-2-yl)-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-
dione (135). To a solution of diene $134(256 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added $2^{\text {nd }}$ generation Grubbs catalyst ($61 \mathrm{mg}, 0.072$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and the reaction mixture was heated to reflux for 14 h . The solution was then cooled to room temperature, filtered through a small plug of silica and the precipitate was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 50:1 \rightarrow 30:1) to yield 190 mg of olefin 135 (77\%) as a single isomer as a colorless foam.
Note: Column chromatography yielded 190 mg of the E isomer $\mathbf{1 3 5}, 10 \mathrm{mg}$ of a mixture of E and Z-isomers and 10 mg of Z-isomer $\mathbf{1 3 5 - Z}$, which was contaminated with impurities derived from the metathesis catalyst. Based on these yields, the RCM reaction produced a ca. 12:1 ratio of E - and Z-isomers.

TLC: $\mathrm{R}_{f} 0.40$ (hexane/EtOAc 20:1, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}$: $=+14.2^{\circ}\left(c=1.01, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.66(\mathrm{ddd}, J=15.6,8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (ddd, $J=15.6$, $10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (dd, $J=11.2,2.4,1 \mathrm{H}), 4.65(\mathrm{dd}, J=6.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.94$ (m, 5 H), $3.14(\mathrm{dq}, J=9.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=13.9,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42$ (ddd, $J=15.3,3.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dq}, J=8.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (ddd, $J=14.6$, $2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=15.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=14.6,11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ ($\mathrm{s}, 3 \mathrm{H}$), $1.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}$, $3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.71(\mathrm{dddd}, J=9.1,8.0,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dd}, J=9.1$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{dd}, J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=217.9,170.7,131.9,128.8,109.0,76.5,72.5,65.5,64.8$, $54.5,48.5,42.6,42.4,38.7,30.1,29.4,26.5,26.3,25.1,24.1,23.0,21.9,19.9,19.7,19.6$, 19.4, 18.7, 18.5, 17.2, -3.1, -3.2, -3.4, -4.4.

IR (film): v 2955, 2930, 2889, 2858, 1741, 1694, 1471, 1383, 1297, 1255, 1178, 1088, 1045, 990, 949, 875, 836, 776.

HRMS (ESI): calculated for $\mathrm{C}_{3} 7 \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 703.4396$, found 703.4408.

136
(1S,3S,7S,10R,11S,12S,16S)-7,11-bis(tert-butyldimethylsilyloxy)-8,8,10,12,16-
pentamethyl-3-(2-methyl-1,3-dioxolan-2-yl)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (136). To a solution of olefin $\mathbf{1 3 5}$ ($203 \mathrm{mg}, 0.30 \mathrm{mmol}$) in EtOH (8 mL) was added Lindlar
catalyst ($380 \mathrm{mg}, 0.18 \mathrm{mmol}, \sim 5 \% \mathrm{Pd}$ on calcium carbonate) in one portion at room temperature and the reaction mixture was stirred under an atmosphere of $\mathrm{H}_{2}(7.5 \mathrm{bar})$ for 10 h . Additional catalyst ($127 \mathrm{mg}, 0.06 \mathrm{mmol}$) was then added in one portion and the solution was stirred under the same conditions for 4 h . The solution was then filtered through a small plug of celite and the precipitate was rinsed with EtOH (5 mL). The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $50: 1 \rightarrow 30: 1$) to afford $162 \mathrm{mg}(80 \%)$ of saturated macrolactone 136 as a white solid.

Note: With other batches of Lindlar catalyst, the reaction rate was considerably slower and the reaction did not go to completion. In these cases the catalyst was removed by filtration, the filtrate was concentrated under reduced pressure, and the residue was resubmitted to the above reaction conditions to achieve full conversion to the saturated macrolactone 136. Noteworthy, however, the yield of the reaction remained unchanged for the less active catalyst batches.

TLC: $\mathrm{R}_{f} 0.42$ (hexane/EtOAc 20:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=+2.9^{\circ}\left(c=0.27, \mathrm{CHCl}_{3}\right)$.
mp: $64-67^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.00(\mathrm{dd}, J=8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=6.5,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07-3.94(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dq}, J=8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dd, $J=15.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=15.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=15.1,4.0,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.61-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.14$ (s, 3H), 1.11 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.59$ (dddd, $J=12.1,8.7,5.4,3.4,1 \mathrm{H}), 0.40(\mathrm{dd}, J=8.7,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.18(\mathrm{dd}, J=5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.9,170.7,109.5,75.8,74.3,65.5,64.7,54.1,47.3$, $41.1,38.1,33.6,32.0,31.0,27.1,26.4,26.3,25.7,24.4,24.3,22.7,21.5,20.5,20.3,20.2$, 19.5, 18.7, 18.6, 17.4, -3.2, -3.5, -3.6, -5.1.

IR (film): v 2952, 2930, 2886, 2857, 1746, 1696, 1472, 1463, 1382, 1362, 1253, 1178, 1158, 1106, 1085, 1045, 984, 937, 874, 834, 774, 667.
HRMS (ESI): calculated for $\mathrm{C}_{3} 7 \mathrm{H}_{70} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 705.4552$, found 705.4554.

138
(1S,3S,7S,10R,11S,12S,16S)-3-acetyl-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4-
oxabicyclo[14.1.0]heptadecane-5,9-dione (138). To a solution of acetal $\mathbf{1 3 6}(0.46 \mathrm{~g}, 0.67$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ was added $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.91 \mathrm{~g}, 3.37 \mathrm{mmol})$ in one portion at room
temperature and the reaction mixture was stirred for 4 h . The reaction was then quenched by addition of water (25 mL), the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{x} 30 \mathrm{~mL}\right.$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to yield $0.26 \mathrm{~g}(94 \%)$ of diol 138 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.16$ (hexane/EtOAc 3:1, CPS).
$[\alpha]^{20} \mathbf{D}:=+22.6^{\circ}\left(c=0.67, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta=5.18(\mathrm{dd}, J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=10.7,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=6.5,3.4,1 \mathrm{H}), 3.24(\mathrm{qd}, J=6.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}$, $J=14.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=14.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, J=15.6,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.24$ $(\mathrm{m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.97(\mathrm{~s}, 3 \mathrm{H}), 0.60(\mathrm{dddd}, J=10.7,8.7,5.6,1.6,1 \mathrm{H}), 0.47(\mathrm{dd}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}),-0.10(\mathrm{dd}$, $J=5.6,4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=220.1,206.0,171.1,80.6,75.1,71.0,53.2,43.2,40.0$, $36.3,34.5,30.5,29.6,26.4,24.7,23.9,23.3,22.8,21.0,18.7,17.8,17.5,14.7$.

IR (film): v 3464, 2946, 1742, 1718, 1688, 1457, 1366, 1250, 1180, 1146, 1072, 1009, 981, 958, 736, 671.

HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 433.2561$, found 433.2580.

98
(1S,3S,7S,10R,11S,12S,16S)-3-acetyl-8,8,10,12,16-pentamethyl-7,11-
bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (98). To a solution of diol $138(96 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added 2,6-lutidine ($163 \mu \mathrm{~L}, 1.40 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and TMSOTf ($127 \mu \mathrm{~L}, 0.70 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred for 1.5 h at this temperature and was then allowed to reach room temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1) to yield $129 \mathrm{mg}(99 \%)$ of protected ketone $\mathbf{9 8}$ as a colorless oil.

Note: Upon extensive scratching and storage at $-20^{\circ} \mathrm{C}$ silyl ether $\mathbf{9 8}$ turned into a white solid.
TLC: $\mathrm{R}_{f} 0.21$ (hexane/EtOAc 12:1, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}:=+4.4^{\circ}\left(c=0.55, \mathrm{CHCl}_{3}\right)$.
mp: $118-121^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.91(\mathrm{dd}, J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dq}, J=9.6,6.7,1 \mathrm{H}), 2.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=15.7,3.1,2.4,1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{dq}, J=10.5,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.57(\mathrm{td}, J=12.7,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{ddd}, J=15.7,11.7,8.3,1 \mathrm{H})$, $1.22(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.7,3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.68(\mathrm{dddd}, J=11.7,8.7,5.4,3.1,1 \mathrm{H}), 0.44(\mathrm{dd}, J=8.7$, $4.2 \mathrm{~Hz}), 0.14$ (s, 9H), 0.08 (s, 9H), -0.15 (dd, $J=5.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=215.4,204.3,172.2,80.9,76.3,53.4,48.2,39.2,35.9$, $33.8,31.3,30.8,27.1,26.0,25.3,24.9,24.8,24.4,23.3,20.7,19.7,19.2,18.1,1.0,0.5$.

IR (film): v 2954, 1735, 1697, 1458, 1384, 1310, 1251, 1159, 1114, 1081, 1055, 1021, 888, 842, 768.

HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 555.3532$, found 555.3542 .

16a
($1 S, 3 S, 7 S, 10 R, 11 S, 12 S, 16 S)-8,8,10,12,16-p e n t a m e t h y l-3-((E)-1-(2-m e t h y l t h i a z o l-4-$
yl)prop-1-en-2-yl)-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (139a). To a solution of phosphonium salt 78a ($42 \mathrm{mg}, 0.118 \mathrm{mmol}$) in THF (1 mL) was added KHMDS ($24 \mathrm{mg}, 0.118 \mathrm{mmol}$) in one portion at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h at this temperature and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Methyl ketone 98 (13.0 mg , $0.024 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise and the solution was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1) to afford $10.3 \mathrm{mg}(67 \%)$ of an inseparable $6: 1$ mixture of $\mathbf{1 3 9}$ a and its C16-C17 Z isomer as a semi solid.

TLC: $\mathrm{R}_{f} 0.36$ (hexane/EtOAc 9:1, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.91(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.06(\mathrm{dd}, J=9.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dq}, J=9.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$
(dd, $J=16.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.67(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dd}, J=16.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 2.00(\mathrm{ddd}, J=15.6,3.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dq}, J=9.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=11.1$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, $3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{dt}, J=9.7,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.87-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.58$ (dddd, $J=10.8,8.7,5.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.35(\mathrm{dd}, J=8.7,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}),-0.22(\mathrm{dd}, J=5.4,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.4,171.3,164.6,152.7,139.1,119.7,116.2,81.6,80.7$, $75.9,53.4,48.0,39.6,35.9,34.8,33.8,31.6,27.0,25.4,24.8,24.2,23.9,23.2,20.6,19.8$, $19.3,17.9,14.7,0.9,0.5$.

IR (film): v 2955, 2876, 1741, 1698, 1456, 1381, 1250, 1159, 1115, 1021, 889, 841, 756.
HRMS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{NO}_{5} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{H}]^{+} 650.3725$, found 650.3724 .

(1S,3S,7S,10R,11S,12S, 16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-((E)-1-(2-
methylthiazol-4-yl)prop-1-en-2-yl)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (1a). Tо a 6:1 mixture of protected cyclopropyl-Epo B 139a and its C16-C17 Z isomer (8.4 mg , $0.013 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added citric acid ($7.0 \mathrm{mg}, 0.033 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 12 h , a second portion of citric acid (3.0 mg , 0.014 mmol) was then added and stirring was continued for further 10 h . The reaction mixture was then diluted with water $(1 \mathrm{~mL})$ and treated with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 5:2) to yield 5.2 mg of 139a (80%) as a single isomer as a colorless oil.
TLC: $\mathrm{R}_{f} 0.19$ (hexane/EtOAc 2:1, UV, CPS).
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=-67.8^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}-$ NMR (500 MHz, DMSO-d6): $\delta=7.32(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=7.2,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=6.8,6.7,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{dd}, J=8.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dq}, J=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 2 H), 2.07 (d, $J=0.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.94 (ddd, $J=15.4,3.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.59 (ddd, $J=15.4,10.4$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.16-1.09(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.57$ (dddd, $J=10.4,8.7$, $5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dd}, J=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}),-0.09(\mathrm{dd}, J=5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.9,170.3,164.2,152.3,137.8,119.0,117.4,81.0$, $75.3,69.4,53.2,44.7,40.4,38.9,35.3,34.2,33.7,24.4,23.4,22.9,22.0,20.0,19.1,18.9$, 18.6, 18.3, 16.3, 14.1.

IR (film): v 3423, 2941, 1730, 1687, 1509, 1458, 1377, 1254, 1183, 1148, 1009, 982, 876, 759, 668.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 506.2935$, found 506.2948.
Analytical HPLC: Method: eluent B 50-60\% (linear gradient from 0-12 min), retention time 10.98 min.

4.2.2 Synthesis of Side Chain-modified Analogs of CP-Epo B

139b
(1S,3S,7S,10R,11S,12S,16S)-8,8,10,12,16-pentamethyl-3-((E)-1-(5-methylisoxazol-3-
yl)prop-1-en-2-yl)-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (139b). To a solution of phosphonium salt 78b ($36 \mathrm{mg}, 0.108 \mathrm{mmol}$) in THF (1 mL) was added KHMDS ($22 \mathrm{mg}, 0.118 \mathrm{mmol}$) in one portion at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h at this temperature and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Methyl ketone 98 (12.0 mg , $0.022 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise and the solution was allowed to warm to $20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography
(hexane/EtOAc 10:1) to afford 10.2 mg (74%) of an inseparable $17: 1$ mixture of $\mathbf{1 3 9 b}$ and its C16-C17 Z isomer as a colorless oil.
TLC: Rf. 0.29 (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}:=-5.8^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.30(\mathrm{dq}, J=0.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{dd}, J=8.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=9.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (dq, $J=9.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=16.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ $(\mathrm{d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{dq}, J=9.3,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.07$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 2 \mathrm{H}), 0.60$ (dddd, $J=11.6,8.7,5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{dd}, J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),-0.18$ (dd, $J=5.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=215.6,171.4,168.9,160.2,144.6,113.8,102.4,80.8,80.7$, $75.8,53.5,48.0,39.8,36.0,34.7,34.0,31.7,25.5,24.8,24.1,23.6,23.3,20.7,19.9,19.4$, 17.9, 15.4, 12.3, 0.9, 0.6.

IR (film): v 2954, 1742, 1697, 1604, 1541, 1519, 1457, 1380, 1252, 1158, 1116, 1053, 1021, 986, 889, 842, 772.
HRMS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{NO}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 634.3954$, found 634.3941 .

[^14]

1b
(1S,3S,7S,10R,11S,12S, 16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-((E)-1-(5-
methylisoxazol-3-yl)prop-1-en-2-yl)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (1b). To a $17: 1$ mixture of protected cyclopropyl-Epo B 139b and its C16-C17 Z isomer (10.0 mg , $0.016 \mathrm{mmol})$ in methanol (0.5 mL) was added citric acid $(9.4 \mathrm{mg}, 0.045 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 13 h , was then diluted with water (1 mL) and treated with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(1 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 5:2) to yield $6.0 \mathrm{mg}(78 \%)$ of $\mathbf{1 b}$ as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.21$ (hexane/EtOAc 2:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=-45.6^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR (500 MHz, DMSO-d d_{6}): $\delta=6.38(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (dd, $J=7.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=7.3,7.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$
(dd, $J=8.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dq}, J=8.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (ddd, $J=15.5,3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57$ (ddd, $J=15.5,10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.10(\mathrm{~m}$, $2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.60$ (dddd, $J=10.5,8.7,5.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dd}, J=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}),-0.08(\mathrm{dd}, J=5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=218.0,170.3,168.9,159.7,144.3,112.9,102.5,80.1$, $75.4,69.4,53.2,44.8,40.4,38.8,35.2,34.0,33.5,29.2,24.4,23.3,23.0,22.0,20.1,19.1$, 18.4, 18.3, 16.3, 14.9.

IR (film): v 3446, 2943, 1732, 1687, 1603, 1456, 1378, 1252, 1147, 1079, 1038, 1009, 983, 770, 670.
HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 490.3163$, found 490.3156 .
Analytical HPLC: Method: eluent B 50-60\% (linear gradient from 0-12 min), retention time 9.82 min .

139c
(1S,3S,7S,10R,11S,12S,16S)-3-((E)-1-(1,5-dimethyl-1H-pyrazol-3-yl)prop-1-en-2-yl)-

8,8,10,12,16-pentamethyl-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadecane-

5,9-dione (139c). To a solution of phosphonium salt 78c ($41.3 \mathrm{mg}, 0.119 \mathrm{mmol}$) in THF $(1 \mathrm{~mL})$ was added n-BuLi $(74 \mu \mathrm{~L}, 0.119 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Methyl ketone $\mathbf{9 8}(11.0 \mathrm{mg}$, $0.020 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred for 0.5 h at $-78{ }^{\circ} \mathrm{C}$, was then allowed to warm to $-20^{\circ} \mathrm{C}$ and stirred for 1.5 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 7:1) to afford $10.9 \mathrm{mg}(85 \%)$ of an inseparable 13:1 mixture of $\mathbf{1 3 9} \mathrm{c}$ and its $\mathrm{C} 16-\mathrm{C} 17 \mathrm{Z}$ isomer as a semi-solid.

TLC: $\mathrm{R}_{f} 0.35$ (hexane/EtOAc 4:1, UV, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}:=-7.6^{\circ}\left(c=0.55, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.37(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{dd}, J=9.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dq}, J=9.3,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=16.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$, 2.00 (ddd, $J=15.4,3.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.44$ $(\mathrm{m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}$, $3 \mathrm{H}), 0.92-0.85$ (m, 2H), 0.60 (dddd, $J=10.8,8.7,5.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 0.36 (dd, $J=8.7,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),-0.20(\mathrm{dd}, J=5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.8,171.3,118.6,147.8,139.0,137.5,118.5,105.8$, $81.5,80.7,75.9,53.6,48.0,39.7,36.1,34.9,34.0,31.7,25.5,24.8,24.2,23.8,23.3,20.6$, 19.9, 19.4, 17.9, 14.8, 11.3, 1.0, 0.6.

IR (film): v 2951, 1739, 1696, 1550, 1456, 1381, 1251, 1201, 1158, 1114, 1054, 1019, 985, 946, 888, 839, 753.

HRMS (ESI): calculated for $\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$647.4270, found 647.4278.

(1S,3S,7S,10R,11S,12S,16S)-3-((E)-1-(1,5-dimethyl-1H-pyrazol-3-yl)prop-1-en-2-yl)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (1c). To a $13: 1$ mixture of protected cyclopropyl-Epo B 139c and its C16-C17 Z isomer (11.8 mg , $0.018 \mathrm{mmol})$ in methanol (0.5 mL) was added citric acid ($10.7 \mathrm{mg}, 0.051 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 8 h , was then diluted with water $(1 \mathrm{~mL})$ and treated with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield 7.1 mg (78%) of $\mathbf{1 c}$ as single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.29$ (hexane/EtOAc 1:2, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-89.4^{\circ}\left(c=0.14, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.39(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=7.3,5.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.04(\mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=4.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{qd}, J=6.8$,
$4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=15.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}$,
$J=15.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{ddd}, J=14.8,5.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.65$ $(\mathrm{qd}, J=6.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.47$ (dddd, $J=10.8,8.8,5.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.37$ (dd, $J=8.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),-0.14$ (dd, $J=5.3,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=221.2,170.9,147.6,139.1,136.4,119.4,105.6,81.8,73.4$, $73.3,52.2,42.9,41.0,39.4,36.4,36.0,34.9,33.3,31.4,24.6,23.5,22.6,22.4,20.8,20.7$, 19.3, 17.4, 15.0, 13.4, 11.2 .

IR (film): v 3447, 2938, 1727, 1687, 1549, 1458, 1375, 1256, 1016, 870, 803, 754.
HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 503.3479$, found 503.3498.
Analytical HPLC: Method: eluent B 50-60\% (linear gradient from 0-12 min), retention time 9.51 min .

(1S,3S,7S,10R,11S,12S,16S)-8,8,10,12,16-pentamethyl-3-((E)-1(pyrimidin-2-yl)prop-1-en-2-yl)-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (139d).

To a solution of phosphonium salt 78d ($35.8 \mathrm{mg}, 0.108 \mathrm{mmol}$) in toluene (0.5 mL) and THF $(0.5 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(62 \mu \mathrm{~L}, 0.099 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then cooled to $-78^{\circ} \mathrm{C}$. Methyl ketone $98(5.0 \mathrm{mg}$, $0.009 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred for 0.5 h at $-78{ }^{\circ} \mathrm{C}$, allowed to reach room temperature and stirred for 12 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 6:1) to afford $5.1 \mathrm{mg}(90 \%)$ of an inseparable 8:1 mixture of $\mathbf{1 3 9 d}$ and its presumed C 15 isomer as a colorless oil.

Note: The Z isomer was separated but still an isomer is present in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR. We assume that the center at the C 15 isomerised under this relatively harsh conditions (at lower temperature the reaction did not proceed).

TLC: $\mathrm{R}_{f} 0.37$ (hexane/EtOAc 4:1, UV, CPS).
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}$, $1 \mathrm{H}), 5.13(\mathrm{dd}, J=7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{dq}, J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=16.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{ddd}, J=15.4,3.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dq}, J=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.53$ $(\mathrm{m}, 2 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, $1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{dddd}$, $J=11.2,8.7,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{dd}, J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}),-0.19$ $(\mathrm{dd}, J=5.3,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, CDCl_{3}): $\delta=215.6,171.5,165.6,156.6,149.3,124.1,117.8,81.4,80.8$, $76.1,53.5,48.1,39.5,35.9,34.9,33.8,31.6,25.5,24.8,24.6,24.2,23.3,20.7,19.8,19.3$, 18.0, 15.4, 0.9, 0.6.

IR (film): v 2952, 1738, 1699, 1562, 1461, 1422, 1379, 1255, 1197, 1157, 1116, 1063, 1020, 984, 888, 843, 749.

HRMS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$631.3957, found 631.3968 .

(1S,3S,7S, 10R,11S,12S, 16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-((E)-1-
(pyrimidin-2-yl)prop-1-en-2-yl)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (1d). To an 8:1 mixture of protected cyclopropyl-Epo B 139d and its presumed C15 isomer (5.0 mg , $0.008 \mathrm{mmol})$ in methanol $(0.5 \mathrm{~mL})$ was added citric acid $(5.0 \mathrm{mg}, 0.024 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 12 h , a second portion of citric acid (3.0 mg , 0.014 mmol) was then added and stirring was continued for further 12 h . The reaction mixture was then diluted with water $(1 \mathrm{~mL})$ and treated with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield $3.5 \mathrm{mg}(91 \%)$ of an $8: 1$ mixture of $\mathbf{1 d}$ and its presumed C15 isomer as a colorless oil.
Note: The presumed C15 isomer resulting from the Wittig reaction could be separated by preparative HPLC to afford 2.5 mg of $\mathbf{1 6 d}$.

TLC: $\mathrm{R}_{f} 0.27$ (hexane/EtOAc 1:3, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-32.3^{\circ}\left(c=0.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.70(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{qd}$, $J=1.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=8.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}$, $J=5.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{qd}, J=6.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=14.5,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{dd}, J=14.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{ddd}, J=15.2,3.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.71(\mathrm{qd}, J=6.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.28-$ $1.21(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.51$ (dddd, $J=10.5,8.9,5.5,2.0,1 \mathrm{H}), 0.47(\mathrm{~m}, 1 \mathrm{H}), 0.42(\mathrm{dd}, J=8.9$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}),-0.10(\mathrm{dd}, J=5.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=220.9,171.0,165.3,156.8,148.8,123.7,118.1,81.1,73.2$, $72.5,53.2,42.5,41.1,39.6,36.1,35.0,33.3,31.3,24.7,23.0,22.9,22.7,21.0,19.4,19.1$, 17.3, 15.9, 13.0.

IR (film): v 3395, 2955, 2927, 2860, 1727, 1688, 1557, 1460, 1423, 1379, 1259, 1074, 1017, 875, 801, 754, 640.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 487.3166$, found 487.3161 .
Analytical HPLC: method: eluent B 45-60\% (linear gradient from 0-12 min), retention time 9.33 min .

$\begin{array}{llllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

(1S,3S,7S,10R,11S,12S,16S)-8,8,10,12,16-pentamethyl-3-((E)-1-(pyrimidin-4-yl)prop-1-en-2-yl)-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (139e). To a solution of phosphonium salt 78e $(35.8 \mathrm{mg}, 0.108 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ and THF $(0.5 \mathrm{~mL})$ was added $n-\operatorname{BuLi}(68 \mu \mathrm{~L}, 0.108 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Methyl ketone $\mathbf{9 8}(10.0 \mathrm{mg}$, $0.018 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise. The reaction mixture was stirred for 0.5 h at $-78{ }^{\circ} \mathrm{C}$, allowed to reach room temperature, heated to $75^{\circ} \mathrm{C}$ and stirred for 52 h at this temperature. After cooling to room temperature saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 6:1) to afford $6.1 \mathrm{mg}(54 \%, 77 \% \mathrm{brsm})$ of an inseparable $8: 1$ mixture of $\mathbf{1 3 9 e}$ and its presumed C15 isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.24$ (hexane/EtOAc 4:1, UV, CPS).
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.17(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=3.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dq}, J=9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=16.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}$, $J=16.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (ddd, $J=16.0,3.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (s, 3 H), 1.65 (ddd, $J=16.0$, $10.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.16$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90-0.82(\mathrm{~m}, 1 \mathrm{H})$, 0.45 (dddd, $J=10.8,8.7,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.35$ (dd, $J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 0.14 (s, 9H), 0.11 (s, 9H), -0.13 (dd, $J=5.4,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=218.1,171.0,163.4,158.6,156.9,146.5,122.3,121.3$, $79.5,77.2,73.4,53.3,46.9,40.6,36.3,34.3,31.9,29.7,25.2,24.6,23.6,20.7,20.6,19.9$, $19.0,18.2,17.7,16.8,1.0,0.6$.

IR (film): v 2951, 1741, 1695, 1577, 1463, 1383, 1254, 1158, 1114, 1020, 987, 884, 843, 761. HRMS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$631.3957, found 631.3952.

(1S,3S,7S,10R,11S,12S,16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-((E)-1-
(pyrimidin-4-yl)prop-1-en-2-yl)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (1e). To an 8:1 mixture of protected cyclopropyl-Epo B 139e and its presumed C15 isomer (8.0 mg , $0.013 \mathrm{mmol})$ in methanol $(0.5 \mathrm{~mL})$ was added citric acid $(8.0 \mathrm{mg}, 0.038 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 24 h , was then diluted with water (1 mL) and treated with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (1 mL). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield $5.2 \mathrm{mg}(84 \%)$ of an $8: 1$ mixture of $\mathbf{1 e}$ and its presumed C15 isomer as a colorless oil.

Note: The presumed C15 isomer resulting from the Wittig reaction could only be partially separated by preparative HPLC.

TLC: Rf. 0.33 (hexane/EtOAc 1:2, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-34.6^{\circ}\left(c=0.16, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.15(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=8.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}$, $J=5.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{qd}, J=6.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (dd, $J=15.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{ddd}, J=15.0,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{qd}$, $J=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.49$ (dddd, $J=10.6,8.9,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.43(\mathrm{dd}, J=8.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}),-0.08(\mathrm{dd}, J=5.4,4.1 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=221.1,171.0,162.9,157.9,157.3,148.7,123.1,121.2$, 81.4, 73.4, 73.2, 52.5, 42.9, 39.4, 36.2, 34.9, 33.3, 31.3, 24.7, 23.3, 22.8, 22.6, 20.9, 20.3, 19.4, 17.3, 15.8, 13.3 .

IR (film): v 3435, 3356, 2928, 2863, 1729, 1685, 1580, 1532, 1462, 1383, 1256, 1149, 1082, 1016, 879, 804, 754, 667.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 487.3166$, found 487.3174 .
Analytical HPLC: Method: eluent B 45\% (isokratic), retention time 9.45 min .

142
(1S,3S,7S,10R,11S,12S,16S)-3-((E)-1-(5-((tert-butyldimethylsilyloxy)methyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-7,11-bis(trimethylsilyloxy)-4-
oxabicyclo[14.1.0]heptadecane-5,9-dione (142). To a solution of phosphonate 140b (85.2 $\mathrm{mg}, 0.234 \mathrm{mmol})$ in THF (1.5 mL) was added LiHMDS ($1 \mathrm{M} \mathrm{in} \mathrm{THF} 0.23 \mathrm{~mL},, 0.234 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature. Methyl ketone $98(26.0 \mathrm{mg}, 0.047 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise and the solution was allowed to warm to room temperature over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford 27.0 mg (68%) of 142 as a single isomer as a colorless oil.
TLC: R. 0.28 (hexane/EtOAc 20:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }^{\mathbf{D}} \mathbf{~}:=-5.7^{\circ}\left(c=1.23, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.33(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}$, $J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=9.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dq}, J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}$, $J=16.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{ddd}, J=15.3,3.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dq}$, $J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.251 .15(\mathrm{~m}$, $1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 0.93 (s, 9H), 0.90-0.83 (m, 3H), 0.60 (dddd, $J=10.5,8.7,5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{dd}, J=8.7$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}),-0.17(\mathrm{dd}, J=5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.6,171.6,171.4,159.9,145.1,113.6,102.3,80.8,80.7$, $75.8,57.5,53.5,48.0,39.8,36.0,34.7,34.0,31.7,25.9,25.6,24.8,24.1,23.6,23.4,20.7$, $19.9,19.4,18.4,17.9,15.4,0.9,0.6,-5.2$.

IR (film): v 2955, 2359, 1742, 1698, 1457, 1380, 1251, 1160, 1115, 1021, 985, 889, 839, 774. HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{NO}_{7} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 764.4768$, found 764.4759.

2A
(1S,3S,7S,10R,11S,12S,16S)-7,11-dihydroxy-3-((E)-1-(5-(hydroxymethyl)isoxazol-3-
yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (2A). To protected cyclopropyl-Epo B $142(23.0 \mathrm{mg}, 0.030 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ was added CSA $(7.0 \mathrm{mg}, 0.030 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and stirred for 8 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous NaHCO_{3} $(5 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield $16.0 \mathrm{mg}(90 \%)$ of $\mathbf{2 A}$ as a white foam.
TLC: $\mathrm{R}_{f} 0.13$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-24.5^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d 6$): \delta=6.42(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.13(\mathrm{dd}$, $J=7.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$
(ddd, $J=8.0,7.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=8.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dq}, J=8.6,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.97$ (ddd, $J=15.6,3.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=15.6,10.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}$, $3 \mathrm{H}), 1.24-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$, $0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{dddd}, J=10.6,8.7,5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dd}, J=8.7,4.0 \mathrm{~Hz}$, $1 \mathrm{H}),-0.08(\mathrm{dd}, J=5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=218.0,172.4,170.3,159.4,144.6,112.7,102.4,80.0$, $75.4,69.4,54.7,53.2,44.8,38.8,35.1,34.0,33.5,29.2,24.5,23.3,23.0,22.1,20.1,19.1$, 18.4, 18.3, 16.3, 15.0.

IR (film): v 3413, 2944, 1729, 1688, 1603, 1456, 1379, 1335, 1253, 1147, 1038, 1008, 983, 958, 937, 755, 668.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{NNaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 528.2932$, found 528.2948.
Analytical HPLC: Method: eluent B 40-50\% (linear gradient from 0-12 min), retention time 8.63 min .

$142 Z$
(1S,3S,7S,10R,11S,12S,16S)-3-((Z)-1-(5-((tert-butyldimethylsilyloxy)methyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-7,11-bis(trimethylsilyloxy)-4-
oxabicyclo[14.1.0]heptadecane-5,9-dione (142Z). To a solution of phosphonate 140b (85.2 $\mathrm{mg}, 0.234 \mathrm{mmol}$) in THF (1.5 mL) was added LiHMDS (1 M in THF, $0.23 \mathrm{~mL}, 0.234 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature. Methyl ketone $98(26.0 \mathrm{mg}, 0.047 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise and the solution was allowed to warm to room temperature over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford $9.0 \mathrm{mg}(25 \%)$ of $\mathbf{1 4 2 Z}$ as a single isomer as a colorless oil.

TLC: Rf. 0.20 (hexane/EtOAc 20:1, UV, CPS).
$[\alpha]^{20} \mathbf{D}:=+15.6^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.31(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}$, $J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=9.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dq}, J=9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}$, $J=15.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=15.3,3.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.701 .56$ $(\mathrm{m}, 3 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.251 .20(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.77$ (dddd, $J=10.8,8.7,5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{dd}, J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.06$ (s, 9H), -0.21 (dd, J=5.6, 4.0 Hz, 1H).
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
IR (film): v 2955, 2859, 1742, 1698, 1473, 1457, 1380, 1251, 1160, 1115, 1021, 985, 839, 774.

HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{NO}_{7} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 764.4768$, found 764.4764.

(1S,3S,7S,10R,11S,12S,16S)-7,11-dihydroxy-3-((Z)-1-(5-(hydroxymethyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (2AZ). To protected cyclopropyl-Epo B C16-C17 Z isomer $\mathbf{1 4 2 Z}(8.0 \mathrm{mg}, 0.010 \mathrm{mmol})$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.67 \mathrm{~mL})$ and $\mathrm{MeOH}(0.33 \mathrm{~mL})$ was added CSA $(2.4 \mathrm{mg}, 0.010 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and stirred for 15 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield $3.9 \mathrm{mg}(75 \%)$ of $\mathbf{2 A Z}$ as a colorless oil.

TLC: $\mathrm{R}_{f} 0.13$ (hexane/EtOAc 1:1, UV, CPS).
$[\alpha]^{20} \mathbf{D}:=+48.6^{\circ}\left(c=0.17, \mathrm{CHCl}_{3}\right)$.
${ }^{1} H-N M R ~(500 ~ M H z, ~ D M S O-d 6): ~ \delta=6.38(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=8.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=8.4,6.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{ddd}, J=7.1,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (qd, $J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=15.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=15.5,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.89 (ddd, $J=14.8,5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{ddd}, J=14.8,10.3,8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.44-1.33 (m, 2H), 1.30-1.19 (m, 4H), 1.22 (s, 3H), 1.18-1.14 (m, 1H), 1.05 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.68$ (dddd, $J=10.3,8.8$, $5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.36(\mathrm{dd}, J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}),-0.12(\mathrm{dd}, J=5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13}$ C-NMR (125 MHz , DMSO-d6): $\delta=217.7,172.4,170.4,158.8,146.0,113.0,102.3,75.1$, $74.9,69.8,54.7,53.1,44.7,38.8,35.0,33.9,33.3,29.4,24.4,23.0,22.7,22.3,20.0,19.3$, 18.4, 18.3, 18.2, 16.0;

IR (film): v 3429, 3405, 2942, 2875, 1719, 1687, 1604, 1456, 1380, 1289, 1258, 1175, 1148, 1073, 1052, 1032, 1009, 984, 960, 757.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 506.3112$, found 506.3124 .
Analytical HPLC: Method: eluent B 40-50\% (linear gradient from 0-12 min), retention time 9.26 min .

143
tert-butyl ((3-((E)-2-((1S,3S,10R,11S,12S,16S,E)-8,8,10,12,16-pentamethyl-5,9-dioxo-11-(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-6-en-3-yl)prop-1-en-1-yl)isoxazol-5yl)methyl)carbamate (143). To a solution of phosphonate $141(56.7 \mathrm{mg}, 0.163 \mathrm{mmol})$ in

THF (1.5 mL) was added n - $\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexane, $102 \mu \mathrm{~L}, 0.163 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 0.5 h at this temperature. Methyl ketone $\mathbf{9 8}(15.0 \mathrm{mg}$, $0.033 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise and the solution was allowed to warm to room temperature over a period of 2 h and was then stirred for 10 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 8:1) to afford $5.0 \mathrm{mg}(28 \%)$ of an inseparable 4:1 mixture of $\mathbf{1 4 3}$ and its C16-C17 Z isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 4:1, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.89(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}$, $1 \mathrm{H}), 5.95(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=6.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.42(\mathrm{dd}$, $J=6.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dq}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ (ddd, $J=15.6,2.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{ddd}, J=15.6,11.5,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.07(\mathrm{~m}$, $1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.95-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{dddd}, J=11.5,8.9,5.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.40(\mathrm{dd}, J=8.9,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $0.14(\mathrm{~s}, 9 \mathrm{H}),-0.14(\mathrm{dd}, J=5.5,4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 213.3,165.2,160.2,153.7,152.0,150.0,145.2,122.8,113.0$, $102.6,80.4,80.1,75.5,52.4,45.8,36.7,36.7,34.534 .5,29.9,28.5$,25.1, 24.9, 24.8, 24.0, 22.9, 20.6, 19.3, 18.7, 17.6, 15.5, 1.0.

IR (film): v 3367, 2953, 2875, 1703, 1644, 1602, 1509, 1455, 1367, 1293, 1250, 1171, 1157, 1118, 1084, 1048, 1024, 988, 910, 887, 838, 791, 728.
HRMS (ESI): calculated for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 681.3905$, found 681.3914 .

144
(3-((E)-2-((1S,3S, 10R, $11 S, 12 S, 16 S, E)$-11-hydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4-oxabicyclo[14.1.0]heptadec-6-en-3-yl)prop-1-en-1-yl)isoxazol-5-yl)methanaminium chloride (144). To protected cyclopropyl-Epo B $143(19.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ was added HCl
$(2.25 \mathrm{~mL}, 2.253 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 14 h . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5\right)$ to yield 9.0 mg (69\%) of $\mathbf{1 4 4}$ as a semi solid.
TLC: $\mathrm{R}_{f} 0.22\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5, \mathrm{UV}, \mathrm{CPS}\right)$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=+78.6^{\circ}\left(c=0.29, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR (500 MHz, DMSO-d6): $\delta=8.62$ (br s, 3H), $6.96(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H})$,
$6.39(\mathrm{q}, ~ J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}$, 2 H), 3.49 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (dq, $J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10 (ddd, $J=15.6,2.7,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.00(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{ddd}, J=15.6,11.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.26$ $(\mathrm{m}, 4 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.07(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-$ $1.00(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{dddd}, J=11.5,8.6,5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dd}$, $J=8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}),-0.13(\mathrm{dd}, J=5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz , DMSO-d6): $\delta=213.3,165.2,164.8,159.7,150.4,145.7,121.9,111.9$, $105.0,79.7,75.9,51.8,44.5,35.5,34.0,33.9,33.6,29.0,24.4,24.4,24.0,23.5,22.6,20.0$, 18.6, 18.1, 16.5, 15.1 .

IR (film): v 3455, 2940, 1700, 1679, 1453, 1377, 1337, 1262, 1201, 1179, 1136, 1050, 1024, 984, 876, 835, 799, 756, 722.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 487.3166$, found 487.3162 .
Analytical HPLC: Method: A and B with 0.1\% TFA, eluent B 30-50\% (linear gradient from $0-12 \mathrm{~min}$), retention time 7.81 min .

146
Di-tert-butyl ((3-((E)-2-((1S,3S,7S,10R,11S,12S,16S)-8,8,10,12,16-pentamethyl-5,9-dioxo-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadecan-3-yl)prop-1-en-1-yl)isoxazol$\mathbf{5 - y l}$)methyl)dicarbamate (146). To a solution of phosphonate $\mathbf{1 4 5 g}(48.5 \mathrm{mg}, 0.108 \mathrm{mmol})$ in THF (1.5 mL) was added LiHMDS (1.0 M in THF, $108 \mu \mathrm{~L}, 0.108 \mathrm{mmol}$) dropwise at $78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature. Methyl ketone 98 ($20.0 \mathrm{mg}, 0.036 \mathrm{mmol}$) in THF (1.0 mL) was added dropwise and the reaction mixture was allowed to warm to room temperature over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford 15.0 mg (52%) of 146 as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.19$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }^{\mathbf{D}}$: $=-4.6^{\circ}\left(c=0.75, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.30(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=7.9$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=9.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dq}$, $J=9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=16.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=16.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{ddd}, J=15.6,3.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.51(\mathrm{~s}, 18 \mathrm{H}), 1.49-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.59$ (dddd, $J=8.7$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.39$ (dd, $J=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),-0.18$ (dd, $J=5.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.6,171.4,168.9,160.0,151.9,145.2,113.5,102.7$, $83.5,80.8,80.7,75.8,53.5,48.0,41.8,39.8,36.0,34.7,34.0,31.7,28.2,25.6,24.8,24.1$, 23.6, 23.4, 20.7, 19.9, 19.4, 17.9, 15.5, 0.9, 0.6.

IR (film): v 2956, 1795, 1473, 1700, 1457, 1386, 1367, 1344, 1306, 1251, 1141, 1115, 1020, 986, 948, 889, 842, 767, 749.

HRMS (ESI): calculated for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{NaO}_{10} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 871.4931$, found 871.4947 .

(3-((E)-2-((1S,3S,7S,10R,11S,12S,16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-
dioxo-4-oxabicyclo[14.1.0]heptadecan-3-yl)prop-1-en-1-yl)isoxazol-5-yl)methanaminium
2,2,2-trifluoroacetate (2B). To protected cyclopropyl-Epo B $146(15.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ was added TFA $(0.67 \mu \mathrm{~L}, 0.875 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 17 h . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (EtOAc/MeOH/NEt ${ }_{3} 90: 10: 0.5$) to yield 9.5 mg (94\%) of 2B as a colorless oil.

TLC: $\mathrm{R}_{f} 0.17$ ($\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NEt}_{3} 90: 10: 0.5$, UV, CPS).
$[\alpha]^{20} \mathrm{D}:=-20.8^{\circ}\left(c=0.53, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR (500 MHz, DMSO-d6): $\delta=8.77$ (br s, 3H), $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H})$,
$5.14(\mathrm{dd}, J=7.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=7.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=8.7$
$\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{dq}, J=8.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (d, $J=7.2$
$\mathrm{Hz}, 1 \mathrm{H}$), 1.98 ($\mathrm{s}, 3 \mathrm{H}$), 1.97 (ddd, $J=15.6,3.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=15.6,10.5,7.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.04-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.61$ (dddd, $J=10.5,8.6,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dd}, J=8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}),-0.08(\mathrm{dd}, J=5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (125 MHz , DMSO-d6): $\delta=218.1,170.4,165.1,159.9,145.6,112.2,105.0,80.0$, $75.5,69.3,53.2,44.9,38.8,35.1,34.0,33.9,33.5,29.1,24.5,23.3,23.1,22.1,20.1,19.1$, 18.3, 18.3, 16.4, 15.1 .

IR (film): v 3374, 2931, 1730, 1686, 1599, 1455, 1379, 1334, 1260, 1148, 1085, 1025, 1009, 936, 871, 800, 757, 663.
HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$, found.
Analytical HPLC: Method: A and B with 0.1\% TFA, eluent B 10-60\% (linear gradient from 0-12 min), retention time 10.26 min .

4.2.3 Analogs of 9,10-dehydro Epo B

147
(1S,3S,7S,10R,11S,12S,16R,E)-3-acetyl-7,11-dihydroxy-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-dione (147). To a solution of acetal $\mathbf{1 3 5}$ (49 mg , $0.072 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(97 \mathrm{mg}, 0.36 \mathrm{mmol})$ in one portion at room temperature and the reaction mixture was stirred for 7 h . The reaction was then quenched by addition of water (4 mL), the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to yield 25 mg (85%) of diol 147 as a white foam.
TLC: $\mathrm{R}_{f} 0.16$ (hexane/EtOAc 3:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-16.7^{\circ}\left(c=1.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.59(\mathrm{ddd}, J=15.7,9.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (ddd, $J=15.7$, $8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=10.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=10.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.78(\mathrm{dd}, J=7.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dq}, J=7.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{dd}, J=15.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=14.9,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.22$ (ddd, $J=15.6,2.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dqd}, J=8.2,7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=14.9,3.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, J=15.6,10.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.62(\mathrm{dddd}, J=10.4,8.9,5.4$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.52(\mathrm{dd}, J=8.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}),-0.04(\mathrm{dd}, J=5.4,4.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.5,206.0,171.3,131.5,130.6,80.3,76.2,70.6,53.2$, $45.8,40.5,39.9,36.4,29.6,26.5,24.6,23.1,23.1,20.8,19.7,18.5,18.0,15.4$.

IR (film): v 3478, 2980, 1743, 1720, 1689, 1452, 1367, 1252, 1182, 1149, 1077, 1011, 980, 942, 877, 754, 672.

HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 431.2404$, found 431.2410 .

148
(1S,3S,7S,10R,11S,12S,16R,E)-3-acetyl-8,8,10,12,16-pentamethyl-7,11-
bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-dione (148). To a solution of diol $147(240 \mathrm{mg}, 0.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added 2,6-lutidine ($0.41 \mathrm{~mL}, 3.51$
$\mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and TMSOTf ($0.32 \mathrm{~mL}, 1.75$ mmol) was added dropwise. The reaction mixture was stirred for 1.5 h at this temperature and was then allowed to reach room temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1) to yield 318 mg (98%) of silyl ether 148 as a colorless oil.

Note: Upon extensive scratching and storage at $-20^{\circ} \mathrm{C}$ silyl ether $\mathbf{1 4 8}$ turned into a white solid.

TLC: $\mathrm{R}_{f} 0.18$ (hexane/EtOAc 12:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-10.3^{\circ}\left(c=0.35, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.53$ (ddd, $\left.J=15.6,7.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.47(\mathrm{ddd}, J=15.6$, $7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=10.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=15.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dq}, J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}$, $J=15.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dq}, J=7.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=15.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}$, $J=15.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=15.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.40$ (ddd, $J=15.5,11.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{dddd}, J=11.4,8.6,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.47(\mathrm{dd}, J=8.7$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),-0.09(\mathrm{dd}, J=5.4,4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.6,204.5,172.1,132.2,130.6,80.6,79.9,76.2,53.6$, 49.2, 40.6, 39.7, 36.6, 31.3, 26.1, 24.8, 24.2, 24.1, 23.7, 22.1, 20.2, 18.7, 17.7, 1.0, 0.5 .

IR (film): v 2957, 2904, 1734, 1695, 1454, 1385, 1365, 1311, 1251, 1200, 1161, 1112, 1086, 1036, 1021, 987, 889, 841, 753.
HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 575.3195$, found 575.3196.

149
(1S,3S,7S,10R,11S,12S,16R,E)-8,8,10,12,16-pentamethyl-3-((E)-1-(2-methylthiazol-4-yl)prop-1-en-2-yl)-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9dione (149). To a solution of phosphonium salt 78a ($41.1 \mathrm{mg}, 0.118 \mathrm{mmol}$) in THF (1 mL)
was added KHMDS ($23.5 \mathrm{mg}, 0.118 \mathrm{mmol}$) in one portion at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h at this temperature and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Methyl ketone 148 (12.0 $\mathrm{mg}, 0.022 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise and the solution was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1) to afford $12.0 \mathrm{mg}(79 \%)$ of an inseparable 7:1 mixture of $\mathbf{1 4 9}$ and its C16-C17 Z isomer as a semi solid.

TLC: $\mathrm{R}_{f} 0.54$ (hexane/EtOAc 9:1, UV, CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.94(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.6$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (ddd, $J=15.6,5.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=9.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}$, $J=9.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dq}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}$, $J=14.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=14.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=14.8,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{dq}, J=7.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{ddd}, J=15.1,2.6,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.98(\mathrm{dd}, 14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=15.1,10.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.72$ (dddd, $J=10.1,8.8$, $5.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{dd}, J=8.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),-0.19(\mathrm{dd}, J=5.7$, $4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.6,171.3,168.2,152.5,139.1,132.1,129.9,120.0$, $116.2,81.0,79.2,75.2,53.7,48.9,41.0,41.0,37.4,34.9,24.6,24.5,23.5,22.3,22.2,20.0$, 19.3, 18.8, 17.5, $14.8,1.0,0.7$.

IR (film): v 2957, 1738, 1694, 1451, 1381, 1304, 1251, 1202, 1181, 1160, 1115, 1091, 1038, 1020, 987, 950, 889, 840, 753, 734.
HRMS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{NO}_{5} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{H}]^{+} 648.3569$, found 348.3562 .

1f
($1 S, 3 S, 7 S, 10 R, 11 S, 12 S, 16 R, E)$-7,11-dihydroxy-8,8,10,12,16-pentamethyl-3-((E)-1-(2-methylthiazol-4-yl)prop-1-en-2-yl)-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-dione(1f) To a 7:1 mixture of protected cyclopropyl-Epo B $\mathbf{1 4 9}$ and its C16-C17 Z isomer (12.0 mg , $0.019 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added citric acid $(11.7 \mathrm{mg}, 0.056 \mathrm{mmol})$ at room
temperature. The reaction mixture was stirred for 4 h , a second portion of citric acid (3.0 mg , 0.014 mmol) was then added and stirring was continued for further 4 h . The reaction mixture was then diluted with water $(1 \mathrm{~mL})$ and treated with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 5:2) to yield $8.6 \mathrm{mg}(92 \%)$ of an inseparable $7: 1$ mixture of 1f and its $\mathrm{C} 16-\mathrm{C} 17 \mathrm{Z}$ isomer as a colorless oil.

Note: The C16-C17 Z isomer resulting from the Wittig reaction could be separated by preparative HPLC.
TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 2:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-92.3^{\circ}\left(c=0.4, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}$ (500 MHz, DMSO-d6): $\delta=7.33(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}$, $J=15.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.7,7.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=7.9,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.13 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{ddd}, J=7.5,6.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (ddd, $J=9.3,6.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dq}, J=9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{dd}, J=16.2$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=16.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=14.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.90(\mathrm{dqd}, J=8.3,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=14.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (ddd, $J=15.3,8.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=15.3,3.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.60(\mathrm{dddd}, J=8.7,8.3,5.5,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.42(\mathrm{dd}, J=8.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}),-0.04(\mathrm{dd}, J=5.5,3.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz , DMSO-d6): $\delta=217.5,170.1,164.3,152.2,137.6,131.7,129.1,119.2$, $117.5,80.5,74.8,68.6,53.4,45.7,40.1,39.6,37.1,33.9,24.4,22.2,21.1,20.8,19.3,19.1$, 18.9, 18.9, 16.3, 14.3.

IR (film): v 3417, 2953, 2927, 2859, 1729, 1689, 1606, 1508, 1452, 1421, 1365, 1255, 1186, 1153, 1090, 1009, 980, 958, 840, 774, 671.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 504.2778$, found 504.2768.
Analytical HPLC: Method: eluent B 50-60\% (linear gradient from 0-12 min), retention time 9.41 min .

151a
(1S,3S,7S,10R,11S,12S,16R,E)-3-((E)-1-(2-((tert-butyldimethylsilyloxy)methyl)thiazol-4-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-dione (151a). To a solution of phosphonium salt 140a ($34.7 \mathrm{mg}, 0.072 \mathrm{mmol}$) in THF (1 mL) was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $42 \mu \mathrm{~L}$,
0.067 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Methyl ketone $\mathbf{1 4 8}(10.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ over a period of 3.5 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 30:1) to afford 9.3 mg (67%) of 151a as a single isomer as a colorless oil

TLC: $\mathrm{R}_{f} 0.30$ (hexane/EtOAc 20:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-11.3^{\circ}\left(c=0.47, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.04(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.6$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=9.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.31$ (dd, $J=9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dq}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}$, $J=14.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=14.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (dq, $J=7.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (ddd, $J=15.1,5.1,2.5,1 \mathrm{H}), 1.68(\mathrm{ddd}, J=15.1,10.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.72$ (dddd, $J=10.2,8.9,5.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{dd}, J=8.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.09$ (s, 9H), -0.19 (dd, $J=5.6,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=216.7,172.1,171.3,153.0,138.6,132.0,129.8,120.4$, 116.4, 81.1, 79.1, 75.2, 63.4, 53.7, 48.9, 41.0, 41.0, 37.5, 34.9, 25.9, 24.6, 24.6, 23.5, 22.3, $22.0,20.0,18.8,18.4,17.4,14.7,1.0,0.7,-5.3$.
IR (film): v 2955, 2931, 2861, 1738, 1694, 1464, 1382, 1362, 1253, 1039, 987, 890, 840, 780, 754.

HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{72} \mathrm{NO}_{6} \mathrm{SSi}_{3}[\mathrm{M}+\mathrm{H}]^{+} 778.4383$, found 778.4391.

(1S,3S,7S,10R,11S,12S,16R,E)-7,11-dihydroxy-3-((E)-1-(2-(hydroxymethyl)thiazol-4-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9dione(2a) To protected cyclopropyl-Epo B 151a ($9.3 \mathrm{mg}, 0.012 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.25 \mathrm{~mL})$ was added CSA $(3.6 \mathrm{mg}, 0.015 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture
was then allowed to reach room temperature and stirred for 24 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield $6.3 \mathrm{mg}(99 \%)$ of $\mathbf{2 a}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.19$ (hexane/EtOAc 1:1, UV, CPS).
$[\alpha]^{20} \mathbf{D}:=-50.5^{\circ}(c=0.33$, acetone $)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d6): $\delta=7.43(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dd}, J=15.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.7,6.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ $(\mathrm{dd}, J=7.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{ddd}, J=7.6,6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=9.3,6.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (dq, $J=9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=16.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=16.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ $(\mathrm{dd}, J=14.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{dqd}, J=8.3,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (dd, $J=14.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87 (ddd, $J=15.3,8.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J=15.3,3.6,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, $3 \mathrm{H}), 0.60$ (dddd, $J=8.7,8.5,5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.42$ (dd, $J=8.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}),-0.04(\mathrm{dd}, J=$ $5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.5,172.9,170.2,152.4,137.7,131.7,129.1,119.4$, $117.4,80.6,74.8,68.6,60.9,53.5,45.8,40.2,39.7,37.1,33.9,24.5,22.2,21.2,20.9,19.3$, 19.2, 18.9, 16.3, 14.3 .

IR (film): v 3397, 2925, 2869, 2856, 1729, 1688, 1455, 1256, 1153, 1052, 1040, 1010, 980, 941.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 520.2727$, found 520.2726.
Analytical HPLC: Method: eluent B 40-50\% (linear gradient from 0-12 min), retention time 9.40 min .

151b
(1S,3S,7S,10R,11S, 12S, 16R,E)-3-((E)-1-(5-((tert-butyldimethylsilyloxy)methyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-7,11-bis(trimethylsilyloxy)-4-
oxabicyclo[14.1.0]heptadec-13-ene-5,9-dione (151b). To a solution of phosphonate $\mathbf{1 4 0 b}$ ($39.4 \mathrm{mg}, 0.109 \mathrm{mmol}$) in THF (1.0 mL) was added LiHMDS (1.0 M in hexane, $99 \mu \mathrm{~L}, 0.099$ mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature. Methyl ketone $\mathbf{1 4 8}(10.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise and the reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford $6.2 \mathrm{mg}(45 \%)$ of $\mathbf{1 5 1 b}$ as a single isomer as a colorless oil

TLC: $\mathrm{R}_{f} 0.16$ (hexane/EtOAc 20:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=+33.2^{\circ}\left(c=0.31, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.28(\mathrm{t}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}$, $J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{ddd}, J=15.7,5.0,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.77 (d, $J=0.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.27 (dd, $J=9.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dq}$, $J=9.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=14.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}$, $J=15.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dq}, J=7.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=15.0,2.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{dd}, J=15.3,5.0,1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{ddd}, J=15.0,10.7,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.15(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.93$ (s, 9 H) , 0.82 (dddd, $J=10.7,8.9,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{dd}, J=8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.16$ (s, 9 H), 0.12 ($\mathrm{s}, 6 \mathrm{H}$), 0.05 ($\mathrm{s}, 9 \mathrm{H}$), -0.17 (dd, $J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=216.5,171.6,171.2,159.0,144.5,131.6,129.7,114.4$, $102.1,79.1,74.9,74.9,57.4,53.5,48.8,40.7,37.5,34.0,25.8,24.8,24.3,22.9,22.1,21.6$, 19.9, 18.9, 18.6, 18.3, 17.4, 0.8, 0.4, -5.3.

IR (film): v 2956, 2930, 2860, 1739, 1694, 1460, 1382, 1302, 1283, 1252, 1202, 1180, 1160, 1113, 1092, 1038, 989, 948, 890, 839, 780, 754.

HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{72} \mathrm{NO}_{7} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 762.4611$, found 762.4608.

2b
(1S,3S,7S,10R,11S,12S,16R,E)-7,11-dihydroxy-3-((E)-1-(5-(hydroxymethyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-
dione(2b) To protected cyclopropyl-Epo B $\mathbf{1 5 1 b}(6.2 \mathrm{mg}, 0.008 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and $\mathrm{MeOH}(0.2 \mathrm{~mL})$ was added CSA $(1.9 \mathrm{mg}, 0.008 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and stirred for 15 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield 2.1 mg (56%) of $\mathbf{2 b}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.20$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-7.6^{\circ}(c=0.38$, acetone $)$.
${ }^{1} H-N M R(500 \mathrm{MHz}$, DMSO-d6): $\delta=6.39(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=15.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{ddd}, J=15.6,7.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=9.0,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.92(\mathrm{dq}, J=9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J=14.8,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.93-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{dd}, J=15.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J=15.1,2.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, $3 \mathrm{H}), 0.69$ (dddd, $J=8.8,8.7,5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{dd}, J=8.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{dd}, J=$ $5.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.6,172.5,170.3,158.8,145.7,131.5,129.2,113.2$, $102.4,74.9,74.7,68.6,54.7,53.4,46.0,40.1,39.4,36.9,33.6,24.3,22.1,22.0,20.8,19.5$, 18.8, 18.6, 18.5, 16.3.

IR (film): v 3391, 2958, 2925, 1730, 1716, 1688, 1456, 1261, 1080, 1038, 1012, 986,978, 938, 808.
HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 504.2956$, found 504.2957.
Analytical HPLC: Method: eluent B 40-50\% (linear gradient from 0-12 min), retention time 7.25 min .

151Zb
(1S,3S,7S,10R,11S,12S,16R,E)-3-((Z)-1-(5-((tert-butyldimethylsilyloxy)methyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-7,11-bis(trimethylsilyloxy)-4-
oxabicyclo[14.1.0]heptadec-13-ene-5,9-dione (151Zb). To a solution of phosphonate 140b
($39.4 \mathrm{mg}, 0.109 \mathrm{mmol}$) in THF (1.0 mL) was added LiHMDS (1.0 M in THF, $99 \mu \mathrm{~L}, 0.099$ mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature. Methyl ketone $148(10.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise and the reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford $6.8 \mathrm{mg}(49 \%)$ of $\mathbf{1 5 1 Z} \mathbf{Z b}$ as a single isomer as a colorless oil

TLC: $\mathrm{R}_{\mathrm{f}} 0.21$ (hexane/EtOAc 20:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=-1.9^{\circ}\left(c=0.34, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.34(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}$, $J=15.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{ddd}, J=15.7,5.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=9.7,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.77(\mathrm{~d}, ~ J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{dd}, J=9.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dq}$, $J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=14.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (dd, $J=15.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dq}, J=7.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.99$ (ddd, $J=15.1,2.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dd}, J=15.7,5.4,1 \mathrm{H}), 1.65(\mathrm{ddd}, J=15.1,10.2,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.14(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.93$ (s, 9H), 0.72 (dddd, $J=10.2,8.7,5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{dd}, J=8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}$, 9H), 0.12 (s, 6H), 0.09 (s, 9H), -0.19 (dd, $J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.7,171.7,171.2,159.8,144.6,132.2,129.6,114.2$, $102.3,80.2,79.0,75.1,57.6,53.7,49.0,41.1,41.1,37.5,34.7,25.9,24.8,24.6,23.4,22.3$, 21.9, 20.1, 18.7, 18.4, 17.4, 15.3, 1.0, 0.7, -5.2.

IR (film): v 2955, 2930, 2860, 1740, 1694, 1460, 1380, 1302, 1283, 1252, 1180, 1159, 1112, 1092, 1039, 988, 947, 890, 838, 781, 754.

HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{72} \mathrm{NO}_{7} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 762.4611$, found 762.4602.

2Zb
(1S,3S,7S,10R,11S,12S,16R,E)-7,11-dihydroxy-3-((Z)-1-(5-(hydroxymethyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-
dione(2Zb) To protected cyclopropyl-Epo B C16-C17 Z isomer 151Zb ($6.8 \mathrm{mg}, 0.009 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and $\mathrm{MeOH}(0.2 \mathrm{~mL})$ was added $\mathrm{CSA}(2.1 \mathrm{mg}, 0.008 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and stirred for 15 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield $2.7 \mathrm{mg}(67 \%)$ of $\mathbf{2 b Z}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.17$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-58.4^{\circ}(c=0.37$, acetone $)$.
${ }^{1}$ H-NMR (500 MHz, DMSO-d6): $\delta=6.43(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.56(\mathrm{dd}$, $J=15.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{ddd}, J=15.7,7.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=7.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s} 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=6.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dq}, J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dq}, J=8.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dd}$, $J=14.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=15.4,3.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.15(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.63$ (dddd, $J=8.8,7.8,5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{dd}, J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.04(\mathrm{dd}, J=5.4,4.0 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.6,172.5,170.2,159.4,144.5,131.7,129.1,112.9$, $102.3,79.7,74.8,68.6,54.7,53.4,45.9,40.3,39.9,36.9,33.7,24.4,22.3,21.5,20.8,19.4$, 18.8, 18.7, 16.3, 15.2 .

IR (film): v 3445, 3412, 2925, 2870, 1730, 1712, 1689, 1603, 1453, 1368, 1253, 1154, 1072, 1053, 1040, 1011, 979, 958, 938.
HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 504.2956$, found 504.2959.
Analytical HPLC: Method: eluent B 40-50\% (linear gradient from 0-12 min), retention time 8.22 min .

[^15]

151c
(1S,3S,7S,10R,11S,12S,16R,E)-3-((E)-1-(1-(2-(tert-butyldimethylsilyloxy)ethyl)-5-methyl-1H-pyrazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-ene-5,9-dione (151c). To a solution of phosphonium salt

140c ($49.3 \mathrm{mg}, 0.108 \mathrm{mmol}$) in THF (1 mL) was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $62 \mu \mathrm{~L}$, 0.099 mmol) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then cooled to $-78^{\circ} \mathrm{C}$. Methyl ketone $\mathbf{1 4 8}(10.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise, the reaction mixture was allowed to warm to room temperature over a period of 3 h and was then stirred for 3 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $15: 1$) to afford $4.5 \mathrm{mg}(32 \%)$ of $\mathbf{1 5 1 c}$ as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.26$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$: $=-1.2^{\circ}\left(c=0.21, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.39(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=15.8$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (ddd, $J=15.8,6.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.39 (dd, $J=9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (dd, $J=9.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.05(\mathrm{dq}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=14.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=14.5,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38(\mathrm{dd}, J=15.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dq}, J=8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{dd}, J=15.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=15.1,2.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (ddd, $J=15.1,9.9,9.8,1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{dddd}, J=9.9,8.9,5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dd}, J=$ $8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 6 \mathrm{H}),-0.18(\mathrm{dd}, J=5.7,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=217.1,171.2,148.2,139.8,136.6,132.0,129.6,119.8$, $105.5,81.3,78.9,74.9,62.9,53.7,51.2,48.8,41.3,41.2,37.7,34.8,26.0,24.8,24.6,23.4$, $22.3,21.5,20.0,18.8,18.4,17.3,14.4,11.4,1.0,0.7,-5.5$.

IR (film): v 2955, 2930, 2860, 1738, 1694, 1468, 1459, 1382, 1302, 1252, 1180, 1160, 1115, 1038, 890, 837, 778, 751.

HRMS (ESI): calculated for $\mathrm{C}_{42} \mathrm{H}_{77} \mathrm{NO}_{6} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 789.5084$, found 789.5091.

2c
$(1 S, 3 S, 7 S, 10 R, 11 S, 12 S, 16 R, E)-7,11-d i h y d r o x y-3-((E)$-1-(1-(2-hydroxyethyl)-5-methyl-
1H-pyrazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadec-

13-ene-5,9-dione (2c). To protected cyclopropyl-Epo B 151c ($4.2 \mathrm{mg}, 0.005 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and $\mathrm{MeOH}(0.2 \mathrm{~mL})$ was added $\mathrm{CSA}(2.4 \mathrm{mg}, 0.010 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and stirred for 20 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:3) to yield $2.1 \mathrm{mg}(74 \%)$ of 2 c as a semi solid.

TLC: $\mathrm{R}_{f} 0.11$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-49.2^{\circ}\left(c=0.10, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.40(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.60(\mathrm{ddd}, J=15.6,6.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.22 (dq, $J=9.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (br s, 1H), $2.50(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=15.2$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{qd}, J=6.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.94$ (dd, $J=15.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=15.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{ddd}, J=15.1,8.6,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$, 0.51 (dddd, $J=8.8,8.7,5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.46(\mathrm{dd}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{dd}, J=4.7,3.6$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.6,171.2,148.2,139.6,137.1,132.3,130.3,118.8$, $105.8,81.3,75.4,72.1,61.7,53.3,50.2,44.6,40.0,39.8,37.5,33.6,24.7,22.5,22.2,20.2$, 19.5, 19.2, 18.7, 15.2, 13.7, 11.2 .

IR (film): v 3421, 2927, 2873, 1729, 1690, 1545, 1453, 1372, 1290, 1256, 1071, 981, 874, 779, 758, 669, 626, 541.
HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 531.3429$, found 531.3429.
Analytical HPLC: Method: eluent B 40-65\% (linear gradient from 0-12 min), retention time 8.37 min .

Di-tert-butyl
(2-(5-methyl-3-((E)-2-((1S,3S,7S,10R,11S,12S,16R,E)-8,8,10,12,16-pentamethyl-5,9-dioxo-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1-yl)-1H-pyrazol-1-yl)ethyl)dicarbamate (152h). To a solution of phosphonium salt $\mathbf{1 4 5} \mathbf{~ (~} 36.0 \mathrm{mg}, 0.062 \mathrm{mmol}$) in THF (1 mL) was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in
hexane, $37 \mu \mathrm{~L}, 0.059 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then cooled to $-78{ }^{\circ} \mathrm{C}$. Methyl ketone $\mathbf{1 4 8}(9.5 \mathrm{mg}, 0.017 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise, the reaction mixture was allowed to warm to room temperature over a period of 2 h and was then stirred for 5 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 9:1) to afford 3.0 mg (20\%) of an inseparable 10:1 mixture of $\mathbf{1 5 2 h}$ and its $\mathrm{C} 16-\mathrm{C} 17 \mathrm{Z}$ isomer as a semi-solid.

TLC: $\mathrm{R}_{f} 0.13$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-1.8^{\circ}\left(c=0.15, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.36(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.7$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{ddd}, J=15.7,5.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=9.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}$, $J=9.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, 1 H), $3.04(\mathrm{dq}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=14.7,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{dd}, J=15.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dq}, J=7.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{dd}, J=15.3,5.6,1 \mathrm{H}), 1.92(\mathrm{ddd}, J=15.2,2.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (ddd, $J=15.2,10.4,9.5,1 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$, $1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{dddd}, J=10.3,8.9,5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{dd}, J=$ $8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}),-0.17(\mathrm{dd}, J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=216.8,171.1,152.2,148.4,139.0,136.7,132.0,129.8$, $119.5,106.0,82.8,81.2,79.1,75.0,53.7,48.7,47.7,46.4,41.1,41.1,37.6,34.9,28.1,24.6$, $24.5,23.4,22.2,21.9,20.0,18.9,17.4,14.5,11.0,1.0,0.7$.

IR (film): v 2959, 2932, 2872, 1792, 1739, 1696, 1455, 1391, 1366, 1345, 1305, 1177, 1129, 1092, 1039, 987, 949, 890, 843, 754.

HRMS (ESI): calculated for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 874.5428$, found 874.5428.

2h

2-(3-((E)-2-((1S,3S,7S,10R,11S,12S,16R,E)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-

 dioxo-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1-yl)-5-methyl-1H-pyrazol-1$\mathbf{y l}$)ethanaminium chloride (2h). To a 10:1 mixture of protected cyclopropyl-Epo B 152h and its $\mathrm{C} 16-\mathrm{C} 17 \mathrm{Z}$ isomer ($3.0 \mathrm{mg}, 0.003 \mathrm{mmol}$) was added $\mathrm{HCl}(1.0 \mathrm{M}$ in EtOAc, 0.52 mL , 0.521 mmol) at room temperature. The reaction mixture was stirred for 15 h , a second portion of $\mathrm{HCl}(0.26 \mathrm{~mL}, 0.265 \mathrm{mmol})$ was then added and stirring was continued for further 25 h . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5\right)$ to yield 1.5 mg (85%) of $\mathbf{2 h}$ as a single isomer as a colorless oil.TLC: $\mathrm{R}_{f} 0.05\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5, \mathrm{UV}, \mathrm{CPS}\right)$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-27.8^{\circ}(c=0.29, \mathrm{MeOH})$.
${ }^{1} \mathbf{H}-$ NMR (500 MHz, DMSO-d6): $\delta=7.94(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.33(\mathrm{q}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (s, 1H), $5.57(\mathrm{dd}, J=15.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{ddd}, J=15.6,6.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}$, $J=7.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=7.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.22(\mathrm{tq}, J=6.3,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{qd}, J=9.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=16.1,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=16.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~d}$, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{dd}, J=14.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=15.1$, $7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=15.1,3.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.51$ (dddd, $J=8.8,7.8,5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 0.41 (dd, $J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.05$ (dd, $J=5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.6,170.3,158.3,158.0,147.7,139.6,136.5,131.7$, 129.1, 118.6, 106.0, 80.8, 74.9, 68.6, 53.5, 45.7, 45.2, 38.6, 37.2, 33.9, 24.5, 22.1, 21.1, 20.8, 19.3, 19.2, 18.9, 16.3, 14.1, 10.5 .

IR (film): v 3437, 2924, 2871, 1680, 1548, 1452, 1429, 1372, 1254, 1202, 1180, 1135, 1026, 1010, 981, 836, 799, 722.

HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 530.3588$, found 530.3581.
Analytical HPLC: Method: A and B with 0.1\% TFA, eluent B 30-55\% (linear gradient from $0-12 \mathrm{~min}$), retention time 8.01 min .

$\begin{array}{lllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

Di-tert-butyl ((3-((E)-2-((1S,3S,7S,10R,11S,12S,16R,E)-8,8,10,12,16-pentamethyl-5,9-dioxo-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1$\mathbf{y l}$)isoxazol-5-yl)methyl)dicarbamate (152g). To a solution of phosphonium salt $\mathbf{1 4 5 g}$ (48.7
$\mathrm{mg}, 0.109 \mathrm{mmol}$) in THF (1 mL) was added LiHMDS (1.0 M in THF, $99 \mu \mathrm{~L}, 0.109 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this. Methyl ketone $\mathbf{1 4 8}$ ($10.0 \mathrm{mg}, 0.018 \mathrm{mmol}$) in THF (0.5 mL) was added dropwise and the reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford 9.3 mg (61\%) of $\mathbf{1 5 2 g}$ as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.35$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-2.4^{\circ}\left(c=0.42, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.31(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=15.7$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dddd, $J=15.7,6.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}$, $2 \mathrm{H}), 4.29(\mathrm{dd}, J=9.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dq}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.84(\mathrm{dd}, J=14.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=14.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=15.0,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{dq}, J=7.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98$ (ddd, $J=15.3,2.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.96(\mathrm{dd}, J=15.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=15.3,9.8,9.6,1 \mathrm{H}), 1.50(\mathrm{~s}, 18 \mathrm{H}), 1.14(\mathrm{~s}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.71$ (dddd, $J=9.8,8.9,5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.40(\mathrm{dd}, J=8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}),-0.17$ (dd, $J=5.7,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=216.6,171.2,169.0,159.9,151.8,144.6,132.2,129.7$, $114.1,102.6,83.5,80.3,79.1,75.2,53.7,49.0,41.8,41.0,41.0,37.5,34.7,28.2,24.7,24.6$, 23.4, 22.3, 22.0, 20.1, 18.7, 17.4, 15.3, 1.0, 0.6.

IR (film): v 2979, 2958, 1795, 1740, 1697, 1602, 1474, 1455, 1423, 1383, 1368, 1305, 1251, 1175, 1160, 1141, 1115, 1037, 949, 890, 840, 761, 754.

HRMS (ESI): calculated for $\mathrm{C}_{44} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$869.4774, found 869.4793.

$\mathbf{2 g}$
(3-((E)-2-((1S,3S,7S,10R,11S,12S,16R,E)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1-yl)isoxazol-5-
$\mathbf{y l}$)methanaminium chloride (2g). To protected cyclopropyl-Epo B 152g (9.3 mg, $0.011 \mathrm{mmol})$ was added $\mathrm{HCl}(1.0 \mathrm{M}$ in $\mathrm{EtOAc}, 0.99 \mathrm{~mL}, 0.988 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 15 h , a second portion of $\mathrm{HCl}(0.99 \mathrm{~mL}, 0.988 \mathrm{mmol})$ was then added and stirring was continued for further 25 h . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5\right)$ to yield $3.7 \mathrm{mg}(67 \%)$ of $\mathbf{2 g}$ as a colorless oil.

TLC: $\mathrm{R}_{f} 0.07\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5, \mathrm{UV}, \mathrm{CPS}\right)$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-74.3^{\circ}(c=0.38, \mathrm{MeOH})$.
${ }^{1}$ H-NMR (500 MHz, DMSO-d6): $\delta=8.65$ (br s, 2H), $8.59(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H})$, $5.55(\mathrm{dd}, J=15.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (ddd, $J=15.6,7.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ (dd, $J=7.9$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dq}, J=9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=16.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=14.7,5.9,1 \mathrm{H})$, 1.90 (dq, $J=8.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=15.4,3.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (dd, $J=15.4,8.7$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.90$ (s, 3H), 0.64 (dddd, $J=8.7,8.7,4.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{dd}, J=8.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{dd}, J=$ $4.9,3.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.7,170.2,165.1,159.9,145.6,131.7,129.2,112.3$, $105.0,79.7,74.8,68.5,53.4,46.0,40.3,39.4,36.8,33.9,33.7,24.5,22.4,21.7,20.8,19.5$, 18.7, 18.6, 16.4, 15.3.

IR (film): v 3418, 2925, 2876, 1729, 1680, 1638, 1451, 1431, 1378, 1253, 1201, 1179, 1134, 1049, 1025, 1007, 980, 937, 834, 780, 722.
HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 503.3116$, found 503.3122.
Analytical HPLC: Method: A and B with 0.1\% TFA, eluent B 30-40\% (linear gradient from $0-12 \mathrm{~min}$), retention time 7.61 min .

Di-tert-butyl ($\quad 3-((Z)-2-((1 S, 3 S, 7 S, 10 R, 11 S, 12 S, 16 R, E)-8,8,10,12,16-p e n t a m e t h y l-5,9-$
dioxo-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1-
$\mathbf{y l}$)isoxazol-5-yl)methyl)dicarbamate ($\mathbf{1 5 2 Z g}$). To a solution of phosphonium salt $\mathbf{1 4 5 g}$
($48.7 \mathrm{mg}, 0.109 \mathrm{mmol}$) in THF (1 mL) was added LiHMDS (1.0 M in THF, $99 \mu \mathrm{~L}$, 0.109 mmol) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this. Methyl ketone $148(10.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise and the reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford 2.7 mg (18\%) of $\mathbf{1 5 2 Z g}$ as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.30$ (hexane/EtOAc 9:1, UV, CPS).

(3-((Z)-2-((1S,3S,7S,10R,11S,12S,16R,E)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1-yl)isoxazol-5-
\mathbf{y})methanaminium chloride ($\mathbf{2 Z g}$). To protected cyclopropyl-Epo B $\mathbf{1 5 2 Z g}$ (3.5 mg , $0.004 \mathrm{mmol})$ was added $\mathrm{HCl}(1.0 \mathrm{M}$ in EtOAc, $0.41 \mathrm{~mL}, 0.41 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 24 h , a second portion of $\mathrm{HCl}(0.41 \mathrm{~mL}, 0.41 \mathrm{mmol})$ was then added and stirring was continued for further 24 h . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5\right)$ to yield $2.0 \mathrm{mg}(93 \%)$ of $\mathbf{2 Z g}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.08\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5\right.$, UV, CPS $)$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-6.7^{\circ}(c=0.047, \mathrm{MeOH})$.
${ }^{1} H-N M R(500 \mathrm{MHz}$, DMSO-d6): $\delta=8.40$ (br s, 3 H), $6.60(\mathrm{~s}, 1 \mathrm{H}), 6.19$ (q, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.01(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=15.6,7.6,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (s, 2H), 4.18 (ddd, $J=8.7,6.6$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dq}, J=9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$,), $2.26(\mathrm{dd}, J=14.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{dd}, \mathrm{J}=14.7,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{dq}, J=8.6,6.8, \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J$
$=15.4,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (s, 3H), 0.89 (s, 3H), 0.73 (dddd, $J=8.7,8.8,5.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.42$ (dd, $J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 0.10 (dd, $J=5.3,4.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.7,170.4,165.2,159.3,147.1,131.7,129.4,112.4$, $105.1,74.9,74.9,68.6,53.4,46.2,40.3,39.4,36.8,34.0,33.8,24.5,22.4,22.2,21.0,19.7$, 18.7, 18.7, 18.6, 16.4 .

IR (film): v 3450, 2940, 2876, 1711, 1643, 1611, 1568, 1541, 1449, 1415, 1378, 1337, 1293, 1264, 1176, 1149, 1054, 1019, 984, 963, 876, 755, 711, 664, 617.
HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 503.3116$, found 503.3120.
Analytical HPLC: Method: A and B with 0.1\% TFA, eluent B 10-40\% (linear gradient from $0-12 \mathrm{~min}$), retention time 9.51 min .

$\begin{array}{lllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array} \mathrm{ppm}$

Di-tert-butyl ((4-((E)-2-((1S,3S,7S,10R,11S,12S,16R,E)-8,8,10,12,16-pentamethyl-5,9-dioxo-7,11-bis(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1-yl)thiazol-2-yl)methyl)dicarbamate (152f). To a solution of phosphonate $\mathbf{1 4 5 f}$ (46.3 mg , 0.100 mmol) in THF (1 mL) was added LiHMDS (1.0 M in THF, $91 \mu \mathrm{~L}, 0.91 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this. Methyl ketone $\mathbf{1 4 8}$ ($10.0 \mathrm{mg}, 0.018 \mathrm{mmol}$) in THF (0.5 mL) was then added dropwise and the reaction mixture was allowed to warm to room temperature over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 20:1) to afford $6.7 \mathrm{mg}(42 \%)$ of $\mathbf{1 5 2 f}$ as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.36$ (hexane/EtOAc 9:1, UV, CPS).
$\left[\boldsymbol{\alpha} \boldsymbol{]}^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=-10.7^{\circ}\left(c=0.29, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.01(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=15.5$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.50 (dddd, $J=15.5,5.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (s, $2 \mathrm{H}), 4.30(\mathrm{dd}, J=9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dq}, J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.83 (dd, $J=14.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=14.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=15.0,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{dq}, J=7.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{ddd}, J=15.0,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97(\mathrm{dd}, J=15.1,2.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=15.1,10.1,9.6,1 \mathrm{H}), 1.49(\mathrm{~s}, 18 \mathrm{H}), 1.14(\mathrm{~s}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.72$ (dddd, $J=10.1,8.9,5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{dd}, J=8.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}),-0.17$ (dd, $J=5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.6,171.3,166.9,152.9,152.0,138.8,132.0,129.9$, $120.1,116.8,83.3,81.2,79.1,75.2,53.7,48.9,48.0,41.0,41.0$,37.5, 34.9, 28.2, 24.6, 24.5, 23.5, 22.3, 22.1, 20.0, 18.8, 17.4, 14.7.

IR (film): v 2958, 2930, 2873, 1795, 1739, 1696, 1456, 1386, 1367, 1342, 1303, 1253, 1228, 1122, 1092, 1038, 987, 978, 890, 842, 750.

HRMS (ESI): calculated for $\mathrm{C}_{44} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$885.4546, found 885.4557.

$2 f$
(4-((E)-2-((1S,3S,7S,10R,11S,12S,16R,E)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4-oxabicyclo[14.1.0]heptadec-13-en-3-yl)prop-1-en-1-yl)thiazol-2-
$\mathbf{y l}$)methanaminium chloride(2f). To protected cyclopropyl-Epo B $\mathbf{1 5 2 f}$ ($3.0 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added $\mathrm{HCl}(1.0 \mathrm{M}$ in $\mathrm{EtOAc}, 0.52 \mathrm{~mL}, 0.521 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 15 h , a second portion of $\mathrm{HCl}(0.26 \mathrm{~mL}, 0.265 \mathrm{mmol})$ was then added and stirring was continued for further 25 h . The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5\right)$ to yield $1.5 \mathrm{mg}(85 \%)$ of $\mathbf{2 f}$ as a colorless oil.

TLC: $\mathrm{R}_{f} 0.05\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 90: 10: 1: 0.5, \mathrm{UV}, \mathrm{CPS}\right)$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{D}:=-42.2^{\circ}(c=0.27, \mathrm{MeOH})$.
${ }^{1}$ H-NMR (500 MHz, DMSO-d6): $\delta=8.55(\mathrm{~s}, 3 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{dd}, \mathrm{J}=$ $15.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (ddd, $J=15.6,7.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=7.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (br s, 1H), $4.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{t}, J=5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.95(\mathrm{dq}, J=9.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{dd}, J=14.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (s, 3H), $1.91(\mathrm{dd}, J=14.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dq}, J=8.2,6.7 \mathrm{~Hz} .1 \mathrm{H}), 1.84(\mathrm{ddd}, J=15.1$, $9.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82 (ddd, $J=15.1,3.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.61$ (dddd, $J=8.7,8.2,5.1,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 0.42 (dd, $J=8.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.04$ (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.6,170.2,160.9,152.2,139.0,131.7,129.1,119.6$, $118.7,80.6,74.8,68.5,53.5,45.8,40.2,39.5,39.5,37.0,33.8,24.5,22.3,21.3,20.8,19.4$, 19.0, 18.7, $16.4,14.3$.

IR (film): v 3397, 2925, 1731, 1717, 1684, 1255, 1202, 1180, 1137, 1046, 1025, 1008, 984, 836, 800, 723.

HRMS (ESI): calculated for $\mathrm{C}_{2} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$519.2887, found 519.2882.
Analytical HPLC: Method: A and B with 0.1\% TFA, eluent B 30-40\% (linear gradient from $0-12 \mathrm{~min}$), retention time 7.94 min .

(1S,3S,6E,10R,11S,12S,13E,16R)-3-(1-(5-((tert-butyldimethylsilyloxy)methyl)isoxazol-3-yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-11-(trimethylsilyloxy)-4-oxabicyclo[14.1.0]heptadeca-6,13-diene-5,9-dione (151 3deoxy b). To a solution of
phosphonate 140b ($39.3 \mathrm{mg}, 0.108 \mathrm{mmol}$) in THF (1.0 mL) was added KHMDS (19.8 mg , 0.099 mmol) in one portion at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h at this temperature and was then cooled to $-78^{\circ} \mathrm{C}$. Methyl ketone $148(10.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF (0.5 mL) was added dropwise and the reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 25:1) to afford $9.5 \mathrm{mg}(78 \%)$ of an inseparable $1: 1$ mixture of $\mathbf{1 5 1}$ deoxy \mathbf{b} and its C16-C17 Z isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.40,0.42$ (hexane/EtOAc 9:1, UV, CPS).
IR (film): v 2956, 2930, 2902, 2859, 1719, 1648, 1468, 1459, 1375, 1254, 1135, 1115, 1088, 1032, 984, 889, 837, 780.

HRMS (ESI): calculated for $\mathrm{C}_{3}{ }_{7} \mathrm{H}_{62} \mathrm{NO}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 672.4110$, found 672.4105 .

2d
(1S,3S,6E,10R,11S,12S,13E,16R)-11-hydroxy-3-((E)-1-(5-(hydroxymethyl)isoxazol-3-
yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadeca-6,13-diene-
5,9-dione (2d). To a $1: 1$ mixture of protected cyclopropyl-Epo B 151 3deoxy \mathbf{b} and its C16C 17 Z isomer $(9.5 \mathrm{mg}, 0.012 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.67 \mathrm{~mL})$ and $\mathrm{MeOH}(0.33 \mathrm{~mL})$ was added CSA ($2.9 \mathrm{mg}, 0.012 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and stirred for 18 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 2:1) to yield $3.3 \mathrm{mg}(48 \%)$ of 2d as a semisolid.

TLC: $\mathrm{R}_{f} 0.42$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=+78.9^{\circ}\left(c=1.03, \mathrm{CHCl}_{3}\right)$.
${ }^{1} H-N M R(500 \mathrm{MHz}$, DMSO-d6): $\delta=6.91(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H})$, $6.06(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=15.5$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (ddd, $J=15.5,9.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dq}, J=9.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=14.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}$, $J=14.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{ddd}, J=15.4,2.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{ddd}, J=15.4$, $10.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dq}, J=9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{dd}, J=8.8$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}),-0.13(\mathrm{dd}, J=5.5,3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=217.6,172.5,170.3,158.8,145.7,131.5,129.2,113.2$, $102.4,74.9,74.7,68.6,54.7,53.4,46.0,40.1,39.4,36.9,33.6,24.3,22.1,22.0,20.8,19.5$, 18.8, 18.6, 18.5, 16.3.

IR (film): v 3394, 2961, 2926, 2871, 1702, 1646, 1604, 1451, 1368, 1291, 1263, 1179, 1151, 1052, 1026, 980, 962.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 486.2850$, found 486.2851.
Analytical HPLC: Method: eluent B 48\% (isokratisch), retention time 11.49 min .

(1S,3S,6E,10R,11S,12S,13E,16R)-11-hydroxy-3-((Z)-1-(5-(hydroxymethyl)isoxazol-3-
yl)prop-1-en-2-yl)-8,8,10,12,16-pentamethyl-4-oxabicyclo[14.1.0]heptadeca-6,13-diene-
5,9-dione (2e). To a $1: 1$ mixture of protected cyclopropyl-Epo B $\mathbf{1 5 1}$ 3deoxy \mathbf{b} and its C16C 17 Z isomer $(9.5 \mathrm{mg}, 0.012 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.67 \mathrm{~mL})$ and $\mathrm{MeOH}(0.33 \mathrm{~mL})$ was added CSA ($2.9 \mathrm{mg}, 0.012 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and stirred for 18 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 2:1) to yield $3.4 \mathrm{mg}(50 \%)$ of 2 e as a semisolid.

TLC: $\mathrm{R}_{f} 0.32$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{20} \mathbf{D}:=+46.5^{\circ}\left(c=0.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}$ (500 MHz, DMSO-d6): $\delta=6.94(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{q}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.44(\mathrm{ddd}, J=15.5,9.1,1.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.30(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (ddd, $J=15.5,9.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.55$ (s, 2H), $3.51(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dq}, J=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=14.7,9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.08$ (ddd, $J=15.7,2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (ddd, $J=14.7,3.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{ddd}, J=15.7,10.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dq}, J=9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}$, $3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.76$ (dddd, $J=10.9,8.8$, $5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{dd}, J=8.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.13(\mathrm{dd}, J=5.6,3.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=213.4,172.6,164.9,159.3,150.9,145.0,131.6,129.4$, $122.0,112.3,102.2,79.8,74.9,54.7,51.6,46.3,41.1,36.5,33.6,24.4,24.2,23.9,22.9,20.9$, 19.8, 17.8, 16.4, 15.0 .

IR (film): v 3425, 2967, 2926, 2873, 1705, 1643, 1602, 1450, 1373, 1277, 1178, 1151, 1057, 980, 756, 752.

HRMS (ESI): calculated for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 508.2670$, found 508.2662.
Analytical HPLC: Method: eluent B 48\% (isokratisch), retention time 10.06 min .

4.2.4 Antibody Drug Conjugates

(3-((E)-2-((1S,3S,7S,10R,11S,12S,16S)-7,11-dihydroxy-8,8,10,12,16-pentamethyl-5,9-dioxo-4-oxabicyclo[14.1.0]heptadecan-3-yl)prop-1-en-1-yl)isoxazol-5-yl)methyl 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butanoate (154). To a solution of 4-maleimidobutyric acid ($22 \mathrm{mg}, 0.123 \mathrm{mmol}$) in benzene $(1.5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(34 \mu \mathrm{~L}, 2.45 \mathrm{mmol})$ and 2,4,6-trichlorobenzoyl chloride $(9.5 \mu \mathrm{~L}, 0.064 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 1 h . Alcohol $\mathbf{2 A}(31 \mathrm{mg}, 0.061 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ and DMAP ($30 \mathrm{mg}, 0.245 \mathrm{mmol}$) in benzene $(1 \mathrm{~mL})$ were then added and the reaction mixture was stirred for 0.5 h at room temperature. The reaction mixture was directly purified by flash column chromatography (hexane/EtOAc 1:1) to afford $18 \mathrm{mg}(44 \%)$ of ester 154 as a colorless oil.

Note: The ester 154 is not stable when an aqueous work-up is carried out. We in addition assume that the ester $\mathbf{1 5 4}$ is not stable to the reaction conditions and that the yield could therefore be improved by shorten the reaction time.
TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=-8.4^{\circ}\left(c=0.40, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d $): \delta=6.99(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (s, 2H), $5.14(\mathrm{dd}, J=7.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (ddd, $J=8.2,7.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=8.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.11$ (dq, $J=8.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{ddd}, J=15.5,3.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{p}, J=6.8 \mathrm{~Hz}$, 2 H), 1.57 (ddd, $J=15.5,10.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.20(\mathrm{~m}$, $3 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7,3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3 H), 0.61 (dddd, $J=10.7,8.6,5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.37$ (dd, $J=8.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}),-0.08(\mathrm{dd}, J=$ $5.5,3.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, DMSO-d6): $\delta=218.0,171.8,171.1,170.3,166.4,159.7,145.3,134.5$, $112.3,104.9,80.0,75.4,75.4,69.4,56.0,53.1,44.8,38.8,36.3,35.1,34.0,33.5,30.4,29.1$, 24.4, 23.2, 23.2, 23.0, 22.1, 20.1, 19.1, 18.3, 16.3, 15.0.

IR (film): v 3442, 2928, 1736, 1708, 1453, 1410, 1377, 1259, 1171, 1143, 1022, 822, 808, 798, 788, 782, 740, 695, 674, 608.

HRMS (ESI): calculated for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+} 633.3358$, found 633.3360 .

4.2.5 Synthesis of Unfunctionalized Heterocycles 78a-e

Tributyl((2-methylthiazol-4-yl)methyl)phosphonium chloride (78a). 78a could be accessed as previously described in the literature.

TLC: $\mathrm{R}_{f} 0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{CPS}\right)$.
mp: $90-92{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 12 \mathrm{H}), 0.96-0.87(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 143.2(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 120.1(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}), 24.0(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 23.7(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 22.9(\mathrm{~d}, J=48.3 \mathrm{~Hz}), 19.3(\mathrm{~d}$, $J=46.7 \mathrm{~Hz}$), 19.2, 13.5.

IR (film): v 2958, 2930, 2871, 1631, 1518, 1462, 1402, 1381, 1319, 1234, 1186, 1234, 1186, 1096, 1006, 955, 914, 805, 718.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NPS}[\mathrm{M}+]^{+} 314.2066$, found 314.2077.

78b
Tributyl((5-methylisoxazol-3-yl)methyl)phosphonium chloride (78b). To 3-(chloromethyl)-5-methylisoxazole $(\mathbf{1 5 6})(100 \mathrm{mg}, 0.76 \mathrm{mmol})$ in DMF $(4 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{P}(0.32 \mathrm{~mL}, 1.29 \mathrm{mmol})$ at room temperature. The mixture was left stirring for 24 h , the solvent was concentrated under reduced pressure and the residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1 \rightarrow 10: 1\right)$ to give $212 \mathrm{mg}(84 \%)$ of phosphonium salt 78b as a white solid.

TLC: $\mathrm{R}_{f} 0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{CPS}\right)$.
mp: $78-82{ }^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.48(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 2.51-$ $2.42(\mathrm{~m}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3), 1.57-1.42(\mathrm{~m}, 12 \mathrm{H}), 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9,154.9(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 104.2(\mathrm{~d}, \mathrm{~J}=5.0), 23.9(\mathrm{~d}$, $J=28.8 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 19.5(\mathrm{~d}, J=46.9 \mathrm{~Hz}), 18.1(\mathrm{~d}, J=49.3 \mathrm{~Hz}), 13.5,12.3$.

IR (film): v 2959, 2931, 2871, 1604, 1457, 1425, 1236, 1096, 1004, 913, 833, 723, 680.
HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{NPS}[\mathrm{M}+]^{+}$298.2294, found 298.2302.

159
Ethyl 1,5-dimethyl-1H-pyrazole-3-carboxylate (159). To a solution of ethyl acetopyruvate $(1.78 \mathrm{~mL}, 12.65 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added methyl hydrazine $(1.33 \mathrm{~mL}$, 25.29 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1.5 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(50 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under
reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1 $\rightarrow 1: 1$) to yield $0.65 \mathrm{~g}(32 \%)$ of pyrazole $\mathbf{1 5 9}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.23$ (hexane/EtOAc 1:1, UV, KMnO_{4}).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.54(\mathrm{q}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{td}, J=7.1,0.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.7,142.3,140.0,108.3,60.8,36.9,14.5,11.3$;
IR (film): v 2982, 2941, 1713, 1650, 1555, 1453, 1385, 1295, 1216, 1180, 1105, 1046, 1027, 779, 642.

HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$169.0972, found 169.0976.

161
(1,5-dimethyl-1H-pyrazol-3-yl)methanol (161). To a solution of ester $\mathbf{1 5 9}$ ($0.72 \mathrm{~g}, 4.28$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 9.42 \mathrm{~mL}, 9.42 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at this temperature, was then allowed to warm to $0{ }^{\circ} \mathrm{C}$ slowly and stirred for 2 h at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt (50 mL). The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases got transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30 mL). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH} 20: 1$) to give $0.39 \mathrm{~g}(72 \%)$ of alcohol 161 as a white solid.
TLC: $\mathrm{R}_{f} 0.24$ (EtOAc/MeOH 20:1, KMnO_{4}).
mp: $56-58{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.99(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.75$ (br s, 1H), $2.23(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.1,139.6,103.9,58.8,35.9,11.2$.
IR (film): v 3301, 2934, 2869, 1551, 1490, 1431, 1389, 1282, 1220, 1141, 1006, 790, 650.
HRMS (EI): calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+}$126.0788, found 126.0788.

162
3-(chloromethyl)-1,5-dimethyl-1H-pyrazole (162). To a solution of alcohol 161 (3.2 g , $2.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added thionyl chloride ($0.23 \mathrm{~mL}, 3.12 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 2 h at this temperature. The reaction mixture was then poured into an ice-cold solution of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic phases were washed with water ($1 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure to give $0.36 \mathrm{~g}(99 \%)$ of chloride $\mathbf{1 6 2}$ as a colorless liquid.

Note: Chloride $\mathbf{1 6 2}$ is volatile. The solvent was evaporated at a pressure of 240 mbar and a water bath temperature of $36^{\circ} \mathrm{C}$.

TLC: $\mathrm{R}_{f} 0.34$ (hexane/EtOAc 2:1, UV, KMnO_{4}).
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.06(\mathrm{~d}, J=0.5,1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~d}$, $J=0.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=147.4,140.0,105.0,39.3,36.1,11.3$.
IR (film): v 2928, 2856, 1553, 1486, 1453, 1432, 1289, 1258, 1154, 1132, 982, 798, 733, 672, 640.

HRMS (EI): calculated for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{2}[\mathrm{M}]^{+}$144.0449, found 144.0452.

Tributyl((1,5-dimethyl-1H-pyrazol-3-yl)methyl)phosphonium chloride (78c). To a solution of chloride $162(0.23 \mathrm{~g}, 1.59 \mathrm{mmol})$ in DMF (12 mL) was added Bu 3 P (0.68 mL , 2.70 mmol) at room temperature and the reaction mixture was left stirring for 13 h at this temperature. The solvent was then concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1 \rightarrow 10: 1\right)$ to give $0.45 \mathrm{~g}(82 \%)$ of Wittig salt 78c as a colorless oil which turns into a white solid upon storage at $-20^{\circ} \mathrm{C}$.
TLC: $\mathrm{R}_{f} 0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{CPS}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.16(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, $3 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 12 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.3,138.8(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 107.2(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 36.3$, $24.0(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 19.8(\mathrm{~d}, J=48.4 \mathrm{~Hz}), 19.2(\mathrm{~d}, J=47.1 \mathrm{~Hz}), 13.5$, 11.2.

IR (film): v 2957, 2931, 2871, 1548, 1456, 1384, 1284, 1235, 1097, 1015, 913, 822, 794, 721, 642.

HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{ClN}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 311.2611$, found 311.2635.

164
2-(chloromethyl)pyrimidine (164). Chloroacetamidine (163) ($2.13 \mathrm{~g}, 16.47 \mathrm{mmol}$) and tetramethoxypropane ($5.42 \mathrm{~mL}, 32.95 \mathrm{mmol}$) were heated up to $100^{\circ} \mathrm{C}$ and stirred for 16 h at this temperature. The reaction mixture was then allowed to reach room temperature and water $(20 \mathrm{~mL})$ was added. The phases were separated and the aqueous phase was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30 mL). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (pentane/Et2O 3:2) to yield $0.73 \mathrm{~g}(34 \%)$ of chloride 164 as a colorless liquid.

Note: Chloride \mathbf{K} is volatile. The solvent was evaporated at a pressure of 820 mbar and a water bath temperature of $36^{\circ} \mathrm{C}$.

TLC: $\mathrm{R}_{f} 0.23$ (hexane/EtOAc 2:1, UV, CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.77(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}$, 2 H).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.1,157.8,120.1,47.0$.
IR (film): v 3043, 2975, 1565, 14224, 1305, 1241, 998, 851, 812, 702, 630, 607.
HRMS (EI): calculated for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2}[\mathrm{M}]^{+}$128.0136, found 128.0136.

Tributyl(pyrimidin-2-ylmethyl)phosphonium chloride (78d). To a solution of chloride $\mathbf{1 6 4}$ $(0.14 \mathrm{~g}, 1.10 \mathrm{mmol})$ in DMF (7 mL) was added Bu ${ }_{3} \mathrm{P}(0.47 \mathrm{~mL}, 1.86 \mathrm{mmol})$ at room temperature and the reaction mixture was left stirring for 24 h at this temperature. The solvent was then concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1 \rightarrow 10: 1\right)$ to afford $0.33 \mathrm{~g}(91 \%)$ of Wittig salt 78 d as a slightly yellow solid.

TLC: $\mathrm{R}_{f} 0.39\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{UV}, \mathrm{KMnO}_{4}\right)$.
mp: $107-110{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.71(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}$, $J=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.0,120.4,30.6(\mathrm{~d}, J=48.0 \mathrm{~Hz}), 24.0(\mathrm{~d}, J=15.6 \mathrm{~Hz})$, $24.0(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 19.7(\mathrm{~d}, \mathrm{~J}=47.2 \mathrm{~Hz}), 13.5$.

IR (film): v 2959, 2931, 2871, 1564, 1460, 1416, 1235, 1096, 915, 849, 719, 635.
HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+} 295.2298$, found 295.2307.

166
4-(chloromethyl)pyrimidine (166). To a solution of 4-methylpyrimidine (165) (2.00 g, 21.25 $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added trichloroisocyanuric acid ($1.98 \mathrm{~g}, 8.50 \mathrm{mmol}$) in one portion at room temperature and the reaction mixture was heated to reflux for 9 h . The reaction mixture was then allowed to reach room temperature and filtered through a small plug of celite. The precipitate was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the filtrate was washed with aqueous $1 \mathrm{M} \mathrm{NaOH}(1 \times 50 \mathrm{~mL})$ and brine ($1 \times 50 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash
column chromatography (hexane/EtOAc 2:1) to yield $1.30 \mathrm{~g}(48 \%)$ of chloride $\mathbf{1 6 6}$ as a redish liquid.

Note: 13% of 4-(dichloromethyl)pyrimidine and 10% starting material were isolated.
TLC: $\mathrm{R}_{f} 0.20$ (hexane/EtOAc 2:1, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dm}$, $J=5.2,1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.0,158.6,158.1,119.6,45.2$.
IR (film): v 3046, 2952, 1577, 1471, 1387, 1309, 1239, 1156, 993, 925, 840, 707, 681, 579, 486.

HRMS (EI): calculated for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ClN}_{2}[\mathrm{M}]^{+}$128.0136, found 128.0139.

Tributyl(pyrimidin-4-ylmethyl)phosphonium chloride (78e). To a solution of chloride $\mathbf{1 6 6}$ ($87 \mathrm{mg}, 0.68 \mathrm{mmol}$) in DMF (5 mL) was added $\mathrm{Bu}_{3} \mathrm{P}(0.29 \mathrm{~mL}, 1.15 \mathrm{mmol}$) at room temperature and the reaction mixture was left stirring for 23 h at this temperature. The solvent was then concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1 \rightarrow 10: 1\right)$ to afford $220 \mathrm{mg}(98 \%)$ of Wittig salt 78e as a slightly brownish solid.

TLC: $\mathrm{R}_{f} 0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{UV}, \mathrm{KMnO}_{4}\right)$.
mp: $108-110^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.08(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}$, $J=5.0,1.1,1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.6,2 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{td}$, $J=7.1,1.0,9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 158.4,158.3,123.9$, $28.3(\mathrm{~d}$, $J=48.0 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 23.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 19.7(\mathrm{~d}, J=46.8 \mathrm{~Hz}), 13.4$.

IR (film): v 2959, 2931, 2871, 1576, 1550, 1464, 1386, 1320, 1233, 1095, 994, 914, 855, 719.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{P}[\mathrm{M}]^{+}$295.2298, found 295.2298.

4.2.6 Functionalized Thiazole Heterocycles

170
2-(tert-butyldimethylsilyloxy)acetamide (170). To a solution of alcohol 167 (1.02 g, $13.61 \mathrm{mmol})$ and imidazole $(2.32 \mathrm{~g}, 34.04 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ was added $\mathrm{TBSCl}(2.46 \mathrm{~g}$, 16.34 mmol) in one portion at room temperature and the mixture was stirred for 26 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 1:1) afforded $2.42 \mathrm{~g}(93 \%)$ of silyl ether 170 as a white solid.

TLC: $\mathrm{R}_{f} 0.21$ (hexane/EtOAc 1:1, CPS).
mp: $52-53{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.61$ (br s, 1H), 5.94 (br s, 1 H$), 4.08(\mathrm{~s}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.11(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.5,63.2,25.9,18.3,-5.4$.
IR (film): v 3469, 3142, 2952, 2928, 2894, 2858, 1700, 1686, 1596, 1470, 1462, 1402, 1350, $1255,1110,1005,852,837,780,673$.

HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$190.1258, found 190.1251.

171
2-(tert-butyldimethylsilyloxy)ethanethioamide (171). To a solution of amide $\mathbf{1 7 0}$ (1.20 g , $6.34 \mathrm{mmol})$ in dioxane (25 mL) was added Lawesson's reagent ($2.56 \mathrm{mg}, 6.34 \mathrm{mmol}$) in one portion at room temperature and the reaction mixture was then heated up to reflux for 2.5 h . The solution was then cooled and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 20:1) gave 0.82 g (63%) of thioacetamide $\mathbf{1 7 1}$ as a white solid.

TLC: $\mathrm{R}_{f} 0.24$ (hexane/EtOAc 9:1, UV, CPS).
mp: $82-83{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, 0.13 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.7,69.7,25.9,18.4,-5.3$.
IR (film): v 3396, 3243, 3119, 2950, 2928, 2895, 2884, 2856, 1619, 1451, 1415, 1360, 1289, 1256, 1099, 969, 863, 836, 814, 779, 746,618.

HRMS (ESI): calculated for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{NOSSi}[\mathrm{M}+\mathrm{H}]^{+}$206.1029, found 206.1028.

169
(4-(chloromethyl)thiazol-2-yl)methanol (169). A solution of 1,3-dichloropropan-2-one ($0.40 \mathrm{~g}, 3.15 \mathrm{mmol}$) and thioacetamide $171(0.54 \mathrm{~g}, 2.63 \mathrm{mmol})$ in EtOH (8 mL) was heated to $55{ }^{\circ} \mathrm{C}$ for 17 h . The reaction mixture was allowed to reach room temperature, water $(15 \mathrm{~mL})$ was added and a pH 8 was adjusted by addition of solid $\mathrm{NaHCO}_{3}(0.23 \mathrm{~g})$. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 2:1) yielded 0.21 g (50\%) of chloride $\mathbf{1 6 9}$ as a slightly yellow oil.

TLC: $\mathrm{R}_{f} 0.18$ (hexane/EtOAc 2:1, UV, CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29(\mathrm{t}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.62$ (br s, 1H).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,152.2,117.8,62.3,40.8$.
IR (film): v 3284, 2922, 2857, 1525, 1486, 1432, 1348, 1264, 1186, 1156, 1129, 1065, 967, 772, 714, 653.

HRMS (ESI): calculated for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{ClNOS}[\mathrm{M}+\mathrm{H}]^{+}$163.9931, found 163.9932.

172
2-((tert-butyldimethylsilyloxy)methyl)-4-(chloromethyl)thiazole (172). To a solution of alcohol 169 ($135 \mathrm{mg}, 0.83 \mathrm{mmol}$) and imidazole ($124 \mathrm{mg}, 1.82 \mathrm{mmol}$) in DMF (2 mL) was added $\mathrm{TBSCl}(137 \mathrm{mg}, 0.91 \mathrm{mmol})$ in one portion at room temperature and the mixture was stirred for 22 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 20:1) afforded $187 \mathrm{mg}(91 \%)$ of silyl ether $\mathbf{1 7 2}$ as a colorless oil.

TLC: $\mathrm{R}_{f} 0.17$ (hexane/EtOAc 50:1, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23(\mathrm{t}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $2 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.5,152.0,117.1,63.3,41.0,25.9,18.4,-5.3$.
IR (film): v 2954, 2929, 2885, 2858, 1471, 1463, 1355, 1257, 1198, 1131, 1105, 1006, 8366, 778, 697, 667.

HRMS (ESI): calculated for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{ClNOSSi}[\mathrm{M}+\mathrm{H}]^{+}$278.0796, found 278.0797.

Diethyl ((2-((tert-butyldimethylsilyloxy)methyl)thiazol-4-yl)methyl)phosphonate (150). A mixture of chloride $172(170 \mathrm{mg}, 0.61 \mathrm{mmol})$ and triethyl phosphate $(107 \mathrm{mg}, 0.64 \mathrm{mmol})$ was heated up to $160{ }^{\circ} \mathrm{C}$ for 6 h . The mixture was then cooled and the excess of triethyl phosphate was removed under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 1:3) gave 37 mg (19\%) of phsphonate $\mathbf{1 5 0}$ as a colorless oil. TLC: $\mathrm{R}_{f} 0.18$ (hexane/EtOAc 1:2, UV, CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.14(\mathrm{dt}, J=3.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{dq}, J=$ 8.1. $7.0 \mathrm{~Hz}, 4 \mathrm{H}$), 3.33 (dd, $J=21.0,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.10$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.9,146.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 63.2$, $62.3(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 29.6(\mathrm{~d}, J=141.0), 25.8,18.3,16.5(\mathrm{~d}, J=5.9 \mathrm{~Hz}),-5.4$.

IR (film): v 2984, 2911, 1521, 1394, 1232, 1164, 1052, 1030, 969, 958.

174
tert-Butyl ((4-(chloromethyl)thiazol-2-yl)methyl)carbamate (174). A solution of 1,3-dichloropropan-2-one ($100 \mathrm{mg}, 0.79 \mathrm{mmol}$) and thioacetamide ($\mathbf{1 7 3}$) ($150 \mathrm{mg}, 0.79 \mathrm{mmol}$) in EtOH (1.5 mL) over molecular sieves $(80 \mathrm{mg})$ was heated to $45^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was then filtered through a small plug of celite and the precipitat was rinsed with EtOH (3 mL). Water (5 mL) was added to the dark filtrate and a pH 8 was adjusted by addition of solid $\mathrm{NaHCO}_{3}(70 \mathrm{mg})$. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 3:1) afforded 67 mg (34%) of chloride $\mathbf{1 7 4}$ as a slightly yellow oil.

TLC: $\mathrm{R}_{f} 0.25$ (hexane/EtOAc 3:1, UV, CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{t}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.47$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.0,155.7,152.1,117.9,80.5,42.6,40.9,28.5$.
IR (film): v 3335, 2978, 1698, 1523, 1367, 1251, 1165, 1165, 934, 715.
HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$263.0616, found 263.0612.

tert-Butyl ((4-((diethoxyphosphoryl)methyl)thiazol-2-yl)methyl)carbamate (175). A mixture of chloride $174(0.81 \mathrm{~g}, 3.08 \mathrm{mmol})$ and triethyl phosphate $(1.02 \mathrm{~g}, 6.17 \mathrm{mmol})$ was heated up to $160{ }^{\circ} \mathrm{C}$ for 6 h . The mixture was then cooled and the excess of triethyl phosphate was removed under reduced pressure. Purification of the residue by flash column chromatography (EtOAc) gave $0.98 \mathrm{~g}(87 \%)$ of phsphonate $\mathbf{1 7 5}$ as a colorless oil.

TLC: $\mathrm{R}_{f} 0.11$ (EtOAc, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.12(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (br s, 1 H), $4.55(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{dq}, J=8.0 .7 .1 \mathrm{~Hz}, 4 \mathrm{H}), 3.32(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.9,156.0,151.7,102.8,83.6,62.6(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 41.9$, $28.1,23.8(\mathrm{~d}, J=142.3 \mathrm{~Hz}), 16.5(\mathrm{~d}, J=6.0 \mathrm{~Hz})$.

IR (film): v 3285, 2979, 2931, 2910, 1715, 1521, 1392, 1366, 1250, 1166, 1052, 1026, 966, 933, 791.

HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PS}[\mathrm{M}+\mathrm{H}]^{+} 365.1295$, found 365.1294.

Di-tert-butyl ((4-((diethoxyphosphoryl)methyl)thiazol-2-yl)methyl)dicarbamate (145f).
To a solution of phosphonate $\mathbf{1 7 5}(150 \mathrm{mg}, 0.41 \mathrm{mmol})$ in $\mathrm{MeCN}(4.0 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}$ $(180 \mathrm{mg}, 0.82 \mathrm{mmol})$ and DMAP $(25 \mathrm{mg}, 0.21 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 13 h . The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (EtOAc) to yield 186 mg (97\%) of double-Boc protected thiazole $\mathbf{1 4 5 f}$ as a slightly yellow oil.

TLC: $\mathrm{R}_{f} 0.24$ (EtOAc, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.15(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{dq}, J=8.0 .7 .1$ $\mathrm{Hz}, 4 \mathrm{H}), 3.36(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 18 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.8,151.9,146.3(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=7.2 \mathrm{~Hz})$, $83.4,62.3(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 47.8,29.5(\mathrm{~d}, J=141.1 \mathrm{~Hz}), 28.1,16.5(\mathrm{~d}, J=6.0 \mathrm{~Hz})$.

IR (film): v 2980, 2933, 1794, 1753, 1700, 1520, 1479, 1458, 1422, 1392, 1367, 1341, 1254, 1228, 1165, 1129, 1129, 1054, 964, 854, 782.
HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{PS}[\mathrm{M}+\mathrm{H}]^{+} 465.1819$, found 465.1818.

4.2.7 Functionalized Isoxazole Heterocycles

184
Diethyl ((5-(hydroymethyl))isoxazol-3-yl)methyl)phosphonate (184). To a solution of oxime 183 ($3.80 \mathrm{~g}, 19.47 \mathrm{mmol}$) and pyridine (15 drops) in $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ is added NCS $(3.38 \mathrm{~g}, 25.31 \mathrm{mmol})$ in portions at room temperature. The reaction mixture is then heated up to $45^{\circ} \mathrm{C}$ and stirred for 24 h at this temperature. Propargyl alcohol $(1.31 \mathrm{~g}, 23.37 \mathrm{mmol})$ in
$\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ is added dropwise and after $10 \mathrm{~min} \mathrm{NEt}_{3}(3.25 \mathrm{~mL}, 23.37 \mathrm{mmol})$ is added over a period of 40 min at $45^{\circ} \mathrm{C}$. Stirring is continued for 4 h at the same temperature. The reaction mixture is then allowed to reach room temperature washed with water ($2 \times 40 \mathrm{~mL}$). The organic phase is dried over MgSO_{4}, removed under reduced pressure and the residue was purified by flash column chromatography (EtOAc) to give $1.91 \mathrm{~g}(40 \%)$ of isoxazole $\mathbf{1 8 4}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.17$ (EtOAc, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.36(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{dq}, J=8.1,7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $3.22(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.3(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 155.9(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 102.8(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 62.8(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 56.6,25.9,24.7(\mathrm{~d}, J=142.6 \mathrm{~Hz}), 18.4,16.5(\mathrm{~d}, J=5.9 \mathrm{~Hz})$.
IR (film): v 3361, 2986, 2912, 1606, 1428, 1395, 1371, 1237, 1163, 1050, 1024, 905, 847, 816, 756, 529.
HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$250.0839, found 250.0836.

Diethyl ((5-((tert-butyldimethylsilyloxy)methyl)isoxazol-3-yl)methyl)phosphonate (140b).
To a solution of alcohol $\mathbf{1 8 4}(1.90 \mathrm{~g}, 7.62 \mathrm{mmol})$ and imidazole ($1.30 \mathrm{~g}, 19.06 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$ was added $\mathrm{TBSCl}(1.38 \mathrm{~g}, 9.15 \mathrm{mmol})$ in one portion at room temperature and the mixture was stirred for 24 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc (3 x 20 mL), the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (EtOAc) afforded $2.60 \mathrm{~g}(94 \%)$ of silyl ether $\mathbf{1 4 0 b}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.46$ ($\mathrm{EtOAc}, \mathrm{KMnO}_{4}, \mathrm{CPS}$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.29(\mathrm{q}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H})$,
4.11 (dq, $J=8.1,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.22(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.10 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 155.9(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}), 102.6(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 62.6(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 57.5,25.9,24.8(\mathrm{~d}, J=142.4 \mathrm{~Hz}), 18.4,16.5(\mathrm{~d}, J=6.2 \mathrm{~Hz})$, -5.3.

IR (film): v 2956, 2930, 2858, 1608, 1473, 1463, 1428, 1391, 1256, 1144, 1128, 1097, 1053, 1025, 966, 907, 837, 780, 539, 530.

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{PSi}[\mathrm{M}+\mathrm{H}]^{+} 364.1704$, found 364.1709.

185
tert-Butyl ((3-((diethoxyphosporyl)methyl)ixoxazol-5-yl)methyl)carbamate (185). To a solution of oxime $\mathbf{1 8 3}(1.85 \mathrm{~g}, 9.47 \mathrm{mmol})$ and pyridine (10 drops) in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ is added NCS ($1.52 \mathrm{~g}, 11.37 \mathrm{mmol}$) in portions at room temperature. The reaction mixture is then heated up to $45{ }^{\circ} \mathrm{C}$ and stirred for 20 h at this temperature. Tert-butyl prop-2-yn-1ylcarbamate $(1.76 \mathrm{~g}, 11.37 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ is added dropwise and after $10 \mathrm{~min} \mathrm{NEt}_{3}$ $(1.58 \mathrm{~mL}, 11.37 \mathrm{mmol})$ is added over a period of 40 min at $45^{\circ} \mathrm{C}$. Stirring is continued for 4 h
at the same temperature. The reaction mixture is then allowed to reach room temperature washed with water ($2 \times 40 \mathrm{~mL}$). The organic phase is dried over MgSO_{4}, removed under reduced pressure and the residue was purified by flash column chromatography (EtOAc) to give 1.73 g (55%) of isoxazole $\mathbf{1 8 5}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.17$ (EtOAc, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.26(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.10$ (dq, $J=8.2,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.20(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44$ (s, 9H), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3,156.2(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 156.1(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 102.7$, $80.4,62.7(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 36.8,28.4,24.8(J=142.2), 16.5(\mathrm{~d}, J=5.9 \mathrm{~Hz})$.

IR (film): v 3287, 2979, 2932, 1714, 1605, 1521, 1509, 1432, 1366, 1251, 1164, 1051, 1023, 967, 902, 850, 791, 758, 404.

HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$349.1523, found 349.1529.

$\stackrel{\infty}{\stackrel{\infty}{\circ}} \stackrel{\circ}{\stackrel{\circ}{\circ}} \stackrel{\infty}{\circ}$

145 g
Di-tert-butyl ((3-((diethoxyphosporyl)methyl)ixoxazol-5-yl)methyl)dicarbamate (145g).
To a solution of mono-Boc protected isoxazole 185 ($175 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{MeCN}(4.5 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(219 \mathrm{mg}, 1.00 \mathrm{mmol})$ and DMAP $(31 \mathrm{mg}, 0.25 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 10 h . The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (EtOAc) to yield 192 mg (85%) of double-Boc protected isoxazole $\mathbf{1 4 5 g}$ as a slightly yellow oil.
TLC: $\mathrm{R}_{f} 0.30$ (EtOAc, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.24(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.10(\mathrm{dq}, J=8.1,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.21(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 18 \mathrm{H}), 1.29(\mathrm{td}, J=7.1$, $0.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9,156.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 151.7,102.8,83.6,62.6(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}), 41.9,28.1,24.8(\mathrm{~d}, J=142.2 \mathrm{~Hz}), 16.5(\mathrm{~d}, J=5.5 \mathrm{~Hz})$.

IR (film): v 2981, 2935, 1793, 1754, 1701, 1606, 1480, 1428, 1392, 1369, 1349, 1257, 1223, 1141, 1054, 1026, 966, 852, 793, 763.
HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 466.2313$, found 466.2313.

4.2.8 Functionalized Pyrazole Heterocycles

Ethyl 1-(2-hydroxyethyl)-5-methyl-1H-pyrazole-3-carboxylate (198). To a solution of ethyl acetopyruvate ($\mathbf{1 5 7}$) ($1.78 \mathrm{~mL}, 12.65 \mathrm{mmol}$) in EtOH (50 mL) was added 2hydroxyethylhydrazine $(0.86 \mathrm{~mL}, 12.65 \mathrm{mmol})$ at room temperature and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was allowed to reach room temperature and the reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to yield 1.41 g (56\%) of pyrazole 198 as a slightly yellow oil.

TLC: $\mathrm{R}_{f} 0.09$ (hexane/EtOAc 1:1, UV, KMnO_{4}, CPS).
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.55(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1,2 \mathrm{H}), 4.20(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.6,143.0,140.8,108.3,61.6,60.9,51.3,14.5,11.3$.
IR (film): v 3398, 2980, 2957, 2937, 2878, 1714, 1550, 1443, 1429, 1389, 1215, 1137, 1106, 1056, 1027, 866, 840, 777.
HRMS (ESI): calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$1991077, found 199.1076.

201

Ethyl 1-(2-(tert-butyldimethylsilyloxy)ethyl)-5-methyl-1H-pyrazole-3-carboxylate (201). To a solution of alcohol $\mathbf{1 9 8}(1.41 \mathrm{~g}, 7.10 \mathrm{mmol})$ and imidazole ($1.06 \mathrm{~g}, 15.63 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ was added $\mathrm{TBSCl}(1.18 \mathrm{~g}, 7.81 \mathrm{mmol})$ in one portion at room temperature and the mixture was stirred for 12 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 4:1) afforded $2.08 \mathrm{~g}(94 \%)$ of silyl ether 201 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.25$ (hexane/EtOAc 4:1, UV, KMnO4).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.52(\mathrm{q}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 0.82 (s, 9H), -0.09 (s, 6H).
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.8,142.8,141.2,108.0,62.9,60.8,52.0,25.9,18.3$, 14.6, 11.5, -5.6.

IR (film): v 2954, 2929, 2857, 1732, 1716, 1472, 1443, 1389, 1382, 1362, 1253, 1218, 1209, 1146, 1105, 1062, 1029, 927, 834, 828, 811, 776.

HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$313.1942, found 313.1945.

202
(1-(2-((tert-butyldimethylsilyloxy)ethyl)-5-methyl-1H-pyrazol-3-yl)methanol (202). To a solution of ester $201(2.05 \mathrm{~g}, 6.56 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 16.04 \mathrm{~mL}, 14.43 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h at this temperature, was then allowed to warm to $-20^{\circ} \mathrm{C}$ slowly and stirred for 0.5 h at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt $(150 \mathrm{~mL})$. The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases got transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $1: 1$) to give $1.73 \mathrm{~g}(98 \%)$ of alcohol 202 as a white solid.

TLC: $\mathrm{R}_{f} 0.26$ (hexane/EtOAc $1: 1, \mathrm{KMnO}_{4}, \mathrm{CPS}$).
mp: $45-47{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.96(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=151.4,140.7,103.5,62.8,59.2,51.1,25.9,18.3,11.4,-5.6$.

IR (film): v 3316, 2953, 2929, 2857, 1151, 1471, 1463, 1440, 1451, 1361, 1256, 1114, 1068, 1039, 1007, 924, 834, 780.
HRMS (EI): calculated for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 271.1836$, found 271.1836.

203
1-(2-(tert-butyldimethylsilyloxy)ethyl)-3-(chloromethyl)-5-methyl-1H-pyrazole (203). To a solution of alcohol $202(20 \mathrm{mg}, 0.07 \mathrm{mmol})$, 2,6-lutidine ($30 \mathrm{uL}, 0.30 \mathrm{mmol}$) and $\mathrm{LiCl}(13$ $\mathrm{mg}, 0.30 \mathrm{mmol})$ in DMF $(0.5 \mathrm{~mL})$ was added $\mathrm{MsCl}(17.2 \mathrm{uL}, 0.22 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$.

The reaction mixture was stirred for 2 h at this temperature, was then allowed to reach room temperature and stirred for 1 h . The reaction mixture was then diluted with water (1 mL) and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 7:1) to give 15.5 mg (73%) of chloride 203 as a colorless oil which turned into a white solid upon storage at $-20^{\circ} \mathrm{C}$.

TLC: $\mathrm{R}_{f} 0.30$ (hexane/EtOAc 9:1, KMnO_{4}).
mp:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.04(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}$, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-0.09(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.0,141.6,104.7,62.8,51.3,39.4,25.9,18.3,11.4,-5.6$.
IR (film): v 2953, 2929, 2857, 1552, 1471, 1463, 1438, 1400, 1389, 1362, 1258, 1166, 1112, 1063, 1019, 1006, 926, 830, 812, 778, 734, 663.

HRMS (EI): calculated for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}$2891497, found 289.1495.

140c

Tributyl((1-(2-(tert-butyldimethylsilyloxy)ethyl)-5-methyl-1H-pyrazol-3-

yl)methyl)phophonium chloride (140c). To a solution of chloride $203(0.50 \mathrm{~g}, 1.73 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{P}(0.74 \mathrm{~mL}, 2.94 \mathrm{mmol})$ at room temperature and the reaction mixture was left stirring for 24 h at this temperature. The solvent was then concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $/ \mathrm{MeOH} 20: 1 \rightarrow 10: 1)$ to give $0.78 \mathrm{~g}(98 \%)$ of Wittig salt $\mathbf{1 4 0 c}$ as a colorless oil which turns into a white solid upon storage at $-20^{\circ} \mathrm{C}$.
TLC: $\mathrm{R}_{f} 0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{CPS}\right)$.
mp: $91-95{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=14.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 12 \mathrm{H}), 0.92(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
IR (film): v 2956, 2929, 2872, 2858, 1548, 1463, 1453, 1398,1389, 1252, 1101, 930, 834, 812, 777, 724.
HRMS (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{OPSi}[\mathrm{M}]^{+} 455.3581$, found 455.3589 .

Ethyl 1-(2-azidoethyl)-5-methyl-1H-pyrazole-3-carboxylate (204). To a solution of alcohol $198(0.60 \mathrm{~g}, 3.03 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(1.26 \mathrm{~mL}, 9.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added MsCl $(0.35 \mathrm{~mL}, 4.55 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(30 \mathrm{~mL})$ The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with brine (100 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was dissolved in DMF (30 mL)
and sodium azide ($187 \mathrm{mg}, 2.87 \mathrm{mmol}$) was added in one portion at room temperature. The reaction mixture was heated to $80^{\circ} \mathrm{C}$, stirred for 14 h at this temperature and was then cooled to room temperature. Water (30 mL) was added and the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to give 0.64 g (96%) of chloride 204 as a yellow oil
TLC: $\mathrm{R}_{f} 0.45$ (hexane/EtOAc 1:1, UV).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.56(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.5,142.7,140.1,108.3,60.7,52.3,41.9,14.4,11.2$.
IR (film): v 3347, 2980, 2955, 2939, 1716, 1657, 1536, 1443, 1427, 1386, 1300, 1217, 1105, 1028, 980, 915, 840, 816, 777, 729.

HRMS (EI): calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$224.1142, found 224.1139.

205
Ethyl 1-(2-aminoethyl)-5-methyl-1H-pyrazole-3-carboxylate (205). To a solution of azide 204 ($31 \mathrm{mg}, 0.14 \mathrm{mmol}$) in EtOH (1 mL) was added Palladium on activated carbon (15 mg , $0.014 \mathrm{mmol}, 10 \%$) in one portion at room temperature and the reaction mixture was stirred under atmosphere of H_{2} for 22 h . The solution was then filtered through a small plug of celite and the precipitate was rinsed with $\mathrm{EtOH}(5 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography ($\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{NEt}_{3}$ 17:2:1) to afford 24 mg (88%) of amine 205 as a yellow oil.

TLC: $\mathrm{R}_{f} 0.23$ (EtOAc/MeOH/NEt 3 17:2:1, UV, Ninhydrin).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.54(\mathrm{q}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.36(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.5,143.5,140.9,108.5,61.0,51.1,48.5,14.5,11.2$.
IR (film): v 2982, 2960, 2934, 2100, 1714, 1550, 1442, 1428, 1390, 1348, 1296, 1213, 1138, 1105, 1056, 1026, 981, 844, 819, 778.

HRMS (EI): calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$198.1237, found 198.1234.

$\left.\begin{array}{llllllllllllllllll}20\end{array}\right)$

206
Ethyl 1-(2-((tert-butoxycarbonyl)amino)ethyl)-5-methyl-1H-pyrazole-3-carboxylate (206). To a solution of amine $205(290 \mathrm{mg}, 1.47 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(1.02 \mathrm{~mL}, 7.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(353 \mathrm{mg}, 1.62 \mathrm{mmol})$ at room temperature and the reaction mixture was stirred for 5 h . The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc1:1) to yield 380 mg (87%) of Boc protected amine 206 as a white solid.

TLC: $\mathrm{R}_{f} 0.25$ (hexane/EtOAc 1:1, UV, Ninhydrin, CPS).
mp: $105-106^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.54(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.22(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, CDCl_{3}): $\delta=162.6,156.0,143.2,140.7,108.3,79.9,60.9,48.8,40.6$, 28.5, 14.5, 11.1 .

IR (film): v 3356, 2978, 2935, 1706, 1515, 1447, 1390, 1365, 1250, 1213, 1165, 1106, 1065, 1028, 982, 859, 777.

HRMS (EI): calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$320.1581, found 320.1579.

207
tert-Butyl (2-(3-(hydroxymethyl)-5-methyl-1H-pyrazol-1-yl)ethyl)carbamate (207). To a solution of ester $206(295 \mathrm{mg}, 0.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ was added DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.98 \mathrm{~mL}, 2.98 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h at this temperature, was then allowed reach room tempeature slowly and stirred for 2 h at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous

Rochelle salt (30 mL). The solution was left stirring rigorously until the two phases got transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (EtOAc \rightarrow EtOAc/MeOH 20:1) to give 221 g (87\%) of alcohol 207 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.12$ (EtOAc, KMnO_{4}).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.00(\mathrm{~s}, 1 \mathrm{H}), 4.95$ (br s, 1H), 4.61 (s, 2H), 4.09 (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.1,151.6,140.3,103.8,79.7,59.2,48.1,40.6,28.5$, 11.1.

IR (film): v 3327, 2976, 2929, 2871,1697, 1520, 1510, 1455, 1394, 1252, 1170, 1075, 1040, 1007, 985, 859, 785.

HRMS (EI): calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$278.1475, found 278.1474.

208
tert-Butyl (2-(3-(chloromethyl)-5-methyl-1H-pyrazol-1-yl)ethyl)carbamate (208). To a solution of alcohol $207(60 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added thionyl chloride ($36 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 45 min at this temperature. The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 2:1) to give 48 mg (75%) of chloride 208 as a white solid.

TLC: $\mathrm{R}_{f} 0.23$ (hexane/EtOAc 2:1, UV, KMnO4).
mp: $107-108^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.08(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{q}, ~ J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.1,148.3,140.6,105.1,79.8,48.3,40.6,39.3,28.5$, 11.1.

IR (film): v 3301, 2980, 2969, 2939, 1701, 1553, 1532, 1456, 1393, 1365, 1317, 1280, 1266, 1255, 1172, 1146, 1069, 1023, 959, 872, 803, 736, 713, 658.

HRMS (EI): calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$274.1317, found 274.1316.

209
((1-(2-((tert-butoxycarbonyl)amino)ethyl)-5-methyl-1H-pyrazol-3-
 $0.05 \mathrm{mmol})$ in DMF $(0.3 \mathrm{~mL})$ was added $\mathrm{Bu}_{3} \mathrm{P}(59 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$ at room temperature. The reaction mixture was heated to $40^{\circ} \mathrm{C}$ and stirred for 72 h at this temperature. The solvent was then concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1 \rightarrow 10: 1\right)$ to give $21 \mathrm{mg}(93 \%)$ of Wittig salt 209 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.39\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1, \mathrm{CPS}\right)$.
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.09(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.93(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 12 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H})$, $1.53-1.40(\mathrm{~m}, 12 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.8,140.9,139.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 107.0(\mathrm{~d}, J=4.0 \mathrm{~Hz})$, $79.5,48.7,40.7,28.4,23.9(\mathrm{~d}, \mathrm{~J}=27.1 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 19.8(\mathrm{~d}, J=48.4 \mathrm{~Hz}), 19.1$ $(\mathrm{d}, J=47.1 \mathrm{~Hz}), 13.5,11.0$.

IR (film): v 3337, 3236, 2960, 2932, 2873, 1705, 1546, 1514, 1454, 1390, 1364, 1274, 1250, $1173,1126,991,969,917,780,724$.

HRMS (EI): calculated for $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}]^{+} 440.3400$, found 440.3401 .

145g

((1-(2-((di-tert-butoxycarbonyl)amino)ethyl)-5-methyl-1H-pyrazol-3-

yl)methyl)tributylphosphonium chloride (145g). To a solution of phosphonate 209 (53 mg, $0.11 \mathrm{mmol})$ in $\mathrm{MeCN}(1.5 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(49 \mathrm{mg}, 0.22 \mathrm{mmol})$ and DMAP (7 mg , 0.06 mmol) at room temperature and the reaction mixture was stirred for 12 h . The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over
MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$ to yield $186 \mathrm{mg}(97 \%)$ of double-Boc protected pyrazole $\mathbf{1 4 5 g}$ as a slightly yellow oil.
TLC: $\mathrm{R}_{f} 0.11\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right.$, CPS $)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.15(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}$, $J=14.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.47(\mathrm{~m}$, $12 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}), 0.94(\mathrm{t}, J=7.0,9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.5,140.3,139.8(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 107.4(\mathrm{~d}, J=5.3 \mathrm{~Hz})$, $83.0,47.9,46.2,28.2,24.1(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 24.0(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 19.9(\mathrm{~d}, J=48.7 \mathrm{~Hz}), 19.3$ (d, $J=47.0 \mathrm{~Hz}$), 13.6, 10.9.
IR (film): v 2960, 2933, 2873, 1787, 1736, 1696, 1549, 1456, 1394, 1367, 1345, 1248, 1218, 1170, 11.35, 849.

HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+} 540.3925$, found 540.3919.

4.3 Synthesis of Hypermodified Epothilone A Analogs

4.3.1 First Synthesis

241
(S)-4-benzyl-3-((S)-4-(benzyloxy)-2-methylbutanoyl)oxazolidin-2-one (241). To a solution of acyloxazolidinone ($\mathbf{2 4 0}$) ($8.81 \mathrm{~g}, 24.93 \mathrm{mmol}$) in THF (60 mL) was added NaHMDS (1 M in THF, $33 \mathrm{~mL}, 32.41 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature. Iodomethane $(9.3 \mathrm{~mL}, 149.6 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was then added over a period of 1 h at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature. The reaction mixture was then allowed to reach room temperature over a period of 1 h and stirred for additional 0.5 h at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 6:1) to yield $8.07 \mathrm{~g}(88 \%)$ of methylated acyloxazolidinone 241 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.45$ (hexane/EtOAc 3:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=+61.1\left(c=0.82, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, 2H) 4.42-4.36 (m, 1H), $3.98(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dddd}, J=13.3,8.3,7.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{ddd}, J=8.8,8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=13.4,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{dd}, J=13.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dq}, J=14.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.2,153.4,138.7,135.6,129.6,129.0,128.4,127.8$, 127.7, 127.4, 73.0, 68.6, 66.0, 55.4, 38.1, 35.3, 33.8, 18.2.

IR (film): v 3030, 2967, 2926, 2862, 1776, 1695, 1496, 1455, 1385, 1351, 1289, 1241, 1206, 1094, 1015, 973, 741, 700, 595.
HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 390.1676$, found 390.1672 .

248
($6 R, 7 S, 8 S, E$)-methyl
10-(benzyloxy)-7-hydroxy-4,4,6,8-tetramethyl-5-oxodec-2-enoate (248). To a solution of ethyl ketone $83(1.82 \mathrm{~g}, 9.91 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 9.91 \mathrm{~mL}, 9.91 \mathrm{mmol}$) and DIPEA ($1.94 \mathrm{~mL}, 11.23 \mathrm{mmol}$) dropwise at $78{ }^{\circ} \mathrm{C}$. The deep red reaction mixture was stirred for 1 h at this temperature. Aldehyde 232 $(1.27 \mathrm{~g}, 6.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was then added over a period of 0.5 h and the reaction mixture was stirred for 0.5 h at $-78^{\circ} \mathrm{C}$. The reaction was then cautiously quenched by
addition pH 7 phosphate buffer (60 mL), the mixture was filtered through a filter paper and the precipitate was rinsed extensively with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The phases of the filtrate were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 50 mL). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 6:1 $\rightarrow 5: 1$) to yield 1.40 g (56\%) of aldol product 248 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.26$ (hexane/EtOAc 3:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-13.1\left(c=0.82, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.56$ (ddd, $J=9.4,6.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=9.4,7.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dt}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.24(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{qd}, J=6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (dddd, $J=14.0,7.1,6.5,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{dqd}, J=8.3,6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{dddd}, J=14.0,8.3,6.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}$, $3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=216.6,166.6,150.9,138.6,128.5,127.8,127.7,121.1$, $75.3,73.0,68.5,51.9,51.6,42.4,33.5,32.6,23.5,23.5,16.4,11.0$.
IR (film): v 3521, 2969, 2937, 2874, 1724, 1702, 1647, 1456, 1437, 1366, 1315, 1298, 1281, 1200, 1177, 1096, 986, 739, 700.

HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}, 399.2142$, found 399.2128 .

(6R,7S,8S,E)-methyl
10-(benzyloxy)-4,4,6,8-tetramethyl-5-oxo-7
((triisopropylsilyl)oxy)dec-2-enoate (249). To a solution of alcohol 248 ($0.35 \mathrm{~g}, 0.92 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added 2,6-lutidine $(0.74 \mathrm{~mL}, 6.41 \mathrm{mmol})$ and $\operatorname{TIPSOTf}(0.62 \mathrm{~mL}, 2.29$ mmol) dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred overnight. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 9:1) to yield $0.46 \mathrm{~g}(94 \%)$ of silyl ether 249 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.37$ (hexane/EtOAc 9:1, UV, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}$: $=-2.0\left(c=0.69, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=6.8$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (s, 3H), 3.49 (ddd, $J=9.3,6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (ddd, $J=9.3,7.3,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.06(\mathrm{dq}, J=7.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dqd}, J=13.6,6.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dddd}, J=13.6$,
7.3, $6.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09(\mathrm{~s}, 18 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=214.4,166.9,152.2,138.8,128.4,127.7,127.6,120.2$, $73.0,68.6,51.8,51.3,44.7,36.7,32.3,24.5,24.2,18.6,18.5,16.0,15.8,13.5$.

IR (film): v 2943, 2866, 1727, 1708, 1647, 1459, 1384, 1365, 1313, 1298, 1276, 1198, $1175,1098,1016,988,965,883,818,737,676$

HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{O} 5 \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 533.3657$, found 533.3641

250
(6R,7S,8S)-methyl
10-hydroxy-4,4,6,8-tetramethyl-5-oxo-7-
((triisopropylsilyl)oxy)decanoate (250). To a solution of benzyl protected alcohol 249 (0.36 $\mathrm{g}, 0.57 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added Pd / C (10% palladium on activated charcoal, 0.12 $\mathrm{g}, 0.11 \mathrm{mmol}$) in one portion at room temperature and the reaction mixture was stirred under an atmosphere of H_{2} for 0.5 h . The suspension was then filtered through a small plug of celite and the precipitate was rinsed with EtOAc $(20 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to afford $0.24 \mathrm{~g}(93 \%)$ of alcohol $\mathbf{2 5 0}$ as a colorless oil.

TLC: $\mathrm{R}_{f} 0.21$ (hexane/EtOAc 3:1, CPS).
$[\boldsymbol{\alpha}]^{20}{ }_{\mathbf{D}}$: $=-2.4\left(c=0.71, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.10(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=10.8,7.1$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{ddd}, J=10.8,7.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dq}, J=7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{dd}, J=7.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 18 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.3,174.4,61.1,51.9,47.6,43.9,36.0,34.7,34.4,29.7$, 24.8, 24.5, 18.6, 18.6, 16.8, 16.4, 13.7.

IR (film): v 3466, 2944, 2867, 1740, 1696, 1463, 1371, 1296, 1257, 1202, 1159, 1111, 1054, 990, 883, 820, 676.

HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{NaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 467.3163$, found 467.3161 .

\qquad

($6 R, 7 S, 8 S$)-methyl 4,4,6,8-tetramethyl-5-oxo-10-((1-phenyl-1H-tetrazol-5-yl)thio)-7((triisopropylsilyl)oxy)decanoate (251). To a solution of alcohol 250 ($1.51 \mathrm{~g}, 3.40 \mathrm{mmol}$) in THF (30 mL) was added 1-phenyl- $1 H$-tetrazole- 5 -thiol ($1.21 \mathrm{~g}, 6.80 \mathrm{mmol}$) and triphenyl phosphine $(1.34 \mathrm{~g}, 5.10 \mathrm{mmol})$ in one portion at room temperature. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and DEAD ($0.94 \mathrm{~mL}, 5.95 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to reach room temperature and stirred for 1 h at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 7:1) to yield 1.97 g (96%) of sulfide 251 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.39$ (hexane/EtOAc 4:1, UV, CPS).
$[\alpha]^{20}{ }_{\mathbf{D}}$: $=-14.6\left(c=0.44, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63-7.49(\mathrm{~m}, 5 \mathrm{H}), 4.10(\mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, 3 H), 3.52 (ddd, $J=13.1,9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (ddd, $J=13.1,8.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (dq, $J=7.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}$, $3 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.06(\mathrm{~m}$, $21 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.0,174.1,154.3,133.9,130.2,129.9,123.9,77.4,51.8$, $47.6,43.8,38.9,34.5,31.8,31.3,29.8,24.9,24.7,18.6,18.6,16.3,16.0,13.6$.

IR (film): v 2945, 2867, 1738, 1695, 1597, 1501, 1463, 1386, 1295, 1244, 1200, 1174, 1091, 1011, 984, 884, 847, 820, 762, 678.

HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 605.3551$, found 605.3555 .

227
($6 R, 7 S, 8 S$)-methyl 4,4,6,8-tetramethyl-5-oxo-10-((1-phenyl-1H-tetrazol-5-yl)sulfonyl)-7((triisopropylsilyl)oxy)decanoate (251). To a solution of sulfide $227(1.97 \mathrm{~g}, 3.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added m-CPBA ($2.81 \mathrm{~g}, 11.40 \mathrm{mmol}$) in one portion at room
temperature and the reaction mixture was stirred for 6 h . The reaction mixture was diluted with EtOAc (15 mL), washed successively 2 M aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (30 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 7:1) to yield $1.96 \mathrm{~g}(94 \%)$ of sufon 251 as a viscous colorless oil.
TLC: $\mathrm{R}_{f} 0.39$ (hexane/EtOAc 4:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-10.9\left(c=0.61, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{dd}, J=8.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (ddd, $J=14.3,12.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67-3.57 (m, 1H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dq}$, $J=8.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (dddd, $J=13.3,12.5,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=14.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{dddd}, J=10.4,7.1,3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.08(\mathrm{~m}, 21 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=217.9,173.8,153.4,133.1,131.4,129.7,125.1,77.7,54.8$, 51.7, 47.6, 44.3, 37.8, 34.1, 29.6, 24.6, 24.3, 23.6, 18.4, 18.4, 16.8, 16.5, 13.6.

IR (film): v 2946, 2867, 1737, 1694, 1498, 1463, 1342, 1297, 1198, 1152, 1093, 1030, 1011, 990, 884, 849, 821, 763, 682, 627.
HRMS (ESI): calculated for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$637.3450, found 637.3461 .

253
(6R,7S,8S)-methyl 11-((1R,2S)-2-((S)-3-(benzyloxy)-2-((tert-butyldimethylsilyl)oxy) propyl)cyclopropyl)-4,4,6,8-tetramethyl-5-oxo-7-((triisopropylsilyl)oxy)undec-10-enoate (253). To a solution of sulfon $227(1.94 \mathrm{~g}, 3.04 \mathrm{mmol})$ and aldehyde $228(1.28 \mathrm{~g}, 3.68 \mathrm{mmol})$ in THF (30 mL) was added LiHMDS ($3.65 \mathrm{~mL}, 3.65 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 40 min at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 12:1) afforded $2.08 \mathrm{~g}(90 \%, E / Z 3: 1)$ of olefine 253 as a colorless oil.

Note: The NMR data are given for the major (E) isomer only.
TLC: $\mathrm{R}_{f} 0.34$ (hexane/EtOAc 9:1, UV (weak), CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{ddd}, J=15.1,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.96(\mathrm{dd}, J=15.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.86(\mathrm{~m}$,
$1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{qd}, J=6.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=6.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, \mathrm{J}=6.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.57(\mathrm{dt}, J=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{ddd}, J=13.7,7.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.08(\mathrm{~m}, 27 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.83-0.76(\mathrm{~m}, 1 \mathrm{H}), 0.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, 0.05 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.0,174.1,138.7,135.0,128.4,127.7,127.6,126.5$, $77.4,74.5,73.5,71.6,51.8,47.7,43.5,40.2,39.0,35.1,34.5,29.9,26.0,24.8,24.8,21.8$, 18.6, 18.6, 17.6, 16.8, 16.4, 16.0, 13.7, 13.5, -4.3, -4.6.

IR (film): v 2946, 2932, 2864, 1741, 1698, 1467, 1366, 1296, 1254, 1201, 1122, 1098, 1056, 1027, 991, 884, 835, 776, 738, 675.

HRMS (ESI): calculated for $\mathrm{C}_{44} \mathrm{H}_{82} \mathrm{NO}_{6} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 776.5675$, found 776.5674.

254
(6R,7S,8S)-methyl
11-((1R,2S)-2-((S)-3-(benzyloxy)-2-((tert-
butyldimethylsilyl)oxy)propyl)cyclopropyl)-4,4,6,8-tetramethyl-5-oxo-7-
((triisopropylsilyl)oxy)undecanoate (254). To a solution of olefine 253 ($1.97 \mathrm{~g}, 2.59 \mathrm{mmol}$) and TPSH ($11.62 \mathrm{~g}, 38.92 \mathrm{mmol}$) in 1,2-Dichloroethane (150 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(5.41 \mathrm{~mL}$, 38.92 mmol) over a period of 4 h at $50^{\circ} \mathrm{C}$ and the reaction mixture was stirred overnight. The reaction mixture was diluted with EtOAc (50 mL) and filtered through a small plug of celite. The precipitate was rinsed extensively with EtOAc $(200 \mathrm{~mL})$ and the filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 12:1) afforded 1.88 g (95%) of saturated $\mathbf{2 5 4}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.48$ (hexane/EtOAc 9:1, UV (weak), CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=6.2,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{dq}, J=7.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=6.2$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{qd}, J=7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=9.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=9.0$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.45(\mathrm{~m}$, $1 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.07(\mathrm{~m}, 27 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, 9 H), 0.50 (dddd, $J=10.7,8.1,7.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.42$ (dddd, $J=11.0,8.1,5.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 0.17 (ddd, $J=12.2,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.13(\mathrm{ddd}, J=12.2,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.0,174.1,138.7,128.4,127.7,127.6,77.1,74.8,73.5$, $72.0,51.8,47.6,42.8,40.3,39.5,34.9,34.6,32.4,29.9,27.9,26.1,24.9,24.8,19.2,18.6$, 18.6, 18.3, 16.0, 15.8, 15.1, 13.6, 11.9, -4.3, -4.6.

IR (film): v 2947, 2928, 2863, 1742, 1697, 1463, 1365, 1254, 1120, 1093, 1063, 990, 978, 883, 835, 809, 776, 734, 698, 677.
HRMS (ESI): calculated for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{NO}_{6} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 778.5832$, found 778.5821.

255
($6 R, 7 S, 8 S$)-methyl
11-((1R,2S)-2-((S)-3-(benzyloxy)-2-hydroxypropyl)cyclopropyl)-4,4,6,8-tetramethyl-5-oxo-7-((triisopropylsilyl)oxy)undecanoate (255). To a solution of silyl ether $254(2.00 \mathrm{~g}, 2.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and $\mathrm{MeOH}(40 \mathrm{~mL})$ was added CSA
$(0.92 \mathrm{~g}, 3.94 \mathrm{mmol})$ in one portion at room temperature. The reaction mixture was stirred at for 3 h and the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 4:1) afforded $1.62 \mathrm{~g}(95 \%)$ of alcohol $\mathbf{2 5 5}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.24$ (hexane/EtOAc 4:1, UV (weak), CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$: $=\left(c=0.60, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=6.2,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{qdd}, J=7.0,3.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}$, $J=9.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{qd}, J=7.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=8.4$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=6.9$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 3 \mathrm{H})$, $1.19(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 30 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.55-0.40(\mathrm{~m}, 2 \mathrm{H}), 0.20(\mathrm{dd}, J=$ $7.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 0.17 (ddd, $J=7.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=218.0,174.1,138.2,128.6,127.9,127.9,77.1,74.5,73.5$, $71.1,51.8,47.6,42.8,40.2,37.9,34.7,34.6,32.4,29.9,27.9,24.9,24.8,18.9,18.6,18.6$, $16.0,15.8,15.1,13.5,11.8$.

IR (film): v 3511, 2963, 2943, 2865, 1740, 1696, 1456, 1438, 1368, 1298, 1258, 1201, 1118, 1092, 1065, 990, 883, 847, 814, 735, 698, 678.

HRMS (ESI): calculated for $\mathrm{C}_{38} \mathrm{H}_{70} \mathrm{NO}_{6} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$664.4967, found 664.4981 .

256
($6 R, 7 S, 8 S$)-11-((1R,2S)-2-((S)-3-(benzyloxy)-2-hydroxypropyl)cyclopropyl)-4,4,6,8-tetramethyl-5-oxo-7-((triisopropylsilyl)oxy)undecanoic acid (256). To a solution of ester $255(1.55 \mathrm{~g}, 2.40 \mathrm{mmol})$ in $t-\mathrm{BuOH}(48 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added LiOH monohydrate $(0.60 \mathrm{~g}, 14.40 \mathrm{mmol})$ in one portion at room temperature. The reaction mixture was stirred for 2 h at this temperature. The reaction mixture diluted with water $(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ whereupon the solution turned milky. The solution was then acidified by addition of 1 M aqueous HCl solution until pH 5 was reached. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced to yield $1.55 \mathrm{~g}(100 \%)$ of acid 256 as a colorless oil. TLC: $\mathrm{R}_{f} 0.19$ (hexane/EtOAc 1:1, UV, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}$: $=-11.2\left(c=0.60, \mathrm{CHCl}_{3}\right)$.
[${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=6.1,2.5 \mathrm{~Hz}$, 1 H), 3.92 (dddd, $J=7.8,7.2,5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (dd, $J=9.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=9.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{qd}, J=6.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=5.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}$,
$J=5.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=8.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=8.7,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.51-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 5 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.08(\mathrm{~m}$, $21 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.48$ (dddd, $J=12.7$, 9.7, $5.1,4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 0.18 (ddd, $J=12.4,10.7,4.4 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.1,177.2,138.0,128.6,128.0,127.9,77.1,74.4,73.5$, $71.3,47.7,42.9,40.3,37.8,34.4,34.3,32.2,29.6,27.6,24.8,24.5,18.9,18.6,18.6,16.1$, 15.9, 15.1, 13.6, 11.5.

IR (film): v 3470, 2929, 2865, 1704, 1459, 1386, 1367, 1292, 1240, 1207, 1117, 1093, 998, 982, 883, 816, 738, 699, 676.

HRMS (ESI): calculated for $\mathrm{C}_{3} 7 \mathrm{H}_{64} \mathrm{NaO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 655.4364$, found 655.4359 .

[^16]

218
(1S,3S,10R,11S,12S,16R)-3-((benzyloxy)methyl)-8,8,10,12-tetramethyl-11-
((triisopropylsilyl)oxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (218). To a solution of $\mathrm{NEt}_{3}(0.68 \mathrm{~mL}, 4.90 \mathrm{mmol}), 2,4,6$-trichlorobenzoyl chloride ($0.42 \mathrm{~mL}, 2.69 \mathrm{mmol}$) and DMAP ($0.39 \mathrm{~g}, 3.18 \mathrm{mmol}$) in THF $(900 \mathrm{~mL})$ was added acid $256(1.55 \mathrm{~g}, 2.45 \mathrm{mmol})$ in THF (50 mL) over a period of 45 min at room temperature and the reaction mixture was stirred for additional 45 min . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 12:1) to yield 1.13 g (75\%) of macrolactone 218 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.21$ (hexane/EtOAc 12:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}:=+11.8\left(c=1.64, \mathrm{CHCl}_{3}\right)$.
[${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.23(\mathrm{dddd}, J=10.0,5.2,5.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{dd}, J=10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=10.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{qd}, J=6.9,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39 (ddd, $J=15.2,11.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=15.2,11.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (dd, $J=14.9,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=6.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.53-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.55(\mathrm{dddd}, J=12.4,7.0,6.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.43(\mathrm{dddd}, J=10.5,9.5,6.3$, 4.1 Hz, 1H), $0.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=218.1,172.6,138.2,128.5,127.9,127.8,77.2,73.6,73.2$, $71.8,47.6,43.1,39.8,35.7,34.8,34.1,31.6,31.0,26.5,25.3,23.6,18.6,18.6,18.0,16.4,16.2$, 15.9, 13.5, 11.2.

IR (film): v $2939,2865,1734,1697,1459,1367,1286,1254,1204,1121,998,980,883$, 819, 737, 698, 676.
HRMS (ESI): calculated for $\mathrm{C}_{3} \mathrm{H}_{63} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 615.4439$, found 615.4456.

257
(1S,3S,10R,11S,12S,16R)-3-(hydroxymethyl)-8,8,10,12-tetramethyl-11-
((triisopropylsilyl)oxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (257). To a solution of protected alcohol $218(45 \mathrm{mg}, 0.073 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ was added $\mathrm{BCl}_{3} \mathrm{SMe}_{2}(55$ $\mu \mathrm{L}, 0.336 \mathrm{mmol}$) dropwise at room temperature and the reaction mixture was stirred for 5.5
h. The reaction was then cautiously quenched by addition of saturated aqueous NaHCO_{3} (2 $\mathrm{mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et} 2 \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to yield 21.3 mg (48\%) of alcohol 257 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.21$ (hexane/EtOAc 3:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=+15.2\left(c=0.69, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.08$ (dddd, $\left.J=10.0,5.9,3.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.13(\mathrm{dd}, J=$ $6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (ddd, $J=11.8,5.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{ddd}, J=11.8,6.4,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17(\mathrm{dq}, J=7.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dddd}, J=9.3,7.4,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dddd}, J=9.7$, $7.8,7.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=14.9,4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.13-1.07(\mathrm{~m}, 26 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.56(\mathrm{ddd}, J=13.6,11.0,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 0.44 (dddd, $J=10.6,9.6,6.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR (100 MHz, CDCl_{3}): $\delta=218.1,173.6,76.8,76.8,65.8,47.5,43.2,39.8,35.4,34.9$, $34.1,30.9,26.6,25.2,24.0,18.6,18.6,18.0,16.5,16.2,15.9,15.9,13.5,11.3$.

IR (film): v 3464, 2940, 2866, 1732, 1699, 1462, 1384, 1368, 1285, 1258, 1123, 1087, 1043, 999, 982, 883, 820, 674.

HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{57} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 525.3970$, found 525.3952.

(1S,3S,10R,11S,12S,16R)-3-((E)-2-(5-(((tert-butyldimethylsilyl)oxy)methyl)isoxazol-3-yl)vinyl)-8,8,10,12-tetramethyl-11-((triisopropylsilyl)oxy)-4-
oxabicyclo[14.1.0]heptadecane-5,9-dione (258). To a solution of alcohol 257 (21.3 mg, $0.041 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DMP ($0.12 \mathrm{~mL}, 0.060 \mathrm{mmol}$) dropwise at $0{ }^{\circ} \mathrm{C}$ whereupon the reaction mixture turned milky. The reaction mixture was allowed to reach room temperature and stirred for 0.5 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. Stirring was continued for 0.5 h , when two almost clear phases had formed. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the obtained crude aldehyde was directly used in the subsequent Wittig reaction.

To a solution of phosphonate $\mathbf{1 4 0 b}(62 \mathrm{mg}, 0.170 \mathrm{mmol})$ in THF (2 mL) was added t-BuOK ($18.2 \mathrm{mg} \mathrm{mL}, 0.162 \mathrm{mmol}$) in one portion at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 0.5 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and crude aldehyde (ca. 21 mg , $0.041 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise. The reaction mixture was allowed to
warm to $-20^{\circ} \mathrm{C}$ over a period of 2 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 12:1) to afford $12.0 \mathrm{mg}(40 \%)$ of an inseparable $1: 1$ mixture of $\mathbf{2 5 8}$ and its C16-C17 Z isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.32$ (hexane/EtOAc 9:1, UV, CPS).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.30(\mathrm{dd}, J=16.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.25(\mathrm{~s}, 1 \mathrm{H}), 5.58$ (dddd, $J=7.7,7.6,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.12$ (dd, $J=6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{qd}, J=6.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{ddd}, J=14.8$, $4.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 2 \mathrm{H})$, $1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.04(\mathrm{~m}, 27 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, 0.65-0.55 (m, 2H), 0.19-0.13 (m, 2H), $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.1,172.2,160.8,136.3,123.6,118.8,98.8,74.4,73.5$, $57.6,47.6,43.0,39.8,39.0,34.9,34.0,31.0,26.5,25.9,25.9,25.3,23.8,18.6,18.4,18.2$, $16.4,16.3,16.1,16.0,13.5,11.2,-5.2,-5.3$.

IR (film): v 2929, 2862, 1736, 1696, 1604, 1463, 1386, 1364, 1287, 1255, 1136, 1092, 1002, 980, 917, 883, 837, 815, 779, 677.

3b
(1S,3S,10R,11S,12S,16R)-11-hydroxy-3-((E)-2-(5-(hydroxymethyl)isoxazol-3-yl)vinyl)-8,8,10,12-tetramethyl-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (3b). To a $1: 1$ mixture of protected cyclopropyl-Epo B $\mathbf{2 5 8}$ and its C16-C17 Z isomer ($38 \mathrm{mg}, 0.052 \mathrm{mmol}$) in THF (2 mL) was added $\mathrm{HF} / \mathrm{py}$ ridine (2 mL , ca. $70 \% \mathrm{HF}$) dropwise at room temperature and the reaction mixture was stirred for 2 h . The reaction mixture was then carefully poured into a cold saturated aqueous solution of $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc (3 x 40 mL). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:1) to afford 18.4 mg (77\%) of hypermodified Epo A analog 3b as a colorless oil.

TLC: $\mathrm{R}_{f} 0.41$ (hexane/EtOAc 1:2, UV, CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.54(\mathrm{dd}, J=16.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=16.3,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{ddd}, J=10.2,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H})$, 3.71-3.66 (m, 1H), $3.24(\mathrm{dd}, J=6.8 .3 .5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (ddd, $J=14.3,12.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{ddd}, J=14.3,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.98$ (ddd, $J=14.0,13.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=12.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.55-$
1.37 (m, 4H), $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.65-0.61(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.52(\mathrm{~m}, 1 \mathrm{H}), 0.28(\mathrm{dd}, J=8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.22-0.17(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=220.6,172.1,171.4,160.9,136.8,119.0,99.0,74.2,72.9$, $56.7,48.4,40.4,38.2,35.2,35.2,34.8,31.3,30.6,25.5,24.9,21.8,19.1,15.9,14.5,12.3$, 12.0.

IR (film): v 3432, 2969, 2932, 2876, 1731, 1691, 1603, 1458, 1438, 1371, 1288, 1259, 1200, 1132, 1075, 1040, 974, 913, 803, 733.

HRMS (ESI): calculated for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 484.2670$, found 484.2665 .

277
3-((E)-2-((1S,3S,10R,11S,12S,16R)-11-hydroxy-8,8,10,12-tetramethyl-5,9-dioxo-4-oxabicyclo[14.1.0]heptadecan-3-yl)vinyl)isoxazole-5-carbaldehyde (277). To a solution of alcohol 3b ($1.9 \mathrm{mg}, 0.004 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ was added BAIB ($1.5 \mathrm{mg}, 0.005 \mathrm{mmol}$) and TEMPO $(0.14 \mathrm{mg}, 0.001 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and was stirred for 2 h . The reaction mixture was then concentrated under reduced pressure the residue was purified by silica gel column chromatography using hexane/EtOAc (1:1) as eluent to give $1.2 \mathrm{mg}(63 \%)$ of aldehyde 277 as a colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.98(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, 11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.26(\mathrm{dd}, J=11.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{ddd}, J=8.2,4.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=6.8$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=6.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.80$ $(\mathrm{m}, 3 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0,3 \mathrm{H}), 0.70-0.63(\mathrm{~m}, 2 \mathrm{H}), 0.29(\mathrm{ddd}, J=8.0,4.8$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.23-0.18(\mathrm{~m}, 1 \mathrm{H})$.

276
(1S,3S,10R,11S,12S,16R)-8,8,10,12-tetramethyl-3-((E)-2-(5-methylisoxazol-3-yl)vinyl)-5,9-dioxo-4-oxabicyclo[14.1.0]heptadecan-11-yl
yldisulfanyl)phenyl)acetate (276). To a solution of acid ($10.1 \mathrm{mg}, 0.036 \mathrm{mmol}$) and alcohol 3a ($8.1 \mathrm{mg}, 0.018 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added DCC ($11.3 \mathrm{mg}, 0.055 \mathrm{mmol}$) and DMAP ($2.2 \mathrm{mg}, 0.018 \mathrm{mmol}$) at room temperature and the mixture was stirred for 2 h . The reaction mixture was then filtered through a small plug of silica. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 2:1) to afford 2.0 mg (16%) of ester 276 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.32$ (hexane/EtOAc 3:2, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~} \mathbf{=}=+3.9\left(c=0.31, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.45(\mathrm{dt}, J=4.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{dd}$, $J=4.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{dd}, J=8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=16.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 3 \mathrm{H}), 5.60-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{dd}$, $J=7.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 ($\mathrm{qd}, J=6.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.27(\mathrm{~m}, 3 \mathrm{H}), 1.99$ (ddd, $J=13.4,13.1,4.9,1 \mathrm{H}$), 1.87 (ddd, $13.6,13.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.49$ (m, 2H), 1.501.37 (m, 2H), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.02-0.91 (m, 2H), 0.87 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.76-0.67(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.60(\mathrm{~m}, 1 \mathrm{H})$, $0.58-0.50(\mathrm{~m}, 1 \mathrm{H}), 0.19(\mathrm{dd}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{dd}, J=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=215.2,172.0,169.4,160.9,159.5,149.6,137.3,136.0$, $135.9,134.0,133.7,131.0,129.1,128.4,127.8,121.0,119.9,119.0,98.7,77.2,74.2,47.8$, $41.0,39.4,38.5,34.5,34.4,34.3,30.8,29.3,25.7,24.9,22.3,18.6,17.0,15.9,14.5,12.2$, 11.0.

4.3.2 Optimized Synthesis

262
(S)-1-(1,3-dithian-2-yl)-3-((4-methoxybenzyl)oxy)propan-2-ol (262). To a solution of 1,3-dithiane ($11.6 \mathrm{~g}, 70.83 \mathrm{mmol}$) in THF $(250 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $55.3 \mathrm{~mL}, 88.54 \mathrm{mmol}$) dropwise at $-30{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and was then allowed to reach $0^{\circ} \mathrm{C}$. Epoxide $261(11.63 \mathrm{~g}, 70.83 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added and stirred for 1 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. It was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 75 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc $3: 1$ to $2: 1$) afforded 17.52 g (79\%) of a secondary alcohol 262 as a white solid.
TLC: $\mathrm{R}_{f} 0.20$ (hexane/EtOAc 3:1, UV (weak), CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-4.3\left(c=1.68, \mathrm{CHCl}_{3}\right)$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{dt}, J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dt}, J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.49(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (ddddd, $\mathrm{J}=10.1,7.2,4.4,3.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, J=9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ $(\mathrm{dd}, J=9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{td}, J=14.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10(\mathrm{dtt}, J=14.1,5.0,2.7 \mathrm{~Hz} 1 \mathrm{H}), 1.96-1.76(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.5,130.0,129.5,114.0,73.8,73.1,67.3,55.4,43.9$, 39.1, 30.5, 30.1, 26.0.

IR (film): v 3448, 2932, 2899, 2858, 2834, 1612, 1585, 1511, 1463, 1422, 1363, 1302, 1276, 1244, 1173, 1105, 1081, 1030, 907, 872, 818, 771, 759, 664.
HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$337.0903, found 337.0904.

263
(S)-((1-(1,3-dithian-2-yl)-3-((4-methoxybenzyl)oxy)propan-2-yl)oxy)(tert-
butyl)dimethylsilane (263). To a solution of alcohol 262 ($17.5 \mathrm{~g}, 55.65 \mathrm{mmol}$) in DMF $(50 \mathrm{~mL})$ was added imidazole ($8.33 \mathrm{~g}, 122.4 \mathrm{mmol}$) and $\mathrm{TBSCl}(9.23 \mathrm{~g}, 61.22 \mathrm{mmol})$ and the reaction mixture was stirred for 14 h . The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by
flash column chromatography (hexane/EtOAc 9:1) afforded 23.8 g (quantitative) of silyl ether 263 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.30$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$: $=-19.4\left(c=1.21, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{dt}, J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{dt}, J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J=9.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=9.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (dd, $J=9.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{td}, J=14.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{td}, J=14.1$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dtt}, J=14.1,5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=14.0,9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.91-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.3,130.6,129.4,113.9,74.5,73.1,68.1,55.5,43.8$, 40.5, 30.6, 30.0, 26.2, 26.1, 18.3, -4.2, -4.7.

IR (film): v 2951, 2929, 2897, 2855, 1613, 1512, 1470, 1462, 1422, 1362, 1302, 1246, 1173, 1126, 1108, 1087, 1036, 967, 834, 826, 809, 775, 666.

HRMS (ESI): calculated for $\mathrm{C}_{2} \mathrm{H}_{36} \mathrm{NaO}_{3} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 451.1767$, found 451.1765 .

264
(S)-3-((tert-butyldimethylsilyl)oxy)-4-((4-methoxybenzyl)oxy)butanal (264). To a solution of thioacetal $263(23.91 \mathrm{~g}, 55.77 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10: 1,550 \mathrm{~mL})$ was added $\mathrm{CaCO}_{3}(14 \mathrm{~g}$, $139.4 \mathrm{mmol})$ and $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~g}, 111.3 \mathrm{mmol})$ in portions over 5 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{~mL})$ and filtrated over a pad of celite. The filtrate filtrated a second time over celite. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 100 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 9:1) afforded $17.01 \mathrm{~g}(90 \%)$ of aldehyde $\mathbf{2 6 4}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.29$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-12.9\left(c=1.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.79(\mathrm{dd}, J=2.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=8.5,2.5 \mathrm{~Hz}$, 2 H), 6.87 (dt, $J=8.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.45 (s, 2H), 4.34 (ddd, $J=11.5,6.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3 H), 3.47 (dd, $J=9.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}) .3 .36(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=15.9,5.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{ddd}, J=15.9,6.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.7,159.4,130.2,129.4,113.9,73.8,73.2,67.5,55.4$, 49.1, 25.9, 18.1, -4.3, -4.8.

IR (film): v 2953, 2929, 2897, 2856, 1726, 1613, 1513, 1471, 1463, 1362, 1302, 1247, 1173, 1098, 1034, 1006, 833, 777.

HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 361.1806$, found 361.1809.

(S,E)-ethyl 5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-2-enoate (265). To a solution of aldehyde $264(17.0 \mathrm{~g}, 50.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added (Triphenylphosphoranylidene)acetic acid ethyl ester ($17.5 \mathrm{~g}, 50.22 \mathrm{mmol}$) in one portion at
$0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. A second portion of (Triphenylphosphoranylidene) acetic acid ethyl ester ($2.6 \mathrm{~g}, 7.53 \mathrm{mmol}$) was added and the reaction mixture allowed to reach rt and stirred for additional 16 h at this temperature. The solution was concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 9:1) afforded 17.68 g (86\%) of α, β-unsaturated ester 265 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.37$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=-12.1\left(c=0.80, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23$ (dt, $J=8.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.96 (ddd, $J=15.4,7.9$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{dt}, J=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{ddd}, J=11.5,6.2$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{dd}, J=9.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=9.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dddd, $J=14.2,7.1,4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dddd}, J=14.2,7.9,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.5,159.4,145.7,130.4,129.4,123.7,113.9,74.0,73.2$, $70.6,60.3,55.4,37.9,26.0,18.3,14.4,-4.4,-4.7$.

IR (film): v 2954, 2930, 2899, 2857, 1719, 1655, 1613, 1513, 1472, 1464, 1366, 1317, 1302, 1248, 1210, 1172, 1097, 1037, 1006, 985, 836, 810.

HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 431.2224$, found 431.2226 .

(S,E)-5-((tert-butyldimethylsilyl)oxy)-6-((4-methoxybenzyl)oxy)hex-2-en-1-ol (266). To а solution of α, β-unsaturated ester $265(17.68 \mathrm{~g}, 43.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was added DIBAL (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \mathrm{~mL}, 99.52 \mathrm{mmol}$) dropwise over 30 min at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous Rochelle solution (300 mL). The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 3:1) afforded 14.88 g (94\%) of allylic alcohol 266 as a colorless liquid.
TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 3:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=-6.00\left(c=0.92, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{dt}, J=8.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{dt}, J=8.6,2.6 \mathrm{~Hz}, 2 \mathrm{H})$,
$5.70(\mathrm{dd}, J=15.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=15.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{dt}, J=11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.35$
(dd, $J=5.5,2.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.39-2.29 (m, 1H), 2.25-2.16 (m, 1H) 1.25 (br s, 1H), 0.87 (s, 9H), $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.3,131.7,130.6,129.4,129.2,113.9,74.0,73.1,71.3$, 63.9, 55.4, 37.8, 26.0, 18.3, -4.3, -4.6.

IR (film): v 3374, 2953, 2928, 2897, 2856, 1613, 1513, 1471, 1462, 1361, 1302, 1247, 1173, 1101, 1036, 1005, 972, 831, 811, 776, 668.

HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 389.2119$, found 389.2121 .

((1R,2S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)-3-((4-methoxybenzyl)oxy)propyl)
cyclopropyl)methanol (267). To a solution of $\mathrm{ZnEt}_{2}(1 \mathrm{M}$ in hexane, $10.0 \mathrm{~mL}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ was added $\mathrm{CH}_{2} \mathrm{I}_{2}(1.6 \mathrm{~mL}, 20.0 \mathrm{mmol})$ carefully dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min and a preformed mixture of $(+)-(S, S)$-2-butylN, N, N ', N '-tetramethyl-1,3,2-dioxaborolane-4,5-dicarboxamide (Charette ligand, 0.83 mg , $3.06 \mathrm{mmol})$ and allylic alcohol $266(0.92 \mathrm{~g}, 2.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added via syringe. The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$ and then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 5:1) provided 0.98 g of cyclopropyl alcohol 267 (quantitative yield) in a diastereomeric ratio of 15:1 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 3:1, UV, CPS).
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.6,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=11.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=11.1,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.49(\mathrm{dd}, J=13.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J=13.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.77-$ $0.66(\mathrm{~m}, 2 \mathrm{H}), 0.36(\mathrm{dt}, J=8.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.31(\mathrm{dt}, J=, 8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04$ (s, 3H)
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.2,130.3,129.4,113.7,74.4,73.0,71.4,67.2,55.3$, 39.2, 25.9, 21.3, 18.2, 13.3, 10.0, -4.5, -4.8.

IR (film): v $3419,2953,2927,2856,1613,1587,1513,1470,1463,1361,1302,1247$, 1173, 1085, 1055, 1036, 1006, 834, 809, 775, 666.

HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 403.2275$, found 403.2272.

268
(1R,2S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)-3-((4-methoxybenzyl)oxy)propyl)
cyclopropanecarbaldehyde (268). To a solution of alcohol $267(4.18 \mathrm{~g}, 10.98 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{ml})$ was added $\operatorname{DMP}(15 \%, 22.83 \mathrm{~mL}, 10.98 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, the reaction mixture was allowed to reach room temparature and stirred for 1 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(50 \mathrm{~mL})$. Stirring was continued for 30 min , when two almost clear phases had formed. The
phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc (9:1) afforded 3.91 g (94\%) of aldehyde 268 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 12:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-32.3\left(c=0.93, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.96(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, $J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.88$ (ddd, $J=11.1,6.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.41$ (dd, $J=9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{ddd}, 12.4$, $6.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{ddd}, J=8.3,5.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{ddd}, J=8.3,6.1,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.1,159.4,130.4,129.5,113.9,73.7,73.2,71.0,55.4$, 37.7, 30.8, 26.0, 18.7, 18.2, 14.4, -4.3, -4.6.

IR (film): v 2953, 2929, 2897, 2897, 2856, 1706, 1613, 1513, 1470, 1463, 1362, 1302, 1247, 1173, 1122, 1086, 1036, 1006, 834, 809, 776, 666.
HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 401.2119$, found 401.2115 .

($6 R, 7 S, 8 S$)-methyl
11-((1R,2S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)-3-((4-methoxybenzyl)oxy)propyl)cyclopropyl)-4,4,6,8-tetramethyl-5-oxo-7-
((triisopropylsilyl)oxy)undec-10-enoate (269). To a solution of sulfone 227 ($3.07 \mathrm{~g}, 4.82$ mmol) and aldehyde $268(2.19 \mathrm{~g}, 5.78 \mathrm{mmol})$ in THF (48 mL) was added LiHMDS (1 M in THF, $5.8 \mathrm{~mL}, 5.78 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 40 min at this temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(40 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 9:1) afforded $3.50 \mathrm{~g}(92 \%, E / Z 4.5: 1)$ of olefine 269 as a colorless oil.
Note: The NMR data are given for the major (E) isomer only.
TLC: $\mathrm{R}_{f} 0.30$ (hexane/EtOAc 9:1, CPS).
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.33$ (ddd, $J=15.1,7.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=15.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=6.7$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=10.8,6.15 .6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}$,
$J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{qd}, J=6.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=6.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (dd, $J=6.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{ddd}, J=14.1,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.07(\mathrm{~m}$, $28 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.84-0.73(\mathrm{~m}, 1 \mathrm{H}), 0.44(\mathrm{~m}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, 0.05 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.0,174.1,159.2,135.0,130.7,129.3,126.4,113.8$, $77.4,74.3,73.1,71.5,55.4,51.8,47.7,43.5,40.2,39.0,35.1,34.4,29.9,26.0,24.8,24.8$, $21.8,18.6,18.6,16.8,16.4,16.0,13.7,13.4,-4.3,-4.6$.
IR (film): $v \quad 2947,2865,1741,1696,1623,1513,1463,1438,1388,1364,1301,1248$, 1173, 1122, 1097, 1056, 1036, 1005, 990, 978, 883, 834, 776, 678.

HRMS (ESI): calculated for $\mathrm{C}_{45} \mathrm{H}_{80} \mathrm{NO}_{7} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 806.5781$, found 806.5776.

($6 R, 7 S, 8 S$)-methyl
11-((1R,2S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)-3-((4-methoxybenzyl)oxy)propyl)cyclopropyl)-4,4,6,8-tetramethyl-5-oxo-7-
((triisopropylsilyl)oxy)undecanoate (270). To a solution of olefine 269 ($2.2 \mathrm{~g}, 2.59 \mathrm{mmol}$) and o-nitrobenzenesulfonylhydrazide $(12.11 \mathrm{~g}, 55.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added $\mathrm{NEt}_{3}(7.75 \mathrm{~mL}, 55.75 \mathrm{mmol})$ over a period of 4 h at room temperature. The reaction mixture was left stirring for 12 h , was then diluted with hexane/EtOAc (3:1, 50 mL) and filtered through a plug of silica. The precipitate was washed extensively with hexane/EtOAc (3:1, 200 mL) and the filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 9:1) afforded 2.10 g (95%) of silyl ether 270 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.30$ (hexane/EtOAc 9:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=-20.2\left(c=1.10, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24$ (dt, $\left.J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.86(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=6.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dq}, J=6.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{qd}, J=7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=8.8,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{dd}, J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=10.8,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, 1.12-1.07 (m, 24H), 1.05-1.02 (m, 1H), $0.94(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.50$ (dddd, $J=12.7,8.0,5.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.45-0.36(\mathrm{~m}, 1 \mathrm{H}), 0.17(\mathrm{dd}, J=8.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.12(\mathrm{dd}$, $J=8.89,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=218.0,174.1,159.2,130.8,129.3,113.8,77.0,74.5,73.1$, $71.9,55.4,51.8,47.6,42.8,40.3,39.5,34.9,34.6,32.4,27.9,26.1,24.9,24.8,19.2,18.6$, $18.6,18.3,15.9,15.8,15.1,13.5,11.9,-4.3,-4.6$.

IR (film): v 2928, 2864, 1742, 1697, 1613, 1513, 1463, 1438, 1388, 1365, 1301, 1248, 1173, 1120, 1092, 1038, 1005, 992, 978, 883, 834, 810, 776, 677.

HRMS (ESI): calculated for $\mathrm{C}_{45} \mathrm{H}_{86} \mathrm{NO}_{7} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$808.5937, found 808.5929.

($6 R, 7 S, 8 S$)-methyl 11-((1R,2S)-2-((S)-2-hydroxy-3-((4-methoxybenzyl)oxy)propyl) cyclopropyl)-4,4,6,8-tetramethyl-5-oxo-7-((triisopropylsilyl)oxy)undecanoate (271). To a solution of silyl ether $270(3.99 \mathrm{~g}, 5.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(166 \mathrm{~mL})$ and $\mathrm{MeOH}(84 \mathrm{~mL})$ was added CSA $(2.34 \mathrm{~g}, 10.1 \mathrm{mmol})$ in one portion at room temperature. The reaction mixture was
stirred for 2 h and was then quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 5:1) afforded $3.03 \mathrm{~g}(89 \%)$ of secondary alcohol 270 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.25$ (hexane/EtOAc 3:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}} \mathbf{~}=-17.9\left(c=0.81, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{dt}, \mathrm{J}=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dd}, \mathrm{J}=8.6,2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=6.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-$ $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=9.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=9.5$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{qd}, J=6.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=8.4,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=6.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=6.9,5.1,1 \mathrm{H})$, $1.55-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 24 \mathrm{H})$, $1.07-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.53-0.39(\mathrm{~m}, 2 \mathrm{H}), 0.22-0.14(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=218.0,174.1,159.4,130.3,129.5,114.0,77.1,74.2,73.2$, $71.0,55.4,51.8,47.6,42.8,40.2,37.9,34.7,34.6,32.4,29.9,27.9,24.9,24.8,18.9,18.6$, 18.6, 16.0, 15.7, 15.1, 13.5, 11.8 .

IR (film): v $3479,2941,2865,1739,1696,1613,1513,1463,1438,1388,1367,1301$, 1247, 1205, 1173, 1119, 1091, 1065, 1035, 1012, 990, 883, 846, 821, 677.

HRMS (ESI): calculated for $\mathrm{C}_{39} \mathrm{H}_{68} \mathrm{NO}_{7} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$694.5073, found 694.5062 .

272
(6R,7S,8S)-11-((1R,2S)-2-((S)-2-hydroxy-3-((4-methoxybenzyl)oxy)propyl)cyclopropyl)-
4,4,6,8-tetramethyl-5-oxo-7-((triisopropylsilyl)oxy)undecanoic acid (272). To a solution of methyl ester $271(3.03 \mathrm{~g}, 4.48 \mathrm{mmol})$ in $t-\mathrm{BuOH}(90 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(22 \mathrm{~mL})$ was added LiOH monohydrate ($1.13 \mathrm{~g}, 26.85 \mathrm{mmol}$) in one portion at room temperature. The reaction mixture was stirred for 2 h and then diluted with water $(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ whereupon the solution turned milky. The solution was then acidified by addition of 1 M aqueous HCl solution until pH 5 was reached. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced to yield $2.96 \mathrm{~g}(100 \%)$ of acid 272 as a colorless oil.
TLC: R_{f} : streak (hexane/EtOAc 2:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-10.9\left(c=0.80, \mathrm{CHCl}_{3}\right)$.
[${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}$, 2H), 4.49 (s, 2H), $4.03(\mathrm{dd}, J=6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dddd}, J=10.5,5.5,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=9.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=9.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{qd}, J=7.0$,
$6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=9.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=7.5$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.17(\mathrm{~m}, 5 \mathrm{H}), 1.16(\mathrm{~s}$, $3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.07(\mathrm{~m}, 22 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.51-0.42(\mathrm{~m}$, $2 \mathrm{H}), 0.19(\mathrm{dd}, J=10.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{dd}, J=11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.1,177.2,159.5,130.1,129.6,114.0,74.1,73.2,71.3$, 55.4, 47.7, 42.9, 40.3, 37.8, 34.4, 34.3, 32.2, 29.6, 27.6, 24.8, 24.5, 18.9, 18.6, 18.6, 18.6, 16.1, 15.9, 15.1, 13.6, 11.5 .

IR (film): v 2962, 2939, 2865, 1697, 1613, 1513, 1464, 1387, 1366, 1301, 1248, 1173, 1114, 1090, 1065, 1036, 1014, 998, 980, 883, 847, 820, 735, 677.

HRMS (ESI): calculated for $\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{NaO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 685.4470$, found 685.4471 .

273
(1S,3S,10R,11S,12S,16R)-3-(((4-methoxybenzyl)oxy)methyl)-8,8,10,12-tetramethyl-11-((triisopropylsilyl)oxy)-4-oxabicyclo[14.1.0]heptadecane-5,9-dione (273). To a solution of 2-methyl-6-nitrobenzoic anhydride ($0.80 \mathrm{~g}, 2.32 \mathrm{mmol}$) and DMAP ($0.57 \mathrm{~g}, 4.64 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(480 \mathrm{~mL})$ was added seco acid $272(1.02 \mathrm{~g}, 1.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(290 \mathrm{~mL})$ over a period of 15 h using a dropping funnel and the reaction mixture was stirred for another 30 min . The reaction was then cautiously quenched by addition of saturated aqueous NaHCO_{3} $(500 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 250 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 9:1) to yield $0.93 \mathrm{~g}(94 \%)$ of macrolactone 273 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.20$ (hexane/EtOAc 9:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=+15.3\left(c=0.87, \mathrm{CHCl}_{3}\right)$.
[${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{dt}, J=8.6,2.5 \mathrm{~Hz}$, 2H), 5.21 (dddd, $J=10.3,5.0,4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=6.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}, 10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40(\mathrm{dd}, J=10.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{qd}, J=6.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17$ (m, 1H), 1.99 (ddd, $J=15.0,4.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86 (dd, $5.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (dd, $J=6.0$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.12-1.07 (m, 22H), $1.06(\mathrm{~s}, 3 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.83(\mathrm{~m}$, $2 \mathrm{H}), 0.54$ (ddd, $J=12.3,10.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.42$ (dddd, $J=9.8,9.5,6.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, ${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=218.1,172.6,159.4,130.2,129.4,113.9,73.6,72.8,71.4$, $55.4,47.6,43.1,39.8,35.7,34.8,34.1,31.7,31.0,27.1,26.5,25.2,23.6,18.6,18.6,18.6$, 18.0, 16.4, 16.2, 13.5, 11.2 .

IR (film): v 2925, 2865, 1735, 1697, 1613, 1513, 1464, 1366, 1248, 1121, 1093, 1037, 999, 979, 883, 820, 678.

HRMS (ESI): calculated for $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$645.4545, found 645.4534 .

4.4 Towards the Total Synthesis of Michaolide E

412
(R)-3,5-bis((tert-butyldimethylsilyl)oxy)pentan-2-one (412). To a solution of alcohols 419 and $420(2.51 \mathrm{~g}, 10.8 \mathrm{mmol})$ and imidazole ($1.62 \mathrm{~g}, 23.78 \mathrm{mmol})$ in DMF $(18 \mathrm{~mL})$ was added $\operatorname{TBSCl}(1.79 \mathrm{~g}, 11.9 \mathrm{mmol})$ at room temperature and the mixture was stirred for 20 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 30:1) afforded $3.68 \mathrm{~g}(98 \%)$ of silyl ether 412 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 30:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-12.6^{\circ}\left(c=0.64, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.15(\mathrm{dd}, J=6.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $J=10.2,6.0$, $6.0 \mathrm{~Hz}), 3.67(\mathrm{ddd}, J=10.2,6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dddd}, J=13.7,6.9,6.7$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ (dddd, $J=13.7,6.0,5.7,5.3,1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$, 0.04 (s, 3H), 0.03 (s, 3H).
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=212.0,75.9,58.6,38.0,26.1,25.9,25.5,18.4,18.3,-4.8,-$ -5.0, -5.3, -5.3.

IR (film): v 2954, 2929, 2886, 1719, 1471, 1463, 1418, 1389, 1361, 1254, 1103, 1044, 1005, 938, 917, 835, 811, 776, 711, 669.

HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 369.2252$, found 369.2262.

(R, E)-methyl 4,6-bis((tert-butyldimethylsilyl)oxy)-3-methylhex-2-enoate (422). To a solution of $\mathrm{NaH}(0.33 \mathrm{mg}, 8.22 \mathrm{mmol}, 60 \%$ in mineral oil) in THF $(40 \mathrm{~mL})$ was added trimethyl phosphonacetate $(1.19 \mathrm{~mL}, 8.22 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature (the solution did not clear off). The reaction mixture was allowed to reach room temperature and ketone $412(0.95 \mathrm{~g}, 2.74 \mathrm{mmol})$ in THF (5 mL) was added. The reaction mixture heated to $45^{\circ} \mathrm{C}$ and stirred for 16.5 h at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous
phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 50:1) afforded $0.95 \mathrm{~g}(91 \%, E / Z 12: 1)$ of unsaturated ester 422 as a single isomer as a colorless oil.
TLC: $\mathrm{R}_{f} 0.27$ (hexane/EtOAc 50:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $-13.4^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.88(\mathrm{p}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{ddd}, J=10.2,7.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, J=10.2,5.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ $(\mathrm{d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, 0.04 (s, 6H), $0.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.5,161.7,114.6,74.1,59.2,51.1,39.7,26.0,25.9$, 18.3, 18.3, 14.9, -4.6, -5.0, -5.2, -5.2.

IR (film): v 2953, 2929, 2886, 2828, 1723, 1657, 1472, 1463, 1435, 1406, 1389, 1361, 1332, 1255, 1225, 1154, 1092, 1036, 1006, 940, 892, 835, 776.
HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 425.2514$, found 425.2505.

(R, E)-4,6-bis((tert-butyldimethylsilyl)oxy)-3-methylhex-2-en-1-ol (423). To a solution of ester $422(1.07 \mathrm{~g}, 2.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added DIBAL-H $\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 5.87 $\mathrm{mL}, 5.87 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt (50 mL). The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $30: 1 \rightarrow 10: 1$) to yield $0.79 \mathrm{~g}(89 \%)$ of allylic alcohol 423 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.34$ (hexane/EtOAc 9:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{D}-5.2^{\circ}\left(c=1.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.56(\mathrm{tt}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 3 \mathrm{H}), 3.64$ (ddd, $J=10.2,7.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, J=10.2,6.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (dddd, $J=11.7,8.0,5.8$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) .$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.6,124.0,74.5,59.8,59.4,39.7,26.1,26.0,18.4,18.3$, 11.6, -4.4, -4.9, -5.1, -5.2.

IR (film): v 3349, 2954, 2929, 2886, 2857, 1472, 1463, 1388, 1361, 1254, 1085, 1004, 939, 834, 774, 665.
HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 397.2565$, found 397.2567.

(R, E)-4,6-bis((tert-butyldimethylsilyl)oxy)-3-methylhex-2-enal (411). To a solution of allylic alcohol $423(0.79 \mathrm{~g}, 2.10 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(2.92 \mathrm{~g}, 33.60$ mmol) in one portion at room temperature and the solution was stirred for 2 h . The reaction
mixture was then filtered through a small plug of celite and the precipitate was rinsed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $25: 1$) to yield 0.71 g of unsaturated aldehyde 411 (91%) as a colorless oil.
TLC: $\mathrm{R}_{f} 0.22$ (hexane/EtOAc 30:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=-8.1^{\circ}\left(c=0.91, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dp}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{dd}, J=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=10.2,7.2,6.2,1 \mathrm{H}), 3.62(\mathrm{ddd}, J=10.2,5.8$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.7,165.2,125.8,73.7,59.0,39.6,26.0,25.9,18.3$, 18.3, 13.4, -4.6, -5.0, -5.2, -5.2.

IR (film): v 2954, 2929, 2886, 2858, 1693, 1649, 1472, 1463, 1419, 1389, 1362, 1254, 1186, 1163, 1099, 1006, 939, 893, 835, 776, 711, 669.

HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 397.2565$, not found.

$\begin{array}{lllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \end{array}$

(S)-4-benzyl-3-((2S,3R,6R,E)-2-(2-(benzyloxy)ethyl)-6,8-bis((tert-butyldimethylsilyl)oxy)-3-hydroxy-5-methyloct-4-enoyl)oxazolidin-2-one (426). To a solution of Evans-auxiliary derivate $425(0.53 \mathrm{~g}, 1.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $n-\mathrm{Bu}_{2} \mathrm{OTf}(1.65 \mathrm{~mL}, 1 \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.65 \mathrm{mmol}\right)$ and DIPEA $(0.31 \mathrm{~mL}, 1.80 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 0.5 h . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$. Aldehyde $411(0.73 \mathrm{~g}, 1.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added over a period of 15 min and the reaction mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$. The reaction was then cautiously quenched by addition of pH 7 buffer (4 mL), $\mathrm{MeOH}(20 \mathrm{~mL})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(4 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $8: 1$) to yield $0.78 \mathrm{~g}(73 \%)$ of aldol product 426 as a single isomer and colourless oil.

Note: The excess of the aldehyde can be reisolated.
TLC: $\mathrm{R}_{f} 0.45$ (hexane/EtOAc 4:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=9.9\left(c=0.73, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{dp}, J=8.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{ddd}, J=8.9,5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dddd}, J=10.6,7.8,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{ddd}, J=9.4,5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.09(\mathrm{dd}, J=8.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{dd}, J=$ $13.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dddd}, J=14.6,9.1,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (dd, $J=13.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (dddd, $J=14.6,5.2,5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dddd}, J=13.4$, $8.3,6.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{ddd}, J=13.4,7.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}$, 9 H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.9,153.7,142.8,138.3,135.9,129.5,129.0,128.5$, $128.3,127.9,127.3,124.4,124.4,74.4,73.4,69.2,69.1,66.0,60.0,55.8,46.8,40.2,37.3$, 28.9, 26.1, 26.0, 18.4, 18.3, 12.1, -4.4, -5.0, -5.1, -5.1.

IR (film): v 3509, 3030, 2954, 2929, 2857, 1782, 1696, 1472, 1360, 1252, 1206, 1096, 1006, 939, 836, 776, 741, 700, 667.

HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{63} \mathrm{NO}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 748.4035$, found 748.4040.

(2R,3R,6R,E)-2-(2-(benzyloxy)ethyl)-6,8-bis((tert-butyldimethylsilyl)oxy)-5-methyloct-4-ene-1,3-diol (438). To a solution of imide $426(2.45 \mathrm{~g}, 3.38 \mathrm{mmol})$ in THF (50 mL) was added $\mathrm{MeOH}(0.19 \mathrm{~mL}, 4.73 \mathrm{mmol})$ and $\mathrm{LiBH}_{4}(103 \mathrm{mg}, 4.73 \mathrm{mmol})$ in one portion at $0^{\circ} \mathrm{C}$. The solution was stirred for 3 h at $0^{\circ} \mathrm{C}$, a second portion of $\mathrm{MeOH}(0.12,2.68 \mathrm{mmol})$ and LiBH_{4} ($62 \mathrm{mg}, 2.83 \mathrm{mmol}$) was then added and stirring was continued for further 3 h at $0^{\circ} \mathrm{C}$. The reaction was then cautiously quenched by addition of $15 \% \mathrm{NaOH}$ aqueous solution (20 mL) and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to afford $1.37 \mathrm{~g}(75 \%)$ of diol 438 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.31$ (hexane/EtOAc 3:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=1.2\left(c=0.77, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.47(\mathrm{dp}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}$, $J=4.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, $J=11.2,5.4$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{dddd}, J=9.7,9.3,6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73$ (m, 2H), 1.70 (ddd, $J=7.7,6.0$,
$5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{ddd}, J=13.7,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88$ (s, 9H), $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=141.7,138.0,128.6,128.6,127.9,125.8,74.5,73.4,71.0$, 68.9, 64.4, 59.9, 44.5, 39.9, 27.3, 26.1, 26.0, 18.4, 18.3, 12.0, -4.4, -4.9, 5.1, -5.1.

IR (film): v 3389, 2953, 2928, 2884, 2857, 1472, 1388, 1361, 1254, 1087, 1005, 940, 896, 835, 775, 745, 732, 697.

HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 575.3558$, found 575.3548.

(R)-5-((E)-1-((2S,4R,5R)-5-(2-(benzyloxy)ethyl)-2-phenyl-1,3-dioxan-4-yl)prop-1-en-2-
$\mathbf{y l}$)-2,2,3,3,9,9,10,10-octamethyl-4,8-dioxa-3,9-disilaundecane (458). To a solution of diol $457(1.08 \mathrm{~g}, 1.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added benzaldehyde dimethyl acetale (0.44 $\mathrm{mL}, 2.93 \mathrm{mmol}$) and CSA ($36 \mathrm{mg}, 0.16 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 1.5 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 20:1) gave $0.88 \mathrm{~g}(70 \%)$ of acetal 458 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.31$ (hexane/EtOAc 20:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}=4.0\left(c=0.88, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 8 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.51$ (dp, $J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (ddd, $J=11.6,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.14$ (dddd, $J=15.3,10.2,5.1,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.93 (dddd, $J=14.6,9.3,7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62$ (dddd, $J=13.6,12.0,7.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.2,138.9,138.8,128.9,128.5,128.4,127.7,127.6$, 126.3, 124.2, 102.0, 78.2, 74.4, 72.9, 70.0, 68.5, 59.9, 40.0, 35.0, 26.1, 26.0, 25.0, 18.4, 18.3, 12.1, -4.5, -5.0, -5.1, -5.2.

IR (film): v 2953, 2928, 2856, 1471, 1462, 1362, 1306, 1253, 1213, 1146, 1087, 1051, 1028, 1006, 982, 939, 899, 835, 776, 748, 734, 697, 662.
HRMS (ESI): calculated for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$663.3871, found 663.3876.

453
(2R,3R,6R,E)-3-(benzyloxy)-2-(2-(benzyloxy)ethyl)-6,8-bis((tert-butyldimethylsilyl)oxy)-
5-methyloct-4-en-1-ol (453). To a solution of acetale $\mathbf{4 5 8}$ ($50 \mathrm{mg}, 0.08 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 mL) was added DIBAL-H (1.2 M in toluene, $0.13 \mathrm{~mL}, 0.16 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was allowed to reach $-25{ }^{\circ} \mathrm{C}$. $\mathrm{Me} 2 \mathrm{AlCl}(1 \mathrm{M}$ in hexane, $0.10 \mathrm{~mL}, 0.10$ mmol) was added dropwise and the reaction mixture was allowed to reach $0^{\circ} \mathrm{C}$ over a period
of 1 h . The reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt (5 mL). The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 7:1) to yield 38 mg (76%) of alcohol 453 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.26$ (hexane/EtOAc 20:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=-18.1\left(c=2.46, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 8 \mathrm{H}), 5.41(\mathrm{dp}, J=9.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68-3.44(\mathrm{~m}, 6 \mathrm{H}), 3.25(\mathrm{dd}, J=6.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.81$ (ddd, $J=7.2,5.0$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=144.1,138.6,138.1,128.6,128.5,127.9,127.8,127.8$, 127.7, 123.6, 77.0, 74.7, 73.3, 70.2, 68.9, 63.8, 59.9, 43.8, 40.1, 28.0, 26.1, 26.0, 18.4, 18.3, 12.0, -4.4, -4.8, -5.1, -5.1.

IR (film): v 3436, 2953, 2928, 2884, 2856, 1496, 1471, 1388, 1361, 1252, 1206, 1088, 1005, 940, 897, 834, 812, 775, 733, 697, 665.
HRMS (ESI): calculated for $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$665.4028, found 665.40280.

448
(2S,3R,6R,E)-3-(benzyloxy)-2-(2-(benzyloxy)ethyl)-6,8-bis((tert-butyldimethylsilyl)oxy)-
5-methyloct-4-enal (448). To a solution of alcohol 453 ($16 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3$ mL) was added BAIB ($11 \mathrm{mg}, 0.03 \mathrm{mmol}$) and TEMPO $(1.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 4 h at this temperature. A second portion of BAIB (11 mg , $0.03 \mathrm{mmol})$ and TEMPO $(1.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ was then added and stirring was continued for further 5 h at $0^{\circ} \mathrm{C}$. The reaction mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $25: 1$) to yield 13.5 mg (85%) of aldehyde 448 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.15$ (hexane/EtOAc 25:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-18.1\left(c=2.46, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.36(\mathrm{dp}$, $J=9.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.40$ (dd, $J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (ddd, $J=10.2,7.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, J=10.2,7.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=9.2,6.8$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (ddd, $J=9.2,6.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dddd, $J=8.9,6.3,4.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09 (dddd, $J=14.5,8.9,6.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (dddd, $J=14.6,6.0,6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$
(dddd, $J=13.5,7.8,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{ddd}, J=13.5,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.6,144.7,138.4,138.4,128.5,128.5,127.8,127.8$, $127.7,127.7,123.0,74.4,74.2,73.1,70.0,68.4,59.7,54.5,40.0,26.1,26.0,18.4,18.3,18.3$, 12.1, -4.4, -4.9, -5.1, -5.2.

IR (film): v 2953, 2928, 2857, 1724, 1471, 1388, 1361, 1254, 1090, 1028, 1005, 939, 896, 836, 776, 736, 698.

HRMS (ESI): calculated for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$663.3871, found 663.3880.

(4R,5R,6R,9R,E)-6-(benzyloxy)-5-(2-(benzyloxy)ethyl)-9,11-bis((tert-
butyldimethylsilyl)oxy)-2,8-dimethylundeca-1,7-dien-4-ol (463). To a solution of aldehyde $448(91 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{SnCl}_{4}(16.6 \mu \mathrm{~g}, 0.14 \mathrm{mmol})$ and after 2 min methallyl silyl $(24.3 \mu \mathrm{~g}, 0.14 \mathrm{mmol})$ at $-90^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 15 min at this temperature. The reaction was then cautiously quenched by addition of water (3 mL). The solution was allowed to warm to room temperature and, the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 12:1) to yield $78 \mathrm{mg}(76 \%)$ of alcohol 463 as a single isomer as a colorless oil.
TLC: $\mathrm{R}_{f} 0.19$ (hexane/EtOAc 10:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=\left(c=2.46, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.50(\mathrm{dp}, \mathrm{J}=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~m}$, $1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, ~ J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=8.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H})$, $4.28(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.47(\mathrm{~m}, 5 \mathrm{H})$, $2.19(\mathrm{dd}, J=13.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=7.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ $(\mathrm{s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.3$
143.2, 138.6, 138.0, 128.6, 128.5, 128.2, 127.9, 127.7, 127.6, 124.1, 112.7, 75.5, 74.7, 73.0, $70.2,70.2,69.1,59.9,44.2,43.9,40.1,26.1,26.1,26.0,22.5,18.4,18.3,11.9,-4.4,-4.8,-5.1$, -5.1.

HRMS (ESI): calculated for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$663.3871, found 663.3880.

(4R,5R,6R,9R,E)-6-(benzyloxy)-5-(2-(benzyloxy)ethyl)-9,11-bis((tert-
butyldimethylsilyl)oxy)-2,8-dimethylundeca-1,7-dien-4-yl acetate (466). To a solution of alcohol $463(310 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{NEt}_{3}(0.19 \mathrm{~mL}, 1.34 \mathrm{mmol})$ and DMAP $(5.4 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(0.13 \mathrm{~mL}, 1.34 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to reach room temperature and stirred for 7 h at this
temperature. The reaction was then quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mL), the phases were separated and the aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 25:1) afforded 300 mg (91\%) of protected alcohol 466 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.18$ (hexane/EtOAc 12:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$: $=\left(c=2.46, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (ddd, $J=10.0,3.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H})$, $4.26(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{dd}, J=14.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}$, $J=14.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (dddd, $J=13.8,8.3,5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.91$ ($\mathrm{s}, 9 \mathrm{H}$), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.3,142.9,142.2,138.8,138.8,128.4,128.4,127.8$, 127.7, 127.6, 127.5, 125.3, 113.1, 75.6, 74.8, 72.9, 72.6, 70.2, 69.9, 59.9, 44.1, 40.0, 39.7, $26.8,26.1,26.0,22.6,21.2,18.4,18.3,11.8,-4.4,-4.8,-5.1,-5.1$.
HRMS (ESI): calculated for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$663.3871, found 663.3880.

469
(4R,5R,6R,9R,E)-6-(benzyloxy)-5-(2-(benzyloxy)ethyl)-9,11-dihydroxy-2,8-
dimethylundeca-1,7-dien-4-yl acetate (469). To a solution of silyl ether 466 (300 mg , $0.41 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ was added $\mathrm{TBAF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(256 \mathrm{Mg}, 0.81 \mathrm{mmol})$ in one portion at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to reach room temperature. After 12 h at this temperature the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:3) to yield 176 mg (86%) of diol 469 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.10$ (hexane/EtOAc 10:3, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:={ }^{\circ}\left(c=0.45, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.52(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (ddd, $J=10.6,3.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $4.32(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-$ $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37(\mathrm{br} \mathrm{s}$,
$1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}$, $3 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7,142.0,141.7,138.9,138.7,128.5,128.4,127.9$, 127.8, 127.7, 127.6, 126.3, 113.1, 76.8, 75.6, 73.0, 72.7, 70.4, 69.8, 61.3, 44.3, 39.2, 36.6, 26.7, 22.6, 21.2, 12.6.

HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$249.1461, found 249.1457.

471
(4R,5R)-7-(benzyloxy)-5-((S)-(benzyloxy)((2S,3S)-3-((R)-1,3-dihydroxypropyl)-3-methyloxiran-2-yl)methyl)-2-methylhept-1-en-4-yl acetate (471).
To a stirred solution of $\mathrm{Ti}(\mathrm{OiPr})_{4}(36 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ and molecular sieves- $3 \AA ́(160 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added D-(+)-diethyl tartrate ($20 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) and alcohol 470 (30 $\mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ at $-35^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min and $t \mathrm{BuOOH}(5.33 \mathrm{M}$ in decane, $43 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$ was added dropwise at same temperature. The reaction mixture was then stirred for 3 h at $-35^{\circ} \mathrm{C}$. The reaction quenched by addition of water $(0.87 \mathrm{~mL})$, the reaction mixture was allowed to reach $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction mixture was then filtered through a small plug of celite and the precipitate was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $1: 2$) to yield 20 mg (65%) of epoxide 471 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.33$ (hexane/EtOAc 3:5, UV (weak), CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:={ }^{\circ}\left(c=0.45, \mathrm{CHCl}_{3}\right)$.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.52(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (ddd, $J=10.6,3.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $4.32(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=7.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-$ $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}$, $3 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7,142.0,141.7,138.9,138.7,128.5,128.4,127.9$, $127.8,127.7,127.6,126.3,113.1,76.8,75.6,73.0,72.7,70.4,69.8,61.3,44.3,39.2,36.6$, 26.7, 22.6, 21.2, 12.6.

HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$249.1461, found 249.1457.

410
(S)-3-((2S,3R,6R,E)-2-allyl-6,8-bis((tert-butyldimethylsilyl)oxy)-3-hydroxy-5-methyloct-

4-enoyl)-4-benzyloxazolidin-2-one (410). To a solution of Evans-auxiliary derivate 425 ($0.51 \mathrm{~g}, 1.96 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{n}-\mathrm{Bu}_{2} \mathrm{OTf}\left(2.14 \mathrm{~mL}, 1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.14$ $\mathrm{mmol})$ and DIPEA $(0.40 \mathrm{~mL}, 2.32 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 0.5 h . The reaction mixture was then cooled to -78
${ }^{\circ} \mathrm{C}$. Aldehyde $411(0.67 \mathrm{~g}, 1.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added over a period of 15 min and the reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction was then cautiously quenched by addition of pH 7 buffer (5 mL), $\mathrm{MeOH}(25 \mathrm{~mL})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 8:1) to yield $0.90 \mathrm{~g}(80 \%)$ of aldol product 410 as a single isomer.

Note: The excess of the aldehyde can be reisolated.
TLC: $\mathrm{R}_{f} 0.23$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=24.9\left(c=0.24, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.85$ (dddd, $J=17.0,10.2 .7 .9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dp}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dm}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{ddd}, J=11.8,5.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{ddd}, J=13.1,6.8$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (ddd, $J=9.5,5.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=7.1,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{dd}, J=7.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=13.4,3.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=13.3$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.59(\mathrm{ddd}, J=7.5,7.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 18 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.01$ ($\mathrm{s}, 3 \mathrm{H}$).

IR (film): v 2954, 2928, 2857, 1783, 1699, 1472, 1387, 1252, 1209, 1099, 1006, 915, 836, 777, 744, 701.

HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{63} \mathrm{NO}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 654.3617$, found 654.3631 .

Pent-4-en-1-yltriphenylphosphonium bromide (484). To a solution of bromide 483 ($0.1 \mathrm{~mL}, 0.85 \mathrm{mmol}$) in MeCN (6 mL) was added triphenylphosphine ($0.33 \mathrm{~g}, 1.27 \mathrm{mmol}$) at room temperature and the reaction was heated up to reflux for 31 h . The solvent was then concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1 \rightarrow 10: 1\right)$ to give $0.28 \mathrm{~g}(81 \%)$ of Wittig salt 484 as a white solid.

TLC: $\mathrm{R}_{f} 0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{UV}, \mathrm{CPS}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.86-7.75(\mathrm{~m}, 9 \mathrm{H}), 7.69(\mathrm{t}, J=7.8,3.4 \mathrm{~Hz}, 6 \mathrm{H}), 5.68(\mathrm{ddd}$, $J=17.1,10.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-$ $3.75(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{td}, J=7.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{tdt}, J=7.8,7.8,7.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.5,135.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 130.6$ (d, $J=12.0 \mathrm{~Hz}$,), $118.4(\mathrm{~d}, J=86.0 \mathrm{~Hz}), 117.0,33.9(\mathrm{~d}, J=16.2 \mathrm{~Hz}$), $22.2(\mathrm{~d}, J=35.1 \mathrm{~Hz})$, $21.9(\mathrm{~d}, J=11.6 \mathrm{~Hz})$.
HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$249.1461, found 249.1457.

485
Hex-5-en-2-yltriphenylphosphonium bromide (485). To a solution of wittig salt 484 $(0.28 \mathrm{~g}, 0.68 \mathrm{mmol})$ in THF (7 mL) was added n - $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, 0.47 mL , 0.75 mmol) at $0^{\circ} \mathrm{C}$ and the orange reaction mixture was stirred for 1 h at this temperature. MeI ($0.17 \mathrm{~mL}, 2.72 \mathrm{mmol}$) was then added and the reaction mixture was allowed to reach room temperature and stirred for 1.5 h . The white suspension was then concentrated under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $/ \mathrm{MeOH} 50: 1 \rightarrow 20: 1)$ to give $0.28 \mathrm{~g}(97 \%)$ of Wittig salt 485 as a white solid.

TLC: $\mathrm{R}_{f} 0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1, \mathrm{UV}, \mathrm{CPS}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.96(\mathrm{dd}, J=11.8,1.3 \mathrm{~Hz}, 3 \mathrm{H})$, 7.79-7.75 (m, 3H), 7.73-7.68 (m, 6H), 5.78 (ddd, $J=17.1,10.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.07$ $(\mathrm{m}, 1 \mathrm{H}), 5.03(\mathrm{dq} J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dq}, J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H})$, $2.42-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{dd}, J=19.6,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.0,134.9(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 134.1(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 130.7$ $(\mathrm{d}, J=12.2 \mathrm{~Hz}), 117.8(\mathrm{~d}, J=83.1 \mathrm{~Hz}), 116.4,30.8(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 30.0,25.6(\mathrm{~d}$, $J=46.0 \mathrm{~Hz}), 13.5(\mathrm{~d}, J=2.2 \mathrm{~Hz})$.
HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$249.1461, found 249.1457.

(R)-3-((tert-butyldiphenylsilyl)oxy)dihydrofuran-2(3H)-one (500). To a solution of $(R)-\alpha$ hydroxybutyrolactone $417(1.18 \mathrm{~g}, 11.56 \mathrm{mmol})$ and imidazole ($1.97 \mathrm{~g}, 28.90 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$ was added TBDPSCl $(3.61 \mathrm{~mL}, 13.87 \mathrm{mmol})$ at room temperature and the mixture was stirred for 19 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 10:1) afforded $3.75 \mathrm{~g}(95 \%)$ of silyl ether $\mathbf{5 0 0}$ as a white solid.

TLC: $\mathrm{R}_{f} 0.18$ (hexane/EtOAc 15:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}:=38.1\left(c=1.60, \mathrm{CHCl}_{3}\right)$.
mp: $85-87{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87$ (ddd, $J=6.5,1.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{ddd}, J=6.5,1.4$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.37(\mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (ddd, $J=9.2,8.7$, $2.7 \mathrm{~Hz}), 4.00(\mathrm{ddd}, J=9.8,9.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dddd}, J=12.5,9.7,9.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (dddd, $J=9.2,8.0,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.6,136.1,135.8,133.4,132.2,130.2,128.0,68.8,64.4$, 32.3, 26.8, 19.4.

IR (film): v 3072, 3049, 2932, 2858, 1787, 1487, 1472, 1428, 1391, 1361, 1284, 1218, 1148, 1106, 1021, 998, 948, 885, 840, 822, 742, 702, 656, 613, 518, 501
HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 363.1387$, found 363.1395 .

(2R, 3R)-3-((tert-butyldiphenylsilyl)oxy)-2-methyltetrahydrofuran-2-ol (501).
(2S, 3R)-3-((tert-butyldiphenylsilyl)oxy)-2-methyltetrahydrofuran-2-ol (501).
(R)-3-((tert-butyldiphenylsilyl)oxy)-5-hydroxypentan-2-one (501. To a solution of silyl ether $\mathbf{5 0 0}(3.72 \mathrm{~g}, 10.93 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was added $\mathrm{MeLi}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 4.01 \mathrm{~mL}$, 12.02 mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 h at this temperature. The cooling bath was removed and the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The mixture was diluted with saturated aqueous Rochelle salt $(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to yield 3.39 g (87\%) of a mixture of cyclic acetal $\mathbf{5 0 1}$ and linear alcohol $\mathbf{5 0 1}$ as white crystals.
Note: No investigations have been carried out to assign the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ signals to the single alcohols.
TLC: $\mathrm{R}_{f} 0.20$ (hexane/EtOAc 7:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}} \mathbf{~}:-25.3^{\circ}\left(c=3.33, \mathrm{CHCl}_{3}\right)$.

IR (film): v 3421, 3071, 3048, 2932, 2891, 1717, 1487, 1472, 1426, 1391, 1376, 1362, 1188, 1107, 1054, 1022, 998, 923, 893, 822, 740, 701, 612, 508.

HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 379.1700$, found 379.1704.

499
(R)-5-((tert-butyldimethylsilyl)oxy)-3-((tert-butyldiphenylsilyl)oxy)pentan-2-one
(499).

To a solution of alcohol $501(3.29 \mathrm{~g}, 9.23 \mathrm{mmol})$ and imidazole ($1.45 \mathrm{~g}, 21.22 \mathrm{mmol}$) in DMF $(8 \mathrm{~mL})$ was added $\mathrm{TBSCl}(1.60 \mathrm{~g}, 10.61 \mathrm{mmol})$ at room temperature and the mixture was stirred for 13 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification
of the residue by flash column chromatography (hexane/EtOAc 30:1) afforded 3.68 g (98\%) of silyl ether 499 as a colorless oil.
TLC: $\mathrm{R}_{f} 0.27$ (hexane/EtOAc 50:1, UV, CPS).
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 0}} \mathbf{D}:=-15.5^{\circ}\left(c=3.40, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.26(\mathrm{dd}, J=6.1$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{ddd}, J=10.2,7.5,5.8 \mathrm{~Hz}), 3.59(\mathrm{ddd}, J=10.2,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}$, 3 H), 1.92 (dddd, $J=13.8,7.5,6.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (dddd, $J=13.8,6.1,5.8,5.8,1 \mathrm{H}$), 1.13 ($\mathrm{s}, 9 \mathrm{H}$), $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=210.5,136.0,135.9,133.6,133.2,130.0,127.8,76.8,58.6$, 37.9, 27.1, 26.0, 25.9, 19.5, 18.4, -5.4, -5.4.

IR (film): v 3072, 2955, 2930, 2887, 2857, 1732, 1718, 1472, 1428, 1391, 1361, 1350, 1254, 1107, 1006, 916, 834, 776, 740, 701, 663, 610, 503
HRMS (ESI): calculated for $\mathrm{C}_{2} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, found.

502
(R,E)-methyl 6-((tert-butyldimethylsilyl)oxy)-4-((tert-butyldiphenylsilyl)oxy)-3-methylhex-2-enoate (502). To a solution of $\mathrm{NaH}(1.14 \mathrm{mg}, 28.55 \mathrm{mmol}, 60 \%$ in mineral oil) in THF (130 mL) was added trimethyl phosphonacetate $421(4.26 \mathrm{~mL}, 29.44 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h at this temperature (the solution did not clear off). The reaction mixture was allowed to reach room temperature and ketone $499(4.20 \mathrm{~g}, 8.92$ $\mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added. The reaction mixture heated to $45^{\circ} \mathrm{C}$ and stirred for 21 h at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 50:1) afforded $4.70 \mathrm{~g}(99 \%, E / Z 20: 1)$ of unsaturated ester 502 as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.19$ (hexane/EtOAc 30:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:-13.1^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{dd}, J=6.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=6.5,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 6 \mathrm{H}), 5.67(\mathrm{p}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 3.49 (ddd, $J=10.2,7.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, J=10.2,7.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dqd}, J=13.7,7.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dqd}, J=13.7,6.6,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.08(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.2,159.8,136.0,136.0,134.0,133.6,129.9,129.8$, 127.7, 127.7, 115.6, 75.6, 59.2, 51.0, 38.9, 27.2, 26.0, 19.5, 18.3, 14.6, -5.3, -5.3.

IR (film): v 2953, 2929, 2893, 2858, 1722, 1655, 1472, 1429, 1390, 1362, 1255, 1223, 1156, 1105, 1036, 1007, 940, 890, 834, 776, 739, 701, 613, 509.

HRMS (ESI): calculated for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 527.3007$, found 527.3003.

503
(R,E)-6-((tert-butyldimethylsilyl)oxy)-4-((tert-butyldiphenylsilyl)oxy)-3-methylhex-2-en-1-ol (503). To a solution of ester $\mathbf{5 0 2}(4.70 \mathrm{~g}, 8.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added

DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 19.63 \mathrm{~mL}, 19.63 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt (150 mL). The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1) to yield $4.20 \mathrm{~g}(94 \%)$ of allylic alcohol $\mathbf{5 0 3}$ as a colorless oil.

TLC: $\mathrm{R}_{f} 0.24$ (hexane/EtOAc 9:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:-3.1^{\circ}\left(c=1.33, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66$ (ddd, $\left.J=6.5,1.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.63(\mathrm{ddd}, J=6.5,1.5$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 6 \mathrm{H}), 5.15(\mathrm{tt}, J=6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 427(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3 \mathrm{H})$, 3.90 (dd, $J=12.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=12.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (ddd, $J=10.2,7.1,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=13.4,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=$ $13.4,6.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}),-0.02$ ($\mathrm{s}, 6 \mathrm{H}$), $-0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.9,136.2,136.1,134.7,134.3,129.7,129.6,127.6$, $127.4,125.4,76.1,59.8,59.0,39.1,27.2,26.1,19.6,18.4,11.4,-5.2$.

IR (film): v 3358, 3072, 2954, 2929, 2887, 2857, 1472, 1428, 1389, 1361, 1255, 1109, 1079, 1006, 940, 835, 776, 754, 702, 665, 613, 508..

HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 521.2878$, found 521.2878.

498
(R, E)-6-((tert-butyldimethylsilyl)oxy)-4-((tert-butyldiphenylsilyl)oxy)-3-methylhex-2-enal (498). To a solution of allylic alcohol $503(1.35 \mathrm{~g}, 2.70 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(3.75 \mathrm{~g}, 43.15 \mathrm{mmol})$ in one portion at room temperature and the solution was stirred for 3 h . The reaction mixture was then filtered through a small plug of celite and the precipitate was rinsed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 25:1) to yield 1.28 g of unsaturated aldehyde $498(96 \%)$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.22$ (hexane/EtOAc 25:1, UV, CPS).
$[\alpha]^{20} \mathbf{D}:=4.3^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=6.5,1.3,1.3 \mathrm{~Hz}$, 2 H), 7.58 (ddd, $J=6.5,1.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46-7.30 (m, 6H), $5.81(\mathrm{dp}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.35 (dd, $J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (ddd, $J=10.3,6.3,6.2,1 \mathrm{H}$), 3.49 (ddd, $J=10.3,6.6$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.86$ (dddd, $J=13.6,6.8,6.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (dddd, $J=13.6,6.3,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.4,163.4,136.0,136.0,133.6,133.4,130.1,130.0$, $127.8,127.8,126.6,75.3,59.0,39.0,27.2,26.0,19.5,18.3,13.2,-5.3,-5.3$.

IR (film): v 2937, 2889, 2860, 1676, 1467, 1433, 1386, 1254, 1103, 942, 831, 76, 738, 101, 612, 505.

HRMS (ESI): calculated for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 519.2721$, found 519.2728.

$\begin{array}{llllllllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$

504
(S)-4-benzyl-3-((2S,3R,6R,E)-2-(2-(benzyloxy)ethyl)-8-((tert-butyldimethylsilyl)oxy)-6-((tert-butyldiphenylsilyl)oxy)-3-hydroxy-5-methyloct-4-enoyl)oxazolidin-2-one (504). To a solution of Evans-auxiliary derivate $240(0.50 \mathrm{~g}, 1.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added n-Bu2BOTf ($1.54 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.54 \mathrm{mmol}$) and DIPEA ($0.29 \mathrm{~mL}, 1.68 \mathrm{mmol}$)
dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 0.5 h . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$. Aldehyde $498(0.84 \mathrm{~g}, 1.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise the reaction mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was then cautiously quenched by addition of pH 7 buffer (5 mL), MeOH (25 mL) and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $8: 1$ to $5: 1$) to yield 1.07 g (90%) of aldol product 504 as a single isomer and colourless oil.
TLC: $\mathrm{R}_{f} 0.32$ (hexane/EtOAc 5:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=29.6^{\circ}\left(c=0.68, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.66-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.18(\mathrm{~m}, 14 \mathrm{H}), 7.09$ (ddd, $J=6.6$, $1.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{dp}, J=8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=5.7,5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}$, $\left.J^{\circ}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.42(\mathrm{ddd}, J=7.1,3.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}$, $J=6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=14.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=9.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.50$ (m, 2H), 3.49-3.42 (m, 2H), $3.13(\mathrm{dd}, J=13.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (dddd, $J=14.8,9.8,8.1$, $\left.5.7^{\circ} \mathrm{Hz}, 1 \mathrm{H}\right), 2.02(\mathrm{dd}, J=13.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dddd}, J=14.8$, $4.4,4.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}$, $9 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.8,153.6,141.9,138.4,136.0,134.5,134.2,129.8$, 129.7, 129.5, 129.5, 128.9, 128.9, 128.5, 128.3, 127.8, 127.7, 127.6, 127.2, 124.9, 75.6, 73.4, $69.2,69.0,66.0,60.0,55.9,46.5,39.6,37.3,31.7,28.6,27.2,26.0,22.8,19.5,18.3,12.8$, 5.2,-5.2.

IR (film): v 3496, 2936, 2860, 1781, 1694, 1464, 1426, 1386, 1249, 1203, 1102, 1017, 834, 773, 741, 702, 613, 507.

HRMS (ESI): calculated for $\mathrm{C}_{50} \mathrm{H}_{67} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 872.4348$, found 872.4337.

($2 R, 3 R, 6 R, E)$-2-(2-(benzyloxy)ethyl)-8-((tert-butyldimethylsilyl) oxy)-6-((tert-
butyldiphenylsilyl)oxy)-5-methyloct-4-ene-1,3-diol (505). To a solution of amide 504 (1.04 $\mathrm{g}, 1.22 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ was added $\mathrm{MeOH}(0.15 \mathrm{~mL}, 3.67 \mathrm{mmol})$ and $\mathrm{LiBH}_{4}(80 \mathrm{mg}$, 3.67 mmol) in one portion at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 h at this temperature and the reaction was then cautiously quenched by addition of $15 \% \mathrm{NaOH}$ aqueous solution (10 mL)
and the aqueous phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to afford 0.62 g (76%) of diol $\mathbf{5 0 5}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.34$ (hexane/EtOAc 3:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=17.5\left(c=1.80, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65$ (ddd, $\left.J=6.5,1.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.62$ (ddd, $J=6.5,1.4$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.26(\mathrm{~m}, 11 \mathrm{H}), 5.25(\mathrm{dp}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.37$ (ddd, $J=8.4,4.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=11.1,5.4,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.58-3.45 (m, 5H), 2.86 (t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.82(\mathrm{ddt}, J=13.4,6.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{ddd}, J$ $=13.7,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.5,138.0,136.0,136.0,134.5,134.3,129.8,129.7$, $128.6,127.9,127.9,127.7,127.5,126.3,75.9,73.4,70.8,69.0,64.4,59.9,44.1,39.3,27.2$, 27.0, 26.1, 19.5, 18.4, 12.5, -5.2, -5.2.

IR (film): v 3384, 2952, 2929, 2886, 2857, 1468, 1428, 1389, 1362, 1254, 1105, 1076, 1003, 942, 833, 776, 739, 701, 610, 552, 506.
HRMS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$699.3871, found 699.3868.

($2 R, 3 R, 6 R, E)$-2-(2-(benzyloxy)ethyl)-6-((tert-butyldiphenylsilyl)oxy)-5-methyloct-4-ene$\mathbf{1 , 3 , 8}-$ triol (541). To a solution of silyl ether $\mathbf{5 0 5}(21 \mathrm{mg}, 0.03 \mathrm{mmol})$ in THF $(0.80 \mathrm{~mL})$ and water $(0.24 \mathrm{~mL})$ was added $\mathrm{AcOH}(0.80 \mathrm{~mL})$ at room temperature and the reaction mixture was stirred for 24 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:4) to yield 14 mg (81%) of triol 541 as a colourless oil.
TLC: $\mathrm{R}_{f} 0.10$ (hexane/EtOAc 1:4, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=46.8\left(c=1.67, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67$ (ddd, $\left.J=6.5,1.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.63(\mathrm{ddd}, J=6.4,1.5$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47-7.27 (m, 11H), $5.39(\mathrm{dp}, J=8.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.39$ (ddd, $J=8.9,4.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.46(\mathrm{~m}, 5 \mathrm{H}), 2.97$ (br s, 1H), 2.34-2.24 (m, 1H), 1.97 (br s, 1 H), 1.83 (ddt, $J=14.3,7.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.2,138.0,136.0,136.0,134.0,133.9,130.0,129.9$, 128.6, 128.0, 127.9, 127.8, 127.7, 126.2, 76.6, 73.4, 70.6, 68.9, 64.3, 59.4, 44.1, 37.9, 27.2, 27.1, 19.4, 12.9.

IR (film): v 3369, 2931, 2885, 2858, 1469, 1455, 1427, 1389, 1362, 1107, 1068, 1004, 822, 741, 700, 669, 610, 552, 505.

HRMS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O} 5 \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$585.3007, found 585.3002.

(3R,E)-5-((4R,5R)-5-(2-(benzyloxy)ethyl)-2-(4-methoxyphenyl)-1,3-dioxan-4-yl)-3-((tert-butyldiphenylsilyl)oxy)-4-methylpent-4-en-1-ol (542). To a solution of triol 541 (3.55 g , 6.31 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL}$) was added para-methoxybenzaldehyde dimethyl acetale $(1.31 \mathrm{~mL}, 7.58 \mathrm{mmol})$ and CSA $(7 \mathrm{mg}, 0.03 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 6 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc $4: 1$) gave $3.64 \mathrm{~g}(85 \%)$ of an inseparable $8: 1$ mixture of acetale isomers 542.

Note: The spectroscopic data are given for the major acetale isomer.
TLC: $\mathrm{R}_{f} 0.14$ (hexane/EtOAc 4:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=55.1\left(c=0.60, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69$ (ddd, $J=6.4,1.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (ddd, $J=6.4,1.4$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 13 \mathrm{H}), 6.87(\mathrm{ddd}, J=8.9,2.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{dp}$, $J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=7.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{ddd}, J=11.5$, $2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.46(\mathrm{~m}, 4 \mathrm{H}), 2.11$ (dddd, $J=14.5,10.4,5.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.84 (dddd, $J=14.5,9.1,7.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-$ $1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.0,139.9,138.8,136.1,136.0,134.1,133.6,131.5$, $129.9,129.8,128.5,128.5,127.9,127.8,127.7,127.5,124.4,113.7,101.8,77.7,76.6,73.0$, $69.8,68.5,59.5,55.4,38.3,35.0,27.2,24.9,19.5,13.0$.

IR (film): v 2956, 2931, 2890, 2857, 1724, 1615, 1589, 1517, 1470, 1463, 1456, 1428, 1390, $1364,1303,12448,1213,1172,1145,1105,1054,1032,998,936,825,740,701,612,552$, 504, 487.

HRMS (ESI): calculated for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+} 719.3165$, found 719.3165.

543
(3R,E)-5-((4R,5R)-5-(2-(benzyloxy)ethyl)-2-(4-methoxyphenyl)-1,3-dioxan-4-yl)-3-((tert-butyldiphenylsilyl)oxy)-4-methylpent-4-enal (543). To a solution of alcohol 542 (3.57 g , $5.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$ was added BAIB $(3.37 \mathrm{~g}, 10.49 \mathrm{mmol})$ and TEMPO $(164 \mathrm{mg}$,
1.05 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was slowly allowed to reach room temperature and stirred for 8 h at this temperature. The reaction was then cautiously quenched by addition of 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$. Stirring was continued for 10 min , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 5:1) to yield 3.25 g (91%) of inseparable 4.5:1 mixture of acetale isomers of aldehyde $\mathbf{5 4 3}$ as a colorless oil.

Note: The spectroscopic data are given for the major acetale isomer.
TLC: $\mathrm{R}_{f} 0.22$ (hexane/EtOAc 5:1, UV, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}:=45.6\left(c=3.93, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.54(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=6.5,1.5,1.4 \mathrm{~Hz}$, 2 H), 7.63 (ddd, $J=6.5,1.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 13 \mathrm{H}), 6.87$ (ddd, $J=8.8,2.4,2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{dp}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=7.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=11.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (ddd, $J=11.6,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{dd}, J=5.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=15.7,6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=15.7,5.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (dddd, $J=14.5,10.55 .3,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78 (dddd, $J=14.5,7.4,7.3,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.3,160.1,144.3,138.8,138.5,136.1,136.0,133.6$, $133.2,131.4,130.1,130.0,128.5,127.9,127.8,127.7,127.5,125.5,113.7,101.8,77.7,74.2$, 73.1, 69.8, 68.5, 55.4, 49.8, 35.0, 27.1, 24.9, 19.4, 12.9.

IR (film): v 3444, 2953, 2931, 2886, 2857, 1615, 1589, 1517, 1470, 1463, 1428, 1389, 1364, $1303,1249,1172,1144,1106,1075,1052,1034,1009,935,825,738,102,612$.
HRMS (ESI): calculated for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 701.3274$, not found.
LRMS (ESI): calculated for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 701.3274$, found 701.3.

(5R,E)-7-((4R,5R)-5-(2-(benzyloxy)ethyl)-2-(4-methoxyphenyl)-1,3-dioxan-4-yl)-5-((tert-butyldiphenylsilyl)oxy)-2,6-dimethylhepta-1,6-dien-3-ol (544).

To a solution of aldehyde 543 ($3.50 \mathrm{~g}, 5.16 \mathrm{mmol}$) in THF (50 mL) was added freshly prepared isopropenylmagnesium bromide (1 M in THF, $6.96 \mathrm{~mL}, 6.96 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction was stirred for 0.5 h at this temperature. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 4:1) gave 3.24 g (94%) of a mixture of four diastereomers 544.

Note: The spectroscopic data are not given because of the complex sets of signals.
TLC: R_{f} 0.26-0.16 (hexane/EtOAc 5:1, UV, CPS).
IR (film): v 3497, 2931, 2856, 1615, 1589, 1517, 1455, 1428, 1389, 1365, 1303, 1248, 1172, 1144, 1105, 1052, 1033, 1008, 932, 901, 824, 740, 701, 612, 542, 507.

HRMS (ESI): calculated for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+} 759.3478$, found 759.3467.

545
(4E,7R,8E)-ethyl 9-((4R,5R)-5-(2-(benzyloxy)ethyl)-2-(4-methoxyphenyl)-1,3-dioxan-4-yl)-7-((tert-butyldiphenylsilyl)oxy)-4,8-dimethylnona-4,8-dienoate (545). To a solution of allylic alcohol $544(2.80 \mathrm{~g}, 3.88 \mathrm{mmol})$ in toluene $(40 \mathrm{~mL})$ was added triethyl orthoacetate $(3.37 \mathrm{~g}, 10.49 \mathrm{mmol})$ and propionic acid $(5.8 \mathrm{uL}, 0.08 \mathrm{mmol})$ at room temperature. The reaction mixture was then heated to reflux for 24 h . The reaction was then allowed to reach $40^{\circ} \mathrm{C}$ and the reaction mixture was concentrated under reduced pressure. The residue was dissolved in ether (50 mL) and the organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic phases was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 7:1) to yield $2.61 \mathrm{~g}(85 \%)$ of a separable $4.5: 1$ mixture of acetale isomers of ester $\mathbf{5 4 5}$ as a colorless oil.

Note: The spectroscopic data are given for the major acetale isomer.
TLC: $\mathrm{R}_{f} 0.29,0.24$ (hexane/EtOAc 5:1, UV, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}$: $=22.1\left(c=0.67, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67$ (ddd, $J=6.5,1.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (ddd, $J=6.5,1.3$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 13 \mathrm{H}), 6.86(\mathrm{ddd}, J=8.8,2.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{dp}$, $J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{tq}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=7.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}$, $J=4.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=15.7,6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.25-2.07 (m, 6H), 1.87-1.78 (m, 1H), $1.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.6,160.0,139.5,138.8,136.1,136.1,136.0,135.2$, $131.6,129.7,128.5,127.7,127.6,127.6,127.6,127.6,127.5,124.7,121.1,113.7,101.8,78.7$, $77.9,73.0,69.8,68.7,60.3,55.4,35.1,35.1,34.9,34.8,33.2,27.2,24.8,19.5,16.2,14.4$, 12.6 .

IR (film): v 3070, 3031, 2955, 2931, 2889, 2856, 1733, 1616, 1589, 1517, 1455, 1444, 1428, $1389,1367,1302,1248,1213,1171,1147,1107,1074,1052,1036,1009,983,939,824,741$, 702, 612, 547, 530, 503.

HRMS (ESI): calculated for $\mathrm{C}_{49} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+}$829.3896, found 829.3893.

546
(4E,7R,8E)-9-((4R,5R)-5-(2-(benzyloxy)ethyl)-2-(4-methoxyphenyl)-1,3-dioxan-4-yl)-7-((tert-butyldiphenylsilyl)oxy)-4,8-dimethylnona-4,8-dienal (546). To a solution of ester 545 $(2.45 \mathrm{~g}, 1.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added DIBAL-H (1 M in hexane, 1.58 mL , 1.58 mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at this temperature and the reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt (80 mL). The solution was allowed to warm to room temperature and was left stirring vigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc $8: 1$) to give $2.12 \mathrm{~g}(90 \%)$ of a separable 4.5:1 mixture of acetale isomers of aldehyde 546 as a colorless oil.
Note: The spectroscopic data are given for the major acetale isomer.
TLC: $\mathrm{R}_{f} 0.39,0.29$ (hexane/EtOAc 5:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=25.6\left(c=0.57, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.47(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=6.5,1.5,1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62(\mathrm{ddd}, J=6.5,1.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 13 \mathrm{H}), 6.86(\mathrm{ddd}, J=8.8,2.8,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{dp}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{tq}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}$, $J=7.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=11.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=11.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}$, $J=5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=5.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, J=15.7,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ $(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 5 \mathrm{H}), 1.83(\mathrm{dddd}, J=14.6,7.7,6.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.8,160.1,139.3,138.8,136.1,136.1,136.0,134.9$, $134.6,134.6,134.0,131.6,129.7,128.5,127.8,127.6,127.6,127.5,124.8,121.2,113.7$, $101.9,78.7,77.8,73.1,69.8,68.7,55.4,42.1,35.1,34.6,31.7,27.1,24.8,19.5,16.4$.

IR (film): v 3070, 3030, 2998, 2955, 2931, 2890, 2856, 1723, 1616, 1289, 1518, 1488, 1471, $1456,1426,1389,1365,1340,1303,1249,1214,1172,1145,1107,1074,1052,1035,1009$, 982, 939, 824, 740, 702, 622, 612, 548, 507.
HRMS (ESI): calculated for $\mathrm{C}_{47} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{K}]^{+} 785.3634$, found 785.3653.

547
(($(1 E, 3 R, 5 E)$-1-((4R,5R)-5-(2-(benzyloxy)ethyl)-2-(4-methoxyphenyl)-1,3-dioxan-4-yl)-2,6-dimethyldeca-1,5,9-trien-3-yl)oxy)(tert-butyl)diphenylsilane (547). To a supension of methyltrimethylphosphonium bromide ($1.01 \mathrm{~g}, 2.85 \mathrm{mmol}$) in THF (35 mL) was added n-BuLi (1 M in hexane, $2.58 \mathrm{~mL}, 2.58 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min at this temperature. Aldehyde $546(1.77 \mathrm{~g}, 2.37 \mathrm{mmol})$ in THF (5 mL) was then added dropwise and the reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with ether ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1) to give $1.59 \mathrm{~g}(90 \%)$ of a separable 4.5:1 mixture of acetale isomers of olefine $\mathbf{5 4 7}$ as a colorless oil.

Note: The spectroscopic data are given for the major acetale isomer.
TLC: $\mathrm{R}_{f} 0.14$ (hexane/EtOAc 10:1, UV, CPS).
$[\alpha]^{\mathbf{2 0}} \mathbf{D}$: $=\left(c=0.57, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71$ (ddd, $J=6.5,1.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 (ddd, $J=6.5,1.3$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 13 \mathrm{H}), 6.86(\mathrm{ddd}, J=8.8,2.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{dt}, J=16.7,10.3$, $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dq}$, $J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=9.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=7.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{dd}, J=11.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=7.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=14.7$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=14.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.91$ (m, 2H), 1.86 (dddd, $J=14.1,7.7,7.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.0,139.5,138.9,138.8,136.3,136.1,136.1,134.6$, 134.1, 131.6, 129.6, 128.4, 127.7, 127.6, 127.6, 127.6, 127.5, 127.5, 124.7, 120.5, 114.2, $113.7,101.7,78.8,77.9,73.0,69.8,68.7,55.4,39.1,35.2,34.8,32.3,27.2,24.8,19.5,16.3$, 12.5.

IR (film): v 3070, 2955, 2930, 2856, 1616, 1589, 1518, 1471, 1455, 1428, 1389, 1364, 1303, $1249,1172,1145,1107,1074,1054,1036,1009,939,908,824,740,702,613,506$.

HRMS (ESI): calculated for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 767.4102$, found 767.4096.

548
($2 R, 3 R, 4 E, 6 R, 8 E)$-2-(2-(benzyloxy)ethyl)-6-((tert-butyldiphenylsilyl)oxy)-3-((4-methoxybenzyl)oxy)-5,9-dimethyltrideca-4,8,12-trien-1-ol (548). To a solution of acetale $547(1.71 \mathrm{~g}, 2.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added DIBAL-H (1.0 M in hexane, 5.98 mL ,
5.98 mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to reach $-70{ }^{\circ} \mathrm{C}$. $\mathrm{Me}_{2} \mathrm{AlCl}(1 \mathrm{M}$ in hexane, $3.45 \mathrm{~mL}, 3.45 \mathrm{mmol}$) was added dropwise and the reaction mixture was allowed to reach $-30^{\circ} \mathrm{C}$ over a period of 1 h . The reaction was then cautiously quenched by addition of saturated aqueous Rochelle salt $(100 \mathrm{~mL})$. The solution was allowed to warm to room temperature and was left stirring rigorously until the two phases became transparent. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 100 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 7:1) to yield $1.69 \mathrm{~g}(99 \%)$ of alcohol 548 as a colorless oil.

TLC: $\mathrm{R}_{f} 0.38$ (hexane/EtOAc 5:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}:=19.7\left(c=0.43, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.70$ (ddt, $J=17.0,10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=7.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dq}$, $J=17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dt}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=5.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}$, $J=11.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{tt}, J=11.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.55(\mathrm{~m}$, $3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2,142.6,138.6,138.3,136.4,136.0,136.0,134.5$, 134.1, 130.7, 129.8, 129.7, 129.3, 128.5, 127.9, 127.8, 127.7, 127.7, 124.4, 120.1, 114.4, $113.9,78.7,76.8,73.2,69.5,69.0,63.9,55.4,43.4,39.3,34.6,32.3,27.7,27.1,19.5,16.2$. 12.6

IR (film): v 3450, 3070, 3032, 2930, 2892, 2857, 1613, 1513, 1471, 1455, 1428, 1389, 1362, 1302, 1248, 1173, 1111, 1061, 1037, 1008, 999, 940, 912, 822, 740, 702, 611, 583, 570, 558, 542, 506.
HRMS (ESI): calculated for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 767.4102$, found 767.4113.

(2S,3R,4E,6R,8E)-2-(2-(benzyloxy)ethyl)-6-((tert-butyldiphenylsilyl)oxy)-3-((4-methoxybenzyl)oxy)-5,9-dimethyltrideca-4,8,12-trienal (549). To a solution of alcohol 548 ($1.58 \mathrm{~g}, 2.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added DMP (15% in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.59 \mathrm{~mL}$, 3.17 mmol) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 2.5 h . The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(25 \mathrm{~mL})$. Stirring was continued
for 30 min , when two almost clear phases had formed. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine (100 mL), dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by flash column chromatography (hexane/EtOAc 10:1) yielded $1.28 \mathrm{~g}(82 \%)$ of aldehyde $\mathbf{5 4 9}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.18$ (hexane/EtOAc 10:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-24.5\left(c=0.46, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.69(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=6.5,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.61 (dd, $J=6.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45-7.27$ (m, 11H), 7.13 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.69$ (ddt, $J=17.0,10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.92(\mathrm{~m}, 1 \mathrm{H})$, $4.92(\mathrm{dq}, J=17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dm}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{dd}, J=9.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, 3 H), 3.44 (ddd, $J=13.0,6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.63 (dddd, $J=9.5,4.1,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (t , $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{dddd}, J=12.7,6.4,6.2,4.4 \mathrm{~Hz}$, 1 H), 1.64 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.41$ (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06$ (s, 9H).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.0,159.3,143.3,138.6,138.6,138.5,136.6,136.0$, $136.0,134.4,134.0,130.5,129.8,129.3,128.5,127.8,127.7,127.7,127.7,123.8,120.0$, $114.4,113.9,78.4,73.8,73.1,69.3,68.4,55.4,54.2,39.2,34.6,32.3,27.1,25.7,19.5,16.2$, 12.6.

IR (film): v 3450, 3071, 2998, 2956, 2931,2895, 2857, 1721, 1612, 1587, 15113, 1471, 1455, 1428, 1389, 1362, 1302, 1248, 1173, 1110, 1064, 1037, 1008, 999, 939,911, 845, 821, 740, 701, 612, 566, 506.

HRMS (ESI): calculated for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 767.4102$, found 767.4113.

550
(4R,5R,6R,7E,9R,11E)-5-(2-(benzyloxy)ethyl)-9-((tert-butyldiphenylsilyl)oxy)-6-((4-methoxybenzyl)oxy)-2,8,12-trimethylhexadeca-1,7,11,15-tetraen-4-ol (550). To a solution of aldehyde $549(0.37 \mathrm{~g}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added $\mathrm{SnCl}_{4}(123 \mu \mathrm{~g}, 0.47$ $\mathrm{mmol})$ and after 2 min methallyl silyl ($70 \mu \mathrm{~g}, 0.55 \mathrm{mmol}$) at $-90^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 15 min at this temperature. The reaction was then cautiously quenched by addition of water $(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The solution was allowed to warm to room temperature, the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 10:1) to yield $0.29 \mathrm{~g}(73 \%)$ of alcohol $\mathbf{5 5 0}$ as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.17$ (hexane/EtOAc 8:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$: $=-22.7\left(c=0.48, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(\mathrm{ddd}, J=6.5,1.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{ddd}, J=6.5,1.4$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.67$ (dddd, $J=17.0,10.1,6.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=7.2,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{dq}, J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dq}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$
(s, 1H), $4.47(\mathrm{~s}, 2 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (ddd, $J=12.6,7.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63$ (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}$, $J=14.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{ddd}, J=14.1,7.1,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.4,143.4,141.7,138.7,138.6,136.5,136.0,136.0$, 134.5, 134.1, 130.1, 129.8, 129.7, 129.7, 128.4, 127.8, 127.7, 127.7, 127.6, 124.7, 120.2, $114.4,113.9,112.7,78.7,74.7,73.1,70.2,69.4,69.1,55.4,44.1,43.7,39.3,34.7,32.3,27.1$, $27.1,25.9,19.5,16.2,12.5$

IR (film): v 3480, 2997, 2931, 2857, 1612, 1513, 1471, 1454, 1428, 1390, 1377, 1362, 1302, $1249,1174,1110,1059,1038,1009,999,940,910,888,847,822,740,702,612,505$.
HRMS (ESI): calculated for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 823.4728$, found 823.4734.

(4R,5R,6R,7E,9R,11E)-5-(2-(benzyloxy)ethyl)-9-((tert-butyldiphenylsilyl)oxy)-2,8,12-trimethylhexadeca-1,7,11,15-tetraene-4,6-diol (557). To a solution of PMB-ether 550 (0.51 g, 0.64 mmol$)$ in $\mathrm{MeCN}(22.5 \mathrm{~mL})$ and water $(2.5 \mathrm{~mL})$ was added CAN $(0.91 \mathrm{~g}, 1.67 \mathrm{mmol})$ in one portion at room temperature and the reaction mixture was stirred for 2 hours. The reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL}$ and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 5:1) to yield 0.24 g ($55 \%, 74 \% \mathrm{brsm}$) of diol 557 as a colorless oil.

Note: The reaction was quenched prior to full conversion because the yield would not be any better. If the starting material was resubjected to the above described conditions, 74% yield can be achieved.

TLC: $\mathrm{R}_{f} 0.42$ (hexane/EtOAc 4:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=17.8\left(c=0.60, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67$ (ddd, $\left.J=6.6,1.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.61(\mathrm{ddd}, J=6.5,1.4$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 11 \mathrm{H}), 5.67$ (dddd, $J=16.8,10.2,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dm}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dm}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dq}, J=17.0$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dm}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{q}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 1 \mathrm{H})$, 3.49 (ddd, $J=9.4,7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (dd, $J=14.1,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{dd}, J=14.1,8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28$ (dd, $J=14.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=13.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=14.3$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dq}, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dq}, J=12.4,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.8,139.1,138.9,138.2,136.2,136.1,136.1,134.5$, $134.5,129.7,129.6,128.6,127.9,127.8,127.6,127.5,127.0,120.6,114.3,113.7,78.7,73.3$, $70.7,69.1,68.5,45.2,43.8,39.2,34.8,32.3,27.1,26.3,22.5,19.5,16.3,12.4$.

IR (film): v 3363, 3071, 2931, 2894, 2857, 1642, 1471, 1453, 1389, 1362, 1109, 1065, 1029, 1003, 941, 907, 40, 702, 611, 505.
HRMS (ESI): calculated for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 701.4153$, found 701.4146.

(4R,5R,6R,9R,E)-5-(2-(benzyloxy)ethyl)-2,2,8,12,12-pentamethyl-4-(2-methylallyl)-9-
((E)-3-methylhepta-2,6-dien-1-yl)-11,11-diphenyl-6-((trimethylsilyl)oxy)-3,10-dioxa-2,11-disilatridec-7-ene (561). To a solution of diol $557(0.31 \mathrm{~g}, 0.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ and was added $2,6-l u t i d i n e(0.27 \mathrm{~mL}, 2.31 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 min . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ and $\operatorname{TMSOTf}(0.21 \mathrm{~mL}, 1.16$ mmol) was added dropwise. The reaction mixture was stirred at this temperature for 20 min .
and the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(30 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with ether ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 50:1) to give $0.37 \mathrm{~g}(97 \%)$ of silyl ether $\mathbf{5 6 1}$ as a colorless oil.
TLC: $\mathrm{R}_{f} 0.38$ (hexane/EtOAc 30:1, UV, CPS).
$\left[\boldsymbol{\alpha} \boldsymbol{]}^{\mathbf{2 0}} \mathbf{D} \mathbf{D}=2.6\left(c=2.21, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69$ (ddd, $J=6.6,1.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (ddd, $J=6.5,1.4$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45-7.25 (m, 11H), 5.72 (dddd, $J=17.0,10.3,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dq}, J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{dm}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}) .4 .05(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=9.5,2.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{td}, J=9.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{td}$, $J=9.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-1.94(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.5,139.0,138.8,137.2,136.2,136.0,136.0,134.7$, $134.0,129.7,129.6,128.5,128.4,127.8,127.7,127.6,127.5,120.5,114.3,112.7,78.7,73.0$, $72.1,70.7,70.0,49.7,42.1,39.2,34.9,32.3,27.2,26.2,23.4,19.6,16.1,12.8,0.7,0.6$.

IR (film): v 3071, 2956, 2932, 2897, 2857, 1452, 1428, 1387, 1363, 1250, 1108, 1065, 938, 879, 840, 741, 701, 612, 507.

HRMS (ESI): calculated for $\mathrm{C}_{50} \mathrm{H}_{76} \mathrm{O}_{4} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$847.4944, found 847.4949.

562
(((1R,2R,3R,4E,6R,8E,12E)-2-(2-(benzyloxy)ethyl)-6-((tert-butyldiphenylsilyl)oxy)-
5,9,13-trimethylcyclotetradeca-4,8,12-triene-1,3-diyl)bis(oxy))bis(trimethylsilane) (562).
To a solution of diene $561(0.34 \mathrm{~g}, 0.41 \mathrm{mmol})$ in benzene (310 mL) was added HoveydaGrubbs $2^{\text {nd }}$ generation catalyst ($31 \mathrm{mg}, 0.05 \mathrm{mmol}$) at room temperature and the reaction mixture was heated to $65^{\circ} \mathrm{C}$ and stirred for 15 hours at this temperature. The reaction mixture was then filtered through a small plug of silica and the precipitate was rinsed with $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$. The filtrate was then concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 50:1) to yield 0.31 g (94\%) of RCM-product 562 as a single isomer as a colorless oil.

TLC: $\mathrm{R}_{f} 0.15$ (hexane/EtOAc 50:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-25.7\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.23$ $(\mathrm{m}, 11 \mathrm{H}), 5.97(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}$, $2 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.30-$ $2.08(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, 1.12 (s, 9H), 0.13 (s, 9H), 0.08 (s, 9H).
${ }^{13}$ C-NMR (100 MHz, CDCl_{3}): $\delta=139.2,137.2,136.2,136.1,134.8,134.7,134.2,133.8$, 129.8, 129.7, 128.4, 127.9, 127.7, 127.7, 127.5, 126.6, 125.0, 120.5, 77.5, 74.6, 72.8, 71.5, $71.4,50.2,41.0,40.4,32.6,27.9,27.4,23.4,19.6,18.7,15.3,14.7,1.0,0.7$.

IR (film): v 3071, 3050, 3031, 2955, 2932, 2857, 1472, 1454, 1428, 1362, 1250, 1109, 1081, 1042, 869, 839, 741, 701, 611, 507.

HRMS (ESI): calculated for $\mathrm{C}_{48} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$819.4631, found 819.4642.

563
(1R,2R,3R,4E,6R,8E,12E)-2-(2-(benzyloxy)ethyl)-6-((tert-butyldiphenylsilyl)oxy)-5,9,13-trimethylcyclotetradeca-4,8,12-triene-1,3-diol (563). To a solution of diol 562 (0.34 g , $0.43 \mathrm{mmol})$ in $\mathrm{MeOH}(21 \mathrm{~mL})$ was added citric acid $(0.27 \mathrm{~g}, 1.28 \mathrm{mmol})$ in one portion at room temperature and the reaction mixture was stirred for 1.5 hours. The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the reaction was cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30 mL). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 4:1) to yield $0.25 \mathrm{~g}(89 \%)$ of diol 563 as a white foam.
TLC: $\mathrm{R}_{f} 0.25$ (hexane/EtOAc 3:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}=-21.6\left(c=0.31, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.69-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 11 \mathrm{H}), 5.91(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{t}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=9.4,7.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, J=9.4$, $6.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=15.2,9.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 4 \mathrm{H})$, 2.05-1.97 (m, 2H), 1.94-1.85 (m, 2H), 1.76 (dddd, $J=8.7,3.6,3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$, 1.55-1.49 (m, 2H), $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=139.5,138.6,136.1,136.1,134.6,134.5,134.0,134.0$, $129.8,129.8,128.5,127.8,127.7,127.7,127.7,126.3,125.1,120.6,74.7,74.7,73.2,72.5$, $70.0,40.1,33.3,32.4,27.4,27.4,26.4,24.2,19.6,16.6,14.8,14.6$.

IR (film): v 3398, 2930, 2893,2856, 1472, 1454, 1428, 1386, 1363, 1206, 1107, 1077, 1028, 1007, 941, 823, 796, 741, 702, 612, 506.
HRMS (ESI): calculated for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 675.3840$, found 675.3840 .

494
($1 R, 2 R, 3 R, 4 E, 6 R, 8 E, 12 E)$-6-((tert-butyldiphenylsilyl)oxy)-2-(2-hydroxyethyl)-5,9,13-
trimethylcyclotetradeca-4,8,12-triene-1,3-diol (494). To a solution of liquid ammonia (34 mL) was added benyl ether $563(0.51 \mathrm{~g}, 0.78 \mathrm{mmol})$ in THF $(34 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 10 min . Sodium ($38 \mathrm{mg}, 1.56 \mathrm{mmol}$) was then added in one portion and the reaction was stirred for 20 min . The addition of sodium was repeated in the way described above until the reaction mixture turned blue and the reaction was immediately quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ after this observation. The reaction mixture was allowed to reach room temperature so that the ammonia would evaporate. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 1:2) to yield 0.43 mg (98%) of triol 563 as a colourless oil.

TLC: $\mathrm{R}_{f} 0.22$ (hexane/EtOAc 1:1, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D} \mathbf{~}=-19.3\left(c=0.07, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68$ (ddd, $J=6.5,1.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (ddd, $J=6.5,1.5$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{tdd}, J=7.1,1.5,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.84(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.16(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96 (td, $J=6.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ (ddd, $J=15.3,9.9,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23-2.13 (m, 4H), 2.11-2.02 (m, 2H), $1.98(\mathrm{dd}, J=11.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H})$, 1.73 (ddd, $J=11.9,5.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, $3 \mathrm{H}), 1.15$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.9,135.9,135.8,134.8,134.4,134.2,134.0,132.1$, 129.7, 129.6, 127.5, 127.4, 125.0, 120.3, 74.6, 72.8, 66.8, 62.3, 39.9, 33.0, 29.8, 27.1, 27.1, 24.1, 23.9, 19.4, 16.8, 14.7, 14.3.

IR (film): v 3367, 2928, 2856, 1682, 1670, 1651, 1471, 1457, 1445, 1428, 1388, 1363, 1261, $1105,1078,1048,1025,942,820,798,753,741,702,665,611,506,488$.
HRMS (ESI): calculated for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 585.3371$, found 585.3362

($3 a R, 4 R, 6 E, 10 E, 13 R, 14 E, 15 a R)$-13-((tert-butyldiphenylsilyl)oxy)-4-hydroxy-6,10,14-trimethyl-3,3a,4,5,8,9,12,13-octahydrocyclotetradeca[b]furan-2(15aH)-one (564). To a solution of triol $494(95 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$ was added added Yttberbium triflate ($4.2 \mathrm{mg}, 0.007 \mathrm{mmol}$), BAIB ($136 \mathrm{mg}, 0.42 \mathrm{mmol}$) and TEMPO ($4 \mathrm{mg}, 0.025 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly allowed to reach room temperature and stirred for 4 h at this temperature. The reaction was then cautiously quenched by addition of 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(7 \mathrm{~mL})$. Stirring was continued for 10 min , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 5:2) to yield 71 mg (75%) of lactone $\mathbf{5 6 4}$ as a white foam.

TLC: $\mathrm{R}_{f} 0.21$ (hexane/EtOAc 5:2, UV, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-3.2\left(c=0.37, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67$ (ddd, $J=6.4,1.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62(\mathrm{~d}, J=6.4,1.5$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.87(\mathrm{dp}, J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.4,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{dd}, J=10.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88 (dddd, $J=9.3,5.5,5.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=18.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.13(\mathrm{~m}, 7 \mathrm{H})$, 2.10-1.93 (m, 3H), 1.70-1.64 (m, 1H), 1.63 (s, 3H), 1.51 (d, J = $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47$ (s, 3H), 1.08 (s, 9H).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.4,140.8,136.0,136.0,134.2,133.5,129.9,129.8$, 129.7, 128.1, 128.1, 127.8, 127.7, 122.4, 120.5, 76.1, 74.4, 72.4, 46.0, 42.6, 39.4, 33.3, 32.6, 27.2, 24.1, 19.5, 16.6, 15.0, 14.5.

IR (film): v 3440, 2930, 2896, 2857, 1771, 1472, 1428, 1388, 1362, 1340, 1186, 1108, 1082, 1047, 994, 955, 822, 703, 611, 504, 487.

HRMS (ESI): calculated for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 559.3238$, found 559.3243.

565
(3aR,4R,6E,10E, 13R,14E,15aR)-4,13-dihydroxy-6,10,14-trimethyl-3,3a,4,5,8,9,12,13-octahydrocyclotetradeca[b]furan-2(15aH)-one (565). To a solution of silyl ether 564 ($5.2 \mathrm{mg}, 0.009 \mathrm{mmol}$) in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ was added added TASF ($15.4 \mathrm{mg}, 0.06 \mathrm{mmol}$) in one portion at room temperature. The reaction mixture was heated up to $80^{\circ} \mathrm{C}$ and was stirred for 24 hours at this temperature. The reaction mixture was allowed to reach room temperature and the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
$(1 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 2 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure.The residue was purified by flash column chromatography (hexane/EtOAc $1: 1)$ to yield $2.3 \mathrm{mg}(77 \%)$ of diol $\mathbf{5 6 5}$ as a colourless oil.
TLC: $\mathrm{R}_{f} 0.30$ (hexane/EtOAc 1:1, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$: $=-119.9\left(c=0.15, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.61(\mathrm{dp}, J=10.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.3,2.5 \mathrm{~Hz}$, 1 H), 5.03 (ddd, $J=9.4,2.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (ddd, $J=9.4,4.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H})$, 3.88 (ddd, $J=14.2,5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=17.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (ddd, $J=15.7$, $9.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=17.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=10.1,5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dd, $J=5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.04$ (dd, $J=13.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.61(\mathrm{t}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.4,141.6,134.8,129.8,128.1,121.6,119.9,75.9,73.2$, 72.2, 46.1, 42.3, 39.2, 33.3, 32.1, 24.0, 16.6, 15.2, 14.8.

IR (film): v 3420, 2926, 2853, 1759, 1439, 1417, 1385, 1340, 1259, 1197, 1047, 991, 956, 925, 912, 733.

HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$343.1880, found 343.1884.

566
(1aS, $2 R, 4 E, 8 E, 11 R, 11 \mathrm{a}, 14 \mathrm{a}, 14 \mathrm{bS})$-2,11-dihydroxy-1a,5,9-trimethyl-

2,3,6,7,10,11,11a,12,14a,14b-decahydrooxireno [2',3':13,14]cyclotetradeca[1,2-b]furan-

13($\mathbf{1 a H}$)-one (566). To a solution of allylic alcohol $565(22 \mathrm{mg}, 0.069 \mathrm{mmol})$ in benzene $(2.5 \mathrm{~mL})$ was added added $t-\mathrm{BuOOH}(11.3 \mathrm{uL}, 5.5$ in decane, 0.062 mmol$)$ in benzene $(0.1 \mathrm{~mL})$ and $\mathrm{VO}(\mathrm{acac})_{2}(1.1 \mathrm{mg}, 4.1 \mathrm{umol})$ in benzene $(0.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ whereupon the colour of the reaction mixture turned red. The reaction mixture was stirred for 10 min and was then allowed to reach room temperature and stirred for 0.5 hours at this temperature. The colour of the reaction mixture went from red to pale yellow during this time. The reaction was then quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 3:2) to yield 12.0 mg (52%) of epoxide 566 as a colourless oil.

TLC: $\mathrm{R}_{f} 0.18$ (hexane/EtOAc 3:2, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-38.8\left(c=0.77, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.22(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}$, $J=9.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dddd, $J=8.6,8.3,6.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.32(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=17.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{dd}$, $J=17.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 5 \mathrm{H}), 2.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07-1.99 (m, 1H), $1.69(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.7,137.4,130.3,129.1,119.1,81.1,71.8,70.1,63.3$, $60.0,43.4,41.9,39.9,33.0,30.0,24.7,18.8,16.1,15.4$.

IR (film): v 3449, 2923, 2856, 1770, 1422, 1384, 1345, 1231, 1182, 1050, 998, 965, 861, 819, 755, 701, 639, 545.

HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$359.1829, found 359.1824.

567
(1aS, $2 R, 4 E, 8 E, 11 R, 11 a R, 14 a S, 14 b S)-1 \mathrm{a}, 5,9-$ trimethyl-13-oxo-
1a,2,3,6,7,10,11,11a, 12,13,14a,14b-dodecahydrooxireno[2',3':13,14]cyclotetradeca[1,2-
b]furan-2,11-diyl diacetate (567). To a solution of diol 566 ($11.5 \mathrm{mg}, 0.03 \mathrm{mmol}$) in MeCN $(3.0 \mathrm{~mL})$ was added added $\mathrm{NEt}_{3}(14.3 \mathrm{uL}, 0.10 \mathrm{mmol})$, DMAP $(0.42 \mathrm{mg}, 0.003 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(9.7 \mathrm{uL}, 0.10 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and stirred for 4 hours. The reaction mixture was allowed to reach room temperature and the reaction was then cautiously quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 3 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc $5: 2$) to yield $11.5 \mathrm{mg}(80 \%)$ of diacetate $\mathbf{5 6 7}$ as a colourless oil.

TLC: $\mathrm{R}_{f} 0.29$ (hexane/EtOAc 5:2, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$: $=-61.4\left(c=0.67, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.21(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.99$ (m, 2H), $4.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=17.8,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(\mathrm{dd}, J=9.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.15(\mathrm{~m}, 5 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.6,170.4,170.0,137.5,129.9,129.1,119.2,77.4,73.5$, $71.8,60.5,59.5,41.0,39.6,38.6,32.2,29.4,24.6,21.2,21.1,16.8,15.7,15.5$.

IR (film): v 2933, 2856, 1780, 1739, 1429, 1376, 1231, 1174, 1080, 1042, 981, 934, 934, 857, 829, 755.
HRMS (ESI): calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 421.2221$, found 421.2225.

5
(1aS, 2R, $4 E, 8 E, 11 R, 11 \mathrm{aR}, 14 \mathrm{aS}, 14 \mathrm{bS})$-1a,5,9-trimethyl-12-methylene-13-oxo-
1a,2,3,6,7,10,11,11a,12,13,14a,14b-dodecahydrooxireno[2', $\left.\mathbf{3}^{\prime}: 13,14\right]$ cyclotetradeca[1,2-
b]furan-2,11-diyl diacetate (5). To a solution of diacetate 567 ($7.4 \mathrm{mg}, 0.018 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ was added added LiHMDS ($21.1 \mathrm{uL}, 0.021 \mathrm{mmolat}-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to reach $0{ }^{\circ} \mathrm{C}$ and was stirred for 15 min at this temperature. The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ and Eschenmoser salt ($9.8 \mathrm{mg}, 0.053 \mathrm{mmol}$) was added in one
portion. The reaction mixture was allowed to reach $0{ }^{\circ} \mathrm{C}$ over a period of 1.5 hours. The reaction was then cautiously quenched by of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was dissolved in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and $\mathrm{MeI}(3.3 \mathrm{uL}, 0.053 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach room temperature and 0.5 hours. The reaction was cautiously quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 2 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by flash column chromatography (hexane/EtOAc 3:1) to yield $3.0 \mathrm{mg}(40 \%, 49 \%$ brsm) of enone 5 as a colourless oil.

TLC: $\mathrm{R}_{f} 0.35$ (hexane/EtOAc 5:2, CPS).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$: $=-8.8\left(\mathrm{c}=0.067, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}$, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=14.8$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,170.0,169.4,137.4,136.2,129.8,128.6,124.8$, $118.9,75.7,75.2,71.6,60.8,59.8,43.1,41.0,39.7,29.5,24.4,21.1,21.0,16.7,15.9,15.5$.

IR (film): v 2927, 1771, 1744, 1651, 1555, 1539, 1511, 1454, 1374, 1229, 1038, 772.
HRMS (ESI): calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 433.2221$, found 433.2224.
HPLC: 0-2: 40\%, 2-10: 40-70\%, 10-12: 70-90\%, Ref: 10.17 Min.

[^0]: ${ }^{1}$ Trans-cyclopropane analogs have been synthesized the same way by starting from trans-geraniol.

[^1]: ${ }^{2}$ The structure has been deposited in the Cambridge Crystallographic Data Base (deposition number CCDC 808039).

[^2]: ${ }^{3}$ Aldehyde 102 racemizes on silica gel and therefore was not purified by means of columns chromatography.

[^3]: ${ }^{4} \mathrm{~A}^{13} \mathrm{C}$ (1k scans) experiment of the aldol product $\mathbf{1 2 7}$ confirmed the presence of the other substance.

[^4]: ${ }^{5} \mathrm{H}$-NMR spectrum showed the presence of an additional methyl group and the resultion mass spectrometry confirmed the presence of a mass of +2 relative to the desired product 136. No effort was undertaken to characterize the side procuct any further.

[^5]: ${ }^{6}$ The Wittig salt 43 was prepared from the corresponding commercially available chloride in a single step.

[^6]: 7 These compounds were kindly provided by the Novartis Institute for Biomedical Research in Basel, Switzerland.

[^7]: ${ }^{8}$ Initially, amine 205 was purified by silica gel chromatography using EtOAc (85\%), MeOH (10\%), NEt_{3} (5\%) as eluents, which led to some transesterifcation. This was avoided in the following using EtOH instead of MeOH .

[^8]: ${ }^{9}$ Analysis of the reaction mixture by low resolution mass spectrometry showed the presence of a mass +2 relative to the mass of the desired product 254. Based on the experiences gained in the synthesis of CP-Epo B (1a) the side product is believed to be formed via opening of the cyclopropane.

[^9]: ${ }^{10} \alpha$-Hydroxylactone 417 is commercially available, albeit at a high price.

[^10]: ${ }^{11}$ No example of a successful installation of a Weinreb-amide from an acyl oxazolidinone was found in literature for a substrate with a methyl group attached to the double bond next to the secondary OH group as in $\mathbf{4 2 6}$.

[^11]: ${ }^{12} 432$ was prepared analogous to the Evans-auxiliary derivate 425.

[^12]: ${ }^{13}$ The anticipated result was later proven by the comparison with the outcome of the Sakuari addition, which was favouring the other diastereomer as was confirmed by Mosher ester analysis.

[^13]: ${ }^{14}$ The use of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and DIBAL-H to generate the Schwartz reagent in situ led to the same result. ${ }^{[108]}$

[^14]: $\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^15]: $\begin{array}{lllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

[^16]: $\begin{array}{lllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \end{array}$

