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ABSTRACT
On primary storage systems content is often replicated, con-
verted or modified, and the users quickly lose control over
its dispersal on the system. Deleting content related to
a particular project from the system therefore becomes a
labor-intensive task for the user. In this paper we present
IRCUS, a system that assists the user in securely removing
project-related content, but does not require changes to the
user’s behavior or to any of the system components, such as
the file system, kernel or applications. IRCUS transparently
integrates within the user’s system, operates in user-space
and stores the resulting metadata alongside the files. We
implemented and evaluated our system and show that its
overhead and accuracy are acceptable for practical use and
deployment.

1. INTRODUCTION
Recent cases of information leakage as well as laws and

court orders that compel citizens and companies to surren-
der their devices and data [6, 9, 26, 29, 34], have motivated
the need for secure data deletion. When faced with a co-
ercive adversary, who is able not only to get access to the
devices or data, but can also force the user to disclose all
access credentials (e.g., passwords), removing data from a
system is the safest way to truly preserve its confidentiality.

However, when deleting content from a personal storage
device, a typical user faces the following challenges. Con-
tent is replicated across different files, possibly in different
formats, e.g., file copies or file containers, and the user has
to manually identify all files which share pieces of sensitive
content or are related in some other way (e.g., belonging
to the same project). This procedure should allow the user
to perform meaningful deletion without leaving any sensi-
tive content inadvertently exposed (i.e., not deleted). This
is, nevertheless, a tedious and complicated task on modern
systems with large storage and complex file dependencies.
Moreover, if the system has been running for a longer time,
the user will likely not be aware or not even remember where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ACSAC ’14, December 08 - 12 2014, New Orleans, LA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3005-3/14/12 ...$15.00
http://dx.doi.org/10.1145/2664243.2664287.

certain files and content reside. In most cases, the user is
left with the task of manually inspecting files and explicitly
choosing which files to delete.

Previous work has studied secure deletion for complete
devices, data blocks or files [2, 5, 7, 14, 33]. However, all of
these approaches assume that the user is able to identify the
files or data blocks that need to be deleted, as well as those
that must be preserved. None of those approaches consider
easy secure deletion for content that is replicated across dif-
ferent files. To identify files with shared content, previous
work has studied information flow [8, 21], file provenance [20,
36] and causality between files [24]. However, these works
were application [20, 43] or operating-system specific [36]
and required modification of existing systems [13, 24, 25] or
virtualization [16, 21].

In this paper, we introduce IRCUS (Identification of Re-
lated Content from User Space), a system designed to as-
sist the user with file or project deletion, by proposing re-
lated files upon deletion. More precisely, the goal is to assist
the user in identifying related files that belong to the same
project, by leveraging common content, file co-location and
similar access patterns. Once the user wants to delete a file,
IRCUS presents all related files and the user decides which
files to delete in order to delete the content. IRCUS requires
no user actions prior to the file deletion, such as labeling.
In accordance with the security principle of least privilege
and to allow easy adoption in all types of local and remote
storage, IRCUS is implemented in user space.

IRCUS is based on a generic approach for discovering
project-related files, independent of operating system, stor-
age type or specific applications. As IRCUS executes in user
space, it can be installed as a user application and adapted
to specific user requirements. Contrary to previous work,
our work requires no modification to other applications (e.g.,
text processing applications) or the operating system. The
system overhead is smaller than in most previous proposals.
Low overhead is important, because secure deletion is an
infrequent operation that should not interfere with normal
system operation.

In summary, we make the following contributions.

• We propose a novel approach for the continuous identi-
fication of project-related files with the goal of assisting
the user in securely deleting sensitive content.

• We design a generic architecture that does not depend
on specific applications or systems. Moreover, it re-
quires no modification to the existing applications or
the underlying operating system and it can instead be
executed as a user-space application.
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Figure 1: Example PDF Generation: As they share content, files A, B, C and D are related to file E. Securely
Deleting just E does not securely delete its content.

• We create a prototype implementation of our system,
explain our reasoning behind certain implementation
decisions and conduct an experimental evaluation of
our system in order to demonstrate its effectiveness as
well as its performance.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the problem statement and the matching
background in Section 3. In Section 4 we discuss the de-
sign principles of our approach and its features. We present
our solution and its results in Sections 5 and 6. We discuss
related work in Section 7 before concluding in Section 8.

2. PROBLEM STATEMENT
We consider the problem of secure deletion of project-

related content. More specifically, our goal is to design a
system which, based on observed file system events, learns
which user files belong to the same “project” or more gener-
ally to the same context. Furthermore, we want our system
to be easily integrated into existing platforms and work well
across local and remote (e.g., cloud) storage. As a result,
the system should assist a user during the file and project
deletion processes by displaying related files and the types
of their relationships.

Although this problem could be solved by relying on users
to label files and their relationships, that approach would re-
quire a change in the user behavior and in the mode of sys-
tem use, which is not realistic in most applications. Instead,
our goal is to build a system that will track user behavior
and file content and suggest file relationships to the user
upon deletion, therefore reducing the user’s workload.

On a modern system content is copied, slightly modi-
fied, converted or bundled up with other content, e.g., in
archives. Common examples for shared content include text
documents, presentations and attachments to e-mails. An
example more specific to (computer science) research is the
compilation of PDF files from text and image files, where
the information ends up being contained both in the com-
piled output and in the source files. In this example, the
deletion of the PDF file therefore does not remove any con-
tent from the system. In addition, users re-use texts, pre-
sentations and implement manual versioning, inadvertently
leaving traces of various information within their local and
remote systems [23]. After a longer operation of the system
the users are therefore unaware of all the copies and relations
between different files on the system and require assistance
in identifying the files that contain project information.

Identifying files that belong to the same project and/or
are a part of the broader context can only be fully done
by the user. The notion of a common context is user and
possibly organization-specific. No system can fully capture

this notion unless it takes input from the user. Since we want
to minimize if not fully remove user’s involvement we focus
on file relations that can be inferred by the system without
explicit user input; these relationships can then be presented
to the user, who can decide if they are truly meaningful.
The relationships that we consider are primarily based on
overlapping content, correlated access and file co-location
within the file system.

Relying solely on content overlap misses high-level project
connections such as in the case of projects that contain a
project description and the implementation source code files
that have little or no content overlap. We also miss connec-
tions with files that are encrypted or encoded in an unrecog-
nized format, e.g., proprietary file formats. To discover these
semantic connections we assume that files with related con-
tent will frequently be accessed together. This assumption is
validated by our small user study in Section 3.3. We there-
fore classify files with strongly correlated access patterns as
related to discover project-based relations.

In summary, our goal is to enable secure deletion of con-
tent by finding copies or different versions (through shared
content) or files that are part of the same project (through
shared access patterns or co-location). These files are pre-
sented to the user for deletion. Finally, only the user can de-
cide which files should be securely deleted together to delete
specific content.

3. BACKGROUND
Before presenting our proposed architecture, we provide

an intuitive description on which files we consider to be “re-
lated”, such that they have to be deleted together, in order
for the secure deletion operation to have the desired result.
Furthermore, we motivate the need for designing an effi-
cient system, by showing that the naive approach to solving
the given problem would lead to an impractical system due
to poor performance. To understand file system operations
generated by user actions, we also performed a small user
study and present the derived conclusions.

3.1 Related Files
We consider two types of related files. First, files with

overlapping content which we call content-related. Second,
files that exhibit patterns of being accessed together which
we call access-related.

The content which is shared between two content-related
files, say, A and B might be considered sensitive by the user.
Thus, when the user chooses to delete file A, our system
should also propose file B to the user for deletion.

Content-related files can be explained with the example of
PDF generation. Imagine that the user creates a confidential
PDF file which contains text and an image. The components



are shown in Figure 1. The original text A was modified
and saved under a name B, while the original image C was
converted to grayscale and saved as D. Finally, the PDF E
is then generated out of B and D.

If the user decides to securely delete the PDF, without
deleting its components, the PDF can be easily restored.
Therefore, files A, B, C and D are content-related to the
PDF and should be deleted together with the derived PDF.
We can also observe that files A and B are similar and are
symmetrically content-related, while file B is contained in
the PDF E.

Access-related files may not share any content at all, how-
ever, they can be semantically linked. As an example, con-
sider a project description and a source code file. They are
part of the same project and would be frequently accessed
together. Linking them can reveal related files to the user.
Additionally access relation can link files with overlapping
content that is hard or impossible to identify from file sys-
tem operations, such as encrypted content or proprietary
file formats. To increase the accuracy of access relations, we
take file co-location into account.

3.2 Naive Approach
One way to address the problem of identifying related files

for deletion is the following naive approach. We can imple-
ment a system that simply searches for related files on de-
mand, i.e., right before deleting a chosen file. In this reactive
approach the identification of access-related files would be-
come much harder, as only the file timestamps are available
at that time. Additionally, all files would have to be checked
for their timestamps, which would not be scalable.

The reactive approach would also require at least one
search through the complete file system for content-related
files. After the initial search, further searches might be nec-
essary in order to build a relation graph as in Figure 1.

Using the same system as presented in Section 5 we im-
plemented such a reactive search for content-related text
documents. We found that most users had at least 128MB
of text data, with an average file size of roughly 16KB. For
such file sizes our system spent an average of 1.37 seconds
per MB for comparison. Therefore, the reactive approach
would take at least 175 seconds for most users, not includ-
ing the time for file lookup, comparisons to other file types
or additional searches to establish a relation graph.

Overall, the reactive approach would have an impracti-
cal runtime. Even after applying parallelization the waiting
time would significantly impact the user experience. As this
approach is not scalable, we conclude that it is not suited to
solve the problem.

Alternatively, the naive approach could also be used in
a proactive manner in order to eliminate the user waiting
time before each deletion. However, this would require the
aforementioned scan of all relevant file types to be performed
after any change in the file system. This constant load would
render the naive approach unusable.

3.3 User Study
To gain a better understanding of realistic file system be-

havior, we performed a small user study. As we record file
system operations and their content, the study was very
sensitive, so that we could only get four participants. Par-
ticipants had the chance to remove sensitive entries from the
recordings before sending the recordings back to us.
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Figure 2: Parameter evaluation based on the user
study: Epoch Difference has the smallest variance.
Time Difference is measured in seconds and Opera-
tion Distance is measured in number of operations.

After manually labeling the user study we observed that
related files were mostly accessed shortly after each other
both in terms of access time and operation sequence. Of-
ten we observed no intermediate unrelated operation. As
in previous work [37] we therefore find a temporal proxim-
ity between related operations. To determine the parameter
for temporal proximity, we performed an analysis as seen in
Figure 2. Besides the time difference between related oper-
ations and their distance in the operation sequence, we also
measured the epoch difference.

A new epoch begins, when a new file is written to. There-
fore, subsequent write operations to the same file, possibly
interleaved with other read operations, do not start a new
epoch. Intuitively, the epochs should capture project tasks,
e.g. generating a PDF. As the time span of a task, e.g. time
taken to edit a file, or the number of operations, e.g. due to
the number and size of input files, can differ greatly, using
the epoch distance should be more stable. Figure 2 validates
this theory as the y-axis is logarithmic and the variance in
the epoch difference is therefore magnitudes smaller.

However, epochs will also contain noise in the form of un-
related operations close to related operations. We tried to
find features to identify related operations. The number of
temporally close operations and their interleaving allowed
us to more precisely identify valid access relations. This was
partly due to the fact that configuration files and unrelated
files were usually just read once, e.g., to parse the configu-
ration or check the file’s magic number.

Additionally we compared the paths of related operations
and found a strong correlation between the longest common
subsequence of paths and whether the corresponding oper-
ations were related. This was due to users mostly keeping
related files in the same part of the file system and is consis-
tent with previous results [3]. We therefore use co-location
to identify related files. However, using the process ID for
classification proved to be an unreliable identifier. While
it pointed to true positives, it also included false positives,
such as configuration files or previously accessed documents.
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their contents. IRCUS can operate in user space.

4. ARCHITECTURE
In this section, we describe the architecture of our pro-

posed solution, called IRCUS (Identification of Related Con-
tent from User Space). Figure 3 depicts the overall architec-
ture. IRCUS relies on the observation of file system opera-
tions in order to identify relations between files. To achieve
this, IRCUS, which runs as a user-space application owned
by the user, receives file system events from the underlying
system which are triggered by the user’s running applica-
tions. These events include typical file operations such as
open, read, write, flush, rename and delete. In the case
of read and write operations, the associated content that
was read or written is expected to be included in the re-
ceived event notification, as this is necessary in order to iden-
tify content-related files. More specifically, each read/write
event notification contains the following information:

〈operation, path, offset, num bytes, content, pid〉

where operation is the type of the file operation (read or
write) on the file specified by path. The content of size
num bytes is read from or written to the offset. Option-
ally, pid is the process ID of the process that triggered this
operation.

Since IRCUS only looks at file system level operations, its
operation is agnostic to and independent of the kind of appli-
cations that generate these operations. It also does not have
to monitor any kind of interprocess communication (e.g.,
copying and pasting a text excerpt from one application to
another). This is due to the fact that if any kind of interpro-
cess communication leads to a file relation, the relation will
be eventually captured by IRCUS through the inspection of
the file operations initiated by the communicating processes.

We assume that the user of the system will not behave
maliciously, i.e., will not try to actively hide file relations or
insert dummy operations. In this work, we also ignore the
possibility of malware on the system.

As mentioned above, IRCUS runs in user space and is
owned by a specific user of the system. IRCUS is only al-
lowed to monitor file system operations that were initiated
by processes running with the privileges of that particular
user. We assume that there is a pre-defined set of direc-
tories that should be monitored for file system operations
relevant for that user. The most typical scenario, which we
follow in our implementation, is monitoring the user’s home
directory.

paper.pdf
 Delete

paper.tex
 Delete

orig.jpg
 Delete

rst.tex
 Delete

image.jpg
 Delete

paper.log
 Delete

Te
x
t

O
v
e
rl

a
p

S
im

il
a
r

Te
x
t

Im
age

Overla
p

S
im

il
a
r

Im
a
g
e

Accessed
Together

Lorem 

ipsum dolor 

sit amet, 

consectetur 

adipisicing..

Loram 

ipsam dolor 

sit amit, 

consectetur 

adipisicing..

This is 

pdfTeX, 

Version ...

Document 

Class: ...

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Random Plot

sin(x)
cos(x)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Random Plot

sin(x)
cos(x)

PDF-Test

PDF-Tester

Loremipsumdolor sit amet, consectetur adipisicingelit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea com-

modo consequat. Duis aute irure dolor in reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cup-

idatat non proident, sunt in culpa qui of cia deserunt mollit anim id est

laborum.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Random Plot

sin(x)
cos(x)

Figure 4: Generated Relation Graph: When plan-
ning to delete paper.pdf, the user is shown such a
relation graph. Clicking on vertices or edges reveals
additional information.

In a multi-user system, each user may have his own ver-
sion of the IRCUS application running and monitoring each
user’s own directory. The underlying system should dispatch
file operation events triggered by each user’s applications to
the corresponding instance of IRCUS.

To avoid extra file system operations and to efficiently
perform the required operations for discovering relations be-
tween files, IRCUS maintains a cache that stores recent file
operations. The operations are grouped by the accessed file
and the files are stored in subdivision based on their file type.
Every file type has a separate cache, because we want to es-
tablish content relations between certain file types. IRCUS
does compare text documents to the text extracted out of a
PDF document, while it does not compare text documents
to image documents. A subdivided cache provides flexibility
and efficiency for this chosen approach.

We picked the caching strategy based on the results of the
user study, presented in Section 3.3, that related operations
have a small epoch difference. We therefore keep operations
from recent epochs in the cache along with the correspond-
ing files. As previously discussed, the operations enable us
to track the access relation of files more precisely. Further-
more, the robustness of epoch difference allows us to reliably
evaluate content relations independent of specific operation
patterns.

Once IRCUS has identified an access or content relation
it stores the relation information alongside the two files as
previously suggested [25]. The stored information contains
the type of relation and the strength of the relation, e.g.,
the similarity of two images. The stored information is ac-
cessible from user space and can be used to educate the user
about file relations.

Whenever the user wants to securely delete a chosen file he
is able to consult IRCUS which other related files he might
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Figure 5: Implementation Design: Based on FUSE,
IRCUS intercepts file system operations and multi-
plexes them for analysis.

also want to delete. IRCUS takes the user-provided file as
input and creates a relation graph by transitively evaluating
the file’s relations. An example of the visualization of such a
graph that would be displayed to the user is sketched in Fig-
ure 4. The graph only contains the files with the strongest
relation to the provided file and provides information on the
type of relation between files as well as the strength of each
relation (conveyed by the thickness of each vertex). The
score-based filtering [25, 36] and visualization [3] of such
graphs have been previously studied. Finally, the user is
able to select the subset of the graph, which should be se-
curely deleted.

5. IMPLEMENTATION
In this section we outline how we designed our implemen-

tation, how we applied the different parts of the architecture
and how we improved the performance.

The implementation of IRCUS is subdivided into multi-
ple parts as seen in Figure 5. To observe file system oper-
ations the dispatcher thread is based on FUSE [15]. FUSE
is more powerful than required, as it intercepts file system
operations and enables request or result modifications. The
dispatcher thread uses FUSE to multiplex the file system
operations. Before returning the operation result to the OS,
the dispatcher copies the operation and its content into the
operation queue.

The cache management thread receives the operations, or-
ganizes the caches and evaluates access and content relation.
For IRCUS we have implemented four types of caches: Text,
Image, PDF and Binary. Binary is the default that contains
all non-matched entries. These caches allow us to demon-
strate the capabilities of IRCUS for detecting content rela-
tion between simple and complex file types.

The cache entry for a file consists of a sparse representa-
tion of the file parts that were read or written. Additionally
the cache contains a file-type specific addendum that is used
for more efficient content comparison. To perform content
comparison IRCUS uses different algorithms for the differ-
ent file types. These algorithms are not optimal, yet still
they demonstrate the feasibility of our scheme.

Previous work [23] suggested the Longest Common Subse-
quence as a text comparison metric. However, in IRCUS this
was too computationally expensive. We therefore adopted
Broder’s resemblance [4]. It allows us to compute a fixed
size “sketch” for every text document and compute the re-
semblance using two sketches. We store the sketch as the
addendum, in order to avoid multiple computations.

For image comparison we extract the color histograms us-
ing OpenCV and perform a histogram comparison. Here
again we can save the histogram as addendum. When com-
paring binary data we try to detect identical blocks of data.

However, these blocks might be unaligned, therefore we use
the rsync algorithm [39]. The rsync algorithm uses a rolling
hash to quickly identify potential candidates and then uses
a strong signature, saved in the addendum, to compare the
data blocks. We filter the results so that blocks of mostly or
only zeros are not identified as content related. We also limit
the maximum cache size of a binary file, to avoid memory
exhaustion when large files are read or written.

PDF is a complex file type, as it is a file container. For
PDF files we perform three types of comparison: PDF-to-
Text, PDF-to-Image and PDF-to-PDF. To enable compar-
ison we extract text and images from the PDF using the
poppler library and save them as addendum. For PDF-to-
Text we compare the extracted text to the given text with
the previously presented text comparison. Analogously for
PDF-to-Image we compare all images from the PDF to the
given image. Finally to perform PDF-to-PDF we extract
both PDFs and perform text comparison and pairwise im-
age comparison.

IRCUS has to avoid unnecessary content comparisons. For
some file types content comparisons are only useful after
caching the complete file. To make the most use of content
comparisons and to avoid comparisons that have to be re-
peated after a file update, IRCUS triggers the content com-
parisons on two events: when a file gets flushed or when a
file gets evicted from the cache. The flush operation is trig-
gered by FUSE when the file is closed. This usually means
that this file has been completely updated. Furthermore IR-
CUS performs a content comparison before a file is evicted
to detect similarity with recently inserted files.

To further reduce the number of content comparisons, IR-
CUS performs a comparison between a pair of files only if at
least one of the files has been written. This is based on the
assumption that IRCUS was in place from the beginning,
so that a potential content relation would have previously
been detected. This heuristic avoids a lot of content com-
parisons, as lots of files are only read, e.g., configuration
and input files. In case IRCUS was not present from the
beginning an initial search could be performed as described
in Section 3.2.

However, even with the presented approach we still ob-
serve duplicate content comparisons. If file A is compared
to B shortly before B is evicted from the cache, the com-
parison between A and B might be duplicate. Whether it is
duplicate depends on a possible modification of A or B in
the meantime. To keep track of the order of events, we in-
troduce a logical clock [22]. The logical clock is incremented
whenever the cache state changes. For every cached file we
save the logical timestamp of the last modification and the
last comparison. By checking these timestamps we can avoid
unnecessary comparisons.

Once a content relation is detected, it is saved in the cache
entries of the corresponding files. The cache entries also
contain scores for the access relation between files. We found
that the following way of computing the access relation was
both simple and powerful:

AR(A,B) =
∑

opA∈OpsA

|{opB | ed(opA, opB) ≤ TED}|

To compute the access relation score of two files A and B,
IRCUS counts the number of temporally close operations
on B around every operation on A. Temporally close oper-
ations have an epoch difference ed(·) smaller or equal to the



epoch difference threshold TED. Then IRCUS adds up all
the counts for the final score. Therefore, the access relation
is symmetric, simple to compute and allows effective filter-
ing as explained in Section 3.3. From the results of the user
study we chose the threshold for “closeness”TED = 12. This
is a conservative choice to avoid an overfitting to our small
dataset.

The cache entry for a file is treated as a logical unit and
so it is evicted atomically once the file has not been ac-
cessed in the past TED epochs. The value of TED is trade-
off between higher detection and higher overhead. After
the eviction-triggered content comparisons have been per-
formed, the cache entry is removed from the cache and in-
serted into the result queue.

The write back thread takes elements out of the result
queue. It is responsible for permanently storing the rela-
tion information. We decided to store the information in
the extended attributes of the file system. Before storing
the relation information of file A, the write back thread fil-
ters the relations to reduce false positives and thereby also
reduce storage overhead. Based on our labelled user data
we tested eight different techniques with different parame-
ter values for filtering false positives while trying to preserve
true positives.

Three techniques worked well:

Top X Percent Keep the highest access relation scores of
A. For this technique the top 5% gave the best results.

X-times Bigger than Mean Compute the mean of A’s
access scores and keep only scores at least 4-times big-
ger than the mean.

X-times Bigger than Local Graph Mean Compute the
mean score of the local graph consisting of A and all
its related files and only keep scores at least 4-times
bigger than the mean.

As it preserved most of the true positives while filtering false
negatives we picked the “4-times bigger than Mean” filter.
Besides such access relations we store all content relations
and access relations of co-located files. We define files as co-
located, if their paths have a Longest Common Subsequence
of at least 75%.

In the extended attributes alongside each file we store its
related files with the corresponding access relation and con-
tent relation score. If the files were accessed by the same
process we also store the process name for later display to
the user. The file relations are stored as bi-directional links.
This allows efficient updates, e.g., in the case of rename op-
erations. In this case we can quickly identify the related files
and update their extended attributes.

Once the user wants to perform a secure deletion, the
related files are available in the extended attributes. Using
multiple lookups the user can construct a relation graph as
in Figure 4 that can be enriched with the stored information,
such as the relation strength and the process names.

6. EVALUATION
In this section we present our experimental results. We

tested the performance in terms of throughput and latency
and conducted a case study for detection results.

As IRCUS is designed for a desktop system, we tested our
implementation from Section 5 on a Lenovo Thinkpad X230
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Figure 6: Latency Measurements for different sce-
narios averaged over 20 repetitions with standard
deviation.

running GNU/Linux equipped with a regular hard disk. As
underlying file system we picked reiserfs, a standard Linux
file system with support for extended attributes.

6.1 Performance
To evaluate the runtime performance of our system we

test its throughput and latency in different scenarios. As
points of reference we chose the native file system perfor-
mance and the performance of a “simple overlay” FUSE file
system. This way we can investigate the overhead intro-
duced by FUSE. As “simple overlay” we chose the FUSE
example file system “fusexmp fh” that simply forwards re-
quests.

In order to test latency and throughput we generate 32
pseudo-random, binary 16 MB files. We then use all or
some of the files as follows. All the described operations are
sequential.

Write Single File Measure the performance of writing a
single file from memory to disk 32 times, repeatedly
overwriting it.

Write Multiple Files Write all 32 files from memory to
disk to fill the cache. Then, measure the performance
for writing all 32 files from memory to disk but using
different file names.

Read Single File Measure the performance of reading a
single file from disk repeatedly.

Read Multiple Files Measure the performance of reading
all 32 files sequentially from disk.

We chose these measurements to highlight potential per-
formance differences. When running measurements with
multiple files our system has to evaluate and manage file
relations, e.g., perform content comparisons. None of this
is necessary if only a single file is used. Therefore, “Write
Multiple Files” tests the worst-case performance of our sys-
tem as all files are written and the cache is filled from the
beginning.

In order to eliminate the influence of caching, we clear
the Linux page cache before each of the 32 measurement
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Figure 7: Throughput Measurements for different
scenarios averaged over 20 repetitions with standard
deviation.

steps. We did not use the FUSE directio option to reduce
caching, as this option led to reduced functionality of the
file system.

The latency measurements are shown in Figure 6. Each
of the tests has been repeated 20 times and results have
been averaged. We see that FUSE introduces a significant
increase in write latency. This is due to the additional copy
operations and transitions between kernel and user space.
Additionally, IRCUS requires time for the dispatcher to copy
the file system operation into the operation queue. As ex-
plained “Write Multiple Files” tests the worst-case perfor-
mance of our system. Evaluating the different file relations
occupies the cache management thread so that the operation
queue fills up and blocks the dispatcher thread. We picked
a fixed-size operation queue of 32 elements to demonstrate
such performance bottlenecks.

Overall, the additional latency of IRCUS over FUSE is
caused partially by multiplexing the operation inside the
dispatcher thread that we cannot avoid. This latency over-
head is not general for the architecture, but is specific for our
implementation based on FUSE. A different implementation
could avoid such overhead.

In Figure 7 we present our throughput measurements. As
the file operations in the tests are sequential, the results for
the native system are directly related to the latency results.
The throughput of FUSE is lower due to its extra latency.
FUSE also introduces an overhead when all the write opera-
tions are performed on the same file. Finally the throughput
of IRCUS is the lowest due to the additional latency on top
of FUSE. However, the IRCUS throughput is sufficient to
watch high definition videos without interferences.

6.2 Detection
As it makes use of heuristics, IRCUS is not perfect. The

exact detection accuracy, however, depends on the specific
workload and the used applications. To provide a deeper
understanding about the features and shortcomings of IR-
CUS we present multiple test cases. These test cases are
separated into different work profiles as previous work has
shown that work profiles differ with roles [23]. The test cases
were performed in the setup described above.

All of these tests are only performed once. Additional rep-
etitions would increase the accuracy as random correlations
and other noise could be filtered out.

Office Workload
These test cases simulate the usage of IRCUS in an of-
fice environment. Based on previous work [17], these test
cases contain web content, emails, documents, pictures and
presentations. We use the following applications: Firefox,
Thunderbird, LibreOffice, Gimp and Gedit. To create a
realistic scenario, Firefox and Thunderbird are constantly
running, while other applications are opened and closed. We
now describe the performed test cases and the resulting de-
tection by IRCUS.

Saved Attachment A binary file is received as a mail at-
tachment and automatically stored inside the mail data-
base. The user then saves the attachment as a file.

As the attachment is encoded when it is stored in-
side the mail database and IRCUS is unaware of the
database’s format, IRCUS cannot establish a content
relation. However, due to the correlated access pat-
terns, IRCUS establishes a link between the saved file
and the mail database. Additionally, an incorrect ac-
cess relation to an unrelated file is generated.

Shared Image A text document containing an image is
opened, the image is copied to the clipboard and in-
serted into a newly created presentation.

Even though these files are opened directly after an-
other, the text document has already left the cache
before the presentation is cached. This is due to the
many additional file system operations by LibreOffice.
However, as the used clipboard manager saves clip-
board images to the disk, the document and the pre-
sentation are indirectly linked through the clipboard
file. These links are access relations as the image is
represented in different formats. Besides this access
relation, both files have a few false positives, such as a
LibreOffice configuration file used for both files.

Multiple Downloads A file is downloaded to the Down-
loads folder, after additional browsing and three inter-
mediate downloads, the file is downloaded again and
saved in a different folder.

The additional browsing creates so much noise in the
form of write operations that the two identical down-
loads are never compared to each other. Therefore this
relation is undetected.

Copy Operation After a binary file has been downloaded,
it is copied into a new file.

The copy operation is successfully detected through a
content overlap. Additionally both files are linked to
the Firefox history through access relations. This is
due to the original file download.

Save-As DOC A document is opened in LibreOffice and
small changes are made throughout the document. The
resulting document is saved under a different name.

This relation is undetected since IRCUS can’t interpret
DOC files and they are therefore treated as binary.
Additionally, there was too much noise for the creation
of an access relation.



Save-As Text A text file is opened inside Gedit, where
small changes are made and a paragraph is reposi-
tioned. The resulting text file is saved under a different
name.

As IRCUS analyzes the text differences it finds a con-
tent relation between the two files. This demonstrates
the importance of file types when comparing to the
Save-As DOC test case.

Copy-Paste DOC An unchanged text sequence is copied
from one document into another document.

Similarly as before this is undetected, as DOC files are
treated as binary files and the binary representations
differ.

Copy-Paste Text An unchanged text sequence is copied
out of one text file into another text file.

As the copied percentage was sufficiently big, a content
relation between the two files is observed by IRCUS.
The other access related files, however, are false posi-
tives.

Copy-Paste JPG A JPG is opened in Gimp, and a part
of it is selected and copied into a new image.

As IRCUS performs a histogram-based comparison the
content overlap is detected. Additionally, the two files
have an indirect access relation through a Gimp tem-
porary file.

Engineering Workload
These test cases simulate the usage of IRCUS in an engi-
neering environment. They are based on compilations for
which IRCUS tries to identify the input files.

PDF Generation A PDF is compiled out of a text and
two image sources using pdflatex.

The three input files are detected as inputs through
content relations, access relations and the common
process ID. Additionally, the generated bibliography
file is linked to the PDF through an access relation and
the common process ID. This demonstrates the feasi-
bility of detecting related files for complex file types.

Source Code Compilation An executable is compiled out
of multiple source code files using gcc and g++.

Access relations link the resulting executable to all
source and object files. Based on the executable all
related files can be identified.

6.3 Discussion
We observe that IRCUS is able to detect relations for the

“known” file types (Text, Image and PDF) reliably and pre-
cisely. For other file types, it relies on access relations, which
contain false positives, especially if only a single operation
is observed. We could filter some of these false positives
using blacklists, but we aim to provide a general approach.
Instead we want to use aggregated information to detect fre-
quent false positives, e.g., a configuration file that is related
to many documents.

One could argue that IRCUS needs to understand all file
types to be useful. However, previous work [17] has shown
that relatively few file types cover most of the related files.

Additionally, IRCUS successfully detected access relations,
such as between the source code files and the executable or
the saved attachment and the mail database.

When relations including databases, e.g., mail database
or browsing history, are detected the user should be warned
upon deletion to delete such content through the appropriate
application interface.

We can also observe the trade-off between increased run-
time overhead and improved detection results due to the
number of cached operations. Caching less operations (smaller
TED) requires fewer content comparisons and thereby re-
duces resource usage. When encountering noise due to un-
related operations as in the Multiple Downloads test case,
however, content relations might be missed due to the smaller
threshold TED.

Overall, implementing additional file types and tuning the
parameters could significantly improve the detection results.
Fortunately, as IRCUS runs in user space, users or organi-
zations can add such file types based on their specific needs
and adapt the system performance to their user profile.

7. RELATED WORK
In this section we survey related work from the different

areas this work touches on.

Information Flow Tracking
Systems such as TaintDroid [8] or Panorama [41] employ
kernel/OS modifications to perform taint tracking. They
face issues as over- or undertainting. CleanOS [38] secures
sensitive data on Android by encrypting it in memory and
modifying the Dalvik interpreter to decrypt it with keys
from the cloud. The Aquifer system [28] restricts infor-
mation flow based on a policy framework to prevent acci-
dental data disclosure on Android. It limits interactions
between applications based flow data provided by systems
like TaintDroid or CleanOS. PRIVEXEC [30] creates vir-
tual, encrypted file systems for different applications. This
isolates applications from each other. TightLip [42] uses
doppelganger processes with bogus data to observe the flow
of labelled data. TightLip triggers hen the two processes use
different system call arguments.

In contrast our system does not require kernel or OS mod-
ifications, is not dependent on taint tracking and does not
impose any restrictions on the system.

Forensics
Related work in forensics includes Backtracker [21], a tool
to identify the events leading to a malicious file operation.
Backtracker tracks all system calls through virtualization
or kernel introspection and displays a graph of the rele-
vant events. To reduce the significant number of false posi-
tives, later work [37] has enhanced it with data flow analysis.
Forensix [12] performs full system call logging and identifies
information sources for specific files based on the logs. Key-
pad [10] and Flight Data Recorder [40] log file system events
in a robust and efficient manner to aid analysis. Other sys-
tems [1, 43] have been proposed to undo file system changes
by malicious processes using external servers. Privacy Ora-
cle [19] analyzes network traces generated by black-box test-
ing and identifies reordered, fragmented or modified sensi-
tive data.

Our system does not require virtualization or additional
servers and is targeted at a non-malicious scenario.



Provenance and Causality
Related work has used provenance to improve the quality
of desktop search results [36] or to helpfully annotate files
during normal user operations [20]. However, these systems
require tracking the data flow in all running Windows ap-
plications and hooking into specific Windows applications
respectively. Thereby, they are OS- and application specific
and cannot be generally applied. Previous work also defined
Provenance-Aware Storage Systems [25], their functionality
and concluded that provenance information should be stored
alongside the files as metadata. The stored provenance in-
formation was complex including also used executables, their
arguments and libraries. This information was stored as a
directed acyclic graph, as the approach avoided the genera-
tion of cycles. Work building upon that [18] tried to identify
the sources of information leaks through “transient prove-
nance”. Other work [13, 24] provided undo operations based
on causal file relationships using kernel instrumentation.

Our system has a different goal and is independent of the
OS and the applications.

Studies on Provenance/Reuse
A study on desktop provenance [17] used application in-
strumentation to identify that “53.7% of all Excel, Power-
Point, Word, PDF and text files . . . were related to at least
one other file”. The relationships were usually established
through “Copy-and-Paste” or “Save as” events. Most rela-
tionship clusters were found to be small. Another study on
reuse [23] identified content reuse in presentations within an
organization. It found Longest Common Substring Distance
to work well for identifying related texts and reported some
partial and many exact copies. Overall reuse was around 10-
20% and the majority of employees preferred starting from
existing work.

These studies show significant reuse and frequent occur-
rence of related documents and therefore motivate our work.

Identification of Content Overlap or Similarity
Different approaches have been proposed to evaluate content
overlap or similarity based on the different usage.

To probabilistically identify similarity between multiple
pieces of high-dimensional data, techniques such as locality-
sensitive hashing [11] can be used. These functions will prob-
abilistically assign similar data to the same bucket.

Different techniques such as Rabin Fingerprints [27] have
been proposed to identify overlaps in binary data. The syn-
chronization tool rsync [39] identifies unmodified file parts
to avoid unnecessary copy operations. To do this efficiently,
rsync computes a fast rolling checksum and a more secure
checksum in case of a match.

To identify text similarity more complex metrics than
longest common subsequence and longest common substring
have been explored. Broder [4] studied how the resemblance
and containment of two documents can be evaluated effi-
ciently. After extracting a fixed-size “sketch” through ran-
dom sampling, sketches can be used to compare documents.
This saves storage and computation time when comparing
many documents. Similarly, other work tried to compute a
document fingerprint [35] to find matches of a certain length.

As we do not claim to provide an optimal implementation,
we have only experimentally tested some of these techniques
while integrating others might increase the performance of
the system.

Secure Deletion
Secure Deletion has been studied in different scenarios and
for different devices [31]. Previous work studied how to se-
curely delete data through overwriting [14] and on flash de-
vices with wear-leveling [32]. Based on the older work on
how to extend such properties [2, 7] recent work has ex-
panded into policy- and cloud-based solutions [5, 33].

These approaches assume that the user knows exactly
what to delete, whereas our approach assists in finding the
data that has to be securely deleted.

8. CONCLUSION
We introduced the concept of assisted deletion of related

content, where the user is presented with files that should
be securely deleted together to protect data confidentiality.
We have demonstrated the feasibility through a user space
prototype and shown that it can analyze complex file types
and use heuristics to identify related data independent of its
binary representation.

In the future we plan to study more user data in order to
differentiate different user types and generate more accurate
results. As the adoption of such systems depends on their
usability, we plan to investigate how to make related content
deletion more user-friendly.
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