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REPRESENTATION OF GAUSSIAN FIELDS IN SERIES WITH

INDEPENDENT COEFFICIENTS

CLAUDE J. GITTELSON

Abstract. The numerical discretization of problems with stochastic data or
stochastic parameters generally involves the introduction of coordinates that
describe the stochastic behavior, such as coefficients in a series expansion or
values at discrete points. The series expansion of a Gaussian field with respect
to any orthonormal basis of its Cameron–Martin space has independent stan-
dard normal coefficients. A standard choice for numerical simulations is the
Karhunen–Loève series, which is based on eigenfunctions of the covariance op-
erator. We suggest an alternative, the hierarchic discrete spectral expansion,
which can be constructed directly from the covariance kernel. The resulting
basis functions are often well localized, and the convergence of the series ex-
pansion seems to be comparable to that of the Karhunen–Loève series. We
provide explicit formulas for particular cases, and general numerical methods
for computing exact representations of such bases. Finally, we relate our ap-
proach to numerical discretizations based on replacing a random field by its
values on a finite set.

Introduction

The numerical discretization of problems with stochastic data or stochastic pa-
rameters requires that the random inputs are approximated by finite quantities.
This is generally done in one of two ways. Either the random data is expanded in
a series, which can be truncated for numerical computations, or it is replaced by a
finite dimensional random variable, describing for example the value of a random
field on a discrete set of points.

A standard approach, falling strictly into the first category, is to expand a ran-
dom field into its Karhunen–Loève series. For Gaussian fields, the coefficients in
this series are independent standard normal random variables.

The independence of these coefficients is crucial to many numerical methods. For
example, in Monte Carlo simulation, coefficient sequences can be generated by in-
dependent draws of pseudorandom numbers. The construction of polynomial chaos
bases as tensor products of orthonormal bases with respect to the distributions of
the coefficients also requires that these are independent. Similarly, in collocation
and quasi Monte Carlo methods, constructions of collocation points make use of
the product structure of the joint distribution of the coefficients.

Nevertheless, the Karhunen–Loève series is often ill-suited for numerical compu-
tations, as it requires eigenfunctions of the covariance operator. These are usually
not known exactly, and are expensive to approximate numerically. Furthermore,
the eigenfunctions generally have global supports.

We suggest an alternative to the Karhunen–Loève series for general continuous
Gaussian fields on bounded domains, which we call the hierarchic discrete spectral
expansion. Assuming that the covariance kernel is given, the basis functions in our
series expansion can be constructed exactly. As these form an orthonormal basis of
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2 C. J. GITTELSON

the Cameron–Martin space, independence of the coefficients in the series expansion
is preserved.

Our method does not assume any particular structure of the covariance kernel or
of the underlying domain. Alternative methods based on the fast Fourier transform
exist for stationary Gaussian fields on discrete rectangular domains, [7, 10].

In Section 1, we provide a brief overview of the theory of Gaussian measures on
Banach spaces, and lay the theoretical foundation for our basis in Proposition 1.9.
We refer to [12, Chapter III] and [1, Chapters 2,3] for further details.

We consider the case of an exponential covariance in one dimension in Section 2.
For this setting, we derive explicit formulas for a sequence of basis functions. In
Section 2.3, we apply our approach to the Wiener measure, giving an alternative
derivation of the well-known piecewise linear construction of Brownian motion.

The numerical construction of a hierarchic sequence of basis functions is dis-
cussed in Section 3. We consider in particular two special cases of our general al-
gorithm. Gram–Schmidt orthogonalization in the Cameron–Martin space is closely
related to the Cholesky decomposition of the covariance matrix. Hierarchic spec-
tral decomposition of the covariance matrix can also be used to exactly construct
an orthonormal basis of the Cameron–Martin space, providing an alternative in-
terpretation to the naive approximation of the Karhunen–Loève series given by
eigenvectors and eigenvalues of the covariance matrix.

Finally, in Section 4, we provide numerical examples of hierarchic discrete spec-
tral bases computed by the two aforementioned special cases of our algorithm for
several covariance kernels. We study in particular the decay of these basis functions.

1. The Cameron–Martin space of a Gaussian distribution

1.1. Gaussian measures on Banach spaces. Let X be a real separable Banach
space with Borel σ-algebra B(X), and let γ be a Gaussian measure on (X,B(X)),
i.e. for all ϕ ∈ X∗, the image measure ϕ(γ) on R is Gaussian. By [1, Thm. 3.2.3],
there is a unique element aγ ∈ X , called the mean of γ, such that

ϕ(aγ) =

∫

X
ϕ(h) γ(dh) ∀ϕ ∈ X∗ . (1)

The covariance operator Rγ is given formally by

〈Rγϕ,ψ〉 =
∫

X
ϕ(h− aγ)ψ(h− aγ) γ(dh) ∀ϕ,ψ ∈ X∗ . (2)

Again by [1, Thm. 3.2.3], (2) defines a unique linear operator Rγ : X∗ → X . We
define

σ(ϕ) :=
√

〈Rγϕ,ϕ〉 , ϕ ∈ X∗ . (3)

Lemma 1.1. The assignment ‖h‖ := σ(ϕ) if h = Rγϕ for ϕ ∈ X∗ defines a norm
on range(Rγ) ⊂ X.

Proof. Let ϕ,ψ ∈ X∗ with Rγϕ = Rγψ. Using the symmetry of 〈Rγ ·, ·〉,

〈Rγϕ,ϕ〉 = 〈Rγψ,ϕ〉 = 〈Rγϕ,ψ〉 = 〈Rγψ,ψ〉 .

Therefore, ‖Rγϕ‖ is well-defined on range(Rγ). It is a norm since it coincides with
‖ϕ(· − aγ)‖L2(γ). !

We define the Cameron–Martin space H(γ) as the completion of range(Rγ) with
respect to the norm from Lemma 1.1. By [1, Thm. 3.2.7],H(γ) is a separable Hilbert
space, and due to [1, Prop. 2.4.6], H(γ) embeds continuously into X . Furthermore,
by [1, Lem. 3.2.2], H(γ) is independent of the space X on which γ is considered.
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Lemma 1.2. For all ϕ ∈ X∗ and all f ∈ H(γ),

(f,Rγϕ)H(γ) = ϕ(f) . (4)

Proof. Let f = Rγψ for ψ ∈ X∗. Then using the parallelogram identity,

(f,Rγϕ)H(γ) = (Rγψ, Rγϕ)H(γ) = 〈Rγψ,ϕ〉 = ϕ(f) .

This extends to all f ∈ H(γ) by density. !

Lemma 1.3. Let ϕ ∈ X∗ and let (ϕn)n∈N ⊂ X∗ be bounded with ϕn(h) → ϕ(h)
for all h ∈ X. Then Rγϕn → Rγϕ in H(γ).

Proof. We assume without loss of generality that ϕ = 0. By definition,

σ(ϕn)
2 = 〈Rγϕn,ϕn〉 =

∫

X
ϕn(h− aγ)

2 γ(dh) ≤ ‖ϕn‖2X∗

∫

X
‖h− aγ‖2X γ(dh) .

The last integral is finite as a consequence of Fernique’s theorem [3], cf. also [1,
Thm. 2.8.5]. Therefore, by dominated convergence, σ(ϕn) → σ(ϕ) = 0, and thus
Rγϕn → 0 in H(γ). !

The conditions of Lemma 1.3 are satisfied e.g. if ϕn ⇀ ϕ since weakly conver-
gent sequences are bounded. Furthermore, the statement of Lemma 1.3 implies in
particular that Rγϕn → Rγϕ in X .

1.2. Orthonormal bases of the Cameron–Martin space. The Gaussian mea-
sure γ on X is uniquely characterized by its mean aγ and its covariance operator
Rγ . The covariance operator, in turn, is determined by the Cameron–Martin space
H(γ). It can be expressed in terms of an orthonormal basis of H(γ).

Proposition 1.4. Let (em)m∈Θ be an orthonormal basis of H(γ). Then

Rγϕ =
∑

m∈Θ

ϕ(em)em ∀ϕ ∈ X∗ (5)

with unconditional convergence in H(γ) and in X. Furthermore,

〈Rγϕ,ψ〉 =
∑

m∈Θ

ϕ(em)ψ(em) ∀ϕ,ψ ∈ X∗ (6)

with unconditional convergence in R.

Proof. Let ϕ ∈ X∗. By Lemma 1.2,

(Rγϕ, em)H(γ) = ϕ(em) ∀m ∈ Θ .

Expanding Rγϕ in the orthonormal basis (em)m∈Θ of H(γ), we have

Rγϕ =
∑

m∈Θ

(Rγϕ, em)H(γ) em =
∑

m∈Θ

ϕ(em)em

with convergence in H(γ), and thus also in X since H(γ) embeds continuously into
X . The convergence is unconditional since all of the above is independent of any
ordering of the basis (em)m∈Θ. In particular, for any ψ ∈ X∗,

〈Rγϕ,ψ〉 = ψ(Rγϕ) = ψ

(

∑

m∈Θ

ϕ(em)em

)

=
∑

m∈Θ

ϕ(em)ψ(em) ,

again with unconditional convergence. !
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An orthonormal basis (em)m∈Θ of H(γ) is useful not only for computing the
covariance Rγ , but also for sampling the distribution γ on X .

We define the product Gaussian measure π on (RΘ,B(RΘ)),

π :=
⊗

m∈Θ

πm , (7)

where each πm is a standard Gaussian measure on (R,B(R)). In principle, π can
be sampled numerically by independent standard Gaussian draws for each index
m ∈ Θ. If, in some sense, these values are of decreasing importance, then the
sequence can be truncated to finitely many random values. Using an orthonormal
basis (em)m∈Θ of H(γ), we parametrize γ by π, allowing γ to be sampled by
mapping a sample of π from RΘ to X . Also, series expansions of the form (8)
are a prerequisite for many stochastic Galerkin and collocation methods.

Theorem 1.5. Let (em)m∈Θ be an orthonormal basis of H(γ). Then the series in

T : RΘ → X , ξ = (ξm)m∈Θ *→ aγ +
∑

m∈Θ

ξmem (8)

converges unconditionally in X for π-a.e. ξ = (ξm)m∈Θ in RΘ, and the distribution
of T is T (π) = γ.

For a proof of Theorem 1.5, we refer to [1, Thm. 3.5.1]; cf. also [5, 6, 8] and [12,
Sec. V.5.5].

Remark 1.6. Theorem 1.5 applies directly to Rγ-Wiener processes. For any or-
thonormal basis (em)m∈Θ of H(γ), let (βm

t )m∈Θ be independent scalar Wiener
processes. Then a Rγ-Wiener processes Wt in X is given by

Wt =
∑

m∈Θ

βm
t em , (9)

with unconditional convergence in X a.s. for all t ≥ 0. Convergence of this series
follows by applying Theorem 1.5 for every t > 0. Equation (9) defines a H(γ)-
Wiener processes since for all t > s,

Wt −Ws =
∑

m∈Θ

(βm
t − βm

s )em =
√
t− s

∑

m∈Θ

ξmem (10)

with independent standard normal (ξm)m∈Θ, and the last sum represents a X-
valued centered Gaussian random variable with covariance Rγ . In particular, if
tn → t, then (10) with s = tn implies that Wt defined by (9) has continuous paths.

Remark 1.7. The series representation (8) also allows conditional simulation of the
distribution γ. For a finite set Θn ⊂ Θ, the distribution of the series

aγ +
∑

m∈Θn

ymem +
∑

m∈Θ\Θn

ξmem (11)

serves as a conditional probability of γ, conditioned on ξm = ym for m ∈ Θn, where
(ξm)m∈Θ\Θn

are independent standard normal random variables, cf. [1, Corol-
lary 3.5.2]. In particular, if γ describes a prior model for a random element of
X and ym are measurements of ξm for m ∈ Θn, then (11) is the resulting posterior
model. This is the foundation for the interpolation techniques known in geostatis-
tics as kriging, cf. e.g. [11, 2].
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1.3. Continuous Gaussian fields. We consider the case X = C (D) for a com-
pact set D ⊂ Rd. Then γ describes a Gaussian field on D that is almost surely
continuous.

For all x ∈ D, the Dirac functional δx(f) := f(x) is in X∗. We define

kx := Rγδx , x ∈ D . (12)

Then the covariance kernel of γ is

k(x, y) := kx(y) = 〈Rγδx, δy〉 , x, y ∈ D . (13)

The function k(·, ·) is symmetric since

k(x, y) = 〈Rγδx, δy〉 = 〈Rγδy, δx〉 = k(y, x) ∀x, y ∈ D . (14)

By the Riesz representation theorem for X = C (D), X∗ can be identified with the
space of signed measures µ on the Borel σ-algebra of D with the total variation
norm. Accordingly, we will use the same symbol, e.g. µ, for the signed measure on
(D,B(D)) and for the element of X∗ given by integration against this measure.

Proposition 1.8. Let µ and ν be signed measures on (D,B(D)). Then

(Rγµ)(x) =

∫

D
kx dµ ∀x ∈ D (15)

and

〈Rγµ, ν〉 =
∫

D

∫

D
k(x, y)µ(dy) ν(dx) . (16)

Proof. For all x ∈ D, by symmetry of 〈Rγ ·, ·〉,

(Rγµ)(x) = 〈Rγµ, δx〉 = 〈Rγδx, µ〉 =
∫

D
kx dµ .

Consequently,

〈Rγµ, ν〉 =
∫

D
(Rγµ)(x) ν(dx) =

∫

D

∫

D
k(x, y)µ(dy) ν(dx) . !

In particular, if µ(dx) = f(x) dx and ν(dx) = g(x) dx for functions f and g in
L1(D), we recover the well-known formula describing the covariance operator Rγ

as integration against k(·, ·),

〈Rγf, g〉 =
∫

D

∫

D
k(x, y)f(y)g(x) dy dx . (17)

Here, f and g are interpreted as the elements of X∗ given by integration against f
and g, respectively.

Proposition 1.9. Let (pi)i∈Λ be a dense subset of D. Then the linear span of
(kpi)i∈Λ is dense in H(γ).

Proof. Let f ∈ H(γ) be orthogonal to kpi for all i ∈ Λ. Lemma 1.2 implies

f(pi) = δpi(f) = (f,Rγδpi)H(γ) = (f, kpi)H(γ) = 0 ∀i ∈ Λ .

Since (pi)i∈Λ is dense in D by assumption, and f is continuous due to H(γ) ⊂ X =
C (D), it follows that f = 0. !

Remark 1.10. Proposition 1.9 suggests a construction for an orthonormal basis of
H(γ). Given a dense sequence (pi)i∈N in D, we can apply Gram–Schmidt orthog-
onalization to (kpi)i∈N. This is explored in Section 3.2. Note that by Lemma 1.2,
f ∈ H(γ) is orthogonal to kx for an x ∈ D if and only if f(x) = 0 since

(f, kx)H(γ) = (f,Rγδx)H(γ) = δx(f) = f(x) .

Therefore, constructing an orthonormal basis of H(γ) can reduce to finding func-
tions in the span of (kpi)

n
i=1 with certain zeros.
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For any sequence p = (pi)i∈Λ in D, let K denote the covariance matrix of the
functionals (δpi)i∈Λ, i.e.

K =
[〈

Rγδpi , δpj

〉]

i,j∈Λ
= [k(pi, pj)]i,j∈Λ . (18)

For a finitely supported vector a = (ai)i∈Λ ∈ Rn, we define the functional

aδppp :=
∑

i∈Λ

aiδpi ∈ C (D) ∗ (19)

and the function

akppp := Rγaδppp =
∑

i∈Λ

aikpi ∈ H(γ) ⊂ C (D) . (20)

Note that no convergence issues emerge since by assumption, ai = 0 for all but
finitely many i ∈ Λ. Then, using Lemma 1.2, for all finitely supported a and b in
RΛ,

(akppp, bkppp)H(γ) = 〈Rγaδppp, bδppp〉 = a#Kb . (21)

Therefore, orthogonality of the functions akppp and bkppp in H(γ), which is equivalent
to the functionals aδppp and bδppp being uncorrelated, is characterized by orthogonality
of the vectors a and b with respect to K.

Corollary 1.11. Let p = (pi)i∈Λ be a sequence in D, and let (am)m∈Θ ⊂ RΛ such
that am is finitely supported for all m ∈ Θ and

(am)#Kam′

= δmm′ ∀m,m′ ∈ Θ . (22)

Then (amkppp)m∈Θ is an orthonormal system in H(γ). If p is dense in D and for all
i ∈ Λ, kpi is in the span of (amkppp)m∈Θ in H(γ), then (amkppp)m∈Θ is an orthonormal
basis of H(γ).

Proof. Orthonormality of (amkppp)m∈Θ follows from (22) due to (21). Density is a
consequence of Proposition 1.9. !

Remark 1.12. The assumption that coefficient vectors are finitely supported can
be weakened to a more general summability condition. In the interest of a concise
presentation, and since all numerically representable coefficient vectors are finitely
supported, we consider only this setting.

2. Examples

2.1. Exponential covariance in one dimension. Let I ⊂ R be a compact in-
terval. We consider a Gaussian measure γ on C (I) with an exponential covariance
kernel

k(x, y) = σ2 e−|x−y|/λ , x, y ∈ I , (23)

for constants σ > 0 and λ > 0.
We define a hierarchic sequence of grids on I. For all . ∈ N, let ∆% ⊂ I be a

finite set with ∆% ∩∆%′ = ∅ if . .= .′. We define the unions

Λ% :=
%
⊔

j=1

∆j and p := Λ :=
∞
⊔

%=1

∆% =
∞
⋃

%=1

Λ% . (24)

Then n% := #Λ% < ∞. For all . ∈ N, we enumerate the elements of Λ% in increasing
order,

Λ% =
{

p%1, . . . , p
%
n!

}

, p%i < p%i+1 . (25)

We assume that new nodes on each level are never adjacent in the ordering (25).

Assumption 2.A. For all . ∈ N, if p%i , p
%
j ∈ ∆% and i .= j, then |i− j| ≥ 2.
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Assumption 2.A implies in particular

n1 ≤ 1 and n%+1 ≤ 2n% + 1 ∀. ∈ N . (26)

It is always satisfied if #∆% = 1 for all . ∈ N.
To each p ∈ Λ, we associate a function apkppp in H(γ) with ap ∈ RΛ finitely

supported. Let . ∈ N and p ∈ ∆% such that p = p%i in the ordering (25). We define
the coefficient vector ap by allowing apq to be different from zero only if q is adjacent
to p in Λ%, and requiring that apkppp is zero at all such adjacent nodes q. Finally, we
normalize the coefficients such that apkppp has unit norm in H(γ).

If i is different from 1 and n%, i.e. if p is an interior point of Λ%, this results
in a 3 × 3 linear system with the following solution. For h+ := (p%i+1 − p%i)/λ and
h− := (p%i − p%i−1)/λ, let

ã0 :=
e2h−+2h+ −1

(e2h− −1)(e2h+ −1)
, ã−1 :=

− eh−

e2h− −1
, ã1 :=

− eh+

e2h+ −1
, (27)

and define ap = (apq)q∈Λ by

ap
p!
j

:=
ãj−i

σ
√
ã0

, j ∈ {i− 1, i, i+ 1} , (28)

and apq := 0 for all other q ∈ Λ.
If p is a boundary point of Λ% and n% ≥ 2, the above conditions lead to a 2× 2

linear system. If i = 1, then h := (p%2 − p%1)/λ and

ã0 := 1 , ã1 := − e−h and ap
p!
j

:=
ãj−1

σ
√
1− e−2h

. (29)

Similarly, if i = n%, we set h := (p%n!
− p%n!−1)/λ and

ã0 := 1 , ã−1 := − e−h and ap
p!
j

:=
ãj−n!

σ
√
1− e−2h

. (30)

In both cases, apq := 0 for all other q ∈ Λ. Finally, if p is the only element of Λ%,
then

ã0 := 1 and app :=
1

σ
, (31)

and apq := 0 for all q .= p. Some basis functions are plotted in Figure 2.1.

0 0.25 0.5 0.75 1
0

0

0

0

0

(a) λ = 1/2

0 0.25 0.5 0.75 1
0

0

0

0

0

(b) λ = 1/8

Figure 2.1. the first few functions apkppp on I = [0, 1], constructed
on dyadic grids (circles)
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Proposition 2.1. Let . ∈ N with n% ≥ 2. Then for all p = p%i ∈ ∆%, the support of
apkppp in I is

suppapkppp = [p%i−1, p
%
i+1] , (32)

where we set p%0 := min(I) and p%n!+1 := max(I).

Proof. We first consider an interior point p = p%i of Λ%. Any x ≥ p%i+1 is of the form
x = p%i + tλ for a t ≥ h+ = (p%i+1 − p%i)/λ. Then using the notation from (27), for a
c > 0,

c(apkppp)(x) = ã−1 e
−(t+h−) +ã0 e

−t +ã1 e
−(t−h+)

=
− e−t

e2h− −1
+

e2h−+2h+ −1

(e2h− −1)(e2h+ −1)
+

− e−t e2h+

e2h+ −1

=
e−t(− e2h+ +1+ e2h−+2h+ −1− e2h−+2h+ +e2h+)

(e2h− −1)(e2h+ −1)
= 0 .

This implies apkppp(x) = 0 for all x ≥ p%i+1. By symmetry, also apkppp(x) = 0 for all
x ≤ p%i−1.

Similar, but shorter, computations lead to the same result for boundary points.
Let p = p%1. Any x ≥ p%2 has the form x = p%i + tλ for a t ≥ h = (p%2 − p%1)/λ. Then
using the notation from (29), for a c > 0,

c(apkppp)(x) = ã0 e
−t +ã1 e

−(t−h) = e−t − e−h e−t+h = 0 .

This implies apkppp(x) = 0 for all x ≥ p%2. By symmetry, if i = n%, then apkppp(x) = 0
for all x ≤ p%n!−1. !

Lemma 2.2. For all p ∈ Λ and all x ∈ I,

0 ≤ (apkppp)(x) ≤ (apkppp)(p) =
1

app
. (33)

In particular, the maximal value of apkppp has the following form. If p ∈ ∆% is an
interior node of Λ%, then

(apkppp)(p) = σ

√

(e2h− −1)(e2h+ −1)

e2h−+2h+ −1
(34)

with h− and h+ as above. If p is a boundary node of Λ% with n% ≥ 2, then

(apkppp)(p) = σ
√

1− e−2h (35)

with h as above, and if n% = 1, then (apkppp)(p) = σ.

Proof. We first compute (apkppp)(p). Let p ∈ ∆% be an interior node of Λ%. Then

(apkppp)(p) =
1

σ
√
ã0

(ã−1σ
2 e−h− +ã0σ

2 + ã1σ
2 e−h+)

= σ

√

(e2h− −1)(e2h+ −1)

e2h−+2h+ −1
.

If p ∈ ∆% is a boundary node of Λ% with n% ≥ 2,

(apkppp)(p) =
1

σ
√
1− e−2h

σ2 −
e−h

σ
√
1− e−2h

σ2 e−h = σ
√

1− e−2h .

Finally, if n% = 1, then apkppp = σ−1kp, and therefore (apkppp)(p) = σ.
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To prove (33), we show that the derivative of apkppp is monotonic between elements
of Λ%. It suffices to show this on the interval (p%i , p

%
i+1) if p = p%i . For interior nodes,

this is a consequence of

d

dt

(

ã−1 e
−(t+h−)+ã0 e

−t +ã1 e
−(h+−t)

)

= −ã−1 e
−t−h− −ã0 e

−t +ã1 e
t−h+

=
− e−t(e2h+ +e2t)

e2h+ −1
≤ 0

for all 0 < t < h+. If i = 1, we consider

d

dt

(

ã0 e
−t +ã1 e

−(h−t)
)

= −(e−t +e−2h+t) ≤ 0 ,

for all 0 < t < h, and if i = n%, we have

d

dt

(

ã−1 e
−(t+h) +ã0 e

−t
)

= − e−t(1− e−2h) ≤ 0 ,

for all t > 0. !

Theorem 2.3. The functions (apkppp)p∈Λ form an orthonormal system in H(γ). If
Λ is dense in I, then (apkppp)p∈Λ is an orthonormal basis of H(γ).

Proof. Let p = p%i ∈ ∆% and q ∈ Λ% \ {p}. By Lemma 1.2 and Proposition 2.1,

(apkppp, kq)H(γ) = δq(a
pkppp) = (apkppp)(q) = 0

since q is not in the interior of the support of apkppp.
Let p%j ∈ Λ% \ {p}. If |i− j| ≥ 2, then aqkppp is a linear combination of kq for

q ∈ Λ%\{p}, and therefore (apkppp,aqkppp)H(γ) = 0. By Assumption 2.A, if |i− j| ≥ 2,

then p%j ∈ Λ% \∆%, i.e. p%j ∈ ∆%′ for some .′ ≤ .− 1. Consequently, aqkppp is a linear
combination of kq for q ∈ Λ%′ , and thus again (apkppp,aqkppp)H(γ) = 0. Therefore, the

functions (apkppp)p∈Λ are mutually orthogonal in H(γ).
Using Lemma 2.2 and the orthogonality of aqkppp to kq for all q ∈ Λ% \ {p},

‖aqkppp‖2H(γ) =
(

aqkppp, a
p
pkp

)

H(γ)
= appδp(a

qkppp) = 1 .

This shows that the functions (apkppp)p∈Λ are normalized in H(γ).
Proposition 1.9 implies that if Λ is dense in I, then (kp)p∈Λ is dense in H(γ). For

every ., (apkppp)p∈Λ!
are n% linearly independent elements of the span of (kq)q∈Λ!

.
Consequently, for all q ∈ Λ%, kq is a linear combination of (apkppp)p∈Λ!

. !

2.2. Decay of basis elements.

Proposition 2.4. For all p ∈ Λ, if p ∈ ∆% is an interior node of Λ%, then

‖apkppp‖C (I) ≤ σmin

(

eh−+h+

√

2h−h+

h− + h+
, 1

)

(36)

with h− and h+ as above. If p is a boundary node and n% ≥ 2, then

‖apkppp‖C (I) ≤ σ
√

min(2h, 1) (37)

with h as above. If n% = 1, then ‖apkppp‖C (I) = σ.

Proof. We use the elementary estimates

1− e−t ≤ t ≤ et −1 ≤ t et ∀t ≥ 0 .

By Lemma 2.2, the maximum of apkppp is attained at p and is equal to 1/app. The
first part of (36) follows from (34) and

(e2h− −1)(e2h+ −1)

e2h−+2h+ −1
≤

(2h− e2h−)(2h+ e2h+)

2h− + 2h+
= e2h−+2h+

2h−h+

h− + h+
.
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For boundary nodes, (37) is a consequence of (35) and
√

1− e−2h ≤
√

min(2h, 1) .

For the case n% = 1, the claim is shown in Lemma 2.2.
It remains to be shown that (34) is bounded by σ. To this end, we compute the

derivative
d

dh−

(e2h− −1)(e2h+ −1)

e2h−+2h+ −1
=

2 e2h−(e2h+ −1)2

(e2h−+2h+ −1)2
≥ 0 ,

and similarly with h+ and h− switched. Let h := h− + h+ and ϑ := h−/h. Then
by monotonicity, for any fixed ϑ ∈ (0, 1),

sup
h→∞

(e2ϑh −1)(e2(1−ϑ)h −1)

e2h −1
= lim

h→∞

(e2ϑh −1)(e2(1−ϑ)h −1)

e2h −1

= lim
h→∞

2ϑ(1− e−2(1−ϑ)h) + 2(1− ϑ)(1− e−2ϑh) = 1 ,

which concludes the proof. !

Proposition 2.5. For all p ∈ Λ, if p ∈ ∆% is an interior node of Λ%, then

‖apkppp‖L2(I) ≤ σmin
(

eh−+h+

√

2h−h+,
√

h− + h+

)

(38)

with h− and h+ as above. If p is a boundary node and n% ≥ 2, then

‖apkppp‖L2(I) ≤ σ
√

min(2h, 1)(h+ h∂) , (39)

with h as above and h∂ := (p −min(I))/λ if p = p%1 and h∂ := (max(I) − p)/λ if
p = p%n!

. If n% = 1, then

‖apkppp‖L2(I) ≤ σ
√

|I| . (40)

Proof. The claim follows from Proposition 2.1 and Proposition 2.4 using the esti-
mate

‖apkppp‖L2(I) ≤
√

|suppapkppp| ‖apkppp‖C (I) . !

For small correlation lengths λ, i.e. large values of h, h−, h+ and h∂ , the estimate
in Proposition 2.5 is quite crude, but sufficient for our purposes.

Example 2.6. Let I := [0, 1], Λ0 := {1/2} and ∆% := {i2−% ; i = 0, 1, . . . , 2%} for all
. ≥ 1, as in Figure 2.1. Then for all . ∈ N and all p ∈ ∆%, h = h− = h+ = 2−%, and
h∂ = 0. In particular, Propositions 2.4 and 2.5 imply

‖apkppp‖C (I) ≤ Cσ
1

√
n%

and ‖apkppp‖L2(I) ≤ Cσ
1

n%
∀p ∈ ∆% . (41)

Thus the convergence rate in L2(I) of (8) and (9) coincides with that of the
Karhunen–Loève series. At any given point x ∈ [0, 1], since only at most two
basis functions per level are nonzero, the convergence of the series is exponential if
all other basis functions are disregarded.

2.3. The Wiener measure. The same approach as in Section 2.1 can be used
to construct an orthonormal basis of the Cameron–Martin space of the Wiener
measure. Let I = [0, 1] and

k(x, y) := min(x, y) , x, y ∈ I . (42)

Furthermore, let Λ% = {p%1, . . . , p%n!
}, Λ% ↑ Λ =: p, be a hierarchic sequence of grids

satisfying Assumption 2.A, and not containing 0.
Proceeding as in the case of an exponential covariance kernel, we construct for

each p ∈ Λ a function apkppp that is a linear combination of kq for at most three
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q ∈ Λ. Since kq is piecewise linear for all q ∈ Λ, the orthogonality conditions on
apkppp imply that apkppp is a multiple of a hat function.

For each p ∈ Λ, we define a hat function ζp as follows. For p ∈ ∆%, ζp is
the piecewise linear function on I subordinate to the nodes Λ% ∪ {0, 1} such that
ζp(q) = δpq for all q ∈ Λ%, ζp(0) = 0 and ζp(1) = ζp(p%n!

).

Proposition 2.7. For all p ∈ Λ,

apkppp =
1

app
ζp . (43)

Proof. We consider the case p = p%i ∈ ∆% with 2 ≤ i ≤ n%−1. The case of boundary
points is similar. Then, since apkppp is piecewise linear, the condition

0 = (apkppp, kq)H(γ) = (apkppp)(q)

for q = p%i±1 implies that apkppp is a multiple of ζp. The third defining condition,

1 = ‖apkppp‖2H(γ) =
(

apkppp, a
p
pkp

)

H(γ)
= app(a

pkppp)(p)

leads to the claim. !

The values of app can be determined by explicitly solving the linear system defin-

ing ap. Let p = p%i ∈ ∆%. If i = n% = 1, then

app =
1
√
p
. (44)

If n% ≥ 2 and i = 1, for h := p%2 − p%1,

app =

√

p+ h

ph
, (45)

whereas if i = n%, for h := p%n!
− p%n!−1,

app =
1√
h
. (46)

For interior points, i.e. if 2 ≤ i ≤ n% − 1,

app =

√

h− + h+

h−h+
, (47)

for h− := p%i − p%i−1 and h+ := p%i+1 − p%i .
This method provides an alternative derivation of the well-known piecewise linear

basis for Brownian motion due to Lévy and Ciesielski, which is more commonly
derived by integrating L2([0, 1])-orthonormal Haar wavelets.

The statements of Proposition 2.1 and Lemma 2.2 for the Wiener measure are
a direct consequence of Proposition 2.7. In particular, Theorem 2.3 applies, as
the proof requires only these two statements and is not specific to exponential
covariances. Bounds similar to those given in Section 2.2 also hold in the case of
the Wiener measure, and follow from Proposition 2.7 and the above values of app.

3. Numerical construction of hierarchic bases

3.1. A general algorithm. Let (em)m∈Θ0
be an orthonormal system in H(γ) for

a finite, possible empty, set Θ0. We wish to determine a finite sequence (em)m∈Θ1

in H(γ) such that (em)m∈Θ0∪Θ1
is an orthonormal system in H(γ).

Let p := (pi)i∈Λ be a sequence in D. We assume that, for a finite set Λ0 ⊂ Λ,
em is in the span of (kpi)i∈Λ0

for all m ∈ Θ0, and allow em to be in the span of
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(kpi)i∈Λ0∪Λ1
for a second finite set Λ1 ⊂ Λ. The coefficients of (em)m∈Θ0

with
respect to (kpi)i∈Λ0

can be stored as the columns of a matrix,

A0 := [am]m∈Θ0
, em =

∑

i∈Λ0

ami kpi , m ∈ Θ0 . (48)

We also consider the covariance matrix of (em)m∈Θ0
and (kpi)i∈Λ0

,

F 0 :=
[

(kpi , em)H(γ)

]

m∈Θ0,i∈Λ0

= [em(pi)]m∈Θ0,i∈Λ0
, (49)

where m indexes the rows and i the columns of F 0. Although this matrix is not
required in order to augment the orthonormal system (em)m∈Θ0

, it is computed as
a byproduct of our algorithm.

AugmentBasis[k,p,Λ0,Λ1,A0,F 0] *→ [A,F ]

K0 ←− [k(pi, pj)]i∈Λ0,j∈Λ1

K1 ←− [k(pi, pj)]i,j∈Λ1

C ←− A#
0 K0

[V ,D] ←− eigε(K1 −C#C)
B ←− V D

−1/2

A ←−
(

A0 −A0CB
0 B

)

F ←−
(

F 0 C

0 D
1/2V #

)

In AugmentBasis, eigε with ε ≥ 0 is a function that computes some nonzero
eigenpairs of a matrix. We assume that the largest eigenvalue not computed by
eigε has magnitude less than or equal to ε.

Remark 3.1. If Λ0 ∩ Λ1 .= ∅, then the matrices A and F constructed by the algo-
rithm AugmentBasis do not have the block structure indicated in the formulation
of the algorithm. Rather, the rows ofA corresponding to the same index i ∈ Λ0∩Λ1

are assumed to be summed. In F , the new value of a column corresponding to
i ∈ Λ0 ∩ Λ1 overwrites the old value.

Proposition 3.2. Let A0 and F 0 be as in (48) and (49) for an orthonormal
system (em)m∈Θ0

in H(γ). Let the set Θ index the columns of A generated by
AugmentBasis, and Θ1 := Θ \Θ0. For all m ∈ Θ, let

em :=
∑

i∈Λ0∪Λ1

ami kpi , (50)

where am := (ami ) is the m-th column of A. Then the sequence (em)m∈Θ is an or-
thonormal system in H(γ). For all m ∈ Θ0, (50) coincides with (48). Furthermore,
for all m ∈ Θ, the m-th row of F is the vector (em(pi))i∈Λ0∪Λ1

. In particular, if
m ∈ Θ1 and i ∈ Λ0 \ Λ1, then em(pi) = 0.

Proof. We can assume without loss of generality that Λ0 ∩ Λ1 = ∅ since pi = pj
is possible for i .= j. Identifying such indices leads to the compression described in
Remark 3.1.

By definition of A and (48), the columns of

E :=

(

I −CB
0 B

)
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represent (em)m∈Θ with respect to (em)m∈Θ0
∪ (kpi)i∈Λ1

. Furthermore, the covari-
ance matrix of (em)m∈Θ0

∪ (kpi)i∈Λ1
is

L :=

(

I A#
0 K0

(A#
0 K0)# K1

)

=

(

I C
C# K1

)

.

Thus the covariance matrix of (em)m∈Θ is

E#LE =

(

I 0

−B#C# B#

)(

I C
C# K1

)(

I −CB
0 B

)

=

(

I 0

0 B#(K1 −C#C)B

)

.

By definition of B,

B#(K1 −C#C)B = I .

Therefore, (em)m∈Θ is an orthonormal system in H(γ), cf. Corollary 1.11.
Finally, we have

FA =

(

F 0A0 −F 0A0CB +CB

0 D
1/2V #B

)

= I ,

since F 0A0 = I by orthonormality of (em)m∈Θ0
in H(γ). Therefore, FA is the

matrix representation of

h =
∑

m∈Θ

(h, em)H(γ) em ∀h ∈ span(em)m∈Θ

in the basis (kpi)i∈Λ0∪Λ1
. This implies that the m-th row of F is the vector

((kpi , em)H(γ))i∈Λ0∪Λ1
, and the claim follows using Lemma 1.2. !

Remark 3.3. Let (pi)i∈Λ be a finite sequence in D such that (kpi)i∈Λ are linearly
independent, and let

K :=
[〈

Rγδpi , δpj

〉]

i,j∈Λ
= [k(pi, pj)]i,j∈Λ =

[

(

kpi , kpj

)

H(γ)

]

i,j∈Λ
(51)

be the covariance matrix of (δpi)i∈Λ. Then K is symmetric positive definite, and
thus allows a factorization of the form

K = F#F (52)

with a regular matrix F . Defining A := F−1, we have

A#KA = A#F#FA = I ,

and by Theorem 1.11, the columns of A are the coefficients with respect to (kpi)i∈Λ

of an orthonormal system in H(γ). Since A is square, this orthonormal system is
an orthonormal basis of the linear span of (kpi )i∈Λ in H(γ). Generalizing to rank
deficient K, we assume F to have full row rank, and define A as the right inverse
of F . The routine AugmentBasis with ε = 0 hierarchically constructs such F and
A. With positive ε, it adds a compression of the covariance matrix, and (52) only
holds approximately.

We consider the following hierarchically constructed (em)m∈Θ ⊂ H(γ). Let
p = (pi)i∈Λ be a sequence inD, and let (em)m∈Θ0

be an arbitrary finite orthonormal
system in H(γ) in the linear hull of (kpi)i∈Λ0

for a finite set Λ0 ⊂ Λ. For all . ∈ N,
let Λ% ⊂ Λ be a finite set, and let (em)m∈Θ!

be the sequence in H(γ) constructed
by applying AugmentBasis to (em)m∈Θ!′ ,%

′≤%−1 as in Proposition 3.2 with ε = ε%.
We define Θ :=

⋃

%∈N0
Θ%.
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For all . ∈ N0, let P% be the orthonormal projection in H(γ) onto the span of
em for m ∈ Θ%′ with .′ ≤ .. It has the form

P%h =
%

∑

%′=0

∑

m∈Θ!′

(h, em)H(γ) em , h ∈ H(γ) . (53)

For all . ∈ N0, let

K% := K|Λ!×Λ!
=

[

(

kpi , kpj

)

H(γ)

]

i,j∈Λ!

(54)

be the submatrix of K from (51) on the index set Λ%. Using P%, we define the
approximation

K̃% :=
[

(

P%kpi , P%kpj

)

H(γ)

]

i,j∈Λ!

(55)

to K%. Note that

[

K̃%

]

ij
=

(

kpi , kpj

)

H(γ)
=

%
∑

%′=0

∑

m∈Θ!′

em(pi)em(pj) , (56)

so K̃% is computable directly from em for m ∈ Θ%′ , .′ ≤ ..

Lemma 3.4. Using the notation from AugmentBasis,

K̃1 = (F#F )|Λ1×Λ1
= C#C + V DV # . (57)

Proof. By Proposition 3.2 and (53),

F#F =

[

∑

m∈Θ0∪Θ1

(kpi , em)H(γ)

(

kpj , em
)

H(γ)

]

i,j

=
[

(

P1kpi , P1kpj

)

H(γ)

]

i,j
,

where i, j ∈ Λ0 ∪ Λ1. We compute

F#F =

(

F#
0 0

C# V D
1/2

)(

F 0 C

0 D
1/2V #

)

=

(

F#
0 F 0 F#

0 C

C#F 0 C#C + V DV #

)

.

Therefore, for all i, j ∈ Λ1, [K̃1]ij = [F#F ]ij = [C#C + V DV #]ij . !

Proposition 3.5. For all . ∈ N and all b, c ∈ RΛ! ⊂ RΛ,
∣

∣

∣
〈Rγbδppp, cδppp〉 − b#K̃%c

∣

∣

∣
≤ ε% ‖b‖%2 ‖c‖%2 . (58)

Proof. We assume without loss of generality that . = 1. By (20),

〈Rγbδppp, cδppp〉 = b#K1c .

Therefore, using Lemma 3.4 and the definition of ε%,
∣

∣

∣
〈Rγbδppp, cδppp〉 − b#K̃1c

∣

∣

∣
=

∣

∣b#(K1 −C#C − V DV #)c
∣

∣ ≤ ε% ‖b‖%2 ‖c‖%2 . !

Corollary 3.6. For all . ∈ N and all i, j ∈ Λ%,
∣

∣

∣
k(pi, pj)−

(

P%kpi , P%kpj

)

H(γ)

∣

∣

∣
≤ ε% . (59)

Proof. The claim follows from Proposition 3.5 and (13). !

Corollary 3.7. For all . ∈ N and all i ∈ Λ%,

‖kpi − P%kpi‖H(γ) ≤
√
ε% , (60)

Proof. Using orthogonality of the projection P% and Corollary 3.6 with j = i,

‖kpi − P%kpi‖
2
H(γ) = ‖kpi‖

2
H(γ) − ‖P%kpi‖

2
H(γ) ≤ ε% . !
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Theorem 3.8. If p = (pi)i∈Λ is dense in D,
⋃

%∈N0
Λ% = Λ and ε% → 0 as . → ∞,

then (em)m∈Θ is an orthonormal basis of H(γ).

Proof. Orthonormality of (em)m∈Θ follows from Proposition 3.2. To prove density,
it suffices by Proposition 1.9 to show that kx is in the span of (em)m∈Θ for all
x ∈ D.

Let x ∈ D. Then there is a sequence (in)n∈N in Λ such that xn := pin → x and
in .= in′ if n .= n′. Since ‖δxn‖C (D)∗ = 1 for all n, Lemma 1.3 implies kxn → kx in
H(γ). For all n ∈ N, let .n ∈ N0 with in ∈ Λ%n . Then .n → ∞ since Λ% is finite for
all . ∈ N0. Due to Corollary 3.7, P%nkxn → kx by the assumption ε% → 0. !

3.2. Gram–Schmidt orthogonalization in the Cameron–Martin space. We
consider AugmentBasis with ε = 0 for Λ1 = {j}, where j is assumed to be
an element of Λ \ Λ0. In this case, AugmentBasis reduces to Gram–Schmidt
orthogonalization in the Cameron–Martin space, and can be found in [9, Chapter
9]. An explicit formulation is given in GramSchmidtStep.

GramSchmidtStep[k,p,Λ0, j,A0,F 0] *→ [A,F ]

k0 ←− [k(pi, pj)]i∈Λ0

c ←− A#
0 k0 ; // i.e. ci = ei(pj) =

(

ei, kpj

)

H(γ)

d ←− k(pj , pj)− c#c ; // i.e. d = k(pj , pj)−
∑

i∈Λ0
ei(pj)2

if d = 0 then

A ←−
(

A0

0

)

F ←−
(

F 0 c
)

else // i.e. d > 0
s ←−

√
d

A ←−
(

A0 −s−1A0c
0 s−1

)

F ←−
(

F 0 c
0 s

)

end

Remark 3.9. Let (pi)ni=1 ⊂ D such that (kpi)
n
i=1 are linearly independent, and let

(ei)ni=1 be constructed by recursive application of GramSchmidtStep. Further-
more, let K be the covariance matrix of (δpi)

n
i=1, and let F be the last output of

GramSchmidtStep. By Proposition 3.2,

F#F =

[

n
∑

m=1

(kpi , em)H(γ)

(

kpj , em
)

H(γ)

]n

i,j=1

=
[

(

kpi , kpj

)

H(γ)

]n

i,j=1
= K .

Furthermore, it follows by induction that F is an upper triangular matrix with
positive diagonal entries. Therefore, F is the right Cholesky factor of K.

Remark 3.10. The basis functions (em)m∈N can be characterized independently of
each other. For a fixed sequence (pi)i∈N in D, em is in the span of (kpi)

m
i=1 and

orthogonal to kpi for all i ≤ m− 1. This defines em uniquely up to a scalar factor,
which is determined by normalization in H(γ).

3.3. Hierarchic spectral decomposition of the covariance matrix. As a sec-
ond particular case of AugmentBasis, we assume that the sets Λ% are nested,

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λ% ⊂ Λ%+1 ⊂ · · · ⊂ Λ , (61)
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and, in view of Theorem 3.8,

Λ =
∞
⋃

%=0

Λ% , (62)

i.e. Λ% ↑ Λ. For example, (pi)i∈Λ!
could be the nodes of nested grids of D. In this

setting, Proposition 3.5 applies to all nodes pi visited up to level . for any . ∈ N.
The routineAugmentBasis is customized to (61) inAugmentSpectralBasis.

In particular, AugmentSpectralBasis takes into account Remark 3.1.

AugmentSpectralBasis[k,p,Λ0,Λ1,A0] *→ [A,F ]

K ←− [k(pi, pj)]i,j∈Λ1

K0 ←− K|Λ0×Λ1

C ←− A#
0 K0

[V ,D] ←− eigε(K −C#C)

B =

(

B0

B1

)

←− V D
−1/2 ; // B0 = B|Λ0×Λ1

and B1 = B|(Λ1\Λ0)×Λ1

A ←−
(

A0 B0 −A0CB
0 B1

)

F ←−
(

C

D
1/2V #

)

Remark 3.11. A common but seemingly naive approximation to the Karhunen–
Loève series consists of computing some or all eigenpairs of the covariance matrixK,
e.g. on the vertices of a finite element mesh, in place of more precise representations
of eigenfunctions of the covariance operator. Let p = (pi)i∈Λ be a finite sequence
in D. Then this procedure is similar to AugmentSpectralBasis with Λ0 = ∅

and Λ1 = Λ. However, we provide a different interpretation. Instead of being
approximations to the eigenfunctions of the covariance operator, the eigenvectors
of the covariance matrix define an orthonormal system in H(γ) in their own right,

em := λ
−1/2
m

∑

i∈Λ

vmi kpi , (63)

where vm = (vmi )i∈Λ is a normalized eigenvector of K with eigenvalue λm. Thus
the functions em are defined on all of D, not just at the discrete points (pi)i∈Λ.
This decouples their construction from any other discretization of D, such as a
finite element mesh.

4. Numerical examples

4.1. Exponential kernels. We consider covariance kernels of the form

k(x, y) := e−|x−y|α/λα

, x, y ∈ [0, 1]d , (64)

with parameters α ∈ [1, 2) and λ > 0, on the d-dimensional unit hypercube D :=
[0, 1]d. We assume throughout that λ = 1/4.

Figures 4.1 and 4.2 show a few basis functions generated by the Gram–Schmidt
method from Section 3.2 and the hierarchic spectral method from Section 3.3 in one
dimension, with α = 1 and α = 1.5, respectively. The sets (pi)i∈Λ!

are hierarchic
dyadic grids,

(pi)i∈Λ!
=

{

i2−% ; i = 0, 1, . . . , 2%
}

. (65)

The new points on each level are marked in the plots by circles. The Gram–
Schmidt method adds the points from left to right. The functions generated by
Gram–Schmidt for α = 1, shown in Figure 4.1a, coincide with those derived in
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Section 2.1. In particular, by Proposition 2.1, they have compact support. This
is not the case for the functions generated by the hierarchic spectral method, cf.
Figure 4.1b. For α = 1.5, though the basis functions generated by both methods
have global support, those generated by Gram–Schmidt appear to be more localized
in Figure 4.2.
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Figure 4.1. the first few functions for α = 1
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Figure 4.2. the first few functions for α = 1.5

In higher dimensions, the dyadic grids are given by

(pi)i∈Λ!
=

{

i2−% ; i ∈ {0, 1, . . . , 2%}d
}

, (66)

and the Gram–Schmidt method adds points in lexicographic order.
The decay of the C (D) and L2(D) norms of the basis functions generated by

Gram–Schmidt and the hierarchic spectral method for α = 1 are plotted in Figures
4.3, 4.4 and 4.5, for one, two and three dimensions, respectively. Figure 4.6 shows
the same for α = 1.5 and d = 1. The decay is compared to that of the spectral
basis computed directly on the finest level. For the hierarchic spectral method,
tolerances ε% = 0 and ε% = 5 · 2−α% are used. In the latter case, the hierarchic
spectral method generates fewer basis functions than the other methods.

In each case, the rate of decay in the L2(D)-norm is the same for all basis
functions considered. It is approximately

‖em‖L2(D) ∼ m−α . (67)
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A staircase effect is apparent, in particular for the Gram–Schmidt method. This is
due to the uneven spacing of points between levels of the hierarchic dyadic grids.
Within each level, the relative position of a node to all previous nodes is very
similar for all nodes. Between levels, the distances scale by a factor of two. In
two and three dimensions, the functions constructed by the hierarchic spectral
method display jumps in the opposite direction between levels. At these points,
the covariance matrix is refined, and the subsequent basis functions correspond to
eigenvectors with large eigenvalues of the difference between the coarse and fine
covariance matrices.

The rate of decay in C (D) coincides with that in L2(D) for the hierarchic spectral
method. However, the decay of the functions generated by the Gram–Schmidt
method is slower in C (D) than in L2(D). For α = 1 and d = 1, this is shown in
Example 2.6.
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Figure 4.3. decay of the basis functions for α = 1 and d = 1
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Figure 4.4. decay of the basis functions for α = 1 and d = 2

The slower decay in C (D) seems to be the cost for the better localization in space
of the basis functions generated by the Gram–Schmidt method. For α = 1 and d =
1, these functions have compact support, and the size of the support decreases at
the rate m−1. In other cases, though their supports are not compact, the functions
generated by Gram–Schmidt are still almost local. Figure 4.7 illustrates the decay
of basis functions generated by the Gram–Schmidt method for α = 1.5 and d = 1.
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Figure 4.5. decay of the basis functions for α = 1 and d = 3
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Figure 4.6. decay of the basis functions for α = 1.5 and d = 1

Figure 4.7a shows the measures of level sets
{

x ∈ D ; |em(x)| ≥ εmax
y∈D

|em(y)|
}

(68)

for four different values of ε. At least for larger values of ε, the measure of these
level sets decreases approximately as m−1. Figure 4.7b plots some basis functions
in logarithmic scale. Apparently, at higher levels of the hierarchic dyadic grids,
there is a fast initial decay, followed by decay comparable to that of the kernel, but
at a much lower level.

4.2. Gaussian kernels. The Gaussian kernel on D = [0, 1]d with correlation
length λ > 0 is

k(x, y) := e−|x−y|2/λ2

, x, y ∈ D . (69)

The main difference between the Gaussian kernel (69) and the exponential kernels
(64) with 1 ≤ α < 2 is that the eigenvalues of the covariance operator associated to
the Gaussian kernel decay exponentially, opposed to algebraic decay for exponential
kernels. Again, we set λ to 1/4 in all computations. Figure 4.8 shows the first few
basis functions generated by the Gram–Schmidt method and the hierarchic spectral
method in one dimension.

The decay of the basis functions generated by both of the above methods for
Gaussian kernels is plotted in Figures 4.9 and 4.10 in one and two dimensions,
respectively. These are compared to the spectral basis computed directly on the



20 C. J. GITTELSON

10
0

10
1

10
2

10
3

10
!3

10
!2

10
!1

10
0

m

|{
x
;|

e m
(x

)|
≥

ε
m

a
x y

|e
m

(y
)|
}
|

 

 

ε = 10−3

ε = 10−6

ε = 10−9

ε = 10−12

(a) measure of level sets

0 0.25 0.5 0.75 1
10

!12

10
!10

10
!8

10
!6

10
!4

10
!2

10
0

(b) some basis functions

Figure 4.7. localization of functions generated by Gram–Schmidt
for α = 1.5, d = 1
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Figure 4.8. the first few functions for a Gaussian kernel
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Figure 4.9. decay of the basis functions for d = 1

finest level. In all cases, the decay is exponential, with approximately the same
rate. However, the Gram–Schmidt method suffers from an instability, limiting its
convergence. It can be stabilized by replacing the Cholesky decomposition by a
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Figure 4.10. decay of the basis functions for d = 2
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Figure 4.11. number of new basis functions per level

suitable generalization of a pivoted Cholesky depcomposition, as was studied in [4]
for finite sets of points.

The hierarchic spectral method is shown with tolerances ε% = 0 and ε% = 2−2%. In
the latter case, only very few basis functions em are constructed, and their norms
are very close to those of the basis constructed with no truncation. Figure 4.11
shows the number of new basis functions constructed on each level, i.e. after each
refinement of the covariance matrix. The Gram–Schmidt method and the hierarchic
spectral method with ε% = 0 construct one basis function for each point at which
the covariance kernel is evaluated. Accordingly, the number of new basis functions
per level increases exponentially. Conversely, the hierarchic spectral method with
positive tolerances ε% = 2−2% constructs far fewer basis functions. The number of
new basis functions constructed on each level seems to be bounded independently
of the level.

4.3. Spherical covariance kernels. The spherical covariance kernel is given by

k(x, y) := σ2ρ3

(

|x− y|
λ

)

(70)

in three dimensions or less, with positive parameters σ and λ, where

ρ3(z) := 1−
3

2
z +

1

2
z3 , z ∈ [0, 1] , (71)
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and ρ3(z) := 0 if z ≥ 1 is, up to a factor, the volume of intersection of two spheres
with diameter 1 and midpoints separated by z. Similar constructions exist for balls
of dimension different from three.

We consider the covariance kernel (70) on [0, 1]d, d ∈ {1, 2, 3}, with σ = λ = 1.
We use the hierarchic dyadic grids (pi)i∈Λ!

defined in Section 4.1. The first few
basis functions generated by the Gram–Schmidt and hierarchic spectral methods
are shown if Figure 4.12.
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Figure 4.12. the first few functions for a spherical covariance
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Figure 4.13. decay of the basis functions for a spherical covari-
ance and d = 1

Figures 4.13, 4.14 and 4.15 show the decay of the basis functions generated
by Gram–Schmidt and the hierarchic spectral method in one, two and three di-
mensions, respectively. The behavior is very similar to that of the exponential
covariance kernel with α = 1, discussed in Section 4.1.

Conclusion

Orthonormal bases of the Cameron–Martin space of a Gaussian measure on C (D)
can be constructed explicitly, without resorting to eigenfunctions of the covariance
operator. Their construction uses only the covariance kernel, which is readily avail-
able in many stochastic models. No assumptions are made on the structure of the
kernel.
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Figure 4.14. decay of the basis functions for a spherical covari-
ance and d = 2
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Figure 4.15. decay of the basis functions for a spherical covari-
ance and d = 3

The covariance kernel is evaluated on an unstructured discrete set of points.
Generally, one basis function can be computed for every evaluation point. The
general algorithm for constructing such bases can be formulated on the level of
numerical linear algebra involving the covariance matrix, and, as such, is amenable
to implementation. In exact arithmetic, it constructs exact representations of the
basis functions.

The bases constructed in this manner are hierarchic. Elements computed on
an initial coarse grid of evaluation points are left unchanged when additional ba-
sis functions are computed on the same grid or on a refined grid. This flexible
construction of the basis elements may lend itself to adaptive or iterative methods
that require representations of a Gaussian field with various degrees of accuracy.
The representation can be refined locally by selectively adding evaluation points
of the covariance kernel. Also, the initial basis functions represent the most dom-
inant components of the random field, and constructing these on a coarse grid of
evaluation points leads to simple representations of these functions in terms of the
covariance kernel at only a few points.

Numerical experiments indicate that the decay of the basis functions in L2(D) is
comparable to that of the square root of the eigenvalues of the covariance operator,
which is known to be optimal. This is confirmed by explicit computations in the
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case of an exponential covariance kernel in one dimension. The hierarchic spectral
method for constructing basis functions is particularly close to optimal in this
respect, and stable in the case of ill-conditioned covariance matrices, e.g. resulting
from Gaussian covariance kernels.

Bases constructed by Gram–Schmidt orthogonalization in the Cameron–Martin
space are often spatially localized. In some settings, e.g. an exponential covariance
kernel in one dimension or the Wiener measure, the basis functions have compact
supports with diameter tending to zero. Furthermore, the basis functions can be
characterized independently of each other as functions in certain finite dimensional
spaces with given zeros. Thus, if the covariance kernel is modified, the basis func-
tions can be updated independently of each other.
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