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Zusammenfassung

Im Rahmen dieser Arbeit entwickeln wir Lattice Boltzmann (LB) Modelle

zur Beschreibung verschiedener physikalischer Phänomene im Bereich der

relativistischen Hydrodynamik und Magnetohydrodynamik. Zunächst leiten

wir ein relativistisches LB Modell her, mit dem relativistische Fluide mit

ultrahohen Geschwindigkeiten, d.h. mit Lorentz-Faktoren bis zur Ordnung

γ ∼ 10, im Rahmen der kinetischen Gastheorie beschrieben werden können.

Im Rahmen dieses Modells entwickeln wir die Maxwell-Jüttner-Verteilung

nach einer Basis orthogonaler Polynome und verwenden dabei eine spezielle

Quadratur, um die diskrete Form der relativistischen Boltzmann-Gleichung

und der entsprechenden Gleichgewichtsverteilung zu erhalten. Um ultrahohe

Geschwindigkeiten zu erzielen, verwenden wir in der diskreten relativisti-

schen Boltzmann-Gleichung ein Flux-Limiter Schema sowie eine geeignete

Erweiterung der Volumenviskosität. Wir validieren unser Modell, indem

wir Schockwellen in viskosen Quark-Gluon-Plasmen simulieren, wobei wir

eine gute Übereinstimmung mit bereits existierenden Modellen feststellen.

Ausserdem zeigen wir, dass unser Modell auch für niederviskose Fluide mit

sehr hohen Geschwindigkeiten angewendet werden kann. Als astrophysikali-

sches Beispiel simulieren wir die Kollision zwischen einer bei einer Supernova-

Explosion erzeugten relativistischen Schockwelle mit einer massiven interstel-

laren Gaswolke, z.B. einer Molekülwolke.

Als weitere Anwendungen unseres Modells studieren wir die relativistischen

Effekte auf die Richtmyer-Meshkov (RM) Instabilität. Dabei zeigt sich, dass

die RM Instabilität im Vergleich zum nicht-relativistischen Fall aufgrund

von relativistischen Effekten abgeschwächt ist, und zwar sowohl in zwei- also
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auch in dreidimensionalen Systemen. Diese numerischen Resultate verglei-

chen wir mit einer analytischen linearen Stabilitätsanalyse und finden eine

sehr gute Übereinstimmung. Darüberhinaus stellen wir auf der Basis der

numerischen Ergebnisse eine allgemeine Gleichung zur Charakterisierung der

nicht-linearen Zeitentwicklung der Instabilität auf. Wir zeigen, dass durch

die Anwesenheit von Jet-Teilchen Schockwellen in der Form von Mach-Kegeln

erzeugt werden. Die Wechselwirkung zwischen mehreren dieser Schock-

wellen kann die RM Instabilität auslösen und schliesslich zur Abkühlung der

Flüssigkeit führen. Um den beobachteten Abkühlungseffekt zu bestätigen,

führen wir zusätzlich Stossrohr-Simulationen für die RM Instabilität durch.

Als experimentelle Observable für die RM Instabilität messen wir hierbei

die 2-Teilchen-Korrelationsfunktion und arbeiten die Effekte der Wechsel-

wirkung heraus. Die Simulationen der RM Instabilität sowie der Mach-Kegel

werden mit einer erweiterten Version unseres relativistischen LB Modells,

welche auch die ideale Gasgleichung sowie externe Kräfte berücksichtigt,

durchgeführt.

Auf der Basis unseres relativistischen LB Modells sowie eines LB Modells zum

Lösen der Maxwellgleichungen entwickeln wir ein kombiniertes Modell für die

relativistische Magnetohydrodynamik (MHD). Obwohl unser Modell für die

resistive MHD hergeleitet wird, zeigt sich, dass es auch im hochleitfähigen

Limes (ideale MHD) numerisch robuste Ergebnissen liefert. Um unser Modell

zu validieren, führen wir verschiedene Testsimulationen sowohl im idealen als

auch im resistiven Limes durch. Im idealen Limes betrachten wir die Ausbre-

itung von Alfvén-Wellen, während wir im resistiven Limes die Zeitentwick-

lung von Stromschichten studieren. In beiden Fällen beobachten wir eine sehr

gute Übereinstimmung mit den analytischen Resultaten. Darüberhinaus un-

tersuchen wir das Phänomen der durch die Kelvin-Helmholtz Instabilität

getriebenen magnetischen Rekonnexion und erforschen den Einfluss ver-

schiedener Parameter auf die Rekonnexionsrate. Es zeigt sich hierbei, dass

das Dichteverhältnis einen vernachlässigbaren Effekt auf die Rekonnexion-

srate besitzt, während ein Anstieg der Schergeschwindigkeit einen Abfall

der Rekonnexionsrate zur Folge hat. Die Rekonnexionsrate ist dabei pro-

portional zu σ−
1
2 (wobei σ die Leitfähigkeit bezeichnet) und stimmt damit
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mit dem Sweet-Parker Modell überein. Schliesslich verwenden wir unser nu-

merisches Modell, um magnetische Rekonnexion in stellaren Flares zu unter-

suchen. Eine dreidimensionale Simulation einer stellaren Eruption deutet da-

rauf hin, dass die Schergeschwindigkeiten in der Photosphäre für die Rekon-

nexion zwischen den magnetischen Feldlinien des Hintergrundfeldes und den

Feldlinienbündeln verantwortlich sind.

Die von uns entwickelten LB Modelle für die Hydrodynamik und Magne-

tohydrodynamik profitieren von den bekannten Vorteilen der LB Methode,

insbesondere von Effizienz und von der einfachen Handhabung komplexer

Geometrien.
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Summary

In this work we develop lattice Boltzmann (LB) models for relativistic hydro-

dynamics and magnetohydrodynamics and we demonstrate their applications

in simulating relevant physical phenomena. First, a relativistic LB model ca-

pable of describing relativistic fluid dynamics at ultra-high velocities, with

Lorentz factors up to γ ∼ 10 is derived. To this purpose, we first build a

new lattice kinetic scheme by expanding the Maxwell-Jüttner distribution

function in an orthogonal basis of polynomials and applying an appropri-

ate quadrature, providing the discrete versions of the relativistic Boltzmann

equation and the equilibrium distribution. To achieve ultra-high velocities,

we include a flux limiter scheme, and introduce the bulk viscosity by a suit-

able extension of the discrete relativistic Boltzmann equation. The model is

validated by performing simulations of shock waves in viscous quark-gluon

plasmas and comparing with existing models, finding very good agreement.

Moreover, we show that our model can also be used for low-viscous flows

even at very high velocities. As an astrophysical example, we simulate a

relativistic shock wave, generated by a supernova explosion, colliding with a

massive interstellar cloud, e.g. molecular gas.

As an application for the model, a detailed investigation of the relativis-

tic effects on the Richtmyer-Meshkov (RM) instability is presented. It is

found that the relativistic effects weaken the RM instability as compared to

the non-relativistic case, both in two and three spatial dimensions. Linear

stability is studied analytically and compared with numerical results in the

linear growth regime. Also, based on the numerical results, a general expres-

sion characterizing the nonlinear evolution of the instability, is proposed.
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Additionally, we provide numerical evidence that the Richtmyer-Meshkov

instability contributes to the cooling of a relativistic fluid. We show that

due to the presence of jet particles traveling throughout the medium, shock

waves are generated in the form of Mach cones. The interaction of mul-

tiple shock waves can trigger the RM instability, and we have found that

this process leads to a down-cooling of the relativistic fluid. To confirm the

cooling effect of the instability, shock tube RM instability simulations are

performed. Furthermore, in order to provide an experimental observable of

the RM instability resulting from the Mach cone interaction, we measure the

two particle correlation function and highlight the effects of the interaction.

The simulations of the RM instability and Mach cones are performed by an

extended version of the relativistic LB model which includes the ideal gas

equation of state and external forces.

Based on our relativistic LB model and an LB solver for the Maxwell

equations, we develop an LB model for relativistic magnetohydrodynamics

(MHD). Even though the model is derived for resistive MHD, it is shown

that it is numerically robust even in the high conductivity (ideal MHD)

limit. In order to validate the numerical method, test simulations are car-

ried out for both ideal and resistive limits, namely the propagation of Alfvén

waves in the ideal MHD and the evolution of current sheets in the resistive

regime, where very good agreement is observed comparing to the analyti-

cal results. Additionally, two-dimensional magnetic reconnection driven by

Kelvin-Helmholtz instability is studied and the effects of different parameters

on the reconnection rate are investigated. It is shown that the density ra-

tio has negligible effect on the magnetic reconnection rate, while an increase

in the shear velocity decreases the reconnection rate. Also it is found that

the reconnection rate is proportional to σ−
1
2 , with σ being the conductiv-

ity, which is in agreement with the scaling law of the Sweet-Parker model.

Finally, the numerical model is used to study the magnetic reconnection in

a stellar flare. Three-dimensional simulation suggests that the reconnection

between the background and flux rope magnetic lines in a stellar flare can

take place as a result of a shear velocity in the photosphere.

Our proposed LB models for hydrodynamics and magnetohydrodynamics

xiv



open up the possibility of exporting the proven advantages of LB methods,

namely computational efficiency and easy handling of complex geometries,

to the context of relativistic fluid dynamics.
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Chapter 1

Introduction

Relativistic fluid dynamics plays an important role in many contexts of astro-

physics, nuclear and high-energy physics, e.g. jets emerging from the core of

galactic nuclei or gamma-ray bursts [8], shock induced Ritchmyer-Meshkov

instabilities [88] and quark-gluon plasmas produced in heavy-ion collisions

[104]. Another system that behaves as a relativistic fluid, is the electronic

gas in graphene [89, 90] where many of its fascinating properties are partially

related to the fact that due to the special symmetries of the honeycomb lat-

tice, graphene is a very special, slow-relativistic electronic fluid [84, 75].

The dynamics of flows in such systems requires solving highly nonlinear equa-

tions, rendering the analytic treatment of practical problems extremely diffi-

cult. Hence, various numerical methods have been developed to study the rel-

ativistic hydrodynamics. Most of these methods are focussed on the solution

of the corresponding relativistic macroscopic conservation equations. Among

others, one can mention the methods based on second-order Lax-Wendroff

scheme [25], smoothed particle hydrodynamics techniques [47, 105], Glimms

(random choice) method [121] and high resolution shock-capturing methods

[36]. Other methods, instead of solving the macroscopic equations, tackle

the problem from the microscopic and mesoscopic points of view [126].

To this regard, the lattice Boltzmann (LB) method [4, 15, 108] a relatively

new numerical approach, based on a minimal lattice version of the Boltzmann

kinetic equation, has enjoyed increasing popularity for the last two decades.

Within LB, representative particles stream and collide on the nodes of a reg-

1



2 CHAPTER 1. INTRODUCTION

ular lattice, with sufficient symmetry to reproduce the correct equations of

macroscopic hydrodynamics. The main highlights of LB are its computa-

tional simplicity, easy handling of complex geometries, and high amenability

to parallel computing [112]. The LB method has met with remarkable suc-

cess for the simulation of a broad variety of complex flows, from fully devel-

oped turbulence, all the way down to nanoscale flows of biological interest

[71, 49, 109].

From a mathematical viewpoint, the standard lattice Boltzmann model

can be obtained by expanding the equilibrium distribution, i.e. Maxwell-

Boltzmann distribution, in Hermite polynomials up to a certain order [103],

and applying the Bhatnagar-Gross-Krook (BGK) approximation for the col-

lision operator [7]. While the applications of the LB scheme cover an impres-

sive array of complex fluid flows, its relativistic extension has been developed

only in last few years [74, 73].

The idea of the relativistic LB model was based on the observation that the

kinetic formalism is naturally covariant, hyperbolic and conservative. The

model was constructed using the moment-matching procedure, which means

that the local kinetic equilibrium is expressed as parametric polynomial of

the relativistic fluid velocity β = |~u|/c, ~u being the typical flow speed and

c the speed of light, with the Lagrangian parameters fixed by the condition

of matching the moments of the Maxwell-Jüttner distribution in continuum

velocity space.

It is worth mentioning that Jüttner derived a relativistic analogue of

the Maxwell-Boltzmann equilibrium distribution for classical gases by us-

ing an entropy maximization procedure, subject to the relativistic energy-

momentum constraints [54], and proposed a form of the equilibrium distri-

bution function (Maxwell-Jüttner distribution) for relativistic particles. Re-

cently, conclusive evidence for the original form proposed by Jüttner has been

brought by numerical simulations of fully relativistic molecular dynamics in

one and two dimensions [22, 83].

Relativistic LB model was shown capable of simulating weakly and moder-

ately relativistic viscous flows, with β ∼ 0.3. In fact, weakly/moderately

relativistic flows are relevant for some applications such as, quark-gluon
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plasma generated by recent experiments on heavy-ions and hadron jets

[33, 30, 32, 34, 35, 31, 29], as well as some astrophysical flows, such as in-

terstellar gas and supernova remnants [69, 28]. In particular, the relativistic

LB was applied to the simulation of shock waves in quark-gluon plasmas,

showing very good agreement with the results obtained by solving the full

Boltzmann equation, using a numerical model called Boltzmann Approach

for Multi-Parton Scattering (BAMPS) [10].

However, apart from the fact that this model can not handle strongly rel-

ativistic flows, the aforementioned matching procedure does not provide a

unique solution for the discrete equilibrium distribution function, satisfy-

ing the hydrodynamics moments of the Maxwell-Jüttner distribution. It is

therefore highly desirable to develop more general and systematic approaches

which are capable of simulating relativistic flows with higher velocities.

To this purpose, let us observe that, due to the non-separability of the

Maxwell-Jüttner distribution function into the three components of the mo-

mentum in Cartesian coordinates, its expansion in orthogonal polynomials is

not as natural as in the classical case and some deliberation is required. For

the fully relativistic regime, neglecting particle masses, and by using spher-

ical coordinates, a lattice Boltzmann algorithm for the relativistic Boltz-

mann equation was developed in Ref. [100], where the Maxwell-Jüttner dis-

tribution function was expanded in an orthogonal polynomials basis and dis-

cretized using a Gauss quadrature procedure. The model was based on the

Anderson-Witting collision operator [1]. The results of simulating viscous

quark-gluon plasma were compared to other hydrodynamic simulations and

very good agreement was observed. However, using spherical coordinates

one gets spherical lattices which are not space filling, and consequently, in

the streaming procedure, a linear interpolation is required at each time step.

Therefore, some crucial properties of the classical LB, e.g. exact streaming

and zero numerical dispersion, are lost in the process.

In this work, we develop a relativistic lattice Boltzmann model by expand-

ing the Maxwell-Jüttner distribution in a set of orthogonal polynomials, and

performing an appropriate quadrature in order to adjust the scheme to a

D3Q19 (19 discrete velocities in three spatial dimensions) cell configuration.
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Moreover, we extend the model by using a minimum modulus flux limiter

scheme and introducing the bulk viscosity term into the Boltzmann equation.

We show that the model is numerically stable also at very high velocities,

i.e. Lorentz factors up to γ ∼ 10. Additionally, we show that this model can

also be used to simulate nearly-inviscid flows, which corresponds to solve the

Euler equation on the macroscopic level. This is well suited for astrophysical

applications, where the viscosity is usually negligible. In fact, the astrophys-

ical context presents possibly the richest arena for applications of the present

relativistic LB scheme.

The relativistic lattice Boltzmann methods fill a missing entry in the remark-

ably broad spectrum of LB applications across most areas of fluid dynamics,

including quantum fluids [110]. Relativistic LB approaches might never-

theless offer a fairly inexpensive alternative to more sophisticated methods

mentioned before. In addition, since LB is recognized as an excellent solver

for flows in complex geometries it is plausible to expect that the present rel-

ativistic LB scheme may play a useful role for the simulation of relativistic

flows in non-idealized geometries. We provide indications that the relativis-

tic LB stands concrete chances of carrying the recognized advantages of LB

schemes for classical fluids, over to the relativistic context. The description

of the model along with some applications are presented in Ch. 2.

Having a strong numerical model for relativistic fluid dynamics, as a par-

ticular application for the model, we study the relativistic effects on the

Richtmyer-Meshkov (RM) instability. The RM instability is one of the funda-

mental fluid instabilities, which occurs whenever a shock wave passes through

an interface, separating two fluids with different densities. This instability

was theoretically predicted by Richtmyer [97] and experimentally detected by

Meshkov [79] in the non-relativistic context. The study of the RM instability

is also of great importance in several phenomena, ranging from high energy

physics [43] to astrophysics [3], especially wherever shock-wave propagation

is involved.

For instance, in a collapsing core supernova explosion, the generated shock

wave propagates outwards through a hydrogen-helium interface. Observa-

tions have shown that the outer regions of the supernovae are more uniformly
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mixed than expected, as a consequence of the RM instability [3]. Moreover,

it is believed that in gamma-ray bursts, relativistic shocks as well as inter-

mittent and inhomogeneous outflows play a major role [80]. Thus, we can

expect that the RM instability can also appear in this context. Therefore,

the study of the relativistic effects can contribute to a deeper understanding

of these phenomena.

The RM instability in the non-relativistic regime has been investigated ex-

tensively [97, 124, 123, 118, 60]. However, to the best of our knowledge,

systematic investigations in the relativistic regime are still lacking. There-

fore, in Ch. 3, we perform numerical simulations of the relativistic RM in-

stability using the relativistic LB model. To this purpose, the model needs

to be extended to deal with the ideal gas equation of state. To single out

the relativistic effects, we also provide comparisons between the relativistic

and non-relativistic cases. In order to gain a deeper understanding of the

instability, we develop a simple linear stability analysis for the relativistic

RM instability and derive a theoretical asymptotic expression for the growth

rate of the perturbation amplitude in the linear regime. Furthermore, based

on our numerical results, we propose a general relation for the evolution of

the instability in the nonlinear regime. Also, we analyse the growth rate of

the instability for different equations of state (EoS) and show that the linear

growth rate depends explicitly on the EoS, unlike the non-relativistic case.

Therefore, the study of the instability can provide information on the EoS,

the same way shock waves can offer insights [107, 6]. In other words, gaining

information about the RM instability may provide a new means of studying

the thermodynamic properties of relativistic fluids.

We know that particles traveling through a compressible fluid generate waves

moving at the speed of sound. Moreover, if the particles travel faster than the

speed of sound of the medium, the disturbances in the fluid are confined to

the so-called Mach cone. This phenomenon is very common in many natural

systems, including astrophysics and high energy physics [39, 43, 122, 64, 125],

where relativistic fluid effects are important. As mentioned, the existence of

relativistic shock-waves in the presence of density variations, leads to the ap-

pearance of the RM instability. Density variations can appear in relativistic
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fluids whenever particles travel through the medium, due to the sweeping

effect of the shock waves [102], as well as due to external mechanisms.

We show numerically that the RM instability may reduce the average tem-

perature of the relativistic fluid. In particular, we investigate the interaction

of two relativistic Mach shocks, and show that the RM instability arises due

to this interaction and we find that the appearance of this hydrodynamic

instability leads to a decrease in the average temperature of the medium.

To justify this finding and to single out the effect of the instability, thermal

behavior of the shock tube RM instability is studied. The effect of the initial

domain temperature and density ratio on the cooling effect of the instability

is also investigated. Furthermore, we propose a way to detect the interaction

between Mach cones from an experimental observable, namely the two-point

correlation function.

In the above examples we have neglected the presence of magnetic fields,

however, they are an essential component of many astrophysical phenomena,

such as relativistic jets [81], active galactic nuclei [2], gamma ray bursts [95],

pulsar winds [12], and stellar flares [68]. Since in most of these phenom-

ena the plasma is electrically neutral and the characteristic times between

collisions are much smaller than the typical time scale of the system, the

magnetohydrodynamics (MHD) approximation is appropriate. Due to the

fact that relativistic effects play a major role in the dynamics of these phe-

nomena, relativistic MHD description is of special interest in this perspective.

Since the equations of relativistic MHD are extremely difficult to solve an-

alytically, except for some simple geometries, most of the studies are based

on numerical simulations.

Ideal MHD is defined as the limit where the electrical conductivity σ goes

to infinity (electrical resistivity η ≡ 1/σ → 0). In this framework many

numerical models have been developed over the last decade dealing with

the ideal relativistic MHD [57, 26, 40]. As it will be explained later, the

ideal MHD assumption not only makes the solution of the relativistic MHD

considerably simpler, but it is also a fairly good approximation for many

high-energy phenomena. However, in several situations such as neutron star

mergers [37] or central engines of gamma ray bursts [66], the conductivity
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can be small and the ideal MHD assumption is not valid any longer.

More importantly, magnetic reconnection only takes place when resistivity

exists in the plasma. This process is the driver of explosive events in astro-

physical plasmas, in which magnetic field lines break and reconnect and the

magnetic field topology goes through a sudden change. During this process,

plasma releases the magnetic energy and converts it into thermal and ki-

netic energy on a short timescale. Magnetic reconnection has been proposed

to have an influential role in many astrophysical observations, namely as a

cause of particle acceleration in extragalactic jets [51], as a source of high

energy emission [52], as an explanation of the rapid variability observed in

active galactic nuclei [41] and many others. Therefore, studying magnetic

reconnection is of great importance, especially considering the fact that the

relativistic theory of magnetic reconnection is not yet well established and

its mechanism is poorly understood [127]. It should be mentioned that, nu-

merical results of ideal relativistic MHD models sometimes show magnetic

reconnection, which is non-physical, since it is caused by numerical resistiv-

ity and hence depends on the details of the numerical scheme and resolution

[58].

Therefore, there is a strong interest in developing numerical models for resis-

tive relativistic MHD. However, the corresponding governing equations turn

out to be numerically very challenging, since the source terms in the equa-

tions become stiff, especially when the conductivity is not small [58]. This is

the natural consequence of the fact that the time-scale of the diffusive effects

and the overall dynamical time-scale are of the same order. Thus, it is not

surprising that the first numerical model for resistive relativistic MHD ap-

peared only recently in 2007 [58], where the fluxes are computed by using the

Harten-Lax-van-Leer (HLL) approximate Riemann solver, and the Strangs

splitting technique is used for the stiff source terms. Later on, a numerical

method which uses an implicit-explicit (IMEX) Runge-Kutta method to solve

the stiff source terms in the equations is proposed in Ref. [91]. Also, a unified

framework for the construction of one-step finite volume and discontinuous

Galerkin schemes for the resistive relativistic MHD is introduced in Ref. [27].

More recently, a different approach has been suggested in Ref. [116], where
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the method of characteristics is used to solve the Maxwell equations. Addi-

tionally the role of the equation of state in the resistive relativistic MHD is

investigated in Ref. [82].

All the above mentioned models are based on solving the macroscopic gov-

erning equations of the resistive relativistic MHD. In Ch. 4, we develop an LB

model for relativistic MHD. The model is proposed for resistive MHD but, as

we will show later, it is robust enough in the ideal MHD limit as well. The hy-

drodynamics part is based on the model which will be described in Chs. 2 and

3, with some extensions to include the contribution of electromagnetic fields

in the energy-momentum tensor (corresponding to adding the Lorentz force

and Joule heating in the macroscopic equations). For the electromagnetic

part, i.e., solving the Maxwell equations, the LB model for electrodynamics

proposed in Ref. [78] is modified and extended for coupling with the fluid

equations and to include the relativistic Ohm’s law. Here again, our goal is

to bring the well-known advantages of the lattice Boltzmann schemes to the

context of resistive relativistic MHD.

The model is validated using numerical tests for the ideal MHD and resistive

MHD regimes. In particular, the propagation of Alfvén waves in high con-

ductivity media, and the evolution of current sheets in resistive media are

validated against analytical solutions. Moreover, as an application for the

model, the magnetic reconnection process driven by Kelvin-Helmholtz (KH)

instability is studied in detail. The KH instability is another fundamental

hydrodynamic instability which occurs during the shear flow of a uniform

fluid, or two fluids with different densities. It was discovered independently

by Kelvin and Helmholtz in the 19th century [55, 46]. It is believed that the

KH instability appears in the solar-wind interaction with the Earth’s mag-

netosphere which can influence the magnetic reconnection process that takes

place there [38]. Moreover, the KH instability has been widely investigated

for astrophysical applications, e.g. astrophysical jet morphology [63] motion

of interstellar clouds [119] and clumping in supernova remnants [120], where

in many of these phenomena, relativistic and magnetic field effects cannot

be ignored. Here, we study the KH instability as a potential driver of mag-

netic reconnection. In the non-relativistic context this has been discussed in
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Refs. [56, 87]. Here we focus on this phenomenon in the relativistic context

and we are interested in the effects of the hydrodynamics parameters, i.e.,

shear velocity and density ratio, as well as the effects of the value of the

conductivity on the magnetic reconnection rate.

Finally, the results of a three-dimensional simulation of the magnetic recon-

nection in a stellar flare driven by a shear velocity on its photosphere are

presented. It has been suggested that solar flares are good prototypes for

stellar flares in relativistic stars like neutron stars [68]. Therefore, a solar

type initial condition, consisting of a potential quadrupole background field

and a flux rope [115], is chosen to study the stellar flare. We show that the

shear velocity on the photosphere of the star can cause the magnetic recon-

nection to take place between the flux rope and the background magnetic

field lines.
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Chapter 2

Relativistic Lattice Boltzmann

Model

In this chapter we discuss about the description, derivation and some appli-

cations of the relativistic lattice Boltzmann model. The chapter is organized

as follows: in Sec. 2.1, the basics of the LB method is briefly reviewed; in

Sec. 2.2 the principles of special relativity is introduced; in Sec. 2.3, the

relativistic Boltzmann equation is discussed; in Sec. 2.4, the relativistic LB

model description is presented in detail; and in Sec. 2.5, several validations

with other existing numerical models along with some results for shock waves

in viscous quark-gluon plasmas and a 3D simulation of a shock wave colliding

with a massive interstellar cloud are presented. Finally, in Sec. 2.6, discus-

sions about the model and the results are provided.

2.1 Lattice Boltzmann method

The standard LB method reads as follows:

fi(~x+ ~ciδt, t+ δt)− fi(~x, t) = −δt
τ

(fi − f eqi ), (2.1)

where fi(~x, t) is the probability of finding a particle at lattice site ~x and

time t, moving along the direction pointed by the discrete velocity ~ci. The

left-hand side is readily recognized as an exact lattice transcription of the

free-streaming term (∂t + va∇a)f of the continuum Boltzmann equation,

11
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with va being the a component of the microscopic velocity, where the Latin

index a denotes spatial coordinates and repeated indices are summed upon.

The right-hand-side, on the other hand, is a discrete version of the collision

operator, here taking the form of a simple relaxation around a local equi-

librium f eqi on a timescale τ (single time BGK relaxation [7]). The local

equilibrium encodes the conservation laws governing the ideal fluid regime,

namely mass, momentum and energy conservation and Galilean invariance.

While molecular details of the collisional processes can be safely foregone,

these conservation properties must necessarily be preserved in the lattice

formulation.

The discrete local equilibrium is usually expressed as a local Maxwellian,

expanded up to second order in the local Mach number Ma = u/cso, with u

being the local flow speed and cso the sound speed. For the case of isothermal

flows, this takes the form

f eqi = wiρ

(
1 +

ciaua
c2
so

+
Qiabuaub

2c4
so

)
, (2.2)

where

ρ =
∑
i

fi,

ρua =
∑
i

ficia,

are the fluid density and mass current density, respectively. In the above,

wi are discretized weights and Qiab = ciacib − c2
soδab is the projector along

the i-th direction. Provided that wi and ci are properly chosen, it is readily

checked that the local equilibria fulfil the following relations∑
i

f eqi =
∑
i

fi = ρ,∑
i

f eqi cia =
∑
i

ficia = ρua,∑
i

f eqi ciacib = ρ(uaub + c2
soδab).

(2.3)

The first two are the usual mass and momentum density, whereas the latter is

the equilibrium momentum-flux tensor. Recovering the momentum flux ten-

sor is crucial to secure the proper non-linear structure of the Navier-Stokes
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equations, and indeed only specific classes of discrete lattices fulfil the afore-

mentioned constraints. As mentioned, discretized equilibrium distribution

function can be obtained by the expansion of the continuum expression of

the Maxwell-Boltzmann distribution. Due to the well-known property of the

local Maxwellian to serve as the generating function of Hermite’s polynomials

Hn, one can write (here ~v = ~v/cso and ~u = ~u/cso):

e−
(~v−~u)2

2 = e−
v2

2

∞∑
n=0

Hn(~v)un. (2.4)

Note that the Galilean invariance manifestly encoded at the left hand side

through the dependence on the magnitude of the relative speed (~v − ~u), can

only be preserved by including all terms in the Mach-number expansion at

the right hand side. The fact that the Navier-Stokes equations only involve

quadratic non-linearities in the flow field allows us to develop a consistent

lattice hydrodynamic theory by retaining only second order terms in the

Mach-number expansion. A similar line of thinking can also be applied to

the relativistic equations, with due changes in the mathematical-physical

details, to be discussed shortly.

2.2 Special Relativity

Before discussing the relativistic Boltzmann equation, in this section we in-

troduce the basics of special relativity. The special theory of relativity was

developed by Einstein and is based on two postulates (see Ref. [14] for more

information)

• The laws of physics should be invariant in all inertial frames of ref-

erences (it should be impossible for an observer to detect a uniform

translational motion by measurements made by him).

• The speed of light in free space has the same value for all observers

that are in inertial frames.

Inertial frame is defined as a frame with respect to which a point-like body

at rest removed from the action of other bodies remains at rest. The first
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postulate of special relativity states that the physical laws are identical in

all inertial frames of reference, i.e., they are invariant with respect to space-

time transformations between inertial systems. From the second postulate it

follows that the velocity of propagation of signals is the same in all inertial

systems of references, which is a universal constant, c = 299792458 m/s

(speed of light in free space).

One consequence of the second postulate is that the time interval is not

absolute and that the simultaneous events in one frame of reference are not

simultaneous in another frame of reference. An event is characterized by the

point occupied at the time it has occurred, which means it is a point in a

apace-time coordinate system. The set of all events form a four-dimensional

space, where the events are represented by points called world points and the

trajectory of a particle in space-time is called world line.

Fig. 2.1: Representation of two inertial systems.

Let us consider two reference systems O and O′ such that O′ has a uniform

velocity v directed along the x axis in the perspective of a stationary observer

in reference O, like in Fig. 2.1. The times in O and O′ are denoted by t and

t′, respectively. Let x1, y1, z1, t1 and x2, y2, z2, t2 be the coordinates of two

events in the reference frame O. The interval between this two events s12
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can be defined as

s2
12 = c2(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2. (2.5)

For the infinitesimal close events we have

ds2 = c2dt2 − dx2 − dy2 − dz2, (2.6)

where one can show that ds2 = ds′2, which means the interval between two

events is the same in all inertial frames of references.

We can formalize our discussion by introducing a four-dimensional space with

the so-called Minkowski coordinates defined as:

x0 = ct, x1 = x, x2 = y, x3 = z. (2.7)

Using this definition, we can write Eq. (2.6) as

ds2 = ηαβdx
αdxβ, (2.8)

where Greek indices are used to specify the four-dimensional space-time co-

ordinate system running from 0,1,2,3 and the Einstein summation convention

over repeated indices is used. Here, ηαβ are the components of the metric

tensor in the four-dimensional space characterized by the element ds. This

space is called Minkowski space and the metric tensor is given by:

(ηαβ) =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (2.9)

If we denote the elements of the inverse matrix by ηαβ, we have

(ηαβ) =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (2.10)
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Also, the transformation matrix between the two inertial systems can be

denoted by Λα
β . For instance,

x′α = Λα
βx

β. (2.11)

One can show that the transformation matrix between reference systems O

and O′ in Fig. 2.1 can be written as

(Λα
β) =


1√

1−v2/c2
−v/c√
1−v2/c2

0 0

−v/c√
1−v2/c2

1√
1−v2/c2

0 0

0 0 0 0

0 0 0 0

 . (2.12)

Thus, the Lorentz transformation for this two systems are

x′1 =
x1 − vt√
1− v2/c2

, x′2 = x2, x′3 = x3, t′ =
t− x1v/c2√

1− v2/c2
. (2.13)

As a particular case of the Lorentz transformation, when the velocities are

small relative to the light speed (v � c) we obtain the Galilean transforma-

tions:

x′1 = x1 − vt, x′2 = x2, x′3 = x3, t′ = t. (2.14)

In this context we can introduce the concept of proper time of a particle

which is the time measured by a clock that moves with the particle, and

is denoted by τ (not to be confused with the relaxation time in the lattice

Boltzmann equation) and for the system O′ we have t′ = τ . Thus, we can

obtain

dτ = dt′ = dt
√

1− v2/c2. (2.15)

This means the time interval in the system O at rest is longer than the time

interval in the system O′ that is moving with velocity v (time dilation).

Another consequence of the Lorentz transformation is Lorentz contraction.

We consider a rod parallel to the x axis which has a proper length given by

l0 = x1
A − x1

B with A and B denote the end points of the rod. By denoting

l = x′1A − x′1B as the length of the rod in the frame of reference O′ we can

obtain the Lorentz contraction as

l = l0
√

1− v2/c2. (2.16)
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This means the a rod has its largest length in a system at rest.

The general transformation law for two inertial systems in which one of them

is moving with a relative velocity, ~u = (u1, u2, u3), with an arbitrary direction

with respect to the other is given by

(Λα
β) =


γ −γ u1

c
−γ u2

c
−γ u3

c

−γ u1
c

1 + (γ−1)u1u1

|~u2|
(γ−1)u1u2

|~u2|
(γ−1)u1u3

|~u2|

−γ u2
c

(γ−1)u1u2

|~u2| 1 + (γ−1)u2u2

|~u2|
(γ−1)u2u3

|~u2|

−γ u3
c

(γ−1)u3u1

|~u2|
(γ−1)u3u2

|~u2| 1 + (γ−1)u3u3

|~u2|

 . (2.17)

Note that from now on we use the usual abbreviation

γ =
1√

1− |~u|2/c2
, (2.18)

where γ is the Lorentz factor.

Let us now introduce the notations related to the special relativity that we

are going to use in this work. A four-vector is a quantity which can be

described by four-components Aα with respect to a given reference frame,

which transforms according to

A′α = Λα
βA

β. (2.19)

There are two representations for the components of a four-vector: the con-

travariant components denoted by Aα, and the covariant components denoted

by Aα. These two representations are related through

Aα = ηαβA
β, A0 = A0, Ai = Ai, (2.20)

where the Latin indices denote the three-dimensional space coordinate system

running from 1, 2, 3. The contravariant and covariant components can also

be represented as

(Aα) = (A0, ~A) = (A0, ~A), (Aα) = (A0,− ~A). (2.21)

The scalar product of two four-vectors Aα and Bα is defined by

AαBα = A0B0 + AiBi = A0B0 − ~A · ~B, (2.22)



18 CHAPTER 2. RELATIVISTIC LATTICE BOLTZMANN MODEL

where ~A · ~B is the usual scalar product of two vectors in a three-dimensional

space.

The components of the gradients can be defined as

(
∂

∂xα
) = (

∂

∂x0
, ~∇), (

∂

∂xα
) = (

∂

∂x0

,−~∇), (2.23)

where ~∇ is the usual gradient in a three-dimensional space. We will also use

the notation
∂

∂xα
≡ ∂α,

∂

∂xα
≡ ∂α. (2.24)

When working in space-time it is convenient to define a four-velocity of a

particle, Uα, as

Uα =
dxα

dτ
, (2.25)

with τ being the proper time. The contravariant and covariant components

of the four-velocity are given by:

(Uα) = (cγ, ~uγ), (Uα) = (cγ,−~uγ). (2.26)

From the above relations it is easy to verify that UαUα = c2.

The product of the rest mass of a particle m with the four velocity pα = mUα

defines a momentum four-vector. Thus, we have

(pα) = (mcγ,m~uγ) = (
E

c
, ~p) = (p0, ~p), (2.27)

where the energy of a particle is given by

E = cp0 = mc2γ, (2.28)

and the scalar product of the momentum four-vector with itself is

pαp
α = m2c2. (2.29)

2.3 Relativistic Boltzmann equation

For the case of a single non-degenerated gas, and in the absence of external

forces, the relativistic Boltzmann equation reads as follows [14]:

∂µ(pµf) =

∫
(f ′∗f

′ − f∗f)ΦσdΩ
d3p∗
p∗0

. (2.30)



2.3. RELATIVISTIC BOLTZMANN EQUATION 19

In the above, f∗ ≡ f(~x, ~p∗, t) and f ≡ f(~x, ~p, t) denote the distribution func-

tions before the collision, while f ′∗ ≡ f(~x, ~p′∗, t) and f ′ ≡ f(~x, ~p′, t) are the

resulting ones after the collision. The base of the so-called collision cylinder

is described by σdΩ, with σ being the differential cross section, where Ω is

the solid angle, and

Φ =
p0p0
∗

c

√
(~v − ~v∗)2 − 1

c2
(~v × ~v∗)2 =

√
(pµ∗pµ)2 −m2c4, (2.31)

the Lorentz invariant flux, with ~v and ~v∗, the velocity of the particles with

momentum ~p and ~p∗, respectively. The right hand side of Eq. (2.30) is the

collision term, whose details fix the value of the transport coefficients in the

macroscopic equations. Although the collision integral can be expressed in

terms of the second kind modified Bessel functions and numerical integrations

[14], simpler expressions have been proposed, along the lines of the BGK

approximation for non-relativistic fluids. The first relativistic BGK, proposed

by Marle [67], reads as follows:

∂µ(pµf) =
m

τ
(f eq − f), (2.32)

where f eq is a local relativistic equilibrium and τ represents a characteristic

time between subsequent collisions.

The Marle model provides a good approximation of the full collision term at

low temperatures [14]. A more general model, which provides a reasonable

approximation of the transport coefficients at both, low and high, tempera-

tures, was subsequently proposed by Anderson and Witting [1], and it reads

as follows:

∂µ(pµf) =
Uµpµ
c2τ

(f eq − f), (2.33)

with τ being the relaxation time.

Both models can reproduce at the macroscopic level the conservation equa-

tions given by

∂µT
µν = 0, (2.34)

and

∂µN
µ = 0, (2.35)
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where

T µν = pηµν + (ε+ p)
UµUν

c2
+ πµν , (2.36)

is the energy-momentum tensor, ε the energy density (including the rest mass

energy), p the hydrostatic pressure and πµν is the dissipative component of

the stress-energy tensor and

Nµ = nUµ, (2.37)

is the particle 4-flow, with n the number of particles per volume.

Applying the conservation rule to energy momentum tensor and particle 4-

flow, we obtain the macroscopic hydrodynamic equations,

∂t(nγ) + ∂a (nγua) = 0, (2.38)

for the conservation of particle number and

∂t
(
(ε+ p)γ2 − p

)
+ ∂a

(
(ε+ p)γ2ua

)
+ ∂tπ

00 + ∂aπ
a0 = 0, (2.39)

∂t
(
(ε+ p)γ2ub

)
+ ∂bp+ ∂a

(
(ε+ p)γ2uaub

)
+ ∂tπ

0b + ∂aπ
ab = 0, (2.40)

for the momentum and energy conservation. For instance, for the inviscid

case (no dissipation) the momentum equation can be written in a more fa-

miliar form, using Eq. (2.40) as

(ε+ p)γ2

(
∂~u

∂t
+ ~u · ~∇~u

)
+ ~u

∂p

∂t
+ ~∇p = 0, (2.41)

where Eq.(2.39) is used to eliminate the time derivative of ε+ p.

The models of Marle and Anderson-Witting result in different expressions

for the dissipative terms and transport coefficients. For instance, the shear

viscosity using the Marle model is given by ηM ' 4peqτM
ζ

for high temperatures

(ultrarelativistic case), with peq the equilibrium pressure and ζ = mc2/kBT ,

here kB is the Boltzmann constant and T the temperature, while with the

Anderson-Witting model yields to ηA ' 4peqτA
5

[14].

In general, the dissipation parameters, like the bulk viscosity, thermal con-

ductivity and shear viscosity, are only approximations of the values obtained



2.4. MODEL DESCRIPTION 21

by linearization of the full collision term in the relativistic Boltzmann equa-

tion, Eq. 2.30.

Finally, the equilibrium distribution in the relativistic Boltzmann equation is

the Maxwell-Jüttner equilibrium distribution function which in the absence

of chemical potential has the form

f eq = A exp(−pµUµ/kBT ), (2.42)

where, A is a normalization constant.

2.4 Model description

2.4.1 Basic Model

Let us start the description of our model. One can write the Maxwell-Jüttner

distribution in a simpler form by introducing the following change of vari-

ables:

ξµ =
pµ/m

cs
, χµ =

Uµ

cs
, (2.43)

cs =

√
kBT

m
, ν = c/cs , (2.44)

and therefore, by replacing the new variables in Eq. (2.42), we have

f eq = A exp(−ξµχµ). (2.45)

The temporal components, ξ0 and χ0, can be calculated by the relations

ξ0 =

√
|~ξ|2 + ν2, (2.46)

χ0 = νγ(u), γ(u) =

√
1 +
|~χ|2
ν2

. (2.47)

In analogy to the classical procedure of expanding the Maxwell-Boltzmann

distribution in Hermite polynomials, we can also expand the Maxwell-Jüttner

distribution, using orthogonal polynomials of the following form:

f eq(~ξ, ~x, t) = w(~ξ)
∞∑
n=0

a(n)(~x, t)

N(n)

F(n)(~ξ), (2.48)
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where ∫
w(~ξ)F(n)(~ξ)F(m)(~ξ)

d3ξ

ξ0
= 0, (2.49)

for m 6= n, and

N(n) =

∫
wF(n)F(n)

d3ξ

ξ0
. (2.50)

Therefore, we need to construct the appropriate orthogonal polynomials.

Hence, we introduce the corresponding weight function as the equilibrium

distribution at the local rest frame,

w(~ξ) = A exp(−νξ0). (2.51)

Using the procedure proposed by Stewart [106], where the non-equilibrium

distribution was expanded around the equilibrium, and the Maxwell-Jüttner

distribution as the weight function to find the orthogonal polynomials, we

can take up to second order,

F(0) = 1, (2.52)

and

Fα
(1) = ξα − aα, (2.53)

Fαβ
(2) = ξαξβ − aαβγ F γ

(1) − b
αβ, (2.54)

where aα, aαβ and bαβ are unknowns to be calculated using the Gram-Schmidt

orthogonalization procedure∫
wF(0)F

α
(1)

d3ξ

ξ0
=

∫
wF(0)F

αβ
(2)

d3ξ

ξ0
=

∫
wFα

(1)F
αβ
(2)

d3ξ

ξ0
= 0. (2.55)

The normalization coefficient for each polynomial is given by
√
N(n), and the

coefficient a(n) is calculated using the relation

a(n) =

∫
f eqF(n)

d3ξ

ξ0
. (2.56)

To calculate the coefficients aα, aαβ and bαβ, one needs the moments of the

Maxwell-Jüttner distribution, which up to second order are given by [14]∫
f eq d

3ξ

ξ0
= 4πAK1(ν2), (2.57)
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∫
ξαf eq d

3ξ

ξ0
= 4πAK2(ν2)χα, (2.58)∫

ξαξβf eq d
3ξ

ξ0
= −4πA

(
K2(ν2)ηαβ −K3(ν2)χαχβ

)
, (2.59)

where Kn(ν2) is the modified Bessel function of the second kind of order

n. The moments with respect to the weight function can be determined by

considering the above integrals in the local Lorentz rest frame.

For the sake of simplicity we define φα as

(φα) = (χ0,~0), (2.60)

and by using the orthogonalization relations to calculate the unknowns, the

resulting relativistic orthogonal polynomials are given by

F(0) = 1, (2.61)

Fα
(1) = ξα − K2(ν2)

K1(ν2)
φα, (2.62)

Fαβ
(2) = ξαξβ − aαβγ F γ

(1) − b
αβ, (2.63)

where

bαβ =
K3(ν2)

K1(ν2)
φαφβ − K2(ν2)

K1(ν2)
ηαβ, (2.64)

and

aαβγ =
ηγδ +D(ν)φγφδ
2K2(ν2)D(ν)

[
K3(ν2)

(
ηαδφβ + ηβδφα

)
−
(
K3(ν2)− [K2(ν2)]2

K1(ν2)

)
ηαβφδ

+

(
K4(ν2)− K2(ν2)K3(ν2)

K1(ν2)

)
φαφβφδ

]
.

(2.65)

Here, the function D(ν) is defined by

[1 +D(ν)]−1 = 1 +
K2(ν2)

K1(ν2)
− K3(ν2)

K2(ν2)
. (2.66)

By following this procedure, we can calculate higher order polynomials. How-

ever, since here we are interested in recovering only up to the second moment

of the Maxwell-Jüttner distribution (energy-momentum tensor), using the ex-

pansion up to second order is sufficient. In particular, the third, fourth, and
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fifth order moments, which are needed to describe highly viscous fluids, would

increase dramatically the complexity of our expansion, and consequently its

numerical implementation.

Additionally, in the ultrarelativistic limit, kBT � mc2, i.e. ν � 1, we can

use the following asymptotic relation:

lim
ν→0

Kn(ν2) =
2n−1(n− 1)!

ν2n
. (2.67)

Using the resulting polynomials F(n), coefficients a(n) and N(n), with

Eqs. (2.48) and (2.67), we can expand the Maxwell-Jüttner distribution in

orthogonal polynomials,

f eq ' Ae−νξ
0

{
1 +

(
χ0ξ0 + 3

2
− χ0

ν
− ξ0ν

4

)
(~ξ.~χ)

+ ξxξyχxχy + ξxξzχxχz + ξyξzχyχz

+
4

ν4 − 6ν2 + 15

[
(ξx)2(χx)2 + (ξy)2(χy)2 + (ξz)2(χz)2

+

(
(1− ν2)ξ0 − 4− 2ν2

ν2

)
(~χ. ~χ)

]}
,

(2.68)

up to second order.

One can compare the Maxwell Jüttner distribution with the zeroth, first,

and second order expansions in the one dimensional case. The result of the

distributions versus ξx for the case β = 0.2 is presented in Fig. 2.2. Here, we

can observe that, as expected, as the order of the expansion increases, the

expansion becomes more accurate. For illustrative purposes, in the inset of

Fig. 2.2, we show in the local rest frame, the polynomials corresponding to

the zeroth (F(0)), first (F x
(1)), and second (F xx

(2)) orders.

We can write the Boltzmann equation, Eq. (2.32), as follows:

ξ0∂tf + ξa∂af = − ν

τc
(f − f eq), (2.69)

where again Latin subscript a runs over the spatial coordinates. In order to

discretize Eq. (2.69) and avoid a multi-time lattice, we need to consider the

temporal components of the discretized velocity 4-vector, i.e. ξ0
i , as constant.

Therefore, a transformation of the temporal component of both ξα and χα is
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Fig. 2.2: Comparison between the Maxwell Jüttner distribution function

and the zeroth, first, and second order expansions in one space dimension for

β = 0.2. In the inset, F(0), F
x
(1) and F xx

(2) polynomials, in the local rest frame

are shown.

required. We can write (ξαi ) = (ct/c0,~ca) and (χα) = (χ0/c0, ~χ), where ct, c0

and ca are constants related to the size of the lattice.

We will use a lattice configuration D3Q19, which can be expressed as

~ca =


(0, 0, 0) i = 0;

ca(±1, 0, 0)FS 1 ≤ i ≤ 6;

ca(±1,±1, 0)FS 7 ≤ i ≤ 18,

(2.70)

where the subscript FS denotes a fully symmetric set of points (see Fig. 2.3).

To find the discretized weights for the lattice, we use a quadrature procedure.

According to the quadrature rule, the discretized weights should satisfy the

relation ∫
R(~ξ)w(~ξ)

d3ξ

ξ0
=

N∑
i=1

R(ξi)wi, (2.71)
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where R(~ξ) is an arbitrary polynomial of order 2N or less. Using this relation,

we can construct a system of equations by replacing R(~ξ) with different

combinations of zeroth, first, and second order polynomials. The left hand

side of the above equation can be calculated by using Eqs. (2.57) to (2.59).

Thus, the resulting discrete weights are given by

w0 = 1 +
4c2
tν

2

361c2
0

− c2
t

c2
ac

2
0

, (2.72)

wi =
c2
t

2166c2
0c

2
a

(
361− 8c2

aν
2
)
, (2.73)

for 1 ≤ i ≤ 6, and

wi =
c2
tν

2

1083c2
0

, (2.74)

for 7 ≤ i ≤ 18. Note that we still need to calculate the constants related to

the size of the lattice, i.e. ca, ct and c0.

Considering the mentioned temporal transformation, the discretized form of

the equilibrium distribution function, in the ultrarelativistic limit (ν � 1),

becomes

f eq
i =

3

4
(ε+ p)

c2
0

c2
t

wi

{
1 + cxac

y
aχ

xχy + cxac
z
aχ

xχz + cyac
z
aχ

yχz

+ (
ctχ

0

2c2
0

− χ0

νc0

)(~ca · ~χ) +
4

15

[
(cxa)

2(χx)2 + (cya)
2(χy)2

+ (cza)
2(χz)2 − 4

ν2
(~χ · ~χ)

]}
.

(2.75)

Additionally, the discretized 4-momenta should satisfy the following rela-

tion for the energy-momentum tensor, i.e. the second order moment of the

distribution function,∫
pαpβf eq d

3p

p0
=

N∑
i=1

pαi p
β
i f

eq
i

= (ε+ p)
UαUβ

c2
− pηαβ = Tαβeq , (2.76)

where Tαβeq denotes the energy-momentum tensor at equilibrium and, here, N

is the number of discrete velocities, which is 19 in our case. Note that higher
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Fig. 2.3: D3Q19 lattice configuration.

order moments of the discrete equilibrium distribution can be calculated by

performing the respective sums, i.e.,

Tαβ...γ =
N∑
i=1

pαi p
β
i ...p

γ
i f

eq
i . (2.77)

However, they would not correspond to the ones of the Maxwell-Jüttner

distribution, because the latter require an expansion in higher order polyno-

mials. Their contribution to the dynamics of the fluid become important at

high values of viscosity, and since they are not exactly recovered, our model

does not work properly in that regime. Fortunately, many applications in

astrophysics and high energy physics deal with nearly-inviscid or weakly vis-

cous fluids.

We can simply find the constants related to the lattice size, using the fact

that in the tensor, the coefficient of UαUβ for different α and β should be

always the same. The calculated values for the constants are

ca =

√
19

ν
, ct/c0 =

√
27

ν
, c0 =

3

8
(9− 2

√
3). (2.78)
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Considering the natural units c = kB = 1, from the energy-momentum ten-

sor, one can obtain the following relations:

ε+ p =
4n

ν2
, p =

n

ν2
, ε = 3p, (2.79)

finding that the relation between ε and p corresponds to the well-known

equation of state in the ultrarelativistic limit.

Note that due to the fact that we have supposed ξ0
i to be constant, to avoid

a multi-time evolution lattice, there are some equations in the quadrature

procedure for the first order moment and the second order moment of the

distribution function which could not be satisfied simultaneously. Indeed, we

can choose whether to recover the first order moment or the second order mo-

ment in the quadrature. To satisfy the first moment of the Maxwell-Jüttner

distribution function leads to recover the equation for the conservation of

number of particles, ∂αN
α = 0, and the second order moment, the equation

for the conservation of momentum-energy, ∂αT
αβ = 0. To calculate the four

unknowns, namely Ux, Uy, U z and ε, knowing the the values of the compo-

nents of energy-momentum tensor and the equation of state ε = 3p would be

enough, as will be discussed later. Therefore, by using the ultrarelativistic

equation of state the dynamics of the system is not affected by the number

of particles and the equation for the conservation of momentum-energy is

therefore sufficient to describe the entire dynamics of the relativistic fluid.

For this reason, our quadrature is targeted to recover the second order mo-

ment, using a separate distribution function to recover the equation for the

conservation of number of particles, ∂αN
α = 0, based on the model proposed

by Hupp et al. [50] as we will discuss shortly.

Using the mentioned lattice to discretize the Boltzmann equation, Eq. (2.69)

can be written as follows:

fi(~x+ ~ca
c0

ct
δt, t+ δt)− fi (~x, t) = −c0νδt

τct
(fi − f eq

i ) . (2.80)

The left hand side of the equation is readily recognized as free-streaming,

while the right hand side is the discrete version of the collision operator

according to the model of Marle. In this equation, the following relation
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between δt and δx has been used:

δt =
ctδx

cac0

. (2.81)

In the ultrarelativistic limit, the shear viscosity using the model of Marle can

be calculated as:

η =
(ε+ p)

ν2

(
τ − 1

2

)
. (2.82)

As explained, in our model, this expression is only valid for small values of

τ (which leads to small values of the Knudsen number), where higher order

moments of the distribution can be neglected.

At each time step and at each lattice point, the values of the macroscopic

velocity and energy density can be evaluated using the calculated energy-

momentum tensor as follows

N∑
i=1

pαi p
β
i fi = (ε+ p)

UαUβ

c2
− pηαβ. (2.83)

Thus, a system of four equations, corresponding to the T 00, T 0x, T 0y and T 0z,

using the equation of state ε = 3p, can be solved to calculate the macroscopic

parameters.

2.4.2 Extended model for high velocities

At high velocities (β & 0.6), due to the high compressibility effects (high

Mach numbers), the described numerical scheme shows artificial discontinu-

ities in the velocity and pressure profiles, leading to numerical instabilities

in the long-term evolution [76]. We shall return to this issue in Sec. 2.5.

The relativistic Mach number can be expressed as Mar = γ(u)|~u|/γ(cso)cso

where cso is the velocity of sound, which is cso = c/
√

3 in the ultrarelativistic

regime. In order to overcome this problem, we first use a modified version of

the D3Q19 cell configuration, which is denoted by (ξαi ) = (ct/c0,~ca), where

~ca takes now the following form:

~ca =


(0, 0, 0) i = 0;

ca(±1, 0, 0)FS 1 ≤ i ≤ 6;

2ca(±1,±1, 0)FS 7 ≤ i ≤ 18.

(2.84)
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Since some of the discrete velocities go beyond the first and second neighbors

in the lattice, the scheme can support higher flow speeds. In order to find

the discretized weights, as well as the size of the lattice cells, we repeat the

same procedure as before obtaining

w0 = 1 +
7c2
tν

2

676c2
0

− c2
t

c2
ac

2
0

, (2.85)

wi =
c2
t

1014c2
0c

2
a

(
169− 2c2

aν
2
)
, (2.86)

for 1 ≤ i ≤ 6,

wi =
c2
tν

2

8112c2
0

, (2.87)

for 7 ≤ i ≤ 18, and

ca =

√
13

ν
, ct/c0 =

√
27

ν
, c0 =

3

8
(9− 2

√
3). (2.88)

The second step to extend our model, is to introduce the minimum modulus

(min mod) scheme to discretize the spatial components in the streaming term

in the Boltzmann equation, Eq. (2.69), i.e. pai ∂afi. The min mod scheme is

a flux limiter method that efficiently reduces the instability especially when

step discontinuities occur (e.g. in shock waves). The following relations

characterize this scheme [92]:

∂a(p
a
i fi) =

1

|δx~ea|
[hai (~x+ δx~ea)− hai (~x)] , (2.89)

hai (~x) = fa
L

i (~x) + fa
R

i (~x), (2.90)

fa
L

i (~x) = fa
+

i (~x) +
1

2
min mod

(
4fa+i (~x),4fa+i (~x− δx~ea)

)
, (2.91)

fa
R

i (~x) = fa
−

i (~x+ δx~ea)−
1

2
min mod

(
4fa−i (~x),4fa−i (~x+ δx~ea)

)
, (2.92)

fa
+

i =
1

2
(pai + |pai |)fi, fa

−

i =
1

2
(pai − |pai |)fi, (2.93)

4fa±i (~x) = fa
±

i (~x+ δx~ea)− fa
±

i (~x), (2.94)
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where ~ea is a unit vector in the direction of the corresponding spatial coordi-

nate. Let us remind that pai is independent of spatial coordinates. The min

mod function is defined as

min mod(X, Y ) =
1

2
min(|X|, |Y |)× [Sign(X) + Sign(Y )]. (2.95)

Note that in non-relativistic flows, the bulk viscosity plays an important role

in highly compressible flows and enhances the stability of numerical simula-

tions of fluids at very high velocities, including shock waves [24]. However,

in the ultrarelativistic limit, the energy-momentum tensor is traceless and

the bulk viscosity is zero [99, 77]. Therefore, in order to include the bulk

viscosity, we add the following term to the right hand side of the Boltzmann

equation, Eq. (2.69):

λi
∑

a=x,y,z

∂2
afi, (2.96)

where

λi =

{
0 i = 0;

αδx i 6= 0,
(2.97)

where α is a constant. A central finite difference scheme is used to calculate

the second order derivative. Chapman-Enskog analysis reveals that the bulk

viscosity obtained by this extra-term takes the form

ηb =
4pαν6

27
. (2.98)

Note that, like the analytical expression of the bulk viscosity for the model

of Marle, the above-mentioned bulk viscosity is also proportional to T−3,

and as expected goes to zero in the ultrarelativistic limit ν → 0. However,

this small value of bulk viscosity is sufficient to stabilize the system at high

velocities, as we are going to show in the next section.

Once all of the extensions above are taken into account, the discretized form

of the relativistic Boltzmann equation takes the following expression:

fi(~x, t+ δt)− fi(~x, t) +
c0

ct

δt

δx
[hai (~x+ δx~ea)− hai (~x)] =

− c0νδt

τct
[fi(~x, t+ δt)− (2f eq

i (~x, t)

− f eq
i (~x, t− δt))] +

coνδt

ct
λi
∑

∂2
afi(~x, t),

(2.99)
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where an implicit representation of the collision term is used, as proposed in

Ref. [72] to enhance the stability of the collision term.

As mentioned above, for the cases where the dynamics of the number of par-

ticles density is also needed, one has to solve the conservation equation, i.e.

∂αN
α = 0, with Nα = nUα. For this purpose, we add an extra distribution

function, gi, based on the model proposed by Hupp et al. [50], which fol-

lows the dynamics of the Boltzmann equation given by Eq. (2.99), without

the λi coefficient term. The corresponding modified equilibrium distribution

function is given by:

geq
i = w′inγ(u)

(
c0

ct
+ 3(~ca.~u) +

9

2
(~ca.~u)2 − 3

2
|~u|2
)
, (2.100)

w′0 =
1

10
, w′i =

6

35
− 1

42c2
a

, (2.101)

for 1 ≤ i ≤ 6,

w′i =
1

84c2
a

− 3

280
(2.102)

for 7 ≤ i ≤ 18, where we have used our new cell configuration, and w′i

are the respective discrete weights. Knowing the velocity from the second

order moment relation, the value of the number density in the model can be

calculated using the relation for the first moment, which is

N∑
i=1

pαi gi = nUα. (2.103)

Having discussed the model, we move on to the next section, where different

validations and results for the Riemann problem are provided, along with a

simulation of a shock wave colliding with an interstellar cloud.

2.5 Validation and results

In order to validate the model and the numerical procedure, we present

results for the simulation of relativistic shock wave propagation in viscous

quark-gluon plasma. The associated Riemann problem is studied and several

comparisons are drawn between the present relativistic LB model and the
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existing literature. Indeed, the Riemann problem is a challenging test for

numerical methods, since it involves a shock and rarefaction waves.

The initial condition of the Riemann problem consists of two regions with

different pressure, which are separated by a membrane in the middle of the

interval. The pressure in the left region (p0) is higher than the pressure in

the right region (p1). Both sides of the discontinuity are supposed to be

initially in the rest frame. Hence, spatial components of the initial velocities

for both sides are set to zero. At time t = 0, the membrane is removed

and a shock wave propagates from the high pressure region into the low

pressure region with velocity vshock and a rarefaction wave propagates in the

opposite direction. The shock velocity depends on the pressure difference,

the equation of state, and can be calculated analytically [98, 117]. The region

between the shock wave and the rarefaction wave has a constant pressure,

corresponding to the so-called shock plateau. In this region the velocity is

also constant (vplat).

In order to compare our results with existing models, we use the same condi-

tions as in Ref. [10, 74]. Therefore, one dimensional simulations are carried

out using 800 × 1 × 1 cells, where open boundary conditions are considered

at the two ends by copying the distribution vectors from the neighbour cells.

The cell size δx is taken to be unity, which corresponds to δx = 0.008fm in IS

units and δt can be calculated from Eq. (2.81). We use η/s as the character-

istic parameter of shear viscosity, where the viscosity is defined in Eq. (2.82)

and the entropy density is given by s = 4n − n lnλ, with λ = n/neq being

the fugacity of gluons, neq = dGT
3/π2 the equilibrium density, and dG = 16

the degeneracy of gluon.

First we compare the existing numerical results with the non-extended model

(hereafter basic model). For the first validation test, we set the initial pres-

sure at the left and right sides to p0 = 5.43GeV/fm3 and p1 = 2.22GeV/fm3,

respectively. This corresponds to 2.495× 10−7 and 1.023× 10−7 in numerical

units, respectively. Fig. 2.4 shows the pressure profiles at time t = 3.2fm/c

for different values of η/s, compared to the results reported by Ref. [10]

(hereafter BAMPS) and an analytical solution for the inviscid case reported

in Ref. [98]. As one can notice, very satisfactory agreement for different
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Fig. 2.4: Comparison between the velocity profile of the basic model and

BAMPS, for different values of η/s at weakly relativistic regime.

values of η/s is obtained.

As mentioned previously, the lattice Boltzmann method is computationally

very efficient. For instance, the above simulation took ∼ 220 ms on a single

core of an Intel CPU with 2.40 GHz clock speed, which is approximately

an order of magnitude faster than corresponding hydrodynamic simulations.

This corresponds to 1.4 Msup/s (million site update per second). To fur-

ther elaborate on the validity of our model, we compare with the results of

Ref. [74] (hereafter previous LBS) for different values of η/s. Fig. 2.5 shows

that pressure and velocity profiles are in good agreement with previous LBS

simulations. It is worth mentioning that, as it is apparent from Fig. 2.5, the

above mentioned pressure difference corresponds to β = |vplat| ∼ 0.2 (weakly

relativistic regime), while the velocity of the shock is vshock ∼ 0.65.

To study higher velocities, we consider higher pressure difference between

the left side and the right side, namely p0 = 5.43GeV/fm3 and p1 =

0.339GeV/fm3. This corresponds to 2.495 × 10−7 and 1.557 × 10−8 in nu-

merical units, respectively. The resulting pressure and velocity profiles for
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Fig. 2.5: Comparison between the basic model and the previous LBS model

at different η/s, for (a) the pressure and (b) velocity profiles in the weakly

relativistic regime.
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Fig. 2.6: Comparison between the basic model and the previous LBS model

at η/s = 0.01, for (a) the pressure and (b) velocity profiles in the moderately

relativistic regime.
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Fig. 2.7: Comparison between the basic and extended models for (a) the

pressure and (b) velocity profiles in the moderately relativistic regime.
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η/s = 0.01, are compared to the results with previous LBS in Fig. 2.6, show-

ing again very good agreement. It should be noted that, due to the above-

mentioned pressure difference, the matter behind the shock moves with the

velocity β ∼ 0.6 (moderately relativistic regime), while the shock itself goes

with the velocity vshock ∼ 0.92.

Note that the proposed model in the non-extended form (basic model) be-

comes numerically unstable for higher velocities (β & 0.6). In order to over-

come this problem, we use our extended model, which enhances the stability

of the numerical procedure without any appreciable loss of computational

efficiency. To further investigate this issue, we carry out two simulations

with the same conditions for relatively higher velocity, one using the basic

model, and the other one using the extended one. The pressure is set to

be p0 = 5.43GeV/fm3 and p1 = 0.1695GeV/fm3 for the left side and the

right side, respectively, which corresponds to 2.495× 10−7 and 7.785× 10−9

in numerical units. Here, η/s = 0.01, δt/δx = 0.25, and α = 0.15 for the

extended model.

The results for the pressure and velocity profiles are shown in Fig. 2.7 at

time t = 3.2fm/c. Note that the applied pressure difference corresponds

to β ∼ 0.7. Using the basic model, an artificial discontinuity is observed in

both the pressure and velocity profiles, and for higher velocities the numerical

scheme becomes numerically unstable. However, the extended model proves

capable of handling the simulation, the problem of the artificial discontinuity

being solved completely. Additionally, apart from the region affected by the

discontinuity, the good agreement between the results of two models can be

interpreted as a validation for the precision of the extended model. For the

extended model, with the same level of optimization as before, we can achieve

1.2 Msup/s for a single core CPU.

To the best of our knowledge, to date, there was no reported simulation of

shock wave in viscous flow for β & 0.6. However, for the inviscid case, which

corresponds to the Euler equation at macroscopic scale, there exists an ana-

lytical solution for the Riemann problem. Therefore, in order to validate our

extended model, we compare our results with the analytical solution of the

inviscid case in Ref. [117]. Hence, we need to solve the Euler equation by ig-
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(a)

(b)

Fig. 2.8: Comparison between the extended model and analytical results for

(a) the pressure and (b) velocity profiles in the highly relativistic regime.
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Fig. 2.9: Comparison of the results for the nearly-inviscid case and different

η/s, for (a) the pressure and (b) velocity profiles in the highly relativistic

regime.
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Fig. 2.10: Results of the simulation for (a) the velocity profile and (b)

Lorentz’s factor in the ultra-high relativistic regime.
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noring the viscous effects. It is worth mentioning that, in the classical lattice

Boltzmann method, the numerical solution becomes unstable as one tries to

set the shear viscosity to zero (τ = 1/2). This is also the case for our basic

model. However, in the extended model we can solve the Euler equation by

changing the collision step, such that instead of implementing the regular

collision, we simply set the discretized distribution functions to their corre-

sponding equilibrium values. This is similar to the procedure used in Ref. [86]

to solve the Euler equation in the non-relativistic case. As one can notice

from the Boltzmann equation, this corresponds to ignore the non-equilibrium

part of the distribution function which contains the information about the

dissipation. Therefore, we can reasonably neglect the viscous effects in the

macroscopic equations.

The results of our nearly-inviscid simulation are compared to the analyt-

ical results in Fig. 2.8. To drive the shock at velocity β ∼ 0.9 (highly

relativistic regime), the applied pressure is set to p0 = 5.43GeV/fm3 and

p1 = 5.43MeV/fm3, which corresponds to 2.495 × 10−7 and 2.495 × 10−10

in numerical units, respectively. The results are shown at t = 2.0fm/c and

very good agreement is found. The small discrepancies between our simu-

lation and the analytical curve are related to the fact that a small value of

dissipation due to the bulk viscosity inevitably remains in our simulation,

which is needed to increase the stability of the model.

The fact that we can model properly the nearly-inviscid flows at very high

velocities opens the possibility of using our model in astrophysical appli-

cations, where velocities are usually high and viscous effects are negligible.

Fig. 2.9 shows the same result at β ∼ 0.9 for different viscosities, compared to

the nearly-inviscid case at t = 2.0fm/c. The same conditions as mentioned

above are considered again. The effects of increasing η/s at this velocity are

similar to the cases of lower velocities.

In order to demonstrate the ability of the model to simulate ultra-high veloc-

ities, we consider the case where the initial pressures p0 = 5.43GeV/fm3 and

p1 = 0.0543MeV/fm3 are considered, which corresponds to 2.495×10−7 and

2.495× 10−12 in numerical units, respectively. We set δt/δx = 0.25, α = 0.2,

and η/s = 0.01. The results for the velocity profile and local Lorentz’s factor



2.5. VALIDATION AND RESULTS 43

at t = 2.0fm/c are presented in Fig. 2.10, which shows that for this case

β ∼ 0.99 and γ(u) ∼ 9. This indicates that our model is numerically stable

for simulating relativistic fluids with ultra-high velocities.

2.5.1 Astrophysical application

As an astrophysical example, we simulate a relativistic shock wave, gen-

erated by, say, a supernova explosion, colliding with a massive interstel-

lar cloud, e.g. molecular gas [70]. The ejecta from the explosion of such

supernovae are known to sweep the interstellar material up to relativistic

velocities along the way (relativistic outflows) [69]. We perform a three-

dimensional simulation of a shock wave passing through a cold spherical

cloud in a lattice of 200 × 100 × 100 cells. As mentioned earlier, in order

to solve the equation of conservation of particle density, an extra distribu-

tion function is used, Eq. (2.100). As initial condition, the region is divided

in two zones by the plane x = 65; at the right hand side (x > 65), the

density is set to n1 = 0.6cm−3 and the temperature to T1 = 104K (with

δx = δy = δz = 3 × 1014 Km). The massive cloud is modelled as a sphere

with radius of 10 cells and centered at the location (100, 50, 50), where we

neglect the drag force acting on the cloud due to the flow (the sphere will

remain at the same position during the whole simulation). Open boundary

conditions are applied to all the external boundaries, except the left one,

where an inlet boundary condition is applied by fixing the distribution func-

tion with the equilibrium distribution calculated at the initial condition. For

the boundary condition of the cloud, on its surface, the cells evolve to the

equilibrium distribution function evaluated at the constant values of n = n1,

T = T1 and ~u = 0. It should be mentioned that, at each cell, the pressure

can be calculated using the relation p = nT .

By changing the initial condition at the left hand side of the dividing plane

(x ≤ 65), we are able to tune the velocity of the shock wave. Two different

velocities are considered here. For the first case, we consider a shock wave

at weakly relativistic regime (β = 0.2), setting T0 = 2.71T1 and n0 = 0.9n1.

For the second case, highly relativistic regime (β = 0.9), theses values are
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(a)

(b)

Fig. 2.11: Snapshots of the three-dimensional simulation of a relativistic

shock wave colliding with a massive interstellar cloud. Here, the density field

is plotted in logarithmic color level in (a) the weakly relativistic regime and

(b) highly relativistic regime at time t = 1000. Streamlines represent the

velocity field and the iso-surface in (b) illustrates a region of low density

(log(n/n0) ∼ −2.5).
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(a)

(b)

(c)

Fig. 2.12: (a) Pressure, (b) density and (c) temperature profiles in the weakly

and highly relativistic regimes, for the nearly-inviscid and viscous cases. The

results are shown along the x axis at y = z = 50 at t = 600 time steps. The

thicker lines denote the regions where the interstellar cloud is located.
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T0 = 54.77T1 and n0 = 10.95n1. Fig. 2.11 shows the results of the 3D

simulation of the shock wave, after colliding with the massive interstellar

cloud for the density field for both cases. The simulations are performed in

the nearly-inviscid case, where α = 0.2 and δt/δx = 0.15. The density field is

plotted in logarithmic scale at t = 1000 time step, where red and blue denote

high and low values, respectively, and streamlines represent the velocity field.

In this figure, for the case of low velocity, we observe an increase in the density

in the shock front, due to the compression. For the case of high velocity, the

shock wave has already passed the domain at the considered time, and one

can see that a ring-shape region of low density is generated downstream of

the collision (see isosurface in Fig. 2.11).

In order to study the viscous effects, the same simulations are performed by

introducing the dissipation and taking τ = 1. Fig. 2.12 shows the pressure,

density and temperature profiles at weakly and highly relativistic regimes for

both, nearly-inviscid and viscous cases. The results are shown along the x

axis at y = z = 50 and at t = 600 time steps. Note that since p0, n0, and

T0 take very different values for the weakly and highly relativistic regimes,

in order to make a clear comparison of the results, we have normalized p, n,

and T with p0, n0, and T0, respectively. As it can be appreciated, the viscous

effects become relatively more important downstream of the cloud. Further-

more, it causes a pressure drop and decreases the density, while inducing a

corresponding increment of temperature in the gas. Note, that the effects

on the temperature are more significant at highly relativistic regime than

the pressure drop, while an opposite behavior is found at weakly relativistic

regime.

2.6 Summary

In this chapter, we have introduced a relativistic lattice Boltzmann model

that is able to handle relativistic fluid dynamics at very high velocities. For

this purpose, we have first expanded the Maxwell Jüttner distribution in

orthogonal polynomials, by assuming as weight function the equilibrium dis-
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tribution at the local rest frame. A discretization procedure has been applied

in order to adjust the expansion to the D3Q19 cell configuration, which, in

order to avoid a multi-time evolution of the Boltzmann equation, leads to

the problem of recovering only the conservation of the momentum-energy

tensor. However, in the ultrarelativistic regime (ε = 3p) the entire dynamics

of the system is governed by this equation and the first order moment is not

required. To extend the model to high velocities (β ∼ 1), we have used a

flux limiter scheme and introduce a bulk viscosity term into the Boltzmann

equation, to increase the numerical stability in presence of discontinuities.

In order to validate our model, we have compared the numerical results

for shock waves in viscous quark-gluon plasmas with the results of other

existing models, and found very good agreement. In addition, to the best of

our knowledge, we have for the first time successfully simulated shock waves

in relativistic viscous flow for β > 0.6. We have also suggested a way to

simulate nearly-inviscid flows (Euler equation) using the extended model by

modifying the collision step. For this case, we have compared the results

with the analytical solution, finding again very satisfactory agreement. This

offers a promising strategy to study astrophysical flows at very high speeds

and negligible viscous effects. Additionally, we have shown that our model

is capable of simulating the Riemann problem at ultra-high relativistic flows

(γ ∼ 10). Finally, we have studied the collision of a shock wave colliding

with a massive interstellar cloud in weakly and highly relativistic regimes,

for both inviscid and viscous cases.
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Chapter 3

Relativistic

Richtmyer-Meshkov Instability

After discussing the relativistic lattice Boltzmann model, as an application

for the numerical model, we study the relativistic effects on the Richtmyer-

Meshkov (RM) instability (see Ch. 1). The chapter is organised as follows: in

Sec. 3.1, the required extensions of the relativistic lattice Boltzmann model

to handle the ideal gas equation of state is explained; in Sec. 3.2, the nu-

merical results along with the linear stability analysis for the relativistic RM

instability are presented and discussed in detail; in Sec. 3.3, the cooling effect

of the RM instability, in particular when it is resulted from the interaction

of two Mach cones in a relativistic fluid, is studied; and finally in Sec. 3.4, as

a conclusion, an overall discussion of the chapter is provided.

3.1 Extensions to the relativistic lattice

Boltzmann

To perform the numerical study of the RM instability, we use the relativistic

LB method which is described in Ch. 2. As mentioned, this model is proposed

for the equation of state in the ultrarelativistic limit, i.e., ε = 3p. However,

for this case, the equation for the conservation of energy and momentum is

not affected by the density field, and the two conservation equations become

49
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decoupled. This effect inhibits the RM instability, where both equations must

be coupled. Therefore, we are interested in a more general form of the EoS,

thus, further extensions are required to adapt the model to the simulation of

flows obeying an ideal gas equation of state, given as [101],

p = (Γ− 1)(ε− ρc2), (3.1)

where Γ = cp/cv and cp and cv are specific heats at constant pressure and

volume, respectively, and ρ = nm is the mass density. At low temperatures,

i.e., mc2

kBT
� 1 , Γ = 5/3 while for high temperatures, i.e., mc2

kBT
� 1 , Γ = 4/3.

The ultrarelativistic equation of state, ε = 3p, is recovered by setting Γ = 4/3

and considering the limit ρc2 � ε.

Note that throughout this chapter, in order to provide a more general study,

we use the mass density (ρ) instead of the number density (n), such that the

results can be also applicable for the fluids with different atomic masses.

As discussed in the previous chapter, in the relativistic LB method based

on the model of Marle for the collision operator, the macroscopic variables

can be calculated by solving a system of equations, corresponding to the

moments of the equilibrium distribution. However, for the case of the ideal

gas equation of state, this system of equations cannot be solved due to the

fact that the first and the second order moments are coupled. This problem

can be solved by using the model of Anderson-Witting [1] for the collision

operator, see Eq. 2.33. The model of Anderson-Witting is based on the

Landau-Lifshitz decomposition [14]. Hence, the macroscopic variables can

be calculated using the following relation [61]

UαT
αβ = εUβ. (3.2)

Which means that ε and Uβ are the largest eigenvalue and corresponding

eigenvector of T βα , respectively.

The largest eigenvalue and the corresponding eigenvector can be calculated

numerically using the power iteration method. Power iteration algorithm

starts with an approximation for the biggest eigenvector Úβ
0 , which should

have a nonzero component in the direction of an eigenvector associated with
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the biggest eigenvalue, and the iteration is proceed as follows:

Úα
k+1 = Tαβ Ú

β
k , (3.3)

and the velocity is defined by normalizing Úβ
k+1:

Uβ
k+1 =

c2Úβ
k+1

Úβ
k+1Úβ,k+1

. (3.4)

The eigenvalue is calculated using Eq. 3.2, where the iteration is considered

to be converged when |(εk+1 − εk)/εk| < 10−8.

Knowing the values of the energy density and velocity from the above-

mentioned procedure, the density would be evaluated using the first order

moment and the pressure using the equation of state.

Additionally, in order to adapt the model to an ideal gas equation of state,

discretized distribution function should be modified as follows:

f eq
i =

3

4
(ε+ p)

c2
0

c2
t

wi

{
1 +

3(Γ− 1)(ε− ρc2)− ε
(Γ− 1)(ε− ρc2) + ε

+
522[ε− (Γ− 1)(ε− ρc2)]

33× 72[(Γ− 1)(ε− ρc2)− ε]
δi0 + cxac

y
aχ

xχy

+ cxac
z
aχ

xχz + cyac
z
aχ

yχz + (
ctχ

0

2c2
0

− χ0

νc0

)(~ca · ~χ)

+
4

15

[
(cxa)

2(χx)2 + (cya)
2(χy)2 + (cza)

2(χz)2 − 4

ν2
(~χ · ~χ)

]}
,

(3.5)

where δi0 is the Kronecker delta function. The second and third terms in the

big curly bracket represent the deviation from the ultrarelativistic EoS and,

as expected, in the ultrarelativistic limit, they go to zero.

The discretized form of the Boltzmann equation using the model of Anderson-

Witting has the following form:

fi(~x, t+ δt)− fi(~x, t) +
c0

ct

δt

δx
[hai (~x+ δx~ea)− hai (~x)] =

− c0νδt(ξµχ
µ/ν2)

τct
[fi(~x, t+ δt)− f eq

i (~x, t)] +
coνδt

ct
λi
∑

∂2
afi(~x, t).

(3.6)

Like before, the evolution of the density also follows the dynamics of the

Boltzmann equation given by Eq. (3.6), without the λi coefficient term and
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Fig. 3.1: Schematic of the initial condition of the two-dimensional shock tube

RM instability. The arrow shows the post-shock velocity on the right hand

side of the shock.

by replacing (ξµχ
µ/ν2) by unity. The discretized distribution function for

the first moment is the same as Eq. (2.100), replacing n by ρ.

For the Anderson-Witting model the shear viscosity can be calculated as:

η =
4

5
(ε+ p)(τ − 1

2
). (3.7)

We know that using the relativistic Boltzmann model leads to viscous hydro-

dynamics. However, it has been shown that viscosity has a negligible effect

on the perturbation amplitude in the non-relativistic shock tube RM instabil-

ity [13], and we can expect the same behavior in relativistic hydrodynamics.

We will show later that our numerical results confirm the negligible effect of

viscosity on the growth rate of the instability for the relativistic case, at least

in the range of viscosities considered here.

3.2 Results and discussions

3.2.1 Numerical Simulation

For the two-dimensional simulation of the shock tube RM instability, a do-

main of 200× 1200 lattice cells is considered. Periodic boundary conditions

are considered at top and bottom boundaries of the domain, while inlet

boundary condition is applied to the right boundary by setting the distri-

bution functions to the equilibrium distributions and for the left boundary
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outlet boundary conditions is considered by copying the distributions from

the neighbouring cells. For all simulations, the value of δt/δx = 0.15 and

α = 0.25, and we take Γ = 5/3. We refer to numerical units throughout this

chapter. For all the simulations considered here, a shock wave with the veloc-

ity β = 0.94, travelling from right to left (see Fig. 3.1), is passing through a

sinusoidal perturbation in the density located at xp = 1000 cells. The initial

position of the shock wave is at xs = 1100 cells. The single mode sinusoidal

perturbation at the interface is: x = xp + a sin(π
2

+ 2π
λ
y), where a is the

pre-shock amplitude of the interface and λ is the width of the domain. Note

that, hereafter the subscripts R, M , and L refer to the right hand side of

the shock, the region between the shock and the initial perturbation, and the

left hand side of the perturbation, respectively (see Fig. 3.1). The densities

at the two sides of the perturbation are different, and the initial pressure is

forced to be constant across the perturbation, i.e., pL = pM . The simula-

tions are performed assuming the equation of state of an ideal gas for various

pre-shock density ratios ρL/ρM and various values of the relativistic Mach

number of the shock wave, Mar = usγ(us)/csoγ(cso), where the velocity of

the shock us and the sound velocity cso can be computed as [98, 101]:

u2
s

c2
=

(pR − pM)(εR + pM)

(εM + pR)(εR − εM)
,

c2
so

c2
=

Γ(Γ− 1) pM
nM

Γ pM
nM

+ Γ− 1
. (3.8)

The values of the pre and post-shock pressures are calculated in such a way

as to obtain the desired value Mar, while ρR = 1 and ρM = 0.5 and the

velocity of the shock is fixed. Also, to fulfil the shock condition, on the

right hand side of the shock, the corresponding velocity jump (post-shock

velocity) due to the shock wave should be applied which can be calculated

as following: the relative velocity between pre and post-shock velocities, u12,

for a standing shock can be calculated as [61]:

u2
12

c2
=

(pR − pM)(εR − εM)

(εM + pR)(εR + pM)
. (3.9)

For a moving shock where the pre-shock velocity is zero this relation gives

the relative velocity between the shock and the post-shock velocity. There-

fore, the post-shock velocity, ∆u, can be computed by using the relativistic
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Fig. 3.2: Snapshots of the density field in the shock tube RM instability for

ρL/ρM = 28 and Mar = 2.4 at different times. From the top to the bottom,

snapshots correspond to the time t = 180, t = 450, t = 720, t = 990 and t =

1260, respectively. Blue to red denote low and high densities, respectively.

expression of the relative velocity, namely:

u12 =
us −∆u

1− us∆u/c2
. (3.10)

The schematic design of the initial conditions is shown in Fig. 3.1.

In the RM instability, the light fluid penetrates the heavy one generating

bubbles and the heavy fluid penetrates the light one giving rise to spikes.

Fig. 3.2 shows the density field and the evolution of the bubble and the spike

for the case ρL/ρM = 28, Mar = 2.4 and a = 32 (spatial numerical units) at
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Fig. 3.3: Snapshots of the vorticity field in the shock tube RM instability

for ρR/ρL = 14 and Mar = 2.4 at different times. From the top to the

bottom, snapshots correspond to the time t = 180, t = 450, t = 720, t = 990

and t = 1260, respectively. Blue and red denote highest positive (counter-

clockwise) and highest negative (clockwise) vorticity, respectively.
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different times, after the shock wave passed through the initial perturbation.

The amplitude of the perturbation grows in time and finally, the spike forms

the characteristic mushroom shape of the instability. It is worth mentioning

that the passage of the shock wave through the heavy fluid causes an increase

in its density, due to the compression, which is well visible in Fig. 3.2.

The mechanism producing the instability can be described using the dynam-

ics of the vorticity field. Vorticity is deposited on the perturbed interface by

the misalignment of the pressure gradient of the shock wave and the density

gradient at the fluid interface and is maximum near the points of minimum

deflection and decays to zero at points of maximum deflection. For a single

mode sinusoidal initial perturbation this results in two counter-rotating vor-

tices as shown in Fig. 3.3. The distribution and evolution of these vortices

would then result in increasing the amplitude of the perturbation in time, as

well as the formation of the mushroom structure.

For the purpose of comparison, we have also performed a numerical simula-

tion of the non-relativistic RM at the same density ratio and Mach number

as in Fig. 3.4(a), i.e., ρL/ρM = 28 and Ma = 2.4. The initial condition

is constructed the same way as for the relativistic case and the correspond-

ing results are presented in Fig. 3.4(b). Here, in order to draw a proper

comparison between the two cases, and given that we are simulating viscous

hydrodynamics, the Reynolds number is also the same for both cases.

Thus, following Ref. [85], we define the relativistic Reynolds number for the

shock tube relativistic RM instability as Rer = (ε + p)usγ(us)λ/η, where

η is the shear viscosity. For the non-relativistic numerical simulations, we

have used the lattice Boltzmann model proposed in Ref. [62], where a cou-

pled double distribution function thermal LB method with flexible specific

heat ratio is presented for the compressible Navier-Stokes equations. In this

LB method, a distribution function based on a multispeed lattice is used

to recover the compressible continuity and momentum equations, while the

compressible energy equation is recovered by another distribution function.

The second distribution function is then coupled to the density distribution

function via the thermal equation of state and in order to obtain an ad-

justable specific heat ratio, a constant related to the specific heat ratio is
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(a) Relativistic

(b) Non-Relativistic

Fig. 3.4: Comparison of the density field in the 2D shock tube RM instability

for (a) relativistic case and (b) non-relativistic case when ρL/ρM = 28 and

Mar = Ma = 2.4 at different times. For both cases, from the top to the

bottom, snapshots corresponds to the times t = 180, t = 720, and t = 1260,

respectively and blue to red denote low to high densities, respectively.
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(a) Relatvistic (b) Non-Relativistic

Fig. 3.5: Snapshots of the spikes in the 3D shock tube RM instability with

square cross section when the pre-shock density ratio is 28 and the Mach

number is 2.4 at time t = 570 for (a) relativistic and (b) non-relativistic

case. Arrows show the direction of the shock wave.

introduced into the equilibrium distribution function [62].

Fig. 3.4(b) shows that, in the non-relativistic RM, the amplitude of the per-

turbation grows much faster at early times, which leads to faster development

and more complex structures of the instability at later times. We shall fur-

ther discuss this matter later. Note that the density jump across the shock

wave is higher in the relativistic case than in the non-relativistic case.

The same behaviour can be also seen in Fig. 3.5, where the results for the

simulation of the 3D shock tube RM instability with square cross section

is presented, with ρL/ρM = 28 and Mar = Ma = 2.4. The 3D simulation

was performed with the same parameters as before and using a lattice size

of 1200 × 200 × 200 cells in x, y and z direction, respectively. The initial

condition for the perturbed surface is supposed to be x = xp+a sin(π
2

+ 2π
λ(θ)

r)

with a = 32. Here, giving that y and z are zero at the center of the yz plane,

r =
√
y2 + z2, θ = tan−1(y/z) and λ(θ) is chosen as the length of the center-

passing line from one boundary to the opposite one. Like in the 2D case, the

results show the faster growth of the instability and a more complex structure
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of the spike for the non-relativistic case.

3.2.2 Linear stability analysis

To gain a deeper understanding on the relativistic RM instability, we per-

form a linear stability analysis. To this end, we begin by considering the

growth of irregularities - in particular sinusoidal corrugations - at the inter-

face between two fluids when a relativistic shock wave passes through the

interface. In analogy with the non-relativistic case [97], we first approach

the problem by studying the Rayleigh-Taylor instability, which takes place

at the interface between two fluids at different densities, whenever one of the

two fluids accelerates into the other. Subsequently, we replace the constant

acceleration by an impulsive one approximating the shock wave.

The conservation equations of relativistic fluid dynamics (in the inviscid case)

in the covariant form are ∂αT
αβ = Gβ and ∂αN

α = 0, where Nα = ρUα and

Gβ is the force density. The relativistic force density can be defined as

(Gα) = (
~F .~uγ(u)

c
, ~Fγ(u)), (3.11)

where ~F is the three-dimensional force density vector [14]. For the sake

of simplicity, natural units i.e., c = kB = 1 are assumed hereafter. For

the Rayleigh-Taylor instability, we consider ~F = (ε + p)~g, where ~g is the

acceleration (gravity).

By inserting the corresponding relation for the moments in the relativis-

tic conservation equations, and performing some simple algebra we get the

relativistic continuity and motion equation in the inviscid case and in the

presence of an external force as following:

∂(ργ)

∂t
+ ~∇ · (ργ~u) = 0, (3.12)

(ε+ p)γ2

(
∂~u

∂t
+ ~u · ~∇~u

)
+ ~u

∂p

∂t
+ ~∇p = γ

(
~u(~F · ~u)− ~F

)
. (3.13)

To calculate the amplitude growth rate of the disturbance at the inter-

face, and without loss of generality, we deal with this problem in two di-

mensions. Thus, small perturbations are assumed for the velocity along
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x and y directions, i.e., δu and δv, and the physical variables such as

the density and pressure, i.e., δp and δρ. For the disturbance, we write

A(x, y, t) = Ak(x) exp(iky + ωt), where A can be replaced by δu, δv, δp and

δρ, as well as the amplitude of the perturbation h(t). Here k = 2π/λ is

the wave number, λ is the initial perturbation wavelength and ω is the wave

frequency of the perturbations.

We suppose that at t = 0 the interface is located at x = 0, and the only

non-zero component of ~g is in x direction, i.e., g. Assuming that pressure

and density are only functions of x, we substitute the perturbed quantities

in the conservation equations. Note that, in our relativistic shock tube con-

figuration, since the post-shock velocity ∆u remains constant, thus giving a

constant value for γ, we can expect that when the shock wave is far enough

from the interface, the conservation equation for density will be reduced to

~∇ · ~u = 0, i.e., incompressibility condition. Dropping the nonlinear terms

and considering initial equilibrium in the interface, i.e., ∂p/∂t = 0, we ob-

tain a system of linear differential equations. Solving these equations, and

considering ω/kc2 � 1 (in the limit of full dispersion relation), we find the

relation between ω and k, known as dispersion relation:

ω2 =
(ρ2 − ρ1)gk

γ(2p+ ε1 + ε2)
, (3.14)

where ε1 (ρ1) and ε2 (ρ2) are the energy (density) at both sides of the interface.

Hence, the amplitude of the perturbed interface grows according to

∂2h(t)

∂t2
= ω2h(t). (3.15)

In order to find a relation for the relativistic RM instability, as mentioned,

we replace the constant acceleration by an impulsive acceleration mimicking

the shock wave. Let 4u be the increment of velocity due to this impulsive

acceleration, we have g(t) = 4uδ(t), where δ(t) is the Dirac delta function.

Integrating Eq. (3.15) and using the fact that
∫
g(t)dt = 4u, we obtain the

asymptotic relation for the growth rate of the perturbation amplitude in the

linear regime of the relativistic RM instability:

vf =
∂h(t)

∂t
=

(ρ2 − ρ1)kh04u
γ(2p+ ε2 + ε1)

. (3.16)
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Here, h0 is the initial amplitude of the perturbation. Note that the linear

assumption is well justified only as long as the interface amplitude is small,

i.e., h/λ . 0.1 [11] and nonlinear effects become important when the am-

plitude becomes larger. Additionally we expect this relation to overestimate

the growth rate at the early times of the linear regime, when shock wave

is still close to the interface and the compressibility effects are important,

therefore, the condition ~∇ · ~u = 0 is not fulfilled any more. However, when

the shock wave is far enough from the interface, this condition is fulfilled and

the relation should give a good estimate for the asymptotic growth rate in

the linear regime given that post-shock values of the parameters are used.

This means that in Eq. 3.16, post-shock values of ρ1, ρ2 and h0 are used and

4u and p are the velocity jump and pressure at the interface.

Moreover, Eq. (3.16), is a general expression and does not depend on the

equation of the state. Thus, ε can be replaced by the corresponding function

of density and pressure according to the equation of state. In the non-

relativistic limit when γ → 1, using the equation of state of an ideal gas

[101], i.e., ε + p = ( 1
Γ−1

+ 1)p + ρ, and considering kBT � mc2 (such that

the pressure can be ignored with respect to the rest mass density), we get

the well known linear growth rate of the non-relativistic RM instability, i.e.,

vf = Akh04u, where A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number [97].

Likewise, we can introduce the relativistic Atwood number Ar, using the

ideal gas equation of state, obtaining:

Ar =
ρ2 − ρ1

ρ2 + ρ1 + 2( 1
Γ−1

+ 1)p
. (3.17)

Clearly, for the same value of the density ratio, ρ2/ρ1, we always have Ar < A,

due to the contribution of the pressure to the inertia of the relativistic fluid.

Thus we can write Eq. (3.16) as vf = (Ar/A)Akh04u/γ. The fact that

Ar < A for the same value of the density ratio, relevant at high temperatures,

decreases the amplitude growth rate compared to the non-relativistic RM

instability. Moreover, relativistic effects decrease the amplitude growth rate,

due to the Lorentz’s factor, γ. These arguments are in line with previous

observations in graphene flow [75], which shows that relativistic effects delay

the onset of turbulence and also agrees with our numerical results. In Fig. 3.6,
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Fig. 3.6: Snapshots of the density field in the 2D shock tube non-relativistic

RM instability with ρL/ρM = 8 and Ma = 2.4 at time t = 1260. Blue to red

denote low to high densities, respectively.

we report the results for the non-relativistic RM instability with a lower

density ratio, ρL/ρM = 8, than for the one used in Fig. 3.4(b). From this, we

can conclude that by lowering the density ratio, hence the Atwood number,

only a simple-structured instability grows at late times, which is qualitatively

similar to the relativistic case in Fig. 3.4(a). This shows that the qualitative

difference between the relativistic and non-relativistic case in Figs. 3.4 and

3.5, is due to the fact that A is high for the non-relativistic case while Ar

has a low value for the relativistic case, for the same density ratio.

3.2.3 Linear and nonlinear perturbation amplitude

In the RM instability, the perturbation amplitude, h(t), is calculated by

measuring the distance between the tips of the spike and the bubble divided

by two. Note that this definition of the perturbation amplitude is well-posed

if the spike and bubble are symmetric. For the range of the parameters

considered here, since Ar � 1, the growth of bubble and spike are symmetric

and therefore this condition is indeed fulfilled.

As previously mentioned, Eq. (3.16) is expected to be accurate enough to

describe the linear growth rate of the instability, except for early times. In

the sequel, we investigate the validity of this assumption.

For a fixed value for the adiabatic index and wave number, we consider

different values of density ratios and relativistic Mach numbers, i.e., 8 ≤
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Mar and density ratios in the linear regime with a = 8. Solid lines show the

theoretical growth rate, Eq.(3.16).
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ρL/ρM ≤ 28 and 2 ≤ Mar ≤ 3. Fig. 3.7 shows the results of h(t) for some

of the considered cases for different values of Mar and density ratios in the

linear regime when a = 8. By increasing Mar, as well as the density ratio,

the amplitude grows faster. The results are compared with the analytical

relation, Eq. (3.16), from which we can observe a good agreement between the

numerical and theoretical results. However, for early times, where ~∇ · ~u 6= 0,

the growth rate is smaller than the analytical expression. Note that t = 0 is

defined as the time when the shock wave has just passed the interface, thus

the post-shock values of the initial amplitude are smaller than the pre-shock

initial amplitude, because of the compression due to the shock wave.

Fig. 3.8 shows the numerical results for h(t) in the nonlinear regime with

a = 16. Since we are interested in a general relation for the relativistic RM

instability, vf can be taken as an approximation for the initial growth rate

of the nonlinear regime. In order to describe the effect of the nonlinearity on

the growth rate, we propose the following relation, ensuring its decrease in

time, ∂h(t)/∂t = vf/(1 + bt).

This implies that the amplitude behaves like h(t)− h(0) = (vf/b) ln(1 + bt),

where b should be a function of ρL/ρM and Mar.

By fitting all numerical results for different density ratios and Mar, we obtain

the following expression for the nonlinear regime (see Fig. 3.8)

∂h(t)

∂t
=

vf
1 + a1( ρL

ρM
)1/2Mart

, (3.18)

where a1 = 9.033×10−5 is a constant value independent of the Mach number

and the density ratio.

The fact that nonlinear growth is roughly proportional to t−1 at late times

has also been observed in the non-relativistic case [11]. In addition, in the

inset of Fig. 3.8 the effect of viscosity on h(t) is presented for two cases, a = 8

and a = 16. In both cases it can be observed that the viscosity, in the range

considered here, has negligible effects on the growth rate.

In order to explore the consequences of relativistic effects, we plot the asymp-

totic linear growth rate of the instability, Eq. (3.16) as a function of the tem-

perature, for different equations of state (see Fig. 3.9). Here, we compare the
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Fig. 3.8: Results of the numerical simulation h(t) versus time for different

Mar and density ratios in the nonlinear regime. Solid lines are the resulting

h(t), using the proposed relation, Eq.(3.18). In the inset, h(t) versus time for

different values of viscosities (relaxation time τ in the relativistic LB model)

are presented for Mar = 2.2, ρL/ρM = 20 and for the cases a = 8 (lower

curve) and a = 16 (upper curve).
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Fig. 3.9: Perturbation growth rate in the linear regime calculated from

Eq.(3.16) as a function of temperature for different equations of state. The

blue dashed-dotted line and red dashed line are for the ideal gas equation of

state (Eq. (3.1)) for Γ = 5/3 and Γ = 4/3, respectively, and the solid black

line is for the Synge equation of state, Ref. [114]. In the inset, the effect of

increasing β = 4u/c on the perturbation growth rate in the linear regime

(using the ideal gas equation of state: solid lines for Γ = 5/3 and dashed lines

for Γ = 4/3), for different temperatures, comparing with the non-relativistic

RM instability (dashed-dotted line) is shown.
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ideal gas equation of state, Eq.(3.1), for two values of Γ = 5/3 and Γ = 4/3,

with the equation of state for an ideal relativistic gas developed by Synge

[114].

We have defined the dimensionless parameter ξ = mc2/kBT (inverse tempera-

ture) and the following parameters are considered: h0 = 20, k = 0.025,4u =

0.6, and the post-shock density ratio is 18. Fig. 3.9 shows that the per-

turbation growth rate depends on the equation of state and decreases with

increasing temperature, i.e., increases with relativistic effects. It is worth

noting that the Synge equation of state behaves like the ideal gas equation

of state with Γ = 5/3 at low temperatures, while it goes to the one with

Γ = 4/3 in the limit of high temperatures.

In the inset of Fig. 3.9, the linear growth rate of the amplitude versus the

velocity, β = 4u/c, for the ideal gas equation of state, is compared with the

respective relation for the non-relativistic RM instability, for different tem-

peratures. Note that for low velocities and low temperatures, both relations

agree, but by further increasing β and/or temperature, the perturbation am-

plitude decreases as compared to the non-relativistic case. Additionally, each

relativistic result in the inset of Fig. 3.9 is presented for two cases, Γ = 5/3

and Γ = 4/3, and, as expected, the results of Γ = 5/3 are closer to the

non-relativistic ones.

3.3 Cooling effect of Richtmyer-Meshkov in-

stability

Here we study a non-trivial system where the RM instability can appear,

and in particular we are interested in the thermal effects of the instability.

We investigate the interaction of two relativistic Mach shocks, generated by

traveling of particles in a relativistic fluid, and the resulting RM instability.

In the presence of disturbance traveling in a relativistic fluid, the energy-

momentum conservation can be expressed as ∂µT
µν = Sν , where the source

term Sν is the energy deposited by the disturbance and can be written in
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the form [9, 5]:

Sν =
1

(
√

2πσ)2
exp

{
− [~x− ~xjet]2

2σ2

}(
dE

dx
,~0

)
, (3.19)

where the momentum deposition is ignored and the disturbance is assumed to

travel with the velocity of light. Here ~xjet is the location of the disturbance,

where σ = 0.04 and dE/dx = 7.5 are considered.

Additionally, to include the external force, Sν , into the relativistic LB model,

we need to calculate the discretized forcing term which will be added to

the discretized Boltzmann equation. Assuming the external force as (Sν) =

(S0, ~S), the discretized forcing term which should be added to the discretized

Boltzmann equation, Eq. (3.6), becomes:

Si =
2ν2c3

0

3c3
t

(1 + I)
δt

δx
wi (Γe− (Γ− 1)ρ)

[
ctS

0

c0e
+
~ξ · ~S
p

]
, (3.20)

where I is the contribution of the ideal gas equation of state defined as:

I =
3(Γ− 1)(ε− ρc2)− ε
(Γ− 1)(ε− ρc2) + ε

+
522[ε− (Γ− 1)(ε− ρc2)]

33× 72[(Γ− 1)(ε− ρc2)− ε]
δi0. (3.21)

For the numerical simulation of the interaction between two Mach cones, two

domains with 500 × 500 and 250 × 250 cells are considered. All boundaries

are taken as free outlets and the ideal gas equation of state is assumed with

Γ = 4/3. The initial position of the disturbance moving along the x direction

is (L/3, L/2), while the disturbance moving along the y direction starts at

(L/2, 5L/6), L being the length of the domain. We take δt/δx = 0.15 and

α = 0.25.

In Fig. 3.10, we show that, after the interaction of two Mach cones, when

the shock front of a Mach cone passes through the density variation which

is caused by the other Mach cone, the RM instability starts to grow in the

direction of the advancing shock front. In this figure, we also show that

downstream the moving disturbance and due to the sweeping effect of the

shock wave, the density decreases locally. It is worth mentioning that the

current simulation shows only one particular case of the interaction of the

Mach cones. Nevertheless, what causes the instability is the interaction of
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(a) (b)

(c) (d)

Fig. 3.10: Snapshots of the density profiles for two interacting Mach cones in

a relativistic fluid at times (a) t = 180 (b) t = 360 (c) t = 720 (d) t = 1200.

Here Tmed = 0.3 and the domain is 500×500. The red and blue colors denote

high and low values of the density, respectively.

one Mach cone with the density fluctuation due to the passage of another

Mach cone at earlier times.

Regarding the thermal behaviour of the fluid during this phenomenon, as

expected, the passing disturbance in the medium increases the average tem-

perature, since it deposits energy to the fluid according to Eq. (3.19). Here,
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Fig. 3.11: Decrease in the average temperature of a relativistic fluid due to

the RM instability developed as a result of the interaction of two Mach cones,

for different initial temperatures, Tmed. Here ∆Tins = T0 − T ′med, with T ′med

being the average temperature and T0 the average temperature right after the

disturbances have left the simulation zone. Thus, ∆Tins denotes the decrease

in temperature of the media compared with the time when the disturbances

and shock waves had left the domain. Here the domain of simulation is

250× 250.

.
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we are interested in the effects of the aforementioned RM instability on the

average temperature. Thus, we compute the average temperature of the

medium and compare it to the average temperature when the disturbances

and shock waves have left the domain completely. In the absence of the in-

stability, the temperature should remain constant because of the steady state

condition. However, we see that, due to the presence of the instability, the

temperature starts to decrease, see Fig. 3.11. The simulation is performed for

different initial domain temperatures and we also observe that the decrease

in the initial temperature enhances the cooling effect. This can be explained

by realizing that relativistic effects, which are more dominant at higher tem-

peratures, weaken the RM instability, as explained before. In fact, Eq. (3.16)

suggests that the growth rate of the relativistic RM instability decreases as

the temperature increases, i.e. the denominator increases in Eq. (3.16). This

is in agreement with the results in Fig. 3.11, where we show that a higher ini-

tial temperature leads to a smaller decrease in the average temperature due

to the RM instability, since the instability is weaker at higher temperatures.

At this point, we have shown that the RM instability can appear during the

interaction of Mach cones in a relativistic fluid, and that it contributes to the

cooling of the medium. In order to single out the instability and to confirm its

cooling effect, we consider a simplified configuration, namely the shock tube

RM instability. The reason for considering a simple shock tube geometry is

twofold; first, this is a standard geometry to study the RM instability, second,

it is straightforward to compare the cases with and without the instability.

For comparison, the cases without the instability are also simulated by simply

setting a = 0 (unperturbed interface), while other parameters are the same

as the ones for the case with the instability. The snapshots of the density and

temperature profiles, for the perturbed case with the density ratio ρL/ρM =

28 and relativistic Mach number Mar = 2.4 at a late time of the instability,

are presented in Fig. 3.12. By measuring the average temperature of the

fluid on both cases, with (perturbed interface) and without (unperturbed

interface) instability, the decrease in temperature due to the instability can

be computed.

In Fig. 3.13, one can notice that in the case of a perturbed interface, the
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Fig. 3.12: Snapshots of the density (top) and temperature field (bottom) at

t = 1260 in the shock tube RM instability with perturbed interface. Here,

we consider the high density ratio ρL/ρM = 28 and Mar = 2.4. Blue and red

colors denote low and high values, respectively.

average temperature is lower, where the cooling effect of the instability in-

creases in time. This is in agreement with the results shown in Fig. 3.11.

The results for different density ratios in Fig. 3.13 show that, as the density

ratio increases, the decrease in the average temperature is enhanced. This is

because at higher density ratios the instability grows faster, as predicted by

Eq. (3.16).

Back to the our original problem of Mach cone interaction, we explore the

possible experimental observable consequences of the existence of this kind of

interactions. To this purpose, we suggest to study the two-particle correlation

(TPC) function [5, 6]. Our hydrodynamical calculations provide macroscopic

quantities such as temperature and velocity fields. Thus, to compare the

hydrodynamical results with experimentally measured observables (e.g. in

quark-gluon plasma), a description of the conversion of the fluid into particles

is needed. This can be achieved by the Cooper-Frye freeze-out approach,

where the particle emission pattern is given by (see Ref. [21]):

dN

pTdpTdφdy
=

∫
Σ

dΣµp
µ A

(2π)2
exp(−U

µpµ
T

), (3.22)

where pT =
√
p2
x + p2

y is the transversal component of the momentum of

a particle, φ is the azimuthal angle, A is the pre-factor for the Maxwell-
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We have set Mar = 2.4.



74 CHAPTER 3. RELATIVISTIC RICHTMYER-MESHKOV INSTABILITY

−100 0 100

0

0.2

0.4

0.6

0.8

1

φ

C
F

(φ
)

 

 

Interacting cones

Non−interacting cones

t=180

(a)

−100 0 100

0

0.2

0.4

0.6

0.8

1

φ

C
F
(φ
)

 

 

t=720

(b)

Fig. 3.14: Two particle correlation (TPC) function for interacting and non-

interacting Mach cones for the case Tmed = 0.3 in a domain of 500 × 500
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interaction).
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Jüttner distribution function, y = 1/2 ln E+pz
E−pz is called rapidity and dΣµ is

the integral surface in space-time. Using isochronous freeze-out hypersurface,

dΣµ = (1,~0)d2~x, we have [5]:

dN

pTdpTdφdy
=

A

(2π)2

∫
d2~xmT cosh y × exp{− γ

T
[mT cosh y −

pTux cosφ− pTuy sinφ]} (3.23)

where mT = E/ cosh y.

Upon defining:

dNass

pTdpTdφdy
=

∫
Σ

dΣµp
µ[

A

(2π)2
exp(−U

µpµ
T

)− f0], (3.24)

with f0 the Maxwell Jüttner distribution function at T = Tmed and ~u = ~0,

the correlation function at mid-rapidity (y = 0) is given by [5]:

CF (φ) =
1

Nmax

(
dNass(φ)

pTdpTdφdy
− dNass(0)

pTdpTdφdy

)∣∣∣∣
y=0

, (3.25)

where Nmax normalizes the correlation. In this study the value of pT = 1 is

considered.

We propose that by measuring the TPC function, one can investigate the

existence of the Mach cone interaction. Hence, using our numerical data,

the TPC function for two interacting Mach cones is compared to its non-

interacting counterpart (see Fig. 3.14). The TPC function for non-interacting

Mach cones is calculated by summing up the TPC function of each Mach

cone in the absence of the other one. Fig. 3.14a shows that prior to the

interaction, both curves are in good agreement, while after the interaction

(see Fig. 3.14b), the TPC function for the case of interacting Mach cones

differs significantly from the non-interacting case. This shows that if the

Mach cones shock waves do not interact with each other, the TPC functions

for the non-interacting and interacting cases should remain the same, while,

due to the interaction, the functions deviate from each other.
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3.4 Summary

Summarizing, in this chapter we have shown that relativistic effects weaken

the RM instability. We have developed a linear stability analysis to predict

the asymptotic amplitude growth rate of the interface in the linear regime.

Based on these results, we have introduced the relativistic Atwood number,

Ar, which is typically smaller than the non-relativistic one, A, for the same

value of the density ratio. We have also proposed a nonlinear relation for the

evolution of the interface amplitude for different values of density ratio and

relativistic Mach number.

The numerical model used for the study of the relativistic RM instability

is an extension of the relativistic LB model proposed in Ch. 2, capable of

handling the ideal gas EoS.

Additionally, we have investigated Mach cone interactions and the resulting

RM instability in a relativistic fluid. Our results show that the interaction

of two Mach cone shock waves, and in particular the interaction of a shock

front of a Mach cone with the density variations generated by the other one,

leads to the growth of the RM instability in the direction of the advancing

shock front. Regarding the thermal behaviour of this phenomenon, we have

shown that the average temperature of the media decreases because of the

instability.

To single out the effect of the instability on this cooling process, we have

considered shock tube RM instability simulations, which confirm that the

instability causes a decrease in the average temperature. Several simulations

have been performed for different initial temperatures and density ratios,

which demonstrate that decreasing the initial temperature and/or increasing

the density ratio, enhances the cooling. This is in line with the analytical re-

lation for the linear growth rate of the relativistic RM instability, Eq. (3.16),

since decreasing the temperature and/or increasing the density ratio, en-

hances the instability.

We have also shown that the interaction of Mach cones significantly affects

the TPC. Therefore, comparing the observed TPC with the measured TPC

of non-interacting Mach cones, may provide a suitable tool to experimentally
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identify the Mach cone interaction.

The results of this chapter may be relevant to phenomena characterised by the

presence of RM instability and/or Mach cones in astrophysics, high energy

physics, and plasma physics, where relativistic effects play a major role.

Furthermore, in the context of high energy physics, since quark-gluon plasma

can be described by hydrodynamic models of nearly perfect fluids [64, 125],

our results might also have some interest for the study of transport phenom-

ena and EoS in quark-gluon plasmas, particularly in the regimes where such

plasmas support shock-waves [45, 44].
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Chapter 4

LB Model for Relativistic

Magnetohydrodynamics

In this chapter we describe the derivation of an LB model for relativistic

magnetohydrodynamics (see Ch. 1). The chapter is organised as follows: in

Sec. 4.1 the principles of magnetohydrodynamics and the governing equations

in the non-relativistic case are discussed in Sec. 4.2, the basic equations for

resistive relativistic MHD are presented; in Sec. 4.3, the development of a

lattice Boltzmann model for solving the governing equations is elaborated;

in Sec. 4.4, validation tests for the model in the ideal and resistive regimes as

well as several applications of the model in the context of relativistic magnetic

reconnection are presented; and finally in Sec. 4.5, as a summary, an overall

discussion of the model and the results are provided.

4.1 Magnetohydrodynamics

Magnetohydrodynamics is the study of the dynamics of the electrically con-

ductive fluids in the presence of the electromagnetic fields. Electrical conduc-

tive materials are able to conduct an electric current and electrical conduc-

tivity is an intrinsic property that quantifies how strongly a given material

conducts the current and is commonly represented by the Greek letter σ.

Among others, one can mention plasmas, liquid metals, electrolytes and salt

water as electrical conductive fluids.

79
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The fundamental concept behind MHD is that magnetic fields can induce

currents in a moving conductive fluid, which in turn creates forces on the fluid

and also changes the magnetic field itself. The set of governing equations

that describe MHD are a combination of the equations of fluid dynamics

and Maxwell’s equations of electromagnetism and because of the coupling

between these differential equations, they should be solved simultaneously.

Before discussing the relativistic MHD equations in the next section, let us

have a look at the non-relativistic MHD. For the non-relativistic case the

fluid’s governing equations are the Navier-Stokes equations. For simplicity,

we consider here the incompressible isothermal assumptions, meaning that

the energy equation is irrelevant and the continuity equation for the fluid

reduces to ~∇ · ~u = 0. The momentum equation has the form

ρ(∂t~u+ ~u · ~∇~u) = −~∇p+ µ∇2u+ ~J × ~B, (4.1)

where ρ is the density of the fluid, µ is the shear viscosity which is assumed

to be constant, ~B is the magnetic field vector and ~J is the electrical current.

The last term on the right hand side, ( ~J × ~B), is the so-called Lorentz force

and represents the effect of the magnetic filed on the fluid.

The governing equations for the electromagnetic fields are the Maxwell equa-

tions:

~∇ · ~E =
1

ε0
ρc, (4.2)

~∇ · ~B = 0, (4.3)

1

c2
∂t ~E − ~∇× ~B = −µ0

~J, (4.4)

∂t ~B + ~∇× ~E = 0. (4.5)

Here, ~E is the electric field, ρc is the charge density, and ε0 is the permittivity

of free space which relates to the permeability of the free space, µ0, through

the relation c2ε0µ0 = 1.

The displacement current in the Ampère’s law, i.e., 1
c2
∂t ~E can be neglected

in the non-relativistic case (see Ref. [42] and the references therein), thus we

have

~∇× ~B = µ0
~J, (4.6)
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which results in a great simplification of the equations as we will describe

in the following. First, the Lorentz force in the momentum equation can be

simplified using Eq. (4.6) and the identity

1

2
~∇( ~B · ~B) = ( ~B · ~∇) ~B + ~B × (~∇× ~B). (4.7)

Thus, we can write the Lorentz force only as a function of the magnetic field

as

~J × ~B =
( ~B · ~∇) ~B

µ0

− ~∇(
B2

2µ0

). (4.8)

Therefore, the momentum equation will be

ρ(∂t~u+ ~u · ~∇~u) = −~∇p+ µ∇2u+
( ~B · ~∇) ~B

µ0

− ~∇(
B2

2µ0

), (4.9)

Furthermore, Ohm’s law couples the fluid’s and Maxwell equations, which in

the resistive non-relativistic case has the form:

~J = σ( ~E + ~u× ~B), (4.10)

where σ is the conductivity of the plasma. Therefore, by replacing the cur-

rent, ~J , in the Ohm’s law by Eq. (4.6) we can find the electric field, ~E as

a function of ~u, ~B and σ. Now by substituting this relation for the electric

field in the Faraday’s law, Eq. (4.5), we get

∂t ~B = ~∇× (~u× ~B − 1

µ0σ
~∇× ~B), (4.11)

which describes the time evolution of the magnetic field. Note that in the

non-relativistic case, because we could neglect the displacement current in the

Ampère’s law, it is possible to eliminate the electric field from the Maxwell

equations. As expected, this will simplify the governing equations and the

corresponding numerical methods to solve these equations. As we will discuss

in the next section this is not the case for the resistive relativistic MHD, since

the displacement current can not be ignored there.

Summarizing, for the non-relativistic, incompressible and isothermal case we

only need to solve Eq. (4.9) and Eq. (4.11) with the following constraints

~∇ · ~u = 0, ~∇ · ~B = 0. (4.12)



82
CHAPTER 4. LB MODEL FOR RELATIVISTIC

MAGNETOHYDRODYNAMICS

Note that because of the ~u × ~B term in Eq. (4.11), the value of ~u should

be know to solve this equation which means that Eq. (4.11) is coupled to

Eq. (4.9) and they should be solved simultaneously.

Another approximation that further simplifies the MHD equations is the

ideal MHD approximation, which holds when the conductivity is very high

(σ → ∞). As mentioned in Ch. 1, this approximation can be reasonably

accurate in many MHD applications. In fact, ideal MHD is applicable if the

fluid (plasma) is strongly collisional, so that the time scale of collisions is

shorter than the other characteristic times in the system, and the resistivity

(η = 1/σ) due to these collisions is small. In particular, the typical magnetic

diffusion times over any scale length present in the system must be longer

than any time scale of the system. In the ideal MHD limit the Ohm’s law

have the form

~E = −~u× ~B, (4.13)

and the evolution equation for the magnetic field will be

∂t ~B = ~∇× (~u× ~B). (4.14)

As we will show later, like in the non-relativistic case, in the relativistic

MHD the ideal approximation will also simplify the governing equations.

For further information about the non-relativistic MHD see Ref. [23].

4.2 The resistive relativistic MHD equations

For resistive relativistic MHD, the hydrodynamics conservation equations

can be written in the covariant form as

∂µN
µ = 0, ∂µT

µν
Total = 0, (4.15)

where Nµ is defined in Eq. (2.37) and T µνTotal is the total energy-momentum

tensor defined as the sum of fluid energy-momentum tensor, Eq. (2.36), and

the contribution of the electromagnetic fields, i.e.,

T µνTotal = T µνFluid + T µνEM, (4.16)
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with

T µνEM = ε0(F µρF ν
ρ +

1

4
F ρσFρση

µν), (4.17)

where F µν is the Maxwell electromagnetic tensor defined as

(F µν) =


0 −Ex −Ey −Ez

Ex 0 −cBz cBy

Ey cBz 0 −cBx

Ez −cBy cBx 0

 . (4.18)

In addition to the mentioned hydrodynamics conservation equations, the

governing equations for the electromagnetic fields, i.e., Maxwell equations,

also need to be considered, which in the covariant form read as

∂νF
µν = −µ0cI

µ, (4.19)

and

∂νF
∗µν = 0, (4.20)

where (Iµ) = (cρc, ~J) is the four-vector of electric current where F ∗µν is the

Faraday tensor defined as

F ∗µν =
1

2
εµνλκFλκ, (4.21)

with εµνλκ the Levi-Civita tensor.

By choosing an appropriate decomposition of the Maxwell tensor, one can

show that Eqs. (4.19) and (4.20) yield the familiar Maxwell equations [14],

i.e., Eqs. (4.2), (4.3), (4.4), (4.5). The equation for conservation of current

∂tρc + ~∇ · ~J = 0, (4.22)

can be obtained by taking the divergence of Eq. (4.4) by considering Eq. (4.2)

and Eq. (4.3) as constraints.

Like in the non-relativistic case, the coupling between the fluid equations and

Maxwell equations is expressed by Ohm’s law. In general, the explicit form of

the current four-vector Iµ depends on the properties of the electromagnetic
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fields as well as the fluid variables. Here we use Ohm’s law for a resistive

isotropic plasma as [58]

~J = σγ

[
~E + ~u× ~B − ( ~E · ~u)~u

c2

]
+ ρc~u. (4.23)

It is worth mentioning that in the fluid rest frame Ohm’s law becomes

~J = σ ~E, (4.24)

and in the limit of σ → ∞ one can obtain the well-known result for ideal

MHD, i.e., Eq. (4.13).

The major difference between the numerical models for ideal and resistive

MHD originates from the fact that, in the ideal case, one can substitute

the electric field ~E in all the equations, using a simple algebraic relation,

i.e., Eq. (4.13), and thus one can define the electromagnetic induction four-

vector F ∗µνUν [96]. This leads to a considerably simpler and less expensive

numerical algorithm, compared with the resistive MHD.

To summarize the governing equations, and by replacing Eq. (4.23) into

Eqs. (4.4) and (4.22), we have 12 equations, i.e., Eqs. (4.15), (4.4), (4.5)

and (4.22) and 13 unknowns, i.e., ~u, ~B, ~E, ε, p, n and ρc. This system of

equations will be complete by including the equation of state. Here again,

we consider the ideal gas equation of state [101]

p = (Γ− 1)(ε− nc2). (4.25)

4.3 Lattice Boltzmann model for resistive

relativistic MHD

In this section we describe our lattice Boltzmann model to solve the afore-

mentioned governing equations.

4.3.1 Relativistic fluid equations

The LB model to solve the equations of motion of the fluid, i.e., Eq. (4.15),

is an extension of the model introduced in Chs. 2 and 3, where the relativis-
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tic Boltzmann equation, based on the Anderson-Witting collision operator

is used. To include the contribution of electromagnetic fields in the total

energy-momentum tensor, the distribution function is extended by adding

the corresponding terms as will be discussed shortly.

For this model, the D3Q19 lattice configuration, described in

Eq. (2.70) is used with its corresponding discretized weight functions,

Eqs. (2.72),(2.73),(2.74), and lattice constants, Eq. (2.78). Also, the

discretized form of the relativistic Boltzmann equation is the same as

Eq. (3.6).

The discretized equilibrium distribution function to recover T µνFluid has been

presented before in Eq. (3.5). Now, to include the electromagnetic contribu-

tion to the energy-momentum tensor, T µνEM, additional terms need to be added

to this discretized distribution function. Let us elaborate the contribution

of electromagnetic fields in the energy-momentum tensor by providing the

components of T µνEM using Eqs. (4.17) and (4.18). Thus, we have

T 00
EM =

ε0
2

(E2 + c2B2), (4.26)

T 0i
EM =

1

µ0c
( ~E × ~B)i, (4.27)

T ijEM = ε0

[
−EiEj − c2BiBj +

1

2
(E2 + c2B2)δij

]
, (4.28)

where E2 and B2 are the magnitude of the electric and magnetic fields, re-

spectively, and δij is the Kronecker delta. Note that, adding these terms to

the total energy-momentum tensor corresponds to adding the Lorentz force

and Joule heating to the macroscopic equations. The following expression

shows the complete discretized equilibrium distribution function which recov-
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ers the total energy-momentum tensor with the ideal gas equation of state

f eq
i =

3

4
(ε+ p)

c2
0

c2
t

wi

{
1 +

3(Γ− 1)(ε− nc2)− ε
(Γ− 1)(ε− nc2) + ε

+
361[ε− (Γ− 1)(ε− nc2)]

33[(Γ− 1)(ε− nc2)− ε]
δi0 + cxac

y
aχ

xχy

+ cxac
z
aχ

xχz + cyac
z
aχ

yχz + (
ctχ

0

2c2
0

− χ0

νc0

)(~ca · ~χ)

+
4

15

[
(cxa)

2(χx)2 + (cya)
2(χy)2 + (cza)

2(χz)2

− 4

ν2
(~χ · ~χ)

]}
+
c2

0

c2
t

ε0wi

{
3

2
(c2B2 + E2)

+
4

5
[c2( ~B · ~B) + ~E · ~E]− ν√

3

[
( ~B × ~E) · ~ca

]
+
ν2

5

[
c2( ~B · ~ca)2 + ( ~E · ~ca)2

]
− 7ν2

20

[
cxac

y
aE

xEy

+ cxac
z
aE

xEz + cyac
y
aE

zEz) + c2(cxac
y
aB

xBy

+ cxac
z
aB

xBz + cyac
y
aB

zBz)
]}
,

(4.29)

where the second curly bracket is the contribution of the electromagnetic

fields.

Now, as we did before, to solve the equation for the conservation of number of

particles, a separate distribution function, gi, is considered. The equilibrium

distribution function, geq
i , can be found in Eq. (2.100) and the discretized

weight functions for the current cell configurations can be calculated as:

w′0 =
1

10
, w′i =

3

10
− 1

6c2
a

, (4.30)

for 1 ≤ i ≤ 6,

w′i =
1

12c2
a

− 3

40
, (4.31)

for 7 ≤ i ≤ 18. Note that computing the macroscopic variables for the fluid,

is not any more straightforward. We shall elaborate this issue later on.

4.3.2 Maxwell equations

Now that the LB model for solving the fluid equations is discussed, let us

explain our LB model for solving the governing equations of electromagnetic
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Fig. 4.1: The D3Q13 lattice configuration for the LB model to solve the

Maxwell equations.

fields, i.e., Eqs. (4.4), (4.5), and (4.22), with (4.23) as Ohm’s law. Our scheme

is based on a 3D LB model for solving the Maxwell equations proposed in

Ref. [78], where several modifications are required to couple it to our solver

of the fluid equations (mainly by modifying the distribution functions) as

well as to use it for relativistic MHD (by using the relativistic Ohm’s law).

For this purpose, we use a cubic regular grid with 13 velocity vectors

(D3Q13), where four auxiliary vectors are assigned to each of the vectors

(two for the electric field and two for the magnetic field) for calculating the

magnetic and electric fields. A simple streaming-collision evolution for the

distribution function is considered as

hpij(~x+ ~vpi δt, t+ δt)− hpij(~x, t) = − 1

τh
[hpij(~x, t)− h

p(eq)
ij (~x, t)], (4.32)

and

hp0(~x, t+ δt)− hp0(~x, t) = − 1

τh
[hp0(~x, t)− hp(eq)

0 (~x, t)], (4.33)

where h
p(eq)
ij (~x, t) and h

p(eq)
0 (~x, t) are the equilibrium distributions to be de-

fined later. Here i = 0, 1, 2, 3 indicates the direction of the vectors, p = 0, 1, 2
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shows the plane where the vectors lie, and j = 0, 1 shows each of the two

auxiliary vectors for the electric or magnetic field. Thus, there are four direc-

tions on three planes which gives 12 vectors, and including the rest vector,

in total we have 13 vectors. The vectors lie on the diagonals of each plane

so we can write the components as

~v0
i = 2c {cos (2i+ 1)π/4, sin (2i+ 1)π/4, 0} , (4.34)

~v1
i = 2c {cos (2i+ 1)π/4, 0, sin (2i+ 1)π/4} , (4.35)

~v2
i = 2c {0, cos (2i+ 1)π/4, sin (2i+ 1)π/4} , (4.36)

in addition to the rest vector, i.e, ~v0 = (0, 0, 0) (see Fig. 4.1). The distribution

functions propagate with these vectors from cell to cell.

Moreover, in order to solve the Maxwell equations by the LB model we can

write Ampère’s law (Faraday’s law) as time derivative of electric (magnetic)

field plus the divergence of an antisymmetric tensor, i.e., Faraday’s law can

be written as
∂ ~B

∂t
+ ~∇ · Λ = 0 (4.37)

where,

Λ =

 0 −Ez Ey

Ez 0 −Ex

−Ey Ex 0

 , (4.38)

and Ampère’s law
1

c2

∂ ~E

∂t
− ~∇ · Φ + µ0

~J = 0 (4.39)

with

Φ =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

 . (4.40)

These equations are conservation equations with antisymmetric tensors, i.e.,

Λ and Φ (unlike the fluid’s equation, where the flux tensor is symmetric) and

special treatments are required to solve these equations using LB models.

Therefore, associated to each velocity vector ~vpi we consider two electric aux-

iliary vectors ~epij and two magnetic auxiliary vectors ~bpij, which are used to
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V

Fig. 4.2: The configuration of the auxiliary vectors for the LB model to solve

the Maxwell equations.

compute the electromagnetic fields. These vectors are perpendicular to ~vpi .

However, ~epij lies on the same plane as ~vpi , while ~bpij lies perpendicular to this

plane. More accurately, we define them as (see Fig. 4.2)

~epi0 =
1

2
~vp[(i+3)mod4], ~epi1 =

1

2
~vp[(i+1)mod4], (4.41)

and
~bpij =

1

2c2
~vpi × ~e

p
ij, (4.42)

where (i)mod4 is a function that gives the remainder on the division of i

by 4. To these vectors we shall add the null vectors, i.e., ~e0 = (0, 0, 0) and
~b0 = (0, 0, 0). This means that there are 13 different electric vectors and

7 different magnetic vectors. The computed tensors using these auxiliary

vectors become antisymmetric because this procedure builds up the Levi-

Civita tensor [78].

We also consider the term (−µ0
~J) in Ampère’s law as an external force.

Therefore, the macroscopic fields can be computed as

~E ′ =
3∑
i=0

2∑
p=0

1∑
j=0

hpij~e
p
ij, (4.43)

~B =
3∑
i=0

2∑
p=0

1∑
j=0

hpij
~bpij, (4.44)
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and

ρc = h0 +
3∑
i=0

2∑
p=0

1∑
j=0

hpij. (4.45)

Note that the effect of the external force still needs to be considered to get

the correct electric field and ~E ′ is the electric field before considering the

external force.

It can be shown that to recover the Maxwell equations, for the current model,

τh = 1
2

should be considered. Unlike the LB models for fluid dynamics, this

value for the relaxation time does not lead to numerical instabilities because

one can define an energy like quantity like

Eenergy = h2
o +

3∑
i=0

2∑
p=0

1∑
j=0

(hpij)
2 (4.46)

which is conserved during the collision step and guarantees that the distri-

bution functions do not converge. This is the same as the LB schemes for

the wave propagations [19, 20]. In addition, it is known that the configura-

tion D3Q13, when used for the fluid’s equations, has problems to reproduce

the local momentum conservation during collision due to lack of symmetry.

Nevertheless, because we are using τh = 1/2 , there are not viscous terms

like in the fluid case, and D3Q13 is the lattice with the smallest number of

vectors which can handle the symmetries we need for the Maxwell equations,

as shown below.

For the case of τh = 1
2

the external force in Ampère’s law can be included in

a rather simple way, and ~E becomes

~E = ~E ′ − δt

2
µ0c

2 ~J, (4.47)

where, according to the Ohm’s law, Eq. (4.23), ~J is a function of ~E. By

replacing Ohm’s law in Eq. (4.47) we obtain a system of three equations and

three unknowns (Ex, Ey and Ez), which can be solved analytically. Having

the values of each component of the electric field, ~J can be calculated using

Ohm’s law, consequently. More discussion about computing the macroscopic

variables shall be provided later.
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The discretized equilibrium distribution functions to recover the correct

Maxwell equations read as follows

h
p(eq)
ij (~x, t) =

1

16
~vpi · ~J +

1

8c2
~E · ~epij +

1

8
~B ·~bpij, (4.48)

and

heq
0 (~x, t) = ρc. (4.49)

A Chapman-Enskog expansion shows that the current model recovers

Ampère’s law, Faraday’s law and current conservation, Eq. (4.22) [78]. The

latter follows from the evolution of h0.

The divergence free condition for the magnetic field, Eq. (4.3), can be treated

as a constraint on the initial condition, since by taking the divergence of

Faraday’s law one can show that the time derivative of ~∇ · ~B is always zero.

Therefore, if ~∇ · ~B = 0 is set for the initial condition it will hold for later

times as well. The same is true for the Gauss law, Eq. (4.2), using Eqs. (4.4)

and (4.22).

4.3.3 Coupling between fluid and electromagnetic

fields

Having explained the appropriate solvers for fluid equations and Maxwell

equations, we next discuss how to compute the macroscopic variables. As

mentioned, the model of Anderson-Witting is used for the collision term in

the solver for the equation of conservation of energy-momentum. Here again,

the macroscopic variables can be calculated by solving an eigenvalue problem

resulting from multiplying the relation for the energy-momentum tensor by

the covariant four-vector velocity. Using the definition of the total energy-

momentum tensor, Eqs. (4.16),(2.36) and (4.17) with the help of the relation

FαβFαβ = 2(c2B2 − E2) we get

Uµ
[
T µν − ε0F µρF ν

ρ

]
=
[
ε+

εo
2

(c2B2 − E2)
]
Uν , (4.50)

Here,
[
ε+ εo

2
(c2B2 − E2)

]
and Uν are the largest eigenvalue and correspond-

ing eigenvector of the tensor [T µν − ε0F µρFνρ], respectively. The total energy



92
CHAPTER 4. LB MODEL FOR RELATIVISTIC

MAGNETOHYDRODYNAMICS

-momentum tensor can be calculated using the relation T µν =
∑19

i=1 p
µ
i p

ν
i fi.

On the other hand, the tensor F µρFνρ depends on ~E and ~B. As mentioned,

for calculating ~E the value of the external force, which depends on the ve-

locity, is required. However, the value of the velocity is not yet computed.

To solve this problem, we use the value of the electromagnetic fields from

the previous time step to calculate the tensor [T µν − ε0F µρFνρ]. The largest

eigenvalue and corresponding eigenvector (velocity) can be calculated numer-

ically using the power method. Knowing the velocity, one can calculate the

density using the first order moment relation, i.e., Nµ = nUµ =
∑19

i=1 p
µ
i gi.

After that, ~B is calculated using Eq. (4.44). Having the velocity and mag-

netic field, ~E can be computed using Eq. (4.43) and including the external

force as described before. Thus, it is easy to compute ~J using Ohm’s law.

Considering the eigenvalue
[
ε+ εo

2
(c2B2 − E2)

]
, it is possible to compute ε

and through the equation of state Eq. (4.25) one can compute p. Finally,

ρc can be calculated directly from Eq. (4.45). All the 13 unknown variables

for each cell can be computed in this way. Note that using the values of

electromagnetic fields from the previous time step to calculate the tensor,

leads to an error which goes to zero as the time step (δt) decreases. In fact,

in the next section our numerical results show that the error is ignorable.

Another point is to make the two solvers consistent in time evolution, which

means that both solvers evolve in time simultaneously. In the electromagnetic

LB model the relation δx/δt =
√

2c holds. Thus, after choosing the value

of δx/δt in the fluid LB model, the velocity of light, c, in both models is

adjusted such that δt and δx are equal.

4.4 Test simulations and applications

In this section, we present some numerical tests in order to validate our

numerical model along with some applications for the resistive relativistic

MHD (see Ref. [78] for the validation of the electromagnetic LB model).

More specifically, test simulations for the propagation of Alfvén waves and the

evolution of a self-similar current sheet are considered, and as applications for
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the resistive relativistic MHD LB model, we study the magnetic reconnection

driven by the Kelvin-Helmholtz instability and present the results of a 3D

simulation of magnetic reconnection in a stellar flare due to the shear velocity

in the photosphere. The purpose of the first test simulation (Alfvén wave), is

to validate the numerical method in the limit of ideal MHD, while the second

test is to validate the model recovering the correct dynamics in the resistive

regime. In the following simulations numerical units are used and µ0 = 1 is

considered.

4.4.1 Propagation of Alfvén wave

This test deals with the propagation of an Alfvén wave along a uniform

background field in the limit of ideal MHD (when the electrical resistivity is

negligible). The initial condition is the same as in Ref. [58]. We set n = 1.0,

p = 1.0, Bx = B0 = 1.0 and By = 0.1 and we consider a one dimensional

domain defined in the range of −1 ≤ x ≤ 1, where the initial wave is located

at x0 < x < x1, with x0 = −0.8 and x1 = 0. Outside the region of the initial

wave it is assumed that ~u = ~0 and Bz = 0. Inside the region of initial wave

we have

Bz = ηAB0 sin
[
2π(3x2

∗ − 2x3
∗)
]
, x∗ =

x− x0

x1 − x0

, (4.51)

and

uz = − vA
B0

Bz, ux = uy = 0, (4.52)

where the Alfvén velocity is defined as

v2
A =

2B2
0c

2

ε+ p+B2
0(1 + η2

A)

×

1 +

√
1−

(
2ηAB2

0

ε+ p+B2
0(1 + η2

A)

)2
−1

.

(4.53)

Here we use the value of ηA = 0.118591 which gives vA = 0.40785. Ohm’s

law for ideal MHD, i.e. Eq. (4.13) is used to calculate the initial electric

field and Eq. (4.2) to measure the initial value of ρc. To achieve the ideal

regime a very high conductivity (σ = 105 in numerical units) is considered.
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Fig. 4.3: Results of the numerical test for the propagation of Alfvén waves in

the limit of ideal MHD (σ = 105) for (a) magnetic field in z-direction and (b)

electric field in x-direction. For both plots, the numerical results are shown

at t = 1 (blue symbols) and at t = 1.5 (red symbols). The dashed black

line shows the initial condition and solid black lines are the exact analytical

solutions at the corresponding time.
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The equation of state, Eq. (4.25), with Γ = 4/3 is used. The domain is

discretized using 400 cells and we set δx/δt =
√

2, which gives c = 1. The

value of τ for the fluid LB model is set to 1 and α = 0.1. Open boundary

conditions are considered at the left and right boundaries.

The simulation runs until t = 1.5 and the results are presented in Fig. 4.3.

In the limit of ideal MHD the generated wave should travel with the Alfvén

velocity without any distortion. Here we have compared our numerical results

with the exact analytical solution of the ideal MHD at two different times,

i.e., t = 1.0 and t = 1.5. The results are presented for the magnetic field

in z-direction (Fig. 4.3(a)) and the electric field in x-direction (Fig. 4.3(b)).

Fig. 4.3 shows that at each of the considered times and for both Bz and

Ex, very good agreement is observed between the numerical and analytical

results. Using the same optimization as before our relativistic MHD model

achieve 0.5 Msup/s on a single core of an Intel CPU with 2.40 GHz clock

speed. Note that, the analytical results are obtained by simply shifting the

initial wave by the Alfvén velocity. Apart from validating the numerical

method, this test shows the ability of the model to deal with high conductivity

(low resistivity) regimes, recovering the ideal MHD limit.

4.4.2 Evolution of self-similar current sheets

After validating the model for the ideal MHD case, we consider here a test

problem in the resistive case for which the evolution of a current sheet is

investigated. We assume that the magnetic pressure (B2/2) is much smaller

than the plasma pressure (p), so that the fluid is not affected by the evolution

of the current sheet and changes in the magnetic field. We know that when

the magnetic field changes its sign within a thin layer a current sheet forms.

Thus, for our case, we assume that the magnetic field has only a tangential

component ~B = (0, By, 0), where By = B(x, t) changes sign within a thin

current sheet of width ∆l. If the fluid is set initially to equilibrium, by

considering a constant pressure in the domain, the evolution of the current

sheet becomes a diffusion process. By assuming that the diffusion time-scale

is much longer than the light propagating time-scale, we can neglect the
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displacement current (∂t ~E) in Ampère’s law. In the rest frame, by inserting

the relation ~J = σ ~E in Ampère’s law, using Faraday’s law, and plugging in

the mentioned one-dimensional magnetic field of the current sheet, one gets

∂tB
y − 1

σ
∂2
xB

y = 0. (4.54)

As the diffusion process continues and the width of the current sheet becomes

much larger than the initial width (∆l), the expansion becomes self-similar

and the exact solution has the form

B(x, t) = B0erf

(
1

2

√
σζ

)
, ζ =

x2

t
, (4.55)

where B0 is the magnetic field outside of the current sheet and erf is the error

function.

For the numerical test a domain of −1.5 ≤ x ≤ 1.5 is discretized using 100

cells, where open boundary conditions are considered for the left and right

boundaries. The initial values p = 50, n = 1, ~u = ~E = ~0 and Bx = Bz = 0,

are considered, and the initial By is computed using Eq. (4.55) at t = 1 with

B0 = 1. In the numerical model Γ = 4/3, δx/δt =
√

2, τ = 1 and α = 0.1 are

considered. The simulation runs until t = 8 and the results are compared

to the analytical results at t = 9 (since the initial condition is assumed to

be at t = 1). Two values of uniform conductivity, σ = 100 and σ = 50, are

considered and the results of the comparison with the analytical solution for

both cases along with the initial conditions are presented in Fig. 4.4. One

can see that the numerical and analytical results are almost indistinguishable

and that the current sheet in a domain with σ = 50 diffuses faster than the

domain with σ = 100 due to the higher resistivity. This test validates the

resistive part of the numerical model and shows the capability of the model

for simulating resistive problems far from the ideal MHD limit.

To check the convergence of the model, we implement the same current sheet

simulation with σ = 100 for different grid resolutions. Fig. 4.5 reports the

error versus the number of cells in a log-log plot, and the slope of the fitted

line (blue solid line) shows that the model is nearly second order as we expect
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Fig. 4.4: Results of the numerical test for the evolution of a current sheet in

the resistive regime. The test is performed for two values of the conductivity,

i.e. σ = 100 and σ = 50. Dashed lines show the initial condition of the

current sheet, which corresponds to the analytical solution, Eq. (4.55), at

t = 1. The symbols show the result of the numerical solution at t = 9, and

solid black lines show the exact analytical solution at this time.
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Fig. 4.5: Results of the convergence test for the simulation of the evolution

of a current sheet in the resistive regime with σ = 100 in a log-log plot.

Symbols show the numerical error and the solid blue line is the fitted line

with slope −1.8662, which shows a nearly second order convergence. In

the inset the speedup obtained by using the openMP parallelizing method

is reported versus the number of threads. The dashed line shows the ideal

speedup.
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for a lattice Boltzmann scheme. The error is calculated by the relation

EN =

(
1

N

N∑
i=1

(By
num −B

y
anal)

2

)1/2

, (4.56)

with N being the number of the cells, By
num and By

anal the numerical and an-

alytical results, respectively. Additionally, as explained in the introduction,

one of the advantages of using lattice Boltzmann methods is its simplicity

and efficiency on parallel computers. To show that this also holds for our

model, we use a simple openMP parallelizing method and simulate the 3D

extension of the aforementioned current sheet problem with 150× 150× 150

cells and σ = 100, until 5 time steps. The preliminary resulting speedup

for a few number of threads is shown in the inset of Fig. 4.5, where one can

see that even for a straight forward parallelizing method, a satisfactory level

of efficiency is achieved. However, for a thorough study of the parallelizing

efficiency, a much larger number of threads and more advanced parallelizing

methods should be experimented.

4.4.3 Magnetic reconnection driven by Kelvin-

Helmholtz instability

After validating the numerical model, we now study the magnetic reconnec-

tion process driven by the Kelvin-Helmholtz (KH) instability. As mentioned

before, the magnetic reconnection is a process where magnetic lines change

their topology. At the place where the magnetic lines reconnect, usually a

null point forms where the magnetic field vanishes. There are several theo-

retical descriptions for the magnetic reconnection including the well known

Sweet-Parker [113, 93] and Petschek [94] models.

The Sweet-Parker model is based on the discussion of pressure balance in

the reconnection region, where the reconnection region is assumed to be

dominated by diffusion while the outside region is assumed to be ideal. Due

to the magnetic diffusion, the plasma is driven into the current sheet (inflow)

with velocity vin in the direction perpendicular to the length of the current

sheet. The conversion of magnetic energy within the current sheet thrusts
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the plasma out with the velocity vout in the direction of the length of the

current sheet. It is shown that the reconnection rate R, which is defined as

the ratio between vin and vout is proportional to S−
1
2 , where S = µoLvAσ is

the Lundquist number (magnetic Reynolds number), with L as characteristic

length. The reconnection rate in this model is usually small due to the high

aspect ratio of the reconnection region (which is proportional to the inflow

and outflow velocities assuming the incompressibility condition).

In the Petschek model, it is assumed that the magnetic energy can be lib-

erated not only in the current sheet but also as pairs of slow shocks which

stem from the edge of the sheet. Therefore, the reconnection region can be

smaller than the one for the Sweet-Parker model, which can lead to higher

reconnection rate. In this model R is proportional to (lnS)−1.

As discussed, magnetic reconnection is believed to have prominent effects in

many high energy astrophysical events and therefore it should be strongly

influenced by relativistic effects. Although the mechanism of relativistic re-

connection is not well understood, recent theoretical and numerical studies

of the relativistic Sweet-Parker and Petschek models show the same propor-

tionality relation between R and S [65, 115]. In the numerical simulations, it

is important how one triggers the reconnection process. If a local increase in

the conductivity is used to trigger the reconnection, Petschek type reconnec-

tion is observed with “x-type” null point, while when a perturbation in the

magnetic potential is applied, Sweet-Parker type reconnection is observed

with “y-type” null point [128]. This is similar to the non-relativistic numer-

ical results. Here instead of using either of the mentioned ways, we use a

hydrodynamic instability to trigger the reconnection. In particular, the KH

instability is chosen because of its wide range of applications in astrophysical

events as discussed in Ch. 1. Therefore, two dimensional simulations of the

KH instability in a Harris like current sheet are performed for different values

of shear velocity, density ratio and conductivity. A domain of −0.5 ≤ x ≤ 0.5

by −0.5 ≤ y ≤ 0.5 is discretized using 512 × 512 cells. The following initial

conditions are considered:

ux =
U0

2
tanh

(y
a

)
, n = n0 +

∆n

2
tanh

(y
a

)
, (4.57)
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(a) (b)

(c) (d)

Fig. 4.6: Snapshots of the density for the KH instability at times (a) t = 0.0

(initial condition) (b) t = 3.31 (c) t = 6.62 (d) t = 15.47, for the case with

σ = 100, ∆n = 1.8, U0 = 0.6c, where the color red to blue denotes high to

low values, respectively. The white lines show the magnetic field lines.
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Fig. 4.7: Reconnection rate versus time for the case σ = 100, ∆n = 1.8 for

different values of U0. In the inset the results are shown for two different

values of ∆n = 1.8 and ∆n = 0 for σ = 100.
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where U0 defines the shear velocity, ∆n = (nup − ndown) is the density dif-

ference between the upper (y > 0) and lower (y < 0) part of the domain,

n0 = 1, p = 1 and a = δx is considered. Furthermore,

Bx = B0 tanh
(y
a

)
, (4.58)

while By = Bz = 0 and B0 = 0.06 is considered. The KH instability is

triggered by a perturbation in the velocity in y-direction, namely

uy = upert sin (kx) exp

(
−y

2

b2

)
, (4.59)

with upert = 0.01 as the perturbation amplitude, k = 2π for a single mode

perturbation, and b = 10δx. For the left and right boundaries (x = ±0.5)

periodic boundary conditions are considered while for the upper and lower

boundaries (y = ±0.5) open boundary conditions are implemented. The

simulation is performed for different values of U0 = 0.6c, 0.4c, 0.2c and

σ = 100, 80, 60, 40, 20 for two values of ∆n = 0, 1.8 and ∆n = 0 where the

latter corresponds to the case with initial uniform density. For the numerical

simulation Γ = 4/3, δx/δt = 2.5
√

2, τ = 1 and α = 0.1 are considered. The

initial electric field can be simply computed using Faraday’s law (dropping

the time derivative term because of the stationary state) and Ohm’s law,

knowing the fact that the initial velocity and magnetic fields are in the same

plane. Additionally, for the open boundary condition, and to ensure the di-

vergence free condition of the magnetic field, the normal component of the

magnetic field is adjusted in order to have ~∇ · ~B = 0 at the boundaries.

The snapshots of the density for the case with σ = 100, ∆n = 1.8 and

U0 = 0.6c are presented in Fig. 4.6 for different time steps. One can see

the evolution of the instability in time where after an initial linear growth,

a nonlinear stage takes place which leads to the penetration and mixing of

the lighter and heavier fluids, where the characteristic structure of the KH

instability forms. The reconnection is triggered by the instability and occurs

in the initial current sheet, where the magnetic field changes sign. As the

instability evolves, the location of the reconnection null point changes. Since

no external force is implemented, the instability finally smoothens out due

to the dissipation in the system.
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(a) (b)

(c) (d)

Fig. 4.8: Snapshots of the density for the KH instability at times (a) t = 0.0

(initial condition) (b) t = 3.31 (c) t = 6.62 (d) t = 15.47, for the case with

σ = 100, ∆n = 0, U0 = 0.6c, where the color red and blue denotes high and

low values, respectively. The white lines show the magnetic field lines.
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Fig. 4.9: Reconnection rate versus time for the case ∆n = 1.8 and U0 = 0.2c

for different values of σ.

We are interested in the reconnection rates of the considered cases. Since

the initial condition is not in the rest frame, it is not practical to find the

reconnection rate based on the definition mentioned before (ratio between

inflow and outflow velocities). Instead we use [127]

R(t) =

(
∆Ez

B0

)
null

, (4.60)

i.e., the generated out-of-plane component of the electric field (∆Ez =

Ez −Ez
0 , Ez

0 being the initial out-of-plane electric field) normalized by B0 at

the null point, which shows the rate at which the magnetic flux is convected

to this point (see Ref. [53]). Here we investigate the effects of different param-

eters on the reconnection rate. First we study the effects of the parameters

related to the KH instability, namely U0 and ∆n. Fig. 4.7 shows the results
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for the reconnection rate versus time for different values of U0, when σ = 100

and ∆n = 1.8. It is shown that an increase in the magnitude of the shear

velocity reduces the reconnection rate. This is due to the stabilizing effects

of the shearing velocity on the tearing instability [17], an MHD instability

that appears in connection with sheared magnetic field. Also note that the

bumps that appear in the reconnection rate at high shear velocities is due

to the transition of the instability into its stationary state, where one can

appreciate that, for higher shear velocities, this transition occurs at earlier

times.

Additionally, in the inset of Fig. 4.7, for the case with σ = 100, the effects

of different values of ∆n is shown. One can notice that changing the value

of ∆n from 1.8 to 0 (initially uniform density) has negligible effects on the

reconnection rate, for different magnitudes of the shear velocity. This is

despite the fact that the hydrodynamics of the system for the initially uniform

density is quite different from the case with inhomogeneous densities. Fig. 4.8

shows the snapshots of the density for the case ∆n = 0, σ = 100 and U0 =

0.6c, where the well known “cat’s eye” structure of KH instability for the

case with initially uniform density can be recognised. Comparison between

Fig. 4.6 and Fig. 4.8 shows that, for the case with the initially uniform density,

the results are symmetric and because of the form of the initial perturbation,

the location of the null point is always at the boundary, unlike the previous

case, where the location of the null point changes with time.

Another parameter that we are interested in studying is the conductivity

σ. Fig. 4.9 shows the results of the reconnection rate versus time for the

case with U0 = 0.2c and ∆n = 1.8 for different values of the conductiv-

ity. As shown, the reconnection rate increases faster in time and reaches a

higher value for lower conductivities (higher resistivity). The fact that the

reconnection rate increases by increasing the resistivity is also expressed in

the models of Sweet-Parker and Petschek. The interesting point is to in-

spect the exact relation between the reconnection rate and the resistivity.

As mentioned before, in the Sweet-Parker model, R is proportional to σ−
1
2

(assuming constant Alfvén velocity) and in the Petschek model R is propor-

tional to (lnσ)−1. To compute this proportionality relation for our results,
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Fig. 4.10: R(t) at time t = 23.2 for different values of σ based on the nu-

merical results (red symbols). Best fitting curves using the proportionality

relation for the Sweet-Parker (dashed-dotted blue) and Petschek (dashed red)

models are shown.

the reconnection rates R(t = t1) at the final time t1 = 23.2 are used. The

results are shown in Fig. 4.10, where, as expected, R0 decreases with increas-

ing σ. The blue dashed line, and the red dashed-dotted line in Fig. 4.10

are the best fitting curves for the data using the proportionality relations

suggested by Sweet-Parker and Petschek models, respectively. One can see

that the results clearly do not follow the Petschek scaling law while match

the Sweet-Parker scaling law very closely.

4.4.4 Three-dimensional magnetic reconnection in a

stellar flare

In this section, we show the results of the 3D numerical simulation of mag-

netic reconnection in a stellar flare, which is driven by a shear velocity on its

photosphere. Thus, a domain of −3 ≤ x ≤ 3 by −3 ≤ y ≤ 3 by 0 ≤ z ≤ 6 is
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discretized by 256×256×256 cells. The configuration of the initial condition

is chosen to mimic the arcade and the flux rope of a stellar flare [16]. The

total potential field is defined as

ψ = ψb + ψl + ψi. (4.61)

This configuration consists of a background magnetic field that is produced

by four line currents (just below the photosphere), which determines ψb and

an image current (below the photosphere), which determines ψi. This back-

ground magnetic field yields a null point above the photosphere. Addition-

ally, a line current contained within the flux rope with finite radius, which

determines ψl, is added to the null point. Note that if we do not consider the

flux rope, the magnetic field configuration is a potential quadrupole field.

The potential fields generated by these currents are defined as follows:

ψb = cb log
[(x+ 0.3)2 + (z + 0.3)2][(x− 0.3)2 + (z + 0.3)2]

[(x+ 1.5)2 + (z + 0.3)2][(x− 1.5)2 + (z + 0.3)2]
, (4.62)

ψi = −r0

2
log [x2 + (z + h)2], (4.63)

ψl =


r2

2r0
, r ≤ r0,

r0
2
− r0 log r0 + r0 log r, r > r0,

(4.64)

where r = [x2 + (z − h)2]1/2 is the distance from the center of the flux rope,

h is the height of the flux rope, which is set to 2.0, r0 is the radius of the

flux rope, which is set to 0.5, and (±1.5,−0.3) and (±0.3,−0.3) are the

(x, z) positions of the four line currents. Here, cb represents the strength

of the background magnetic field, which is set to 0.2534 [16]. The resulting

magnetic field is calculated by taking the curl of the total potential field, i.e.,

~B∗ = ~∇× ψêy, and in order to adjust the magnitude of the magnetic field,

each component of the magnetic field is multiplied by (B0/B
∗
max), where B∗max

is the maximum of the computed magnetic field in the domain and B0 = 0.06

is considered. To satisfy the force balance inside the flux rope, a magnetic

component should be added in the direction perpendicular to the magnetic
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field, i.e., y-direction, which has the following form:

By =


(B0/B

∗
max)

√
2
(

1− r2

r20

)
, r ≤ r0,

0, r > r0.

(4.65)

The initial velocity is set to zero, and the initial density and pressure are

considered to be uniform and equal to 1.0 everywhere in the domain. In or-

der to compute the initial values for the electric field and current density, the

numerical code is used in an iterative process, fixing the value of magnetic

field and velocity at each time-step. Open boundary conditions are consid-

ered for all the boundaries, and as mentioned before, the normal component

of the magnetic field is adjusted on each boundary to satisfy the divergence

free condition of the magnetic field.

To set-up a shear velocity in the photosphere, two adjacent vortices rotat-

ing in the same direction are produced by applying proper external forces.

Therefore, an external force is applied to both sub-domains of −3 ≤ x < 0

by −3 ≤ y ≤ 3 by 0 ≤ z ≤ 0.2343 as well as 0 ≤ x ≤ 3 by −3 ≤ y ≤ 3 by

0 ≤ z ≤ 0.2343, with the following form:

F x = F0 sin (πx∗/(3)) cos (πy/6), (4.66)

F y = F0 cos (πx∗/(3)) sin (πy/6), (4.67)

where F x and F y are the components of the external force in the x and y

directions, respectively, F0 is the magnitude of the applied force, which is

set to 0.05 and x∗ = x for the sub-domain −3 ≤ x < 0 and x∗ = x − 3

for the sub-domain 0 ≤ x ≤ 3. Note that, to limit the magnitude of the

velocity, the external force is non-zero only when the maximum velocity in

the domain is smaller than 0.3c. For the numerical simulation σ = 100,

Γ = 4/3, δx/δt = 2.5
√

2, τ = 1.0 and α = 0.1 are considered.

The results of the 3D simulation are shown in Fig. 4.11. One can see the

initial condition of the magnetic field lines in Fig. 4.11(a). The colors on the

outer domain boundaries indicate the value of the vorticity, which is zero
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(a) (b)

(c)

Fig. 4.11: Snapshots of the 3D magnetic reconnection in a stellar flare due

to the shear flow at times (a) t = 0 (initial condition), (b) t = 19.86 and

(c) t = 43.02. The colors of the magnetic lines show the magnitude of

the magnetic field, where blue to red show low to high values. On the outer

boundary surfaces of the domain the colors indicate the value of the vorticity,

where red and blue denote negative and positive vorticity, respectively.
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(a) (b)

(c)

Fig. 4.12: Projection of the results presented in Fig. 4.11 onto the xz plane.

Times and colors are the same as Fig. 4.11.
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everywhere in the beginning. After applying the external force, two vor-

tices form, which rotate in the same direction and therefore give rise to a

shear velocity in the middle of the xy plane, i.e, the photosphere plane. This

shear velocity finally results in a “cat’s eye” structure in the photosphere

(see Fig. 4.11(c)) similar to the results of the 2D KH instability with uniform

initial density in Fig. 4.8. The shear velocity starts to twist the foot of the

background magnetic lines and later the upper parts of the background mag-

netic lines. As a result at some point, the twisted background magnetic lines

and the flux rope magnetic lines take opposite directions. This is where the

current sheet forms and the reconnection between these two sets of magnetic

lines takes place (see Fig. 4.11(b)). At late times, Fig. 4.11(c), most of the

flux rope magnetic lines reconnect with the background magnetic lines, and

only a small part of the flux rope can reach the opposite surface. This pro-

cess can be appreciated more clearly in the 2D projections on the xz plane,

which are provided in Fig. 4.12. For instance, a starting configuration of

the reconnection can be observed in Fig. 4.12(b), where one can see that the

background magnetic lines reconnect to the flux rope lines and change their

topology.

4.5 Summary

In this chapter, we have developed a relativistic MHD lattice Boltzmann

model, capable of dealing with problems in the resistive and ideal regimes.

The model is based on the relativistic LB model described in Chs. 2 and 3, to

solve the hydrodynamics equations, and the model proposed in Ref. [78] to

solve the Maxwell equations, where several modifications and extensions are

implemented to couple the models and to use them in the relativistic MHD

context. Thus, a D3Q19 lattice configuration is used for the hydrodynamic

part and a D3Q13 lattice for the electromagnetic part.

The numerical method is validated for test simulations in two different

regimes, namely propagation of an Alfvén wave in the ideal MHD limit (high

conductivity), and evolution of a current sheet in a resistive regime (low con-
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ductivity). The results are compared with the analytical ones and very good

agreement is observed. Additionally, the magnetic reconnection driven by

the relativistic KH instability is studied in detail and the effect of different

parameters on the reconnection rate is investigated. It is concluded that,

while the density ratio has negligible effects on the reconnection rate, an in-

crease in the value of the shear velocity will decrease the reconnection rate.

We have also found that, the reconnection rate is proportional to σ−
1
2 , which

agrees with the scaling law of Sweet-Parker model. Finally, we have pre-

sented the results of 3D simulation of the magnetic reconnection in a stellar

flare, which is driven by shear velocity in the photosphere. We have shown

that due to the shear velocity the reconnection happens between flux rope

and background magnetic field lines.

It is worth mentioning that, as mentioned, the relativistic lattice Boltzmann

models show nearly an order of magnitude faster performance than the cor-

responding hydrodynamic codes. Furthermore, the lattice Boltzmann model

to solve the Maxwell equations also turns out to be very efficient, almost an

order of magnitude faster than Yee’s original FDTD method [78]. Thus, we

expect our model to have a competitive performance comparing with current

models for resistive relativistic MHD.
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Chapter 5

Discussion and Outlook

In this work, we developed lattice Boltzmann models for relativistic hydrody-

namics and magnetohydrodynamics. First, we proposed a lattice Boltzmann

model, which is able to solve the relativistic hydrodynamics equations and is

numerically stable for ultra-high velocities. We provided a detailed discussion

of the construction of the equilibiruim distribution function, emphasizing the

common aspects with the standard lattice Boltzmann theory. For the con-

struction of the distribution functions, we expanded the Maxwell Jüttner

distribution in orthogonal polynomials, using the equilibrium distribution at

the local rest frame as weight function. A discretization procedure applied to

adjust the expansion to the D3Q19 cell configuration. We used a flux limiter

scheme and introduced a bulk viscosity term into the Boltzmann equation,

to increase the numerical stability at high velocities. We showed that the

the model is capable of simulating low viscous flows which is very promis-

ing for many astrophysical applications. Moreover, the model preserved the

numerical stability for the simulation of the Riemann problem at ultra-high

relativistic flows (γ ∼ 10). As an example of relativistic hydrodynamics

with non-trivial geometries, we also applied our scheme to an astrophysical

system, namely the collision of a shock wave, produced by a supernova ex-

plosion, against a massive interstellar cloud in weakly and highly relativistic

regimes, for both nearly-inviscid and viscous cases.

Several issues remain open for future research. Extensions of this model to

include higher order lattices so as to recover more moments of the equilibrium

115
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distribution, is one of them. Recently, for the case with negligible rest mass

energy, a lattice Boltzmann model to reproduce up to the third order moment

of the equilibrium distribution is derived in Ref. [76]. The model is based

on a single distribution function and the lattice configuration is chosen such

that the lattice points belong to the surface of a sphere. The model can

reproduce the right velocity and pressure profiles for the Riemann problem

in quark-gluon plasmas, for large values of η/s. However, to recover the third

moment, and to provide enough symmetry, rather high number of velocity

vectors (128) are required.

Additionally, the current relativistic LB deals with special relativistic flows

and it is very desirable to develop a general relativistic lattice Boltzmann

model. A non-relativistic LB on a constant space-curved background (campy-

lotic flow) was constructed recently in Ref. [75] to simulate fluid dynamics

in general non-cartesian manifolds. Considering that we have already con-

structed the LB model for solving the energy-momentum equation of the rel-

ativistic fluid dynamics in flat time-space, in principle, these models could be

extended/coupled to solve the general relativistic fluid dynamics. However,

in general this task seems to involves a number of genuinely new challenges

[111].

Another important question concerns the existence of a relativistic lattice

H-theorem. Apart from the theoretical interest on its own, this could have

major implications on the numerical stability of the scheme at high Reynolds

number, i.e. for the simulation of relativistic turbulence [59].

Furthermore, we studied the relativistic Richtmyer-Meshkov instability and

we showed that relativistic effects weaken the instability. Linear stability

analysis was used to provide an asymptotic relation for the amplitude growth

rate of the interface in the linear regime and based on the numerical results

we also proposed a relation for the evolution of the interface amplitude in

the nonlinear regime. Additionally, we investigated the thermal behaviour of

the RM instability which results from Mach cone interactions in a relativistic

fluid and we found that RM instability is responsible for the decrease in the

average temperature of the media which was confirmed by considering shock

tube RM instability. We also suggested an experimental tool to identify the
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interaction of Mach cones using the two particle correlation function.

For the study of the relativistic RM instability, the numerical model is ex-

tended to include the ideal gas EoS as well as external forcing term.

The development of new theoretical analysis of relativistic RM instability for

nonlinear regimes and including the compressibility effects, make interesting

subjects for further research. In the numerical context, another interesting

research direction is the simulation of relativistic flows with a non-ideal equa-

tions of state, which may find many applications in relativistic cosmology and

high-energy theories of the early universe [99, 18].

Furthermore, we developed an LB model for relativistic magnetohydrody-

namics. The numerical method was validated for test simulations in the

ideal and resistive regimes. Additionally, the model was used to study the

relativistic magnetic reconnection in different systems, namely 2D magnetic

reconnection driven by the relativistic KH instability and 3D magnetic recon-

nection in a stellar flare, which is driven by shear velocity in the photosphere.

For the 2D case, the effect of different parameters on the reconnection rate

was studied in detail and it was found that the reconnection rate follows the

scaling law of Sweet-Parker model.

It is known that due to the increased complexity of the topology in 3D mag-

netic reconnection, the reconnection rate for the general case of 3D is not

as straight forward as in the case of 2D [48]. Therefore, studying the recon-

nection rate for the 3D simulation of magnetic reconnection, for instance, in

stellar flares, seems to be a very interesting and challenging topic for further

research.

Concerning the numerical aspects of the LB model for relativistic MHD, a

more detailed study of the parallelizing efficiency using a more advanced

parallelizing methods is an interesting topic for future research. Also, im-

proving the numerical stability of the method to deal with higher values of

the magnetic fields is very desirable.

These are just but a few of the many exciting developments and applica-

tions which may currently be envisaged for the lattice Boltzmann equation

for relativistic hydrodynamics and magnetohydrodynamics presented in this

work.
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[118] M. Vandenboomgaerde, C. Mügler, and S. Gauthier. Impulsive model

for the Richtmyer-Meshkov instability. Phys. Rev. E, 58(2):1874, 1998.

[119] M. Vietri, A. Ferrara, and F. Miniati. The survival of interstellar clouds

against Kelvin-Helmholtz instabilities. Astrophy. J., 483(1):262, 1997.

[120] C.Y. Wang and R.A. Chevalier. Instabilities and clumping in type IA

supernova remnants. Astrophys. J., 549(2):1119, 2001.

[121] L. Wen, A. Panaitescu, and P. Laguna. A shock-patching code for

ultrarelativistic fluid flows. Astrophys. J., 486(2):919, 1997.

[122] D.C. Wilson, C.W. Cranfill, C. Christensen, R.A. Forster, R.R. Pe-

terson, N.M. Hoffman, G.D. Pollak, C.K. Li, F.H. Séguin, J.A. Frenje,
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