Synthesis and Application of Oxetanyl Peptides

A dissertation submitted to
ETH Zurich

For the degree of
Doctor of Sciences of ETH Zurich (Dr. sc. ETH Zurich)

Presented by

Guido Patrick Möller

Dipl.-Chem., Westfälische Wilhelms-Universität Münster
Born August 14 ${ }^{\text {th }} 1987$
Citizen of the Federal Republic of Germany

Accepted on the recommendation of
Prof. Dr. Erick M. Carreira, examiner
Prof. Dr. Karl-Heinz Altmann, co-examiner

Acknowledgements

I am grateful to Prof. Dr. Erick M. Carreira for giving me the opportunity to conduct my doctoral studies in his research group. I thank him for the freedom he gave me in the choice of the project and in putting my own ideas to test. Especially his trust in me and my work at any point during my time in the group laid the ground for the successful completion of the project.

I am thankful to Prof. Dr. Karl-Heinz Altmann for his immediate acceptance of the co-examination of this thesis and his support in the registration process.

I express my gratitude to Prof. Dr. Bernhard Wünsch, Dr. Dirk Schepmann and Bastian Frehland at the WWU Münster for conducting the receptor affinity studies that are included in this thesis and the insightful discussions in the field of pharmacy.

During my time at ETH I was impressed and blessed by the efficient infrastructure of the LOC. The analytical services, including NMR, MS and elemental analysis as well as the teams of the HCI-shop, the glassware-cleaning service and the disposal station contributed to the success of this work. Furthermore, I thank Dr. Bernd Schweizer, Dr. Nils Trapp and Michael Solar for the determination of the X-Ray crystal structures and the interesting scientific discussions.

I express my gratitude to Dr. Steffen MÜLLER who supported me and the project during his post-doctoral studies in the group. His guidance, experience and humor substantially contributed to the success of this project.

I am grateful to my great team of proofreaders, Alberto Kravina, Johannes Boshkow, Matthias Westphal, Michael Schafroth and Dr. Patrick Brady. Their thorough and constructive review led to a substantial improvement of this manuscript.

I thank BERND WOLFSTÄTTER for being a constant support in biology questions and for conducting the activity studies that are included in this thesis. Dr. DARIA Peleg-Raibstein and Dr. Susanne Wolfrum are acknowledged for conducting the in vivo studies which were part of the project.

I was fortunate to spend my lab-time in H330 with James Hamilton, Camille Le Chapelain, Jennifer Ciesielski, Alberto Kravina, Matthew Webster, Leonardo Nannini, Stefan Fischer, Dr. Richard Brimioulle and especially my direct hood- and desk neighbors Dr. Ryo YaZaki and Hannes Zipfel. I enjoyed the constructive and pleasant work atmosphere as well as the scientific and non-scientific discussions.

I thank Michael Schneider for the contributions he made to the project during his semester project.

Over the course of my Ph.D., I had the privilege to be part of the inspiring and productive environment of the CARREIRA group. I especially thank STEFAN Ruider, Hannes Zipfel, Michael Schafroth, Dr. Patrick Brady and Dr. Steffen Müller for the enjoyable time inside and outside the lab.

I thank Franziska Peyer and Anke Kleint for their help with all administrative questions.

I am thankful to the members of Glatt 203 as well as the ABV and Renato MINNIG for providing an invaluable balance to the lab-work.

Ich bedanke mich bei meiner wundervollen Frau IsabeLLE für ihre Liebe und uneingeschränkte Unterstützung. Ich bedanke mich bei meinen Eltern DAGMAR Uneiko-MöLler und Ulrich Möller für ihr Vertrauen in mich, ihre unendliche Unterstützung und ein stets offenes Ohr. Euer drei Zuwendung hat maßgeblich zum Erfolg dieser Arbeit beigetragen und mich an den Punkt gebracht, an dem ich heute stehe.

Publications \& Presentations

Publications

K. Miyata, G. Möller, D. Schepmann, B. Wünsch

Pyridine Analogues of Spirocyclic σ_{1}-Receptor Ligands
Bioorg. Med. Chem. 2014, 22, 4277-4284

Presentations

$14^{\text {th }}$ Belgian Organic Synthesis Symposium
Poster presentation: "Oxetayl Amino Acids as Peptidomimetics"
July 2014, Louvain-La-Neuve, Belgium
$7^{\text {th }}$ SSCI Symposium
Poster presentation: "Synthesis and Application of Oxetanyl Peptides"
January 2015, ETH Zürich, Zürich, Switzerland

Table of Contents

Acknowledgements I
Publications \& Presentations III
Table of Contents V
Abstract IX
Zusammenfassung XI
List of Abbreviations XV
1 Introduction 1
1.1 Peptides in Drug Discovery 2
1.1.1 Paradigm Shift 2
1.1.2 Definition of Peptides and Peptidomimetics 6
1.1.3 Challenges and Opportunities 7
1.1.4 Marketed Peptides 10
1.2 Oxetanes 13
1.2.1 De Novo Synthesis 13
1.2.2 Properties 17
1.2.3 Building Blocks for Medicinal Chemistry 19
1.2.4 Applications 22
2 Backbone-Modified Oxetanyl Peptides 25
2.1 Conceptual Framework 26
2.2 Synthetic Strategy 28
2.2.1 Pummerer Approach to Oxetanyl Dipeptides 29
2.2.2 Alkylation Approach to Oxetanyl Dipeptides 32
2.3 Building Block Synthesis 36
2.3.1 Synthesis of Diamine Building Blocks 87 36
2.3.2 Synthesis of Triflates 110 61
2.3.3 Synthesis of Oxetanyl Dipeptides 73 64
2.4 Incorporation of Building Blocks 73 into Larger Peptides 70
2.4.1 Synthesis of Leu-Enkephalin Analogues 71
2.4.2 Serum Stability of Leu-Enkephalin Analogues 247a-e 75
2.4.3 Binding Affinity of Leu-Enkephalin Analogues 247a-e 78
2.4.4 In vitro Activity of Leu-Enkephalin Analogues 247a-e 81
2.4.5 In vivo Activity of Oxetanyl Peptidomimetic 247e 84
2.4.6 Summary of Pharmacological Properties of 247a-e 85
2.4.7 Synthesis of α-Synuclein Inhibitors 88
2.4.8 Planned Activity Studies 95
3 Side Chain-Modified Oxetanyl Peptides 99
3.1 Conceptual Framework 100
3.1.1 Oxetanes as Surrogates for gem-Dimethyl Groups in Amino Acids101
3.1.2 Oxetanes as Surrogates for Carbonyl Groups in Amino Acids 102
3.1.3 Azetidine as a Side Chain-Modification 103
3.2 Synthetic Strategy 104
3.2.1 Synthesis of Side Chain-Modified Amino-Acids via Asymmetric Hydrogenation 104
3.2.2 Synthesis of Side Chain-Modified Amino-Acids via ElLmAN Imines 110
3.3 Building Block Synthesis 111
3.3.1 Synthesis of $\operatorname{Val}(\mathrm{Ox})(277)$ 111
3.3.2 Synthesis of $\mathrm{Neo}(\mathrm{Ox})(280)$ 114
3.3.3 Synthesis of $\operatorname{Asn}(\mathrm{Ox})(281)$ 117
3.3.4 Synthesis of $\mathrm{Gln}(\mathrm{Ox})(282)$ 121
3.3.5 Synthesis of Glu(Ox) (284) 122
3.3.6 Synthesis of $\operatorname{Asp}(\mathrm{Ox})(283)$ 123
3.3.7 Synthesis of Lys(Az) (286) 127
3.3.8 Synthesis of $\mathrm{Tle}(\mathrm{Ox})(278)$ 128
3.3.9 Synthesis of Leu(Ox) (279) 130
3.4 Incorporation of $\mathrm{Glu}(\mathrm{Ox})$ (284) into Submandibular Gland Tripeptide Phe-Glu-Gly (376) 132
3.4.1 Synthesis 133
3.4.2 Planned Biological Studies 134
4 Conclusion \& Outlook 137
4.1 Backbone-Modified Oxetanyl Peptides 138
4.2 Side Chain-Modified Oxetanyl Peptides 141
5 Experimental Part 145
5.1 General Methods 146
5.2 Experimental Procedures to Chapter 2 148
5.3 Experimental Procedures to Chapter 3 287
5.4 Experimental Procedures to Chapter 4 331
6 References 335
7 Appendix 351
Curriculum Vitae 575

Abstract

This work extends the concept of oxetanes as gem-dimethyl and carbonyl mimics in drug development to peptides. Naturally occurring pharmaceutically active peptides are invaluable lead structures for the design of pharmaceuticals. However, the use of peptides as drugs suffers from some inherent limitations such as low metabolic stability and bioavailability. Hence, we decided to design building blocks containing oxetanes that would significantly enhance the stability of the parent compound and at the same time retain or improve its biological activity.

In the first part of the project a variety of backbone-modified dipeptide building blocks I was prepared, where the peptidic amide bond is replaced by a 3-amino oxetane moiety. The synthetic strategy is designed to allow the modular assembly of I containing a diversity of side chains by alkylation of II with III. In turn, II and III were traced back to inexpensive, readily available starting materials, Tris-base (IV) and D-amino acids V, respectively (Scheme I).

Scheme I Synthesis and Application of Oxetanyl Dipeptides I.
This approach relying on robust synthetic methods ensures the operationally simple formation of sufficient amounts of building blocks I for their incorporation into larger peptides. We chose the prominent endogenous neurotransmitter Leu-Enkephalin (VI) as our first target to evaluate the effect of
the oxetane modification on the properties of the parent peptide. In total, four analogues of VI were prepared. Indeed, the half-life time in human serum of the analogues was significantly increased to up to 18 h (for VII) compared to 10 min for the natural compound (Scheme I). Furthermore, two of the oxetanyl peptides still showed nanomolar affinity to the δ-opioid receptor. The most promising analog from the in vitro studies also showed analgesic activity in mice.

As a second target, we chose an inhibitor of the aggregation of α-synuclein. Fibrillation of α-synuclein is suspected to be the major cause of PARKINSON's disease. Also in this case, four oxetanyl analogues were prepared. Studies on their in vitro activity are ongoing.

The second part of the project aimed at the synthesis of side-chain modified oxetanyl amino acids. This time, the oxetane surrogate was used to modify the intrinsic properties of natural and unnatural amino acid side chains. On one hand, oxetanes were incorporated as gem-dimethyl replacements in hydrophobic amino acids to reduce their lipophilicity. On the other hand, the side-chain carbonyl groups in Asn, Gln, Asp and Glu were replaced by oxetanes to alter their electrostatic properties. Finally, an azetidine derivative of lysine was designed. In total, nine oxetanyl and azetidinyl amino acids were prepared employing well-established methodologies, i.e. asymmetric hydrogenation and ELLMAN auxiliary chemistry.

Scheme II Concept and Incorporation of VIII into IX.
Additionally, one of the novel oxetanyl amino acid building blocks (VIII) was incorporated into the anti-anaphylactic peptide FEG. Further studies to evaluate the activity of IX will be subject of future research (Scheme II).

Zusammenfassung

Diese Arbeit erweitert das Konzept, Oxetane als Ersatz für geminale Dimethylund Carbonylgruppen in der Wirkstoffentwicklung einzusetzen, auf Peptide. Natürlich vorkommende, pharmazeutisch aktive Peptide sind unersetzbare Leitstrukturen für das Design neuer Pharmazeutika. Jedoch sind Peptide aufgrund ihrer geringen metabolischen Stabilität und Bioverfügbarkeit nur bedingt als Wirkstoffe geeignet. Daher beschlossen wir, Oxetanbausteine zu entwickeln, die die Stabilität der ursprünglichen Verbindung erhöhen und zugleich ihre biologische Aktivität beibehalten oder verbessern.

Im ersten Teil des Projekts stellten wir eine Vielfalt Rückgrat-modifizierter Dipeptidbausteine I her, in denen die peptidische Amidbindung durch ein 3Aminooxetan ersetzt ist. Die ausgewählte Synthesestrategie über die Alkylierung von II mit III erlaubte die modulare Synthese von I mit einer Vielzahl verschiedener Seitenketten. Die Bausteine II und III wiederum wurden auf die günstigen, kommerziell verfügbaren Startmaterialien Tris-Base (IV) und DAminosäuren V zurückgeführt (Schema I).

Schema I Synthese und Anwendung von Oxetanyldipeptiden I.
Der auf robusten synthetischen Methoden basierende Zugang zu I stellt die Verfügbarkeit ausreichender Mengen für die Herstellung grösserer Peptide
sicher. Als erste Anwendung, zur Bestimmung des Effekts vom Einbau von Oxetanen auf die Eigenschaften des ursprünglichen Peptids, wählten wir den bekannten endogenen Neurotransmitter Leu-Enkephalin (VI). Insgesamt wurden vier Analoga von VI hergestellt. Die Halbwertszeit in humanem Serum erhöht sich durch die Verwendung von Oxetanylpeptiden von 10 min für die natürliche Verbindung (VI) auf bis zu 18 h für VII. Zudem haben zwei der Analoga eine nanomolare Bindungsaffinität zum δ-Opioidrezeptor. Die vielversprechendste Verbindung aus den in vitro Studien zeigte außerdem analgetische Aktivität in Mäusen.

Als zweite Zielverbindung wählten wir einen Inhibitor der Aggregation von α Synuclein. Die Fibrillation von α-Synuclein wird als einer der Hauptgründe für die Parkinson'sche Krankheit angesehen. Auch hier wurden vier Analoga des natürlichen Peptids hergestellt. Studien zu ihrer in vitro Aktivität sind geplant.

Der zweite Teil des Projekts befasste sich mit der Synthese von Seitenkettenmodifizierten Oxetanylaminosäuren. Diesmal sollten durch die Verwendung von Oxetanen die intrinsischen Eigenschaften von Seitenketten natürlicher und unnatürlicher Aminosäuren verändert werden. Einerseits wurde Oxetane anstelle von geminalen Dimethylgruppen eingesetzt, um die Lipophilie hydrophober Aminosäuren zu mildern. Andererseits, wurden die Carbonylgruppen in den Seitenketten von Asn, Gln, Asp und Glu durch Oxetane ersetzt, um deren elektrostatische Eigenschaften zu verändern. Schließlich wurde ein Azetidinderivat von Lysin entwickelt.

Schema II Konzept und Einbau von VIII in IX.

Insgesamt wurden neun Oxetanyl- und Azetidinylaminosäuren durch die Verwendung etablierter Methoden, d.h. asymmetrischer Hydrierung und Ellman Auxiliarchemie, hergestellt. Weiterhin wurde einer der neuen Oxetanylbausteine VIII in das anti-anaphylaktische Peptid FEG eingebaut. Weitere Studien zur Aktivität von IX sind noch im Gange.

List of Abbreviations

Ac	Acetyl
ADME	Absorption, distribution, metabolism, excretion
API	Active pharmatheutical ingredient
aq.	Aqueous
Ar	Aryl
Bn	Benzyl
Boc	tert-butyloxycarbonyl
BOM	Benzyloxymethyl
Bu	Butyl
Cbz	Benzyloxycarbonyl
cod	1,5-Cyclooctadiene
Cy	Cyclohexyl
d.r.	Diastereomeric ratio
Da	Dalton
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-Dichloroethane
DIAD	Diisopropyl azodicarboxylate
DIBAL-H	Diisobutylaluminum hydride
DIPEA	N,N-Diisopropylethylamine
DMAP	4-(Dimethylamino)-pyridine
DMBA	1,3-Dimethylbarbituric acid
DMF	N, N-Dimethylformamide
DMSO	Dimethyl sulfoxide
EA	Ethyl acetate
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
ee	Enantiomeric Excess
EMEA	European Medicines Agency
eq	Stoichiometric Equivalents
ESI	Electrospray ionization
Et	Ethyl
EWG	Electron withdrawing group
FDA	Federal Drug Administration

Fmoc	Fluorenylmethoxycarbonyl
gem	Germinal
HATU	1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]-
	pyridinium 3-oxid hexafluorophosphate
HBSS	Hanks' balanced salt solution
hex	Hexanes
HMDS	Hexamethyldisilazane, Bis(trimethylsilyl)amine
HOBt	1-Hydroxybenzotriazole
HPLC	High performance liquid chromatography
HRMS	High resolution mass spectrometry
i.v.	Intravenous
IR	Infrared spectroscopy
LAH	Lithium aluminum hydride
LDA	Lithium diisopropylamide
$\log P$	Logarithm of the 1-octanol/water partition coefficient
M	Molecular weight
M	Molar, mol/L
m.p.	Melting point
MALDI	Matrix-assisted laser desorption/ionization
Me	Methyl
Ms	Mesyl, Methanesulfonyl
MW	Microwave
NMM	N-Methylmorpholine
NMR	Nuclear magnetic resonance
ORTEP	Oak Ridge Thermal Ellipsoid Plot
PG	Protecting group
Ph	Phenyl
Pht	Phthaloyl
PMB	para-Methoxybenzyl
Pr	Propyl
PS	Polystyrene
PTFE	Polytetrafluoroethylene
R_{t}	Retention time
sat.	Saturated
SEM	Standard error of the mean

SFC	Supercritical fluid chromatography
Su	Succinimide
TBAI	Tetra- n-butylammonium iodide
Teoc	2-Trimethylsilylethyloxycarbonyl
Tf	Trifluoromethylsulfonyl
TFA	Trifluoroacetic acid
TFAA	Trifluoroacetic anhydride
THF	Tetrahydrofuran
ThT	Thioflavin T
TLC	Thin layer chromatography
TMEDA	Tetramethylethylenediamine
TMG	1,1,3,3-Tetramethylguanidine
TMS	Trimethylsilyl
Troc	2,2,2-Trichloroethyloxycarbonyl
Ts	Tosyl, 4-Methylbenzenesulfonyl
UV	Ultraviolet

1

Introduction

1.1 Peptides in Drug Discovery

Drug development has gone through tremendous advancements to provide cure to more and more diseases, ever since. ${ }^{1}$ Methodologies in this field of research such as clinical trials and the design of active pharmaceutical ingredients (APIs) from natural leads seem self-evident today. ${ }^{2}$ However, considering the early development of small molecule therapeutics, e.g. Aspirin, tools in drug discovery have undergone an immense improvement. The way from using willow bark as a remedy for pain, reported as early as 1534 BC in Egypt to the discovery of acetyl salicylic acid as the optimized drug by Hoffmann in 18972,3 was mainly characterized by serendipity, where today modern structure activity relationship studies (SAR studies) and the understanding of activity at the molecular level along with computational and combinatorial chemistry pave the way for drug discovery. However, the aging of society, medical advancement and a number of incurable diseases create an ever-pressing need for the development of new highly potent therapeutics.

1.1.1 Paradigm Shift

Until very recently, drug discovery in industry focused on the development of small molecule APIs. ${ }^{1}$ About twenty new therapeutics of this class were approved by the FDA per year between 1980 and 2011.,4 The development of small molecule drugs often begins with the screening of millions of different lead compounds against a certain pharmaceutically relevant target. ${ }^{5,6}$ These libraries consist both of a collection of natural products ${ }^{7}$ as well as a diverse set of chemical intermediates from industry and academia. ${ }^{8}$ The most promising lead structure then undergoes an intensive SAR screen which eventually leads to the discovery of a highly potent pharmaceutical.9,10 The structural refinement today is also regularly assisted by computational methods. In some cases, even the de novo generation of a lead structure can be achieved in silico. ${ }^{11}$ Small molecule drugs were long perceived as the most promising class of therapeutics. The ease of deduction from natural products, the chemically diverse synthetic
methodologies available and the low cost of production made their development suitable in a competitive industrial setting. ${ }^{12,13}$ The well-established procedures for process development additionally allow the large scale production of these compounds. Furthermore, small molecules are most of the time metabolically robust, hence applicable to oral administration, and show high membrane permeability. ${ }^{1}$

Based on their observations on small molecule drugs, Lipinski et al. ${ }^{14}$ formulated the "rule of five" to define properties of an orally active small molecule drug. Further refinements and additions of and to these have then been made by Ghose et al. ${ }^{15}$ and Veber et al. ${ }^{16}$ LIPINSKI defined a molecule as drug-like if it had "sufficiently acceptable ADME properties and sufficiently acceptable toxicity properties to survive through the completion of human Phase I trials". ${ }^{17}$ A summary of the original rules and the additions is provided in Table 1.

Table 1 The Rule of Five and Extensions thereof.

LIPINSKI	- No more than FIVE H-bond donors
	- No more than $2 \times$ FIVE H-bond acceptors
	- A molecular weight $<$ FIVE hundred Da
	- A partition coefficient $\log P<$ FIVE
GHOSE	- Partition coefficient $-0.4<\log P<5.6$
	- Molar refractivity: $40<A<130$
	- Molecular weight: $180<M<500$
	- Number of atoms: $20<n_{\text {Atoms }}<70$
	- Polar surface Area $<140 \AA^{2}$
VEBER	-10 or fewer rotatable bonds
	$-P o l a r$ surface area $\leq 140 \AA^{2}$

Despite the advances in small molecule drug discovery outlined above, the costs for the development of a new marketed pharmaceutical rise constantly. Today, following stricter regulatory rules focusing more and more on safety rather than potency is a major component of the drug discovery process. ${ }^{1,13}$ The costs for the development of a single marketed API hence rose to around 1.3 billion dollar
today of which about 70% arise from failure. ${ }^{18-20}$ About 35% of the developed compounds get dismissed in Phase I clinical trials due to toxicology issues, 63% of the remaining don't survive Phase II because of little potency and in Phase III another 45% are abandoned. Finally, 23% of the remaining structures don't pass the regulatory process at the FDA or EMEA. ${ }^{13,21}$ In view of the decreasing number of marketed small molecule drugs the need for the development of new tools in drug discovery and new classes of therapeutics becomes obvious.

Indeed, the field of drug discovery has recently been expanded to much larger molecular scaffolds, so called biologics. Among them are mainly antibodies or recombinant proteins that exceed a molecular weight of 5000 Da . At first sight antibodies seem to be ideal drug candidates as they can specifically bind to the corresponding antigen, i.e. another protein, carbohydrate, lipid, etc. However, early attempts to use antibodies isolated from mice as therapeutics were not very successful. Indeed, antibodies from other species can themselves be an antigen in the human organism and hence trigger an immune response. ${ }^{22}$ Only, when it was possible to modify antibodies to make them similar or identical to human antibodies this class of compounds could be used as drugs. ${ }^{23-25}$ Today, antibodies themselves or conjugated to cytokines and small molecule drugs are used in for the treatment of a number of diseases. This class of compounds is considered a valuable addition in the tool box of the pharmaceutical industry. ${ }^{1}$ Biologics often have much higher target specificity than small molecules and hence reduced side effects. Additionally, they can target protein-protein interfaces (PPIs) that because of their large surface area cannot be easily addressed by small molecules. ${ }^{26}$ Another advantage of biologics is their metabolites which mostly are natural amino acids and other endogenous substances with low or no toxicity. However, as mentioned above, biologics tend to have a larger immunogenicity than small molecule drugs. Additionally, due to the high molecular mass, the potency per mass unit is rather low. Combined with the high production costs of biologics this poses another major drawback of this class of compounds. ${ }^{27}$ Furthermore, violating all "rule of five" parameters, biologics have a negligible
oral availability which makes injection the only possible administration method. Orally available drugs are largely preferred by the pharmaceutical industry to improve the patient acceptance of a product. ${ }^{13}$ Nevertheless, the potency of some biologics have easily outperformed this obstacle and become blockbuster drugs. Despite the uncountable number of degradation mechanism for proteins operative in any organism, some antibodies can survive up to weeks after single administration. ${ }^{1}$ Apart from recombinantly prepared human insulin, e.g. the monoclonal antibodies ADALIMUMAB against rheumatoid arthritis and TRASTUZUMAB against breast cancer are between the top selling injectable biologics. ${ }^{28}$

Up to this point, drug discovery only took place at molecular weights under 500 Da or above 5000 Da . The gap between these two limits was considered as not desirable for the use as pharmaceuticals. ${ }^{1}$ Compounds in this range would violate the "rule of five", hence not be orally available. Furthermore, they were predicted not to be drug-like in the traditional sense and also not outbalance this drawback by their intrinsic selectivity (Figure 1).

Figure 1 Classes of Potential APIs by Molecular Weight.

Since all medium sized peptides between five and 50 amino acids fall into this class of compounds, they were for a long time neglected in the drug discovery process. Additionally, the pharmacokinetic profile of peptides is rather undesirable. Most small peptides have poor oral availability, poor membrane
permeability, low metabolic stability in plasma and the digestive system as well as high hepatic and renal clearance. ${ }^{29-32}$ Furthermore, the cost of production of peptides is higher than for the synthesis of small molecules although still not as high as for the expression of biologics. ${ }^{27}$ Robust methods exist for the chemical synthesis of peptides. ${ }^{33}$ However, they mostly rely on the reaction between protected amino acids mediated by coupling reagents. The protection and deprotection of amino acids as well as the coupling reagents ${ }^{34}$ are major cost factors in the production of these compounds. Despite all these drawbacks for the use of peptides as drugs, peptide therapeutics have advanced to a new class of highly potent APIs.

1.1.2 Definition of Peptides and Peptidomimetics

The term "peptide" or more specifically "small peptide" usually refers to compounds assembled from 50 amino acid monomers or less. ${ }^{1}$ In general, peptides are hetero-polymers of head-to-tail connected amino acids. ${ }^{35}$ The monomers are enantiopure and have (S)-absolute configuration in all proteinogenic amino acids except for cysteine (R) and glycine (no chiral center). The amino acids are connected by amide bonds. Both the amide backbone and the side-chains can be engaged in ligand-target interactions via H-bonds, van-der-Waals forces, salt bridges, dipolar interactions. Furthermore, peptides can adopt a secondary structure which is defined as the folding of the amide backbone triggered by H-bonding interactions of the peptide backbone or hydrophobic/hydrophilic separation of the side-chains in polar media.

The term "peptidomimetic" can be broadly defined as ligand that has the same structure-activity relationship as a peptide for the same target. ${ }^{36}$ In this work, peptidomimetics are more closely defined as compounds that have been designed by the replacement of defined elements of the original peptide structure with synthetic building blocks, thereby conserving all other features of the parent structure. ${ }^{35}$ For example, single amide bonds could be replaced while conserving the rest of the backbone and the side chains or the complete backbone
could be exchanged for a different organic scaffold displaying the amino acid side chains.

1.1.3 Challenges and Opportunities

The era of peptide drugs has seen a major boost in 2012 when six therapeutics of this class were approved and marketed in a single year. ${ }^{37}$ But how could peptides with all their unfavorable pharmacokinetic properties become one of the most important research areas in drug discovery? Therapeutic peptides are similar to small molecule drugs often derived from natural products. Nature has designed a vast number of different proteins each optimized to its specific function by evolution. Natural peptides and proteins are highly potent and selective pharmaceutically active substances. This makes these natural products ideal lead structures for drug discovery. Animal poisons which are designed to be fast acting ${ }^{38}$ and stable as well as neurotransmitters like Leu-Enkephalin ${ }^{39}$ which are designed to be rapidly degraded after exhibiting their effect can serve as natural starting points for the development of peptide drugs. A potential peptide pharmaceutically active agent would then be the smallest still active sequence of a potent natural protein. This approach uses the evolutionary optimization of nature to affect a certain target to short cut the tedious lead screening process. Still as for small molecule research also in the case of peptides, chemical and furthermore genetic and recombinant libraries can be used for high-throughput screening. ${ }^{40}$

The infinite sources for peptide lead structures however still cannot compensate insufficient ADME parameters. ${ }^{41}$ Hence, only modern synthetic chemistry was able to make a drug out of a peptide. Until today, numerous modifications of peptides to improve their pharmacokinetic profile have been developed and reported.

The most straightforward approach is the design of primary structure mimics that use mimics to replace the peptide bond and hence protect it from proteolytic
degradation. Between these peptide bond isosteres are e.g. traditional depsipeptides, thiodepsipeptids, aza-peptides, alkenes, fluoroalkenes and reduced amide bonds ${ }^{42-44}$ as well as more modern variants such as triazoles ${ }^{45}$ or as outlined in this work amino-oxetanes. ${ }^{46,47}$ These modifications allow producing peptide mimics that are more stable towards enzymatic degradation processes. Different primary structure mimics include side-chain modified amino acids. This class of building blocks allows fine tuning the interactions of a given peptide with the target and also increasing the bioavailability and possibly even membrane permeability.

A class of more abstract peptidomimetics includes surface ${ }^{48}$ and secondary structure mimics. ${ }^{49,50}$ In these cases, a robust and easily synthesized organic backbone is designed which allows the display of a diverse set of amino acid side-chains at various exit vectors. This second concept sees the original peptide backbone as not more than a string of atoms that carries the side chains that in turn build the relevantly functionalized surface for PPIs.

A third class of drug-like peptides leaves the constitution of the lead peptide intact. The modifications in these cases are introduced by a different stereochemistry or cyclization of the linear peptide to disturb the recognition of the amide bond motif by proteases. ${ }^{51}$

This work will focus only on primary structure mimics which rely on the assembly by peptide coupling chemistry. However, all classes of peptidomimetics open the door for the creation of new intellectual property. Furthermore, only the availability of a diverse set of opportunities for modification allows a comprehensive screening of SAR and relevant conformations. Backbone primary structure mimics as well as surface and secondary structure mimics and side-chain modified amino acids are hence valuable building blocks for the pharmaceutical industry. Especially in the cases of backbone primary structure mimics and side-chain modified amino acids that are compatible with solid phase peptide synthesis (SPPS) ${ }^{52-54}$, rapid formation of
a diverse library of peptides for SAR studies is possible. Furthermore, the technique of SPPS has advanced and can be used for the fully automated production for medium scale ($>5 \mathrm{~kg}$) of peptide samples. ${ }^{27,55}$ Compared to recombinant methods for the formation of biologics, SPPS is more productive. Due to the easy separation from side products because of the use of solid resins products of extremely high purity can be obtained that easily withstand everincreasing regulatory environments and are a valuable contribution to safe drugs.

Because of the building block nature, peptides can easily be modified in single positions. This might even open the door for the long lived dream of personalized medicine. Together with recently developed genetic tools that allow predicting interpatient variations of potency, therapeutic peptides could be a milestone in the development of personalized drugs. ${ }^{56,57}$

An often neglected advantage of peptides over small molecule drugs is their metabolism. Despite peptides are rapidly degraded their metabolites are amino acids and hence exhibit low or no toxicity. Additionally, the well-defined degradation pathway prevents the accumulation of the peptide drug in tissue and organs and even makes the design of peptide pro-drugs possible. ${ }^{29}$

Compared to biologics, peptide drugs are less immunogenic than their higher mass homologues. Additionally, the activity per mass unit is higher compared to biologics at a lower production cost. This is also attributed to a higher tissue penetration depth of peptides compared to larger entities. ${ }^{58}$ Finally, small peptides have often longer storage life-times than antibodies and proteins. ${ }^{29}$

Up to this point, chemical modifications for the improvement of the pharmacokinetic profile of peptides as drugs have been described. In addition to chemistry which tries to take counter-measures against a certain degradation pathway different, approaches which circumvent the site of metabolic attack have been designed. Traditionally, the digestive degradation pathway is avoided
by subcutaneous, intramuscular or intravenous injection. ${ }^{59,60}$ This administration method will always be superior in emergency medicine, where rapid action of the drug of choice is required. However, these procedures may cause discomfort to the patient and thereby reduce the product acceptance on the market. However, newly applied administration methods for peptide drugs via the mucosal route (e.g. nasal sprays), the oral route with drug release systems and penetration enhancers ${ }^{61,62}$ or transdermally with patches have revolutionized the use of peptides as drugs.

In summary the interdisciplinary combination of novel chemical modifications, peptide synthesis process development and the design of administration techniques has opened the door for therapeutic peptides. Especially in view of strict regulatory rules and a competitive pharmaceutical market, ${ }^{20}$ this new class of pharmaceuticals has become an invaluable addition to the toolbox of drug discovery. Today, peptide drugs for a number of indications have been developed and marketed including allergy, cardiovascular diseases, diabetes, immunity diseases, oncology and infective diseases.

1.1.4 Marketed Peptides

Peptides and Biologics are currently holding a 10% share of the pharmaceutical market worth >40 billion US-\$ per year which is expected to continue growing in the future. A large diversity of peptide drugs has been marketed already. This chapter is not meant to give a comprehensive overview over peptide therapeutics but rather features three recently marketed examples.

The selective proteasome inhibitor CARFILZOMIB (1) with anti-cancer activity was approved 2012 under the trade name Kyprolis by the FDA. It is indicated for the treatment of patients with multiple myeloma who have failed to respond to other therapies already. ${ }^{63}$ CARFILZOMIB (1) is derived from the naturally occurring peptide Efoxomicin (2) which displays strong anti-inflammatory activity (Figure 2). ${ }^{64}$

Figure 2 Epoxomicin (2) and Carfilzomib (1).
CARFILZOMIB (1) is an excellent example, how a pharmaceutically active natural peptide can be evolved to a potent drug. Extensive studies on the mechanism of action of Epoxomicin (2) revealed, that the terminal epoxy ketone moiety is essential for its function. Double nucleophilic attack of the N-terminal threonine of the proteasome residue first on the ketone part and then on the epoxide forms a morpholine ring and shuts down its active site. Proteasome over protease activity is believed to stem from the position of the active site in the protein respectively. N-terminal active sites are typically not observed in common proteases. Conserving the epoxy ketone feature and carefully optimizing the remaining amino acid residues finally furnished the anti-cancer drug $1 .{ }^{65}$

As a second example BOCEPREVIR (3), a protease inhibitor for the treatment of hepatitis C virus genotype I caused hepatitis was chosen because of its unique structural elements (Figure 3). Compound 3 does not contain a single natural amino acid and was specifically designed as a drug. It was approved by the FDA in 2011 and marketed under the trade name Victrelis. ${ }^{66}$

Boceprevir (3)

Figure 3 Boceprevir (3).

The conceptual idea was to identify an artificial peptide which would mimic the endogenous substrates of the targeted proteases to block their binding sites. Through screening an undecapeptide was originally identified which could then be truncated by further SAR studies and optimization of single amino acid residues by the analysis of X-Ray crystal structures. The most important structural element of 3 is the α-ketoamide which acts as a serine trap to deactivate the protease active site. The rather unusual bicyclic proline derivative was introduced as a consequence of identified conformational requirements from X-Ray crystal structures. ${ }^{66}$

Another related protease inhibitor for hepatitis C treatment is Telaprevir (4) (Figure 4). ${ }^{67}$

Telaprevir (4)

Figure 4 Telaprevir (4).

Similar to BOCEPREVIR (3) it contains only unnatural amino acids and the important α-ketoamide functionality as a serine trap. Furthermore, it also features a bicyclic proline derivative separated from the ketone by a hydrophobic amino acid and finally the tert-leucine (Tle) residue. In contrast to 3, Telaprevir (4) contains an additional N -terminal hydrophobic amino acid residue and is N terminally capped by a pyrazine amide. Telaprevir (4) has been found to be especially effective for the treatment of a previously treated chronic hepatitis C infection. ${ }^{68,69}$ In combination with BOCEPREVIR (3) it provided a powerful toolbox for the treatment of this disease. ${ }^{70,71}$

1.2 Oxetanes

Oxetane containing compounds have become an important addition to the synthetic tool box of medicinal chemistry. The unique properties of this fourmembered heterocycle along with its surprising chemical and metabolic stability make it a promising moiety in SAR screening.

1.2.1 De Novo Synthesis

Along with the increasing use of oxetanes in medicinal chemistry, new synthetic methods have been developed for their synthesis. This chapter focusses on the most commonly employed synthetic routes to oxetanes rather than giving a comprehensive review.

The most traditional and obvious way to synthesize oxetanes is probably Williamson's ether synthesis. The first preparation of parent oxetane 5 was achieved by Reboul in 1878 from 3-chloropropanol (6). ${ }^{72}$

Scheme 1 First Synthesis of 5 from 6.

Additionally, treatment of the flame retardant tribromide 7 with base results in the clean formation of $\mathbf{8}$ (Scheme 2). ${ }^{73,74}$

Scheme 2 Synthesis of Oxetane 8 from Tribromide 7. ${ }^{74}$

Furthermore, Syngenta developed the large scale synthesis of oxetane-3-ol (9) from epichlorohydrin (10) using the concept of the work of BAUM et al. ${ }^{75,76}$ Nucleophilic opening of 10 led to alcohol 11 which was subsequently protected as acetal 12. Ring closure occurred upon treatment of 12 with base. Finally the
resulting acetal 13 can be cleaved by treatment under acidic conditions to release oxetane-3-ol (9) (Scheme 3).

Scheme 3 Large Scale Synthesis of Oxentane-3-ol (9).
Another approach for the synthesis of more complex oxetanes starts from diols or triols. Already 1957 PatTISON reported the transformation of triol 14 to oxetane 15 in the presence of diethyl carbonate and potassium hydroxide in ethanol. ${ }^{77}$ This procedure relies on the formation of the cyclic carbonate and subsequent intramolecular substitution. More examples of the conversion of triols 16-20 with different alkyl, benzyl or aryl substituents to oxetanes 21-25 by using this method were published later. ${ }^{78-81}$ Furthermore, few examples with heteroatom substituents namely ethers like the reaction of $\mathbf{2 6}$ to 27 are precedent in the patent literature (Scheme 4)..82

Scheme 4 Synthesis of Oxetanes from Triols with Diethyl Carbonate.
The second approach to oxetanes is the ring closure from diols by activation of one of the hydroxyl groups and subsequent intramolecular nucleophilic substitution. The diols themselves can often be traced back to malonates 28 . The most common procedure for this process is treatment of the diol 29 with one equivalent of n-BuLi followed by p-toluenesulfonyl chloride and again one equivalent of n-BuLi. The formation of numerous oxetanes 30 using this method has been reported by the group of JaCOBSEN (Scheme 5). ${ }^{83}$ Later, BOYD and DAVIES extended this concept to mono-silyl-protected triols. ${ }^{84}$

Scheme 5 Synthesis of Oxetanes 30 from Malonates 28.

Additionally, the ring closure of diols 29 to oxetanes 30 can be achieved under MITSUNOBU conditions in the presence of a zinc salt. ${ }^{85} \mathrm{~A}$ less prominent way for the activation of diols is the use of Diethoxytriphenylphosphorane. ${ }^{86}$

Finally, one of the most important procedures for the preparation of an oxetane using this approach is the ringclosure of diol 31 to ketal 32 which can in turn be converted to oxetane-3-one (33) (Scheme 6). Ketone 33 is one of the most commonly used commercial starting materials for the introduction of oxetanes into more complex molecular scaffolds. ${ }^{87}$

Scheme 6 Synthesis of Oxetane-3-one (33) by WUITSCHIK et al. ${ }^{87}$
Further classical methods include the preparation of oxetanes from carbonyl compounds, as represented by sulfur ylide chemistry or the PATERNÒ-BÜCHI reaction. The former method was used in a double Corey-Chaykovsky reaction from our group that features the conversion azetidine-3-one 34 into spirocycle 35 (Scheme 7). ${ }^{88-90}$

Scheme 7 Synthesis of Spirocycle 35 from 34.
A recent example of the PATERNÒ-BÜCHI approach for the synthesis of oxetanes is the reaction of silyl enol ethers 36 or enamines 37 with aldehydes to the corresponding functionalized oxetanes 38 and 39. ${ }^{91}$

Scheme 8 Oxetane Synthesis by Bach. ${ }^{11}$
Two more modern methods for the preparation of oxetanes include ZHANG's work on the gold catalyzed cyclization of propargyl alcohols 40 (Scheme 9A) ${ }^{92}$ and WILLIAMS' work on spirodiepoxides 41 derived from allenes 42 (Scheme $9 B)^{93}$. Both of these approaches furnish oxetanones 43 which allow for further functionalization.

A

Scheme 9 Modern Methods for the Synthesis of Oxetanes.

1.2.2 Properties

Oxetanes are four-membered strained heterocycles which have received significant attention in medicinal chemistry for their unique properties which can improve key parameters of an underlying molecular scaffold. Looking at carbocycles, it becomes obvious that four-membered ring systems experience a large amount of ring strain which is comparable to that of cyclopropanes. For example, the ring strain of a 1,1-dimethyl-substituted cyclopropane has been calculated to be $26 \mathrm{kcal} / \mathrm{mol}$ compared to the ring strain for a 1,1-dimethylsubstituted cyclobutane of $24.1 \mathrm{kcal} / \mathrm{mol} .{ }^{94}$ However, oxetanes and cyclobutanes cannot be compared in all of their properties. The puckered conformation of unsubstituted cyclobutane for example is significantly different from the flat
structure of unsubstituted oxetane. ${ }^{95}$ Only when substituents are attached to the oxetane core which exhibit eclipsing interactions, puckered compounds are obtained (for examples see crystal structures in this thesis).

Another main feature of oxetanes is the exposed oxygen lone pair which can be engaged in strong H-bonding interactions. Actually, between small ring size cyclic ethers, oxetanes show the highest hydrogen-bond strength. This can be generally explained by the fact, that with decreasing ring size, the bond angles within the ring become smaller, increasing the exposure of the oxygen lone pair. However, when the ring size is reduced to epoxides, a significant change of hybridization for the oxygen lone pairs occurs towards more s-character and hence less ability to participate in H-bonds. ${ }^{96-98}$

Several other general geometric parameters of oxetanes have been reported in the literature: The molecular volume of oxetane was determined to $61.4 \mathrm{~cm}^{3} / \mathrm{mol}^{99}$ and is hence comparable to the molecular volume of a gemdimethyl group ($75 \mathrm{~cm}^{3} / \mathrm{mol}$). ${ }^{100}$ The $\mathrm{C}^{3}-\mathrm{O}$ distance in an oxetane was found to be $2.1 \AA$ in an oxetane obtained from averaging a set of published crystal structures. ${ }^{101}$ This is 1.75 times longer than the $\mathrm{C}=\mathrm{O}$ distance of the carbonyl bond (1.2 Å) (Figure 5).

Figure 5 Average Structure of Oxetanes (adapted from Wuitschik et al.). ${ }^{101}$
As shown in earlier work from our group, the introduction of an oxetane unit into a pharmaceutically relevant structure can have favorable effects. Studies conducted by WUITSCHIK et al. showed that the oxetane can be perceived as an addition of bulk without adding lipophilicity, i.e. a liponeutral gem-dimethyl surrogate. ${ }^{102}$ Furthermore, the solubility and metabolic stability can be potentially improved by this substitution. ${ }^{101}$ Additionally, the oxetane moiety can
be regarded as an electron withdrawing group as demonstrated in a set of model compounds. ${ }^{87}$ Finally, the exit vectors of the lone pairs of an oxetane and its H bonding ability are similar to the values for a carbonyl group. Hence, oxetanes have been suggested as less electrophilic bioisosteres of carbonyl groups. However, the increase in lipophilic bulk by the introduction of two extra methylene units and the C-O distance as described above constitute the major structural differences between these two groups. Another striking difference between these moieties comes to light when looking at the conformational bias that is introduced on a linear system by their introduction. In the case of a carbonyl group, the aliphatic chain adopts an in-plane syn-alignment whereas in contrast in the case of an oxetane a gauche-alignment is favored. ${ }^{101}$

In summary, oxetanes have interesting intrinsic properties that make them potentially suitable as mimics of carbonyl or gem-dimethyl groups. First applications of this concept will be described in chapter 1.2.4. ${ }^{101,103}$

1.2.3 Building Blocks for Medicinal Chemistry

During the last ten years, a variety of oxetane containing spirocycles has been developed in our group. First, a diverse set of molecules 44-50 containing diverse sizes of nitrogen heterocycles was prepared (Figure 6). ${ }^{102}$

44

45

46

47

48

49

50

Figure 6 First Generation Oxetane Containing Spirocycles.
The availability of these building blocks allows the simple incorporation of the oxetane unit in more complex molecular scaffolds. The following spirocycle generations included another angular spirocycle 51 and the highly functionalized systems 52 and 53 (Figure 7). ${ }^{88,104}$

Figure 7 Second Generation Oxetane Containing Spirocycles.
Furthermore, the physicochemical and pharmacokinetic properties of the obtained spirocycles were extensively studied. In this context it was shown that the spiro[3.3]heptane systems may be perceived as metabolically robust isosters of (iso)morpholines. $88,102,104,105$

Additionally, the synthesis of surprisingly stable 4,5-spirocylces 54 from oxetane-3-one (33) and β-heteroatom-substituted amino compounds 55 and their application in the formation of highly substituted morpholines 56 were described recently (Scheme 10). ${ }^{106}$

Scheme 10 Synthesis of Six-membered Heterocycles from Oxetane-3-one (33).
Finally, the synthesis of backbone-modified oxetanyl dipeptides was reported. ${ }^{107,108}$ For a detailed discussion of these building blocks see chapter 2.

In addition to the work on oxetane-containing spirocycles carried out in our group, several other studies on building blocks containing oxetanes have been published.

For example, DUNCTON et al. demonstrated the use of 3-iodooxetane (57) in MINISCI reactions and nickel catalyzed SUZUKI cross-couplings for the synthesis of (hetero)aryloxetanes 58 and 59 (Scheme 11). ${ }^{109,110}$

Scheme 11 Application of 3-Iodooxetane (57) in Cross-Coupling Reactions.
Iodide 57 has also been used in as an alkylating agent for the incorporation of the oxetane moiety in SAR studies. ${ }^{111,112}$

The group of MOLANDER reported the conversion of 57 to the corresponding potassium trifluoroborate 60 (Scheme 12). ${ }^{113}$

Scheme 12 Synthesis of Building Block 60.

Furthermore, GEDEN et al. reported the synthesis of 2-substituted oxetane-3-one building blocks $\mathbf{6 1}$ by the alkylation of 33 (Scheme 13). ${ }^{114}$

Scheme 13 Formation of Oxetane-3-ones 61 by Alkylation.
Finally, oxetane building blocks were also used as directing groups in the lithiation of 2-aryl- 62 and 2-pyridyl-oxetanes 63 (Scheme 14). ${ }^{115,116}$

Scheme 14 Lithiation of 62 and 63.
This chapter only covers selected examples from the journal literature. Many more building blocks have been developed in the pharmaceutical industry and are represented in the patent literature.

A large variety of oxetane containing building blocks for medicinal chemistry is nowadays available from several commercial suppliers.

1.2.4 Applications

Up to this point only a few active pharmaceutical ingredients containing the oxetane moiety have been marketed. Certainly, PACLITAXEL (64) marketed as TaXol and AbraXane as well as its close analogues CAbAZITAXEL (65) and DOCETAXEL (66) are valuable cytostatic therapeutics. ${ }^{117,118}$

64

65

66

67

68

Figure 8 Oxetane Containing Pharmaceuticals and Agrochemicals.
More oxetane containing active substances can be found for agrochemical applications. Both the herbicide OXASULFURON (67) and the insecticide EDO (68)
contain the oxetane motif. EDO was developed as a more active and at the same time less persistant replacement for DDT (Figure 8). ${ }^{119}$

Numerous other reports of oxetane-containing compounds in the context of pharmaceutical development can be found in the literature. For example, arylsulfonamide 69 was developed as a metabolically stable γ-secretase inhibitor. ${ }^{120}$ Furthermore, the oxetane moiety was used in several SAR screens, e.g. for the optimization of γ-secretase modulators ${ }^{111,121}$ or nonstructural protein 5 A inhibitors ${ }^{122}$.

Figure 9γ-Secretase Inhibitor 69.

Finally, our group reported the synthesis and metabolic stability of the oxetane analogues of Thalidomide 70 and Lenalidomide 71. ${ }^{123}$

Figure 10 Oxetane Analogues of Thalidomide (70) and Lenalidomide (71).

Backbone-Modified

 Oxetanyl Peptides
2.1 Conceptual Framework ${ }^{124}$

Naturally occurring peptides are specifically designed to fulfill one or several biological functions. They are tailored from the twenty natural amino acids to perfectly match and selectively interact with a binding pocket of their target protein. Since the synthetic construction of these amide-linked heteropolymers is well-established and operationally simple, ${ }^{33,34}$ peptides provide a valuable starting point as lead compounds or active agents in medicinal chemistry. ${ }^{1,125}$ Small-molecule drug discovery often relies on the high-throughput screening of millions of compounds from synthetic and natural libraries to find a lead structure for further SAR evaluation and optimization. Contrarily, peptide drugs could immediately be derived from the corresponding endogenous peptidic ligand for the desired target.

However, the use of peptides as active pharmaceutical ingredients is limited by several factors: First and most importantly, peptides are labile to a number of enzymatic degradation processes. Predominantly, hydrolysis of the amide bonds by proteases often leads to rapid degradation and hence inactivation of the potential drug. Secondly, poor bioavailability ${ }^{126,127}$ and a limited distribution profile, e.g. blood-brain-barrier permeability ${ }^{128}$, reduce the utility of peptide pharmaceuticals. This is also manifested in the violation of the "rule of five" as defined by LIPINSKI et al. ${ }^{14}$ and refined by GHOSE and coworkers. ${ }^{15}$

Hence, the synthetic modification of peptides to peptidomimetics provides a valuable tool to overcome these intrinsic obstacles. ${ }^{129,130}$ As outlined in chapter 1.1, numerous approaches to peptide mimics have been described before. However, the variety of backbone modifications that resemble accurate and robust isosteres of the amide bond is still limited. As described in chapter 1.2.4, we have previously suggested that the incorporation of oxetanes into druglike scaffolds could improve their pharmacokinetic properties. We have shown that oxetanes can be perceived as chemically and metabolically robust isosters for
carbonyl groups such as esters, imides and ketones. ${ }^{87,101,103}$ These reported applications were limited to small molecules. ${ }^{102,123}$

Herein, we expand the concept of oxetanes as building blocks for drug discovery to their use as carbonyl mimics in peptidic amide bonds. We envisioned the introduction of a 3-aminooxetane moiety to resemble the peptide bond. In contrast to traditional primary structure mimics such as esters, thioester, alkenes, fluoroalkenes, ${ }^{47}$ triazoles ${ }^{45,131,132}$ and reduced amide bonds, ${ }^{42}$ the 3-aminooxetane preserves the unique H-bond donor/ H-bond acceptor properties of the naturally occurring amide which are essential for the assembly of stable secondary structures (Figure 11). Furthermore, the oxetane unit would protect the replaced peptide bond from proteolysis and eventually also protect neighboring cleavage sites by hampering the recognition of the peptide motif by proteases.

Figure 11 Oxetanes Resemble the Unique H -bond donor/ H -bond Acceptor Dual Function of the Amide Bond.

Additionally, the 3 -aminooxetane bioisostere converts the flat sp^{2}-carbonyl group into an sp^{3}-center, thereby closely resembling the exit vectors of the oxygen lone pairs and the $\mathrm{N}-\mathrm{H}$ bond.

Figure 12 Estimated Exit Vectors for a Natural Amide Bond and a 3-Aminooxetane.
However, the introduction of an oxetane also leads to a strong conformational bias on the chain it is attached to, forcing it from an in plane syn-arrangement in
the carbonyl case into a gauche alignment as described by WUITSCHIK et al. ${ }^{101}$ The introduction of this modification could hence expand the conformational space and flexibility of the parent peptide to better adopt a given binding pocket by induced fit. It might also be perceived as a tetrahedral intermediate mimic resembling the transitions state in enzyme catalyzed amide hydrolysis in the context of protease inhibitors. ${ }^{133}$ As described before (chapter 1.2.2) the major structural differences are the increased C-O distance by the four-membered ring in an oxetane and the thereby introduced lipophilic bulk compared to a carbonyl group. ${ }^{101}$

2.2 Synthetic Strategy

We decided to design our synthetic approach to oxetanyl peptidomimetics to preserve the building block nature of peptides. This would enable us to construct oxetanyl building blocks which could then be used in standard peptide couplings (Figure 13). Hence, we pursued the stereoselective synthesis of oxetanyl dipeptides.

Figure 13 Disconnection of Peptides to Oxetanyl Dipeptides.
The first generation of backbone-modified oxetanyl dipeptides was independently synthesized both in our group ${ }^{107}$ and by Powell et al. ${ }^{108}$ The strategy used therein relies on the MichaEl addition of protected amino acids to nitro olefins (72) derived from oxetane-3-one (33) to yield oxetanyl dipeptides (73).

Scheme 15 Synthesis of Oxetanyl Dipeptides by Carreira and Coworkers. ${ }^{107}$
The major advantage of this synthetic route is the rapid assembly of various building blocks in less than five steps. However, only one of the two stereocenters in the dipeptide can be set from the natural amino acid. Hence, when functionalized nitro olefins $\left(\mathrm{R}^{1} \neq \mathrm{H}\right)$ are used, a $1: 1$ mixture of enantio- or diastereomers is obtained. This is highly undesirable for pharmaceutical applications, as an important feature of peptides for the interaction with biological interfaces is their defined stereochemistry. In summary, the approach displayed in Scheme 15 is highly advantageous for $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Gly}-{ }^{\mathrm{Ox}} \mathrm{AA}-\mathrm{OH}$ dipeptides but limited when two side-chains need to be displayed.

2.2.1 Pummerer Approach to Oxetanyl Dipeptides

First, we envisioned a conceptionally similar strategy to the oxetanyl dipeptides as for the nitro olefins above. Oxetanyl peptide 73 could be traced back to the addition product 74 of an organometal to ELLMAN imine 75. ${ }^{134,135}$ This in turn could come from aldehyde 76 which would result from a PUMMERER rearrangement of adduct 77 . In analogy to the nitro olefin approach, 77 would come from the conjugate addition of a protected aminoalcohol to the condensation product 78 of oxetane-3-one (33) with (methylsulfinyl)benzene (79) (Scheme 16).

Scheme 16 Retrosynthetic Analysis with Pummerer Rearrangement.
Alternatively, aldehyde 76 could be obtained from sulfinyl oxirane 80 by epoxide opening with a protected amino alcohol and subsequent rearrangement. 80 in turn could be obtained from the addition of α-chloro (methylsulfinyl)benzene (81) to oxetane-3-one (33) and subsequent ring-closure.

Scheme 17 Retrosynthetic Analysis Starting from α-Chloro (methylsulfinyl)benzene (81). Unfortunately, both strategies outlined in this chapter did not lead to the desired oxetanyl dipeptides:

Starting from oxetane-3-one (33) and (methylsulfinyl)benzene (79), 78 was obtained in 40% yield over two steps. Subsequent conjugate addition of benzylamine as a model amine led to the desired product 82 in 99% yield. However, Pummerer rearrangement on crude 82 to 83 did not proceed as planned. Under the reported conditions (TFAA, pyridine or 2,6-lutidine), ${ }^{136}$ only decomposition of the starting material was observed (Scheme 18).

Scheme 18 Synthetic Approach to Oxetanyl Dipeptides 73 via Pummerer Rearrangement.
Starting from α-chloro (methylsulfinyl)benzene (81) and oxetane-3-one (33) the corresponding sulfinyl oxirane 80 was obtained by addition of 81 with LDA and subsequent ring closure with KOtBu in $t \mathrm{BuOH}$ in 66% yield over two steps.

Scheme 19 Synthetic Approach to Oxetanyl Dipeptides 73 via Epoxide Opening.
Unfortunately, epoxide opening with benzylamine did not proceed under the reported conditions ${ }^{137,138}$ but only led to decomposition of the starting material or no reaction (Table 2).

Table 2 Screening of Conditions for Epoxide Opening.

$\#$	Additive	Solvent	Temperature	Result
1	--	--	$70^{\circ} \mathrm{C}$	decomposition of $\mathbf{8 0}$
2	$p \mathrm{TsOH}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	decomposition of $\mathbf{8 0}$
3	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	no reaction
4	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	no reaction

Furthermore, (S)-valinol was tried as a nucleophile for the epoxide opening on 80 as possible lactol formation to 84 could help to stabilize the product aldehyde (Scheme 20).

Scheme 20 Attempted Epoxide Opening with (S)-Valinol.
Additionally, vinylogous sulfoxide 85 was synthesized in 37% over two steps by addition of 81 to 33 and subsequent elimination with MsCl and $\mathrm{Et}_{3} \mathrm{~N}$. Also in this case conjugate addition of benzylamine proceeded smoothly to give 86 in 36% yield. However, again the rearrangement ${ }^{139}$ to the corresponding aldehyde 83 could not be effected under the reported conditions.

Scheme 21 Synthetic Approach to Aldehyde 76.

2.2.2 Alkylation Approach to Oxetanyl Dipeptides

After the first approach to 73 was not productive, we decided to base our second strategy even more on the assembly of individual building blocks. Hence, we envisioned to construct the desired oxetanyl dipeptides 73 from two monomeric building blocks by alkylation of a 3-aminooxetane 87 with an amino acid derived electrophile 88. This would provide a highly versatile approach to 73 where both enantiomers of the diamines 87 and the alkylating agents 88 respectively could be used to construct all four possible diastereomers of 73. This would allow to expand the concept of oxetanyl peptides to other approaches of peptidomimicry such as retro-inverso peptide. ${ }^{140}$

Scheme 22 Retrosynthesis of 73 by Alkylation.

For the diamine building blocks 87 we decided to again resort to organometal additions to ElLman imine 89. The aldehyde precursor 90 in turn could be synthesized by reduction of nitrile 91 which itself would result from a STRECKER reaction of oxetane-3-one (33) with a suitably protected amine. This approach traces the desired building blocks 87 back to one common intermediate, 89 . It therefore provides a large synthetic flexibility to easily access oxetanyl dipeptides 73 decorated with a large variety of natural and unnatural amino acid side chains by the addition of the corresponding organometal reagents.

Scheme 23 Retrosynthetic Analysis of 87 via Strecker Reaction.

The retrosynthetic strategy starting from oxetane-3-one (33) with a STRECKER reaction (Scheme 23) would give fast access to small amounts of $\mathbf{8 7}$ for the proof of concept of our alkylation strategy. However, we realized that for a convenient and operationally simple preparation of satisfying amounts of oxetanyl dipeptides 87 the use of cyanide reagents on large scale could be problematic. Also oxetane-3-one (33) is a rather expensive starting material. Hence, we were intrigued by the reported cyclization of triols such as 14 via their carbonates to the corresponding oxetanes as first reported by Pattison in 1957 (Scheme 24). ${ }^{77}$ 92 is readily used for the protection of carboxylic acids as their ortho esters as reported by COREY et al. ${ }^{141}$ and the synthesis of polymers. ${ }^{142}$

Scheme 24 Synthesis of 92 via the Corresponding Carbonate. ${ }^{77}$
Using this strategy would trace aldehyde 90 back to alcohol 93 and hence to triol 94, also known as Tris-base. 94 and especially its HCl salt are widely used as buffer reagents in biochemistry and are therefore exceptionally cheap. The same holds true for their synthetic nitro precursor 95 which is commercially accessed from nitromethane and formaldehyde. Therefore, 95 could also be a starting point for the synthesis of 93 via 96 (Scheme 25).

Scheme 25 Retrosynthesis of 93 from Tris-base (94) or 95 via the Carbonates.
Additionally, we envisioned not only the use of the carbonates as cyclization precursors but also considered the corresponding sulfites 97 and 98 as well as sulfates 99 and 100 (Scheme 26).

Scheme 26 Retrosynthesis of 93 from Tris-base (94) or 95 via the Sulfites and Sulfates.

The nucleophilic attack of cyclic sulfites and sulfates to give the corresponding substituted linear alcohols has been reported before. ${ }^{143-145}$ However, the described transformations mostly rely on a large excess of a strong nucleophile. Very recently though, BURKETT et al. ${ }^{146}$ described the formation of azetidines such as 101 from 102 via 103 by heating to $150^{\circ} \mathrm{C}$ in a microwave with one equivalent of alkyl amine (Scheme 27).

Scheme 27 Azetidine formation from cyclic sulfite by BURKETT.
Being aware, that not many cases of these cyclizations are precedented in the literature, we also identified acetal 104 which had been synthesized before from Tris-base HCl as a possible starting point for the synthesis of alcohol 93. This would require double protection of the amine to give 105, followed by activation of the alcohol and acetal cleavage to 106 to set the stage for cyclization by intramolecular displacement (Scheme 28).

Scheme 28 Retrosynthesis of 93 from Acetal 104.

The latter three synthetic routes for the construction of the diamine building blocks 87 all rely on the use of readily available cheap starting materials that would enable us to access considerable quantities of the desired building blocks 73. This is essential for the use of 73 in the construction of larger peptides and their pharmacological evaluation.

The second set of starting materials for the alkylation to 73 is a variety of alkylating agents 88. EFFENBERGER et al. ${ }^{147,148}$ and others ${ }^{149}$ showed that the displacement of triflates such as $\mathbf{1 0 7}$ derived from $\mathbf{1 0 8}$ with an amine proceeds
exclusively in an $\mathrm{S}_{\mathrm{N}} 2$ fashion to yield one enantiomer of 109 with inversion (Scheme 29). Contrarily, tosylates, mesylates, bromo or chloro acids either show a considerably reduced reactivity or lead to racemization of the stereocenter.

Scheme 29 Enantiospecific Synthesis of 109 by Effenberger.
We hence decided, that triflates $\mathbf{1 1 0}$ would be the ideal choice for our synthesis. Those could also easily be accessed from the corresponding D-amino acids 111 via the corresponding hydroxy acids 112 (Scheme 30).

Scheme 30 Retrosynthesis of Triflates 110.
With both sets of building blocks, amines 87 and alkylating agents 88 , i.e. triflates 110, the stage would be set for the assembly of a large diversity of oxetanyl dipeptides 73.

2.3 Building Block Synthesis

2.3.1 Synthesis of Diamine Building Blocks 87

Before starting our attempts to synthesize 87, we realized that we would have to double protect the amine in the 3-position of the oxetane for the planned organometal addition to the ELLMAN imine 89. In the first approach to the synthesis of 87 via the STRECKER reaction of oxetane-3-one (33) we chose to use benzyl and tosyl as protecting groups to obtain a fully protected non basic amine. Hence, 33 was reacted with benzyl amine and TMS-CN in acetic acid. The obtained aminonitrile 113 reported previously ${ }^{92}$ was immediately protected with TsCl in the presence of DMAP in pyridine to yield 114 in 56% yield over two
steps. Subsequent reduction of the nitrile $\mathbf{1 1 4}$ to the corresponding aldehyde $\mathbf{1 1 5}$ with DIBAL-H proved to be challenging: In the reaction some overreduced amine 116 was always produced which would immediately react to give imine 117 that in turn only slowly hydrolysed during column chromatography on silica and made the separation difficult. By using a 1:1 complex of $n \mathrm{BuLi}$ and DIBAL-H for the reduction of $\mathbf{1 1 4}$ the amount of $\mathbf{1 1 7}$ could be significantly reduced to yield 115 in an acceptable yield of 63%. Imine formation by condensation of $\mathbf{1 1 5}$ with the Ellman auxiliary in the presence of $\mathrm{Ti}(\mathrm{OEt})_{4}$ cleanly furnished 118 in 74% yield (Scheme 31). In this first approach, the (S)-enantiomer of the auxiliary was used.

Scheme 31 Synthesis of 118 from 33 via Strecker Reaction.
After the planned key intermediate $\mathbf{1 1 8}$ for the synthesis of $\mathbf{8 7}$ was obtained, the addition of MeLi was pursued. Treatment of 118 with one equivalent of MeLi smoothly yielded the corresponding adduct 119 in 81% yield as the major diastereomer (d.r.=20:1). Subsequent removal of the auxiliary with anhydrous HCl in MeOH followed by Boc-protection furnished intermediate 120 in 94\% yield. The free 3-aminooxetane ready for alkylation was then obtained by Tsdeprotection with magnesium in methanol to 121 (96% yield) followed by hydrogenolysis of the benzyl group to give 122 in 99% yield (Scheme 32).

Scheme 32 Synthesis of Diamine 122 from Imine 118.
The absolute configuration was confirmed as (S) by X-Ray crystal structure analysis of p-Br-phenyl urea derivative 123. Again, the auxiliary was removed from adduct 119 and the intermediate amine was this time treated with p - Br phenyl isocyanate to yield 123 in 89% (Scheme 33).

Scheme 33 Synthesis of Urea 123 from Adduct 119, ORTEP-plot of the X-Ray Crystal Structure of 123 (ellipsoids are drawn at 50% probability, hydrogen atoms, except at the C-stereocenter are omitted for clarity).

The first route to 118 starting from oxetane-3-one (33) provided us with enough material to establish the route to the first diamine 122. However, this synthetic strategy was limited to small quantities due to the use of cyanide reagents and the laborious purification of 115.

Hence, we next moved to an approach relying on the carbonate and sulfite/sulfate chemistry outlined in chapter 2.2.2 starting from Tris-base (94).

Again we decided to fully protect the amine to prevent interference of the nucleophilic amine and aziridine formation. This time, the phthalimide protecting group was used. A mixture of Tris-base (94) and phthalic anhydride was heated to $170{ }^{\circ} \mathrm{C}$ for 1 h until gas evolution ceased. After cooling to r.t. and extraction of the solids with acetone 124 was obtained as an extremely hygroscopic wax. The crude material was immediately subjected to the literature conditions ${ }^{77}$ for carbonate formation and pyrolysis to the corresponding oxetane 125. However, only decomposition of the starting material was observed (Scheme 34).

Scheme 34 Cyclization of 94 via the Carbonate.

Crude 124 was also treated with thionyl chloride in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ to obtain the cyclic sulfite 126 in 49% yield (Scheme 35).

Scheme 35 Synthesis of Cyclic Sulfite 126.
Unfortunately, conversion of $\mathbf{1 2 6}$ to the desired oxetane 125 was not productive under various conditions but led only to decomposition of the starting material or unidentified side products (Table 3).

Table 3 Attempts to the Ring Closure of 126 to 125.

$\#$	Base	Additive	Solvent	Temperature	Result
1	NaH	--	THF	$70^{\circ} \mathrm{C}$	no reaction
2	$n \mathrm{BuLi}$	--	THF	$-78{ }^{\circ} \mathrm{C}$	Unidentified adduct containing $n \mathrm{Bu}$
3	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	--	DMF	r.t.	no reaction
4	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	--	DMF	$80^{\circ} \mathrm{C}$	decomposition of $\mathbf{1 2 6}$
5	--	NaI	MeCN	$85^{\circ} \mathrm{C}$	no reaction

Since using the cyclic sulfite $\mathbf{1 2 6}$ as the starting material for the synthesis of $\mathbf{1 2 5}$ did not lead to the desired product, the cyclic sulfate 127 was synthezised. However, oxidation of $\mathbf{1 2 6}$ under frequently used conditions ${ }^{150}$ with RuCl_{3} and NaIO_{4} did not lead to the desired product, but effected decomposition of the starting material. Only when crude 124 was directly treated with sulfuryl chloride, sulfate 127 could be obtained in moderate 29% yield. Unfortunately, treatment of crude 127 with base only led to decomposition of the starting material (Scheme 36).

Scheme 36 Synthesis of Sulfate 127 and Attempted Ringclosure to 125.

Next we turned our attention to the cyclization of triol 95 via the corresponding cyclic sulfite 98 and sulfate 100 . Treatment of 95 with thionyl chloride in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded 98 in 59%. Oxidation of 98 with RuCl_{3} and NaIO_{4} in $\mathrm{MeCN} /$ water in turn furnished 100 in 29% yield. Again cyclization of 98 to the corresponding oxetane 96 under basic conditions did not proceed but always led to rapid decomposition of the starting material (Scheme 37).

Scheme 37 Synthesis of Sulfate 98 and 100 and Attempted Ringclosure to 96.
Hence, the route to imine 89 via cyclic intermediates such as carbonates, sulfites and sulfates of 94 and 95 was abandoned.

As mentioned in chapter 2.2.2, the dimethyl acetal 104 of Tris-base (94) was also identified as a starting point for the synthesis of imine 89. Following the retrosynthetic outline, 104 was successfully prepared from 94 following a literature procedure. ${ }^{151}$ The amine of 104 was then protected with tosyl and subsequently benzyl in a one pot procedure using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN in presence of DMAP and TBAI respectively. Obtained crude 128 isolated by filtration and removal of the solvent was then subjected to MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ to obtain 129. Treatment of the crude material with aqueous HCl in THF furnished activated diol 130. Again crude 130 was subjected to cyclization conditions with KOH and NaI in EtOH to rapidly form desired oxetanyl amino alcohol 131 in 26% overall yield in five steps from 94. The synthesis of 131 was performed to provide $>10 \mathrm{~g}$ of the desired product without chromatographic purification (Scheme 38).

Scheme 38 Synthesis of Aminoalcohol 131.

SWERN oxidation of $\mathbf{1 3 1}$ followed by condensation with the (S)-ELLMAN auxiliary under identical conditions as before cleanly yielded 118 in 79% over two steps (Scheme 39).

Scheme 39 Synthesis of 118 from 131.

This strategy provided us with rapid excess to considerable quantities of key intermediate imine 118 which was essential for the success of the oxetanyl peptide project. Consequently, the other enantiomer ent-118 could be obtained by condensation with the opposite enantiomer of the ELLMAN auxiliary.

Different side chain functionalities (X) and different peptide coupling strategies (e.g. Boc/Bn, Fmoc/Alkyl, Cbz/Alkyl) require a diverse orthogonal protecting group pattern ($\mathrm{PG}^{3} / \mathrm{PG}^{4}$) on the building blocks used. We therefore quickly realized that the synthesis of diamines 132 with a variety of side chains and protecting group patterns would inevitably require a choice of protecting groups on imine 89. So far only the $\mathrm{Ts} / \mathrm{Bn}(118)$ combination was considered. We decided to keep the tosyl group $\left(\mathrm{PG}^{1}\right)$ as it proved to be essential for the
subsequent alkylation and consequently changed PG^{2} from benzyl to allyl and p methoxy benzyl (PMB) respectively (Scheme 40).

Scheme 40 Protecting Group Strategies for Diamines 132
This could easily be achieved by a slight variation of the sequence in Scheme 38. After tosylation, in the case of the allyl protecting group, simply allyl bromide was used instead of benzyl bromide. The one pot double protection to 133 proved to be equally effective and further elaboration furnished the corresponding aminoalcohol 134 in 31% over five steps from $94 \cdot \mathrm{HCl}$. Now introducing one chromatographic purification after the oxetane formation also enabled us to conveniently produce $>10 \mathrm{~g}$ of $\mathbf{1 3 4}$. The PMB group was introduced using the same strategy now with $\mathrm{PMB}-\mathrm{Cl}$ in the second protection step to yield 135 via intermediate 136 in five steps and 18% overall yield from $94 \cdot \mathrm{HCl}$ (Scheme 41).

Scheme 41 Synthesis of Aminoalcohols 134 and 135.

After SWERN oxidation of aminoalcohols 134 and 135 to aldehydes 137 and 138 and condensation with the ELLMAN auxiliary the corresponding imines 139 and 140 were obtained in 87% and 79% yield over two steps respectively (Scheme 42).

Scheme 42 Synthesis of Imines 139 and 140.
Furthermore, we envisioned that a fourth protecting group pattern in the form of dibenzyl protected imine 141 would be a valuable starting point since some side chain protecting group patterns might not tolerate the rather forcing magnesium in methanol deprotection conditions for the tosyl group. As mentioned above, the tosyl group after the first protection of 104 was shown to be essential for subsequent alkylation. Hence, the dibenzyl protecting group pattern could not be achieved using the previous route from Scheme 38. We again had to resort to STRECKER chemistry this time starting from oxetane-3-one (33) and dibenzylamine. The corresponding nitrile 142 was obtained in 95% yield. Reduction to the aldehyde was again challenging because of the formation of byproduct imine 143. This time though, the byproduct could be conveniently hydrolysed by aqueous extraction with glyoxylic acid to liberate aldehyde 144 and remove the overreduced amine before chromatographic purification. The aldehyde 144 was obtained using the DIBAL-H/n-BuLi complex in 39% yield. Imine formation yielded 141 in 63\% (Scheme 43).

Scheme 43 Synthesis of imine 141.
In summary, four key intermediate imines were prepared with $\mathrm{Ts} / \mathrm{Bn}(118)$, Ts/allyl (139), Ts/PMB (140) and $\mathrm{Bn} / \mathrm{Bn}(141)$ protecting group patterns. This would enable us to synthesize a variety of diamines 87 with several orthogonal protecting groups.

We now turned our attention to the synthesis of a number of oxetanyl diamines 87 via the addition of a suitable organometallic reagent to imines 89 . The synthesis of Boc-OxAla-NH2 (122) via MeLi addition to 118 is already described above. Next, we tried to approach the synthesis of Boc-0xVal-NH2 (145) using an identical strategy. However, treatment of $\mathbf{1 1 8}$ with $i \mathrm{PrLi}$ or $i \mathrm{PrMgBr}$ did not lead to the desired adduct 132, but mainly furnished a byproduct containing a second imine functionality by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, presumably 146 by elimination of the tosyl group. We therefore decided to use 2-bromo propene as the side-chain precursor. Addition of the corresponding vinyl lithium reagent to 118 in THF yielded 132 in 72%. Removal of the ELLMAN auxiliary and reprotection with $\mathrm{Boc}_{2} \mathrm{O}$ furnished 147 in 96%. Subsequent detosylation to 148 and removal of the benzyl group as well as reduction of the alkene by hydrogenation led to diamine 145 in 97% yield over two steps.

Scheme 44 Synthesis of Boc- ${ }^{0 x}$ Val-NH2 (145).
The absolute configuration of 145 was assigned in analogy to Boc-OxAla-NH2 (122) and Boc- ${ }^{-0}$ Leu-NH2 (149, vide infra).

Using the same approach, addition of the GRIGNARD reagent derived from 1-bromo-2-methyl-prop-1-ene to imine ent-118 furnished adduct 150 in 66% as a precursor for the synthesis of Boc- ${ }^{-{ }^{-} \mathrm{L}} \mathrm{Leu}-\mathrm{NH}_{2}$ (149). This time, the desired (S)configuration of the α-stereocenter was obtained from the (R)-imine ent-118. In analogy to the synthesis of $\mathbf{1 4 5}$, the same deprotection and Boc-protection to 151, tosyl deprotection to 152 and hydrogenation strategy delivered the desired diamine 149 in 85% overall yield from adduct 150.

Scheme 45 First Generation Synthesis of Boc-OxLeu-NH2 (149).

We later realized that in this case the addition of isobutyl lithium to 118 does not lead to elimination as observed before but cleanly furnishes adduct 153 in 70% yield. Further elaboration via 154 and 155 efficiently led to 149 in 63% yield over three steps (Scheme 46). Identity of the absolute configuration was confirmed by comparison of the optical rotation to the data obtained from the synthesis of $\mathbf{1 4 9}$ via the vinyl magnesium bromide route.

Scheme 46 Second Generation Synthesis of Boc- ${ }^{-0 \times}$ Leu- NH_{2} (149).

The absolute configuration of 149 was assigned as (S) by X-Ray crystal structure analysis of derivative 156 obtained in two steps in 83% yield from 150 (Scheme 47).

Scheme 47 Synthesis of Sulfonamide 156 from Adduct 150, ORTEP-plot of the X-Ray Crystal Structure of 156 (ellipsoids are drawn at 50% probability, hydrogen atoms, except at the C -stereocenter are omitted for clarity).

Next the synthesis of Cbz-OxPhe-NH2 (157) and Boc-OxPhe-NH2 (158) was pursued from imines 139 and 118 respectively. In order to introduce the Cbzprotecting group, the allyl protected imine 139 had to be used to ensure orthogonal deprotection. Addition of benzyl magnesium chloride to imine 139 yielded adduct 159 as a $4: 1$ mixture of diastereomers. The (S, S)-isomer was isolated in 72% by recrystallization. The auxiliary was subsequently removed under the conditions described above. This time the intermediate amine was treated with $\mathrm{Cbz}-\mathrm{Cl}$ in pyridine to obtain derivative 160 in 87% yield. Detosylation with magnesium in methanol yielded allyl amine 161 in 99%. Finally, the allyl protecting group was removed with dimethyl barbituric acid in the presence of catalytic $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4$ to produce 157 in 85% yield (Scheme 48).

Scheme 48 Synthesis of Cbz- ${ }^{-0 \times P h e-N H 2 ~(157) . ~}$
In analogy to the synthesis of Boc- ${ }^{-{ }^{-} \text {Leu-NH2 (149), Boc-OxPhe-NH2 (158) was }}$ obtained by the addition of benzyl magnesium chloride to imine 118. The desired (S, S)-diastereomer of adduct 162 was again isolated by recrystallization in 70% yield. Removal of the auxiliary and protection of crude amine 163 led to the corresponding Boc derivative. However, the obtained material was inseparable from byproducts remaining from the auxiliary. Hence, the free amine 163 was isolated. Then, first the tosyl group was removed to ensure solubility before reprotection with Boc to yield 164 in 99% over two steps. Final cleavage of the benzyl group by hydrogenation quantitatively provided diamine 158 (Scheme 49).

Scheme 49 Synthesis of Boc-OxPhe-NH2 (158).

The absolute configuration of 158 was determined as (S) by X-Ray crystal structure analysis of intermediate 162 (Figure 14).

Figure 14 ORTEP-plot of the X-Ray Crystal Structure of 162 (ellipsoids are drawn at 50\% probability, hydrogen atoms, except at the C-stereocenter, and disorder are omitted for clarity).

Also, both $\mathrm{Cbz}^{-0 x} \operatorname{Tyr}(\mathrm{OBn})-\mathrm{NH}_{2}$ (165) and $\mathrm{Boc}^{-}{ }^{-0 x} \operatorname{Tyr}(\mathrm{OBn})-\mathrm{NH}_{2}$ (166) were successfully synthesized starting from imine 139. The Cbz and benzyl protecting groups in 165 are intentionally not orthogonal to be able to deprotect a peptide carrying an N-terminal tyrosine in one step. First, side-chain precursor 167 was prepared from commercial alcohol 168 as reported before. ${ }^{152}$ Addition of the corresponding benzyl magnesium chloride to 139 furnished adduct $(S, S)-169$ in 59\% yield. Again auxiliary cleavage and Cbz-protection to 170, cleavage of the tosyl group to 171 and finally removal of the allyl group yielded 165 in 54\% over three steps (Scheme 50).

Similarly, Boc- ${ }^{-0 x} \operatorname{Tyr}(\mathrm{OBn})-\mathrm{NH}_{2}$ (166) was also synthesized from adduct 169. Further elaboration of $\mathbf{1 6 9}$ as described above via intermediates $\mathbf{1 7 2}$ and 173 led to diamine 166 in 79\% over three steps (Scheme 50).

Scheme 50 Synthesis of Cbz- ${ }^{-0 \times}$ Tyr (OBn)-NH2 (165) and Boc- ${ }^{-0 \times T y r}$ (OBn)-NH2 (166).
The absolute configuration of 165 and 166 was determined by comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ shifts of the benzylic protons of 169 to data obtained from 162 and 159. The respective (S,S)- and (S,R)-diastereomers have significantly different characteristic signals that can be used for the assignment of the stereochemistry(Figure 15).
$\underbrace{\sim}_{-}$

Figure 15 Determination of Absolute Configuration of 169 by ${ }^{1} \mathrm{H}$-NMR Analysis.

As another hydroxyl functionalized amino acid surrogate, Boc-OxSer(OBn)-NH2 (174) was synthesized starting from imine 139. First, the direct addition of the GRIGNARD reagent prepared from BOM-Cl was attempted, but did not lead to the desired product. Hence, the corresponding organotin reagent was prepared by deprotonation of tributyltin hydride with LDA and subsequent substitution with BOM-Cl. Transmetallation to the corresponding organolithium species and addition to 139 then yielded intermediate 175 in 41% yield. Following the same sequence with auxiliary removal and Boc-protection to 176, detosylation to 177 and finally cleavage of the allyl protecting group furnished 174 in 79% yield over three steps (Scheme 51).

Scheme 51 Synthesis of Cbz-oxSer (OBn)-NH2 (174).
The absolute configuration of 174 was determined as (R) by X-Ray crystal structure analysis of urea 178 which was obtained from 172 by treatment with p -Br-phenyl isocyanate in 77\% yield (Scheme 52).

Scheme 52 Synthesis of Urea 178 from Diamine 174, ORTEP-plot of the X-Ray Crystal Structure of 178 (ellipsoids are drawn at 50% probability, hydrogen atoms, except at the C-stereocenter are omitted for clarity).

Introducing another side-chain functionality, $\mathrm{Cbz}^{-\mathrm{Ox}} \mathrm{Asp}(\mathrm{OtBu})-\mathrm{NH}_{2}$ (179) was prepared from imine 139. Addition of the lithium enolate of t BuOAc provided adduct 180 as a 10:1 mixture of diastereomers. The (S, S)-isomer was isolated by repeated column chromatography in 66% yield. In analogy to the syntheses above, 179 was prepared in 40% yield over three more steps via intermediates 181 and 182 (Scheme 53).

Scheme 53 Synthesis of Cbz- ${ }^{-0 \times}$ Asp ($\mathrm{O} t \mathrm{Bu}$) $-\mathrm{NH}_{2}$ (179).

The absolute configuration of 179 was determined as (S) by X-Ray crystal structure analysis of amide 183 which was obtained from 179 with p-Br-benzoyl chloride in the presence of triethylamine in 85\% yield (Scheme 54).

Scheme 54 Synthesis of Amide 183 from Diamine 179, ORTEP-plot of the X-Ray Crystal Structure of 178 (ellipsoids are drawn at 50% probability, hydrogen atoms, except at the C-stereocenter, and disorder of $t \mathrm{Bu}$ are omitted for clarity).

Additionally, Boc- ${ }^{-0 x} A s n\left(\mathrm{NH}_{2}\right)-\mathrm{NH}_{2}$ (184) was prepared from imine 118. Sidechain protection was avoided because we assumed that the alkylation to a dipeptide 73 would proceed in the presence of the primary amide. Deprotonation of acetonitrile with $n \mathrm{BuLi}$ and subsequent addition to 118 provided adduct 185 as a 2:1 mixture of diastereomers. The major isomer was isolated by recrystallization in 53% yield. Removal of the auxiliary and Bocprotection yielded intermediate 186 in 77%. Hydrolysis of the nitrile to the corresponding primary amide with hydrogen peroxide provided 187 in quantitative yield. Cleavage of the tosyl group then led to 188 in 50% yield. Due to the poor solubility of $\mathbf{1 8 8}$ the crude material was immediately hydrogenated to obtain diamine 184 in 98% yield (Scheme 55).

Scheme 55 Synthesis of Boc- ${ }^{-0 x}$ Asn (NH_{2})- NH_{2} (184).
Finally, Boc-OxPro-NH2 (189) was obtained starting from imine 118. Addition of the acetal protected GRIGNARD reagent derived from 190 to 118 yielded compound 191 in 88%. Subsequent treatment with TFA and triethyl silane affected both removal of the auxiliary and the acetal as well as formation of pyrrolidine 192 by reductive amination. Subsequent Boc-protection to 193, tosyl deprotection to 194 and benzyl deprotection delivered the desired diamine 189 in 70% overall yield from adduct 191 (Scheme 56).

Scheme 56 Synthesis of Boc- ${ }^{-0 x P r o-N H 2 ~(189) . ~}$
The absolute configuration of 189 was determined as (S) by X-Ray crystal structure analysis of intermediate 191 (Figure 16).

Figure 16 ORTEP-plot of the X-Ray Crystal Structure of 191 (ellipsoids are drawn at 50\% probability, hydrogen atoms, except at the C-stereocenter, and disorder of the acetal are omitted for clarity).

Furthermore, imine 118 and 139 were transformed to the corresponding aziridines 195 and 196 in 84% and 87% by treatment with trimethylsulfoxonium iodide and $\mathrm{KO} t \mathrm{Bu}$ in $t \mathrm{BuOH}$. Unfortunately, the products were obtained in about 1:1 mixtures of diastereomers. In the case of 195 the two diastereomers could be separated by laborious repetitive column chromatography. The isomers of 196 were inseparable at this stage. With those two aziridines in hand we hoped to be able to access several functionalized side-chain containing diamines.
 sulfur nucleophile was pursued. Treatment of 195 with sodium tbutyl thiolate in DMF mainly led to side products presumably from the elimination of the tosyl group to the corresponding imine 198 and only provided traces of the desired ring opened product as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Hence, the Ellman auxiliary was removed from 195 and the amine was reprotected with Boc to give 199 in quantitative yield. Treatment of 199 with sodium tbutyl thiolate in DMF also mainly resulted in the formation of side products as observed above. Only when the solvent mixture was changed to THF/DMSO, the auxiliary containing intermediate 195 could successfully be converted into the desired thioether 200 in 67% yield. Subseqent removal of the auxiliary, protection with Boc and detosylation proceeded smoothly. However, in the final deprotection of the benzyl group complete conversion to 197 could never be observed and the
desired product was inseparable from a complex mixture of side products formed (Scheme 57).

Scheme 57 Attempted Synthesis of 197 from Aziridine 195.
Therefore, we decided to use allyl protected aziridine 196 for the synthesis of the cysteine building block 197. Upon treatment of the mixture of diastereomers of 196 with sodium tbutyl thiolate in various solvents, the desired product 201 was never isolated. Instead a mixture of products presumably containing an isomerized allyl group was isolated. We reasoned that the presence of the tosyl group could accelerate the isomerization process and hence decided to remove this protecting group directly from 196 to give 202 in 80% yield again as an inseparable mixture of diastereomers. Subsequent treatment of 202 with the thiolate reagent in THF/DMSO finally furnished the desired thioether 203 as a separable mixture of the two diastereomers (S, S)-203 and (S, R)-203 in 44% and 48\% yield respectively. Subsequent removal of the auxiliary and protection with Boc to 204 as well as cleavage of the allyl group provided diamines (S)-197 and (R)-197 in 68% yield each, over two steps. In this case, the (R)-enantiomer
corresponds to the natural configuration because of the priority of sulfur in the CAHN-IngOLD-PRELOG system.

Scheme 58 Attempted Synthesis of 197 from Aziridine 196.
The absolute configuration of 197 was assigned by X-Ray crystal structure analysis.

Figure 17 ORTEP-plot of the X-Ray Crystal Structure of 197 (ellipsoids are drawn at 50\% probability, hydrogen atoms, except at the C-stereocenter, are omitted for clarity).

Additionally, ring opening of the aziridines was attempted under several other previously described conditions including reactions with indole ${ }^{153,154,153,154}$ treatment with PhMgBr in the presence of $\mathrm{Cu}(\mathrm{I})^{155}$ and AgGARWALS boronic ester chemistry. ${ }^{156}$ Unfortunately, the corresponding ring opened products 205, 206 and 207 were never observed (Scheme 59).

Scheme 59 Attempts to Open Aziridines 195, 196 or 199.
Last, we successfully synthesized Boc-Ox ${ }^{-0}{ }^{-1} y-\mathrm{NH}_{2}$ (208) from aminoalcohol 131. This building block would give ${ }^{0 x}$ Gly-AA dipeptides via the alkylation approach. It completes the toolbox of this synthetic strategy although the corresponding oxetanyl dipeptides can also be obtained by the addition of amino acids to the corresponding nitro olefin (see chapter 2.2). MITSUNOBU reaction with phthalimide on 131 yielded protected diamine 209 in 82%. After deprotection with hydrazine and protection with Boc 210 was obtained. Further cleavage of the tosyl group to 211 and final removal of the benzyl group provided 208 in 91% yield over three steps (Scheme 60).

Scheme 60 Synthesis of 208 from Aminoalcohol 131.
In addition to the building blocks synthesized as described above, the formation
 starting from imine 118.

For the production of $\mathbf{2 1 2}$ deprotonated cyclohexyl propiolate was added to $\mathbf{1 1 8}$ to yield 214 and finally 215 in 67% after removal of the auxiliary and protection with Boc. However, after hydrogenation of the triple bond, tosyl deprotection gave a complex mixture of products, probably containing the corresponding methyl ester 216 and cyclized intermediate 217 as judged by crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (Scheme 61).

1. $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$, r.t.
2. $\mathrm{Mg}, \mathrm{MeOH}$, r.t.

Scheme 61 Failed Synthesis of 212.

For the synthesis of 213 deprotonated alkyne 218 was added to imine 118 to give adduct 219 in 95% yield as a separable mixture of diastereomers. Unfortunately, after removal of the auxiliary and Boc protection to 220 , hydrogenation of the triple bond and cleavage of the two side-chain benzyl groups did not furnish the product containing the reduced side-chain. Instead a mixture of partially hydrogenated intermediates 221 was identified by LC-MS (Scheme 62).

Scheme 62 Failed Synthesis of 213.

2.3.2 Synthesis of Triflates 110

With a diverse set of diamines in hand the first collection of building blocks for the alkylations was complete. Next, we turned our attention to the synthesis of a number of triflates 110.

First, we focused our efforts on (R)-triflates 110 bearing only hydrocarbon side chains R^{2} to reproduce the natural configuration in the corresponding dipeptides 73. The protecting groups on the ester were chosen as nalkyl, benzyl and tbutyl for the Cbz/alkyl, Boc/Bn and Fmoc/tbutyl peptide coupling strategies respectively.

Starting from the corresponding commercially available D-amino acids 111, TfO-
 (225) ${ }^{157}$, TfO-DPhe-OBn (226) ${ }^{157}$, TfO-DPhe-OEt (227) ${ }^{158}$ were synthesized via the hydroxy acids 228 and hydroxyl esters 112 following literature procedures. For the synthesis of $\mathrm{TfO}-{ }^{\mathrm{D}} \mathrm{Leu}-\mathrm{Ot} \mathrm{Bu}(\mathbf{2 2 9})^{159}$, the corresponding hydroxyacid was converted into its acetate to ensure tbutyl ester formation under STEGLICH conditions. Removal of the acetate then led to the corresponding hydroxyester which was successfully transformed into triflate ester 229 (Scheme 63).

Scheme 63 Synthesis of Triflates with Hydrocarbon Side-Chains 222-227.
Addtitionally, the triflate 230 corresponding to isoleucine was synthesized. In this case, the side chain contains an additional stereocenter that is not inverted in the alkylation step to the dipeptides 73. Hence, expensive D-ALLO-Isoleucine would have to be the precursor for the hydroxyacid synthesis. We therefore decided to start our synthesis from cheaper L-Isoleucine (231). After obtaining hydroxyester $\mathbf{2 3 2}$ via hydroxyacid $\mathbf{2 3 3}$ the alcohol was epimerized by MITSUNOBU inversion to give 234. Finally, TfO-D,Allolle-OBn (230) was provided ready for alkylation (Scheme 64). ${ }^{160}$

Scheme 64 Synthesis of 230 from L-Isoleucine (231).
Next, we turned our attention to the synthesis of triflate esters $\mathbf{1 1 0}$ that carry a hydroxyl group in the side chain. First, we successfully obtained TfO-Der(OBn)-

OMe (235) from BocNH-DSer(OBn)-OH (236) via hydroxyacid 237 and hydroxyester 238. ${ }^{161}$ We also decided to introduce a different protecting group for the side chain. Hence, the benzyl group was cleaved from 238 and the primary alcohol was TIPS-protected to give 239 in 35\% yield after treatment with triflic anhydride (Scheme 65).

Scheme 65 Synthesis of Triflate Esters 235 and 239.
Secondly, we pursued the synthesis of a triflate analog of tyrosine. We again envisioned benzyl as the protecting group for the side chain. Hence, we started by protecting D-tyrosine (240) via its copper(II) complex. ${ }^{162}$ The obtained amino acid derivative was then converted into the corresponding hydroxyester 2411^{163} via hydroxyacid 242. Finally, 241 was treated with triflic anhydride in the presence of 2,6-lutidine. Unfortunately the resulting TfO-跑yr(OBn)-OMe (243) was not stable to aqueous work-up and chromatographic purification probably due to elimination of the triflate group. Hence, the benzyl protecting group was removed from 241 by hydrogenation and the resulting phenol ${ }^{164}$ was protected with Cbz and could then be successfully converted to $\mathrm{TfO}-{ }^{\mathrm{D}} \mathrm{Tyr}(\mathrm{OCbz})-\mathrm{OMe}$ (244) in 96\% yield (Scheme 66).

Scheme 66 Synthesis of Triflate Ester 244.

2.3.3 Synthesis of Oxetanyl Dipeptides 73

With both sets of building blocks, diamines 87 and triflates 110 in hand, we next focused on the alkylation to produce a variety of oxetanyl dipeptides 73 (Scheme 67).

Scheme 67 Synthesis of Oxetanyl Dipeptides 73.

We found that literature procedures often use chlorinated solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or DCE and 2,6-lutidine as the base for these transformations. ${ }^{147,165}$ However, with our substrates the reaction was extremely slow under these conditions. We hence screened a variety of solvents and bases to ensure the clean and diastereoselective formation of 73 . We first used the reaction between BocNH-OxGly-NH2 (208) and TfO-DAla-OBn (222) for our screening for a fast and clean reaction (Table 4).

Table 4 Optimization of Alkylation with Amine 208 and Triflate 222.

Entry	Base	Solvent	T	c	t	Yield
1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	MeCN	r.t.	0.40 M	12 h	77\%
2	DIPEA	MeCN	r.t.	0.40 M	24 h	78\%
3	NaHCO_{3}	MeCN	r.t.	0.40 M	5 h	slow conversion
4	NaOAc	MeCN	r.t.	0.40 M	5 h	slow conversion
5	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	MeCN	r.t.	0.40 M	5 h	slow conversion
6	$\mathrm{K}_{2} \mathrm{CO}_{3}$	acetone	r.t.	0.40 M	19 h	mixture of products
7	$\mathrm{K}_{2} \mathrm{CO}_{3}$	EtOAc	r.t.	0.40 M	2 h	mixture of products
8	$\mathrm{K}_{2} \mathrm{CO}_{3}$	dioxane	r.t.	0.40 M	2 h	39\%
9	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	r.t.	0.40 M	2 h	68\%
10	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	0.40 M	5 h	slow conversion
11	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	r.t.	0.40 M	2 h	no product formed
12	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DME	r.t.	0.40 M	2 h	no reaction
13	$\mathrm{K}_{2} \mathrm{CO}_{3},$ $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (0.2 equiv.)	MeCN	r.t.	0.40 m	2 h	69\%

Up to this point the use of DIPEA or potassium carbonate in acetonitrile seemed promising (entries $1 \& 2$). We then moved to the BocNH-OxPhe-NH2 (158)/TfO${ }^{\text {² }}$ Leu-OBn (224) system to ensure diastereoselectivity (Table 5).

Table 5 Optimization of Alkylation with Amine 158 and Triflate 224.

Entry	Base	Solvent	T	\boldsymbol{c}	t	Yield
1	DIPEA $(2.2$ equiv. $)$	MeCN	$30^{\circ} \mathrm{C}$	0.40 M	24 h	62%
2	DIPEA	MeCN	r.t.	0.50 M	24 h	57%
3	DIPEA	MeCN	r.t.	0.27 M	38 h	55%
4	DIPEA	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	0.27 M	113 h	29% incomplete conversion
5	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	MeCN	r.t.	0.40 M	14 h	61% mixture of diastereomers
6	proton sponge	MeCN	r.t.	0.4 M	19 h	56%

We concluded that in our case the combination of acetonitrile as the solvent and DIPEA gives the best results (entry 1).

We also tried to use commercial bromoacids such as 245 as the alkylating agent to give dipeptide 246, but no reaction was observed in these cases (Scheme 68).

Scheme 68 Attempted Use of Bromoacid 245 as the Alkylating Agent.
We then synthesized a variety of oxetanyl dipeptides 73 with diverse protecting group patterns, e.g. Boc/Bn (e.g. entries 1-6), Cbz/nAlkyl (entry 14) and

Cbz/tbutyl (entry 11) as shown in Table 6. In the case of glycine derived alkylating agents we decided to use commercially available bromoacetates instead of the triflates.

Table 6 Synthesis of a Variety of Oxetanyl Dipetides 73.

Entry	Amine	PG	X	\mathbf{R}^{1}	R^{2}	\mathbf{R}^{3}	Product	Yield/\%
1	208	Boc	Br	H	H	Bn	73c	75
2	208	Boc	OTf	H	Bn	Bn	73d	87
3	145	Boc	OTf	iPr	Me	Bn	73e	79
4	158	Boc	OTf	Bn	$i \mathrm{Bu}$	Bn	73b	62
$5^{[b]}$	158	Boc	OTf	Bn	$\begin{gathered} \text { 2-(S)-sec- } \\ \mathrm{Bu} \end{gathered}$	Bn	73f	40
6	158	Boc	OTf	Bn	Bn	Bn	73g	67
7	166	Boc	Br	$\begin{gathered} \mathrm{CH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)- \\ 4-\mathrm{OBn} \end{gathered}$	H	Me	73h	87
$8^{[b]}$	122	Boc	OTf	Me	$i \mathrm{Pr}$	Bn	73 i	56
9	149	Boc	OTf	$i \mathrm{Bu}$	$\begin{gathered} \mathrm{CH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \\ -4-\mathrm{OCbz} \end{gathered}$	Me	73j	73
10	179	Cbz	Br	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{tBu}$	H	Bn	73k	90
11	157	Cbz	Br	Bn	H	${ }^{\text {t }} \mathrm{Bu}$	731	98
12	157	Cbz	OTf	Bn	$i^{\text {Bu }}$	Bn	73m	52
13	157	Cbz	OTf	Bn	$i \mathrm{Bu}$	${ }^{\text {t }} \mathrm{Bu}$	73n	50
14	165	Cbz	Br	$\begin{gathered} \mathrm{CH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)- \\ 4-\mathrm{OBn} \end{gathered}$	H	Me	730	72
15	189	Boc	OTf	"Pro"	Bn	Et	73p	60
16	189	Boc	Br	"Pro"	H	Bn	73q	87
17	197	Boc	OTf	$\mathrm{CH}_{2} \mathrm{StBu}$	Bn	Bn	73r	39

${ }^{\text {a }}$ Example conditions: oxetane (1.0 equiv.), triflate (2.0 equiv.), DIPEA (2.2 equiv.), ${ }^{6} 60^{\circ} \mathrm{C}$

Unfortunately, the reaction of $\operatorname{BocNH}-{ }^{-0 x} \operatorname{Asn}\left(\mathrm{NH}_{2}\right)-\mathrm{NH}_{2}(\mathbf{1 8 4})$ as the diamine with TfO-DPhe-OBn (226) did not furnish the desired dipeptide 73 s but led to a complex mixture of unidentified products (Scheme 69). This might be due to reactions of the unprotected primary amide with the triflate.

Scheme 69 Failed Synthesis of 73s from Amine 184.

 with diamine 122 the product 73 t was formed as a 3:1 mixture of diastereomers. We reasoned that this might due to an anchimeric effect of the ether oxygen in the side chain. Hence, the TIPS-protected triflate 239 was used. Unfortunately, also in this case the product $73 \mathbf{u}$ was formed as a 3:1 mixture of diastereomers.

Scheme 70 Use of Serine Derived Triflates 235 and 239.
Additionally, we showcased the versatility of our synthetic building block approach to furnish all possible four diastereomers of the oxetanyl dipeptide and hence opening the door to use oxetanyl peptides in combination with other peptidomimetic approaches such as D-amino acids and retro-inverso peptides. We hence synthesized two diastereomers of BocNH-0xAla-Ala-OBn (73c) using either enantiomer of the triflate 222 and two diastereomers of BocNH${ }^{\circ \times} \mathrm{Cys}(\mathrm{StBu})$-Ala-OBn (73v) using either enantiomer of the diamine 197.

Scheme 71 Sythesis of Diastereomers of 73c and 73v.
Finally, we changed the protecting group on dipeptide 731 from Cbz to Fmoc to yield 73 w in 58%. This would enable us to utilize Fmoc/tbutyl solid phase peptide synthesis with our building blocks (Scheme 72).

Scheme 72 Synthesis of Fmoc-protected Dipeptide 73w.
First structural insight for oxetanyl peptides could be obtained from the X-Ray crystal structure of BocNH-OxGly-Phe-OBn (73d). When compared to the closest natural dipeptide $\mathrm{H}_{2} \mathrm{~N}$-Gly-Phe-OH of which the X-Ray crystal structure is known, a striking difference is observed in the overall 3D-structure. In the natural dipeptide, the atoms $\mathrm{N}^{\alpha}, \mathrm{C}^{\alpha}, \mathrm{C}(\mathrm{O}), \mathrm{N}^{\alpha^{\prime}}, \mathrm{C}^{\alpha^{\prime}}$, and $\mathrm{C}^{\beta^{\prime}}$ are all in plane with torsional angles close to $180^{\circ}\left(\phi_{1}=162^{\circ}, \phi_{2}=179^{\circ}, \phi_{3}=179^{\circ}\right)$. In contrast, in the oxetanyl dipeptide 73 d only the $\left[\mathrm{C}^{\mathrm{Ox}}, \mathrm{N}^{\alpha^{\prime}} ; \mathrm{C}^{\alpha^{\prime}}, \mathrm{C}^{\beta}\right]$ plane is conserved with a
torsional angle of $\phi_{3}=176^{\circ}$. This can be attributed to a smaller ($\mathrm{C}^{\alpha}, \mathrm{C}^{\mathrm{Ox}}, \mathrm{N}^{\alpha^{\prime}}$) angle of $\psi_{1}=111^{\circ}$ in 73d compared with the ($\mathrm{C}, \mathrm{C}(\mathrm{O}), \mathrm{N}^{\alpha^{\prime}}$) angle in the natural dipeptide of $\psi_{1}=116^{\circ}$ and the increased steric repulsion from the extra two carbon atoms of the oxetane moiety. The conformational bias introduced by the oxetane has previously been investigated by WUITSCHIK et al. ${ }^{101}$ and is confirmed by our findings. The twisted conformation of 73d furthermore leads to a reduced $\mathrm{C}^{\alpha-} \mathrm{C}^{\alpha^{\prime}}$ distance of $3.0 \AA$ compared to $3.8 \AA$ in the natural compound (Figure 18).

$\mathrm{H}_{2} \mathrm{~N}$-Gly-Phe-OH

73d

Figure 18 Comparison of X-Ray Crystal Structures of 73d and $\mathrm{H}_{2} \mathrm{~N}$-Gly-Phe-OH.

2.4 Incorporation of Building Blocks 73 into Larger Peptides

With a diverse toolbox of oxetanyl dipeptides 73 in hand we decided to synthesize larger oxetane containing peptides to evaluate our peptidomimetics. We postulated that the incorporation of an oxetane as a replacement for a carbonyl group in the backbone of a peptide would lead to an enhanced hydrolytic stability thereby conserving biological activity.

2.4.1 Synthesis of Leu-Enkephalin Analogues

As a first example for a bioactive peptide we wanted to test our concept of oxetanyl peptidomimetics on, we chose the prominent endogenous opioid neurotransmitter Leu-Enkephalin (247a).

Leu-Enkephalin (247a) is a pentapeptide with the sequence $\mathrm{H}_{2} \mathrm{~N}$-Tyr-Gly-Gly-Phe-Leu-OH and has a strong analgesic effect by binding to the δ - and μ-opioid receptors with nanomolar affinity. ${ }^{39}$ We decided to synthesize four oxetanyl analogues 247b-e where a different carbonyl is displaced by an oxetane in every peptidomimetic (Figure 19). This would enable us to thoroughly study the pharamcological effect of this bioisosteric substitution relative to its position in the sequence.

Figure 19 Leu-Enkephalin (247a) and Oxetanyl Analogues 247b-d.
We started our efforts with the synthesis of ${ }^{0 x} \mathrm{Tyr}$ analog $\mathbf{2 4 7} \mathbf{b}$. We envisioned final deprotection of the peptide by hydrogenation of benzyl ethers and esters as well Cbz groups. Hence we used CbzNH-0xTyr(OBn)-Gly-OMe (73o) as the oxetanyl building block. HATU mediated coupling with the natural C-terminal tripeptide ${ }^{166}$ cleanly provided fully protected intermediate 248 which was converted into the the free peptide $\mathbf{2 4 7 b}$. The desired product $\mathbf{2 4 7 b}$ was obtained as its TFA-salt after purification by preparative HPLC in 24% from 730 (Scheme 73).

Scheme 73 Synthesis of 247b.
Next we turned our attention to the synthesis of the ${ }^{0 \times} \mathrm{Gly}^{4}$ analog 247c. This time BocNH-OxGly-Gly-OBn 73c was the oxetanyl building block of choice. We realized that N-terminal deprotection of the oxetanyl dipeptides could lead to oxetanyl ketopiperazine formation. ${ }^{167}$ Therefore, we decided to couple into the C terminal direction with the natural dipeptide $\mathrm{H}_{2} \mathrm{~N}$-Phe-Leu-OBn. ${ }^{168}$ The corresponding tetrapeptide 249 was obtained in 87% yield and was then coupled with $\mathrm{CbzNH}-\mathrm{Tyr}(\mathrm{OBn})-\mathrm{OH}$ to give the fully protected pentapeptide. The desired product 247c was again obtained as the corresponding TFA-salt after global deprotection by hydrogenolysis and subsequent purification by preparative HPLC in 27% yield from 249 (Scheme 74).

Scheme 74 Synthesis of 247c

The third analog 247 d with the ${ }^{0 x} \mathrm{Gly}^{3}$ modification was synthesized starting from oxetanyl dipeptide 73d. Again, first the C-terminal coupling was performed this time with $\mathrm{H}_{2} \mathrm{~N}$-Leu-OBn to give tripeptide 250 in 80% yield. Subsequently, the N-terminal dipeptide $\mathrm{CbzNH}-\mathrm{Tyr}(\mathrm{OBn})-\mathrm{Gly}^{-} \mathrm{OH}^{169}$ was attached to yield the fully protected pentapeptide 251 in 74% yield. Finally, global deprotection was achieved by hydrogenation and the desired product 247 d TFA was isolated in 33% yield after purification by preparative HPLC.

1. $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$, r.t.
2. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Leu}-\mathrm{OBn} \cdot \mathrm{HCl}$

250

1. TFA, $\mathrm{CH} 2 \mathrm{Cl} 2,0^{\circ} \mathrm{C}$ 2. CbzNH-Tyr(OBn)-Gly-OH HATU, DMF, $0^{\circ} \mathrm{C}$ to r.t.

Scheme 75 Synthesis of 247 d .
We then pursued the synthesis of the last Leu-Enkephalin analog 247e carrying the ${ }^{0 \times P h e}{ }^{2}$ modification. We first envisioned the use oxetanyl dipeptide $\mathbf{7 3 n}$ containing a t-butyl ester to avoid diketopiperazine formation upon deprotection of the Cbz-group. Indeed, fully protected pentapeptide 252 was obtained by coupling with the corresponding N-terminal tripeptide $\mathrm{CbzNH}-\mathrm{Tyr}(\mathrm{OBn})-\mathrm{Gly}$ -Gly-OH. ${ }^{170}$ Unfortunately, deprotection of the t-butyl ester to give 253 under acidic conditions only led to the decompostition of the starting material.

Scheme 76 Fist Generation Approach to 247e.

Hence, we chose a different peptide coupling strategy based on an NHS-ester mediated coupling between the $\mathrm{CbzNH}-\mathrm{Tyr}(\mathrm{OBn})-\mathrm{Gly}-\mathrm{Gly}^{-O H}{ }^{170}$ fragment and the unprotected oxetanyl dipeptide originating from 73m. Finally, the desired product 247 e TFA could be obtained in 12% yield over three steps after purification by preparative HPLC.

Scheme 77 Synthesis of 247 e .

2.4.2 Serum Stability of Leu-Enkephalin Analogues 247a-e

We postulated that the introduction of oxetanes as bioisosters for carbonyl groups in the backbone of peptides could improve their metabolic profile and especially protect them against hydrolysis by proteases. A valuable indicator for the metabolic stability of a pharmaceutical is the stability in blood serum. LeuEnkephalin 247a is rapidly degraded in human serum with a half-life time of about $12 \mathrm{~min} .{ }^{171}$ The mechanism of its hydrolysis has been extensively studied before. ${ }^{172,173}$ Leu-Enkephalin (247a) contains to major cleavage sites: The Tyr ${ }^{5}$-Gly ${ }^{4}$ bond is most labile to proteolytic cleavage. The $\mathrm{Gly}^{3}-\mathrm{Phe}^{2}$ site is also readily cleaved by proteases although the rate of hydrolysis is much slower at this position. We hence expected that the half-life times in human serum of the synthesized analogues $247 \mathrm{~b}-\mathrm{e}$ could be a valuable measure for the ability of the oxetane to prevent proteolysis at the substituted site and also protect neighboring amide bonds. Many procedures for plasma and serum stability assays have been developed. We chose to use a slightly modified protocol recently published by ROCHON et al. ${ }^{174}$ Therein, the peptide sample is dissolved in glucose-containing HBSS buffer and then mixed with the same volume of preincubated commercial human serum at $37^{\circ} \mathrm{C}$. The mixture is then kept at this
temperature for different times. After treatment with MeOH to precipitate all active proteins and centrifugation, the supernatant is analyzed by analytical HPLC for the remaining peptide content (Figure 20).

Figure 20 Serum Stability Assay.
Before starting the measurements in serum, we first ensured the detection of the natural Leu-Enkephalin (247a) and oxetanyl peptide 247c by recording a concentration row.

Starting at the initial concentration in the assay of $33.3 \mu \mathrm{M}$, we were able to detect both compounds at least down to a 32 -fold dilution to $0.52 \mu \mathrm{M}$. We also confirmed, that the area under the curve is a valid and reproducible, directly proportional measure of the peptide concentration (Figure 21).

Figure 21 Area under the Curve Relative to the Value at the Starting Concentration against Concentration is Displayed: a) 247a, b) 247c ($n=3$, mean $\pm \sigma$).

Next, the natural peptide 247 a and the oxetanyl analogues $247 \mathrm{~b}-\mathrm{e}$ were incubated in human serum for up to one hour. The remaining peptide concentration was determined by analytical HPLC at eight time points for 247a
and $247 \mathrm{~d}-\mathrm{e}$ as well as at two time points for $\mathbf{2 4 7 b}-\mathrm{c}$. The area under the curve of the peak corresponding to the peptide was determined and compared to the concentration at $t=0$ (Figure 22).

Figure 22 Stability of Leu-Enkephalin (247a, ■) and its Analogues (247b, © 247c, $\mathbf{\Delta}$; $247 \mathrm{~d}, \mathrm{~V} ; 247 \mathrm{e} \boldsymbol{*})$ in Human Serum during 1 h . Relative concentration as mean \pm SEM against time is displayed. ${ }^{175}$

We found that natural Leu-Enkephalin (247a) is readily degraded in human serum with a half-life time of about $\approx 10 \mathrm{~min}$ as previously published. ${ }^{171}$ The ${ }^{0 \times G l y}{ }^{3}$ analog 247 d shows a similar although slightly increased half-life time of $\approx 15 \mathrm{~min}$. This can be reasoned by the hydrolytic stability of the otherwise labile Gly 3 - Phe 2 site due to the oxetane substitution. ${ }^{\text {OxPhe }}{ }^{2}$ analog 247 e is even more stable towards degradation with a significantly increased half-life time of $\approx 26 \mathrm{~min}$. This suggests that the C-terminal substitution at the $\mathrm{Phe}^{2}-\mathrm{Leu}^{1}$ site disturbs the recognition of the peptide by proteases to some extent. However, oxetane analogues $\mathbf{2 4 7 b}$ and 247 c show increased half-life times and are not significantly degraded over the course of one hour. The remarkable stability of $\mathbf{2 4 7 b}$ can easily be explained by the protection of the most labile $\mathrm{Tyr}^{5}-\mathrm{Gly}^{4}$ cleavage site by the oxetane substitution. The resistance of 247 c can again only be explained by an interference of the oxetane in the recognition process by proteases. In 247c the oxetane substitution is located in between the two main cleavage sites of Leu-Enkephalin (247a) and might protect both of them due to
steric or conformational reasons. We were intrigued by the highly increased stability of $\mathbf{2 4 7 b}$ and $\mathbf{2 4 7}$ c although fully aware, that infinite stability is not at all a favorable property for any bioactive molecule. We therefore extended our studies on the serum stability to the time span of 24 h (Figure 23).

Figure 23 Stability of Oxetnayl Analogues (247b, © $247 \mathrm{c}, \mathrm{A}$) in Human Serum during 24 h . Relative concentration as mean \pm SEM against time is displayed. ${ }^{176}$

Indeed, also analogues $\mathbf{2 4 7 b}$ and 247 c are slowly degraded in human serum with estimated half-life times of $\approx 3.2 \mathrm{~h}$ and $\approx 18 \mathrm{~h}$ respectively.

In summary, the introduction of oxetanes as a replacement for backbone carbonyl groups in peptides can be used to significantly increase the stability of the parent compounds. Careful choice of the site of substitution can be a valuable tool to tune the metabolic stability of a peptide drug and hence overcome its intrinsically insufficient pharmacokinetic profile.

2.4.3 Binding Affinity of Leu-Enkephalin Analogues 247a-e ${ }^{177}$

Up to this point, we showed that oxetanyl peptidomimetics can be used to increase the metabolic stability of the parent peptide. We reasoned that this might partially be due to a steric or conformational constraint introduced with the oxetane that hampers the recognition of the peptide by proteases. We hence asked the question if the oxetane mimics would still exhibit the same biological
activity as the parent compound. Leu-Enkephalin (247a) has a strong analgesic effect by binding at the μ - and δ-opioid receptors ($\mu<\delta$). The binding constant for the δ-opioid receptor was reported before as $K_{i}=8.05 \mathrm{nM}^{39}$ and $\mathrm{K}_{\mathrm{i}}=4 \mathrm{nM}^{178}$ depending on the assay conditions.

Therefore, we decided to study the binding affinity of oxetanyl peptides $247 \mathrm{~b}-\mathbf{e}$ at the δ-opioid receptor with a radioligand binding assay. For the assay used in this study, the membrane fraction from homogenized rat brains was isolated. The protein content was then determined by the method developed by BRADFORD ${ }^{179}$ and STOSCHECK ${ }^{180}$. The obtained solubilized membrane proteins including the δ-opioid receptor were subsequently incubated with the ligand peptide sample and the specific radioligand $\left[{ }^{3} \mathrm{H}\right]$-DPDPE (254), a Leu-Enkephalin mimic (Figure 24).

254

Figure 24 The Structure of DPDPE.
After rapid filtration and drying, a solid scintillator was melted onto the obtained filtermat. The radioactivity corresponding to the receptor-bound radioligand was measured with a scintillation analyzer. The peptide sample competes against the radioligand for receptor binding. Hence, the amount of remaining radioligand is an indirect measure of the bound tested ligand. The IC50-value for each compound was determined by a logistic fit of the scintillation against concentration plot and subsequently converted into K_{i} values with the equation of CHENG and PRUSOFF ${ }^{181}$.

First, the assay was carried out in the presence of phenylmethanesulfonylfluoride (PMSF), a non-selective serine-protease inhibitor to prevent the
degradation of the samples and the radioligand. Under these conditions, analogues 247 d and 247 e showed a nanomolar binding affinity towards the δ opioid receptor. Unfortunately, the value for natural Leu-Enkephalin (247a) could not be determined. This was attributed to a rapid degradation by proteolysis of the peptide in the rat brain preparation. RAYNOR et al. ${ }^{178}$ reported the use of a mixture of additives including protease inhibitors to successfully measure the binding affinity of 247 a in a similar assay. We hence repeated our experiment in the presence of a commercial protease inhibitor cocktail (SIGMAFAST ${ }^{\circledR}$, Sigma-Aldrich Biochemicals). Under these modified conditions the value for 247a was determined as $\mathrm{K}_{\mathrm{i}}=9.2 \pm 2.3 \mathrm{nM}$, which is consistent with previously reported literature values mentioned above. ${ }^{39,178}$ Analog 247 e shows a similar binding affinity of $\mathrm{K}_{\mathrm{i}}=43 \pm 9 \mathrm{nM}$. Also, analog 247 d still binds with a remarkable $K_{i}=157 \pm 15 \mathrm{nM}$. However, oxetanyl peptdes 247 b and 247 c do not show any affinity towards the δ-opioid receptor up to a concentration of $1 \mu \mathrm{M}$ (Table 7).

Table 7 Binding Affinities of 247a-e.

Entry	Compound	$\mathbf{K}_{i} / \mathbf{n M}^{\mathbf{a}}$ only PMSF	$\mathbf{K}_{\mathbf{i}} / \mathbf{n M ~}^{\mathbf{b}}$ with SIGMAFAST
1	$\mathbf{2 4 7 a}$	>1000	9.2 ± 2.3
2	$\mathbf{2 4 7 b}$	>1000	>1000
3	$\mathbf{2 4 7 c}$	>1000	>1000
4	$\mathbf{2 4 7 d}$	176	157 ± 15
5	$\mathbf{2 4 7 e}$	57	43 ± 9

a $\mathrm{n}=1, \mathrm{~b} n=3$, mean \pm SEM

In summary, oxetanyl peptides 247 d and 247 e still bind to the δ-opioid receptor with a similar affinity as the parent natural Leu-Enkephalin (247a). Even when the natural compound 247a is readily degraded by proteases in the absence of a protease inhibitor, $\mathbf{2 4 7}$ d and $\mathbf{2 4 7 e}$ still show the same binding affinity. These two analogues were the least stable in human serum but they still seem to resist the different metabolic degradation profile in rat brain. This is another indicator, that
the introduction of oxetanes can be a valuable tool to suppress proteolytic cleavage of peptide drugs and at the same time retain their pharmacological profile.

YAMAZAKI et al. suggested, that opioid peptides can be divided into a messaging sequence consisting of the N-terminal tetrapeptide and an address position consisting of the C-terminal residue. Furthermore, the messaging sequence contains two pharmacophoric residues (P) at each end and a two amino acid spacer (S) in between (Figure 25).

Figure 25 Pharmacophore Analysis of 247a.
The results 54 in Table 7 suggest that an oxetane substitution is possible both between the spacer and the second pharmacophoric residue of the messaging sequence ($\mathbf{2 4 7} \mathbf{d}$) as well as at the amide bond between the messaging sequence and the address position (247e) emphasizing its value as a carbonyl bioisostere.

2.4.4 In vitro Activity of Leu-Enkephalin Analogues 247a-e ${ }^{182}$

We showed that two of the synthesized oxetanyl peptides (247d and 247e) still bind to the δ-opioid receptor with nanomolar affinities. However, an indication that their agonistic activity is also retained is still missing. We therefore decided to conduct a commercially available β-Arrestin 2 recruitment assay on cells overexpressing the δ-opioid receptor.

In the classical model of G-protein coupled receptor (GPCR) function, after activation of the receptor by a ligand, G-proteins are responsible for intracellular
signaling. The recruitment of β-Arrestin for example controls desensitization by internalization of the receptor. In the assay setup developed by DiscoveRx and marketed as PathHunter ${ }^{\mathrm{TM}}$ assays, the GPCR of interest is attached to a lowaffinity peptide, called ProLink ${ }^{\mathrm{TM}}$ derived from the N-terminal sequence of β galactosidase from E. coli. Additionally, β-Arrestin is connected to an ω-deletion mutant of β-galactosidase. ${ }^{183}$ Upon recruitment of the modified β-arrestin, β galactosidase can reconstitute in an enzyme fragment complementation reaction. The use of a low-affinity derivative of β-galactosidase on the GPCR side is important to make sure, that the reconstitution is triggered only by activation of the receptor and subsequent reversible recruitment of β-Arrestin and hence the close proximity of the second β-galactosidase fragment and not by a high intrinsic binding affinity. The recombination of both β-galactosidase fragments after β-Arrestin recruitment leads to the construction of a holoenzyme that is able to hydrolyze a given substrate into a luminescent probe which can be detected with a plate reader (Figure 26). ${ }^{184,185}$ This assay concept ensures that only the receptor-specific agonistic action at the overexpressed modified δ-opioid receptor is measured.

Figure 26 Principle of β-Arrestin Recruitment Assay, adopted from Van der Lee et al. ${ }^{184}$ The agonistic activity of peptidomimetics $247 \mathrm{~b}-\mathrm{e}$ as well as of the natural compound 247a was determined under standard assay conditions as provided
by DiscoveRx. In this case, DADLE (255), another Leu-Enkephalin analogue, was used as the positive control (Figure 27).

255

Figure 27 The Structure of DADLE.

The obtained values of luminescence were plotted against concentration and evaluated by a logistic fit (Figure 28). Natural Leu-Enkephalin (247a) showed an $\mathrm{IC}_{50}=19.7 \pm 2.82 \mathrm{~nm}$ which is consistent with previously reported values. ${ }^{186,187}$ However, between the oxetanyl analogues, only 247 b and 247 e showed an agonistic activity at concentrations up to 1 mm . Somewhat in line with the results from the affinity assay ($\mathrm{K}_{\mathrm{i}}=43 \pm 9 \mathrm{nM}$) described above (chapter 2.4.3), 247e showed a significant $\mathrm{IC}_{50} \approx 5.6 \mu \mathrm{M}$. Contrarily, 247 d which also showed a nanomolar affinity ($\mathrm{K}_{\mathrm{i}}=157 \pm 15 \mathrm{nM}$), did not exhibit any effect in the activity assay. Here, only $\mathbf{2 4 7 b}$ showed a weak IC50 $\approx 54 \mu \mathrm{M}$ outside the range of the affinity assay.

Figure 28 Activity of Leu-Enkephalin (247a ■) and its Analogues (247b (\bullet), 247e (\uparrow)) at the δ-Opioid Receptor Measured by β-Arrestin Assay. ($\mathrm{n}=2$, measured in triplicates, data shown as mean \pm SD)

These striking differences between the data obtained in the affinity and the activity assay can be explained by a different mode of action of the oxetanyl
analogues compared to $\mathbf{2 4 7 a}$. Since the activity of $\mathbf{2 4 7}$ c and $\mathbf{2 4 7 d}$ is significantly lower than their affinity towards the δ-opioid receptor, we suggest that they are a full and partial antagonist respectively. This would indicate, that the incorporation of an oxetane can also be used to fine tune the mode of action of a peptide drug. Especially in the field of pain release and morphine analogs, partial and full antagonists have been subject of extensive research to reduce the abuse potential of these drugs by overriding the analgesic effect at high doses. ${ }^{188-}$ ${ }^{191}$ Further studies to confirm the mode of action of these peptidomimetics will be conducted in the near future.

2.4.5 In vivo Activity of Oxetanyl Peptidomimetic 247e ${ }^{192}$

From the affinity and activity studies outlined above (chapters 2.4 .3 to 2.4.4) we concluded, that ${ }^{O^{\prime}} \mathrm{Phe}^{2}$ analog 247 e can bind most efficiently and exhibit the highest agonistic effect at the δ-opioid receptor. We therefore decided, to test this compound in an in vivo setting. We chose the hotplate test to measure the analgesic effect of $\mathbf{2 4 7 e}$ in mice. This assay was originally developed by EDDY and Leimbach in $1952 .{ }^{193}$ The setup is very simple: A hotplate is heated to a stable temperature between $50^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$. Then the mouse is placed on the plate and the time until typical symptoms of pain are observed is measured. EDDY and LEIMBACH showed in an experiment with 2000 mice, that the response time is normally distributed. They measured a mean interval of $t=9.51 \pm 1.02 \mathrm{~s} .{ }^{193}$ Later CASARRUBEA et al. carefully described the different behavioral symptoms of rats in the hot plate test. ${ }^{194}$

In our assay, we chose i.v. administration into the tail vein of the respective sample to correlate the results to serum stability. We compared the analgesic effect of 247 e to the values obtained for the natural peptide 247 a , the strong analgesic agent morphine as a positive control and the buffer vehicle as a negative control.

Figure 29 Hotplate Test, Time is Displayed as Mean \pm SEM ($\mathrm{n}=$ number of mice, $\mathrm{c}=12.5 \mathrm{mg} / \mathrm{kg}$ for 247 a and $247 \mathrm{e}, \mathrm{c}=10.0 \mathrm{mg} / \mathrm{kg}$ for morphine, ${ }^{*} \mathrm{p}<0.05$).

Indeed, administration of oxetanyl peptide 247e leads to a significantly increased residence time ($t=14 \mathrm{~s}$) on the hot plate compared to $247 \mathrm{a}(t=11 \mathrm{~s}$) as evaluated by a t-test. 247a does not show any measurable effect under these conditions compared to the negative control $(t=9.2 \mathrm{~s})$ which can again be attributed to a rapid proteolytic degradation. The value obtained for the negative control is consistent with previously reported data. ${ }^{195}$

2.4.6 Summary of Pharmacological Properties of 247a-e

In this work, Leu-Enkephalin (247a) and oxetanyl analogues 247b-e have been extensively studied. First, their metabolic stability in human serum was determined. Natural Leu-Enkephalin (247a) showed a half-life time of 11 min whereas the half-life time for $\mathbf{2 4 7 b}$-e was increased to up to 18 h . Furthermore the binding affinity at the δ-opioid receptor was determined. The results indicate that analogues 247 d and 247 e still exhibit nanomolar binding affinities. Additionally, the agonistic activity at the δ-opioid receptor was measured in a cellular luminescence assay. We observed that only 247e showed a considerable micromolar activity. We attributed the clear discrepancy between the results from the affinity and those from the activity assay to a modified mode of action
of the oxetanyl analogues and speculated that they might be partial or full antagonists. Nevertheless, the analgesic potential of 247 e was evaluated by a hotplate test in mice. The in vivo experiment showed that 247 e in contrast to 247a shows a mild analgesic effect after i.v. administration indicating that it is active in the brain and not rapidly degraded in the blood stream. All pharmacological data obtained is summarized in Figure 30.

Figure 30 Summary of Pharmacological Data of 247a-e.
A comprehensive comparison of our Leu-Enkephalin analogues 247b-e to previously reported mimics is difficult in view of the vast number of publications in this area. However, most of the studies do not focus on amide bond surrogates, but are rather based on inversion of the stereocenters (e.g. DADLE), side-chain to side-chain cyclizations (e.g. DPDPE) or side-chain to Cterminus cyclization ${ }^{196}$ and side-chain modifications. ${ }^{174,197,198}$ Comparably few studies concentrated on the systematic substitution of each amide bond with an amide bond surrogate. In this chapter we will focus our comparison on two recently published studies with E-alkenes (256a-d) ${ }^{199}$, esters (257a-d) and N methyl amides (258a-d) ${ }^{174}$ (Table 8). Earlier reports of similar systematic substitutions can e.g. be found from the groups of Houghten ${ }^{200}$, Von Voigtlander ${ }^{201}$, Belleau ${ }^{202}$ and Liskamp ${ }^{203}$.

Table 8 Comparison with other Leu-Enkephalin Mimics.

Entry		$A^{\text {b }}$	B $^{\text {b }}$	$\mathrm{C}^{\text {b }}$	$\mathrm{D}^{\text {b }}$	δ-Affinity $\mathrm{Ki} / \mathrm{nm}$	Serum Half-Life ${ }^{a}$
1	256a	$\xrightarrow{*}$				13.1	
2	256b		\sim			761	
3	256c			\sim		587	
4	256d				\sim	196	
5	257a	$\mathrm{C}(\mathrm{O}) \mathrm{O}$				150	
6	257b		$\mathrm{C}(\mathrm{O}) \mathrm{O}$			303	
7	257c			$\mathrm{C}(\mathrm{O}) \mathrm{O}$		34	
8	257d				$\mathrm{C}(\mathrm{O}) \mathrm{O}$	11.9	72\%
9	258a	$\mathrm{C}(\mathrm{O}) \mathrm{NMe}$				1190	
10	258b		$\mathrm{C}(\mathrm{O}) \mathrm{NMe}$			>5000	
11	258c			$\mathrm{C}(\mathrm{O}) \mathrm{NMe}$		533	
12	258d				$\mathrm{C}(\mathrm{O}) \mathrm{NMe}$	12.6	230\%

a In \% compared to the half-life time of 247a in the respective study, b empty box = regular amide bond.

A substitution of the N-terminal peptide bond with an alkene (256a) leads to the retention of binding affinity at the δ-opioid receptor compared to 247 a. However, the same substitution leads to a significant decrease in affinity at all other positions. In contrast, in our mimics $247 \mathrm{~b}-\mathrm{e}$ an oxetane substitution at the N terminal two amide bonds was not tolerated and only substitution at the Cterminal two amide bonds still led to peptidomimetics with a nanomolar binding affinity. A similar result is obtained, when an ester is used as the amide bond surrogate. Like in our case oxetanyl peptides 247 d and 247e, depsipeptides 257c and $\mathbf{2 5 7 d}$ still bind to the δ-opioid receptor. This suggests that the H-bond acceptor property is essential for the binding event in this position and the increased steric bulk is tolerated in the oxetane case. In the N-methyl amide series 258a-d, only compound $\mathbf{2 4 7}$ d carrying the substitution in the C-terminal
position still binds to the δ-opioid receptor in the low nanomolar range. Furthermore, compound 258d shows an increased metabolic stability in contrast to depsipeptide $\mathbf{2 5 7 d}$ which is even more readily degraded than the natural peptide 247a. This can be explained by the low hydrolytic stability of esters compared to amides. However, three of our four oxetanyl analogues (247b, 247c and 247e) even outperform the N-methyl amide derivative 258 d with half-life times increased by up to $\approx 11000 \%$. This again shows that the 3 -aminooxetane is a valuable building block in the toolbox of peptidomimicry as it closely resembles the steric and electronic features of the natural amide bond and increases the metabolic stability of the parent peptide.

2.4.7 Synthesis of $\boldsymbol{\alpha}$-Synuclein Inhibitors

As a second target we chose an inhibitor of the aggregation of α-Synuclein, a 140 amino acid containing protein with a weight of 14.5 kDa . It is one of the most abundant proteins in intracerebral tissue including human brains. ${ }^{204,205}$ Aggregated α-Synuclein is the major component of inclusion bodies, so called Lewy bodies that have been found in the dopaminergic neurons of patients who suffered from Morbus Parkinson. ${ }^{206,207}$ Hence, the aggregation process itself and the fibrilar aggregates deposited on nerve cells are a symptom or even one of the causes of this disease. Pharmaceutical agents targeting this process or the dissolution of these aggregates have been subject of intensive research. ${ }^{208-210}$ Rather than on targeting a specific receptor, research on α-Synuclein is based on influencing protein-protein interactions (PPIs). ${ }^{211,212}$ We envisioned the area of PPI inhibitors to be an ideal setting for oxetanyl peptides. We suggested that the conformational and steric bias induced by the oxetane could turn an aggregation-prone peptide into an inhibitor of the same.

Recently, the group of $\mathrm{Im}^{213,214}$ developed a short peptidic inhibitor of α-Synuclein derived from a twelve residue hydrophobic stretch of the full protein which was shown to be essential for its aggregation. ${ }^{215} \mathrm{We}$ decided to incorporate the oxetane moiety into this already optimized hexapeptide with the sequence $\mathrm{H}_{2} \mathrm{~N}$ -

Pro-Gly-Val-Thr-Ala-Val-NH2/OH (259a). Based on the optimization studies by Im, we reasoned that a substitution at the hydrophobic N - and C-terminal positions would be most promising. We therefore planned the synthesis of the ${ }^{0 \times} \operatorname{Pro}^{6}$ (259b), ${ }^{\text {OxGly }}{ }^{5}$ (259c) and ${ }^{\text {Ox }}$ Val 1 (259d) analogues (Figure 31).

Figure 31 Planned Oxetanyl Modifications of 259.
We first pursued the synthesis of the natural peptide acid $259 \mathrm{a}-\mathrm{OH}$ and amide 259a-NH2. Again we resorted to a strategy with Cbz, benzyl ether and benzyl ester as protecting groups to enable final global deprotection by hydrogenation. We started our synthetic efforts from commercial BocNH-Tyr(OBn)-OH. In the case of $259 \mathrm{a}-\mathrm{OH}$, standard peptide couplings mediated by EDC HCl led to tetrapeptide BocNH-Val-Thr(OBn)-Ala-Val-OBn 260 via dipeptide 261 and tripeptide 262. In parallel CbzNH-Pro-Gly-OH (263) was synthezised from commercial CbzNH-Pro-OH and $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Gly}-\mathrm{OMe}{ }^{216}$ Final coupling between the free acid and amine derived from 263 and 260 respectively led to fully protected hexapeptide 264. Unfortunately, global deprotection by hydrogenation in the presence of catalytic amounts of palladium on charcoal proceeded slowly and resulted in a complex mixture of products. Only, when stoichiometric amounts of palladium acetate were used the desired product $259 \mathrm{a}-\mathrm{OH}$ could be obtained as its TFA salt after purification by preparative HPLC (Scheme 78).

Scheme 78 Synthesis of 259a-OH.
For the synthesis of $\mathbf{2 5 9} \mathbf{a}-\mathrm{NH}_{2}$ essentially the same route was used. Again BocNH-Tyr(OBn)-OH was elaborated to tetrapeptide 265, which now carried a methyl ester in the C-terminal position, via 266. Peptide coupling with 263 furnished fully protected hexapeptide 267 . We first tried to convert the Cterminal methyl ester into the corresponding amide by simple aminolysis with ammonia in MeOH or water. However, we only observed decomposition of the starting material or products still containing the methyl ester, but missing the benzyl ether or Cbz-group as identified by LC-MS. Even preceding deprotection of the Cbz-group and the benzyl ester by hydrogenation did not lead to desired product in the aminolysis. Finally, the C-terminal primary amide was introduced by ester hydrolysis and subsequent treatment of the acid with isobutyl chloroformate to give the mixed anhydride followed by aminolysis with aqueous ammonia. Final deprotection of the crude material under hydrogenative conditions led to $\mathbf{2 5 9}$ a- NH_{2}. The obtained material was found to be insoluble in all solvents except for DMSO and water and precipitated from the reaction mixture in the deprotection step as a colorless gel. Hence, only minimal amounts
of the TFA salt of $\mathbf{2 5 9} \mathbf{a}-\mathbf{N H}_{2}$ accounting to no more than 6% yield could be obtained after purification by preparative HPLC (Scheme 79).

Scheme 79 Synthesis of 259a-NH2.
We now turned our attention to the synthesis of the oxetanyl analogues 259b-d. We decided to use a similar route for the synthesis of ${ }^{0 x} \mathrm{Pro}^{6}$ analogues 259b-OH and $\mathbf{2 5 9 b}-\mathrm{NH}_{2}$ as for $\mathbf{2 5 9 a} \mathbf{- O H}$ and $\mathbf{2 5 9} \mathbf{a N H}_{2}$ starting from previously obtained tetrapeptides 260 and 265 respectively. Coupling of the free acid corresponding to oxetanyl dipeptide BocNH-Ox-Pro-Gly-OBn (73q) and free amine derived from 260 led to fully protected oxetanyl hexapeptide 268. Boc-deprotection under standard TFA conditions and subsequent hydrogenolytic cleavage of the benzyl ether and ester then furnished the desired product $\mathbf{2 5 9 b} \mathbf{- O H}$ after purification by preparative HPLC. This time catalytic amounts of palladium on carbon were sufficient to achieve deprotection of 268 (Scheme 80).

Scheme 80 Synthesis of 259b-OH.
Starting from tetrapeptide methyl ester 265 and dipeptide mimic 73q, fully protected hexapeptide 269 was obtained. However all attempts to convert the methyl ester 269 into the corresponding primary amide $\mathbf{2 5 9 b}-\mathbf{N H}_{2}$, including the treatment with anhydrous ammonia in MeOH , aqueous ammonium hydroxide, magnesium nitride in MeOH^{217} and aminolysis of the corresponding mixed anhydride or acid chloride either led to no reaction or decomposition of the starting material (Scheme 81).

Scheme 81 Attempted Synthesis of 259b-NH2.
The synthesis of ${ }^{\mathrm{Ox}} \mathrm{Gly}^{5}$ analogues $\mathbf{2 5 9} \mathrm{c}-\mathrm{OH}$ and $\mathbf{2 5 9} \mathrm{c}-\mathrm{NH}_{2}$ was pursued starting from preciously obtained tripeptides 262 and 266 respectively. On the route to 259c-OH, the free acid corresponding to previously reported oxetanyl dipeptide
$73 x$ was coupled to the free amine derived from 262 to give oxetanyl pentapeptide 270. Fully protected hexapeptide 271 was then obtained by N terminal deprotection of 270 with TFA and EDC HCl mediated reaction with CbzNH-Pro-OH. Final global deprotection was again achieved by hydrogenation in the presence of stoichiometric amounts of palladium acetate. The desired product $\mathbf{2 5 9}$ c-OH was isolated as the corresponding TFA salt by preparative HPLC (Scheme 82).

Scheme 82 Synthesis of $259 \mathrm{c}-\mathrm{OH}$.

Similarily, oxetanyl pentapetide methyl ester 272 was obtained from tripeptide 266 and oxetanyl dipeptide 73x. Coupling with CbzNH-Pro-OH then led to hexapeptide methyl ester 273. However, again all attempts to convert 273 into the desired product $\mathbf{2 5 9} \mathbf{c}-\mathrm{NH}_{2}$ failed (Scheme 83).

Scheme 83 Attempted Synthesis of $259 \mathrm{c}-\mathrm{NH}_{2}$.
Last, we turned our attention to the synthesis of ${ }^{0 \times} \mathrm{Val}^{1}$ analog 259d. We identified previously obtained (chapter 2.3.1) diamine 145 as the suitable oxetanyl building block. To enable global deprotection by hydrogenation, 145 was Cbz-protected at the amine in the 3-position of the oxetane to give 274. In parallel, pentapeptide methyl ester 275 was obtained by EDC $\cdot \mathrm{HCl}$ mediated peptide couplings starting again from BocNH-Thr(OBn)-OH via 276. The free amine derived from 274 after Boc-deprotection was then coupled to the free acid obtained from 275 to furnish oxetanyl hexapeptide. The crude material was directly submitted to hydrogenation conditions for global deprotection to yield the desired product $\mathbf{2 5 9}$ d which was then isolated as its TFA salt by preparative HPLC (Scheme 84).

Scheme 84 Synthesis of $259 \mathrm{~d}-\mathrm{NH}_{2}$.

In summary, both the natural peptide acid $259 \mathrm{a}-\mathrm{OH}$ and the natural peptide amide $\mathbf{2 5 9} \mathbf{a}-\mathbf{N H}_{2}$ as well as oxetanyl analogues with ${ }^{0 \times P r o}{ }^{6}(\mathbf{2 5 9 b} \mathbf{- O H}),{ }^{0 \times} \mathrm{Gly}^{5}$ ($259 \mathrm{c}-\mathrm{OH}$) and ${ }^{0 \times} \mathrm{Val}^{1}$ (259d) substitutions were synthesized. This diverse set of natural peptides and peptidomimetics will enable us to extensively study the effect of an oxetane substitution on PPIs depending on its position in the peptide backbone.

2.4.8 Planned Activity Studies ${ }^{218}$

As mentioned previously (chapter 2.4.7), the toxicity of α-Synuclein is attributed to the aggregation process and the resulting fibrillar aggregates of this protein. We therefore decided to monitor the amount of α-Synuclein aggregates in the presence of an excess of the previously studied peptidic inhibitor $\mathbf{2 5 9} \mathbf{a}^{213,214}$ and our oxetanyl analogues 259b-d. α-Synuclein aggregation kinetics are often studied with the help of the fluorescent dye thioflavin T (ThT). ${ }^{219,220}$ ThT
selectively binds to structures with high β-sheet content like amyloidogenic fibrils. This is accompanied by a strong red shift of its emission spectrum which allows simple monitoring of the aggregation process. Recently, CAMPIONI et al. published a study on the aggregation of α-Synuclein and its dependency on the presence of an air-water interface. ${ }^{221}$ They also disclosed a procedure to produce purely monomeric α-Synuclein to accurately study the aggregation process in the absence of preformed oligomers or protofibrills. Their work also includes a detailed description of plate reader assay setup suitable for our purposes. This facilitates the monitoring process over prolonged time span and only requires minimal amounts of protein as the same volume is monitored continuously without the need to withdraw a sample.

As already described by the group of $\mathrm{Im}^{213,214}$, we planned to incubate a five-fold molar excess of the synthetic peptides 259a-d with α-Synuclein in aqueous buffer under physiological conditions ($37^{\circ} \mathrm{C}, \mathrm{pH} 7.4$) and use the fluorescence readout to monitor the amount of formed amyloidogenic fibrils.

Figure 32 Principle of Fluorescence Assay for $\boldsymbol{\alpha}$-Synuclein Aggregation.
This would give us a detailed picture of effect of an oxetane substitution on the inhibitory potency of 259a relative to its position in the peptide backbone.

3

Side Chain-Modified

 Oxetanyl Peptides
3.1 Conceptual Framework

In chapter 2 we reported the use of 3-aminooxetanes as amide bond mimics in peptides and showed that this new class of peptidomimetics can in principle be a valuable tool for the development of peptide drugs. The peptide backbone is needed for the construction of secondary and tertiary peptide structures through H-bonding and can also interact with a potential binding pocket.

However, the interactions between side-chain residues also play a crucial role in protein folding and protein-protein interactions (PPIs):222 The hydrophobic effect is a major determinant of secondary structure formation. Furthermore, hydrophobic and electrostatic interactions of side-chain residues account for up to 80% of the interactions at protein-protein interfaces. ${ }^{222,223}$ Hence, the incorporation of amino acids carrying a vast variety of side-chain residues into potential pharmaceutical agents has become a common process in drug discovery. ${ }^{222}$ Along with the twenty proteinogenic amino acids, also "nonnatural" amino acids have been synthesized and used. ${ }^{224}$

However, the exploitation of favorable hydrophobic interactions by the incorporation of corresponding natural and non-natural amino acids such as valine, leucine, isoleucine, tert-leucine ${ }^{225}$ or neopentyl glycine ${ }^{226}$ introduces a large portion of hydrophobic surface area which might have a negative effect on other parameters such as solubility and bioavailability. Similarly, the use of functionalized side chain residues as in asparagine, aspartic acid, glutamine or glutamic acid to enforce electrostatic interactions at the same time potentially creates new sites for metabolic degradation.

Therefore, we decided to design and synthesize a new set of side-chain modified amino acids that use the concept of oxetanes as isosters for gem-dimethyl and carbonyl group to improve key pharmacokinetic properties of the parent structures.

3.1.1 Oxetanes as Surrogates for gem-Dimethyl Groups in Amino Acids

Gem-dimethyl groups have frequently been used in drug discovery to introduce hydrophobic bulk or to shield sensitive functional groups and methylene units from metabolic attack. We have previously suggested that linking gem-dimethyl groups with an oxygen bridge to oxetanes can be beneficial to reduce their hydrophobicity. ${ }^{87,101}$ Because of the similar molecular volume of an oxetane ${ }^{99}$ and a gem-dimethyl group ${ }^{100}$ we concluded that oxetanes can be perceived as less hydrophobic isosters of gem-dimethyl groups (Figure 33). ${ }^{101}$

molar
volume

metabolism
labile

Figure 33 Comparison gem-Dimethyl vs. Oxetane (a molar volume of propane).
Especially when looking at the interaction between a ligand and a protein binding pocket, one could argue that due to the hydrophilic peptide backbone, every hydrophobic pocket might still have hydrophilic spots. The combination of hydrophobic and hydrophilic surface patches could be ideally addressed with the oxetane unit. We hence decided to synthesize the oxetanyl analogues of Lvaline ($\mathrm{Val}(\mathrm{Ox}$), 277), $\mathrm{L}-\mathrm{leucine}(\mathrm{Leu}(\mathrm{Ox}), 278)$, L-tert-leucine (Tle(Ox), 279) and Lneopentyl glycine (Neo(Ox), 280) (Figure 34).

Figure 34 Substitution of gem-Dimethyl Groups with Oxetanes

3.1.2 Oxetanes as Surrogates for Carbonyl Groups in Amino Acids

Four of the 20 proteinogenic amino acids contain carbonyl groups in their side chain residues. Asparagine and its homologue glutamine carry primary amide functionalities which are uncharged and can participate in H -bonding and other electrostatic interactions. As outlined in chapter 2 we showed that 3aminooxetanes can serve as amide bond mimics. Following this concept, we decided to replace the primary amide moieties in asparagine and glutamine accordingly to give oxetanyl analogues $\mathrm{Asn}(\mathrm{Ox})$ (281) and $\mathrm{Gln}(\mathrm{Ox})$ (282). This would lead to amino acid derivatives that are potentially more stable towards metabolic degradation through deamidation. ${ }^{227-229}$ Mimics 281 and 282 also contain a mildly basic amine which could participate in salt bridges and furthermore increase the overall solubility of a pharmaceutical agent (Figure 35).

Figure 35 Substitution of Amides with Oxetanes in Asn and Gln.
On the other hand, aspartic and glutamic acid, contain carboxylic acids in their side-chains which can be charged under physiological conditions and participate in salt bridges. Again, we decided to prepare the corresponding 3hydroxyoxetane containing mimics $\operatorname{Asp}(\mathrm{Ox})$ (283) and $\mathrm{Glu}(\mathrm{Ox})$ (284). We suggest that derivatives 283 and 284 are more stable towards enzymatic degradation. ${ }^{230,231}$ Furthermore, this modification provides uncharged alternatives to the natural amino acids (Figure 36).

\Longrightarrow

Figure 36 Substitution of Carboxylic Acids with Oxetanes in Asp and Glu.

3.1.3 Azetidine as a Side Chain-Modification

Finally, we were inspired by the earlier work in the group on azetidine containing spirocycles such as homospiropiperidine (2-azaspiro[3.3]heptane,
285) ${ }^{105}$ to use an azetidine to modifiy the lysine ε-amine. We hence envisioned the synthesis of $\operatorname{Lys}(\mathrm{Az})(286)$ to provide a building block with enhanced basicity and steric accessibility of the ε-amine compared to conventional alkylated lysine analogues (Figure 37).

Figure 37 Conceptual Idea for Lys(Az) (286).

3.2 Synthetic Strategy

Our envisioned strategy towards the synthesis of side-chain modified oxetanyl amino acids is based on ELLMAN auxiliary chemistry and asymmetric hydrogenation, two well-established asymmetric methodologies. These would enable us to individually access both enantiomers of the desired products 277284 and 286. This would open the door for the use of the oxetane concept in combination with other peptidomimetic approaches like retro-inverso peptides.

3.2.1 Synthesis of Side Chain-Modified Amino-Acids via Asymmetric Hydrogenation

WILKINSON's landmark discovery ${ }^{232}$ of a soluble well-defined homogenous catalyst $\left[\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right]^{233}$ for olefin hydrogenations opened the door for the development of asymmetric hydrogenations. First developments of chiral variants of $\mathrm{Rh}(\mathrm{I})$ catalyst were reported by KNOWLES ${ }^{234,235}$, Horner ${ }^{236,237}$ and KAGAN ${ }^{238}$. These already included the enantioselective reduction of $\alpha, \beta-$ didehydro amino acids. KNOWLES ${ }^{239}$ and coworkers also reported the first industrial use of asymmetric hydrogenation. The development and appllication of the bidentate, "chiral at phosphorous" ligand DiPAMP (287) furnished the MONSANTO process for the large scale production of L-DOPA (288) from 289 and acetyl glycine via intermediate 290 (Scheme 85). ${ }^{240-242}$

Scheme 85 The MONSANTO Process for the Production of L-DOPA.
Additionally, NOYORI reported another variant of the asymmetric hydrogenation of α, β-didehydro amino acids catalyzed by a combination of BINAP (291) with rhodium (e.g. the transformation of 292 to 293, Scheme 86). ${ }^{243,244}$

Scheme 86 NOYORI's Asymmetric Hydrogenation of Benzamide 292.

Furthermore, the phospholane based ligands DuPhos (294) and BPE (295) were developed by BURK at DuPont (Figure 38). ${ }^{245-248}$ The corresponding rhodium complexes were shown to tolerate a large substrate scope of dehydroamino acids and especially E / Z-mixtures thereof without a decrease in enantioselectivity.

Figure 38 Me -DuPhos (294) and Me-BPE (295).

The mechanism of rhodium catalyzed asymmetric hydrogenations was thoroughly studied by Halpern and Brown. ${ }^{249-251}$

Up to this point, all research efforts were focused on rhodium based systems with bidentate phosphine ligands. However, the extension of this concept to a broad range of substrates proved difficult since the reaction requires a suitable directing group. Later, after initial studies, Noyori expanded the field to ruthenium based variants using a BINAP-Ru complex to overcome this limitation. ${ }^{552,253}$

Finally in 2000, the application of monodentate phosphorous based ligands in rhodium catalyzed asymmetric hydrogenation reactions was reported by several groups. Indeed, the newly developed catalytic systems were able to challenge or outperform the long preferred bidentate ligands. ORPEN and PRINGLE described the use of phosphonite $\mathbf{2 9 6}^{254}$, REETZ ${ }^{255,256}$ reported the application of phosphites 297 and FERINGA ${ }^{257-260}$ published the use of the phosphoramidite ligand 298 (Figure 39). The main advantage of these ligands is their availability from inexpensive and readily available chiral starting materials which obviates the need for tedious resolution.

Figure 39 Monodentate Ligands 296, 297 and 298.
To date asymmetric hydrogenation reactions are one of the most extensively studied classes of asymmetric methodologies. A vast number of chiral ligand and metal combinations has been reported. ${ }^{261-265}$

We were especially intrigued by Feringa's MonoPhos (298), rhodium(I) system because of the broad substrate scope for the transformation α, β-didehydro amino acids (e.g. 299) to the corresponding amino acids (e.g. 300) in high enantiomeric
purity and the operationally simple procedure, i.e. room temperature and atmospheric pressure (Scheme 87). ${ }^{257}$

Scheme 87 Asymmetric Hydrogenation by Feringa.

However, FERINGA's reports only include the use of acetamide protected amino acid precursors. We doubted that deprotection of the Ac group from the corresponding amino acids in the presence of an oxetane would be feasible. Also, we envisioned a strategy using protecting groups commonly tolerated in standard peptide coupling protocols such as Boc or Cbz. Some reports where these protecting groups have been used under similar conditions are precedented in the literature. ${ }^{266}$ Hence, we decided to apply the MonoPhos-Rh system for the synthesis protected derivatives 301 of oxetanyl and azetidinyl amino acids 277, 280-284 and 286 from the corresponding enamides 302. These in turn would come from the HORNER-WADSWORTH-EMMONS reaction of a suitable glycine phosphonate ester 303 with an oxetanyl or azetidinyl aldehyde 304 (Scheme 88). When using DBU or TMG as the base in these reactions, exclusively the Z-isomers of the condensation products are usually obtained.

Scheme 88 Retrosythesis of Protected Amino Acids 301.
The synthesis of the Cbz- and Boc-protected reagents 305 and 306 had been reported previously. Compound 305 was prepared by addition of benzyl carbamate (307) to glyoxylic acid 308 to give 309 , subsequent treatment with sulfuric acid in methanol to furnish ester 310 and finally reaction with phosphorous trichloride and trimethyl phosphite. ${ }^{267}$ Boc-protected derivative 306
was then obtained by deprotection under hydrogenation conditions and reprotection with $\mathrm{Boc}_{2} \mathrm{O}$ (Scheme 89). ${ }^{268}$

Scheme 89 Reported Syntheses of Reagents 305 and 306.
For the synthesis of $\operatorname{Val}(\mathrm{Ox})(277)$ commercially available oxetane-3-one (33) could be used as the carbonyl compound in the HWE reaction. The side-chain for $\mathrm{Neo}(\mathrm{Ox})$ (280) in turn would come from commercially available alcohol 15 by oxidation to aldehyde 311 (Scheme 90). ${ }^{83}$

Scheme 90 Planned Synthesis of 311.

The synthesis of $\operatorname{Asn}(\mathrm{Ox})$ (281) could start from previously synthesized aminoalcohol 131 by deprotection of the tosyl and benzyl groups, subsequent reprotection with a common peptide protecting group, e.g. Cbz, to 312 and oxidation to the required aldehyde 313 (Scheme 91).

Scheme 91 Planned Synthesis of Aldehyde 313.

Addition of vinyl magnesium bromide to oxetane-3-one (33) followed by protection of the resulting alcohol as its benzyl ether 314 and ozonolysis would lead to aldehyde 315 resembling the side chain of $\operatorname{Asp}(\mathrm{Ox})(283)$ (Scheme 92).

Scheme 92 Planned Synthesis of Aldehyde 315.
Aldehydes 316 and 317 corresponding to the side chains of $\mathrm{Gln}(\mathrm{Ox})$ (282) and $\mathrm{Glu}(\mathrm{Ox})$ (284) could be directly derived from oxetane-3-one (33) by homologation to 318 via a WITTIG reaction and subsequent conjugate addition of the appropriate heteroatom nucleophile (Scheme 93).

Scheme 93 Planned Synthesis of Aldehydes 316 and 317.
Finally, aldehyde 319 for the synthesis of $\operatorname{Lys}(\mathrm{Az})(286)$ could come from boc-azetidine-3-one (34) via WITTIG reaction with (triphenylphosphoranylidene)acetaldehyde to 313 and subsequent reduction (Scheme 94).

Scheme 94 Planned Synthesis of Aldehyde 319.

3.2.2 Synthesis of Side Chain-Modified Amino-Acids via Ellman Imines

The synthesis of the remaining two side-chain modified oxetanyl amino acids $\mathrm{Leu}(\mathrm{Ox})$ (278) and $\mathrm{Tle}(\mathrm{Ox})$ (279) was again planned based on the well-established chemistry of ElLman imines. In these cases the synthesis could not be pursued using the asymmetric hydrogenation approach outlined above because of the difficult preparation of the carbonyl component for the HWE reaction (278) or the quaternary β-carbon (279).

Scheme 95 Retrosynthesis of 278 and 279.
Hence, we decided to trace building blocks 278 and 279 back to the corresponding ELLMAN imine precursors 320 and 321 by the addition of cyanide or vinyl magnesium bromide to 322 and 323 as carboxylic acid synthons and subsequent hydrolysis or ozonolysis. Imines 320 and 321 in turn would originate from aldehydes 324 and 311 (previously described in chapter 3.2.1). ${ }^{83}$ Finally, aldehyde 324 could be derived from oxetane-3-one (33) by Wittig homologation to 325 and subsequent reduction (Scheme 95).

3.3 Building Block Synthesis

Up to now, we designed two synthetic routes to the desired building blocks 277284 and 286. These would allow us to synthesize both enantiomers of the desired building blocks. Furthermore, the hydrogenation approach is known to be scalable and would hence be ideal for the preparation of larger quantities of oxetanyl amino acids.

3.3.1 Synthesis of $\operatorname{Val}(\mathbf{O x})(277)$

We first attempted the synthesis of $\operatorname{Val(Ox)}$ (277). This building block was previously prepared as a racemate by a similar approach. The two enantiomers were then later resolved. Oxetane-3-one (33) was first reacted with 305 to the corresponding Cbz-protected dehydroamino acid 326a. Hydogenation with Pearlman's catalyst then led to deprotection of the amine and reduction of the double bond to furnish 327. MOLDES et al. ${ }^{269}$ reported the resolution of 327 by crystallization of the tartrate salt, while WAKENHUT et al. ${ }^{122}$ first reprotected the amine with Cbz to give 328a and then used chiral HPLC (Scheme 96).

$\mathrm{CbzCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$
MeCN, r.t., 88\%

328a

Scheme 96 Synthesis of 328 by MOLDES and WAKENHUT.
We decided to subject precursor 326a directly to FERINGA's hydrogenation conditions using $\left[\mathrm{Rh}(\operatorname{cod}){ }_{2} \mathrm{BF}_{4}\right]$ and R-MonoPhos $(R-298)$ to obtain enantioenriched 328a without the need for chiral resolution (Table 9). ${ }^{257}$

Unfortunately, no conversion to 328a was observed even under elevated pressure (entries 1 and 6). This can be attributed to the fully substituted double bond which lies outside of the substrate scope of this hydrogenation method. Still, we decided to screen several protecting groups. We prepared Boc-, Troc, methyl carbamate and acetamide protected derivatives 326b-e. However, Boc-, Troc-, and methyl carbamate protected substrates 326b-d did not react either (326b and 326d) or were decomposed (326c) under these conditions (entries 2-4 and 7). Only acetamide 326e reacted with a conversion similar to the catalyst loading at 1 atm and $10 \mathrm{~atm} \mathrm{H}_{2}$ over 72 h (entries 5 and 8). We then examined catalyst system to $[\mathrm{Rh}(\mathrm{BPE})(\mathrm{cod})] O T f$ and indeed methyl carbamate 326 d was slowly converted to the desired product in 5 d at $10 \mathrm{~atm} \mathrm{H}_{2}$ (entry 9). Surprisingly, now also Boc-protected substrate $\mathbf{3 2 6 b}$ showed an enhanced reactivity and was converted into $\operatorname{Val}(\mathrm{Ox})$ derivative $\mathbf{3 2 8 b}$ in 99% yield after 1 d at $10 \mathrm{~atm} \mathrm{H}_{2}$ (entry 10). However, Cbz-, Troc- and acetamide protected substrates 326a, 326c and 326e could still not be converted into the desired products under the optimized conditions (Table 9).

Table 9 Hydrogenation Conditions for 326.

Entry	257	PG	Catalyst	p	t	Yield
1	a	Cbz	$\left[\mathrm{Rh}(\mathrm{cod})_{2}\right] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)$ MonoPhos (11 mol-\%)	1 atm	3 d	No conversion
2	b	Boc	$[\mathrm{Rh}(\mathrm{cod})] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)$ MonoPhos (11 mol-\%)	1 atm	1 d	No conversion
3	c	Troc	$\begin{gathered} {\left[\mathrm{Rh}(\mathrm{cod})_{2}\right] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)} \\ \text { MonoPhos (11 mol-\%) } \end{gathered}$	1 atm	1 d	Decomposition
4	d	$\mathrm{MeOC}(\mathrm{O})$	$[\mathrm{Rh}(\mathrm{cod}) 2] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)$ MonoPhos (11 mol-\%)	1 atm	3 d	No conversion
5	e	MeC(O)	$[\mathrm{Rh}(\mathrm{cod}) 2] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)$ MonoPhos (11 mol-\%)	1 atm	3 d	5\% ${ }^{\text {a }}$
6	a	Cbz	$\left[\mathrm{Rh}(\mathrm{cod})_{2}\right] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)$ MonoPhos (11 mol-\%)	10 atm	3 d	No conversion
7	d	$\mathrm{MeOC}(\mathrm{O})$	$\begin{gathered} {\left[\mathrm{Rh}(\mathrm{cod})_{2}\right] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)} \\ \text { MonoPhos (11 mol-\%) } \end{gathered}$	10 atm	3 d	No conversion
8	e	$\mathrm{MeC}(\mathrm{O})$	$\left[\operatorname{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}(5 \mathrm{~mol}-\%)$ MonoPhos (11 mol-\%)	10 atm	3 d	5\% ${ }^{\text {a }}$
9	d	$\mathrm{MeOC}(\mathrm{O})$	[$\mathrm{Rh}(\mathrm{BPE}$)(cod)]OTf (2 mol-\%)	10 atm	5 d	90\% (61\%) ${ }^{\text {b }}$
10	b	Boc	[$\mathrm{Rh}(\mathrm{BPE}$)(cod)]OTf ($2 \mathrm{~mol}-\%$)	10 atm	1 d	99\%
11	a	Cbz	[Rh(BPE)(cod)]OTf (2 mol-\%)	10 atm	3 d	No conversion
12	c	Troc	[$\mathrm{Rh}(\mathrm{BPE})(\mathrm{cod})] \mathrm{OTf}(2 \mathrm{~mol}$ \%)	10 atm	1 d	Decomposition
13	d	$\mathrm{MeC}(\mathrm{O})$	[$\mathrm{Rh}(\mathrm{BPE}$)(cod)]OTf (2 mol-\%)	10 atm	3 d	$2 \%{ }^{\text {a }}$

a yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}, \mathrm{b}$ yield by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (isolated yield)

In order to determine the optical purity of obtained $\mathbf{3 2 8 b}$ we next tried to deprotect the Boc-group to obtain amine 327. Unfortunately, treatment under acidic conditions always led to fast decomposition of the starting material. Any further elaboration of this route was abandoned (Scheme 97).

Scheme 97 Attempted Deprotection of 328 b .

3.3.2 Synthesis of $\mathrm{Neo}(\mathrm{Ox})(280)$

Next we turned our attention to the synthesis of $\mathrm{Neo}(\mathrm{Ox}$) (280). First, aldehyde 311 was obtained from commercially available alcohol 15. We noticed, that 311 tends to decompose in its neat form and hence directly used the crude dichloromethane solution obtained from the SWERN oxidation. Reaction with Cbz-protected HWE reagent 305 furnished dehydroamino acid 329a in 97\% yield over two steps. With DBU as the base, only the Z-diastereomer of the enamine was obtained. Unfortunately, also in this case, asymmetric hydrogenation under FERINGA's conditions to 330a was unsuccessful (Scheme 98).

Scheme 98 Attempted Synthesis of 330a.

Hence, the protecting group was changed to Boc. Again, aldehyde 311 was used in an HWE reaction this time using reagent 306 to yield 329 b in 90%. As for dehydro $\operatorname{Val}(\mathrm{Ox})$ derivative 326b, this protecting group pattern showed much higher reactivity and the reduced product could be obtained in 77% yield under standard conditions with R-298 (Scheme 99).

Scheme 99 Synthesis of BocNH-Neo(Ox)-OMe 330a.

Again, deprotection proved difficult and only traces of the desired amine 331 were observed under various conditions (entries 3 and 4, Table 10). A major sideproduct observed in several cases was suggested to be seven membered ring 332 by crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ which results from activation of the oxetane and subsequent attack of the Boc-carbonyl oxygen.

Table 10 Screening of Conditions for the Deprotection of 330a.

Entry	Reagent	Solvent	Temp.	Result
1	p TsOH $\mathrm{H}_{2} \mathrm{O}$	MeCN	r.t.	Formation of 332
2	Aq. HCl	THF	$0{ }^{\circ} \mathrm{C}$	Formation of 332
3	TFA	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0{ }^{\circ} \mathrm{C}$	Traces of 331, mainly 332
4	TFA, thioanisole	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0{ }^{\circ} \mathrm{C}$	Traces of 331, mainly 332
5	$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$	MeCN	r.t.	Formation of 332
6	HCl in dioxane	EtOAc	r.t.	Formation of 332
7	NaI	Acetone	$60^{\circ} \mathrm{C}$	No reaction
8	$\mathrm{H}_{3} \mathrm{PO}_{4}$	MeCN	$0^{\circ} \mathrm{C}$	No reaction

However, small amounts of urea 333 could be obtained after deprotection with TFA and subsequent treatment with p-bromophenyl isocyanate for the determination of the enantiomeric excess. (Scheme 100).

Scheme 100 Preparation of Urea 333 from 330b.
Deprotection of the Boc-group from hydrogenation precursor 329b was also attempted but only led to rapid formation of 334 by the same mechanism (Scheme 101). 334 was isolated and identified by NMR.

Scheme 101 Formation of Side-Product 334.

We again decided to change the protecting group, this time to Teoc. First, HWE reagent 335 was prepared from 305 by hydrogenation to remove the Cbz group and subsequent reprotection with Teoc-OSu. After reaction of 335 with aldehyde 311 protected dehydroamino acid 329c was isolated. This time E/Z-mixtures were obtained with DBU as the base in the HWE reaction. The use of tetramethyl guanidine (TMG) however, only furnished the Z-isomer in 76% yield. Finally, asymmetric hydrogenation with $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}$ and R-MonoPhos $(R-298)$ at atmospheric pressure cleanly furnished TeocNH-Neo(Ox)-OMe (330c) in 91\% yield (Scheme 102). ${ }^{257}$

Scheme 102 Synthesis of TeocNH-Neo(Ox)-OMe (330c).
Subsequent deprotection of the Teoc-group could be achieved by treatment with cesium fluoride in acetonitrile. The free amine was directly reacted with p bromophenyl isocyanate to obtain urea 333 (Scheme 103). The corresponding racemic sample was obtained by hydrogenation of 329 c in the presence of palladium on carbon.

Scheme 103 Synthesis of Urea 333 from 330c.
Optical purity of 333 from the asymmetric hydrogenation of the Teoc- and Bocprotected precursors 329b and 329c was determined by chiral analytical HPLC to $>98 \%$ and 84% ee respectively. Absolute configuration was assigned in analogy to $\mathrm{Glu}(\mathrm{Ox})$ and $\mathrm{Lys}(\mathrm{Az})$ (vide infra, chapters 3.3.5 and 3.3.7)

3.3.3 Synthesis of $\operatorname{Asn}(\mathbf{O x})(281)$

Up to this point, the oxetanyl side-chains incorporated were otherwise unfunctionalized. With the synthesis of $\mathrm{Asn}(\mathrm{Ox})$ (281) we first attempted the asymmetric hydrogenation in the presence another protected amine. We again chose the Boc/Alkyl profile for the backbone protection and this time Cbz for the
side-chain amine. Corresponding dehydroamino acid 336 was obtained starting from previously synthesized Ts- and benzyl protected alcohol 131 (chapter 2.3.1). Deprotection of the tosyl group to 337 and the benzyl group to 338 and reprotection of the free amino alcohol with Cbz led to 312 in 49% yield over three steps. Unfortunately, SWERN oxidation and subsequent reaction of crude aldehyde 313 with HWE reagent 306 furnished a mixture of products containing significant amounts of lactam 339 along with desired Z-isomer of 336. Enamine 336 was nonetheless isolated in 48\% yield. However, hydrogenation of 336 with $\left[R h(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}$ and R-MonoPhos $(R-298)$ did not effect the conversion of 336 to the desired $\operatorname{Asn}(\mathrm{Ox})$ derivative 340 (Scheme 104).

Scheme 104 Attempted Synthesis of BocNH-Asn(NHCbz, Ox)-OMe 340.
To suppress formation of undesired lactam 339, reagent 306 was converted into its n-propyl ester 337. Regrettably, the ratio of 339 to the desired condensation product 341 did not change compared to using the methyl ester (Scheme 105).

Scheme 105 Attempted Synthesis of 331.
We then attempted to directly use previously synthesized fully protected amino aldehydes 115 and 144 in the HWE reaction with 306 to enamines 342 and 343 . No reaction probably due to steric effects was observed in these cases even at elevated temperatures (Scheme 106).

Scheme 106 Attempted Synthesis of Enamines 342 and 343.
Therefore, we decided to abandon the hydrogenation strategy for the synthesis of $\operatorname{Asn}(\mathrm{Ox})(\mathbf{2 8 1})$. Instead, we decided to turn our attention to the ELLMAN route outlined in chapter 0. This would in this case trace BocNH-Asn(NHCbz, Ox)OMe (340) back to allyl amine 344. Precursor 344 in turn would come from imine 345 and ultimately originate from aldehyde 316. In chapter 3.2.1, we suggested 316 could be obtained by the 1,4-addition of a suitable nucleophile to 318 .

Scheme 107 Retrosynthesis for Second Generation Route to 340.

We started our synthetic efforts from oxetane-3-one (33) by a HWE reaction to previously reported unsaturated ester 346. ${ }^{101}$ MICHAEL acceptor 346 was then reacted with benzyl amine to the 1,4-addition product, followed by LAH reduction to the corresponding amino alcohol 347. Subsequent hydrogenation of crude 347 and reprotection of the free amine with Cbz cleanly furnished 348 in 38% yield over five steps (Scheme 108).

Scheme 108 Synthesis of Aminoalcohol 348.

SWERN oxidation of alcohol 348 to aldehyde 316 and subsequent condensation with the (R)-ELLMAN auxiliary led to imine 345 in 86% over two steps. Again, the crude aldehyde solution from the oxidation step was used to reduce decomposition of 316 . Addition of vinyl magnesium bromide to 345 furnished allylamine 349 in 66% yield as a single diastereomer. Removal of the auxiliary and reprotection of the amine intermediate with Boc then yielded amino acid precursor 344 in 96%. Finally, allylamine 344 was converted into the corresponding methyl ester by ozonolysis under MARSHALL's conditions ${ }^{270}$ to
yield BocNH-Asn(NHCbz, Ox)-OMe (340) in 97\%. Oxidation of the allyl amine to the corresponding acid was also attempted with MnO_{4} or RuCl_{3} and $\mathrm{NaIO}_{4}{ }^{271}$ In these cases, only traces of the desired product could be detected along with rapid decomposition of the starting material.

Scheme 109 Second Generation Synthesis of 340.
Absolute configuration of the α-stereocenter was assigned in analogy to $\mathrm{Tle}(\mathrm{Ox})$ (vide infra, chapter 3.3.8).

3.3.4 Synthesis of $\mathrm{Gln}(\mathrm{Ox})(282)$

The synthesis of $\mathrm{Gln}(\mathrm{Ox})(282)$ was started from previously obtained aldehyde 316. HWE reaction with 306 led to dehydroamino acid 350 in 83% yield. Subsequent, asymmetric hydrogenation cleanly delivered the desired derivative BocNH-Gln(NHCbz, Ox)-OMe (351) in 81% yield. ${ }^{257}$

316

350

351

Scheme 110 Synthesis of BocNH-Gln(NHCbz, Ox)-OMe (351).

A racemic sample of 351 was obtained by using racemic ligand in the hydrogenation step. Enantiomeric excess was directly determined by chiral SFC of 351 to $>98 \%$ ee.

3.3.5 Synthesis of Glu(Ox) (284)

Similarly to the approach used for the synthesis of aldehyde 316 we started our synthetic efforts towards $\mathrm{Glu}(\mathrm{Ox})$ (284) from oxetane-3-one (33). Wittig reaction with (Triphenylphosphoranylidene)acetaldehyde yielded previously described unsaturated aldehyde $325 .{ }^{87}$ Subsequent 1,4-addition of benzylalcohol then furnished the required side chain aldehyde for $\mathrm{Glu}(\mathrm{Ox}) 317$ in 61% yield. The use of $7 \mathrm{~mol}-\%$ piperidine as the catalyst proved to give the best yield in this step. HWE reaction with Boc-protected reagent 306 cleanly led to the Z-isomer of dehydroamino acid 352 in 77% yield. Finally, asymmetric hydrogenation with the Rh-MonoPhos system yielded the desired fully protected building block BocNH-Glu(OBn, Ox)-OMe (353) in 98% and 98% ee (Scheme 111). ${ }^{257}$

Scheme 111 Synthesis of BocNH-Glu(OBn, Ox)-OMe (353).
Furthermore, 352 was derivatized to carbamate 354 by hydrogenation to remove the side-chain protecting group followed by treatment with p-bromophenyl isocyanate (Scheme 112).

Scheme 112 Derivatization of 353 to Carbamate 354.
The absolute configuration of 354 was determined by single crystal X-Ray structure analysis as (S) (Figure 40). This is consistent with Feringa's reports where (R)-MonoPhos $((R)$-298) under the same conditions affords the (S)enantiomers of acetamide protected amino acids.

Figure 40 ORTEP-plot of the X-Ray Crystal Structure of 354 (ellipsoids are drawn at 50\% probability, hydrogen atoms, except at the C-stereocenter, are omitted for clarity).

3.3.6 Synthesis of $\operatorname{Asp}(\mathrm{Ox})(283)$

Next, we turned our attention to the synthesis of the $\operatorname{Asp}(\mathrm{Ox})$ (283) building block. Also in this case, we decided to start from oxetane-3-one (33). Addition of vinylmagnesium bromide and subsequent protection of the free alcohol with benzyl bromide delivered allyl alcohol 314 in 72% over two steps. Ozonolysis followed by reductive work-up cleanly furnished aldehyde 315 in 63% yield. HWE reaction with the Boc-protected reagent 306 gave dehydroamino acid 355 in 98% yield. Finally, asymmetric hydrogenation under the pevious conditions gave building block BocNH-Asp(OBn, Ox)-OMe (356) in 67% yield and $>98 \%$ ee (Scheme 113).

Scheme 113 Synthesis of BocNH-Asp(OBn, Ox)-OMe (356).
Additionally, we investigated if previously synthesized aldehyde 317 could also be used for the synthesis of 356 . Condesation with the (R)-enantiomer of the ELLMAN auxiliary furnished imine 357 in 80% yield. We then decided to use cyanide as the precursor for the carboxylic acid in $\operatorname{Asp}(\mathrm{Ox})$ (283). The addition with ethylaluminum cyanoisopropoxide, generated from diethylaluminum cyanide and isopropanol, ${ }^{272}$ cleanly provided adduct 358 as a single diastereomer in 74\% yield (Scheme 114).

Scheme 114 Synthesis of Adduct 358 from Aldehyde 317.
The absolute configuration of 358 was determined by X-Ray crystal structure analysis as the undesired (R, R)-diastereomer (Figure 41).

Figure 41 ORTEP-plot of the X-Ray Crystal Structure of 358 (ellipsoids are drawn at 50\% probability, hydrogen atoms, except at the C-stereocenter, are omitted for clarity).

However, hydrolysis of the nitrile to the corresponding acid 359 or, under PINNER conditions, ester 360 was unsuccessful under a variety of conditions (Table 11).

Table 11 Screening of Conditions for the Hydrolysis of 358.

Entry	Reagent	Solvent	Temp.	Result
1	$\mathrm{H}_{2} \mathrm{SO}_{4}$	water	$60^{\circ} \mathrm{C}$	No reaction
2	AcCl	MeOH	$0^{\circ} \mathrm{C}$	Complex Mixture
3	HCl	MeOH	$0^{\circ} \mathrm{C}$	Complex Mixture
4	HCl	water	Reflux	Complex Mixture
5	$\mathrm{Na}_{2} \mathrm{O}_{2}$	water	$90^{\circ} \mathrm{C}$	Complex Mixture

Hence, we again resorted to vinylmagnesium bromide as the carboxylic acid synthon. In this case diastereomeric mixtures of adduct 361 were observed. The use of toluene as the solvent at $-78^{\circ} \mathrm{C}$ finally provided 361 in a $2: 1$ separable mixture of diastereomers in 47% combined yield (Table 12).

Table 12 Optimization of the Synthesis. of 361.

Entry	Solvent	Temp.	Time	Result
1	THF	$-78{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$	30 min	10% yield
2	$\mathrm{Et}_{2} \mathrm{O}$	$-78{ }^{\circ} \mathrm{C}$	1 h	Low conversion
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78^{\circ} \mathrm{C}$	20 min	Slow conversion, d.r. 2:1
4	Toluene	$-78^{\circ} \mathrm{C}$.	10 min	$88 \%(47 \%)^{\text {a }}$ yield, d.r. 2:1
5	Toluene	reflux	5 min	No product formed

a yield (combined yield of separated diastereomers)

The major diastereomer of 361 was isolated by repetitive column chromatography and further elaborated to Boc-protected allyl amine 362 in 70\% yield. Final oxidation to the corresponding amino acid was carried out with MnO_{4} in the presence of NaIO_{4}. The desired product 356 was isolated in 43% yield after treatment with TMS-diazomethane (Scheme 115).

Scheme 115 Second Generation Synthesis of 356.

Since the much higher yielding and shorter route via the asymmetric hydrogenation was already established, the final oxidation step was not further optimized, e.g. by ozonolysis.

3.3.7 Synthesis of Lys(Az) (286)

The last amino acid synthesis which was pursued via the asymmetric hydrogenation route aimed at azetidinyl amino acid $\mathrm{Lys}(\mathrm{Az})(286)$. In analogy to the synthesis of unsaturated aldehyde 325, corresponding 363 was obtained from the reaction of Boc-azetidine-3-one (34) with (triphenylphosphoranylidene)acetaldehyde in 73% yield as previously reported. ${ }^{88}$ Hydrogenolysis in EtOAc in the presence of palladium on charcoal provided 319 in 93% yield. The use of methanol as the solvent in this step led to lower yields of 319. Subsequently, dehydroamino acid 364 was obtained by HWE reaction with Cbz-protected glycine synthon 305 in 81% yield. Finally, asymmetric hydrogenation yielded fully protected amino acid CbzNH-Lys(NBoc, Az)-OMe (365) in 94\% and 98\% ee. As expected from previous hydrogenation attempts (chapter 3.3.1), the Cbzgroup proved unreactive under these conditions (Scheme 116).

Scheme 116 Synthesis of CbzNH-Lys(NBoc, Az)-OMe (365).

In order to determine the absolute configuration of 365, derivative 366 was obtained by Cbz-deprotection and subsequent treatment of the free amine with p-bromophenyl isocyanate. Upon crystallization, urea 366 cyclized to hydantoin 367 which was separately synthesized and characterized by treatment of 366
with DBU. Absolute configuration was determined by single crystal X-Ray structure analysis of hydantoin 367 (Scheme 117).

Scheme 117 Synthesis of Hydantoin 367 and ORTEP-plot of the X-Ray Crystal Structure of 367 (ellipsoids are drawn at 50% probability, hydrogen atoms, except at the C stereocenter, are omitted for clarity).

3.3.8 Synthesis of $\mathrm{Tle}(\mathrm{Ox})(278)$

Finally, we turned our attention to $\mathrm{Tle}(\mathrm{Ox})$ (278) and $\mathrm{Leu}(\mathrm{Ox})$ (279) whose synthesis we had originally envisioned via the ELLMAN approach outlined in chapter 0. First, we pursued the synthesis of 278 from previously described aldehyde 311 (chapter 3.3.2). Imine 321 was obtained after condensation of 311 with the (R)-ELLMAN auxiliary in 85% yield. Subsequently, vinylmagnesium bromide was added to 321 to obtain allyl amine 368 (Scheme 118). Again, the GRIGNARD addition furnished a mixture of diastereomers of 368. The highest d.r. (2:1) and yield could be obtained by using toluene as the solvent and running the reaction at $-78{ }^{\circ} \mathrm{C}$. The major diastereomer of 368 was isolated in 59% yield by repetitive column chromatography and then further elaborated to $\mathrm{Tle}(\mathrm{Ox})$ (278) derivative 370 (Scheme 119).

Scheme 118 Synthesis of Adduct 368.
In the next step, the auxiliary had to be exchanged for a suitable protecting group for further transformations. In this case, we chose Cbz as the protecting group to complete the common Cbz/alkyl pattern and at the same time avoid problems originating from nucleophilic attack of the Boc-carbonyl oxygen upon deprotection. However, the conditions used up to this point, treatment of 368 with anhydrous HCl in methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ followed by aqueous work-up, did not furnish the desired product, but led to decomposition of the starting material. Only when a combination of two molar aqueous HCl and THF was used at room temperature, 368 could cleanly be deprotected and 369 was obtained in 46% yield after treatment with CbzOSu . Final oxidation of the double bond to the corresponding methyl ester by ozonolysis under MARSHALL's conditions provided fully protected CbzNH-Tle(Ox)-OMe (370) in 94% yield (Scheme 119). Oxidation of allyl amine 369 in the presence of OsO_{4} and oxone or RuCl_{3} with NaIO_{4} and subsequent treatment with TMS-diazomethane again gave inferior results (63% yield for Ru) (Scheme 119). ${ }^{271}$

Scheme 119 Synthesis of CbzNH-Tle(Ox)-OMe (370).
Furthermore, derivatives 371 and 372 were obtained from the minor diastereomer of 368 after removal of the auxiliary and reaction with p bromobenzenesulfonyl chloride or p-bromophenyl isocyanate in 37% and 89%
yield respectively. The absolute configuration of 371 was determined to (S) which would correspond to the (R)-enantiomer of 370 since the priorities according to the CIP-nomenclature of the substituents at the chiral center change in the final oxidation step (Scheme 120). This leads to the conclusion, that the major diastereomer in the addition step has (R, R)-Configuration and hence desired (S)-370 was obtained as described above (Scheme 119).

Scheme 120 Synthesis of Derivatives 371 and 372 and ORTEP-plot of the X-Ray Crystal Structure of 371 (ellipsoids are drawn at 50% probability, hydrogen atoms, except at the C-stereocenter, are omitted for clarity).

3.3.9 Synthesis of Leu(Ox) (279)

Finally, we turned our attention to the synthesis of Leu(Ox) (279). Using the same strategy as for the synthesis of aldehyde 319 (chapter 3.3.7), aldehyde 324 was obtained from 325 by hydrogenation in the presence of palladium on carbon in ethyl acetate. Condensation of crude aldehyde 324 with the (R)-enantiomer of the ELLMAN auxiliary furnished imine 320 in 72% yield over two steps. Reaction with vinylmagnesium bromide then afforded allyl amine 373 in 73% yield as a single diastereomer (Scheme 121).

Scheme 121 Synthesis of Adduct 373.
Also in this case, removal of the auxiliary under acidic conditions was difficult. Both our standard procedure with anhydrous HCl followed by aqueous work-up and the new method with aqueous HCl , which had been successful for $\mathrm{Tle}(\mathrm{Ox})$ precursor 368, led to decomposition of 373 . Only, when the reaction mixture from using anhydrous HCl in methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was directly treated with triethylamine and CbzOSu , Cbz-protected derivative 374 could be isolated in 60% yield. Finally, oxidation of 374 under MARSHALL's conditions yielded the desired building block CbzNH-Leu(Ox)-OMe (375) in 54\% (Scheme 122). However, all intermediates of this route are highly sensitive to acidic conditions which might limit the use of 375 as a robust building block in medicinal chemistry.

Scheme 122 Synthesis of CbzNH-Leu(Ox)-OMe (375).
Absolute configuration was assigned in analogy to Tle(Ox) derivative 371 (chapter 3.3.8).

3.4 Incorporation of $\mathrm{Glu}(\mathrm{Ox})$ (284) into Submandibular Gland Tripeptide Phe-Glu-Gly (376)

Up to this point, the envisioned building blocks 277-284 and 286 were synthesized (chapter 3.3) and therefore made available for the incorporation into larger bioactive peptides. We chose Submandibular Gland Tripeptide $\mathrm{H}_{2} \mathrm{~N}$-Phe-Glu-Gly-OH (376) ${ }^{273}$ as a first target for the evaluation of our oxetanyl amino acids in pharmacological settings. Tripeptide 376 is derived from the C-terminal region of submandibular gland peptide-T (SGP-T, 377, H2N-Thr-Asp-Ile-Phe-Glu-Gly-Gly-OH). Natural heptapeptide 377 is an endogenous inhibitor of hypotensive response to endotoxic and anaphylactic shock. ${ }^{274,275}$ The truncated version 376 has been shown to be a potent anti-anaphylactic agent, as well. ${ }^{273}$ Extensive structure-activity studies using a rat model ${ }^{276}$ have been carried out to elucidate the mode of action of $376 .{ }^{273,277}$ Especially salt bridges, stabilizing the conformation of 376 have been under debate. ${ }^{277}$ Hence, we decided to synthesize derivative $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Phe}-\mathrm{Glu}(\mathrm{Ox})-\mathrm{Gly}-\mathrm{OH}(378)$ to test the effect of the substitution of the side-chain carboxylic acid by a 3-hydroxy oxetane unit (Scheme 123).

$\mathrm{H}_{2} \mathrm{~N}$-Phe-Glu(Ox)-Gly-OH (378)

Scheme 123 Conceptual Idea for the Synthesis of 378.

3.4.1 Synthesis

The synthesis of $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Phe}-\mathrm{Glu}(\mathrm{Ox})$-Gly-OH was achieved from BocNH-Glu(OBn, Ox)-OMe (353) using standard EDC mediated peptide couplings. First, building block 353 was deprotected at the N -terminus and coupled to $\mathrm{CbzNH}-\mathrm{Phe}-\mathrm{OH}$ to yield fully protected dipeptide 379 in 67%. After C-terminal deprotection of 379 and reaction with $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Gly}-\mathrm{OBn}$, tripeptide 380 was obtained in 65% yield. Final deprotection of 380 to the desired free oxetanyl peptide 378 was achieved by hydrogenation and furnished 378 as its TFA salt in 56% yield after purification by preparative HPLC. The main side product in the last step was partially deprotected derivative 381 which in principle could be resubjected to the hydrogenation conditions (Scheme 124).

353

378, 56\%
$+$

381

Scheme 124 Synthesis of $\mathrm{H}_{2} \mathrm{~N}$-Phe-Glu(Ox)-Gly-OH (378).

3.4.2 Planned Biological Studies

The inhibition of intestinal anaphylaxis can be evaluated both $e x$ and in vivo. The first method would involve the sensitization of rats to ovalbumin assisted by the administration of pertussis toxin. ${ }^{274,278}$ The terminal ileum would then be excised and the isometric force generated by its treatment with ovalbumin relative to the response to urecholin, a cholinergic agonist, determined. The obtained data is a measure for anaphylaxis in the control sample. Finally, the isolated tissue would be incubated with tripeptides 378 and 376. Subsequent stimulation with ovalbumin would again be tested and compared to the values for the control sample. ${ }^{274,277}$

Secondly, intestinal anaphylaxis can be studied by a complex procedure involving several surgical implantations of probes in rats. This would then allow monitoring the reaction of the ileum after the administration of ovalbumin to correspondingly sensitized rats. ${ }^{273,279}$ Another in vivo rat model for intestinal anaphylaxis uses the accumulation of ${ }^{125}$ I-labled bovine serum albumin in the intestinal tissue after challenging with sensitizing agent. ${ }^{276}$ For our conceptual studies, investigations will be limited to the ex vivo method outlined above.

4

Conclusion \& Outlook

4.1 Backbone-Modified Oxetanyl Peptides

We envision oxetanyl peptides, a new class of primary structure peptidomimetics, to be used as a valuable tool for the development of peptide based active pharmaceutical agents. Their enhanced metabolic stability along with retention of pharmacological activity makes them ideal candidates for drug development.

In chapter 2 of this work, a novel approach for the stereopure synthesis of backbone-modified oxetanyl peptides was elaborated. Our synthetic strategy is based on the synthesis of dipeptide building blocks 73 where the central amide bond is substituted with a 3-aminooxetane unit. The obtained dipeptide units can then be incorporated into larger peptides by standard peptide coupling.

The synthesis of a variety of stereopure oxetanyl dipeptides 73 was achieved via the alkylation of 3 -amino oxetanes 87 with bromo acetates or triflate esters 88 . This modular approach not only allows the assembly of a large collection of different building blocks 73 but also makes all diastereomers of 73 available by appropriate choice of 87 and 88 (Scheme 125). This enables one to combine the oxetane concept with other peptidomimetic approaches such as retro-inverso peptides.

Scheme 125 Overview Dipeptide Synthesis an Incorporation.

Furthermore, both the 3-amino oxetanes 87 and the alkylating agents 88 were traced back to inexpensive and commercially available starting materials, Trisbase (94) and D-amino acids 111 respectively (Scheme 125). This inspired the development of a diverse collection of amines 87 and triflates 88 and provided access to sufficient amounts of material for the synthesis of larger oxetanyl peptides (Figure 42).

87

145

225

230

226

224

244

Figure 42 Selected Examples of Amines 87 and Triflates 88.
Finally, we have incorporated our newly designed building blocks 73 into two pharmaceutically active peptides. The first target was the prominent endogenous neurotransmitter Leu-Enkephalin (247a). Four analogues 247b-e, each containing one oxetane substitution, were synthesized and evaluated for their metabolic stability as well as affinity and activity at the δ-opioid receptor. Furthermore, the in vivo activity of the most promising candidate (247e) was determined. We have shown that the incorporation of a 3-amino oxetane can significantly increase the half-life time of a peptide in human serum. Two (247d and 247e) of obtained oxetanyl analogues still bind to the δ-opioid receptor with a nanomolar affinity. However, the agonistic activity is largely reduced; only compound 247 e is still active in the low micromolar range. Oxetanyl peptide 247 e still shows a significant analgesic activity in mice in a hot-plate test (Figure 43).

Figure 43 Summary of Results for Leu-Enkephalin Mimics 247b-e.
Secondly, four analogues of an inhibitor of the aggregation of α-Synuclein were synthesized. Fibrillation of α-Synuclein is suspected to be the major cause of PARKINSON's disease. Studies on their activity against the formation of α Synuclein fibrils and their ability to redissolve amyloidogenic aggregates are ongoing.

Scheme 126 Preliminary Studies towards the Synthesis of Oxetanyl β-Peptides.

In extension to this work, the concept of oxetanyl peptides could be applied to the synthesis of backbone-modified β-peptides or mixed α / β-peptides. Relying on the alkylation approach outlined above would necessitate the synthesis of the corresponding amine building blocks 382. Preliminary studies showed that the key intermediate imine 383 can be derived from unsaturated ester (346) via ester 384 and aldehyde 385 in four steps and 76% overall yield. However, methyllithium addition to 383 to obtain adduct 386 so far only furnished inseparable 1:1 mixtures of diastereomers (Scheme 126). Further studies to optimize this step and towards the design of suitable alkylating agents will be subject of future research.

4.2 Side Chain-Modified Oxetanyl Peptides

Following the concept of oxetanes as surrogates for gem-dimethyl and carbonyl groups, several side-chain modified amino acids were envisioned as valuable building blocks in peptide synthesis. Gem-dimethyl groups are often used in medicinal chemistry to block metabolically labile sites. Mimicking gem-dimethyl groups with oxetanes could ameliorate the lipophilicity of these moieties. Hence, a variety of oxetane analogues of amino acids containing gem-dimethyl groups in their side chain (277-280) was synthesized to provide surrogates with improved lipophilicity profile. Furthermore, using the oxetane as a carbonyl mimic in amino acid side chains, significantly alters their electrostatic properties. Converting amides to mildly basic oxetanyl amines (281-282) and carboxylic acids to oxetanyl alcohols (283-284) led to novel building blocks that can engage in different intermolecular interactions thereby containing the typical exit vectors of the parent compounds. Finally, also Lys(Az) (286) was synthesized. Two strategies based on well-established methodologies, asymmetric hydrogenation and ELLMAN auxiliary chemistry, were employed for the preparation of the desired building blocks. This approach in principle also allows the preparation of either enantiomer of the building blocks (chapter 3.2).

Scheme 127 Summary of Synthesized Oxetanyl Amino Acids.
Additionally, we decided to incorporate the newly obtained oxetanyl amino acids into a bioactive peptide. We chose truncated submandibular glad peptide FEG as a suitable target. Especially the salt bridges originating from the sidechain carboxylic acid have been subject of SAR studies. Hence, the incorporation of the $\mathrm{Glu}(\mathrm{Ox})(284)$ building block could provide valuable insight into the function of the anti-anaphylactic agent FEG (Scheme 128). The synthesis of $\mathrm{H}_{2} \mathrm{~N}$ -Phe-Glu(Ox)-Gly-OH (378) was achieved by standard EDC mediated peptide couplings.

Scheme 128 Transition from FEG 376 to Oxetanyl Peptide 378.
Studies on the pharmacokinetic profile and the pharmaceutical cativity of 378 will be subject of future research.

Experimental Part

5.1 General Methods

Unless otherwise stated, all Reagents were purchased from commercial suppliers and used without further purification. Triethylamine and pyridine were distilled from potassium hydroxide under an atmosphere of dry nitrogen; N, N-Diisopropylethylamine was distilled from sodium hydride under an atmosphere of dry nitrogen. All non-aqueous ReACTIONS were conducted under dry nitrogen atmosphere in reagent grade solvents and monitored by thin layer chromatography (TLC) on Merck silica gel 60 F254 TLC glass plates unless noted otherwise. Visualization was accomplished by irradiation with UV light at 254 nm and/or ceric ammonium molybdate, potassium permanganate or ninhydrin stain. Flash column chromatography was performed on Fluka silica gel (pore size $60 \AA, 230-400$ mesh particle size) at 0.3 bar pressure. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR SPECTRA were recorded on VARIAN Mercury (300 MHz), BRUKER DRX (400 MHz), BRUKER Avance (400 MHz) spectrometers in the solvents indicated. Proton chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CDCl}_{3} \delta\right.$ 7.26 ppm , Methanol- $d^{4} \delta 3.31 \mathrm{ppm}$, Acetonitrile- $\left.d^{3} \delta 1.94 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad signal), coupling constant(s) $(J / H z)$ and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with broadband ${ }^{1} \mathrm{H}$ decoupling and are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CDCl}_{3}, \delta 77.16 \mathrm{ppm}\right.$, Methanol- $d^{4} \delta 49.00 \mathrm{ppm}$, Acetonitrile- $\left.d^{3} \delta 118.26 \mathrm{ppm}\right)$. Yields are reported for compounds as shown in the NMR spectra without correction for purity. INFRARED SPECTRA (IR) were recorded on a Perkin Elmer Varian 800 FT-IR Spectrophotometer and are wavenumbers of absorption $\left(v / \mathrm{cm}^{-1}\right)$. Mass SPECTROMETRIC MEASUREMENTS (MS) were performed as high resolution ESI measurements on a Bruker maXis ESI-Q-TOF or as high resolution MALDI measurements on a Varian IonSpec Ultima - MALDI-FT ICR by the mass spectrometry service of the Laboratorium für Organische Chemie at the ETH

Zurich. Melting points were measured on a on a Büchi B-540 melting point apparatus using open glass capillaries and are uncorrected. X-RAY CHRYSTALLOGRAPHIC DATA was collected by Dr. Nils Trapp and Dr. Bernd Schweizer of the Laboratorium für Organische Chemie at the ETH Zürich. Optical rotations ($\alpha \mathrm{d}$) were measured with a Jasco P-2000 Polarimeter, 10 cm , 1.5 mL cell. EnANTIOMERIC EXCESS (ee) was determined by chiral analytical HPLC on a Waters e2695, 2998 or by chiral analytical supercritical fluid chromatography (SFC) on a Jasco2080Plus system.

5.2 Experimental Procedures to Chapter 2

3-((Phenylsulfinyl)methylene)oxetane (78)

To a solution of diisopropylamine ($0.40 \mathrm{~mL}, 2.8 \mathrm{mmol}, 1.3 \mathrm{eq}$) in THF $(8.9 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, 1.5 mL , $2.4 \mathrm{mmol}, 1.1 \mathrm{eq})$. The mixture was stirred for 15 min . (Methylsulfinyl)benzene (300 mg , $2.1 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF $(0.89 \mathrm{~mL})$ was added and the mixture was stirred for 30 min . A solution of oxetan-3-one $(0.15 \mathrm{~mL}$, $2.4 \mathrm{mmol}, 1.1 \mathrm{eq})$ in THF (0.89 mL) was added and the solution was allowed to slowly warm up to r.t. for 1.5 h before cooling back to $-78{ }^{\circ} \mathrm{C}$ and adding $\mathrm{Ms}-\mathrm{Cl}$ ($250 \mu \mathrm{l}, 3.2 \mathrm{mmol}, 1.5 \mathrm{eq}$). After stirring for 30 min at that temperature and 1 h at r.t. the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was filtered through a plug of silica (hex:EtOAc $=1: 2$) and used in the next step without further purification.

To a solution of crude 3-((phenylsulfinyl)methyl)oxetan-3-yl methanesulfonate ($0.32 \mathrm{~g}, 1.1 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (4.3 mL) at $0^{\circ} \mathrm{C}$ was added sodium hydride (60% in mineral oil, $0.065 \mathrm{~g}, 1.6 \mathrm{mmol}$). The mixture was allowed to warm to r.t. and further stirred for 3 h ., The reaction was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica (EtOAc) to yield the title compound 78 (0.17 g , $0.86 \mathrm{mmol}, 40 \%$ over two steps) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68-7.50(\mathrm{~m}, 5 \mathrm{H}), 6.00-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.63$ $(\mathrm{m}, 1 \mathrm{H}), 5.63-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.22(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=149.0,143.5,131.1,130.2,129.7,123.3,79.2$, 79.0 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$195.0474, found, 195.0475.
N-benzyl-3-((phenylsulfinyl)methyl)oxetan-3-amine (82)

ro
A mixture of benzylamine ($30 \mu \mathrm{~L}, 0.270 \mathrm{mmol}, 1.05 \mathrm{eq}$) and 78 ($50 \mathrm{mg}, 0.257 \mathrm{mmol}, 1.00 \mathrm{eq}$) was stirred neat at r.t. for 2.5 d . The mixture solidified to a colorless solid which was identified as $82(77 \mathrm{mg}$, $0.255 \mathrm{mmol}, 99 \%)$.
${ }^{1} \mathbf{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.69-7.28(\mathrm{~m}, 10 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-$ $4.63(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.19 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

2-(Phenylsulfinyl)-1,5-dioxaspiro[2.3]hexane (80)
 ((Chloromethyl)sulfinyl)benzene ($250 \mathrm{mg}, 1.43 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (0.60 mL) was added and the mixture was stirred for 15 min . A solution of oxetan-3-one ($100 \mu \mathrm{l}, 1.58 \mathrm{mmol}, 1.10 \mathrm{eq}$) in THF (0.60 mL) was added and the solution was stirred for 20 min before quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product (colorless oil was used in the next step without further purification.

To a solution of the crude product from the previous step ($332 \mathrm{mg}, 1.35 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in $t \mathrm{BuOH}(9.0 \mathrm{~mL})$ was added $\mathrm{KOtBu}(227 \mathrm{mg}, 2.02 \mathrm{mmol}, 1.50 \mathrm{eq})$ at r.t. The mixture was stirred for 12.5 h before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by FC on silica (hex: $\mathrm{EtOAc}=1: 1$) to yield $80(198 \mathrm{mg}, 0.943 \mathrm{mmol}, 66 \%$ over two steps) as a colorless wax.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.79-7.45(\mathrm{~m}, 5 \mathrm{H}), 5.41(\mathrm{dd}, J=9.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.23-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.83(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=132.2,129.9,124.7,77.5,71.6 \mathrm{ppm}$.

3-(Chloro(phenylsulfinyl)methylene)oxetane (85)

To a solution of diisopropylamine ($320 \mu \mathrm{l}, 2.23 \mathrm{mmol}, 1.30 \mathrm{eq}$) in THF $(7.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, 1.18 mL , $1.89 \mathrm{mmol}, 1.10 \mathrm{eq})$. The mixture was stirred for 15 min . ((chloromethyl)sulfinyl)benzene ($300 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (0.72 mL) was added and the mixture was stirred for 15 min . A solution of oxetan-3-one ($120 \mu \mathrm{l}, 1.89 \mathrm{mmol}, 1.10 \mathrm{eq}$) in THF (0.72 mL) was added and the solution was stirred for 20 min before quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL). The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was directly used in the next step without further purification.

To a solution of the crude product ($0.324 \mathrm{~g}, 1.31 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triethylamine ($0.37 \mathrm{ml}, 2.63 \mathrm{mmol}, 2.00 \mathrm{eq}$). Then $\mathrm{Ms}-\mathrm{Cl}(0.31 \mathrm{ml}, 3.94 \mathrm{mmol}, 3.00 \mathrm{eq})$ was added slowly. The mixture was stirred for 2 h . The mixture was diluted with aq. citric acid $(5 \%, 20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was directly used in the next step without further purification.

To a solution of the crude product ($0.425 \mathrm{~g}, 1.31 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (5.2 mL) at $0^{\circ} \mathrm{C}$ was added sodium hydride (60% in mineral oil, $0.262 \mathrm{~g}, 6.54 \mathrm{mmol}$, 5.00 eq). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ was carefully added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The crude product was purified by FC on silica (hex:EA=1:1) to yield 85 (122 mg , $0.533 \mathrm{mmol}, 24 \%$ over three steps).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.70-7.46(\mathrm{~m}, 5 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=148.1,140.2,135.9,131.7,129.4,124.9,63.0$, 59.9 ppm .
N-benzyl-3-(chloro(phenylsulfinyl)methyl)oxetan-3-amine (86)

To a solution of $85(80 \mathrm{mg}, 0.350 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeOH}(3.5 \mathrm{~mL})$ was added benzylamine ($115 \mu \mathrm{l}, 1.05 \mathrm{mmol}, 3.00 \mathrm{eq}$). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3.5 h . The solvent was removed under reduced pressure and the residue was purified by FC on silica (hex:EA=2:1) to yield 86 ($105 \mathrm{mg}, 0.313 \mathrm{mmol}, 89 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.71-7.31(\mathrm{~m}, 10 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.81-4.71(\mathrm{~m}$, 2H), $4.66(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=141.5,139.8,132.0,129.3,128.8,128.0,127.5,125.0$, 83.7, 78.0, 77.8, 64.7, 47.3 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Cl}_{1} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$336.0820, found, 336.0817.

N-benzyl-N-(3-formyloxetan-3-yl)-4-methylbenzenesulfonamide (103)

[^0]($4.0 \mathrm{~mL} 1.60 \mathrm{mmol}, 1.00 \mathrm{eq}$) of this solution was added rapidly to a solution of 113 ($548 \mathrm{mg}, 1.60 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (3.2 mL) at $-20^{\circ} \mathrm{C}$ within 1 min . After complete addition the mixture was stirred for further 5 min at $-20^{\circ} \mathrm{C}$, then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and $1 \mathrm{M} \mathrm{KHSO}_{4}$ was added until $\mathrm{pH}=4$. The mixture was stirred vigorously for 45 min until formation of two clear layers. The layers were separated and the aqueous layer was extracted with EA $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated to dryness. The residue was purified by FC on SiO_{2} (hexane:EA = 2:1) to yield 115 ($346 \mathrm{mg}, 1.00 \mathrm{mmol}, 63 \%$) as a colorless solid.

For Analytical Data vide infra.
N-benzyl-N-(3-((S)-1-((S)-1,1-dimethylethylsulfinamido)ethyl)oxetan-3-yl)-4methylbenzenesulfonamide (119) ${ }^{280}$

Methyl lithium (1.6 M in $\mathrm{Et}_{2} \mathrm{O}, 1.67 \mathrm{~mL}, 2.67 \mathrm{mmol}, 1.20 \mathrm{eq}$) was slowly added dropwise to a solution of $118(1.00 \mathrm{~g}, 2.23 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , before the reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}-$ solution. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by FC on silica gel $\quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EA}=1: 1\right) \quad$ to afford $\quad \mathrm{N}$-benzyl-N-(3-((S)-1-((S)-1,1-dimethylethylsulfinamido)ethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (119, $796 \mathrm{mg}, 1.71 \mathrm{mmol}, 77 \%)$ as a colorless foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.15-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 5.04-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H})$, 3.97 (qd, $J=6.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=143.9,137.8,135.6,129.8,128.7,128.2,128.0,127.6$, $76.8,76.8,66.3,55.9,53.9,51.0,22.8,21.6,16.8 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 465.1876$, found 465.1880.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3285,2962,2893,1598,1455,1327,1152,1054,984,874,814$. $[\alpha]^{20} \mathrm{D}=+69.3\left(\mathrm{c}=0.86, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl
(1-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3yl)ethyl)carbamate (120) ${ }^{280}$
${ }^{\text {Boc. }}{ }_{\text {NH }}^{\text {Ts }}$ To a solution of 119 ($740 \mathrm{mg}, 1.59 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ ($16.0 \mathrm{~mL}, 1: 1$) was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $1.59 \mathrm{~mL}, 6.37 \mathrm{mmol}$, 4.00 eq) at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 30 min and was then quenched with saturated aqueous NaHCO_{3}-solution until $\mathrm{pH}>7$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated to dryness.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ and di-tert-butyl dicarbonate ($417 \mathrm{mg}, 1.91 \mathrm{mmol}, 1.20 \mathrm{eq}$) was added at room temperature. The mixture was stirred for 16 h and then concentrated to about 20% of its volume. Purification by FC on silica gel (hex:EA = 2:1) to afford 120 ($688 \mathrm{mg}, 1.49 \mathrm{mmol}, 94 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.59(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.12-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.39$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.7,143.5,138.4,135.8,129.6,128.6,128.3,127.8$, 127.4, 79.6, 77.0, 76.7, 66.5, 50.4, 49.2, 28.5, 21.6, 16.6 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{s} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 483.1924$, found 483.1924.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3283,1704,1536,1455,1340,1253,1152,1084,1057,980,912$, 868, 811, 728, 699, 660, 586, 552, 536.
$[\alpha]^{20} \mathrm{D}=+1.0\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right)$.
m.p. $=175^{\circ} \mathrm{C}$
(S)-tert-Butyl (1-(3-(benzylamino)oxetan-3-yl)ethyl)carbamate (121) ${ }^{280}$

To a suspension of 120 ($688 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.00 \mathrm{e}$) in MeOH:THF ($15.0 \mathrm{~mL}, \quad 14: 1$) were added magnesium turnings (363 mg , $14.9 \mathrm{mmol}, 10.0 \mathrm{eq}$) and the mixture was stirred for 4 h at ambient temperature. The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by FC on silica gel (hex:EA =1:1) to afford 121 ($458 \mathrm{mg}, 1.43 \mathrm{mmol}, 96 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.89(\mathrm{~m}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{br}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$, $1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=155.9,140.3,128.7,128.1,127.4,79.7,78.2,77.4$, $63.3,50.0,47.4,28.5,15.2 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$329.1836, found 329.1832.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3330,3284,2972,2881,1701,1542,1481,1454,1365,1250,1163$, 1079, 1026, 963, 859.
$[\alpha]^{21} \mathrm{D}=-8.3\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right)$.
m.p. $=98^{\circ} \mathrm{C}$
(S)-tert-Butyl (1-(3-aminooxetan-3-yl)ethyl)carbamate (122) ${ }^{280}$
${ }^{\text {Boc }}{ }_{\text {NH }}$ To a solution of $121(430 \mathrm{mg}, 1.40 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeOH}(9.5 \mathrm{~mL})$ was added Pd-C ($10 \% \mathrm{Pd}, 74.7 \mathrm{mg}, 0.070 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%)$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 3.5 h . The mixture was filtered over Celite ${ }^{\circledR}$ and washed with EA and MeOH and the volatiles were removed under reduced pressure to afford 122 (303 mg , $1.40 \mathrm{mmol}, 100 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=4.88$ (br, 1H), 4.59 (d, $\left.J=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.53$ (d, $J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, $1.09(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.8,83.0,82.4,79.5,59.1,50.9,28.5,14.9 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$217.1547, found 217.1541.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3297,2972,2880,1703,1532,1365,1249,1160,1057,962,860$.
$[\alpha]^{23} \mathrm{D}=-3.8\left(\mathrm{c}=0.72, \mathrm{CHCl}_{3}\right)$.
m.p. $=100^{\circ} \mathrm{C}$
(S)-N-benzyl-N-(3-(1-(3-(4-bromophenyl)ureido)ethyl)oxetan-3-yl)-4methylbenzenesulfonamide (123)

$\mathrm{HCl}(4 \mathrm{~m}$ in dioxane, $92 \mu \mathrm{l}, 0.367 \mathrm{mmol}, 5.00 \mathrm{eq}$) was added to a solution of $119(34.1 \mathrm{mg}, 0.073 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (350 $\mu \mathrm{l}$) and $\mathrm{MeOH}(350 \mu \mathrm{l})$ at $0^{\circ} \mathrm{C}$ and the mixture was
stirred for 30 min . After completion, the reaction was quenched with saturated aqueous NaHCO_{3} solution and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10$ mL). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mu \mathrm{l})$ and 1-bromo-4-isocyanatobenzene $(16.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.10 \mathrm{eq})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h and then directly submitted to FC on silica gel (hex: $\mathrm{EA}=1: 1$) to give $123(36.6 \mathrm{mg}, 0.066 \mathrm{mmol}, 89 \%)$ as a colorless solid. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ afforded crystals suitable for x-ray crystal structure analysis.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.69-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.09(\mathrm{~m}$, 5H), 7.08-6.92 (m, 3H), 5.71 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (br, 1H), 4.78-4.61 (m, 2H), 4.60-4.31 (m, 2H), 4.24 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (br, 1H), 2.41 (s, 3H), 1.47 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=155.13,143.99,138.38,138.06,135.08,131.77$, 129.81, 128.78, 128.62, 128.12, 127.39, 121.12, 115.31, 77.39, 76.48, 66.71, 49.89, 47.55, 21.65, 16.90.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 558.1057$, found 558.1055.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3611,3301,2959,2891,1678,1601,1591,1545,1489,132,1320$, 1305, 1153, 989, 830, 812, 674, 559, 541.
$[\alpha]^{24} \mathrm{D}=+9.0\left(\mathrm{c}=0.66, \mathrm{CHCl}_{3}\right)$.
m.p. $=134-136^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right)$.

2-(5-(Hydroxymethyl)-2-oxido-1,3,2-dioxathian-5-yl)isoindoline-1,3-dione (126)

A mixture of phthalic anhydride ($5.56 \mathrm{~g}, 37.5 \mathrm{mmol}, 1.00 \mathrm{eq}$) and Trisbase ($5.00 \mathrm{~g}, 41.3 \mathrm{mmol}, 1.10 \mathrm{eq}$) was heated to $170{ }^{\circ} \mathrm{C}$ until gas evolution stopped. To the hot melt was added sand (10 g) and the mixture was allowed to cool to r.t. The sinter cake was grinded down with a hammer and the resulting powder was refluxed in acetone (100 mL) for 3 h . The solution was filtered hot and the filtrate was concentrated. The crude product was used in the next step without further purification.

To a solution of the crude material ($0.688 \mathrm{~g}, 2.74 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeCN}(27 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.89 \mathrm{~g}, 13.7 \mathrm{mmol}, 5.00 \mathrm{eq})$ followed by SOCl_{2} ($0.300 \mathrm{ml}, 4.11 \mathrm{mmol}, 1.50 \mathrm{eq}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min and then quenched by the addition of a few drops of MeOH . All volatiles were removed and the residue was purified by FC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=20: 1\right)$ to yield 126 ($320 \mathrm{mg}, 1.08 \mathrm{mmol}, 39 \%$) as a colorless wax.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75-7.53(\mathrm{~m}, 4 \mathrm{H}), 5.26-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.60$ (m, 2H), $3.69-3.47$ (m, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=169.7,134.3,131.5,123.0,61.3,58.4,58.3 \mathrm{ppm}$.
HRMS (ESI+): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{1} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$298.0380, found, 298.0381.

5-(Hydroxymethyl)-5-nitro-1,3,2-dioxathiane 2-oxide (98)
${ }^{\mathrm{OH}} \mathrm{NO}_{2}$ To a solution of 2-(hydroxymethyl)-2-nitropropane-1,3-diol (1.03 g, $6.84 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeCN}(68 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(4.73 \mathrm{~g}$, $34.2 \mathrm{mmol}, 5.00 \mathrm{eq})$ followed by $\mathrm{SOCl}_{2}(0.50 \mathrm{ml}, 6.84 \mathrm{mmol}, 1.00 \mathrm{eq})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min . TLC analysis still indicated the presence of starting material and $\mathrm{SOCl}_{2}(0.20 \mathrm{~mL}, 2.74 \mathrm{mmol}, 0.40 \mathrm{eq})$ was added. The mixture was stirred for 1.5 h , concentrated and filtered over a pad of silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=20: 1\right)$ to yield $98(790 \mathrm{mg}, 4.01 \mathrm{mmol}, 59 \%)$ as a colorless wax.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta=5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.09-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.55(\mathrm{~m}$, 2H), 3.77 (s, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta=88.0,62.4,58.2 \mathrm{ppm}$.

5-(Hydroxymethyl)-5-nitro-1,3,2-dioxathiane 2,2-dioxide (100)
${ }^{\mathrm{OH}} \mathrm{NO}_{2}$ To a solution of $\mathbf{9 8}(410 \mathrm{mg}, 2.08 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeCN}(5.8 \mathrm{~mL})$ were added $\mathrm{NaIO}_{4}(623 \mathrm{mg}, 2.91 \mathrm{mmol}, 1.40 \mathrm{eq})$ followed by a solution of $\mathrm{RuCl}_{3} \cdot \mathrm{H} 2 \mathrm{O}(4.3 \mathrm{mg}, \quad 0.021 \mathrm{mmol}, 1.00 \mathrm{~mol} \%$) in water $(1.2 \mathrm{~mL})$. The mixture was stirred at r.t. for 1 h . The mixture was diluted with water (10 mL) and extracted with EA ($3 \times 30 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the desired product $100(120 \mathrm{mg}, 0.610 \mathrm{mmol}, 29 \%)$ was isolated as a colorless wax by trituration with hexanes.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.26-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.97-4.85(\mathrm{~m}$, 2H), 3.74 (s, 1H) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=85.2,73.2,61.9 \mathrm{ppm}$.
(5-amino-2,2-dimethyl-1,3-dioxan-5-yl)methanol (104)

To a suspension of 2-amino-2-(hydroxymethyl)propane-1,3-diol $\cdot \mathrm{HCl}$ $(50 \mathrm{~g}, \quad 320 \mathrm{mmol}, \quad 1.0 \mathrm{eq})$ in DMF $(64 \mathrm{~mL})$ were added 2,2dimethoxypropane ($58 \mathrm{~mL}, 480 \mathrm{mmol}, 1.5 \mathrm{eq}$) and p-toluenesulfonic acid monohydrate ($3.0 \mathrm{~g}, 16 \mathrm{mmol}, 0.05 \mathrm{eq}$). The mixture was stirred for 20 h at room temperature. The solvent was removed under reduced pressure. To the residue was added EA (500 mL) and triethylamine ($48 \mathrm{~mL}, 350 \mathrm{mmol}, 1.09 \mathrm{eq}$). The mixture was stirred for 30 min . The colorless precipitate was filtered, washed with EA (200 mL) and discarded. The filtrate was concentrated and dried in
vacuo. Upon the addition of $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ a colorless solid precipitated which was filtered, washed with Et2O (50 mL) and dried in vacuo to yield (5-amino-2,2-dimethyl-1,3-dioxan-5-yl)methanol ($38 \mathrm{~g}, 240 \mathrm{mmol}, 74 \%$) as a colorless solid.

The analytical data obtained was in accordance with the values previously reported. ${ }^{151}$

N-benzyl-N-(3-(hydroxymethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (131)

To a solution of $104(14 \mathrm{~g}, 84 \mathrm{mmol}, 1.0 \mathrm{eq})$ in acetonitrile (84 mL) were added 4-toluenesulfonyl chloride ($16 \mathrm{~g}, 86 \mathrm{mmol}, 1.0 \mathrm{eq}$), potassium carbonate ($23 \mathrm{~g}, 170 \mathrm{mmol}, 2.0 \mathrm{eq}$) and DMAP ($0.21 \mathrm{~g}, 1.7 \mathrm{mmol}$, $0.02 \mathrm{eq})$. The mixture was heated under reflux for 2 h . To the refluxing solution were added potassium carbonate ($12 \mathrm{~g}, 84 \mathrm{mmol}, 1.0 \mathrm{eq}$), TBAI (0.31 g , $0.84 \mathrm{mmol}, 0.01 \mathrm{eq}$) and dropwise benzyl bromide ($13 \mathrm{~mL}, 110 \mathrm{mmol}, 1.3 \mathrm{eq}$). The suspension was heated under reflux for 3 h . TLC analysis still showed the presence of 1. Benzyl bromide ($3.0 \mathrm{~mL}, 25 \mathrm{mmol}, 0.3 \mathrm{eq}$) was added and the suspension was refluxed for 1 h . After cooling to room temperature the suspension was filtered over celite® with EA (100 mL) and the filtrate was concentrated.

The colorless oily residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(84 \mathrm{~mL})$. To this solution were added $\mathrm{Et}_{3} \mathrm{~N}(18 \mathrm{ml}, 130 \mathrm{mmol}, 1.5 \mathrm{eq}$) and dropwise (via syringe pump 20 mL / h) methanesulfonyl chloride ($9.8 \mathrm{ml}, 130 \mathrm{mmol}, 1.5 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ and the cloudy mixture was stirred for 30 min at this temperature. The reaction was checked for completion by NMR of a small sample. To the suspension was added water $(1 \mathrm{~mL})$ before removing all volatiles.

The semisolid light yellow residue was redissolved in THF (84 mL) and aqueous $\mathrm{HCl}(2 \mathrm{~N}, 84 \mathrm{~mL})$ and the biphasic mixture was heated at $80^{\circ} \mathrm{C}$ for 1.5 h . After cooling to room temperature, the mixture was diluted with water (50 mL) and
extracted with EA ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous NaHCO_{3} solution (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The oily light yellow residue was redissolved in EtOH (560 mL) and to the solution were added potassium hydroxide ($5.7 \mathrm{~g}, 100 \mathrm{mmol}, 1.2 \mathrm{eq}$) and sodium iodide ($0.63 \mathrm{~g}, 4.2 \mathrm{mmol}, 0.05 \mathrm{eq}$). The mixture was heated to reflux for 1 h . After 10 min a colourless precipitate formed. After cooling to room temperature, the solvent was removed under reduced pressure. The crude product was slurried in EA $(200 \mathrm{~mL})$ and filtered over a pad of silica with EA $(200 \mathrm{~mL})$. The filtrate was concentrated to yield a light yellow semi-solid, that was suspended in $\mathrm{Et}_{2} \mathrm{O}$ $(70 \mathrm{~mL})$ and filtered. The filtercake was dried in vacuo to yield the desired product $\quad N$-benzyl-N-(3-(hydroxymethyl)oxetan-3-yl)-4methylbenzenesulfonamide ($11 \mathrm{~g}, 32 \mathrm{mmol}, 38 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 7 \mathrm{H}), 4.81$ (d, J = 7.3 Hz, 2H), $4.40(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=144.0,137.5,136.6,129.8,128.7,127.8,127.7,77.3$, 66.6, 63.9, 50.6, 21.7 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{1} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$348.1264, found, 348.1268.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3404,2925,2884,1599,1496,1456,1403,1377,1345,1319,1308$, 1292, 1271, 1238, 1211, 1170, 1149, 1089, 1080, 1056, 1028, 1015, 889, 841, 810, 784, 757, 698.
m.p. $131^{\circ} \mathrm{C}$.

N -benzyl- N -(3-formyloxetan-3-yl)-4-methylbenzenesulfonamide (115)

To a solution of oxalyl chloride ($3.1 \mathrm{~mL}, 35 \mathrm{mmol}, 1.2 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (72 mL) was slowly added dimethyl sulfoxide $(5.0 \mathrm{~mL}, 70 \mathrm{mmol}$, 2.2 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ (via syringe pump $30 \mathrm{~mL} / \mathrm{h}$). After stirring for $15 \mathrm{~min} 131(11 \mathrm{~g}, 32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(72 \mathrm{~mL})$ was added slowly (via syringe pump $80 \mathrm{~mL} / \mathrm{h}$). After stirring for $0.5 \mathrm{~h}, \mathrm{Et} \mathrm{N}$ ($13 \mathrm{~mL}, 96 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added. The mixture was stirred for 30 min , warmed to room temperature and stirred for 10 min before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield N -benzyl- N -(3-formyloxetan-3-yl)-4-methylbenzenesulfonamide ($11 \mathrm{~g}, 32 \mathrm{mmol}, 100 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.72(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2$ Hz, 2H), 7.29 - 7.16 (m, 5H), 4.76 (d, J = 7.5 Hz, 2H), 4.52 (d, J = 7.6 Hz, 2H), 4.48 (s, 2H), 2.44 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=196.6,144.2,137.5,135.1,129.9,128.9,128.6,128.2$, 127.2, 77.2, 74.2, 67.5, 50.3, 21.6 ppm.

HRMS (ESI +): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 346.1108$, found, 346.1106.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2948,2831,2324,2168,2052,1980,1730,1596,1497,1456,1447$, 1400, 1382, 1358, 1332, 1303, 1292, 1270, 1235, 1205, 1188, 1155, 1126, 1090, 1059, 1025, 1013, 994, 965, 945.
m.p. $124^{\circ} \mathrm{C}$
(S,E)-N-benzyl-N-(3-(((tert-butylsulfinyl)imino)methyl)oxetan-3-yl)-4methylbenzenesulfonamide (118)

To a solution of $115(3.0 \mathrm{~g}, 8.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ and (S)-2-methylpropane-2-sulfinamide ($1.6 \mathrm{~g}, 13 \mathrm{mmol}, 1.5 \mathrm{eq}$) in THF
(43 mL) was added tetraethoxytitanium ($3.6 \mathrm{~mL}, 17 \mathrm{mmol}, 2.0 \mathrm{eq}$) and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 17 h . The reaction was poured into saturated aqueous NaCl solution (150 mL) under vigorous stirring. The solid was filtered over celite® and washed with EA (100 mL). The layers of the filtrate were separated and the aqueous layer was extracted with EA ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hexane:EA=1:1) to yield (S, E)-N-benzyl-N-(3-(((tert-butylsulfinyl)imino)methyl)oxetan-3-yl)-4-methylbenzenesulfonamide (3.2 g, $7.2 \mathrm{mmol}, 83 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.34(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}$, $5 \mathrm{H}), 7.18$ - $7.13(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=166.0,144.1,138.0,135.6,129.9,128.9,128.4,128.3$, $127.5,77.2,65.9,58.0,50.8,22.6,21.7 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 449.1563$, found, 449.1556 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2956,2881,1618,1597,1495,1419,1339,1323,1157,1127,1091$, 1064, 1027, 982, 920, 814, 732, 700.
m.p. $103{ }^{\circ} \mathrm{C}$
$[\alpha]^{25} \mathrm{D}+100.7\left(c 0.860, \mathrm{CHCl}_{3}\right)$
N-allyl-N-(3-(hydroxymethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (134)

To a solution of $104(20 \mathrm{~g}, 120 \mathrm{mmol}, 1.0 \mathrm{eq})$ in acetonitrile (120 mL) were added 4 -toluenesulfonyl chloride ($24 \mathrm{~g}, 120 \mathrm{mmol}, 1.0 \mathrm{eq}$), potassium carbonate ($33 \mathrm{~g}, 240 \mathrm{mmol}, 2.0 \mathrm{eq}$) and DMAP (0.30 g , $2.4 \mathrm{mmol}, 0.02 \mathrm{eq})$. The mixture was heated under reflux for 2 h .

To the refluxing solution were added potassium carbonate ($17 \mathrm{~g}, 120 \mathrm{mmol}$, 1.0 eq), TBAI ($2.2 \mathrm{~g}, 6.0 \mathrm{mmol}, 0.05 \mathrm{eq}$) and dropwise allyl bromide (13 ml , $150 \mathrm{mmol}, 1.25 \mathrm{eq})$. The suspension was heated under reflux for 3 h . After cooling to room temperature, the suspension was filtered over celite ${ }^{\circledR}$ with EA $(100 \mathrm{~mL})$ and the filtrate was concentrated.

The colorless oily residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$. To this solution were added triethylamine ($25 \mathrm{~mL}, 180 \mathrm{mmol}, 1.5 \mathrm{eq}$) and dropwise methanesulfonyl chloride ($14 \mathrm{ml}, 180 \mathrm{mmol}, 1.5 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 35 min at this temperature. The reaction was checked for completion by NMR of a small sample. To the suspension was added water (2 mL) before removing all volatiles.

The semisolid light yellow residue was redissolved in THF (120 mL) and aqueous $\mathrm{HCl}(2 \mathrm{~N}, 120 \mathrm{~mL})$ and the biphasic solution was heated at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with water $(100 \mathrm{~mL})$ and extracted with EA $(4 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaHCO_{3} solution (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The oily light yellow residue was redissolved in EtOH (800 mL) and to the solution were added potassium hydroxide ($8.1 \mathrm{~g}, 150 \mathrm{mmol}, 1.2 \mathrm{eq}$) and sodium iodide $(0.91 \mathrm{~g}, 6.0 \mathrm{mmol}, 0.05 \mathrm{eq})$. The mixture was heated to reflux for 30 min . After 10 min a colorless precipitate formed. The mixture was cooled to room temperature and the solvent was removed under reduced pressure. The crude product was slurried in EA (300 mL) and filtered over a pad of silica with EA (100 mL). The filtrate was concentrated to yield a light yellow oil which was purified by FC on silica (hex:EA=2:1) to yield N-allyl- N-(3-(hydroxymethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (12 g, $42 \mathrm{mmol}, 35 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.65 (ddt, $J=17.3,10.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.90$
$(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dt}, J=7.1$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.19(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=144.2,137.6,134.6,129.9,127.8,118.1,77.2,66.6$, 63.7, 49.6, 21.7 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$298.1108, found, 298.1107.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3406,2885,1560,1496,1456,1403,1375,1319,1308,1292,1271$, 1238, 1169, 1149, 1089, 1056, 1028, 968, 956, 945, 927, 889, 841, 810, 784, 756, 698, 671, 653, 587, 552.
m.p. $94^{\circ} \mathrm{C}$

N -allyl- N -(3-formyloxetan-3-yl)-4-methylbenzenesulfonamide (137)

To a solution of oxalyl chloride ($4.0 \mathrm{~mL}, 46 \mathrm{mmol}, 1.1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (94 mL) was slowly added dimethyl sulfoxide $(6.5 \mathrm{~mL}, 91 \mathrm{mmol}$, $2.2 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for $15 \mathrm{~min} 134(12 \mathrm{~g}$, $42 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(94 \mathrm{~mL})$ was added slowly. After stirring for 30 min triethylamine ($17 \mathrm{~mL}, 120 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added. The mixture was stirred for 30 min , warmed to room temperature and stirred for another 10 min before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under to yield $\quad \mathrm{N}$-allyl- N -(3-formyloxetan-3-yl)-4-methylbenzenesulfonamide (12 g, $41 \mathrm{mmol}, 98 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.94(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1$ Hz, 2H), $5.80-5.64$ (m, 1H), $5.17-5.11$ (m, 2H), $5.12-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.84$ $(\mathrm{m}, 2 \mathrm{H}), 4.71-4.66(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=197.5,144.4,137.4,133.1,130.1,127.4,120.1,74.7$, 67.7, 49.3, 21.7 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$296.0951, found, 296.0952.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3085,2981,2949,2882,2106,1917,1732,1638,1597,1495,1452$, 1421, 1397, 1326, 1305, 1291, 1239, 1195, 1152, 1119, 1089, 1063, 1028, 1016, 992, 949, 916, 889, 808, 788, 705.
m.p. $73{ }^{\circ} \mathrm{C}$
(S,E)-N-allyl-N-(3-(((tert-butylsulfinyl)imino)methyl)oxetan-3-yl)-4methylbenzenesulfonamide (139)

To a solution of $137(3.0 \mathrm{~g}, 10 \mathrm{mmol}, 1.0 \mathrm{eq})$ and (S)-2-methylpropane-2-sulfinamide ($1.8 \mathrm{~g}, 15 \mathrm{mmol}, 1.5 \mathrm{eq}$) in THF (51 mL) was added tetraethoxytitanium ($4.3 \mathrm{~mL}, 20 \mathrm{mmol}$, 2.0 eq) and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 17 h . The reaction was poured into saturated aqueous NaCl solution $(150 \mathrm{~mL})$ under vigorous stirring. The solid was filtered over celite ${ }^{\circledR}$ and washed with EA $(100 \mathrm{~mL})$. The layers of the filtrate were separated and the aqueous layer was extracted with EA ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA=1:1) to yield $(S, E)-N$-allyl- N-(3-(((tert-butylsulfinyl)imino)methyl)oxetan-3-yl)-4-methylbenzenesulfonamide(3.1 g, $7.8 \mathrm{mmol}, 77 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.35(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0$ Hz, 2H), 5.69 (ddt, $J=16.9,10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-4.97$ (m, 4H), 4.76 (d, J = 6.9 $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=166.4,144.2,138.0,133.7,130.0,127.5,119.2,65.7$, 58.0, 49.8, 22.6, 21.7 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$399.1407, found, 399.1409.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2959,2885,1620,1598,1494,1475,1456,1420,1402,1338,1306$, 1253, 1185, 1159, 1088, 1049, 1015, 984, 924, 869, 846, 815, 753, 708, 662, 601, 572, 550, 518, 496.
m.p. $103{ }^{\circ} \mathrm{C}$
$[\alpha]^{27} \mathrm{D}+122.1\left(c\right.$ 1.55, $\left.\mathrm{CHCl}_{3}\right)$
N-(3-(hydroxymethyl)oxetan-3-yl)-N-(4-methoxybenzyl)-4methylbenzenesulfonamide (135)

To a solution of $104(5 \mathrm{~g}, 30.1 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeCN}(30.1 \mathrm{~mL})$ were added $\mathrm{Ts}-\mathrm{Cl}(5.85 \mathrm{~g}, 30.7 \mathrm{mmol}, 1.02 \mathrm{eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(8.32 \mathrm{~g}$, $60.2 \mathrm{mmol}, 2.00 \mathrm{eq})$ and DMAP ($0.074 \mathrm{~g}, 0.602 \mathrm{mmol}, 2.00 \mathrm{~mol}-\%$). The mixture was heated under reflux for 2 h .

The suspension was cooled to $50^{\circ} \mathrm{C}$ and (4.16 g, 30.1 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}$, dropwise 1-(chloromethyl)-4-methoxybenzene ($4.51 \mathrm{~mL}, 33.1 \mathrm{mmol}, 1.10 \mathrm{eq}$) as well as TBAI ($0.556 \mathrm{~g}, 1.50 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%$) were added. The suspension was kept at this temperature for 13 h . After cooling to room temperature, the suspension was filtered over celite ${ }^{\circledR}$ with EA $(100 \mathrm{~mL})$ and the filtrate was concentrated.

The colourless oily residue was redissolved in DCM (12 mL). To this solution were added $\mathrm{Et}_{3} \mathrm{~N}(6.29 \mathrm{~mL}, 45.1 \mathrm{mmol}, 1.50 \mathrm{eq})$ and dropwise (via syringe pump $20 \mathrm{~mL} / \mathrm{h}) \mathrm{Ms}-\mathrm{Cl}(3.52 \mathrm{~mL}, 45.1 \mathrm{mmol}, 1.50 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . Completion was checked by taking NMR of a small sample. To the suspension was added water $(1 \mathrm{~mL})$ before removing all volatiles.

The semisolid light yellow residue was redissolved in THF (12 mL) and 2 N HCl $(12 \mathrm{~mL})$ and the biphasic solution was heated at $80^{\circ} \mathrm{C}$ for 1.5 h . The mixture was diluted with water (50 mL) and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with sat. aq. NaHCO_{3} solution (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The oily light yellow residue was redissolved in EtOH (200 mL) and to the solution were added $\mathrm{KOH}(2.026 \mathrm{~g}, 36.1 \mathrm{mmol}, 1.20 \mathrm{eq})$ and $\mathrm{NaI}(0.225 \mathrm{~g}$, $1.50 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%)$. The mixture was heated to reflux. After 10 min a colorless precipitate formed. The mixture was further refluxed for 1 h before it was cooled to r.t. The solvent was removed under reduced pressure. The crude product was slurried in EtOAc and filtered over a pad of silica. The filtrate was concentrated to yield a light yellow oil, that was purified by FC on silica (EA:hex = 1:1) to yield $135(3.283 \mathrm{~g}, 8.70 \mathrm{mmol}, 29 \%)$ as a colorless wax.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.35(\mathrm{~s}, 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.26$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
N-(3-formyloxetan-3-yl)- N-(4-methoxybenzyl)-4-methylbenzenesulfonamide (138)

To a solution of oxalyl chloride ($0.837 \mathrm{ml}, 9.57 \mathrm{mmol}, 1.10 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19.8 \mathrm{~mL})$ was slowly added DMSO ($1.36 \mathrm{~mL}, 19.1 \mathrm{mmol}$, $2.20 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.95 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 15 min 135 (3.28 g , $8.70 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19.8 \mathrm{~mL})$ was added slowly. After stirring for $0.5 \mathrm{~h} \mathrm{Et} 3 \mathrm{~N}(3.64 \mathrm{ml}, 26.1 \mathrm{mmol}, 3.00 \mathrm{eq})$ was added. The mixture was stirred for 30 min , warmed to r.t. and stirred for 10 min before quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO} 4$ and concentrated under reduced pressure to yield 138 (3.19 g , $8.50 \mathrm{mmol}, 98 \%$) as a colorless wax.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.66(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.52$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=197.0,159.9,144.3,137.9,130.1,129.9,127.2,126.8$, 114.4, 74.4, 67.4, 55.4, 49.9, 21.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{H}]^{+}$398.1033, found, 398.1028.
(S,E)-N-(3-(((tert-butylsulfinyl)imino)methyl)oxetan-3-yl)-N-(4-methoxybenzyl)-4-methylbenzenesulfonamide (140)

To a solution of $138(2.36 \mathrm{~g}, 6.29 \mathrm{mmol}, 1.00 \mathrm{eq})$ and (S)-2-methylpropane-2-sulfinamide ($1.14 \mathrm{~g}, 9.44 \mathrm{mmol}, 1.50 \mathrm{eq}$) in THF (31.5 mL) was added tetraethoxytitanium (2.64 mL , $12.6 \mathrm{mmol}, 2.00 \mathrm{eq}$) and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . The reaction was poured into sat. aq. NaCl solution (150 mL) under vigorous stirring. The solid was filtered off over celite ${ }^{\circledR}$ and washed with EA $(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EA ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by FC on SiO_{2} (hex:EA = 1:1). The desired product $140(2.43 \mathrm{~g}, 5.07 \mathrm{mmol}, 81 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.30(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2$ Hz, 2H), 7.04 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.86(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.39(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=166.1,159.7,143.9,138.1,129.9,129.8,127.4,127.3$, 114.2, 77.2, 65.7, 57.9, 55.4, 50.2, 22.5, 21.7 ppm .

3-(dibenzylamino)oxetane-3-carbonitrile (142)

$27.8 \mathrm{mmol}, 4.00 \mathrm{eq})$ and TMS-CN $(1.86 \mathrm{~mL}, 13.9 \mathrm{mmol}, 2.00 \mathrm{eq})$. The reaction was stirred for 11.5 h . The reaction mixture was carefully transferred into sat aq. NaHCO_{3} solution $(100 \mathrm{~mL})$ with water $(50 \mathrm{~mL})$. The pH was adjusted to $8-9$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (solid). The aqueous emulsion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by FC on silica (hex:EtOAc $=8: 1$) to yield 142 (1.83 g , $6.57 \mathrm{mmol}, 95 \%$) as a colourless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.27(\mathrm{~m}, 10 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.30$ (d, J=6.9 Hz, 2H), $3.52(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=136.8,129.3,128.8,128.2,117.9,78.5,60.9$, 55.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}$279.1492, found, 279.1494 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2877,2850,1450,1381,1255,1142,985,929,754,698$.
m.p. $68^{\circ} \mathrm{C}$

3-(dibenzylamino)oxetane-3-carbaldehyde (144)
 $3.66 \mathrm{~mL}, 6.00 \mathrm{mmol}, 1.50 \mathrm{eq})$ dropwise at $0^{\circ} \mathrm{C}$. After complete addition, the mixture was allowed to stir for 15 min at $0^{\circ} \mathrm{C}$, giving a 0.45 M solution of the ate-complex.

This solution was then added dropwise to a solution of $142(1.11 \mathrm{~g}, 4.00 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in THF (8 mL) at $-20^{\circ} \mathrm{C}$ over 5 min . The mixture was stirred for 40 min before water $(20 \mathrm{~mL})$ and glyoxylic acid $\left(50 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 2.21 \mathrm{~mL}, 20.0 \mathrm{mmol}$, $5.00 \mathrm{eq})$ were added. The biphasic mixture was stirred for 15 min , extracted with EA ($3 \times 40 \mathrm{~mL}$). The combined org. layers were washed with brine, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA $=4: 1$) to yield 144 ($0.439 \mathrm{~g}, 1.56 \mathrm{mmol}, 39 \%$) as a crystalline colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.14(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.13(\mathrm{~m}, 10 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=201.9,138.6,128.9,128.6,127.7,75.1,70.5$, 54.0 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 304.1308$, found, 304.1307.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3027,2947,2866,1722,1493,1454,1363,1186,978,958,827$, 753, 744.
m.p. $82^{\circ} \mathrm{C}$
(S,E)-N-((3-(dibenzylamino)oxetan-3-yl)methylene)-2-methylpropane-2sulfinamide (141)

A solution of $144(0.234 \mathrm{~g}, 0.832 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF (4.16 mL) was treated with (S)-2-methylpropane-2-sulfinamide (0.151 g , $1.25 \mathrm{mmol}, \quad 1.50 \mathrm{eq})$ and tetraethoxytitanium (0.349 mL , $1.66 \mathrm{mmol}, 2.00 \mathrm{eq})$. After striing at r.t. for 14 h , the reaction was poured into sat. aq. NaCl solution $(50 \mathrm{~mL})$ under vigorous stirring. The solid was filtered off over celite ${ }^{\circledR}$ and washed with EA (50 mL). The layers were separated and the aqueous layer was extracted with EA ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by FC on silica (hex:EA = 4:1).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.52(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.55(\mathrm{t}, J=5.6$ Hz, 2H), 4.46 (d, J = 6.1 Hz, 1H), 4.35 (d, J = 6.2 Hz, 1H), 3.70 (s, 3H), 1.31 (s, 9H) ppm.
N-Benzyl-N-(3-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2-methylallyl)oxetan-3-yl)-4-methylbenzenesulfonamide (132) ${ }^{280}$

To a solution of 2-bromoprop-1-ene ($405 \mathrm{mg}, 3.34 \mathrm{mmol}, 1.50 \mathrm{eq}$) in THF (6.0 mL) was added tBuLi (1.9 M in pentane, 3.52 mL , $6.69 \mathrm{mmol}, 3.00 \mathrm{eq})$ dropwise at $-78^{\circ} \mathrm{C}$. After complete addition, the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h .

The yellow solution was transferred dropwise to a solution of 118 (1.00 g , $2.23 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF (12.5 mL) at $-78^{\circ} \mathrm{C}$. During the addition, the reaction was monitored by TLC. After complete consumption of the imine, addition was stopped (ca. 80% of the solution added) and the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and warmed to ambient temperature. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by FC on silica gel (hex:EA = 1:1) to afford $132(782 \mathrm{mg}, 1.59 \mathrm{mmol}, 72 \%)$ as a colorless foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.13-$ $7.02(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.06-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=144.0,142.0,137.5,134.8,129.8,128.7,128.7,128.2$, $127.9,119.5,76.7,76.5,66.2,64.0,56.0,50.7,23.0,21.6,19.0$ ppm.

HRMS (ESI +): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$491.2033, found 491.2038.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3275,2960,1641,1598,1496,1455,1364,1329,1305,1268,1225$, 1152, 1089, 1066, 1011, 984, 940, 910, 876, 814, 779, 752, 731, 700, 665, 591.
$[\alpha]^{23} \mathrm{D}=+97.6\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right)$.
(S)-tert-Butyl (1-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)-2methylallyl)carbamate (147) ${ }^{280}$
${ }^{\text {Boc. }_{\text {NH }} \text { Ts } \quad \text { To a solution of } 132(782 \mathrm{mg}, 1.59 \mathrm{mmol}, 1.00 \mathrm{eq}) \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL}) ~}$ and $\mathrm{MeOH}(8.0 \mathrm{~mL})$ was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, 1.99 mL , $7.97 \mathrm{mmol}, 5.00 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 2.5 h . After complete conversion of the starting material, the reaction was quenched with saturated aqueous NaHCO_{3}-solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was redissolved in toluene and the solution was evaporated to dryness again. The residue was dried under high vacuum. This procedure was repeated, until a constant weight was obtained.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and a solution of di-tert-butyl dicarbonate ($522 \mathrm{mg}, 2.39 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 12 h , before the solvent was removed under reduced pressure. The residue was purified by FC on silica gel (hex: $\mathrm{EA}=3: 1$) to afford $147(743 \mathrm{mg}, 1.53 \mathrm{mmol}, 96 \%)$ as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.54(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.08-$ $7.01(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-4.93(\mathrm{~m}, 3 \mathrm{H}), 4.83-4.58(\mathrm{~m}, 3 \mathrm{H}), 4.52-$ $4.35(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.6,143.6,142.3,138.5,135.4,129.6,128.6,128.5$, $127.9,127.5,116.9,79.8,77.4,76.9,66.34,59.37,50.56,28.59,21.59,20.13 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 509.2081$, found 509.2086.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2976,1693,1598,1496,1455,1365,1332,1243,1153,1116,1090$, 1058, 1028, 997, 951, 916, 855, 812, 784, 733, 697, 664, 602, 557, 542, 458.
$[\alpha]^{24} \mathrm{D}=-9.0\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.
(S)-tert-Butyl (1-(3-(benzylamino)oxetan-3-yl)-2-methylallyl)carbamate (148) ${ }^{280}$

Magnesium turnings ($367 \mathrm{mg}, 15.1 \mathrm{mmol}, 10.0 \mathrm{eq}$) were added to a solution of $147(734 \mathrm{mg}, 1.51 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeOH}(13.5 \mathrm{~mL})$ and THF (1.5 mL). The mixture was vigorously stirred at room temperature for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and after evaporation of the solvent 148, ($494 \mathrm{mg}, 1.49 \mathrm{mmol}, 99 \%$) was obtained as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=$ 9.1 Hz, 1H), 5.03-4.88 (m, 2H), $4.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.72-4.57 (m, 3H), $4.11(\mathrm{~s}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.8,141.9,140.4,128.7,127.9,127.3,114.1,79.8$, $78.9,77.6,62.3,60.5,46.7,28.5,21.4 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$355.1992, found 355.1987.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3289,2972,2889,1704,1646,1543,1484,1454,1393,1366,1315$, $1251,1163,1094,1048,1015,972,908,883,852,744,699,587,537$.
$[\alpha]^{24} \mathrm{D}=-8.6\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right)$.
m.p. $=90^{\circ} \mathrm{C}$
(S)-tert-Butyl (1-(3-aminooxetan-3-yl)-2-methylpropyl)carbamate (145) ${ }^{280}$

To a solution of 148 ($494 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(15.0 \mathrm{~mL})$ was added Pd-C ($10 \% \mathrm{Pd}, 158 \mathrm{mg}, 0.149 \mathrm{mmol}, 10.0 \mathrm{~mol}-\%)$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 13 h .

Then, the mixture was filtered over celite ${ }^{\circledR}$, the filter cake was washed with EA, and the filtrate was concentrated to dryness to afford 145 ($356 \mathrm{mg}, 1.46 \mathrm{mmol}$, 98%) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol-d4) $\delta=4.94-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.56-4.50 (m, 2H), 3.83 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47$ (s, 9H), 0.94-0.89 (m, 6H) ppm.
${ }^{13}$ C NMR (101 MHz, Methanol-d4) $\delta=158.8,81.1,78.4,77.7,62.2,59.1,29.4,28.6$, 20.3, 18.3 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 245.1860$, found 245.1853 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3288,2966,2878,2051,1710,1599,1515,1482,1392,1366,1289$, 1244, 1165, 1043, 1019, 981, 872, 850, 782, 631.
$[\alpha]^{24} \mathrm{D}=-53.7\left(\mathrm{c}=0.71, \mathrm{CHCl}_{3}\right)$.
m.p. $=147^{\circ} \mathrm{C}$

N-benzyl-N-(3-((S)-1-((R)-1,1-dimethylethylsulfinamido)-3-methylbut-2-en-1-yl)oxetan-3-yl)-4-methylbenzenesulfonamide (150) ${ }^{280}$
Magnesium turnings (194 mg, $7.98 \mathrm{mmol}, 6.00 \mathrm{eq})$ were stirred
with a crystal of I2 for 15 min and were then layered with a
minimum amount of THF. 1-Bromo-2-methylprop-1-ene (719 mg , $5.32 \mathrm{mmol}, 4.00 \mathrm{eq})$ and THF (10.0 mL) were added alternately to keep the exothermic reaction at slight reflux. After complete addition, the mixture was refluxed for 3 h in an oil bath and then cooled to room temperature.

The freshly prepared GRIGNARD solution was added dropwise to a solution of ent-118 ($597 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (5.00 mL) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to slowly warm to room temperature together with the cooling bath overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and $\mathrm{H}_{2} \mathrm{O}$ were added and the
layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by FC on silica gel (hex:EA = 1:2 to 100% EA) to afford 150 ($441 \mathrm{mg}, 0.875 \mathrm{mmol}, 66 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 7 \mathrm{H}), 5.58(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.00-3.73$ (m, 1H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=143.7,139.0,138.0,136.2,129.6,128.6,127.8,127.7$, $127.5,121.0,75.8,66.8,58.1,56.5,51.1,26.4,22.8,21.5,18.9 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 527.2009$, found 527.2007.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2959,1599,1496,1454,1332,1230,1152,1114,1055,989,916$, 854, 811, 751, 699, 665, 599, 559, 542.
$[\alpha]^{22} \mathrm{D}=-32.8\left(\mathrm{c}=1.24, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl (1-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)-3-methylbut-2-en-1-yl)carbamate (151) ${ }^{280}$

$\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $1.10 \mathrm{~mL}, 4.31 \mathrm{mmol}, 5.00 \mathrm{eq})$ was added to a solution of $150(435 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.50 \mathrm{~mL})$ and $\mathrm{MeOH}(4.50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 1 h . The reaction was quenched with saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure.

The oily residue was thoroughly dried under high vacuum and then dissolved $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.50 \mathrm{~mL})$. A solution of di-tert-butyl dicarbonate ($282 \mathrm{mg}, 1.29 \mathrm{mmol}$, $1.50 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL})$ was added and the resulting mixture was stirred at
room temperature for 3 h . The mixture was concentrated to about 10% and purified directly by FC in silica to yield 151 ($392 \mathrm{mg}, 0.783 \mathrm{mmol}, 91 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.09-$ 7.01 (m, 2H), 5.43 (d, J = 9.7 Hz, 1H), 5.29-5.09 (m, 1H), 5.06-4.85 (m, 2H), 4.84$4.65(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=155.6,143.4,138.6,137.8,135.7,129.5,128.5,128.4$, $127.8,127.5,121.0,79.6,77.1,76.7,66.4,51.9,50.6,28.6,26.2,21.6,18.9 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 501.2418$, found 501.2413.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3368,2979,1699,1527,1497,1451,1332,1323,1311,1291,1262$, 1248, 1170, 1146, 1115, 1047, 997, 877, 786, 685, 648, 564.
$[\alpha]^{22} \mathrm{D}=-1.6\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl (1-(3-(benzylamino)oxetan-3-yl)-3-methylbut-2-en-1-yl)carbamate (152) ${ }^{280}$

Magnesium turnings ($191 \mathrm{mg}, 7.85 \mathrm{mmol}, 10.0 \mathrm{eq}$) were added to a solution of 151 ($393 \mathrm{mg}, 0.785 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(7.00 \mathrm{~mL}$) and THF (0.70 mL) and the mixture was vigorously stirred at room temperature for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated to dryness. The residue was purified by FC on silica gel (hex:EA = 2:1) to afford $152(256 \mathrm{mg}, 0.738 \mathrm{mmol}, 94 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.03(\mathrm{~m}$, 1H), 4.95 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.51$
$(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.9$ Hz, 1H), 1.82 (d, J = 1.4 Hz, 3H), 1.75 (d, J = $1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.57$ (br, 1H), 1.45 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.9,140.5,138.6,128.7,128.1,127.3,120.6,79.7$, 78.0, 77.1, 63.5, 52.7, 47.3, 28.5, 26.2, 18.9 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 369.2149$, found 369.2143.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2887,1704,1529,1484,1453,1365,1249,1167,1045,1027,1006$, 965, 911, 747, 701, 487.
$[\alpha]^{20} \mathrm{D}=+9.9\left(\mathrm{c}=1.13, \mathrm{CHCl}_{3}\right)$.
m.p. $=113{ }^{\circ} \mathrm{C}$.
(S)-tert-butyl (1-(3-aminooxetan-3-yl)-3-methylbutyl)carbamate (149) ${ }^{280}$

Pd-C ($10 \% \mathrm{Pd}, 78.0 \mathrm{mg}, 0.074 \mathrm{mmol}, 10.0 \mathrm{~mol}-\%)$ was added to a solution of 152 ($255 \mathrm{mg}, 0.736 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(7.50 \mathrm{~mL})$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 2 h . The mixture was filtered over celite ${ }^{\circledR}$, washed with EA, and the filtrate was concentrated to dryness to afford 149 ($189 \mathrm{mg}, 0.732 \mathrm{mmol}, 99 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Methanol-d4) $\delta=4.59(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=11.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}$, $9 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, Methanol-d4) $\delta=158.7,83.0,82.6,80.1,60.5,54.8,38.8,28.7$, 26.2, 24.1, 21.8 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$259.2016, found 259.2018.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3321,2957,2870,1699,1526,1391,1366,1331,1252,1172,1112$, 1053, 976, 915, 873, 842.
$[\alpha]^{20} \mathrm{D}=-43.2\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$.
(S)-N-benzyl-N-(3-(1-(4-bromophenylsulfonamido)-3-methylbut-2-en-1-yl)oxetan-3-yl)-4-methylbenzenesulfonamide (156) ${ }^{280}$

$\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $160 \mu \mathrm{~L}, 0.641 \mathrm{mmol}, 5.00 \mathrm{eq})$ was added to a solution of $150(64.7 \mathrm{mg}, 0.128 \mathrm{mmol}, 1.00 \mathrm{eq})$ in MeOH $(650 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(650 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 30 min . Saturated aqueous NaHCO_{3} solution was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated to dryness. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(650 \mu \mathrm{~L})$ and triethyl amine ($35.7 \mu \mathrm{l}, 0.256 \mathrm{mmol}$, $2.00 \mathrm{eq}), 4$-bromobenzene-1-sulfonyl chloride ($49.1 \mathrm{mg}, 0.192 \mathrm{mmol}, 1.50 \mathrm{eq}$), and DMAP ($1.57 \mathrm{mg}, 0.013 \mathrm{mmol}, 10.0 \mathrm{~mol}-\%$) were added. After stirring at room temperature for 4 h , the mixture was directly purified by FC on silica gel (hexane: $E A=2: 1$) to afford $156(65.7 \mathrm{mg}, 0.106 \mathrm{mmol}, 83 \%)$ as a colorless solid. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ gave crystals suitable for x-ray crystal structure analysis.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.74-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=$ 8.4 Hz, 2H), 7.22-7.11 (m, 5H), 7.09-7.00 (m, 2H), 5.79 (d, J = 6.8 Hz, 1H), 5.06$4.96(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.10$ (m, 2H), $2.38(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=144.1,140.9,138.9,137.4,135.2,132.0,129.7,129.0$, $128.8,128.3,128.0,127.8,127.3,120.0,76.6,76.1,65.9,56.6,51.1,25.9,21.6,18.6$ ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$641.0750, found 641.0758.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3192,2928,2883,1576,1448,1340,1325,1278,1228,1173,1157$, 1089, 1050, 1010, 941, 742, 698, 674, 612, 560, 538.
$[\boldsymbol{\alpha}]^{24} \mathrm{D}=-38.8\left(\mathrm{c}=0.39, \mathrm{CHCl}_{3}\right)$.
m.p. $=201-202{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
N-benzyl-N-(3-((S)-1-((S)-1,1-dimethylethylsulfinamido)-3-methylbutyl)oxetan-3-yl)-4-methyl-benzenesulfonamide (153)

To a solution of 118 ($1.5 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.0 \mathrm{eq}$) in THF (33 mL) at $-78{ }^{\circ} \mathrm{C}$ was dropwise added isobutyllithium $(1.7 \mathrm{M}$ in heptane, $2.3 \mathrm{~mL}, 3.7 \mathrm{mmol}, 1.5 \mathrm{eq})$. The mixture was stirred for 5 min at this temperature and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ solution. The organic layer was separated and the aqueous layer was extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA=2:1 to $1: 1$) to yield 153 ($1.2 \mathrm{~g}, 2.3 \mathrm{mmol}, 70 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.08(\mathrm{~m}, 7 \mathrm{H}), 5.01$ (br s, 1H), $4.92-4.64(\mathrm{~m}, 3 \mathrm{H}), 4.59(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.75$ $(\mathrm{m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{dtt}, J=13.2,6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{t}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=143.8,138.2,135.9,129.8,128.8,128.5,127.9,127.6$, 77.6, 77.2, 66.6, 58.9, 56.7, 51.5, 41.1, 24.4, 24.3, 23.2, 21.6, 21.0 ppm.

HRMS (ESI +): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 507.2346$, found, 507.2350.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3284,2957,2927,2870,1598,1496,1456,1416,1389,1366,1336$, $1305,1230,1154,1091,1067,1027,986,939,912,881,813,754,700,666,602,546$, 458.
$[\alpha]^{24} \mathrm{D}+51.1\left(c\right.$ 1.07, $\left.\mathrm{CHCl}_{3}\right)$
(S)-tert-butyl (1-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)-3methylbutyl)carbamate (154)
 $22 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C} \mathrm{HCl}(4 \mathrm{M}$ in dioxane, $2.8 \mathrm{ml}, 11 \mathrm{mmol}$, $5.0 \mathrm{eq})$. The mixture was stirred for 1.5 h at this temperature. The oily residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(0.78 \mathrm{ml}, 3.4 \mathrm{mmol}$, $1.5 \mathrm{eq})$ was added. The solution was stirred at room temperature for 20 h and then concentrated. The residual solid was suspended in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and filtered. The filtercake was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and dried in vacuo to yield 154 ($790 \mathrm{mg}, 1.6 \mathrm{mmol}, 70 \%$) as a colorless solid.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.06(\mathrm{~m}, 7 \mathrm{H}), 4.95$ (br s, 1H), $4.83(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.14(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$, $0.99(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.3,143.4,138.9,135.9,129.6,128.6,128.5,127.8$, 127.4, 79.6, 77.3, 67.0, 51.9, 50.4, 39.3, 28.6, 25.3, 24.2, 21.6 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 503.2574$, found, 503.2580.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3385,2958,1701,1599,1512,1497,1455,1390,1366,1334,1253$, $1156,1104,1090,1056,995,918,875,844,812,755,700,668,603,562,544$.
$[\alpha]^{24} \mathrm{D}-18.6\left(c 0.79, \mathrm{CHCl}_{3}\right)$
m.p. $189^{\circ} \mathrm{C}$.
(S)-tert-butyl (1-(3-(benzylamino)oxetan-3-yl)-3-methylbutyl)carbamate (155)

To a suspension of $154(0.69 \mathrm{~g}, 1.4 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH}(14 \mathrm{~mL})$ were added magnesium turnings $(0.33 \mathrm{~g}, 14 \mathrm{mmol}, 10 \mathrm{eq})$. The mixture was at room temperature for 2 h . TLC still indicated the presence of starting material. Magnesium turnings ($0.33 \mathrm{~g}, 14 \mathrm{mmol}, 10 \mathrm{eq}$) were added and the mixture was stirred for another 2 h . The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield 155 ($0.46 \mathrm{~g}, 1.3 \mathrm{mmol}, 96 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.82-4.35(\mathrm{~m}, 5 \mathrm{H}), 4.20-4.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.04-3.91(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H})$, $0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.2,140.2,128.6,128.1,127.2,79.4,78.0,77.6$, 63.7, 52.4, 47.2, 38.9, 28.4, 25.0, 23.9, 21.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 349.2486$, found, 349.2487 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3332,2957,2871,1705,1496,1470,1454,1391,1366,1249,1169$, 1116, 1056, 1028, 981, 842, 738, 700.
$[\alpha]^{24} \mathrm{D}-85.9\left(c 0.74, \mathrm{CHCl}_{3}\right)$
m.p. $126^{\circ} \mathrm{C}$.
(S)-tert-butyl (1-(3-aminooxetan-3-yl)-3-methylbutyl)carbamate (149)
${ }^{\text {Boc }}{ }_{\text {NH }}$ To a mixture of Pd-C ($\left.10 \% \mathrm{Pd}, 136 \mathrm{mg}, 0.128 \mathrm{mmol}, 10 \mathrm{~mol} \%\right)$ and 155 was added $\mathrm{MeOH}(12.8 \mathrm{~mL})$ and the mixture was stirred under an atmosphere of H 2 (balloon) for 2 h . The mixture was filtered over Celite ${ }^{\circledR}$, washed with MeOH and the filtrate was concentrated to dryness to afford 149 ($312 \mathrm{mg}, 0.732 \mathrm{mmol}, 94 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Methanol-d4) $\delta=4.59(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=11.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}$, $9 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, Methanol-d4) $\delta=158.7,83.0,82.6,80.1,60.5,54.8,38.8,28.7$, 26.2, 24.1, 21.8 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$259.2016, found 259.2018.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3321,2957,2870,1699,1526,1391,1366,1331,1252,1172,1112$, 1053, 976, 915, 873, 842.
$[\alpha]^{20}{ }_{D}=-43.2\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$.
N-allyl- N-(3-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2-phenylethyl)oxetan-3-yl)-4-methylbenzene-sulfonamide (159)

Benzyl magnesium chloride was prepared from magnesium turnings ($490 \mathrm{mg}, 20 \mathrm{mmol}, 8.0 \mathrm{eq}$) and benzyl chloride (1.2 mL , $10 \mathrm{mmol}, 4.0 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$. After complete addition the mixture was refluxed for 3 h to give a brown suspension. The supernatant solution was added dropwise over 1 h to a solution of 139 (1.0 g , $2.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 2 h and then warmed to room temperature over 12 h . The reaction was quenched by the addition of water $(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness, to leave a light yellow solid (d.r. 4:1). The crude product was recrystallized from hex/EA (2/1, 50 mL) to yield 159 ($890 \mathrm{mg}, 1.8 \mathrm{mmol}, 72 \%$) as a single diastereomer as a colorless powder.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.81(\mathrm{ddt}, J=16.5,10.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.04-$
$4.89(\mathrm{~m}, 2 \mathrm{H}), 4.69$ (ddd, $J=14.5,7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.21$ (ddd, $J=$ 10.5, 6.9, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.24 (dd, $J=14.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=14.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=144.2,138.4,137.9,134.9,130.1,123.0,128.5,127.7$, 126.6, 119.3, 77.4, 76.8, 66.4, 62.6, 56.3, 50.4, 38.2, 22.7, 21.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$491.2033, found, 491.2037.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3281,2960,2925,1599,1496,1456,1420,1341,1233,1154,1090$, $1064,992,923,886,814,748,700,665,617,581,548,463$.
$[\alpha]^{24} \mathrm{D}+15.3\left(c 0.80, \mathrm{CHCl}_{3}\right)$
m.p. $157^{\circ} \mathrm{C}$
(S)-benzyl (1-(3-(N-allyl-4-methylphenylsulfonamido)oxetan-3-yl)-2phenylethyl)carbamate
 added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The oily residue was redissolved in pyridine (2.8 mL) and $\mathrm{Cbz}-\mathrm{Cl}(0.16 \mathrm{ml}, 1.12 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added. The mixture was stirred at room temperature for 24 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and extracted with DCM ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residual oil was evaporated from cyclohexane ($3 \times 40 \mathrm{~mL}$) to remove remaining pyridine. The residue was purified by FC on silica (hex:EA=2:1) to yield $160(250 \mathrm{mg}, 0.49 \mathrm{mmol}, 87 \%)$ as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.04(\mathrm{~m}, 7 \mathrm{H}), 5.84-$ $5.66(\mathrm{~m}, 1 \mathrm{H}), 5.24-4.85(\mathrm{~m}, 7 \mathrm{H}), 4.80-4.41(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.39$ (dd, $J=14.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=14.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.7,144.0,138.3,137.9,136.7,134.6,130.0,129.3,128.6,128.5$, 128.0, 127.8, 127.6, 126.7, 118.9, 77.0, 76.7, 66.7, 66.6, 56.2, 49.8, 36.2, 21.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 521.2105$, found, 521.2113.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3334,3031,2925,1720,1599,1536,1496,1454,1331,1250,1154$, 1089, 1058, 990, 923, 850, 814, 748, 699, 665, 581, 548.
$[\alpha]^{25} \mathrm{D}-28.1\left(c 0.84, \mathrm{CHCl}_{3}\right)$
m.p. $164^{\circ} \mathrm{C}$
(S)-benzyl (1-(3-(allylamino)oxetan-3-yl)-2-phenylethyl)carbamate (161)

To a suspension of $160(900 \mathrm{mg}, 1.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH}(17 \mathrm{~mL})$ were added magnesium turnings ($420 \mathrm{mg}, 17 \mathrm{mmol}, 10 \mathrm{eq}$). The mixture was sonicated for 10 min at room temperature and then further stirred at this temperature for 2 h . TLC still indicated the presence of starting material. Magnesium turnings ($420 \mathrm{mg}, 17 \mathrm{mmol}, 10 \mathrm{eq}$) were added. The mixture was stirred for another 2 h . The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by FC on silica (hex:EA=2:1 to 1:1). The desired product 161 ($0.625 \mathrm{~g}, 1.7 \mathrm{mmol}, 99 \%$ yield) was obtained as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.53-7.05(\mathrm{~m}, 10 \mathrm{H}), 5.95$ (ddt, $J=16.3,10.9,5.7$ Hz, 1H), $5.29-4.97(\mathrm{~m}, 5 \mathrm{H}), 4.62-4.24(\mathrm{~m}, 5 \mathrm{H}), 4.80-4.41(\mathrm{~m}, 3 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82$ (ddd, $J=61.6,14.1,6.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.4,137.7,136.8,136.6,129.2,128.8,128.7,128.2$, $128.1,126.9,116.2,78.5,77.7,66.9,63.1,56.8,45.7,36.1 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 367.2016$, found, 367.2016.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3323,2924,2876,2854,1695,1644,1604,1539,1496,1454,1418$, $1332,1244,1134,1028,979,918,844,738,697,578,531,462$.
$[\alpha]^{25} \mathrm{D}-9.78\left(c 0.84, \mathrm{CHCl}_{3}\right)$.
(S)-benzyl (1-(3-aminooxetan-3-yl)-2-phenylethyl)carbamate (157)

 dimethylpyrimidine-2,4,6(1H,3H,5H)-trione ($0.80 \mathrm{~g}, 5.1 \mathrm{mmol}, 3.0 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(0.099 \mathrm{~g}, 0.085 \mathrm{mmol}$, $5.0 \mathrm{~mol}-\%$) and the mixture was degassed by passing a stream on N_{2} through the solution. Then, the reaction was heated to $35^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the mixture was poured into saturated aqueous NaHCO_{3} solution (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporatd to dryness. The residue was purified by FC on silica (EA:MeOH=97:3) to yield 157 ($0.470 \mathrm{~g}, 1.44 \mathrm{mmol}, 85 \%$) as a light yellow solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.14(\mathrm{~m}, 10 \mathrm{H}), 5.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.04(\mathrm{q}, J=$ $12.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=22.4,6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.84-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta=156.3,137.6,136.6,129.1,128.8,128.6,128.2,128.1$, 127.0, 83.1, 83.0, 66.9, 59.0, 57.4, 36.5 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$327.1703, found, 327.1704.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3312,3030,2953,2870,1701,1605,1538,1497,1455,1335,1252$, $1138,1080,1054,1028,975,903,840,746,698,534,461$.
$[\alpha]^{25} \mathrm{D}-23.9\left(c 0.79, \mathrm{CHCl}_{3}\right)$
m.p. $119{ }^{\circ} \mathrm{C}$
N-benzyl-N-(3-((S)-1-((S)-1,1-dimethylethylsulfinamido)-2-phenylethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (162) ${ }^{280}$

Magnesium turnings ($867 \mathrm{mg}, 35.7 \mathrm{mmol}, 8.00 \mathrm{eq}$) were stirred with a crystal of I_{2} for 15 min and were then layered with a minimum amount of $\mathrm{Et}_{2} \mathrm{O}$. Benzyl chloride $(2.26 \mathrm{~g}, 17.8 \mathrm{mmol}$, $4.00 \mathrm{eq})$ and $\mathrm{Et}_{2} \mathrm{O}(22.0 \mathrm{~mL})$ were added alternately to keep the exothermic reaction at slight reflux. After complete addition, the mixture was refluxed for 1 h in an oil bath and then cooled to room temperature.

The freshly prepared benzylmagnesium chloride solution was added to a solution of $118(2.00 \mathrm{~g}, 4.46 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ over the course of 1 h . The reaction was allowed to slowly warm to room temperature over night and was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated to dryness. The residue was recrystallized from MeOH to afford 162 ($1.20 \mathrm{~g}, 2.22 \mathrm{mmol}, 50 \%$) as colorless needles.

The mother liquor was concentrated to dryness and the residue was purified by FC on silica gel (hex:EA 1:1 to 100% EA) to afford a second crop of 162 (494 mg , $0.91 \mathrm{mmol}, 20 \%$) as a colorless solid.

Combined yield: 1.69 g ($3.13 \mathrm{mmol}, 70 \%$).
Recrystallization from MeOH gave crystals suitable for x-ray crystal structure analysis.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.18(\mathrm{~m}$, 3H), 7.02-6.79 (m, 2H), 5.26-4.99 (m, 1H), 4.83 (m, 2H), 4.78-4.47 (m, 3H), 4.434.17 (m, 1H), 4.08-3.84 (m, 1H), 3.22 (dd, $J=14.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=12.5$, $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=144.0,138.4,138.3,136.2,130.0,129.9,129.0,128.7$, 128.2, 128.1, 127.4, 126.4, 77.3, 76.4, 66.2, 61.6, 56.1, 51.4, 37.9, 22.7, 21.6 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 563.2009$, found 563.2012.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3284,2881,2286,1981,1599,1494,1453,1417,1323,1308,1147$, 1088, 1063, 938, 898, 808, 756, 696, 679.
$[\alpha]^{25} \mathrm{D}=+31.6\left(\mathrm{c}=0.86, \mathrm{CHCl}_{3}\right)$.
m.p. $=217-218^{\circ} \mathrm{C}(\mathrm{MeOH}$, dec. $)$.
(S)-N-(3-(1-amino-2-phenylethyl)oxetan-3-yl)-N-benzyl-4methylbenzenesulfonamide (163) ${ }^{280}$

To a solution of $\mathbf{1 6 2}(1.69 \mathrm{~g}, 3.13 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeOH}(15.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.5 \mathrm{~mL})$ was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, 3.91 mL , $15.6 \mathrm{mmol}, 5.00 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 45 min . The reaction was quenched saturated aqueous $\mathrm{NaHCO}_{3}-$ solution and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by FC on silica gel (hex:EA $=1: 1$ to $100 \% \mathrm{EA}$) to afford $163(1.36 \mathrm{~g}, 3.13 \mathrm{mmol}$, quant.) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-$ 7.20 (m, 3H), 7.20-7.10 (m, 7H), 5.21-4.98 (m, 1H), 4.98-4.83 (m, 1H), 4.72 (d, J = 7.2 Hz, 1H), 4.66 (d, J = 7.1 Hz, 1H), 4.50 (s, 2H), 3.79 (dd, $J=11.3,2.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.39(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.17$ (br, 2H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=143.7,138.9,137.7,137.1,129.6,129.3,128.8,128.5$, $127.8,127.3,127.2,126.7,77.5,75.8,67.7,56.6,51.4,38.2,21.5 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 437.1893$, found 437.1891.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2878,1600,1494,1452,1322,1309,1272,1231,1148,1125,1089$, $1039,1003,962,940,899,861,810,789,757,745,704,697,678,648,608,575$.
$[\alpha]^{23} \mathrm{D}=-9.1\left(\mathrm{c}=1.11, \mathrm{CHCl}_{3}\right)$.
m.p. $=150^{\circ} \mathrm{C}$.
(S)-tert-butyl (1-(3-(benzylamino)oxetan-3-yl)-2-phenylethyl)carbamate (164)280

Boc $_{\text {NH }_{\text {H }}}$ To a suspension of $163(1.36 \mathrm{~g}, 3.12 \mathrm{mmol}, 1.00 \mathrm{eq})$ in MeOH $(28.3 \mathrm{~mL})$ and THF $(2.83 \mathrm{~mL})$ were added magnesium turnings ($757 \mathrm{mg}, 31.2 \mathrm{mmol}, 10.0 \mathrm{eq}$) and the mixture was stirred in a room temperature water bath for 3 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure to give the crude diamine as a colorless wax.

The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.5 \mathrm{~mL})$ and a solution of di-tertbutyl dicarbonate ($714 \mathrm{mg}, 3.27 \mathrm{mmol}, 1.10 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.50 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 12 h . The solvent was removed in vacuo and the residue was purified by FC on silica gel (hex:EA $=2: 1$) to afford $164(1.18 \mathrm{~g}, 3.08 \mathrm{mmol}, 99 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.16(\mathrm{~m}$, $3 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.22$ $(\mathrm{m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.04-2.53(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.9,140.3,138.0,129.3,128.7,128.7,128.2,127.4$, 126.7, 79.7, 78.5, 78.0, 63.4, 55.5, 47.4, 36.2, 28.4 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 338.2329$, found 338.2326.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3332,3028,2965,2884,1716,1534,1495,1453,1392,1365,1246$, $1164,1062,1020,964,928,904,849,735,698,536,491$.
$[\alpha]^{26} \mathrm{D}=+3.7\left(\mathrm{c}=0.77, \mathrm{CHCl}_{3}\right)$.
m.p. $=108^{\circ} \mathrm{C}$
(S)-tert-Butyl (1-(3-aminooxetan-3-yl)-2-phenylethyl)carbamate (158) ${ }^{280}$
${ }^{\text {Boc }}{ }_{\text {NH }} \quad$ Pd-C ($\left.10 \mathrm{wt}-\% \mathrm{Pd}, 164 \mathrm{mg}, 0.15 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%\right)$ was added to a solution of 164 ($1.18 \mathrm{~g}, 3.08 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(30.0 \mathrm{~mL})$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 3 h . Then, the mixture was filtered over Celite ${ }^{\circledR}$, the filter cake was washed with EA, and the filtrate was concentrated to dryness to afford 158 ($841 \mathrm{mg}, 2.88 \mathrm{mmol}$, 93%) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Methanol-d4) $\delta=7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 4.70$ $(\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=13.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=$ $13.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol-d4) $\delta=158.4,139.3,130.3,129.4,127.5,80.8,80.4$, 80.3, 60.7, 57.5, 35.8, 28.6 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$293.1860, found 293.1863.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3319,2976,2870,1698,1604,1522,1496,1455,1391,1366,1335$, 1250, 1170, 1079, 1051, 1017, 975, 845, 748, 700, 532.
$[\alpha]^{22} \mathrm{D}=-18.1\left(c 0.50, \mathrm{CHCl}_{3}\right)$.
m.p. $=135^{\circ} \mathrm{C}$.
N-allyl-N-(3-((S)-2-(4-(benzyloxy)phenyl)-1-((S)-1,1-dimethylethylsulfinamido)ethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (169)

Magnesium turnings ($244 \mathrm{mg}, 10.0 \mathrm{mmol}, 4.00 \mathrm{eq}$) were stirred with a crystal of I_{2} and covered with a minimum amount of THF, before THF (12.5 mL) and a solution of 1-(benzyloxy)-4(chloromethyl)benzene ($1.75 \mathrm{~g}, 7.53 \mathrm{mmol}, 3.00 \mathrm{eq}$) in THF $(4.18 \mathrm{~mL})$ were added alternately dropwise. After complete addition, the mixture was stirred at room temperature for 1 h .

The freshly prepared GRIGNARD solution was added dropwise over 30 min to a solution of $139(1.00 \mathrm{~g}, 2.51 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF (8.40 mL) at $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to ambient temperature together with cooling bath overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution was added, the layers were separated and the aqueous layer was extracted with EA ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by FC on silica gel (hexane:EA = 1:1 to $1: 2$ to $100 \% \mathrm{EA}$) to afford 169 ($887 \mathrm{mg}, 1.49 \mathrm{mmol}, 59 \%$) as colorless foam.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.07(\mathrm{~m}$, 2H), 6.94-6.86 (m, 2H), 5.91-5.76 (m, 1H), 5.21 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.2$ Hz, 1H), 5.07 (s, 2H), 4.97 (dd, $J=17.2,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=10.4,6.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=14.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (s, 3H), 0.97 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=157.5,144.1,137.9,137.2,134.8,130.9,130.7,130.1$, 128.7, 128.0, 127.6, 127.5, 119.2, 115.0, 77.4, 76.8, 70.1, 66.4, 62.5, 56.3, 50.4, 37.3, 22.8, 21.7 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 597.2451$, found 597.2451.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3280,3032,2958,1611,1585,1511,1455,1419,1389,1335,1304$, $1236,1152,1089,1060,1014,918,892,860,813,737,696,663,593,566,547,511$.
$[\alpha]^{23}{ }_{D}=+4.7\left(\mathrm{c}=0.94, \mathrm{CHCl}_{3}\right)$.
(S)-benzyl (1-(3-(N-allyl-4-methylphenylsulfonamido)oxetan-3-yl)-2-(4-(benzyloxy)phenyl)ethyl)carba-mate (170)

To a solution of $169(0.77 \mathrm{~g}, 1.29 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $(1 / 1,13 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C} \mathrm{HCl}(4 \mathrm{M}$ in dioxane, 1.29 mL , $5.14 \mathrm{mmol}, 5.0 \mathrm{eq})$. The mixture was stirred for 1.5 h at this temperature. Saturated aqueous NaHCO_{3} solution (30 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The oily residue was redissolved in pyridine (6.4 mL) and $\mathrm{Cbz}-\mathrm{Cl}(0.22 \mathrm{ml}, 1.54 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added. The mixture was stirred at room temperature for 14 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and extracted with DCM ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residual oil was evaporated from cyclohexane ($3 \times 40 \mathrm{~mL}$) to remove remaining pyridine. The residue was purified by FC on silica (hex:EA=2:1) to yield $\mathbf{1 7 0}(459 \mathrm{mg}, 0.73 \mathrm{mmol}, 57 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.20-$ $7.10(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{ddt}, J=16.6,10.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-$ $4.86(\mathrm{~m}, 9 \mathrm{H}), 4.69-4.39(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=14.5,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=157.67,156.72,143.96,138.32,137.27,136.79$, 134.59, 130.24, 130.22, 130.01, 128.72, 128.53, 128.08, 128.00, 127.75, 127.65, 127.55, $118.88,114.99,70.13,66.72,66.59,56.35,49.83,35.28,21.69 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$627.2523, found, 527.2518.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3327,2970,1721,1611,1512,1455,1332,1240,1154,1090,1051$, 1027, 920, 853, 816, 741, 697, 664, 574, 549, 485, 465.
$[\alpha]^{23}{ }_{\mathrm{D}}-21.8\left(c 0.32, \mathrm{CHCl}_{3}\right)$
m.p. $114{ }^{\circ} \mathrm{C}$
(S)-benzyl (1-(3-(allylamino)oxetan-3-yl)-2-(4-(benzyloxy)phenyl)ethyl)carbamate (171)

To a solution of $170(345 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH}(5.5 \mathrm{~mL})$ were added magnesium turnings ($134 \mathrm{mg}, 5.5 \mathrm{mmol}, 10 \mathrm{eq}$). The mixture was sonicated for 10 min at room temperature and then further stirred at this temperature for 3 h . The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ and extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by FC on silica (hex:EA=2:1 to 1:1). The desired product $171(0.252 \mathrm{~g}, 0.55 \mathrm{mmol}, 97 \%$ yield) was obtained as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.53-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.02-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-4.97$ $(\mathrm{m}, 6 \mathrm{H}), 4.55-4.27(\mathrm{~m}, 5 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.63(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=157.8,137.1,136.8,130.2,128.7,128.7 \mathrm{jj}$, 128.3, $128.1,127.6,116.2,115.2,78.5,77.7,70.2,66.9,63.0,56.9,45.7,35.3 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 473.2435$, found, 473.2436.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3326,3033,2952,2876,1715,1611,1584,1511,1454,1242,1177$, 1111, 1027, 981, 917, 821, 738, 697, 541.
$[\alpha]^{23}{ }^{2}-9.8\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
m.p. $119{ }^{\circ} \mathrm{C}$.
(S)-benzyl (1-(3-aminooxetan-3-yl)-2-(4-(benzyloxy)phenyl)ethyl)carbamate (165)

Cbz $_{{ }_{\mathrm{NH}}} \quad$ To a solution of $171(0.175 \mathrm{~g}, 0.37 \mathrm{mmol}, 1.0 \mathrm{eq})$ and 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione $\quad(0.173 \mathrm{~g}, \quad 1.11 \mathrm{mmol}$, $3.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(21.4 \mathrm{mg}$, $0.019 \mathrm{mmol}, 5.0 \mathrm{~mol}-\%$) and the mixture was degassed by passing a stream on N_{2} through the solution. Then, the reaction was heated to $35^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the mixture was poured into saturated aqueous NaHCO_{3} solution $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by FC on silica ($100 \% \mathrm{EA}$) to yield 165 ($0.155 \mathrm{~g}, 1.44 \mathrm{mmol}$, 97%) as a light yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.48-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ $(\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.23-4.98(\mathrm{~m}, 5 \mathrm{H}), 4.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.20(\mathrm{~m}, 3 \mathrm{H})$, $1.65(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=157.9,137.1,130.1,128.7,128.7,128.1,127.6,115.2$, 83.1, 83.1, 70.2, 66.9, 59.0, 57.4, 35.6 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 433.2122$, found, 433.2124 .
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3322,3033,2951,2869,1699,1611,1584,1511,1554,1381,1242$, 1177, 1111, 1026, 976, 911, 822, 738, 696, 612, 543.
$[\alpha]^{23} \mathrm{D}-21.7\left(c 0.52, \mathrm{CHCl}_{3}\right)$.
m.p. $120^{\circ} \mathrm{C}$.
(S)-tert-butyl (1-(3-(N-allyl-4-methylphenylsulfonamido)oxetan-3-yl)-2-(4(benzyloxy)phenyl)ethyl)carbamate (172) ${ }^{280}$
 (7.40 mL) and $\mathrm{MeOH}(7.40 \mathrm{~mL}$) was added HCl (4 M in dioxane, $1.48 \mathrm{~mL}, 5.90 \mathrm{mmol}, 4.00 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 60 min . The reaction was quenched with saturated aqueous NaHCO_{3}-solution and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residue was passed over short pad of silica gel (hex:EA = 1:2) and the product containing fractions were combined and evaporated to dryness.

The residual oil was dissolved in 1,2-dichloroethane (11.1 mL) and a solution of di-tert-butyl dicarbonate ($483 \mathrm{mg}, 2.21 \mathrm{mmol}, 1.50 \mathrm{eq}$) in 1,2-dichloroethane $(3.70 \mathrm{~mL})$ was added. The mixture was heated to $60^{\circ} \mathrm{C}$ for 12 h and after cooling to room temperature, the solvent was evaporated and the residue was purified by FC on silica gel (hexane:EA = 2:1) to afford 172 ($770 \mathrm{mg}, 1.30 \mathrm{mmol}, 88 \%$) as a colorless foam.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ 7.35 (m, 2H), 7.35-7.29 (m, 3H), 7.16 (d, $J=8.4 \mathrm{~Hz}, 2 H), 6.96-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.85-$ $5.69(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 5.03-$ $4.91(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.37(\mathrm{~m}, 2 \mathrm{H})$, 3.83 (dd, $J=16.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (dd, $J=16.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (dd, $J=14.4,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=157.6,156.1,143.8,138.4,137.3,134.7,130.5,130.3$, 130.0, 128.7, 128.0, 127.5, 127.5, 118.7, 114.9, 79.5, 77.2, 76.6, 70.2, 66.6, 55.6, 49.8, 35.3, 28.3, 21.7 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 593.2680$, found 593.2680.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2975,1698,1611,1511,1454,1390,1365,1328,1239,1153,1089$, 1044, 1017, 990, 921, 887, 858, 812, 776, 737, 696, 662, 599, 569, 547.
$[\alpha]^{23}{ }_{\mathrm{D}}=-19.8\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl (1-(3-(allylamino)oxetan-3-yl)-2-(4-(benzyloxy)phenyl)ethyl)carbamate (173) ${ }^{280}$

${ }^{\text {Boc }}{ }_{\text {NH }} \quad$ Magnesium turnings ($313 \mathrm{mg}, 12.87 \mathrm{mmol}, 10.0 \mathrm{eq}$) were added to

 a solution of 172 ($763 \mathrm{mg}, 1.29 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(11.5 \mathrm{~mL})$ and THF (1.15 mL) and the mixture was stirred in a room temperature water bath for 3 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 25 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure to afford 173 ($529 \mathrm{mg}, 1.21 \mathrm{mmol}, 94 \%$) as a colorless solid.${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=$ 8.4 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 6.04-5.89 (m, 1H), 5.32-5.21 (m, 1H), 5.19$5.09(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-$ $2.52(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.19(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=157.7,155.9,137.2,136.9,130.2,130.2,128.7,128.0$, $127.5,116.1,115.1,79.6,78.5,77.9,70.2,63.1,55.8,45.7,35.2,28.4 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 439.2591$, found 439.2597.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3316,2972,2885,1711,1510,1455,1442,1365,1334,1241,1175$, 1071, 1044, 1023, 1007, 968, 913, 861, 813, 776, 737, 694, 535.
$[\alpha]^{23} \mathrm{D}=-2.0\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$.
m.p. $=126^{\circ} \mathrm{C}$
(S)-tert-butyl (1-(3-aminooxetan-3-yl)-2-(4-(benzyloxy)phenyl)ethyl)carbamate (166) ${ }^{280}$

Boc
OBn
$2,4,6(1 \mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H})$-trione $(555 \mathrm{mg}, 3.56 \mathrm{mmol}, 3.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(12.0 \mathrm{~mL})$ and the mixture was degassed by passing a stream on N_{2} $(12.0 \mathrm{~mL})$ and the mixture was degassed by passing a stream on N_{2} through the solution. The reaction was heated to $35^{\circ} \mathrm{C}$ for 6 h . After cooling to room temperature, the mixture was poured into saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated to dryness. The residue was purified by FC on silica gel ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=20: 1$). $166(454 \mathrm{mg}, 1.14 \mathrm{mmol}, 96 \%)$ was obtained as a pale orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.52-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-$ $3.99(\mathrm{~m}, 4 \mathrm{H}), 2.85-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=157.8,155.8,137.1,130.1,130.1,128.7,128.1,127.6$, $115.2,83.2,83.1,79.5,70.2,59.0,56.8,35.6,28.4 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 399.2278$, found 399.2285.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3381,2928,2866,1683,1612,1511,1468,1455,1444,1387,1366$, $1336,1240,1174,1024,975,939,920,861,832,811,775,738,724,695,640,615,557$, 516.
$[\alpha]^{24} \mathrm{D}=-21.7\left(\mathrm{c}=0.86, \mathrm{CHCl}_{3}\right)$.
m.p. $=170^{\circ} \mathrm{C}$.
N-allyl-N-(3-((R)-2-(benzyloxy)-1-((S)-1,1-dimethylethylsulfinamido)ethyl)-oxetan-3-yl)-4-methylbenzenesulfonamide (175) ${ }^{280}$

To a solution of ((benzyloxy)methyl)tributylstannane (1.76 g, $4.29 \mathrm{mmol}, 1.80 \mathrm{eq})$ in THF $(8.00 \mathrm{~mL})$ was added $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, $2.53 \mathrm{~mL}, 4.05 \mathrm{mmol}, 1.70 \mathrm{eq}$) dropwise at $-78{ }^{\circ} \mathrm{C}$. The yellowish mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , before transferred dropwise to a solution of $\mathbf{1 3 9}(950 \mathrm{mg}, 2.38 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF $(8.00 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After complete addition, the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then slowly warmed to $-20^{\circ} \mathrm{C}$ over the course of 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution was added, the layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by FC on silica gel (hexane:EA = 1:1 to 1:2) yielded 175 ($510 \mathrm{mg}, 0.979 \mathrm{mmol}, 41 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.81-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, 2H), 5.65-5.47 (m, 1H), 5.06-4.87 (m, 5H), $4.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.9$ Hz, 1H), $4.51(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.91-$ $3.77(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=144.2,137.6,137.5,134.6,129.9,128.6,128.0,128.0$, $127.8,117.89,77.9,77.2,73.6,71.3,66.0,59.0,56.3,49.4,22.9,21.7 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 521.2138$, found 521.2131.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3280,2960,2895,2048,1989,1598,1454,1329,1149,1068,988$, 920, 878, 814, 699, 664.
$[\boldsymbol{\alpha}]^{25} \mathrm{D}=+49.3\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
(R)-tert-butyl (1-(3-(N-allyl-4-methylphenylsulfonamido)oxetan-3-yl)-2(benzyloxy)ethyl)carbamate (176) ${ }^{280}$
$\mathrm{Boc}_{\mathrm{NH}^{-}} \mathrm{Ts} \quad \mathrm{HCl}(4 \mathrm{M}$ in dioxane, $1.22 \mathrm{~mL}, 4.86 \mathrm{mmol}, 5.00 \mathrm{eq})$ was added to a solution of 175 ($506 \mathrm{mg}, 0.972 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.90 \mathrm{~mL})$ and $\mathrm{MeOH}(4.90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 1 h . Saturated aqueous NaHCO_{3}-solution was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent was removed under reduced pressure.

The obtained oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.70 \mathrm{~mL})$ and a solution of di-tert-butyl dicarbonate (318 mg , $1.46 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.20 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 90 min . After evaporation of the solvent, the residue was purified by FC on silica gel (hexane:EA $=3: 1$) to afford 176 ($446 \mathrm{mg}, 0.863 \mathrm{mmol}, 89 \%$) as a colorless foam.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.12-4.87(\mathrm{~m}, 4 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.36(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=17.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.45(\mathrm{~m}$, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.1,143.8,138.0,137.6,134.8,129.8,128.6,128.0$, $127.9,127.8,117.7,80.0,79.2,75.4,73.5,70.0,66.4,53.0,49.0,28.5,21.7 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 539.2186$, found 539.2172.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2978,2051,1705,1497,1326,1247,1154,1089,990,921,814$, 740, 699, 660.
$[\alpha]^{23} \mathrm{D}=+20.2\left(\mathrm{c}=0.69, \mathrm{CHCl}_{3}\right)$.
(R)-tert-butyl (1-(3-(allylamino)oxetan-3-yl)-2-(benzyloxy)ethyl)carbamate (177) ${ }^{280}$

Magnesium turnings (209 mg , $8.61 \mathrm{mmol}, 10.0 \mathrm{eq}$) were added to a solution of 176 ($445 \mathrm{mg}, 0.861 \mathrm{mmol}, 1.00 \mathrm{eq}$) in MeOH $(8.50 \mathrm{~mL})$ and the mixture was vigorously stirred at room temperature for 2.5 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and after removal of the volatiles, 177 (304 mg , $0.839 \mathrm{mmol}, 97 \%)$ was obtained as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.00-5.84(\mathrm{~m}$, $1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.14(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.27-4.06(\mathrm{~m}, 1 \mathrm{H})$, 3.73 (dd, $J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 2 \mathrm{H}), 1.85$ (br, 1H), 1.45 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=156.0,137.8,137.0,128.6,128.0,127.6,115.7,79.8$, 78.6, 77.4, 73.6, 69.1, 62.9, 53.5, 45.5, 28.5 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 363.2278$, found 363.2280.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3333,2976,2876,1707,1494,1454,1364,1246,1166,1103,980$, 917, 735, 698.
$[\alpha]{ }^{25} \mathrm{D}=+39.4\left(\mathrm{c}=0.72, \mathrm{CHCl}_{3}\right)$.
(R)-tert-butyl (1-(3-aminooxetan-3-yl)-2-(benzyloxy)ethyl)carbamate (174) ${ }^{280}$ $\mathrm{Boc}_{0}^{\mathrm{Non}}$ $\begin{aligned} & \mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(49.4 \mathrm{mg}, 0.043 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%) \text { was added to a solution } \\ & \text { of } 177(310 \mathrm{mg}, 0.855 \mathrm{mmol}, 1.00 \mathrm{eq}) \text { and 1,3-dimethylpyrimidine- } \\ & 2,4,6(1 \mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H}) \text {-trione }(401 \mathrm{mg}, 2.57 \mathrm{mmol}, 3.00 \mathrm{eq}) \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2}\end{aligned}$ $(8.50 \mathrm{~mL})$ and the mixture was degassed by passing a stream on N_{2} through the
solution. Then, the reaction was heated to $35^{\circ} \mathrm{C}$ for 13 h . After cooling to room temperature, the mixture was poured into saturated aqueous NaHCO_{3}-solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated to dryness. The residue was purified by FC on deactivated silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=30: 1\right)$ and $174(251 \mathrm{mg}, 0.777 \mathrm{mmol}, 91 \%)$ was obtained as a pale yellow solid.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=9.9$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{br}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.88,137.76,128.57,127.94,127.60,83.93,82.74$, $79.60,73.54,69.29,58.70,53.86,28.44 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 323.1965$, found 323.1968.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3263,2979,2885,2360,2341,1699,1548,1394,1364,1276,1166$, 1107, 1024, 958, 817, 743, 699.
$[\alpha]{ }^{25} \mathrm{D}=+33.6\left(\mathrm{c}=0.73, \mathrm{CHCl}_{3}\right)$.
m.p. $=104-105{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R)-tert-butyl
(2-(benzyloxy)-1-(3-(3-(4-bromophenyl)ureido)oxetan-3yl)ethyl)carbamate (178) ${ }^{280}$

To a solution of $174(53.4 \mathrm{mg}, 0.166 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.60 \mathrm{~mL})$ was added 1-bromo-4-isocyanatobenzene ($36.1 \mathrm{mg}, 0.182 \mathrm{mmol}, 1.10 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 4 h . The mixture was directly submitted to FC on silica gel (hexane:EA = 2:3) to afford $178(66.5 \mathrm{mg}, 0.128 \mathrm{mmol}, 77 \%)$ as a colorless
solid. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane gave crystals suitable for x-ray crystal structure analysis.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{br}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{br}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.68$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.4,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.53-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=156.23,154.84,137.99,137.33,132.24,128.89$, 128.40, 128.25, 121.84, 116.56, 80.68, 79.96, 78.02, 73.37, 69.11, 59.02, 54.69, 28.52 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 520.1442$, found 520.1438.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3382,3331,3256,2982,2888,2861,1689,1659,1599,1543,1516$, 1487, 1395, 1332, 1306, 1271, 1230, 1162, 1096, 1075, 821, 751, 654.
$[\alpha]^{24} \mathrm{D}=+25.2\left(\mathrm{c}=0.59, \mathrm{CHCl}_{3}\right)$.
m.p. $=192-193{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:hex $)$.

Tert-butyl 3-(3-(N-allyl-4-methylphenylsulfonamido)oxetan-3-yl)-3-((S)-1,1-dimethylethyl-sulfinamido)propanoate (180)

To a solution of diisopropylamine ($0.97 \mathrm{~mL}, 6.8 \mathrm{mmol}, 2.7 \mathrm{eq}$) in THF $(13 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi $(3.9 \mathrm{~mL}, 6.3 \mathrm{mmol}$, 2.5 eq). The mixture was stirred for 30 min before adding tert-butyl acetate ($0.92 \mathrm{~mL}, 6.8 \mathrm{mmol}, 2.7 \mathrm{eq}$). After stirring for 30 min 139 $(1.0 \mathrm{~g}, 2.5 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF (13 mL) was added. The light yellow solution was stirred for additional 10 min before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL). The mixture was extracted with EA ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product (d.r. 10:1) was purified by FC on silica (hex:EA:MeOH = 1:1:1\%) to yield 180 ($0.85 \mathrm{~g}, 1.6 \mathrm{mmol}, 66 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.87-$ $5.62(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.42$ (ddd, $J=10.0,7.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.1,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=16.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.5,144.2,137.8,134.4,130.1,127.6,119.5,81.3$, $77.2,76.6,65.8,58.1,56.6,50.2,39.1,28.3,23.0,21.7 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 515.2244$, found, 515.2250.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2978,2926,1730,1393,1342,1367,1154,1067,663,650$.
$[\alpha]^{26}{ }_{\mathrm{D}}+36.9\left(c 0.55, \mathrm{CHCl}_{3}\right)$
(S)-Tert-butyl 3-(3-(N-allyl-4-methylphenylsulfonamido)oxetan-3-yl)-3-(((benzyloxy)carbonyl)amino)-propanoate (181)

To a solution of $180(0.66 \mathrm{~g}, 1.3 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $(1 / 1,13 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, 1.6 mL , $6.4 \mathrm{mmol}, 5.0 \mathrm{eq})$. The mixture was stirred for 2 h at this temperature. Saturated aqueous NaHCO_{3} solution (30 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was redissolved in pyridine (6.4 mL) and $\mathrm{Cbz}-\mathrm{Cl}(0.28 \mathrm{ml}, 1.9 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added. The mixture was stirred at room temperature for 22 h . concentrated. The crude mixture was concentrated and purified by FC on silica (hex:EA=2:1) to yield 181 ($0.50 \mathrm{~g}, 0.91 \mathrm{mmol}, 71 \%$ yield) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.77(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 7 \mathrm{H}), 5.79-$ $5.62(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.98-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.81-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=40.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ (ddd, J $=57.8,16.5,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=15.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}$, 1H), 2.44 (s, 3H), 1.41 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=170.5,156.6,143.9,138.3,136.6,134.3,130.0,128.6$, 128.2, 127.4, 119.1, 81.5, 77.4, 77.1, 76.1, 67.1, 66.2, 51.9, 49.7, 37.0, 28.1, 21.7 ppm. HRMS (ESI+): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 567.2135$, found, 567.2132. IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3338,2978,1725,1598,1535,1333,1304,1245,1155,1090,597$, 550.
$[\alpha]^{26} \mathrm{D}+1.76\left(c 0.80, \mathrm{CHCl}_{3}\right)$
(S)-Tert-butyl

3-(3-(allylamino)oxetan-3-yl)-3(((benzyloxy)carbonyl)amino)propanoate (182)

To a solution of 181 ($440 \mathrm{mg}, 0.81 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{MeOH}(8.1 \mathrm{~mL})$ were added magnesium turnings ($200 \mathrm{mg}, 8.1 \mathrm{mmol}, 10 \mathrm{eq}$). The mixture was stirred for 2 h at room temperature. TLC still indicated the presence of starting material. Magnesium turnings ($98 \mathrm{mg}, 4.0 \mathrm{mmol}, 5.0 \mathrm{eq}$) were added and the mixture was stirred for 4.5 h . The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(40 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by FC on silica (hex:EA=2:1) to yield 182 ($250 \mathrm{mg}, 0.64 \mathrm{mmol}, 79 \%$) as a colorless oil
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.91$ (ddt, $J=17.0,10.2,5.7 \mathrm{~Hz}$, 1H), $5.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.07(\mathrm{~m}, 3 \mathrm{H}), 4.61-4.43(\mathrm{~m}$, $5 \mathrm{H}), 3.41(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=14.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=15.0,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.41$ (s, 9H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=170.9,156.4,136.7,136.4,128.7,128.3,128.3,116.1$, 81.5, 77.8, 77.6, 77.4, 67.2, 63.3, 52.4, 45.8, 36.4, 28.1 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$391.2227, found, 391.2220.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3321,2977,2879,1721,1537,1498,1456,1367,1244,1155,1043$, 1027, 918, 844, 739, 697.
$[\alpha]^{26} \mathrm{D}+1.05\left(c 0.66, \mathrm{CHCl}_{3}\right)$
(S)-Tert-butyl 3-(3-aminooxetan-3-yl)-3-(((benzyloxy)carbonyl)amino)propanoate (179)

Cbz. ${ }^{\mathrm{NH}}$ To a solution of $182(220 \mathrm{mg}, 0.57 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $1,3-$
$3.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.7 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(33 \mathrm{mg}, 0.028 \mathrm{mmol}$, $5.0 \mathrm{~mol}-\%$) and the mixture was degassed by passing a stream on N_{2} through the solution. Then, the reaction was heated to $35^{\circ} \mathrm{C}$ for 7 h . After cooling to room temperature, the mixture was poured into saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by FC on silica (DCM:MeOH=15:1) to yield 179 ($140 \mathrm{mg}, 0.41 \mathrm{mmol}$, 71%) as an off-white powder.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-$ $5.03(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=29.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{dt}, J=9.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J$ $=14.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=170.6,156.3,136.4,128.7,128.3,128.3,82.7,82.5$, 81.6, 67.1, 59.2, 53.4, 36.6, 28.1 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$373.1734, found, 373.1729.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3312,2925,2855,1715,1534,1456,1482,1456,1368,1337,1245$, 1156, 1049, 1028, 976, 839, 740, 698.
$[\alpha]^{25} \mathrm{D}-5.44\left(c 0.72, \mathrm{CHCl}_{3}\right)$.
m.p. $91^{\circ} \mathrm{C}$.
(S)-Tert-butyl 3-(((benzyloxy)carbonyl)amino)-3-(3-(4-bromobenzamido)oxetan-3-yl)propanoate (183)

To a solution of $179(10 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0 \mathrm{eq})$ and triethylamine $(6.0 \mu \mathrm{l}, 0.043 \mathrm{mmol}, 1.5 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.29 \mathrm{~mL})$ was added 4-bromobenzoyl chloride $(6.3 \mathrm{mg}$, $0.029 \mathrm{mmol}, 1.0 \mathrm{eq})$. The mixture was stirred for 1 h . The solvent was removed under reduced pressure and the crude material was purified by FC on silica (hex:EA=1:1) to yield 183 ($13 \mathrm{mg}, 0.024 \mathrm{mmol}, 85 \%$) as an off-white crystalline solid. Recrystallization from methanol provided single crystals suitable for X-Ray structure analysis.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=$ 8.1 Hz, 1H), 5.13 (s, 1H), $4.94(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.65(\mathrm{~m}, 3 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=7.2$ Hz, 1H), $2.80(\mathrm{dd}, J=14.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=14.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=171.2,167.1,156.5,136.4,132.3,132.2,128.9,128.7$, $128.3,128.3,127.2,82.2,79.6,77.7,67.1,60.1,54.7,37.4,28.1 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 533.1282$, found, 533.1290.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3312,2977,2975,1726,1642,1590,1531,1482,1456,1393,1367$, 1256, 1157, 1071, 1044, 1012, 976, 909, 871, 843, 756, 698, 464.
$[\alpha]^{26}{ }_{\mathrm{D}}-42.0\left(c 0.27, \mathrm{CHCl}_{3}\right)$.
m.p. $201^{\circ} \mathrm{C}$.

N -benzyl-N-(3-(2-cyano-1-((S)-1,1-dimethylethylsulfinamido)ethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (185)

To a solution of $\mathrm{MeCN}(0.093 \mathrm{ml}, 1.78 \mathrm{mmol}, 4.00 \mathrm{eq})$ in THF $(2.23 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added n-BuLi $(1.6 \mathrm{M}$ in hexanes, 0.836 mL , $1.34 \mathrm{mmol}, 3.00 \mathrm{eq})$. The mixture was stirred for 30 min before adding 118 ($0.200 \mathrm{~g}, 0.446 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (2.23 mL). The light yellow solution was stirred for 15 min before quenching with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The mixture was extracted with EA $(3 \times 25 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (DCM:hex:acetone $=3: 1: 0.3 \rightarrow 3: 1: 0.5)$ to yield $185(120 \mathrm{mg}, 0.245 \mathrm{mmol}$, 55%) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 7 \mathrm{H}), 5.16-$ $4.79(\mathrm{~m}, 3 \mathrm{H}), 4.77-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.57(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.01(\mathrm{~m}, 1 \mathrm{H}), 2.83-$ $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=144.5,137.7,135.2,130.2,129.3,128.9,128.5,127.3$, $117.7,76.8,75.2,64.6,56.9,56.0,50.9,23.0,22.0,21.7 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 512.1648$, found, 512.1653.

Tert-butyl (1-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)-2cyanoethyl)carbamate (186)

To a solution of 185 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.78 \mathrm{~mL}) / \mathrm{MeOH}(4.78 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $1.20 \mathrm{~mL}, 4.78 \mathrm{mmol}, 5.00 \mathrm{eq}$). The mixture was stirred for 1 h . Sat. aq. NaHCO3 solution (20 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(333 \mu \mathrm{l}, 1.43 \mathrm{mmol}, 1.50 \mathrm{eq})$ was added. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 d . The crude mixture was purified by FC on silica (hex:EA $=2: 1$) to yield 186 ($401 \mathrm{mg}, 0.826 \mathrm{mmol}, 86 \%$) as a colorless foam
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.15-$ $7.06(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.53-$ $4.22(\mathrm{~m}, 4 \mathrm{H}), 3.07-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=155.6,144.2,137.6,135.3,129.9,128.9,128.3,128.2$, 127.5, 117.7, 80.9, 77.2, 75.9, 65.8, 50.5, 28.4, 21.7, 19.9 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{5} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$508.1877, found, 508.1875.
tert-butyl (3-amino-1-(3-(benzylamino)oxetan-3-yl)-3-oxopropyl)carbamate (188)

To a suspension of 186 ($415 \mathrm{mg}, 0.855 \mathrm{mmol}, 1.00 \mathrm{eq}$) in MeOH $(12 \mathrm{~mL}) / 1 \mathrm{M} \mathrm{NaOH}(2.40 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ was added drop wise $\mathrm{H}_{2} \mathrm{O}_{2}$ ($1.75 \mathrm{~mL}, 17.1 \mathrm{mmol}, 20.0 \mathrm{eq}$). The mixture was stirred for 2 h . After cooling to r.t.. the reaction was quenched by the careful addition of sat. aq. sodium thiosulfate solution. The aq. mixture was extracted with EtOAc $(6 \times 60 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

To a solution of the crude material in $\mathrm{MeOH}(15.1 \mathrm{~mL})$ at reflux were added magnesium turnings ($208 \mathrm{mg}, 8.54 \mathrm{mmol}, 10.0 \mathrm{eq}$). The mixture was stirred for 1 h , before another portion of magnesium turnings ($208 \mathrm{mg}, 8.54 \mathrm{mmol}, 10.0 \mathrm{eq}$) were added. The mixture was stirred for 1 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (40 mL) was added and the mixture was extracted with EA $(4 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=15: 1\right)$ to yield $188(149 \mathrm{mg}, 0.426 \mathrm{mmol}, 50 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, MeOH) $\delta=7.37-7.27$ (m, 5H), 6.27 (s, 1H), 5.62 (d, J = 7.7 $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.41-4.30(\mathrm{~m}$, 1H), 3.93 (s, 1H), 2.51 (d, J = 5.2 Hz, 2H), 1.46 (s, 9H) ppm.
${ }^{13}$ C NMR (101 MHz, MeOH) $\delta=173.4,156.6,140.1,128.8,128.1,127.5,80.4,78.1$, 77.7, 63.7, 51.6, 47.4, 36.9, 28.5 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$372.1894, found, 372.1892.

Tert-butyl (3-amino-1-(3-aminooxetan-3-yl)-3-oxopropyl)carbamate (184)

To a mixture of 188 ($126 \mathrm{mg}, 0.361 \mathrm{mmol}, 1.00 \mathrm{eq}$) and $\mathrm{Pd}-\mathrm{C}(10 \mathrm{wt}-\% \mathrm{Pd}$, $38.4 \mathrm{mg}, 0.036 \mathrm{mmol}, 10.0 \mathrm{~mol}-\%$) was added under $\mathrm{N}_{2} \mathrm{MeOH}$ (3.61 mL). The mixture was stirred with a H_{2} balloon for 3.5 h . Pd-C ($10 \mathrm{wt}-\% \mathrm{Pd}, 19.2 \mathrm{mg}$, $0.018 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%$) was added and the mixture was stirred with a H_{2} balloon for 3.5 h . The mixture was filtered through a syringe filter (PTFE) with $\mathrm{MeOH}(5 \mathrm{~mL})$. The solvent was removed under reduced pressure to yield 184 ($92 \mathrm{mg}, 0.355 \mathrm{mmol}, 98 \%$ yield) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{MeOH}) \delta=4.61(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.42 (dd, J = 9.4, 4.7 Hz, 1H), 4.39 - 4.34 (m, 2H), $2.41-2.25$ (m, 2H), 1.43 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOH) $\delta=176.0,158.2,82.8,82.6,80.4,60.4,54.5,36.9$, 28.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Na}_{1} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$282.1424, found, 282.1424.

N-Benzyl-N-(3-((S)-1-((S)-1,1-dimethylethylsulfinamido)-3-(1,3-dioxan-2-yl)propyl)oxetan-3-yl)-4-methylbenzenesulfonamide (191)280

Magnesium turnings ($780 \mathrm{mg}, 32.1 \mathrm{mmol}, 9.00 \mathrm{eq}$) were stirred with a crystal of I_{2} for 15 min and were then layered with a minimum amount of THF. 2-(2-bromoethyl)-1,3-dioxane ($1.46 \mathrm{ml}, 10.7 \mathrm{mmol}, 3.00 \mathrm{eq}$) and THF (20.0 mL) were added alternately to keep the temperature of the exothermic reaction between $35-45{ }^{\circ} \mathrm{C}$.

After complete addition, the mixture was allowed to stir for 2 h at ambient temperature.

The freshly prepared GRIGNARD solution was added dropwise to a solution of 118 ($1.60 \mathrm{~g}, 3.57 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (16.0 mL) at $-78^{\circ} \mathrm{C}$ over the course of 40 min (ca. $0.5 \mathrm{~mL} / \mathrm{min}$). The mixture was slowly warmed to ambient temperature together with the cooling bath overnight (12 h). After careful addition of saturated aqueous NaHCO_{3}-solution, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, concentrated under reduced pressure and the residue was purified by FC on silica gel (100% EA) to afford 191 (1.78 g , $3.15 \mathrm{mmol}, 88 \%$) as a colorless foam.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 7 \mathrm{H}), 5.01$ (br, $1 \mathrm{H}), 4.94-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}$, 1H), 4.17-4.03 (m, 2H), 3.84-3.71 (m, 3H), $3.69(b r, 1 H), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.99(\mathrm{~m}$, $1 \mathrm{H}), 1.92-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 1 \mathrm{H})$, 1.24 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=143.8,138.2,136.0,129.8,128.7,128.2,127.9,127.5$, 102.1, 77.9, 77.0, 67.0, 66.4, 60.7, 56.7, 51.5, 32.3, 26.5, 26.0, 23.2, 21.6 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 565.2401$, found 565.2385.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3277,2961,2862,1599,1456,1339,1142,1091,1064,1002,918$, 814.
$[\alpha]^{26} \mathrm{D}=+42.0\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.
(S)-N-Benzyl-4-methyl-N-(3-(pyrrolidin-2-yl)oxetan-3-yl)benzenesulfonamide (192) ${ }^{280}$

A solution of $191(1.73 \mathrm{~g}, 3.07 \mathrm{mmol}, 1.00 \mathrm{eq})$ in a mixture of TFA $(29.2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.53 \mathrm{~mL})$ was stirred at room temperature for 20 min during which time the reaction turned pale brown. Then, triethylsilane $(4.90 \mathrm{~mL}, 30.7 \mathrm{mmol}, 10.0 \mathrm{eq})$ was added and stirring was continued for 24 h . The TFA was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with saturated aqueous NaHCO_{3} solution until the mixture was basic. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, concentrated under reduced pressure, and the residue was purified by FC on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{NEt}_{3}=400: 20: 1\right)$ to afford 192 ($955 \mathrm{mg}, 2.47 \mathrm{mmol}, 81 \%$) as a beige solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 7 \mathrm{H}), 5.02(\mathrm{~d}, J=$ 7.2 Hz, 1H), 4.75 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 2.15-1.97 (m, 2H), 1.96-1.86 (m, 1H), 1.84-1.74 (m, 1H).
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta=143.7,137.5,136.9,129.5,128.4,127.8,127.2,127.1$, $78.7,76.0,66.3,62.8,50.7,47.3,27.1,25.9,21.5 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 387.1737$, found 387.1735.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2951,2883,1675,1496,1460,1416,1379,1316,1304,1263,1234$, 1206, 1148, 1120, 1089, 1042, 1021, 999, 979, 950, 917, 885, 832, 808, 744, 702, 669, 657, 599, 656.
$[\alpha]^{25} \mathrm{D}=+22.2\left(\mathrm{c}=0.87, \mathrm{CHCl}_{3}\right)$.
m.p. $=119^{\circ} \mathrm{C}$
(S)-tert-Butyl 2-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)pyrrolidine-1-carboxylate (193) ${ }^{280}$

To a solution of $192(880 \mathrm{mg}, 2.28 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added a solution of di-tert-butyl dicarbonate $(745 \mathrm{mg}$, $3.42 \mathrm{mmol}, 1.50 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ and the mixture was stirred at room temperature for 14 h . The solvent was removed under reduced pressure and the residue was purified by FC on silica gel (hex:EA = 2:1) to afford 193 (989 mg , $2.03 \mathrm{mmol}, 89 \%$) as a colorless foam.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 7 \mathrm{H}), 5.11-$ $4.56(\mathrm{~m}, 5 \mathrm{H}), 4.56-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.34$ (m, 1H), 2.49-2.20 (m, 4H), 2.10-1.79 (m, 3H), $1.48(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.5,143.3,138.6,136.5,129.4,128.3,128.1,127.5$, $127.4,80.1,78.3,77.4,69.6,60.9,50.6,48.3,28.6,28.0,24.7,21.5 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 487.2261$, found 487.2267.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2974,1687,1599,1496,1478,1455,1365,1337,1283,1255,1154$, 1118, 1090, 1007, 921, 868, 813, 751, 698, 665, 586.
$[\alpha]^{25} \mathrm{D}=-29.8\left(\mathrm{c}=0.82, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl 2-(3-(benzylamino)oxetan-3-yl)pyrrolidine-1-carboxylate (194)280

Magnesium turnings ($522 \mathrm{mg}, 24.3 \mathrm{mmol}, 11.3 \mathrm{eq}$) were added to a solution of 193 ($1.05 \mathrm{~g}, 2.15 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(21.5 \mathrm{~mL})$ and the mixture was stirred in a room temperature water bath for 2.5 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over
MgSO_{4} and after evaporation of the solvent 194 ($698 \mathrm{mg}, 2.10 \mathrm{mmol}, 98 \%$) was obtained as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H})$, 3.63 (br, 1H), 3.34-3.23 (m, 1H), 2.09-1.85 (m, 2H), 1.84-1.70 (m, 2H), $1.67(\mathrm{~s}, 1 \mathrm{H})$, 1.46 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=155.7,141.3,128.6,127.9,127.0,79.9,77.8,64.9$, 62.1, 48.7, 47.0, 28.6, 27.5, 24.4 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 333.2173$, found 333.2168.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2972,2875,1689,1478,1454,1387,1364,1281,1251,1160,1100$, 1028, 980, 955, 914, 846, 773, 734, 699.
$[\alpha]^{25} \mathrm{D}=-76.5\left(\mathrm{c}=0.73, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl 2-(3-aminooxetan-3-yl)pyrrolidine-1-carboxylate (189) ${ }^{280}$

Pd-C (10% Pd, $112 \mathrm{mg}, 0.11 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%$) was added to a solution of $194(698 \mathrm{mg}, 2.10 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeOH}(21.0 \mathrm{~mL})$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 24 h . Then, the mixture was filtered over Celite ${ }^{\circledR}$, the filter cake was washed with EA, and the filtrate was concentrated to dryness to afford 189 ($504 \mathrm{mg}, 2.08 \mathrm{mmol}$, 99\%) as a colorless wax.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.31-4.19 (m, 2H), 4.14 (dd, $J=8.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (br, 1H), 3.33-3.21 (m, 1H), 2.10-1.97 (m, 1H), 1.97-1.84 (m, 1H), 1.80 (br, 2H), 1.77-1.59 (m, 2H), 1.45 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.5,86.4,81.0,77.4,62.5,60.4,48.7,28.6,27.6$, 24.2 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$243.1703, found 243.1699.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2972,2873,1687,1479,1456,1389,1365,1283,1249,1161,1104$, $1045,976,949,915,844,773,590,548,462$.
$[\alpha]^{25} \mathrm{D}=-71.2\left(\mathrm{c}=0.72, \mathrm{CHCl}_{3}\right)$.

N-benzyl-N-(3-(1-((S)-tert-butylsulfinyl)aziridin-2-yl)oxetan-3-yl)-4methylbenzenesulfonamide (195)

To a suspension of trimethylsulfoxoniumiodide (0.245 g, $1.12 \mathrm{mmol}, 2.50 \mathrm{eq})$ in THF (4.46 mL) was added KOtBu (0.125 g , $1.12 \mathrm{mmol}, 2.50 \mathrm{eq}$) at r.t. The mixture was heated to reflux for 2 h .

After cooling to $0^{\circ} \mathrm{C} 118(0.200 \mathrm{~g}, 0.446 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added. The mixture was stirred for 2 h , quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex: $\mathrm{EA}=1: 1$) to give 195 (0.173 g , $0.374 \mathrm{mmol}, 84 \%$) as a mixture of diastereomers. Samples of the pure diastereomers could be obtained by repeated FC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: acetone $\left.=8: 1\right)$.

Less polar diastereomer:
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.07(\mathrm{~m}, 7 \mathrm{H}), 4.88$ $(\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.29(\mathrm{~m}, 4 \mathrm{H}), 3.12(\mathrm{dd}, J=6.9,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39$ (s, 4H), 2.25 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=143.8,137.9,135.9,129.7,128.6,128.4,128.0,127.7$, 77.2, 76.0, 62.8, 57.3, 50.1, 36.4, 29.9, 22.3, 21.6 ppm.

More polar diasteromer
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.04(\mathrm{~m}, 7 \mathrm{H}), 4.94$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.23-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}$, 1H), 1.26 ($\mathrm{s}, 9 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=143.9,137.9,136.0,129.7,128.7,128.3,128.0,127.7$, $77.1,75.5,62.6,57.6,50.1,35.5,22.9,21.7 \mathrm{ppm}$.

Tert-butyl 2-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)aziridine-1carboxylate (199)

To a solution of 195 ($200 \mathrm{mg}, 0.432 \mathrm{mmol}, 1.00 \mathrm{eq}$) (less polar diastereomer) in $\mathrm{MeOH}(2.2 \mathrm{~mL}) / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $540 \mu \mathrm{l}, 2.16 \mathrm{mmol}, 5.00 \mathrm{eq})$. The mixture was stirred for 1 h before quenching with sat. aq. NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. To the residue was added a solution of $\mathrm{Boc}_{2} \mathrm{O}(151 \mu \mathrm{l}$, $0.648 \mathrm{mmol}, 1.50 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$. The mixture was stirred for 12 h . The solvent was removed under reduced pressure. The residue was purified by FC on silica (hex:EA $=4: 1$) to yield 199 ($158 \mathrm{mg}, 0.345 \mathrm{mmol}, 80 \%$ yield) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.06(\mathrm{~m}, 7 \mathrm{H}), 4.98$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=15.7$ Hz, 1H), 4.13 (d, J = 6.9 Hz, 1H), 3.08 (dd, $J=6.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 1H), $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=161.9,143.7,138.1,136.0,129.6,128.6,128.5,127.9$, 127.6, 82.1, 77.1, 74.7, 62.7, 49.7, 40.3, 28.0, 27.7, 21.6 ppm.

N -benzyl- N -(3-(2-(tert-butylthio)-1-(1,1-dimethylethylsulfinamido)ethyl)oxetan-3-yl)-4-methylbenzenesulfonamide (200)

To a solution of 195 ($488 \mathrm{mg}, 1.055 \mathrm{mmol}, 1.00 \mathrm{eq}$) (mixture of diastereomers) in THF (9.59 mL) and DMSO $(0.96 \mathrm{~mL})$ was added tert-butanethiol sodium salt ($329 \mathrm{mg}, 2.64 \mathrm{mmol}, 2.50 \mathrm{eq}$). The mixture was stirred for 19 h . To the mixture was added water (20 mL). The mixture was extracted with EA ($3 \times 30 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica (DCM:acetone $=9: 1$) to yield the desired product 200 as two diastereomers. Combined yield: $389 \mathrm{mg}, 0.704 \mathrm{mmol}, 67 \%$, colorless oils

More polar diasteromer
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 7 \mathrm{H}), 5.07-$ $4.71(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.38$ (s, 3H), 1.34 (s, 9H), 1.28 (s, 9H) ppm.

Tert-butyl (1-(3-(benzylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)carbamate (386)
${ }^{\text {Boc }}{ }_{\text {NH }}$ H To a solution of 195 ($198 \mathrm{mg}, 0.358 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $(1.8 \mathrm{~mL}) / \mathrm{MeOH}(1.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $448 \mu \mathrm{~L}, 1.79 \mathrm{mmol}, 5.00 \mathrm{eq})$. The mixture was stirred for 3.25 h . Sat. aq. NaHCO 3 solution was added and the mixture was extracted with DCM $(3 \times 50 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was redissolved in DCE (1.8 mL) and $\mathrm{Boc}_{2} \mathrm{O}(125 \mu \mathrm{~L}, 0.537 \mathrm{mmol}$, $1.50 \mathrm{eq})$ was added. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 15 h . The crude mixture was purified by FC on silica (hex:EA = 3:1) to yield tert-butyl (1-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)-2-(tert-butylthio)ethyl)carbamate ($143 \mathrm{mg}, 0.261 \mathrm{mmol}, 73 \%$).

To a suspension of this material ($140 \mathrm{mg}, 0.255 \mathrm{mmol}, 1.00 \mathrm{eq}$) in MeOH $(2.32 \mathrm{~mL}) /$ THF $(0.23 \mathrm{~mL})$ was added magnesium turnings $(62.0 \mathrm{mg}, 2.55 \mathrm{mmol}$, 10.0 eq). The mixture was sonicated for 10 min and then stirred at r.t. for 50 min . The mixture became a clear solution after 10 min . The magnesium was consumed and the reaction not complete. Magnesium turnings (62.0 mg , $2.55 \mathrm{mmol}, 10.0 \mathrm{eq})$ were added and the mixture was stirred for 2 h . As the reaction was still not complete, magnesium turnings $(62.0 \mathrm{mg}, 2.55 \mathrm{mmol}$, 10.0 eq) were added. The mixture was stirred for 3 h before quenching with $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The mixture was extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined org layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield 386 (97 mg , $0.246 \mathrm{mmol}, 96 \%$) as a colourless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.53-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-$ $4.62(\mathrm{~m}, 3 \mathrm{H}), 4.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.0,140.2,128.7,128.1,127.3,79.9,78.3,78.0$, 63.7, 53.5, 47.3, 42.7, 30.9, 29.0, 28.5, 28.4, 28.4 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{H}]^{+}$395.2363, found 395.2365.

N -allyl-N-(3-(1-((S)-tert-butylsulfinyl)aziridin-2-yl)oxetan-3-yl)-4methylbenzenesulfonamide (196)

To a suspension of trimethylsulfoxoniumiodide ($2.8 \mathrm{~g}, 13 \mathrm{mmol}$, $2.5 \mathrm{eq})$ in THF (50 mL) was added $\mathrm{KO}^{t} \mathrm{Bu}(1.4 \mathrm{~g}, 13 \mathrm{mmol}, 2.5 \mathrm{eq})$ at room temperature. The mixture was heated to reflux for 3 h . After cooling to $0^{\circ} \mathrm{C}, \mathbf{1 3 9}(2.0 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added and the mixture was stirred for 1 h at this temperature before quenching with water (50 mL) and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$.The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by

FC on silica (hex:EA=1:1) to give 196 ($1.8 \mathrm{~g}, 4.4 \mathrm{mmol}, 87 \%$, d.r. $1: 1.3$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.78-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 5.72-5.51$ $(\mathrm{m}, 2 \mathrm{H}), 5.17-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.98-4.78(\mathrm{~m}, 4 \mathrm{H}), 4.59-4.27(\mathrm{~m}, 4 \mathrm{H}), 3.91-3.65$ $(\mathrm{m}, 4 \mathrm{H}), 3.16(\mathrm{dd}, J=6.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=4.3,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{dd}, J=7.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $10 \mathrm{H}), 1.25(\mathrm{~s}, 8 \mathrm{H})$.*
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=144.1,144.0,137.9,134.3,134.3,129.9,129.9,127.7$, $127.7,118.7,118.5,77.2,77.0,76.9,76.0,75.4,62.4,62.3,57.6,57.2,49.3,49.2,36.4$, 35.8, 30.1, 29.8, 22.8, 22.2, 22.1, 21.7 ppm.*
*reported as a mixture of diastereomers (d.r. 1:1.3)

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 413.1563$, found, 413.1565.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2957,2925,1642,1598,1495,1475,1457,1421,1392,1362,1327$, 1305, 1224, 1184, 1154, 1084, 1026, 1016, 988, 920, 879, 857, 814, 770, 707, 695, 661, 642, 589, 547.

N -allyl-3-(1-(tert-butylsulfinyl)aziridin-2-yl)oxetan-3-amine (202)

To a solution of 196 ($1.8 \mathrm{~g}, 4.4 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{MeOH}(44 \mathrm{~mL})$ were added magnesium turnings ($2.1 \mathrm{~g}, 87 \mathrm{mmol}, 10 \mathrm{eq}$). The mixture was sonicated for 5 min at room temperature before stirring at this temperature for 2 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) and extracted with EA ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to yield $202(0.90 \mathrm{~g}, 3.5 \mathrm{mmol}, 80 \%$, d.r. $1: 1.3$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.99-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{dt}, J=17.2,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.15-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.40(\mathrm{~m}, 7 \mathrm{H}), 3.43(\mathrm{tt}, J=4.0,1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=7.1,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{dd}, J=6.8,0.7 \mathrm{~Hz}$, 1H), $2.45-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ (dd, J $=4.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 19 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=136.6,136.4,116.6,116.2,78.7,78.4,78.3,78.1$, $59.7,59.3,57.6,56.8,46.4,45.6,35.7,34.8,26.9,22.9,22.4,21.5 \mathrm{ppm} .{ }^{*}$
*reported as a mixture of diastereomers (d.r. 1:1.3)

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$259.1475, found, 259.1474.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3303,2956,2872,1671,1645,1475,1458,1419,1391,1363,1225$, $1176,1072,979,919,825,793,701,646,595,560,455$.
(S)-N-((S)-1-(3-(allylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)-2-methylpropane-2-sulfinamide 23a
(S)-N-((R)-1-(3-(allylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)-2-methylpropane-2-sulfinamide 203

To a solution of $202(870 \mathrm{mg}, 3.4 \mathrm{mmol}, 1.0 \mathrm{eq})$ in THF/DMSO $(10 / 1,34 \mathrm{~mL})$ was added tertbutanethiol sodium salt ($1.0 \mathrm{~g}, 8.4 \mathrm{mmol}$, $2.5 \mathrm{eq})$. The suspension was stirred at room temperature for 16.5 h . The reaction mixture was treated with water (50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica (DCM:acetone=4:1 to 1:1) to yield (S)N -((S)-1-(3-(allylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)-2-methylpropane-2sulfinamide (520 mg , $1.5 \mathrm{mmol}, 44 \%$) and (S)-N-((R)-1-(3-(allylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)-2-methylpropane-2-sulfinamide ($560 \mathrm{mg}, 1.6 \mathrm{mmol}$, 48 \%) as colorless oils.
(S)-N-((S)-1-(3-(allylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)-2-methylpropane-2-sulfinamide
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.96$ (ddt, $\left.J=17.1,10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26(\mathrm{dq}, J=$ $17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dq}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=15.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52$ (dd, $J=23.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (ddd, $J=7.7,6.2,5.5 \mathrm{~Hz}$, 1H), 3.47 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{dd}, J=12.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=12.7,6.3$ Hz, 1H), 1.32 (s, 9H), 1.25 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=137.0,115.9,78.4,78.3,63.7,59.3,56.6,45.6,43.3$, 31.0, 30.9, 22.9 ppm .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3248,2960,2872,1671,1460,1391,1365,1164,1054,982,917$, 594.
$[\alpha]^{26}{ }_{\mathrm{D}}+59.1\left(c 0.65, \mathrm{CHCl}_{3}\right)$
(S)-N-((R)-1-(3-(allylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)-2-methylpropane-2-sulfinamide
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=5.94$ (ddt, $\left.J=16.4,10.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26(\mathrm{~d}, J=$ 17.3 Hz, 1H), $5.12(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.59(\mathrm{~m}, 3 \mathrm{H})$, $4.18(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=13.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{qd}, J=13.4,12.7,4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.73(\mathrm{qd}, \mathrm{J}=12.6,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=136.9,116.1,79.2,77.5,63.4,60.9,56.6,45.6,42.8$, 31.0, 30.7, 22.9 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$349.1978, found, 349.1976.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3289,3080,2960,2927,2869,2324,2112,1981,1667,1645,1472$, $1460,1418,1391,1364,1265,1217,1163,1044,980,916,824,794,753,690,598,555$.
$[\alpha]^{25} \mathrm{D}+12.6\left(c 0.77, \mathrm{CHCl}_{3}\right)$

Tert-butyl (1-(3-(allylamino)oxetan-3-yl)-2-(tert-butylthio)ethyl)carbamate (204)

To a solution of $(S, R)-203(0.55 \mathrm{~g}, 1.6 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1 / 1,18 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C} \mathrm{HCl}(4 \mathrm{M}$ in dioxane, $2.0 \mathrm{ml}, 7.9 \mathrm{mmol}, 5.0 \mathrm{eq})$. The mixture was stirred at this temperature for 2 h . The reaction was quenched with saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The resulting light yellow oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.89 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}$ ($0.40 \mathrm{~mL}, 1.7 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and was then stirred for 3 d . The reaction mixture was concentrated and purified by FC on silica (hex:EA=2:1) to yield the (R)-204 (0.386 $\mathrm{g}, 1.120 \mathrm{mmol}, 71 \%$) as a colorless wax.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.22-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.12 (dq, $J=10.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (br s, 1H), $4.63-4.56$ (m, 3H), 4.46 (d, $J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.46$ (s, 9H), 1.31 (s, 9H)
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.0,136.9,116.0,79.9,78.3,78.0,63.5,53.6,45.7$, 42.8, 30.9, 29.0, 28.5 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$345.2206, found, 345.2209.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3322,2967,1710,1493,1460,1392,1366,1250,1167,1045,982$, 918, 776.
$[\alpha]^{26}{ }_{\mathrm{D}}+8.52\left(c 0.64, \mathrm{CHCl}_{3}\right)$

The other enantiomer of 204 was prepared using the same procedure.

Tert-butyl (1-(3-aminooxetan-3-yl)-2-(tert-butylthio)ethyl)carbamate (197)

To a solution of (R)-204 (390 mg, $1.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ and 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione $(530 \mathrm{mg}, 3.4 \mathrm{mmol}$, 3.0 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}(65 \mathrm{mg}, 0.056 \mathrm{mmol}$, $5.0 \mathrm{~mol}-\%$) and the mixture was degassed by passing a stream on N_{2} through the solution. Then, the reaction was heated to $35^{\circ} \mathrm{C}$ for 3.5 h . After cooling to room temperature, the mixture was poured into saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by FC on silica ($100 \% \mathrm{EA}$) to yield (R)-197 (330 mg, $1.1 \mathrm{mmol}, 96 \%$) as a colorless crystalline solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.07(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.13(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}$, 2H), 1.43 ($\mathrm{s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.8,83.7,82.6,79.7,59.4,54.4,42.8,30.9,29.0$, 28.5 ppm

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$327.1713, found, 327.1714.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3308,2963,2928,2868,1705,1518,1460,1391,1365,1337,1248$, 1166, 1048, 1012, 977, 867, 833, 778, 721, 594.
$[\alpha]^{26} \mathrm{D}+21.0\left(c 0.70, \mathrm{CHCl}_{3}\right)$
m.p. $120^{\circ} \mathrm{C}$

The other enantiomer of 197 was prepared using the same procedure.
N-benzyl-N-(3-((1,3-dioxoisoindolin-2-yl)methyl)oxetan-3-yl)-4methylbenzenesulfonamide (209) ${ }^{280}$

To a solution of $131(1.00 \mathrm{~g}, 2.88 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF (20.5 mL) were added phthalimide ($593 \mathrm{mg}, 4.03 \mathrm{mmol}, 1.40 \mathrm{eq}$) and triphenylphosphine ($981 \mathrm{mg}, 3.74 \mathrm{mmol}, 1.30 \mathrm{eq}$). The mixture was stirred at room temperature for 5 min and then cooled to $0^{\circ} \mathrm{C}$. Subsequently, DIAD ($728 \mathrm{~mL}, 3.74 \mathrm{mmol}, 1.30 \mathrm{eq}$) was added drop wise over 10 min . After complete addition, the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at ambient temperature for 21 h . After evaporation of the solvent, the residue was submitted to FC on silica gel (hex:EA=2:1). The product containing fractions were combined, evaporated to dryness, and the residue was triturated with MeOH to remove the diisopropyl hydrazine-1,2-dicarboxylate byproduct. The solid was filtered off, washed with MeOH and dried in vacuo to afford 209 ($1.13 \mathrm{~g}, 2.37 \mathrm{mmol}, 82 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=169.0,143.7,138.2,135.6,134.3,132.2,129.6,128.7$, 128.1, 127.5, 127.5, 123.7, 78.5, 64.1, 49.7, 41.2, 21.6 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 477.1479$, found 477.1480.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2890,1714,1426,1400,1371,1352,1329,1154,1090,1071,982$, 947, 930, 901, 807, 771, 752, 723, 715, 700, 669, 645, 564, 542, 531.
m.p. $=166^{\circ} \mathrm{C}$

Tert-butyl ((3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)methyl)carbamate (210) ${ }^{280}$
 solid had dissolved completely and before after 30 min , a white precipitate started to form again. After stirring fat $65^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled to ambient temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solid was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were concentrated under reduced pressure. The residue was dissolved up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and insolubles were filtered off again and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and concentrated under reduced pressure to leave an orange oil.

The oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.50 \mathrm{~mL})$ and a solution of di-tert-butyl dicarbonate ($756 \mathrm{mg}, 3.46 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.90 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 45 min . The solvent was removed under reduced pressure and the residue was purifed by FC on silica gel (hex:EA = 2:1) to afford $210(953 \mathrm{mg}, 2.13 \mathrm{mmol}, 92 \%)$ as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.13-$ 7.03 (m, 2H), 5.17 (br, 1H), 4.78 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.32$ (s, $2 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.5,143.9,137.8,135.9,129.7,128.6,128.1,127.9$, 127.6, 79.8, 78.1, 63.7, 50.0, 45.2, 28.5, 21.6 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 469.1768$, found 469.1765 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3305,1975,1709,1536,1326,1304,1271,1251,1144,1091,997$, $975,925,903,862,811,783,755,700,669,580,560,540$.
m.p. $=127^{\circ} \mathrm{C}$.

Tert-butyl ((3-(benzylamino)oxetan-3-yl)methyl)carbamate (211) ${ }^{280}$

Magnesium turnings ($513 \mathrm{mg}, 21.1 \mathrm{mmol}, 10.0 \mathrm{eq}$) were added to a solution of $210(942 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{MeOH}(19.0 \mathrm{~mL})$ and THF (1.90 mL). The mixture was stirred in a room temperature water bath for 6 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$-solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure to obtain 211 (615 mg , 2.10 mmol , quant.) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{br}, 1 \mathrm{H})$, $4.51(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, 2H), 1.74 (br, 1H), 1.46 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=156.5,139.8,128.8,128.2,127.5,79.9,79.7,60.0$, 47.3, 44.3, 28.5 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$293.1860, found 293.1859.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3322,2950,2872,1702,1543,1451,1368,1248,1159,996,975$, 956, 839, 766, 736, 704, 590, 510.
m.p. $=108^{\circ} \mathrm{C}$.

Tert-butyl ((3-aminooxetan-3-yl)methyl)carbamate (208) ${ }^{280}$

Pd-C (10\% Pd, $111 \mathrm{mg}, 0.10 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%)$ was added to a solution of 211 ($609 \mathrm{mg}, 2.08 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(20.8 \mathrm{~mL})$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 9 h . Then, more Pd-C ($10 \% \mathrm{Pd}, 111 \mathrm{mg}, 0.10 \mathrm{mmol}, 5.00 \mathrm{~mol} \%$) was added and stirring was
continued overnight (13 h) under an atmophere of H_{2} (balloon). The mixture was filtered over Celite®, washed with EA and the filtrate was concentrated to dryness to afford 208 ($421 \mathrm{mg}, 2.05 \mathrm{mmol}, 99 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.96(\mathrm{br}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=$ 6.4 Hz, 2H), $3.44(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.6,82.8,79.8,56.6,47.2,28.5 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$203.1390, found 203.1385.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3317,2975,2945,2873,2360,1700,1548,1392,1365,1269,1253$, 1163, 1006, 962, 908, 861, 826, 668.
m.p. $=76-78{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Cyclohexyl 4-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)-4-((S)-1,1-dimethylethylsulfinamido)but-2-ynoate (214)

To a solution of cyclohexyl propiolate $(0.210 \mathrm{~g}, 1.380 \mathrm{mmol}$, $2.00 \mathrm{eq})$ in THF $(3.45 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.819 \mathrm{~mL}, 1.31 \mathrm{mmol}, 1.90 \mathrm{eq})$ drop wise. The mixture was stirred for 60 min before adding $118(0.309 \mathrm{~g}, 0.690 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in THF (3.45 mL). The light yellow solution was stirred for 15 min before quenching cold with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL). The mixture was extracted with EA ($3 \times 25 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA = 1:1) to yield 214 ($0.348 \mathrm{~g}, 0.579 \mathrm{mmol}, 84 \%$) as a colorless oil.
${ }^{1}{ }^{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.63-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.07(\mathrm{~m}, 7 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62-4.50(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.34$ (m, 7H), $1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

Cyclohexyl 4-(3-(N-benzyl-4-methylphenylsulfonamido)oxetan-3-yl)-4-((tert-butoxycarbonyl)amino)but-2-ynoate (215)

To a solution of $214(0.319 \mathrm{~g}, 0.531 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.65 \mathrm{~mL}) / \mathrm{MeOH}(2.65 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $0.664 \mathrm{~mL}, 2.65 \mathrm{mmol}, 5.00 \mathrm{eq})$. The mixture was stirred for 2 h . Sat. aq. NaHCO_{3} solution $(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(0.185 \mathrm{ml}, 0.796 \mathrm{mmol}, 1.50 \mathrm{eq})$ was added. The mixture was stirred at r.t. for21 h . The crude mixture was purified by FC on silica (hex:EA $=3: 1$) to yield $215(0.253 \mathrm{~g}, 0.424 \mathrm{mmol}, 80 \%)$ as a colorless foam.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 7 \mathrm{H}), 5.58$ $(\mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.75(\mathrm{~m}, 2 \mathrm{H})$, $4.74-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $1.96-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.49-1.24(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=155.1,152.4,143.9,137.5,136.1,129.7,128.7,127.8$, $127.8,83.3,81.0,77.7,76.8,76.4,75.3,65.6,50.8,46.9,31.5,31.5,28.4,27.5,25.3$, 23.8, 21.6 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{H}]^{+}$614.2894, found 614.2896.
N-benzyl-N-(3-(5-(dibenzylamino)-1-((S)-1,1-dimethylethylsulfinamido)pent-2-yn-1-yl)oxetan-3-yl)-4-methylbenzenesulfonamide (219)

To a solution of N,N-dibenzylbut-3-yn-1-amine (0.126 g, $0.505 \mathrm{mmol}, 2.00 \mathrm{eq})$ in THF (1.26 mL) at $-78^{\circ} \mathrm{C}$ was added $n-$ BuLi (1.6 M in hexanes, $0.300 \mathrm{~mL}, 0.480 \mathrm{mmol}, 1.90 \mathrm{eq}$) drop wise. The mixture was stirred for 60 min before adding 118 $(0.113 \mathrm{~g}, 0.253 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF $(1.26 \mathrm{~mL})$. The light yellow solution was
stirred for 5 min before quenching cold with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The mixture was extracted with EA ($3 \times 25 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA = 1:1) to yield $219(0.167 \mathrm{~g}, 0.239 \mathrm{mmol}, 95 \%)$ as a mixture of diastereomers.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.62$ - 7.07 (m, 19H), $4.96-4.79(\mathrm{~m}, 3 \mathrm{H}), 4.68-$ 4.57 (m, 2H), $4.50-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.40$ $(\mathrm{m}, 2 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=143.8,143.7,139.4,139.3,137.5,136.7,136.0,129.5$, 129.5, 128.7, 128.7, 128.5, 128.4, 128.4, 128.3, 128.3, 127.8, 127.7, 127.6, 127.5, 127.3, 127.0, 127.0, 87.6, 77.2, 76.4, 66.6, 65.9, 58.1, 58.1, 56.9, 56.2, 52.0, 51.8, 51.8, 51.1, 51.0, 22.7, 21.5, 21.5, 17.5, 17.4 ppm .
(2R,3S)-benzyl 3-methyl-2-(((trifluoromethyl)sulfonyl)oxy)pentanoate (230)

To a solution of 234 ($788 \mathrm{mg}, 3.55 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) in \mathrm{CH}_{2} \mathrm{Cl}_{2}(11.8 \mathrm{~mL})$ was added 2,6-lutidine ($495 \mu \mathrm{l}, 4.25 \mathrm{mmol}, 1.20 \mathrm{eq}$.) at $-78^{\circ} \mathrm{C}$, followed by dropwise addition of triflic anhydride ($719 \mu \mathrm{l}$, $4.25 \mathrm{mmol}, 1.20 \mathrm{eq}$.$) . The resulting mixture was stirred at -78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the mixture was allowed to warm to r.t. before $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residual oil was purified by FC on silica (hexane:EA 10:1) to yield 230 ($1.19 \mathrm{~g}, 3.37 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.46-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=167.0,134.4,128.9,128.7,128.7,118.44(\mathrm{q}, J=319.5$ $\mathrm{Hz}), 86.5,68.2,37.8,25.5,13.4,11.4 \mathrm{ppm}$.
${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=-74.68 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$377.0641, found, 377.0645.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3037,2973,2942,2884,1763,1499,1457,1417,1389,1337,1282$, $1243,1204,1145,1094,946,914,860,786,753,698,626,501,478$.
$[\alpha]^{21} \mathrm{D} 31.4\left(c 0.65, \mathrm{CHCl}_{3}\right)$
(R)-methyl 2-(((trifluoromethyl)sulfonyl)oxy)-3-((triisopropylsilyl)oxy)propanoate (239)
 $1.20 \mathrm{eq})$ at $-78^{\circ} \mathrm{C}$, followed by drop wise addition of $\mathrm{Tf}_{2} \mathrm{O}(74.1 \mu \mathrm{l}, 0.438 \mathrm{mmol}$, 1.20 eq) over 10 min . The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The cooling bath was removed and the mixture was allowed to warm to r.t. before $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The residual oil was purified by FC on SiO_{2} (hexane: $\mathrm{EA}=4: 1$) to yield $239(100 \mathrm{mg}, 0.245 \mathrm{mmol}, 67 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.20(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.09(\mathrm{~m}, 2 \mathrm{H})$, 3.85 (s, 3H), 1.09 - 0.99 (m, 21H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=165.8,123.4,120.2,117.0,113.9,84.2,63.4,53.4$, $17.8,11.9 \mathrm{ppm}$.
(R)-methyl 3-(4-(((benzyloxy)carbonyl)oxy)phenyl)-2-(((trifluoromethyl)sulfonyl)oxy)propanoate (244)
 hydroxyphenyl)propanoate ${ }^{281}(67 \mathrm{mg}, ~ 0.34 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(47.6 \mu \mathrm{l}, 0.34 \mathrm{mmol}, 1.0 \mathrm{eq}$. followed by dropwise $\mathrm{Cbz}-\mathrm{Cl}(48.7 \mu \mathrm{l}, 0.34 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) . The mixture was$ stirred for 3 h before quenching with water $/ 1 \mathrm{~m} \mathrm{NaHSO}_{4}$ (1:1, 20 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield (R)-methyl 3-(4-(((benzyloxy)carbonyl)oxy)phenyl)-2-hydroxypropanoate (110 mg, 0.333 mmol , $98 \%)$. The crude product was used in the next step without further purification.

To a solution of (R)-methyl 3-(4-(((benzyloxy)carbonyl)oxy)phenyl)-2hydroxypropanoate ($240 \mathrm{mg}, 0.71 \mathrm{mmol}, 1.0 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.95 \mathrm{~mL})$ was added 2,6-lutidine ($99 \mu \mathrm{l}, 0.85 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $-78^{\circ} \mathrm{C}$, followed by dropwise addition of $\mathrm{Tf}_{2} \mathrm{O}(0.14 \mathrm{~mL}, 0.85 \mathrm{mmol}, 1.2 \mathrm{eq})$ over 10 min . The resulting mixture was stirred at this temperature for further 10 min before water (10 mL) was added. After warming to room temperature, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by FC on silica (hex:EA=6:1) to yield $244(0.28 \mathrm{~g}, 0.60 \mathrm{mmol}, 84 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.47-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 4 \mathrm{H}), 5.27(\mathrm{~s}$, 2H), 5.24 (dd, $J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=14.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (dd, $J=14.7,8.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=167.0,153.5,151.0,134.8,131.3,130.7,129.0,128.9$, $128.7,121.6,118.36(\mathrm{q}, \mathrm{J}=319.8 \mathrm{~Hz}), 83.6,70.6,53.5,37.7 \mathrm{ppm}$.
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-75.05 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 480.0934$, found, 480.0934.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3441,3026,2925,1732,1610,1511,1495,1437,1227,1176,1029$, 830, 751, 670, 640, 519.
$[\alpha]^{26} \mathrm{D}-43.1\left(c 0.70, \mathrm{CHCl}_{3}\right)$

General Procedure for the Synthesis of Dipeptide Building Blocks 73 (GP 1):

To a solution of the triflate or bromide (2.0 eq) in acetonitrile ($0.40 \mathrm{M}-0.5 \mathrm{M}$) were added at room temperature diisopropylethylamine (2.0 eq) and the diamine building block (1.0 eq). The mixture was stirred at $30^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ for $1 \mathrm{~d}-5 \mathrm{~d}$. The reaction mixture was then directly purified by FC on silica.
(S)-benzyl

2-((3-(((tert-butoxycarbonyl)amino)methyl)oxetan-3yl)amino)propanoate (73a)

73a was prepared as a colorless oil ($57 \mathrm{mg}, 0.156 \mathrm{mmol}, 78 \%$) according GP 1 using 222 ($137 \mathrm{mg}, 0.440 \mathrm{mmol}, 2.20 \mathrm{eq}$), diisopropylethylamine $(77 \mu \mathrm{~L}, \quad 0.440 \mathrm{mmol}, 2.20 \mathrm{eq}), 208$ ($40 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00 \mathrm{eq}$) and acetonitrile $(0.50 \mathrm{~mL})$. The reaction time was 28 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA $=2: 1 \rightarrow 1: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.44$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66-3.36(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=176.3,135.4,128.8,128.7,128.6,80.1,80.0,67.2$, 59.6, 51.2, 44.7, 28.5, 20.8 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+365.2071$, found, 365.2076.
(S)-benzyl 2-((3-((S)-1-((tert-butoxycarbonyl)amino)-2-phenylethyl)oxetan-3-yl)amino)-4-methylpentanoate (73b) ${ }^{280}$

The compound was prepared from 158 (58.5 mg , $0.200 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $224(142 \mathrm{mg}, 0.400 \mathrm{mmol}$, $2.00 \mathrm{eq})$ following GP 1. After stirring for 24 h at $30^{\circ} \mathrm{C}$, the mixture was purified by FC on silica gel (hex: $\mathrm{EA}=3: 1$) to afford $73 \mathrm{~b}(62.0 \mathrm{mg}, 0.125 \mathrm{mmol}, 62 \%)$ as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.45-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.16$ (m, 5H), 4.96 (d, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.21(\mathrm{~m}, 4 \mathrm{H})$, 4.17 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.57(\mathrm{~m}, 1 \mathrm{H})$, $1.97-1.81(b r, 1 H), 1.83-1.68(m, 1 H), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.36$ (s, 9H), 1.01-0.90 (m, 6H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=176.9,156.0,138.1,135.6,129.4,128.7,128.6,128.6$, 126.7, 79.6, 79.2, 79.2, 67.1, 63.0, 56.7, 54.5, 44.1, 36.0, 28.4, 25.0, 23.1, 22.4 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 497.3010$, found 497.3013.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3315,2957,2929,2872,2398,1741,1712,1546,1510,1454,1366$, 1266, 1247, 1162, 1064, 1008, 964, 742, 698.
$[\alpha]^{25} \mathrm{D}=-20.7\left(\mathrm{c}=0.51, \mathrm{CHCl}_{3}\right)$.
m.p. $=134-135^{\circ} \mathrm{C}$ (hexane).

Benzyl 2-((3-(((tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)acetate (73c) $)^{280}$

$0.400 \mathrm{mmol}, 2.00 \mathrm{eq}$) following GP 1. After stirring for 24 h at $30^{\circ} \mathrm{C}$, the mixture was purified by FC on silica gel (hex:EA=3:1) to afford 73c (64.6 mg , $0.159 \mathrm{mmol}, 79 \%$) as a colorless wax.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 1.44 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.40,156.44,135.35,128.83,128.74,128.61$, $79.74,79.35,77.36,67.23,59.73,44.87,44.68,28.50 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$373.1734, found 373.1733.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3333,2975,2873,1739,1705,1499,1391,1365,1247,1165,974$, 732, 697.
(S)-benzyl 2-((3-(((tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)-3phenylpropanoate (73d) ${ }^{280}$

The compound was prepared from 208 (60.0 mg , $0.297 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $226(230 \mathrm{mg}, 0.593 \mathrm{mmol}$, $2.00 \mathrm{eq})$ following GP 1. After stirring for 22 h at r.t., the mixture was purified by FC on silica gel (hex:EA $=2: 1$) to afford 73 d (113 mg , $0.257 \mathrm{mmol}, 87 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=$ 7.0 Hz, 2H), 5.13 (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.42(\mathrm{~m}, 1 \mathrm{H})$, 4.28-4.19 (m, 2H), $4.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=8.6$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{dd}, \mathrm{J}=13.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, \mathrm{J}=13.4,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=175.3,156.3,137.1,135.2,129.4,128.8,128.7,128.7$, 128.7, 127.2, 80.0, 79.5, 79.4, 67.3, 59.5, 57.4, 44.4, 40.8, 28.5 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 441.2384$, found 441.2387 .
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3315,2957,2929,2872,2398,1741,1712,1546,153428,3314$, 2979, 1718, 1700, 1509, 1364, 1269, 1246, 1231, 1161, 1055, 996, 983, 966, 944, 860, 756, 698.
$[\alpha]^{24} \mathrm{D}=-3.9\left(\mathrm{c}=0.59, \mathrm{CHCl}_{3}\right)$.
m.p. $=109-110^{\circ} \mathrm{C}$ (hexane).
(S)-benzyl 2-((3-((S)-1-((tert-butoxycarbonyl)amino)-2-methylpropyl)oxetan-3yl)amino) propanoate (73e) ${ }^{280}$
 the mixture was purified by FC on silica gel (hex:EA $=3: 1$) to afford $73 \mathrm{e}(64.6 \mathrm{mg}$, $0.159 \mathrm{mmol}, 79 \%$) as a colorless wax.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ (br, 1H), 1.45 (s, 9H), 1.38 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.78$ (m, 6H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.6,156.6,135.7,128.8,128.6,128.4,80.4,79.4$, 79.3, 67.1, 63.6, 60.1, 51.3, 29.8, 28.5, 21.5, 20.3, 18.8 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 407.2540$, found 407.2536 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3330,2964,2876,2360,2341,1732,1707,1498,1456,1391,1366$, 1247, 1172, 986, 736, 699.
$[\alpha]^{20} \mathrm{D}=-27.2\left(\mathrm{c}=0.57, \mathrm{CHCl}_{3}\right)$.
(R)-benzyl 2-((3-((S)-1-((tert-butoxycarbonyl)amino)-2-methylpropyl)oxetan-3yl)amino)propanoate (epi-73e) $)^{280}$

The compound was prepared from 145 (48.9 mg , $0.200 \mathrm{mmol}, 1.00 \mathrm{eq})$ and ent-222 ($125 \mathrm{mg}, 0.400 \mathrm{mmol}$, $2.00 \mathrm{eq})$ following GP 1 . After stirring for 24 h at $30^{\circ} \mathrm{C}$, the mixture was purified by FC on silica gel (hex:EA $=3: 1$) to afford epi-73e ($51.5 \mathrm{mg}, 0.127 \mathrm{mmol}, 63 \%$) as a colorless wax.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.46-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ $(\mathrm{d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79 (dd, $J=9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.37$ (d, J $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=177.4,156.3,135.6,128.8,128.6,128.4,79.7,79.3$, 79.3, 67.3, 63.6, 61.4, 50.5, 30.7, 28.5, 22.3, 20.1, 19.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 407.2540$, found 407.2541 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3340,2964,2878,2359,1731,1706,1497,1455,1391,1366,1248$, $1172,985,752,699$.
$[\alpha]^{22} \mathrm{D}=24.6\left(c=0.53, \mathrm{CHCl}_{3}\right)$.
(2S,3S)-benzyl 2-((3-((S)-1-((tert-butoxycarbonyl)amino)-2-phenylethyl)oxetan-3-yl)amino)-3-methylpentanoate (73f) ${ }^{280}$

To a solution of 158 ($58.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$) in MeCN (0.40 mL) were added N, N,-diisoproylethylamine ($103 \mathrm{mg}, 140 \mu \mathrm{~L}, 0.80 \mathrm{mmol}, 1.00 \mathrm{eq}$) and $230(283 \mathrm{mg}$, $0.80 \mathrm{mmol}, 4.00 \mathrm{eq}$) and the mixture was heated to $50^{\circ} \mathrm{C}$ for 96 h . After cooling to room temperature, the mixture was purified by FC on
silica gel (hex:EA $=3: 1$) to afford $73 \mathrm{f}(39.4 \mathrm{mg}, 0.079 \mathrm{mmol}, 40 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.50-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.23(\mathrm{~m}, 4 \mathrm{H})$, $4.20(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.60(\mathrm{~m}, 1 \mathrm{H})$, 2.13-1.86 (m, 1H), 1.86-1.71 (m, 1H), 1.59-1.43 (m, 1H), $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.06(\mathrm{~m}$, $1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=176.3,156.0,138.2,135.6,129.4,128.7,128.7,128.6$, $128.6,126.6,79.6,79.2,79.0,67.1,63.1,60.5,57.0,39.6,36.0,28.4,25.2,16.1,11.9$ ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 519.2829$, found 519.2827.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3333,2962,2885,1736,1716,1539,1500,1454,1251,1164,1147$, 968, 739, 700.
$[\alpha]^{24} \mathrm{D}=-21.4\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right)$.
m.p. $=114-115^{\circ} \mathrm{C}$ (hexane).
(S)-benzyl 2-((3-((S)-1-((tert-butoxycarbonyl)amino)-2-phenylethyl)oxetan-3-yl)amino)-3-phenylpropanoate (73g) ${ }^{280}$

The compound was prepared from $158(58.5 \mathrm{mg}$, $0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$) and 226 ($155 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$) following GP 1. After stirring for 24 h at $30^{\circ} \mathrm{C}$, the mixture was purified by FC on silica gel (hex:EA $=3: 1$) to afford 73 g ($71.2 \mathrm{mg}, 0.134 \mathrm{mmol}, 67 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.07-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.17$
$(\mathrm{dd}, J=13.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=13.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{br}$, 1H), 1.37 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=175.6,155.9,138.0,137.2,135.4,129.6,129.1,128.8$, $128.8,128.7,128.7,128.5,127.2,126.5,79.5,79.3,78.6,67.3,62.5,57.6,57.3,40.8$, 36.1, 28.4 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 531.2853$, found 531.2858.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3339,2972,1712,1496,1455,1366,1248,1169,980,751,699$.
$[\alpha]^{22} \mathrm{D}=-20.3\left(c=0.56, \mathrm{CHCl}_{3}\right)$.
m.p. $=128^{\circ} \mathrm{C}$
(S)-methyl

2-((3-(2-(4-(benzyloxy)phenyl)-1-((tert-butoxycarbonyl)amino)ethyl)oxetan-3-yl)amino)acetate (73h)

The compound was prepared from 166 (50.0 mg , $0.125 \mathrm{mmol}, 1.00 \mathrm{eq}$) and methyl 2-bromoacetate ($38.4 \mathrm{mg}, 0.251 \mathrm{mmol}, 2.00 \mathrm{eq}$) following GP 1 . After stirring for 7 d at room temperature, the mixture was purified by FC on silica gel (hex:EA $=2: 3$) to afford 73 h (51.1 mg , $0.109 \mathrm{mmol}, 87 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.47 .35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2$ Hz, 2H), 6.95-6.85 (m, 2H), 5.03 (s, 2H), 4.89 (d, J = $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.36$ (m, 2H), 4.37-4.12 (m, 3H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{br}, 1 \mathrm{H})$, 1.37 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=173.28,157.76,155.89,137.17,130.22,130.03$, 128.69, 128.05, 127.57, 115.12, 79.64, 78.56, 77.81, 70.18, 62.79, 56.56, 52.40, 44.74, 35.36, 28.42 ppm.

HRMS (ESI +): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 471.2490$, found 471.2490 .
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3332,2956,2360,2341,1742,1705,1614,1512,1455,1439,1364$, 1242, 1219, 1173, 967, 741, 696.
$[\alpha]^{24} \mathrm{D}=-4.5\left(\mathrm{c}=0.83, \mathrm{CHCl}_{3}\right)$.
m.p. $=96-98^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S)-benzyl 2-((3-((S)-1-((tert-butoxycarbonyl)amino)ethyl)oxetan-3-yl)amino)-3methylbutanoate (73i) ${ }^{280}$

To a solution of 122 ($43.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeCN}(0.40 \mathrm{~mL})$ were added N, N,-diisoproylethylamine ($103 \mathrm{mg}, 140 \mu \mathrm{~L}, 0.80 \mathrm{mmol}, 4.00 \mathrm{eq}$) and $225(272 \mathrm{mg}$, $0.80 \mathrm{mmol}, 4.00 \mathrm{eq})$ and the mixture was heated to $50^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the mixture was purified by FC on silica gel (hex:EA = 3:1) to afford $73 \mathbf{i}(40,45.2 \mathrm{mg}, 0.111 \mathrm{mmol}, 56 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.45-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ $(\mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.94$ (m, 1H), 1.94-1.80 (br, 1H), $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.2,156.0,135.6,128.8,128.7,128.6,79.6,78.9$, 78.5, 67.1, 62.9, 61.2, 50.9, 32.4, 28.5, 19.6, 18.1, 15.2 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 407.2540$, found 407.2543.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3353,2964,2878,2398,1713,1552,1504,1457,1366,1254,1238$, 1166, 1077, 1062, 972, 699.
$[\alpha]^{24} \mathrm{D}=-22.6\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right)$.
m.p. $=80-82^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S)-methyl 3-(4-(((benzyloxy)carbonyl)oxy)phenyl)-2-((3-((S)-1-((tert-butoxycarbonyl)amino)-3-methylbutyl)oxetan-3-yl)amino)propanoate (73j)

73 j was prepared as a colorless oil ($83 \mathrm{mg}, 0.15 \mathrm{mmol}, 73 \%$) according to GP 1 using $244(185 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, diisopropylethylamine $(70 \mu \mathrm{~L}, \quad 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}), 149$ ($52 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$) and acetonitrile $(0.50 \mathrm{~mL})$. The reaction time was 48 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA=6:1 to $2: 1$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) $\delta=7.46$ - $7.34(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.07(\mathrm{~m}, 4 \mathrm{H}), 5.26$ (s, $2 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=6.9$ Hz, 1H), $4.05-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.84-3.76$ (m, 1H), 3.71 (s, 3H), 3.18 - 2.71 (m, 2H), $1.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.18-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.0$ Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=175.9,156.1,153.5,150.1,135.1,134.8,130.5,128.8$, 128.7, 128.5, 120.9, 79.1, 78.2, 71.1, 70.64, 63.1, 57.4, 53.3, 52.3, 40.4, 38.9, 28.4, 24.9, 23.7, 21.6 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 571.3014$, found, 571.3011.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3337,3035,2956,2872,1762,1738,1709,1606,1508,1456,1380$, 1367, 1329, 1235, 1216, 1201, 1167, 1109, 1082, 1046, 1018, 1003, 848, 752, 697, 529.
$[\alpha]^{27} \mathrm{D}-23.1\left(c 0.87, \mathrm{CHCl}_{3}\right)$
(S)-tert-butyl

3-(((benzyloxy)carbonyl)amino)-3-(3-((2-methoxy-2-oxoethyl)amino)oxetan-3-yl)propanoate (73k)
 73k was prepared as a colorless oil ($76 \mathrm{mg}, 0.18 \mathrm{mmol}, 90 \%$) according to GP 1 using methyl 2-bromoacetate $(61 \mathrm{mg}$, $0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), diisopropylethylamine ($70 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$, $2.0 \mathrm{eq}), \quad 179(70 \mathrm{mg}, \quad 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and acetonitrile $(0.40 \mathrm{~mL})$. The reaction time was 24 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA=1:1).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.55(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-$ $5.02(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.39(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=$ $3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{dd}, \mathrm{J}=15.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=15.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}$, 9H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=173.0,170.7,156.4,136.4,128.7,128.3,128.3,81.6$, $77.8,77.7,67.2,63.1,52.8,52.4,44.8,36.2,28.1 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 445.1945$, found, 445.1951.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3334,2956,1726,1537,1456,1438,1393,1368,1241,1157,1048$, 1028, 983, 846, 740, 699, 496.
$[\alpha]^{27}{ }^{2}-0.88\left(c 0.63, \mathrm{CHCl}_{3}\right)$
(S)-tert-butyl 2-((3-(1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)oxetan-3yl)amino)acetate (731)

$2.0 \mathrm{eq}), 157(65 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and acetonitrile $(0.50 \mathrm{~mL})$. The reaction time was 48 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA=3:1).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.22(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (d, J = $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.51-4.36(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.66(\mathrm{~m}, 2 \mathrm{H})$, $1.50(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.1,156.4,137.6,136.6,129.2,128.7,128.6,128.2$, 128.0, 126.9, 82.1, 78.7, 77.8, 66.9, 62.8, 57.7, 45.7, 36.3, 28.2 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 441.2384$, found, 441.2382.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3331,2928,2877,1725,1537,1497,1455,1394,1368,1333,1242$, 1156, 1067, 1028, 981, 843, 773, 747, 698, 603.
$[\alpha]^{26}{ }_{\mathrm{D}}-11.4\left(c 0.58, \mathrm{CHCl}_{3}\right)$
(S)-benzyl 2-((3-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)oxetan-3-yl)amino)-4-methylpentanoate (73m)

73 m was prepared as a colorless oil ($55 \mathrm{mg}, 0.10 \mathrm{mmol}, 52 \%$) according to GP 1 using 224 ($142 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), diisopropylethylamine ($70 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), 157 (65 mg , $0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and acetonitrile $(0.50 \mathrm{~mL})$. The reaction time was 48 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA $=5: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.47-7.01(\mathrm{~m}, 15 \mathrm{H}), 5.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-$ $4.96(\mathrm{~m}, 4 \mathrm{H}), 4.46-4.22(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.93-$ $2.73(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{dd}$, $J=6.6,5.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=176.9,156.6,137.8,135.0,129.3,128.8,128.8,128.7$, 128.6, 128.6, 128.6, 128.1, 128.0, 126.8, 79.3, 79.1, 67.2, 66.8, 62.9, 57.7, 54.6, 44.0, 36.0, 29.8, 25.0, 23.1, 22.3 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 531.2853$, found, 531.2850.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3337,3064,3032,2958,2872,1996,1729,1497,1455,1369,1333$, $1242,1168,1028,981,742,698,605,457$.
$[\alpha]^{23}{ }^{\mathrm{D}}-14.9\left(c \quad 0.65, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl 2-((3-((S)-1-(((benzyloxy)carbonyl)amino)-2-phenylethyl)oxetan-3-yl)amino)-4-methylpentanoate (73n)

73n was prepared as a colorless wax ($50 \mathrm{mg}, 0.20 \mathrm{mmol}, 50 \%$) according to GP 1 using 229 ($70 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.1 \mathrm{eq}$), diisopropylethylamine ($40 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 1.1 \mathrm{eq}$), 157 (65 mg , $0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and acetonitrile (0.50 mL). After 2.5 d again $229(70 \mathrm{mg}$, $0.40 \mathrm{mmol}, 1.1 \mathrm{eq}$) and diisopropylethylamine ($40 \mu \mathrm{~L}, 0.22 \mathrm{mmol}, 1.1 \mathrm{eq}$) were added. The total reaction time was 3.5 d at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA=2:1).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.44(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-$ $4.99(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.35(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.34(\mathrm{~m}, 11 \mathrm{H})$, $1.01-0.93(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.6,156.6,137.9,136.8,129.3,128.6,128.6,128.1$, $127.9,126.8,81.6,79.5,79.3,66.7,62.9,57.8,55.2,44.1,36.1,28.1,25.0,23.1,22.4$ ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$497.3010, found, 497.3002.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3332,3064,3031,2957,2928,2871,1724,1605,1537,1497,1455$, 1393, 1368, 1331, 1243, 1151, 1083, 1064, 1029, 983, 921, 844, 774, 742, 698, 606, 533, 469.
$[\alpha]^{27} \mathrm{D}-29.1\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
(S)-methyl

2-((3-(1-(((benzyloxy)carbonyl)amino)-2-(4-(benzyloxy)phenyl)ethyl)oxetan-3-yl)amino)acetate (73o)
$\mathrm{Cbz}_{{ }_{\mathrm{NH}}} \mathrm{H} \quad 73 \mathrm{o}$ was prepared as a colorless solid ($73 \mathrm{mg}, 0.15 \mathrm{mmol}, 72 \%$) according to GP 1 using methyl 2-bromoacetate $(38 \mu \mathrm{~L}$, $0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), diisopropylethylamine ($70 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$, $2.0 \mathrm{eq}), 165(65 \mathrm{mg}, ~ 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and acetonitrile $(0.50 \mathrm{~mL})$. The reaction time was 48 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA $=5: 1$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.48-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.51-4.34(\mathrm{~m}, 3 \mathrm{H})$, $4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.56(\mathrm{~m}, 5 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=6.6,2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=173.3,157.9,137.1,136.6,130.2,128.7,128.7,128.2$, $128.1,128.1,127.6,115.2,78.6,77.8,70.2,66.9,62.7,52.5,44.7,35.4 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$505.2333, found, 505.2329.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3336,3033,2954,1718,1608,1512,1455,1367,1241,1178,1027$, 981, 822, 740, 698, 553, 508, 458.
$[\alpha]^{24} \mathrm{D}-10.6\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
m.p. $111^{\circ} \mathrm{C}$.
(S)-tert-butyl 2-(3-(((S)-1-(benzyloxy)-1-oxo-3-phenylpropan-2-yl)amino)oxetan-3-yl)pyrrolidine-1-carboxylate (73p) ${ }^{280}$

The compound was prepared from 189 (48.5 mg , $0.200 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $226(155 \mathrm{mg}, \quad 0.400 \mathrm{mmol}$, $2.00 \mathrm{eq})$ following GP 1 . After stirring for 24 h at $30^{\circ} \mathrm{C}$, the mixture was purified by FC on deactivated silica gel (hex:EA $=4: 1$) and subsequently by FC on silica gel (hex:EA $=3: 1$) to afford 73 p (57.6 mg , $0.120 \mathrm{mmol}, 60 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, 4.94-4.64 (m, 1H), 4.35 (d, J = 7.4 Hz, 1H), 4.28-4.12 (m, 1H), 4.12-3.93 (m, 2H), 3.79 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.1,4.9$ Hz, 1H), 2.78 (dd, $J=13.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (s, 1H), 1.93-1.74 (m, 2H), 1.74-1.55 (m, 1H), $1.43(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=175.9,155.3,138.1,135.7,129.9,128.7,128.5,128.5$, $128.2,126.7,81.6,80.4,78.3,67.1,64.2,63.0,57.0,48.8,42.1,28.6,27.3,24.1 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 481.2697$, found 481.2698 .
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2975,2874,2360,2341,1732,1693,1496,1478,1455,1391,1366$, 1256, 1165, 1118, 978, 913, 734, 700.
$[\alpha]^{25} \mathrm{D}=-52.4\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl 2-(3-((2-(benzyloxy)-2-oxoethyl)amino)oxetan-3-yl)pyrrolidine-1carboxylate (73q) ${ }^{280}$

The compound was prepared from 189 (137 mg , $0.565 \mathrm{mmol}, 1.00 \mathrm{eq}$) and benzyl 2-bromoacetate (194 mg , $0.848 \mathrm{mmol}, 1.50 \mathrm{eq})$ following GP 1 . After stirring for 60 h at room temperature, the mixture was purified by FC on silica gel (hex:EA $=3: 2$) to afford 73 q (191 mg , $0.490 \mathrm{mmol}, 87 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.97-4.78(\mathrm{~m}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J$ $=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.51(\mathrm{~m}$, $1 \mathrm{H}), 3.36-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.8,155.6,135.7,128.7,128.5,128.4,79.9,79.9$, $77.8,66.9,64.4,62.2,48.7,45.0,28.6,27.4,24.3 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 413.2047$, found 413.2048.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2975,2877,2360,2341,1742,1689,1456,1391,1365,1254$, 1163, 979, 699, 633.
$[\alpha]^{24} \mathrm{D}=-58.0\left(\mathrm{c}=0.78, \mathrm{CHCl}_{3}\right)$.
(S)-benzyl 2-((3-((R)-1-((tert-butoxycarbonyl)amino)-2-(tert-butylthio)ethyl)-oxetan-3-yl)amino)-3-phenylpropanoate (73r)

73r was prepared as a colorless oil ($54 \mathrm{mg}, 0.099 \mathrm{mmol}, 50 \%$) according to GP 1 using 226 ($155 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00 \mathrm{eq}$), diisopropylethylamine ($70 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), 197 (61 mg , $0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and acetonitrile $(0.50 \mathrm{~mL})$. The reaction time was 48 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA = 2:1).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.47-7.11(\mathrm{~m}, 10 \mathrm{H}), 5.21-5.04(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 1 \mathrm{H})$, 4.01 (d, J = 7.2 Hz, 1H), 3.97 (dd, J = 8.5, 5.3 Hz, 1H), $3.20-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.83$ (dd, J = 13.3, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (ddd, J = 53.7, 12.9, $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta=175.4,156.0,137.1,135.5,129.7,128.8,128.7,128.6$, $128.6,127.1,79.7,79.1,78.9,67.3,63.1,57.7,54.8,46.0,42.6,40.9,30.9,28.5 \mathrm{ppm}$.

HRMS (MALDI): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 543.2887$, found, 543.2875.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3334,3088,3064,3031,2962,2929,1712,1497,1455,1391,1365$, $1333,1266,1250,1214,1165,1113,980,698 .$.
$[\alpha]^{24} \mathrm{D}-15.1\left(c\right.$ 1.85, $\left.\mathrm{CHCl}_{3}\right)$.
(S)-benzyl

2-((3-((S)-1-((tert-butoxycarbonyl)amino)-2-(tert-butylthio)ethyl)oxetan-3-yl)amino)propa-noate (epi-73v)

epi-73v was prepared as a colorless wax ($41 \mathrm{mg}, 0.088 \mathrm{mmol}$, 44%) according to GP 1 using 222 ($130 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), diisopropylethylamine $(70 \mu \mathrm{~L}, \quad 0.40 \mathrm{mmol}, 2.0 \mathrm{eq})$, ent-197 ($61 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$) and acetonitrile (0.50 mL). The reaction time was 48 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA $=2: 1$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.03$ (br s, 1H), $4.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.23 - 4.17 (m, 1H), $3.89(q, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ - $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.27$ (br s, 1H), 1.46 $(\mathrm{s}, 9 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.5,155.9,135.6,128.8,128.6,128.4,78.8,67.2$, $63.4,54.6,51.2,42.8,30.9,28.8,28.5,21.9 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 467.2574$, found, 467.2574 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3337,3034,2972,2930,2878,1734,1713,1498,1456,1391,1366$, 1328, 1250, 1213, 1166, 1047, 1029, 1009, 980, 913, 867, 838, 752, 698, 603, 460.
$[\alpha]^{27} \mathrm{D}-16.7\left(c \quad 0.59, \mathrm{CHCl}_{3}\right)$
(S)-benzyl

2-((3-((S)-1-((tert-butoxycarbonyl)amino)-2-(tert-butylthio)ethyl)oxetan-3-yl)amino)propa-noate (73v)

73v was prepared as a colorless wax ($31 \mathrm{mg}, 0.066 \mathrm{mmol}, 33 \%$) according to GP 1 using 222 ($130 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), diisopropylethylamine ($70 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$), 197 (61 mg , $0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ and acetonitrile $(0.50 \mathrm{~mL})$. The reaction time was 66 h at $30^{\circ} \mathrm{C}$. The crude mixture was purified by FC on silica (hex:EA = 2:1).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.27-5.15(\mathrm{~m}, 3 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=$ 7.1 Hz, 1H), $4.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1H), $4.25-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$, $1.41(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=176.3,155.9,135.5,128.6,128.4,128.3,79.1,78.9$, 67.0, 63.1, 54.5, 51.4, 42.6, 30.8, 28.4, 21.0 ppm .

HRMS (MALDI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 467.2574$, found, 467.2576.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3334,3088,3064,3031,2962,2929,1712,1497,1455,1365,1266$, 1250, 1213, 1164, 980, 749, 698.
$[\alpha]^{22} \mathrm{D}-2.10\left(c 0.25, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl 2-((3-(1-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-phenylethyl)oxetan-3-yl)amino)acetate (73w)

To a mixture of 73 m ($71 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ eq.) and Pd / C $(8.58 \mathrm{mg}, 8.06 \mu \mathrm{~mol})$ under N_{2} was added $\mathrm{MeOH}(1.6 \mathrm{~mL})$. The suspension was stirred under H_{2} (balloon) for 3.5 h , filtered through a syringe filter $(5 \mathrm{~mL} \mathrm{MeOH})$. The filtrate was concentrated. The residue was redissolved in DCM and triethylamine and $\mathrm{Fmoc}-\mathrm{Cl}$ were added. After stirring for 14 h , the mixture was concentrated and purified by FC on silica (hex:EA $=2: 1$) to yield the title compound 73 w ($49 \mathrm{mg}, 0.093 \mathrm{mmol}, 58 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.08$ $(\mathrm{m}, 10 \mathrm{H}), 3.70-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=172.3,156.4,143.9,141.5,137.6,129.2,128.8,127.8$, $127.2,126.9,125.2,120.1,82.1,78.6,77.9,66.8,62.8,57.6,47.4,45.7,36.2,28.3 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 529.2697$, found, 529.2697.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3329,3065,2927,1725,1605,1537,1496,1478,1451,1394,1368$, 1331, 1243, 1156, 1082, 1033, 980, 842, 758, 741, 701, 667, 621, 572, 537.
$[\alpha]^{26} \mathrm{D}-12.7\left(c 0.39, \mathrm{CHCl}_{3}\right)$.
(S)-2-((3-((S)-1-(2-(2-((S)-2-amino-3-(4-
hydroxyphenyl)propanamido)acetamido)acetamido)-2-phenylethyl)oxetan-3-yl)amino)-4-methylpentanoic acid, TFA (247e)

To a solution of 1-hydroxypyrrolidine-2,5-dione ($11 \mathrm{mg}, 0.098 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and (S)-5-(4-(benzyloxy)benzyl)-3,6,9-
trioxo-1-phenyl-2-oxa-4,7,10-triazadodecan-12-oic acid (40 mg, 0.077 mmol , 1.0 eq. $)^{282}$ in THF $(0.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added EDC $\cdot \mathrm{HCl}(19 \mathrm{mg}, 0.098 \mathrm{mmol}$, 1.3 eq.) suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$. The mixture was stirred at r.t. for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give crude (S)-2,5-dioxopyrrolidin-1-yl 5-(4-(benzyloxy)benzyl)-3,6,9-trioxo-1-phenyl-2-oxa-4,7,10-triazadodecan-12-oate which was used in the next step without further purification.

To a mixture of $73 \mathrm{~m}(31 \mathrm{mg}, 0.058 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and \mathrm{Pd} / \mathrm{C}(6.2 \mathrm{mg}, 5.8 \mu \mathrm{~mol}$, $10 \mathrm{~mol}-\% \mathrm{Pd})$ was added $\mathrm{MeOH}(0.6 \mathrm{~mL})$. The mixture was stirred under H_{2} (balloon) for 30 min . N-methylmorpholine ($0.013 \mathrm{ml}, 0.117 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added and the mixture was stirred under H_{2} (balloon) for another 30 min . The suspension was filtered over celite. The filtrate was concentrated to give crude (S)-2-((3-((S)-1-amino-2-phenylethyl)oxetan-3-yl)amino)-4-methylpentanoic acid containing N -methylmorpholine.

To a solution of (S)-2,5-dioxopyrrolidin-1-yl 5-(4-(benzyloxy)benzyl)-3,6,9-trioxo-1-phenyl-2-oxa-4,7,10-triazadodecan-12-oate ($36 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and (S)-2-((3-((S)-1-amino-2-phenylethyl)oxetan-3-yl)amino)-4-methylpentanoic acid ($18 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.0 \mathrm{eq}$) in EtOAc (0.6 mL) was added N -methylmorpholine ($0.013 \mathrm{~mL}, 0.12 \mathrm{mmol}, 2.0 \mathrm{eq}$.). The mixture was stirred for 20 h before the addition of aqueous NaHSO_{4} solution ($1 \mathrm{~m}, 20 \mathrm{~mL}$). The mixture was extracted with $\operatorname{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give crude (S)-2-((3-((5S,14S)-5-(4-(benzyloxy)benzyl)-3,6,9,12-tetraoxo-1,15-diphenyl-2-oxa-4,7,10,13-tetraazapentadecan-14-yl)oxetan-3-yl)amino)-4-methylpentanoic acid as a colorless powder and was used in the next step without further purification.

To a mixture of (S)-2-((3-((5S,14S)-5-(4-(benzyloxy)benzyl)-3,6,9,12-tetraoxo-1,15-diphenyl-2-oxa-4,7,10,13-tetraazapentadecan-14-yl)oxetan-3-yl)amino)-4methylpentanoic acid ($47 \mathrm{mg}, 0.058 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{Pd} / \mathrm{C}(6.2 \mathrm{mg}, 5.8 \mu \mathrm{~mol}$,
$10 \mathrm{~mol}-\% \mathrm{Pd})$ was added $\mathrm{MeOH} / \mathrm{DCM}(4 / 1,1.5 \mathrm{~mL})$. The mixture was stirred under H_{2} (balloon) for 5 h . The suspension was filtered over celite. The filtrate was concentrated and the residue was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1$ \% TFA in MeCN/H2O, 20:80 to $90: 10,26.5 \mathrm{~mL} / \mathrm{min}, R_{t}=8.9 \mathrm{~min}$) to give $247 \mathrm{e} \cdot$ TFA ($5 \mathrm{mg}, 7.2 \mu \mathrm{~mol}, 12 \%$ over 3 steps).
${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{MeOD}) \delta=7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=10.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.51(\mathrm{~m}$, $3 \mathrm{H}), 4.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=$ $14.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.1,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.94-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{MeOD}\right) \delta=179.1,171.7,171.4,170.5,162.7,158.3,139.5$, 131.6, 131.5, 130.2, 129.5, 127.6, 126.0, 116.8, 79.1, 79.1, 64.7, 56.4, 56.1, 55.9, 44.2, 43.3, 37.7, 35.7, 26.1, 23.2, 22.7.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$584.3079, found, 584.3079.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3290,2960,1673,1518,1455,1203,1139,839,801,723$.

Analytical HPLC

Waters e2695, 2998, 0.1% TFA in acetonitrile/water, 0-2 min 90% water, 2-12 min linear gradient to 10% water, $12-15$ min linear gradient to 90% water, ReprosilGold $2.0 \times 120 \mathrm{~mm}, \mathrm{C} 18,3 \mu \mathrm{~m}$

Retention time: 7.46 min .
(S)-2-((S)-2-(2-(2-((3-((S)-1-amino-2-(4-hydroxyphenyl)ethyl)oxetan-3-
yl)amino)acetamido)acetamido)-3-phenylpropanamido)-4-methylpentanoic acid, TFA (247b)

To a solution of $73 \mathrm{o}(58 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.0 eq .) in THF (1.1 mL) at $0^{\circ} \mathrm{C}$ was added aqueous LiOH solution (1 M , $0.58 \mathrm{~mL}, 0.58 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) The mixture$ was stirred for 30 min before quenching with saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$. The mixture was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give crude (S)-2-((3-(1-(((benzyloxy)carbonyl)amino)-2-(4-(benzyloxy)phenyl)ethyl)oxetan-3-yl)amino)acetic acid (52 mg) which was used in the next step without further purification.

To a solution of (S)-2-((3-(1-(((benzyloxy)carbonyl)amino)-2-(4-(benzyloxy)phenyl)ethyl)oxetan-3-yl)amino)acetic acid ($52 \mathrm{mg}, \quad 0.11 \mathrm{mmol}$, 1.0 eq) in DMF (0.66 mL) were sequentially added DIPEA ($74 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$, 4 eq.), (S)-benzyl 2-((S)-2-(2-aminoacetamido)-3-phenylpropanamido)-4methylpentanoate, TFA ($114 \mathrm{mg}, 0.21 \mathrm{mmol}, 2.0 \mathrm{eq}.)^{166}$ and HATU $(44 \mathrm{mg}$, $0.12 \mathrm{mmol}, 1.1 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at r.t. for 14 h . The mixture was filtered through a pad of silica (EtOAc:hexane $=2: 1$). The residue was lyophilized twice from benzene $(30 \mathrm{~mL})$ to give crude (S)-benzyl 2-((S)-2-(2-(2-((3-((S)-1-(((benzyloxy)carbonyl)amino)-2-(4-(benzyloxy)phenyl)ethyl)oxetan-3-yl)amino)acetamido)acetamido)-3-phenylpropanamido)-4-methylpentanoate as a colorless foam (61 mg) which was used in the next step without further purification.

To a mixture of (S)-benzyl 2-((S)-2-(2-(2-((3-((S)-1-(((benzyloxy)carbonyl)amino)-2-(4-(benzyloxy)phenyl)ethyl)oxetan-3-yl)amino)acetamido)acetamido)-3-phenylpropanamido)-4-methylpentanoate ($51 \mathrm{mg}, 0.057 \mathrm{mmol}, 1.0 \mathrm{eq}$) and Pd / C ($6.0 \mathrm{mg}, 5.7 \mu \mathrm{~mol}, 10 \mathrm{~mol}-\% \mathrm{Pd}$) was added MeOH (1.1 mL). The mixture was stirred under H_{2} (balloon) for 3 h . The suspension was filtered over celite. The filtrate was concentrated and the residue was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1 \%$ TFA in $\mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}, 20: 80$ to $90: 10,20.0 \mathrm{~mL} / \mathrm{min}, R_{t}=14.4 \mathrm{~min}$) to give 247 b (20 mg , $29 \mu \mathrm{~mol}, 24 \%$ over 3 steps).
${ }^{1} \mathrm{H}$ NMR (600 MHz, MeOD) $\delta=7.29-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.77-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 3 \mathrm{H}), 3.92-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.67$ - 3.52 (m, 2H), 3.23 - 3.16 (m, 1H), 3.11 (dd, $J=14.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ - $2.80(\mathrm{~m}$, $2 H), 1.75-1.61(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{MeOD}$) $\delta=175.6,175.3,173.5,171.3,158.2,138.3,131.3$, $130.4,130.4,129.5,129.4,127.8,127.2,117.0,117.0,78.5,77.6,62.6,58.6,55.8,52.2$, $46.5,42.9,41.6,39.0,34.1,26.0,26.0,23.4,23.4,21.9$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 584.3079$, found, 584.3073.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3289,2961,1668,1518,1441,1278,1202,1142,946,838,800$, 723.

Analytical HPLC

Waters e2695, 2998, 0.1\% TFA in acetonitrile/water, 0-2 min 90\% water, 2-12 min linear gradient to 10% water, $12-15$ min linear gradient to 90% water, ReprosilGold $2.0 \times 120 \mathrm{~mm}, \mathrm{C} 18,3 \mu \mathrm{~m}$

Retention time: 7.56 min .
(S)-benzyl 2-((S)-2-((3-(((tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)-3-phenylpropanamido)-4-methylpentanoate (250) ${ }^{280}$

To a solution of 73d ($187 \mathrm{mg}, 0.424 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(5.66 \mathrm{~mL})$ and EtOAc (2.83 mL) was added $\mathrm{Pd} / \mathrm{C}(22.6 \mathrm{mg}, 0.021 \mathrm{mmol}, 5 \mathrm{~mol}-\% \mathrm{Pd})$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 1 h . The catalyst was filtered off over a sintered glass fritt covered with a filter paper and the solid was washed with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ and EtOAc until the product had completely dissolved. The combined layers were concentrated to dryness to give crude (S)-2-((3-(((tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)-3-phenylpropanoic acid ($149 \mathrm{mg}, 0.425 \mathrm{mmol}$, quant.) as a colorless solid which was used in the next step without further purification.

To a solution of(S)-2-((3-(((tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)-3-phenylpropanoic acid ($149 \mathrm{mg}, 0.425 \mathrm{mmol}, 1.0 \mathrm{eq}$) in DMF (2.12 mL) at $0^{\circ} \mathrm{C}$ were added DIPEA ($\left.208 \mu \mathrm{l}, 1.19 \mathrm{mmol}, 2.80 \mathrm{eq}.\right)$, then (S)-benzyl 2-amino-4-methylpentanoate hydrochloride ($132 \mathrm{mg}, 0.510 \mathrm{mmol}, 1.20 \mathrm{eq}$.), and then HATU ($194 \mathrm{mg}, 0.510 \mathrm{mmol}, 1.20 \mathrm{eq}$) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then warmed to r.t. over night. After stirring at r.t. for 18 h , the mixture was poured into saturated NaHCO_{3} solution and extracted with DCM $(4 \times 10 \mathrm{~mL})$. The combined organic fractions were dried over MgSO_{4} and concentrated to dryness. The residue was purified by $\mathrm{FC}^{\text {on } \mathrm{SiO}_{2} \text { (hexane:EA 1:1) }}$ to yield 250 ($187 \mathrm{mg}, 0.338 \mathrm{mmol}, 80 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.29-$ 7.20 (m, 3H), $5.21-5.09$ (m, 2H), 5.03 (d, J = 5.8 Hz, 1H), 4.68 (td, J = 9.2, 4.8 Hz, $1 \mathrm{H}), 4.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (dd, $J=9.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (dd, $J=14.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=14.2,5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.67(\mathrm{dd}, J=13.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.51(\mathrm{~m}$, $2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=174.1,173.2,156.8,137.1,135.4,129.3,129.1,128.8$, $128.7,128.5,127.5,79.6,78.8,78.3,67.4,60.5,59.0,50.5,45.8,41.5,40.3,28.5,25.0$, 23.1, 21.8.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 554.3225$, found, 554.3230.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3323,2959,2872,1708,1660,1505,1247,1166,974,748,698$.
$[\alpha]^{20}{ }_{\mathrm{D}}-40.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
(S)-benzyl 2-((S)-2-((3-((S)-5-(4-(benzyloxy)benzyl)-3,6,9-trioxo-1-phenyl-2-oxa-4,7,10-triazaundecan-11-yl)oxetan-3-yl)amino)-3-phenylpropanamido)-4methylpentanoate (251) ${ }^{280}$

To a solution of 250 (183 mg , 0.331 mmol, 1.00 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.98 \mathrm{~mL})$ was added TFA $(0.33 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min at r.t. for 4 h . Then, toluene (3 mL) was added and the mixture was evaporated to dryness. The residue was taken up in toluene and again evaporated to dryness. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and again evaporated to dryness to leave a yellow foam, which was dried in vacuo for 1 h and directly used in the next step without further purification.

To a solution of (S)-benzyl 2-((S)-2-((3-(aminomethyl)oxetan-3-yl)amino)-3-phenylpropanamido)-4-methylpentanoate 2,2,2-trifluoroacetate (188 mg,
$0.331 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) in DMF (2.07 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added DIPEA ($174 \mu \mathrm{l}$, 0.994 mmol, $\quad 3.00$ eq.), then (S)-2-(2-(((benzyloxy)carbonyl)amino)-3-(4(benzyloxy)phenyl)propanamido)acetic acid ($199 \mathrm{mg}, 0.431 \mathrm{mmol}, 1.30 \mathrm{eq}.)^{169}$, and HATU ($164 \mathrm{mg}, 0.431 \mathrm{mmol}, 1.30 \mathrm{eq}$.) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at r.t. for 21 h . The mixture was poured into sat. NaHCO_{3} solution and extracted with DCM ($3 \times 10 \mathrm{~mL}$) and EA $(2 \times 10 \mathrm{~mL})$. The combined organic fractions were dried over MgSO_{4} and concentrated to dryness. The residue was purified by CC on SiO_{2} ($\mathrm{EA}: \mathrm{MeOH} 50: 1$) to yield 251 as a colorless oil (220 mg , $0.245 \mathrm{mmol}, 74 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.17(\mathrm{~m}, 20 \mathrm{H}), 7.04$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{q}, J=12.2$ Hz, 2H), $5.04-4.96(\mathrm{~m}, 4 \mathrm{H}), 4.77$ (td, $J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=21.9,6.8 \mathrm{~Hz}$, 2H), $4.13-3.91$ (m, 4H), 3.79 (dd, $J=17.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.25$ (dd, $J=13.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=14.0,7.7 \mathrm{~Hz}$, 1H), 2.65 (dd, $J=13.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 2 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=174.6,174.1,171.5,169.6,158.0,156.4,136.9,136.8$, $135.7,134.9,130.4,130.2,129.2,129.1,129.0,129.0,128.7,128.7,128.7,128.6,128.6$, 128.5, 128.4, 128.2, 128.2, 128.0, 128.0, 127.9, 127.5, 127.5, 127.4, 115.1, 70.0, 67.7, $67.2,60.5,59.2,56.9,50.3,44.3,42.8,41.6,40.4,37.1,24.9,23.0,21.7$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{52} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}$898.4386, found, 898.4388.
$[\alpha]^{25} \mathrm{D}-8.90\left(c 1.35, \mathrm{CHCl}_{3}\right)$.
(S)-2-((S)-2-((3-((2-((S)-2-amino-3-(4-
hydroxyphenyl)propanamido)acetamido)methyl)oxetan-3-yl)amino)-3-phenylpropanamido)-4-methylpentanoic acid (247d $)^{280}$

To a solution of $251(87 \mathrm{mg}, 0.097 \mathrm{mmol}$, 1.0 eq.) in $\mathrm{MeOH}(4.8 \mathrm{~mL})$ was added Pd / C ($21 \mathrm{mg}, 0.019 \mathrm{mmol}, 20 \mathrm{~mol}-\% \mathrm{Pd}$) and the mixture was stirred under an atmosphere of H_{2} (balloon) for 1 h . The catalyst was filtered off over celite. The filtrate was concentrated to dryness to give crude $\mathbf{2 4 7 d}$ which was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1 \%$ TFA in $\mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}, 20: 80$ to $90: 10,20.0 \mathrm{~mL} / \mathrm{min}, R_{t}=12.9 \mathrm{~min}$) to yield 247 d TFA as the as a yellowish solid ($22 \mathrm{mg}, 0.031 \mathrm{mmol}, 33 \%$).
${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{MeOD}) \delta=7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=7.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=6.8$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=8.0,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.46$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.09$ (m, 2H), 2.96 (dd, $J=14.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dd, $J=$ $13.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{MeOD}$) $\delta=177.6,176.6,175.7,171.7,170.5,162.9,162.6$, $158.4,158.3,138.6,138.6,131.7,131.6,130.7,130.6,129.8,128.2,126.0,116.9,79.9$, 79.7, 61.6, 60.0, 56.2, 52.0, 44.6, 43.3, 41.7, 41.2, 37.7, 26.1, 23.4, 21.8 ppm.

HRMS (MALDI): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$606.2898, found, 606.2899 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2964,1673,1518,1201,1141,839,800,723$.

Analytical HPLC

Waters e2695, 2998, 0.1\% TFA in acetonitrile/water, 0-2 min 90\% water, 2-12 min linear gradient to 10% water, $12-15$ min linear gradient to 90% water, ReprosilGold 2.0x120 mm, C18, $3 \mu \mathrm{~m}$

Retention time: 7.46 min .

2-((S)-2-(2-((3-(((tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)acetamido)-3-phenylpropanamido)-4-methylpentanoate (249) ${ }^{280}$

To a solution of benzyl 73c (82.9 mg , $0.237 \mathrm{mmol}, 1.00$ eq.) in $\mathrm{MeOH}(2.37 \mathrm{~mL})$ was added Pd/C ($12.6 \mathrm{mg}, 0.012 \mathrm{mmol}, 5.00 \mathrm{~mol}-$ $\% \mathrm{Pd}$) and the mixture was stirred under an atmophere of H_{2} for 1 h at r.t. After complete consumption of the starting material, the mixture was filtered over Celite and washed with $\mathrm{EA}, \mathrm{MeOH}$ and DCM. The filtrate was concentrated to yield 2-((3-(()tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)acetic acid (59 mg) as a colorless solid which was used in the next step without further purification.

To a solution of (S)-benzyl 2-((S)-2-amino-3-phenylpropanamido)-4methylpentanoate hydrochloride ($101 \mathrm{mg}, 0.249 \mathrm{mmol}, 1.10 \mathrm{eq}$. $)^{168}$ in DMF $(0.47 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added DIPEA $(58.0 \mu \mathrm{l}, 0.332 \mathrm{mmol}, 2.80 \mathrm{eq}$.$) , then 2-((3-$ (((tert-butoxycarbonyl)amino)methyl)oxetan-3-yl)amino)acetic acid (35.4 mg , $0.142 \mathrm{mmol}, 1.00 \mathrm{eq}$.), and then HATU ($54.1 \mathrm{mg}, 0.142 \mathrm{mmol}, 1.20 \mathrm{eq}$.) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at r.t. for 18 h . The mixture was
poured into sat. NaHCO_{3} solution and extracted with EA ($4 \times 10 \mathrm{~mL}$). The combined organic fractions were washed with brine, dried over MgSO_{4} and concentrated to dryness. The residue was purified by CC on SiO_{2} (EA:MeOH 50:1) to yield 249 ($120 \mathrm{mg}, 0.196 \mathrm{mmol}, 87 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.27-$ $7.15(\mathrm{~m}, 5 \mathrm{H}), 6.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 3 \mathrm{H}), 4.73-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{td}, \mathrm{J}=$ 8.3, 5.2 Hz, 1H), $4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.45-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H})$, $3.15-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 1 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.81(\mathrm{~m}$, $6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.4,171.9,170.8,156.7,136.5,135.4,129.3,128.8$, 128.7, 128.6, 128.4, 127.2, 80.0, 78.4, 67.2, 60.5, 54.2, 51.2, 46.2, 45.4, 41.2, 38.0, 28.5, 24.9, 22.8, 22.0.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 633.3259$, found, 633.3260.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3317,2961,2878,1660,1652,1519,1504,1251,1164,973,841$, 741, 690.
$[\alpha]^{20} \mathrm{D}-17.8\left(c 0.95, \mathrm{CHCl}_{3}\right)$.
(S)-2-((S)-2-(2-((3-(((S)-2-amino-3-(4-hydroxyphenyl)propanamido)methyl)oxetan-3-yl)amino)acetamido)-3-phenylpropanamido)-4-methylpentanoic acid (247c) ${ }^{280}$

To a solution of $249(107 \mathrm{mg}, 0.177 \mathrm{mmol}$, 1.00 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.59 \mathrm{~mL})$ was added TFA $(0.18 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at r.t. for 4 h . Then, toluene (3 mL) was added and the mixture was evaporated to dryness. The residue was taken up in toluene and again evaporated to dryness. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and again
evaporated to dryness to leave a yellow foam (crude (S)-benzyl 2-((S)-2-(2-((3-(aminomethyl)oxetan-3-yl)amino)acetamido)-3-phenylpropanamido)-4methylpentanoate 2,2,2-trifluoroacetate, which was dried in vacuo for 1 h and directly used in the next step without further purification.

To a solution of (S)-benzyl 2-((S)-2-(2-((3-(aminomethyl)oxetan-3-yl)amino)acetamido)-3-phenylpropanamido)-4-methylpentanoate 2,2,2trifluoroacetate ($110 \mathrm{mg}, 0.176 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in DMF (0.88 mL) at $0^{\circ} \mathrm{C}$ were added DIPEA $(92 \mu \mathrm{l}, \quad 0.528 \mathrm{mmol}, \quad 3.00 \mathrm{eq}$.$) , then (S)-2-$ (((benzyloxy)carbonyl)amino)-3-(4-(benzyloxy)phenyl)propanoic acid (93 mg, $0.229 \mathrm{mmol}, 1.30 \mathrm{eq}$.$) , and HATU (87 \mathrm{mg}, 0.229 \mathrm{mmol}, 1.30 \mathrm{eq}$.) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at r.t. for 21 h . The mixture was poured into sat. NaHCO_{3} solution and extracted with DCM ($5 \times 10 \mathrm{~mL}$). The combined organic fractions were dried over MgSO_{4} and concentrated to dryness. The residue was passed over a plug of silica (EA:MeOH 50:1). The product was used in the next step without further purification.

To a solution of $(S)-2-((S)-2-(2-((3-(((S)-2-a m i n o-3-(4-$ hydroxyphenyl)propanamido)methyl)oxetan-3-yl)amino)acetamido)-3-phenylpropanamido)-4-methylpentanoic acid ($50 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(12 \mathrm{mg}, 0.011 \mathrm{mmol}, 20 \mathrm{~mol}-\% \mathrm{Pd})$ and the mixture was stirred under an atmosphere of H_{2} (balloon) for 1 h . The catalyst was filtered off over celite. The filtrate was concentrated to dryness to give crude (S)-2-((S)-2-(2-((3-(((S)-2-amino-3-(4-
hydroxyphenyl)propanamido)methyl)oxetan-3-yl)amino)acetamido)-3-
phenylpropanamido)-4-methylpentanoic acid which was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1$ \% TFA in $\mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}, 20: 80$ to $90: 10,20.0 \mathrm{~mL} / \mathrm{min}, R_{l}=14.4 \mathrm{~min}$) to yield the title compound as the as a colorless solid ($27 \mathrm{mg}, 0.047 \mathrm{mmol}, 27 \%$ over two steps).
${ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}, \mathrm{MeOD}) \delta=7.30-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dd}, \mathrm{J}=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.38(\mathrm{~m}$,
$3 \mathrm{H}), 4.35(\mathrm{dd}, J=7.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{dd}, J=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, 1H), 3.50 (d, $J=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.42$ (d, $J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (dd, $J=14.1,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.89(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, MeOD) $\delta=175.6,173.6,170.9,170.9,158.3,138.0,131.5$, $130.5,129.5,127.9,126.0,116.9,78.4,61.9,56.1,55.3,52.2,46.1,43.7,41.6,39.2$, 37.8, 26.0, 23.4.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$584.3079, found, 584.3083.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3259,3087,2962,1669,1615,1518,1441,1278,1200,1143,1089$, 946, 842, 800, 723, 702, 663, 559.

Analytical HPLC

Waters e2695, 2998, 0.1\% TFA in acetonitrile/water, 0-2 min 90% water, 2-12 min linear gradient to 10% water, $12-15$ min linear gradient to 90% water, ReprosilGold 2.0x120 mm, C18, $3 \mu \mathrm{~m}$

Retention time: 7.25 min .
(S)-tert-butyl 2-((3-((5S,14S)-5-(4-(benzyloxy)benzyl)-3,6,9,12-tetraoxo-1,15-diphenyl-2-oxa-4,7,10,13-tetraazapentadecan-14-yl)oxetan-3-yl)amino)-4methylpentanoate (252)

To a solution of (S)-tert-butyl 2-((3-((S)-1-amino-2-phenylethyl)oxetan-3-yl)amino)-4-methylpentanoate ($0.037 \mathrm{~g}, 0.102 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in DMF $(340 \mu \mathrm{~L})$ were
sequentially added DIPEA ($27 \mu \mathrm{~L}, \quad 0.155 \mathrm{mmol}, \quad 1.50 \mathrm{eq}$), (S)-5-(4-(benzyloxy)benzyl)-3,6,9-trioxo-1-phenyl-2-oxa-4,7,10-triazadodecan-12-oic acid ($0.058 \mathrm{~g}, 0.112 \mathrm{mmol}, 1.10 \mathrm{eq}$), $\operatorname{HATU}(0.043 \mathrm{~g}, 0.112 \mathrm{mmol}, 1.10 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at r.t. for 3 h . The mixture was purified by FC on SiO 2 (EA) to yield $252(30 \mathrm{mg}, 0.035 \mathrm{mmol}, 34 \%)$ as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49-6.98(\mathrm{~m}, 20 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.89$ $5.77(\mathrm{~m}, 1 \mathrm{H}), 5.13-4.97(\mathrm{~m}, 4 \mathrm{H}), 4.84-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-$ $4.24(\mathrm{~m}, 3 \mathrm{H}), 4.21-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.14-2.75(\mathrm{~m}, 4 \mathrm{H}), 1.90-$ $1.72(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.37(\mathrm{~m}, 13 \mathrm{H}), 1.00(\mathrm{dd}, J=8.4,6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=177.9,172.6,168.9,158.0,156.8,137.9,136.8,135.7$, 130.1, 129.2, 128.6, 128.6, 128.5, 128.3, 128.1, 127.8, 127.5, 126.6, 115.2, 81.9, 79.2, $70.0,67.4,62.7,57.3,56.0,54.8,53.4,44.0,43.5,43.0,36.9,35.7,29.7,27.9,25.0,23.0$, 22.2 ppm .

HRMS (MALDI): m/z calcd. for $\mathrm{C}_{49} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{Na}_{1} \mathrm{O}_{9}$ [M+Na] ${ }^{+}$886.4361, found, 866.4361.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3311,2930,1717,1653,1612,1512,1454,1368,1333,1241,1177$, 1151, 1027, 982, 843.
$[\alpha]^{25} \mathrm{D}+5.80\left(c 0.90, \mathrm{CHCl}_{3}, \mathrm{Hg}, \lambda=365 \mathrm{~nm}\right)$.

Peptide Stability in Human Serum

Materials

Human Serum from human male AB plasma was purchased from Sigma Aldrich (H4522-20mL, Lot\# SLBC8756V) and used as received. HBSS buffer (137mm $\mathrm{NaCl}, 5.37 \mathrm{~mm} \mathrm{KCl}, 0.44 \mathrm{~mm} \mathrm{KH}_{2} \mathrm{PO}_{4}, 5.55 \mathrm{~mm}$ glucose, $0.34 \mathrm{~mm} \mathrm{Na} 2 \mathrm{HPO}_{4}, 4.17$ $\mathrm{mm} \mathrm{NaHCO} 3, ~ p H ~ 7.4) ~ w a s ~ p r e p a r e d ~ i n ~ n a n o p u r e ~ w a t e r ~(T h e r m o ~ S c i e n t i f i c, ~$ Barnstead GenPure). Fmoc-Leucine was purchased from Bachem and used as received. MeOH was purchased from Merck (LiChrosolv®) and used as received.

Method

Human serum ($30 \mu \mathrm{~L}$) was incubated at $37^{\circ} \mathrm{C}$ for 15 min under slight agitation (300 rpm) before adding the analyst peptide solution ($30 \mu \mathrm{~L}, 200 \mu \mathrm{M}$ in HBSS) to give a final peptide concentration of $100 \mu \mathrm{M}$. The mixture was vortexed to ensure complete mixing. The sample was then incubated at $37^{\circ} \mathrm{C}$ under slight agitation (300 rpm) for the time specified before adding $\mathrm{MeOH}(120 \mu \mathrm{~L}$). The suspension was centrifuged ($4^{\circ} \mathrm{C}, 15 \mathrm{~min}, 13000 \mathrm{rpm}$). To a sample of the supernatant $(155 \mu \mathrm{~L})$ were added $\mathrm{MeOH}(2.5 \mu \mathrm{~L})$ and Fmoc-Leucine ($2.5 \mu \mathrm{~L}, 1 \mathrm{~mm}$ in MeOH). The sample was vortexed and analyzed by HPLC (Waters e2695, 2998, 0.1\% TFA in acetonitrile/water, 0-2 $\min 90 \%$ water, 2-12 min linear gradient to 10% water, 12-15 min linear gradient to 90% water, Reprosil-Gold $2.0 \times 120 \mathrm{~mm}, \mathrm{C} 18,3 \mu \mathrm{~m}$). From the chromatogram at 223 nm a baseline was subtracted to compensate for the acetonitrile absorption that was recorded at least every six samples. The peak corresponding to the analyzed peptide was integrated and the relative area in respect to the measurement at 0 min was recorded. Each measurement was triplicated.

Radioligand Affinity Assay ${ }^{283}$

Materials

The rat brains for the δ-opioid receptor binding assay were commercially available (Harlan-Winkelmann, Borchen, Germany). Homogenizers: Elvehjem Potter (B. Braun Biotech International, Melsungen, Germany) and Soniprep 150, MSE, London, UK). Centrifuges: Cooling centrifuge model Rotina 35R (Hettich, Tuttlingen, Germany) and High-speed cooling centrifuge model Sorvall RC-5C plus (Thermo Fisher Scientific, Langenselbold, Germany). Multiplates: standard 96-well multiplates (Diagonal, Muenster, Germany). Shaker: self-made device with adjustable temperature and tumbling speed (scientific workshop of the institute). Harvester: MicroBeta FilterMate-96 Harvester. Filter: Printed Filtermat Typ A and B. Scintillator: Meltilex (Typ A or B) solid state scintillator. Scintillation analyzer: MicroBeta Trilux (all Perkin Elmer LAS, RodgauJügesheim, Germany).

Preparation of membrane homogenates from rat brain

5 rat brains (species: Sprague Dawley rats) were homogenized with the potter (500-800 rpm, 10 up-and-down strokes) in 6 volumes of cold 0.32 m sucrose. The suspension was centrifuged at 1200 xg for 10 min at $4^{\circ} \mathrm{C}$. The supernatant was separated and centrifuged at 23500 xg for 20 min at $4^{\circ} \mathrm{C}$. The pellet was resuspended in 5-6 volumes of buffer (50 mm TRIS, pH 7.4) and centrifuged again at $23500 \times \mathrm{g}\left(20 \mathrm{~min}, 4^{\circ} \mathrm{C}\right)$. This procedure was repeated twice. The final pellet was resuspended in 5-6 volumes of buffer and frozen $\left(-80^{\circ} \mathrm{C}\right)$ in 1.5 mL portions containing about 1.5 mg protein $/ \mathrm{mL}$.

Protein determination

The protein concentration was determined by the method of Bradford, modified by Stoscheck. ${ }^{179,180}$ The Bradford solution was prepared by dissolving 5 mg of Coomassie Brilliant Blue G 250 in 2.5 mL of $\mathrm{EtOH}(95 \%$, v/v). 10 mL deionized
$\mathrm{H}_{2} \mathrm{O}$ and 5 mL phosphoric acid $(85 \%, \mathrm{~m} / \mathrm{v})$ were added to this solution, the mixture was stirred and filled to a total volume of 50.0 mL with deionized water. The calibration was carried out using bovine serum albumin as a standard in 9 concentrations ($0.1,0.2,0.4,0.6,0.8,1.0,1.5,2.0$ and $4.0 \mathrm{mg} / \mathrm{mL}$). In a 96 -well standard multiplate, $10 \mu \mathrm{~L}$ of the calibration solution or $10 \mu \mathrm{~L}$ of the membrane receptor preparation were mixed with $190 \mu \mathrm{~L}$ of the Bradford solution, respectively. After 5 min , the UV absorption of the protein-dye complex at $\lambda=595 \mathrm{~nm}$ was measured with a platereader (Tecan Genios, Tecan, Crailsheim, Germany).

General procedures for the binding assays

The test compound solutions were prepared by dissolving approximately $10 \mu \mathrm{~mol}$ (usually $2-4 \mathrm{mg}$) of test compound in DMSO so that a 10 mM stock solution was obtained. To obtain the required test solutions for the assay, the DMSO stock solution was diluted with the respective assay buffer. The filtermats were presoaked in 0.5% aqueous polyethylenimine solution for 2 h at room temperature before use. All binding experiments were carried out in duplicates in the 96-well multiplates. The concentrations given are the final concentration in the assay. Generally, the assays were performed by addition of $50 \mu \mathrm{~L}$ of the respective assay buffer, $50 \mu \mathrm{~L}$ test compound solution in various concentrations $\left(10^{-5}, 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}\right.$ and $\left.10^{-10} \mathrm{~mol} / \mathrm{L}\right), 50 \mu \mathrm{~L}$ of corresponding radioligand solution and $50 \mu \mathrm{~L}$ of the respective receptor preparation into each well of the multiplate (total volume $200 \mu \mathrm{~L}$). The receptor preparation was always added last. During the incubation, the multiplates were shaken at a speed of 500600 rpm at the specified temperature. Unless otherwise noted, the assays were terminated after 120 min by rapid filtration using the harvester. During the filtration each well was washed five times with $300 \mu \mathrm{~L}$ of water. Subsequently, the filtermats were dried at $95{ }^{\circ} \mathrm{C}$. The solid scintillator was melted on the dried filtermats at a temperature of $95^{\circ} \mathrm{C}$ for 5 min . After solidifying of the scintillator at room temperature, the trapped radioactivity in the filtermats was measured
with the scintillation analyzer. Each position on the filtermat corresponding to one well of the multiplate was measured for 5 min with the $\left[{ }^{3} \mathrm{H}\right]$-counting protocol. The overall counting efficiency was 20%. The IC50-values were calculated with the program GraphPad Prism® 3.0 (GraphPad Software, San Diego, CA, USA) by non-linear regression analysis. Subsequently, the IC50 values were transformed into K_{i}-values using the equation of Cheng and Prusoff ${ }^{181}$. The Ki-values are given as mean value \pm SEM from three independent experiments.

δ opioid receptor

The assay was performed with the radioligand $\left[{ }^{3} \mathrm{H}\right]$-DPDPE $(69 \mathrm{Ci} / \mathrm{mmol}$, Amersham). The thawed rat membrane preparation (about $75 \mu \mathrm{~g}$ of the protein) was incubated with various concentrations of test compounds, $3 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ DPDPE, and TRIS-MgCl2-buffer ($50 \mathrm{mM}, 8 \mathrm{mM} \mathrm{MgCl}$, pH 7.4) supplemented with SIGMAFAST® protease inhibitor mix (Sigma Aldrich Biochemicals, Hamburg, Germany; 1 tablet dissolved in 100 mL of buffer) at $37^{\circ} \mathrm{C}$. The nonspecific binding was determined with $10 \mu \mathrm{M}$ unlabeled Morphine. The $\mathrm{K}_{\mathrm{d} \text {-value }}$ of DPDPE is 0.65 nM .

Compound	$\mathrm{K}_{\mathrm{i}} / \mathbf{n M}(\mathbf{n}=\mathbf{3})$, mean \pm SEM
2a	9.2 ± 2.3
2b	>1000
2c	>1000
2d	157 ± 15
2e	43 ± 9
Morphine	2.5 ± 0.5
Naloxone	2.4 ± 0.5
Naltrindole	14.7 ± 4.3

β-Arrestin GPCR Assay ${ }^{284}$

Method:

Biological activity was measured using the PathHunter® eXpress OPRD1 CHOK1 β-Arrestin GPCR Assay (DiscoverX \#93-0400E2CP2M). Compounds were diluted in commercial HBSS and their activity measured according to protocol. Luminescence read-out was performed on a Synergy Mx plate reader (Biotek).

Results

Activity of Leu-Enkephalin and its analogues at the δ-Opioid receptor measured by β-Arrestin Assay. Leu-Enkephaline (2a■) as well as oxetane derivatives $2 \mathbf{~ b ~ (~}$) and $2 \mathrm{e}(\boldsymbol{)}$) show a dose-dependent response. ($\mathrm{n}=2$, measured in triplicates, data shown as mean \pm SD)

Data processing

For 2a, EC50 was calculated by a logistic fit of the data points.

For $\mathbf{2 b}$ and $\mathbf{2 e}$, the logistic fit did not fully converge because of missing top plateau values and EC50 values could only be estimated.

Hot Plate Test ${ }^{285}$

Method:

The analgesic activity of natural Leu-Enkephalin and $\mathbf{2 e}$ was determined by a hot plate test on adult male C57B6/N mice (Charles River, Germany) weighing $33-38 \mathrm{~g}$. Prior to the experiment the animals were housed in groups ($\mathrm{n}=5$) in a temperature and humidity controlled environment with ad libitum food and water availability. The compounds were dissolved in sterile PBS (Gibco, Life technologies) at a concentration of $1 \mathrm{mg} / \mathrm{mL}$. 6-8 mice per condition were administered $12.5 \mathrm{mg} / \mathrm{kg}$ intravenously 10 min before the hot plate test. Morphine ($10 \mathrm{mg} / \mathrm{kg}$) was used as the positive control. Each mouse was placed on an electrically heated hot plate surface $\left(54 \pm 1^{\circ} \mathrm{C}\right)$ surrounded by a plexiglas cylinder. The time until the mouse started to lick its hind paws or to jump with all four feet was recorded. The animal was removed from the hot plate, if it did not respond within 45 s in order to avoid tissue damage. All data are expressed as mean \pm SEM. ${ }^{193}$

Results:

Conditions: The mice were placed on the hot plate $\left(54 \pm 1^{\circ} \mathrm{C}\right) 10 \mathrm{~min}$ after i.v. injection of $2 \mathbf{a}$ and $\mathbf{2 e}(12.5 \mathrm{mg} / \mathrm{kg})$. The times the mice spent on the plate before licking their hind paws or jumping with all four feet were measured and are depicted as mean \pm SEM ($n=$ number of animals).

General Procedure for Peptide Coupling (GP 2):

The corresponding acid (1.0-1.1 eq) and the corresponding amine (1.0-1.1 eq) were suspended $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~m})$. To the mixture were added N methylmorpholine (3.0-6.0 eq), EDC• $\mathrm{HCl}(1.0-1.1 \mathrm{eq})$ and HOBt (1.0-1.1 eq). The resulting light yellow solution was stirred at r.t for (14-20 h). The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (reaction volume) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 x$ reaction volume). The crude product was purified by FC on silica (hex:EA) or trituration with hex: $\mathrm{Et}_{2} \mathrm{O}(1: 1)$

$\mathrm{NaOH} / \mathrm{MeCN}$ - General Procedure for Ester Deprotection (GP 3):

To a solution of the corresponding acid (1.0 eq) in $\mathrm{MeCN}(0.1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added aq. $\mathrm{NaOH}(0.25 \mathrm{~m}, 5.0 \mathrm{eq})$. The mixture was stirred until the starting material was consumed as judged by TLC. The mixture was diluted with aq. NaHSO_{4} solution (1 m , reaction volume) and extracted with EA (3 x reaction volume)

LiOH/THF - General Procedure for Ester Deprotection (GP 4):

To a solution of the corresponding acid (1.0 eq) in THF $(0.1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added aq. $\mathrm{LiOH}(1 \mathrm{~m}, 5.0 \mathrm{eq})$. The mixture was stirred until the starting material was consumed as judged by TLC. The mixture was diluted with aq. NaHSO_{4} solution
(1 m , reaction volume) and extracted with EA ($3 \times$ reaction volume). The crude product was used in the coupling step without further purification.

General Procedure for Boc Deprotection (GP 5):

The substrate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}(4: 1,0.1 \mathrm{M})$ and stirred at $0^{\circ} \mathrm{C}$ until the starting material was consumed as judged by TLC. To the mixture was then added toluene ($1 / 10$ of the reaction volume) and all volatiles were removed. The residue was azeotropically dried with toluene ($3 \times 1 / 10$ of the reaction volume). If the substrate was sensitive to concentrated acid, the reaction mixture was transferred into sat. aq. NaHCO_{3} solution (five reaction volumes) and extracted with EA (3 x five reaction volumes). The crude product was used in the coupling step without further purification.

General Procedure for Bn-ester deprotection (GP 6):

To a mixture of the substrate (1.0 eq) and $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt}-\% \mathrm{Pd}, 10 \mathrm{~mol}-\% \mathrm{Pd})$ was added $\mathrm{MeOH}(0.1 \mathrm{~m})$. The suspension was stirred under an atm of H_{2} until the starting material was consumed as judged by TLC.

BocNH-Thr(Bn)-Ala-OMe (261)

Following GP 2 using BocNH-Thr(Bn)-OH (19.6 g, 41.1 mmol ,
OBn methylmorpholine ($12.3 \mathrm{~mL}, 112 \mathrm{mmol}, 3.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(7.17 \mathrm{~g}, 37.4 \mathrm{mmol}$, 1.0 eq) and $\mathrm{HOBt}(5.73 \mathrm{~g}, 37.4 \mathrm{mmol}, 1.0 \mathrm{eq})$ the title compound was obtained after FC on silica (hex:EA=2:1) as a colorless foam ($4.77 \mathrm{~g}, 12.1 \mathrm{mmol}, 32 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.15$ (br s), $5.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.68$ - $4.52(\mathrm{~m}, 3 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.46$ (s, 9H), $1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=173.1,169.7,155.9,138.1,128.5,127.9,127.8,80.2$, 75.0, 71.6, 57.6, 52.5, 48.3, 28.4, 18.4, 15.3 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$395.2177, found, 395.2177.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3331,3292,2977,1751,1689,1647,1526,1164,1054,696$.
$[\alpha]^{23} \mathrm{D}+21.1\left(c=1.51, \mathrm{CHCl}_{3}\right)$

BocNH-Thr(Bn)-Ala-Val-OMe (266)

First, crude BocNH-Thr(Bn)-Ala-OH was obtained from $261(1.00 \mathrm{~g}, 2.54 \mathrm{mmol}, 1.00 \mathrm{eq})$ and aq. $\mathrm{LiOH}(12.7 \mathrm{~mL})$ in THF (25.4 mL) following GP 4.

Following GP 2 using crude BocNH-Thr(Bn)-Ala-OH ($0.966 \mathrm{~g}, 2.54 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{H}_{2} \mathrm{~N}-V a \mathrm{l}-\mathrm{OMe} \cdot \mathrm{HCl}(0.468 \mathrm{~g}, 2.79 \mathrm{mmol}, 1.1 \mathrm{eq})$, N-methylmorpholine (1.12 mL , $10.2 \mathrm{mmol}, 4.0 \mathrm{eq}), \mathrm{EDC} \cdot \mathrm{HCl}(0.487 \mathrm{~g}, 2.54 \mathrm{mmol}, 1.0 \mathrm{eq})$ and HOBt (0.389 g , $2.54 \mathrm{mmol}, 1.0 \mathrm{eq}$) the title compound 266 was obtained after FC on silica (hex:EA=2:1) as a colorless foam ($0.995 \mathrm{~g}, 2.02 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, J = 8.7 Hz, 1H), 5.46 (d, J = 7.2 Hz, 1H), $4.68-4.46$ (m, 4H), $4.34-4.19$ (m, 2H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=172.2,171.8,170.3,155.9,138.0,128.6,128.0,127.8$, 80.4, 74.9, 71.8, 58.1, 57.4, 52.3, 49.2, 31.2, 28.4, 19.1, 17.9, 17.9, 15.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 494.2861$, found, 494.2856 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3294,2973,1692,1642,1530,1165,697$.
$[\alpha]^{23} \mathrm{D}-7.27\left(c=0.935, \mathrm{CHCl}_{3}\right)$

BocNH-Val-Thr(Bn)-Ala-Val-OMe (265)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Thr}(\mathrm{Bn})$-Ala-Val-OMe-TFA was obtained from 266 ($0.936 \mathrm{~g}, 1.90 \mathrm{mmol}, 1.00$) and isolated by azeotropic evaporation following GP 5.

Following GP 2 using BocNH-Val-OH ($0.453 \mathrm{~g}, 2.09 \mathrm{mmol}, 1.1 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}$ -Thr(Bn)-Ala-Val-OMe•TFA ($0.962 \mathrm{~g}, 1.90 \mathrm{mmol}, 1.0 \mathrm{eq}$), N-methylmorpholine ($0.83 \mathrm{~mL}, 7.58 \mathrm{mmol}, 4.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(0.400 \mathrm{~g}, 2.09 \mathrm{mmol}, 1.1 \mathrm{eq})$ and HOBt ($0.319 \mathrm{~g}, 2.09 \mathrm{mmol}, 1.1 \mathrm{eq}$) the title compound 265 was obtained after FC on silica (hex:EA=1:1 $\rightarrow \mathrm{EA}$) as a colorless foam ($0.915 \mathrm{~g}, 1.54 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.2 \mathrm{i} 6(\mathrm{~m}, 5 \mathrm{H}), 6.99$ (dd, $J=8.6,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.44(\mathrm{~m}$, $3 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.12(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98-0.92(\mathrm{dd}, J=6.9,3.1 \mathrm{~Hz}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.2,172.1,172.0,170.0,156.7,137.9,128.5,128.0$, $127.8,81.0,74.1,71.8,61.1,57.7,57.6,52.1,49.2,31.1,30.2,28.3,19.6,19.1,18.1$, 17.7, 17.6, 16.6 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O} 8[\mathrm{M}+\mathrm{H}]^{+}$593.3545, found, 593.3544.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3273,2968,1689,1636,1520,1164$.
$[\alpha]^{23} \mathrm{D}-16.0\left(c=0.770, \mathrm{CHCl}_{3}\right)$

CbzNH-Pro-Gly-Val-Thr(Bn)-Ala-Val-OMe (267)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Val}-\mathrm{Thr}(\mathrm{Bn})$-Ala-Val-OMe-TFA was obtained from 265 (0.500 g , $0.844 \mathrm{mmol}, \quad 1.00 \mathrm{eq})$ anjd isolated by azeotropic evaporation following GP 5.

Following GP 2 using Cbz-Pro-Gly-OH ($0.284 \mathrm{~g}, 0.928 \mathrm{mmol}, 1.1 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}$ -Val-Thr(Bn)-Ala-Val-OMe•TFA $\quad(0.416 \mathrm{~g}, \quad 0.844 \mathrm{mmol}, \quad 1.0 \mathrm{eq}), \quad \mathrm{N}$ methylmorpholine ($0.46 \mathrm{~mL}, 4.22 \mathrm{mmol}, 5.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(0.178 \mathrm{~g}, 0.928 \mathrm{mmol}$, 1.1 eq) and $\operatorname{HOBt}(0.142 \mathrm{~g}, 0.928 \mathrm{mmol}, 1.1 \mathrm{eq})$ the title compound 267 was obtained after FC on silica (EA) as a colorless foam ($0.535 \mathrm{~g}, 0.685 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.95-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.20-$ $4.79(\mathrm{~m}, 4 \mathrm{H}), 4.62-4.42(\mathrm{~m}, 3 \mathrm{H}), 4.31-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.38(\mathrm{~m}, 7 \mathrm{H}), 2.27-$ $1.75(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.06(\mathrm{~m}, 3 \mathrm{H}), 0.98-0.77(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.8,172.2,171.8,170.0,169.0,155.4,138.3,136.3$, 128.5, 128.1, 127.9, 127.5, 127.4, 126.9, 75.4, 71.8, 66.9, 65.9, 60.7, 60.0, 57.7, 57.2, $52.2,48.8,47.2,43.3,31.4,31.1,30.0,24.7,19.4,19.1,19.0,18.8,18.0,16.4 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 781.4131$, found, 781.4126.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3280,2967,1632,1535$.
$[\alpha]^{23} \mathrm{D}+31.0\left(c=0.770, \mathrm{CHCl}_{3}\right)$
$\mathrm{H}_{2} \mathrm{~N}$-Pro-Gly-Val-Thr(OH)-Ala-Val-NH2 (259a $\mathbf{N H}_{2}$)

First, crude CbzNH-Pro-Gly-Val-Thr(Bn)-Ala-Val-OH was obtained from 267 ($164 \mathrm{mg}, \quad 0.214 \mathrm{mmol}, \quad 1.00 \mathrm{eq}$) and aq. $\mathrm{NaOH}(4.3 \mathrm{~mL})$ in $\mathrm{MeCN}(2.1 \mathrm{~mL})$ following GP 3.

To a solution of the obtained crude acid in THF (2.1 mL) at $0^{\circ} \mathrm{C}$ were sequentially added isobutyl chloroformate ($56 \mu \mathrm{~L}, 0.428 \mathrm{mmol}, 2.00 \mathrm{eq}$), N methylmorpholine ($71 \mu \mathrm{~L}, 0.642 \mathrm{mmol}, 3.00 \mathrm{eq}$). The mixture was stirred for 1 h before conc. ammonium hydroxide ($3.33 \mathrm{~mL}, 21.4 \mathrm{mmol}, 100 \mathrm{eq}$) was added. The mixture was allowed to warm to r.t. and stirred overnight. The reaction mixture was acidified with aq. NaHSO_{4} solution ($1 \mathrm{~m}, 50 \mathrm{~mL}$) and extracted with EA ($3 \times 50 \mathrm{~mL}$). The suspended colorless powder was isolated with the org. layer and concentrated. Crude NMR in DMSO suggested that Cbz-deprotection already occurred at this stage. The crude product ($34 \mathrm{mg}, 0.054 \mathrm{mmol}, 1.00 \mathrm{eq}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(12 \mathrm{mg}, 0.054 \mathrm{mmol}, 1.00 \mathrm{eq})$ were suspended in $\mathrm{MeOH}(5.38 \mathrm{~mL})$. The mixture was stirred under an atm of H_{2} for 24 h . The crude mixture was filtered through a syringe filter (PTFE) with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,100 \mathrm{~mL})$ and the filtrate was concentrated. The crude product was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1 \%$ TFA in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 90: 10,26.5 \mathrm{~mL} / \mathrm{min}$) to yield the title compound as the as a colorless foam ($1.8 \mathrm{mg}, 3.32 \mu \mathrm{~mol}, 6.2 \%$)
${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{DMSO}\right) \delta=7.84(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (d, J = $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}$, $1 \mathrm{H}), 4.88(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=$ 8.7, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.46-$ $3.39(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.77(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (151 MHz, DMSO) $\delta=174.6,172.8,172.8,171.9,171.2,170.3,169.6,66.4$, $59.5,58.2,57.8,57.4,57.4,48.4,48.4,46.0,43.6,30.4,30.3,30.3,29.8,23.9,19.6,19.3$, 18.1, 18.0, 17.9, 17.9 ppm .

HRMS (MALDI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 542.3297$, found, 542.3297.

BocNH-Thr(Bn)-Ala-Val-OBn (262)

First, crude BocNH-Thr(Bn)-Ala-OH was obtained from 261 ($0.860 \mathrm{~g}, 2.18 \mathrm{mmol}, 1.00 \mathrm{eq}$) and aq. LiOH ($10.9 \mathrm{~mL}, 5.00 \mathrm{eq}$) in THF (21.8 mL) following GP 4.

Following GP 2 using crude BocNH-Thr(Bn)-Ala-OH ($0.829 \mathrm{~g}, 2.18 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Val}-\mathrm{OBn} \cdot \mathrm{HCl}(0.910 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.1 \mathrm{eq})$, N-methylmorpholine (0.95 mL , $8.72 \mathrm{mmol}, 4.0 \mathrm{eq}), \mathrm{EDC} \cdot \mathrm{HCl}(0.418 \mathrm{~g}, 2.18 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{HOBt}(0.334 \mathrm{~g}$, $2.18 \mathrm{mmol}, 1.0 \mathrm{eq}$) the title compound 262 was obtained after FC on silica (hex:EA=2:1) as a colorless foam ($0.894 \mathrm{~g}, 1.57 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, J = 8.7 Hz, 1H), $5.44(\mathrm{~d}, ~ J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.47(\mathrm{~m}, 4 \mathrm{H})$, $4.29-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=14.1,6.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=171.8,171.6,170.3,155.9,138.0,135.5,128.7,128.6$, 128.6, 128.5, 128.0, 127.8, 80.4, 74.9, 71.7, 67.1, 58.1, 57.4, 49.2, 31.2, 28.4, 19.1, 18.0, 17.8, 15.7 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 570.3174$, found, 570.3168.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3307,2973,1718,1644,1520,1165,737$.
$[\alpha]^{23} \mathrm{D}-12.5\left(c=0.820, \mathrm{CHCl}_{3}\right)$

BocNH-OxGly-Val-Thr(Bn)-Ala-Val-OBn (270) ${ }^{280}$

First, crude BocNH-OxGly-Val-OH was obtained from BocNH-OxGly-Val-OnPr ${ }^{107}$ ($30 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.00 \mathrm{eq}$) and aq. LiOH ($1.70 \mathrm{~mL}, 20.0 \mathrm{eq}$) in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ following GP 4.

Also, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Thr}(\mathrm{Bn})$-Ala-Val-OBn•TFA was obtained from 262 (99 mg , $0.174 \mathrm{mmol}, 1.00 \mathrm{eq}$) and isolated by azeotropic evaporation following GP 5.

Following GP 2 using crude BocNH-OxGly-Val-OH ($26 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.0 \mathrm{eq}$), crude $\quad \mathrm{H}_{2} \mathrm{~N}-\mathrm{Thr}(\mathrm{Bn})-\mathrm{Ala-Val-Bn} \cdot \mathrm{TFA} \quad(0.102 \mathrm{~g}, \quad 0.174 \mathrm{mmol}, \quad 2.0 \mathrm{eq}), \quad \mathrm{N}$ methylmorpholine ($48 \mu \mathrm{~L}, 0.435 \mathrm{mmol}, 5.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(33 \mathrm{mg}, 0.174 \mathrm{mmol}$, 2.0 eq) and HOBt ($27 \mathrm{mg}, 0.174 \mathrm{mmol}, 2.0 \mathrm{eq}$) the title compound was obtained after FC on silica (hex:EA=2:1) as a colorless foam ($52 \mathrm{mg}, 0.069 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.16$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.06(\mathrm{~m}$, 2H), $4.74-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.58-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.40-4.26(\mathrm{~m}, 3 \mathrm{H}), 4.04-3.94(\mathrm{~m}$, 1H), $3.67-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (dd, $J=14.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19 - 2.06 (m, 2H), 1.29 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92-0.81(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=175.0,171.8,171.7,169.4,157.1,137.8,135.4,128.7$, 128.6, 128.6, 128.5, 128.1, 127.9, 79.2, 78.7, 74.6, 71.7, 67.2, 62.3, 60.7, 57.4, 55.5, $49.2,46.1,34.1,31.9,31.3,25.7,25.1,19.8,19.0,18.3,17.8,15.2 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+} 754.4386$, found, 754.4379 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3290,2967,1631,1528,1166,976,752$.
$[\alpha]^{23} \mathrm{D}-76.3\left(c=0.250, \mathrm{CHCl}_{3}\right)$

CbzNH-Pro-OxGly-Val-Thr(Bn)-Ala-Val-OBn (271)

First, crude $\mathrm{H}_{2} \mathrm{~N}^{-O x} \mathrm{Gly}$-Val-Thr(Bn)-Ala-Val-OBn was obtained from 270 (71 mg , $0.094 \mathrm{mmol}, 1.00 \mathrm{eq})$ and isolated by aq. extraction following GP 5.

Following GP 2 using Cbz-Pro-OH ($52 \mathrm{mg}, 0.210 \mathrm{mmol}, 2.0 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}$ ${ }^{\text {OxGly-Val-Thr }}(\mathrm{Bn})$-Ala-Val-OMe $\quad(69 \mathrm{mg}, \quad 0.105 \mathrm{mmol}, \quad 1.0 \mathrm{eq}), \quad \mathrm{N}$ methylmorpholine ($58 \mu \mathrm{~L}, 0.525 \mathrm{mmol}, 5.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(40 \mathrm{mg}, 0.210 \mathrm{mmol}$, 2.0 eq) and HOBt ($32 \mathrm{~g}, 0.210 \mathrm{mmol}, 2.0 \mathrm{eq}$) the title compound was obtained after FC on silica (EA) as a colorless foam ($41 \mathrm{mg}, 0.046 \mathrm{mmol}, 44 \%$).
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, COSY, HSQC, HMBC data are only displayed in the spectra parts due to high number of rotamers.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 885.4757$, found, 885.4752.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3299,2964,2875,1639,1539,1195,977$.
$[\alpha]^{23} \mathrm{D}-27.0\left(c=0.220, \mathrm{CHCl}_{3}\right)$
$\mathrm{H}_{2} \mathrm{~N}$-Pro-OxGly-Val-Thr(OH)-Ala-Val-OH (259c OH)

271 ($29 \mathrm{mg}, \quad 0.033 \mathrm{mmol}, \quad 1.00 \mathrm{eq}$) and $\mathrm{Pd}(\mathrm{OAc}) 2 \quad(3.7 \mathrm{mg}, \quad 0.016 \mathrm{mmol}, \quad 0.50 \mathrm{eq})$ were suspended in $\mathrm{MeOH}(1.0 \mathrm{~mL})$. The mixture was stirred under an atm of H_{2} for 24 h . The crude mixture was filtered through a syringe filter (PTFE) with $\mathrm{MeOH}(25 \mathrm{~mL}$) and the filtrate was concentrated. The crude product was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1$ \% TFA in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$, 90:10, $26.5 \mathrm{~mL} / \mathrm{min}$) to yield the title compound 259 c as the as a colorless foam ($6.4 \mathrm{mg}, 11 \mu \mathrm{~mol}, 34 \%$)
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Methanol) $\delta=4.69-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.34(\mathrm{~m}, 6 \mathrm{H}), 4.29$ $4.16(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 1 \mathrm{H})$, $3.46-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.00(\mathrm{~m}, 5 \mathrm{H}), 1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-0.97(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=175.2,174.7,172.0,171.1,170.1,79.2,78.7,68.8$, $63.7,62.4,61.4,59.4,59.2,50.5,47.4,45.3,33.0,31.5,31.0,25.1,20.2,19.6,19.5,18.7$, 18.6, 18.2 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 571.3450$, found, 571.3451 .

BocNH-Val-Thr(Bn)-Ala-Val-OBn (260)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Thr}(\mathrm{Bn})-\mathrm{Ala}-\mathrm{Val-OBn} \cdot \mathrm{TFA}$ was obtained from $262(0.500 \mathrm{~g}, 0.878 \mathrm{mmol}, 1.00 \mathrm{eq})$ and isolated by azeotropic evaporation following GP 5.

Following GP 2 using BocNH-Val-OH ($0.210 \mathrm{~g}, 0.965 \mathrm{mmol}, 1.1 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}-$ Thr(Bn)-Ala-Val-OBn \cdot TFA ($0.512 \mathrm{~g}, 0.877 \mathrm{mmol}, 1.0 \mathrm{eq}$), N-methylmorpholine ($0.39 \mathrm{~mL}, 3.51 \mathrm{mmol}, 4.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(0.185 \mathrm{~g}, 0.97 \mathrm{mmol}, 1.1 \mathrm{eq})$ and HOBt ($0.148 \mathrm{~g}, 0.97 \mathrm{mmol}, 1.1 \mathrm{eq}$) the title compound 260 was obtained after FC on silica (hex:EA=1:1 $\rightarrow \mathrm{EA}$) as a colorless foam ($0.465 \mathrm{~g}, 0.70 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.05-$ $6.94(\mathrm{~m}, 2 \mathrm{H}), 5.26-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.41(\mathrm{~m}, 5 \mathrm{H}), 4.36$ $4.28(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{t}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=172.1,171.9,171.6,169.9,156.7,138.0,135.8,128.6$, 128.5, 128.4, 128.3, 128.0, 127.8, 80.9, 74.1, 71.8, 66.9, 61.1, 57.7, 57.5, 49.2, 31.1, $30.2,28.3,19.6,19.1,17.9,17.7,16.6 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 669.3858$, found, 669.3851 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3279,2934,1637,1530,1168,739$.
$[\alpha]^{23}{ }^{2}-15.6\left(c=1.08, \mathrm{CHCl}_{3}\right)$

CbzNH-OxPro-Gly-Val-Thr(Bn)-Ala-Val-OBn (268)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Val}-\mathrm{Thr}(\mathrm{Bn})$-Ala-ValOBn•TFA was obtained from 260 (62 mg, $0.098 \mathrm{mmol}, \quad 1.00 \mathrm{eq})$ and isolated by azeotropic evaporation following GP 5.

Also, crude BocNH-OxPro-Gly-OH was obtained from 73q ($50 \mathrm{mg}, 0.128 \mathrm{mmol}$, $1.00 \mathrm{eq})$ and $\mathrm{Pd} / \mathrm{C}(14 \mathrm{mg}, 0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in $\mathrm{MeOH}(1.2 \mathrm{~mL})$ following GP 6.

Following GP 2 using BocNH-OxPro-Gly-OH (27 mg , $0.089 \mathrm{mmol}, 1.0 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Val}-\mathrm{Thr}(\mathrm{Bn})$-Ala-Val-OBn$\cdot \mathrm{TFA} \quad(67 \mathrm{mg}, \quad 0.098 \mathrm{mmol}, \quad 1.1 \mathrm{eq}), \quad \mathrm{N}$ methylmorpholine $(0.49 \mu \mathrm{~L}, 0.445 \mathrm{mmol}, 5.0 \mathrm{eq}), \mathrm{EDC} \cdot \mathrm{HCl}(19 \mathrm{mg}, 0.098 \mathrm{mmol}$, 1.1 eq) and $\mathrm{HOBt}(15 \mathrm{mg}, 0.098 \mathrm{mmol}, 1.1 \mathrm{eq}$) the title compound 268 was obtained after FC on silica (EA) as a colorless foam ($52 \mathrm{mg}, 0.061 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.27-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.52(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.09$ (m, 1H), $3.69(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.27$ - $2.05(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}$, 9H), 1.37 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{dd}, J=16.6,6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $0.88(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.1,171.5,171.2,169.3,137.9,135.5,128.5,128.5$, 128.3, 128.3, 127.9, 127.7, 80.3, 74.2, 71.4, 66.9, 64.3, 62.1, 58.5, 57.4, 56.6, 49.0, 48.7, $45.9,38.6,31.0,28.5,19.4,19.0,18.2,17.8,17.8,15.6$ ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{45} \mathrm{H}_{67} \mathrm{~N}_{6} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$851.4913, found, 851.4906 .
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3287,2969,1690,1636,1536,1391,1163,848,752$.
$[\alpha]^{23}{ }_{\mathrm{D}}-123\left(c=0.21, \mathrm{CHCl}_{3}\right)$

$\mathrm{H}_{2} \mathrm{~N}-$ OxPro-Gly-Val-Thr(OH)-Ala-Val-OH (259b OH)

First, crude $\mathrm{H}_{2} \mathrm{~N}$-OxPro-GlyVal-Thr(Bn)-Ala-Val-OBn was obtained from 268 ($33 \mathrm{mg}, 0.039 \mathrm{mmol}, 1.00 \mathrm{eq}$) and isolated by aq. extraction following GP 5.

Crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{O}^{-}$Pro-GlyVal-Thr(Bn)-Ala-Val-OBn ($29 \mathrm{mg}, 0.039 \mathrm{mmol}, 1.00 \mathrm{eq}$) and $\mathrm{Pd} / \mathrm{C}(10-\mathrm{wt} \% \mathrm{Pd}, 8.2 \mathrm{mg}, 0.007 \mathrm{mmol}, 20 \mathrm{~mol}-\%)$ were suspended in MeOH $(0.8 \mathrm{~mL})$. The mixture was stirred under an atm of H_{2} for 26 h . The crude mixture was filtered through a syringe filter (PTFE) with $\mathrm{MeOH}(9 \mathrm{~mL})$ and the filtrate was concentrated. The crude product was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1$ \% TFA in MeCN/H2O, 90:10, $26.5 \mathrm{~mL} / \mathrm{min}$) to yield the title compound as the as a colorless foam ($3.0 \mathrm{mg}, 5.3 \mu \mathrm{~mol}, 14 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=4.62-4.54(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ $(\mathrm{d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=6.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, 1H), $3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.20-1.92(\mathrm{~m}$, $5 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=176.1,175.0,174.5,173.6,171.7,79.3,78.5,70.5$, $68.5,61.3,60.8,59.6,59.1,50.3,46.3,31.7,26.7,24.7,19.9,19.8,19.6,18.6,18.4,18.3$ ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 571.3450$, found, 571.3450 .

CbzNH-Pro-Gly-Val-Thr(Bn)-Ala-Val-OBn (264)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Val}-\mathrm{Thr}(\mathrm{Bn})$-Ala-ValOBn•TFA was obtained from $260(230 \mathrm{mg}$, $0.344 \mathrm{mmol}, \quad 1.00 \mathrm{eq}$) and isolated by azeotropic evaporation following GP 5.

Also, crude CbzNH-Pro-Gly-OH was obtained from CbzNH-Pro-Gly-OMe ($121 \mathrm{mg}, 0.378 \mathrm{mmol}, 1.00 \mathrm{eq}$) and aq. $\mathrm{NaOH}(0.25 \mathrm{M}, 7.56 \mathrm{~mL}, 1.89 \mathrm{mmol}$, $5.00 \mathrm{eq})$ in ACN (3.8 mL) following GP $3 .{ }^{216}$

Following GP 2 using CbzNH-Pro-Gly-OH ($116 \mathrm{mg}, 0.378 \mathrm{mmol}, 1.1 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Val}-\mathrm{Thr}(\mathrm{Bn})$-Ala-Val-OBn$\cdot T \mathrm{TA} \quad(196 \mathrm{mg}, \quad 0.344 \mathrm{mmol}, \quad 1.0 \mathrm{eq}), \quad \mathrm{N}$ methylmorpholine ($151 \mu \mathrm{~L}, 1.38 \mathrm{mmol}, 4.0 \mathrm{eq}), \mathrm{EDC} \cdot \mathrm{HCl}(73 \mathrm{mg}, 0.378 \mathrm{mmol}$, 1.1 eq) and HOBt ($58 \mathrm{mg}, 0.378 \mathrm{mmol}, 1.1 \mathrm{eq}$) the title compound was obtained after FC on silica (EA) as a colorless foam ($178 \mathrm{mg}, 0.208 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.85-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-$ 7.22 (m, 15H), 7.17 - 7.11 (m, 2H), 5.23 - 5.08 (m, 3H), $4.86-4.67$ (m, 3H), 4.59 $4.42(\mathrm{~m}, 3 \mathrm{H}), 4.40-4.26(\mathrm{~m}, 3 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.91-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 9 \mathrm{H})$, $0.79(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.9,172.8,172.0,171.4,170.3,169.2,155.7,138.3$, 136.2, 135.4, 128.8, 128.7, 128.5, 128.3, 128.0, 127.7, 127.5, 126.7, 75.4, 71.9, 67.2, $67.1,60.9,57.8,57.4,49.1,47.4,43.5,31.2,30.0,24.9,19.3,19.1,19.0,17.9,16.5$. ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 857.4444$, found, 857.4438.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3277,2935,1707,1694,1631,1530,1413,1354,1211,1092,750$. $[\alpha]^{23} \mathrm{D}+34.6\left(c=0.555, \mathrm{CHCl}_{3}\right)$
$\mathrm{H}_{2} \mathrm{~N}$-Pro-Gly-Val-Thr(OH)-Ala-Val-OH (259a OH)

264 ($80 \mathrm{mg}, \quad 0.093 \mathrm{mmol}, \quad 1.00 \mathrm{eq}$) and $\mathrm{Pd}(\mathrm{OAc})_{2} \quad(21 \mathrm{mg}, \quad 0.093 \mathrm{mmol}, \quad 1.00 \mathrm{eq})$ were suspended in MeOH (3.1 mL). The mixture was stirred under an atm of H_{2} for 24 h . The crude mixture was filtered through a syringe filter (PTFE) with $\mathrm{MeOH}(25 \mathrm{~mL}$) and the filtrate was concentrated. The crude product was purified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}, 125 \times 20 \mathrm{~mm}, 0.1 \%$ TFA in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$, 90:10, $26.5 \mathrm{~mL} / \mathrm{min}$) to yield the title compound as the as a colorless foam (10.3 mg, $19 \mu \mathrm{~mol}, 20 \%$)
${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, Methanol) $\delta=4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{dd}, \mathrm{J}=8.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.2,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.99$ $(\mathrm{q}, \mathrm{J}=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.21-2.00(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{dd}, J=$ 9.3, $6.8 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (151 MHz, Methanol) $\delta=175.0,174.6,173.7,171.8,171.3,170.5,68.5$, $61.2,60.6,59.6,59.2,50.4,47.5,43.6,31.7,31.6,30.9,25.1,19.8,19.8,19.6,18.5,18.4$, 18.2 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 543.3137$, found, 543.3132.

BocNH-Val-Thr(Bn)-Ala- OMe (276)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Thr}(\mathrm{Bn})$-Ala-OMe•TFA was obtained from $261(2.01 \mathrm{~g}, 5.10 \mathrm{mmol}, 1.00 \mathrm{eq})$ and isolated by azeotropic evaporation following GP 5.

Following GP 2 using crude $\mathrm{H}_{2} \mathrm{~N}-\operatorname{Thr}(\mathrm{Bn})$-Ala-OMe•TFA $(2.08 \mathrm{~g}, 5.10 \mathrm{mmol}$, $1.0 \mathrm{eq})$, BocNH-Val-OH ($1.22 \mathrm{~g}, \quad 5.61 \mathrm{mmol}, \quad 1.1 \mathrm{eq})$, $\quad N$-methylmorpholine $(2.24 \mathrm{~mL}, 20.4 \mathrm{mmol}, 4.0 \mathrm{eq}), \mathrm{EDC} \cdot \mathrm{HCl}(1.08 \mathrm{~g}, 5.61 \mathrm{mmol}, 1.1 \mathrm{eq})$ and HOBt ($0.858 \mathrm{~g}, 5.61 \mathrm{mmol}, 1.1 \mathrm{eq}$) the title compound 276 was obtained after FC on silica (hex:EA=1:1) as a colorless glass ($0.745 \mathrm{~g}, 1.51 \mathrm{mmol}, 30 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.35-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.47(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 1 \mathrm{H}), 2.27$ - $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.8,171.7,169.2,156.1,138.0,128.5,127.9,127.8$, 80.2, 74.2, 71.6, 60.3, 56.3, 52.4, 52.3, 48.3, 30.7, 28.3, 19.4, 17.9, 17.6, 15.4 ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 494.2861$, found, 494.2861 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3282,2934,1745,1690,1641,1548,1520,1166,742$.
$[\alpha]^{23} \mathrm{D}+1.36\left(c=0.795, \mathrm{CHCl}_{3}\right)$

CbzNH-Pro-Gly-Val-Thr(Bn)-Ala-OMe (275)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Val-Thr}(\mathrm{Bn})$-Ala- OMe•TFA was obtained from $276(0.350 \mathrm{~g}, 0.709 \mathrm{mmol}$, $1.00 \mathrm{eq})$ and isolated by azeotropic evaporation following GP 5.

Also, crude CbzNH-Pro-Gly-OH was obtained from CbzNH-Pro-Gly-OMe ($273 \mathrm{mg}, 0.851 \mathrm{mmol}, 1.00 \mathrm{eq}$) and aq. $\mathrm{NaOH}(0.25 \mathrm{~m}, 17.0 \mathrm{~mL}, 4.26 \mathrm{mmol}$, $5.00 \mathrm{eq})$ in $\mathrm{MeCN}(8.5 \mathrm{~mL})$ following GP 3.

Following GP 2 using Cbz-Pro-Gly-OH (0.261 g, $0.851 \mathrm{mmol}, 1.2 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}$ -Val-Thr(Bn)-Ala-OMe•TFA ($0.360 \mathrm{~g}, 0.709 \mathrm{mmol}, 1.0 \mathrm{eq}$), N-methylmorpholine ($0.39 \mathrm{~mL}, 3.55 \mathrm{mmol}, 5.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(0.163 \mathrm{~g}, 0.851 \mathrm{mmol}, 1.2 \mathrm{eq})$ and HOBt ($0.130 \mathrm{~g}, 0.851 \mathrm{mmol}, 1.2 \mathrm{eq}$) the title compound was obtained after trituration with hex: $\mathrm{Et}_{2} \mathrm{O}(1: 1,50 \mathrm{~mL})$ as a col ${ }^{219}$ orless foam $(0.420 \mathrm{~g}, 0.709 \mathrm{mmol}, 87 \%)$.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Methanol $) \delta=7.45-7.16(\mathrm{~m}, 10 \mathrm{H}), 5.18-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.62-$ $4.40(\mathrm{~m}, 4 \mathrm{H}), 4.37-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ $(\mathrm{d}, \mathrm{J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.32-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.40(\mathrm{~d}, \mathrm{~J}$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.83(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Methanol) $\delta=175.7,174.3,174.0,172.0,171.7,139.8,138.0$, 129.6, 129.3, 129.1, 128.9, 128.6, 128.5, 76.7, 72.6, 68.3, 62.3, 61.4, 58.8, 52.7, 43.9, $31.7,31.1,25.5,19.7,19.3,17.6,17.0 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}$682.3447, found, 682.3440 .
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3285,2966,1747,1709,1636,1541,1416,1356,1210,1118,746$. $[\alpha]^{23} \mathrm{D}+25.3\left(c=0.785, \mathrm{CHCl}_{3}\right)$

BocNH-OxVal-NHCbz (274)

To a solution of 145 ($100 \mathrm{mg}, 0.409 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ were added benzyl (2,5-dioxopyrrolidin-1-yl) carbonate ($153 \mathrm{mg}, \quad 0.614 \mathrm{mmol}, \quad 1.50 \mathrm{eq}$) and $\operatorname{Et} \mathrm{t}_{\mathrm{N}}(86 \mu \mathrm{~L}, \quad 0.614 \mathrm{mmol}$, 1.50 eq). The mixture was stirred for 20 h at r.t. and directly purified by FC on silica (hex:EA=3:1) to yield 274 as a colorless oil ($120 \mathrm{mg}, 0.317 \mathrm{mmol}, 77 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ ($\mathrm{s}, 1 \mathrm{H}$), $5.17-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=156.6,156.1,135.9,128.8,128.6,128.3,81.3,79.3$, $67.4,60.9,60.5,30.6,28.5,20.1,19.1 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 401.2047$, found, 401.2041.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3325,2968,1696,1515,1391,1367,1245,1168,1054,989,742$.
$[\alpha]^{23} \mathrm{D}-55.7\left(c=0.755, \mathrm{CHCl}_{3}\right)$
$\mathrm{H}_{2} \mathrm{~N}$-Pro-Gly-Val-Thr(Bn)-Ala-OxVal-NH2 (259d $\mathbf{N H}_{2}$)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{O} \times \mathrm{Val}-\mathrm{NHCbz}$ was obtained from 274 ($51 \mathrm{mg}, 0.135 \mathrm{mmol}$, 1.00 eq) and isolated by aq. extraction following GP 5.

Also, crude CbzNH-Pro-Gly-Val-Thr(Bn)-Ala-OH was obtained from 275 ($110 \mathrm{mg}, 0.162 \mathrm{mmol}, 1.00 \mathrm{eq}$) and aq. $\mathrm{LiOH}(1 \mathrm{~m}, 0.81 \mathrm{~mL}, 0.810 \mathrm{mmol}, 5.00 \mathrm{eq}$) in THF (1.6 mL) following GP 4.

Following GP 2 using crude CbzNH-Pro-Gly-Val-Thr(Bn)-Ala-OH (108 mg, $0.162 \mathrm{mmol}, 1.2 \mathrm{eq}$), crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Ox}$ Val-NHCbz ($38 \mathrm{mg}, 0.135 \mathrm{mmol}, 1.0 \mathrm{eq}$), N methylmorpholine ($0.10 \mathrm{~mL}, 0.95 \mathrm{mmol}, 7.0 \mathrm{eq}$), EDC $\cdot \mathrm{HCl}(0.031 \mathrm{~g}, 0.162 \mathrm{mmol}$, $1.2 \mathrm{eq})$ and $\operatorname{HOBt}(0.025 \mathrm{~g}, 0.162 \mathrm{mmol}, 1.2 \mathrm{eq})$ the crude fully protected peptide was obtained as an off-white amorphous solid ($50 \mathrm{mg}, 0.054 \mathrm{mmol}, 40 \%$). In this case the product was isolated by trituration with hexanes $(50 \mathrm{~mL})$ of the residue obtained from aq. extraction.

The crude material ($10 \mathrm{mg}, 11 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(2.4 \mathrm{mg}, 11 \mu \mathrm{~mol}$, 1.00 eq) were suspended in $\mathrm{MeOH}(1.1 \mathrm{~mL})$. The mixture was stirred under an atm of H_{2} for 24 h . The crude mixture was filtered through a syringe filter (PTFE) with $\mathrm{MeOH}(25 \mathrm{~mL})$ and the filtrate was concentrated. The crude product was pruified by preparative HPLC (Waters 2545, 2767, Reprosil Gold 120 C18, $5 \mu \mathrm{~m}$, $125 \times 20 \mathrm{~mm}, \quad 0.1 \% \mathrm{TFA}$ in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 90: 10,26.5 \mathrm{~mL} / \mathrm{min}$) to yield the title compound as the as a colorless foam ($1.7 \mathrm{mg}, 3.0 \mu \mathrm{~mol}, 28 \%$)

HSQC is provided with the spectra.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Methanol) $\delta=4.51$ (dd, $\left.J=17.5,8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.32-4.22(\mathrm{~m}$, 5H), 4.17 (dd, $J=6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ - 3.58 (m, 1H), $3.30-3.23$ (m, 1H), 2.30 - 2.06 (m, 4H), $1.99-1.89$ (m, 1H), 1.85 $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{dd}, J=13.5,6.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.94(\mathrm{dd}, J=16.5,6.7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.

HRMS (MALDI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{~N}_{7} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 570.3610$, found, 570.3609.

BocNH-OxPro-Gly-Val-Thr(Bn)-Ala-Val-OMe (269)

A mixture of BocNH-OxPro-Gly-OH ($38 \mathrm{mg}, 0.172 \mathrm{mmol}, 1.00 \mathrm{eq}$), TFA $\cdot \mathrm{H}_{2} \mathrm{~N}-$ Val-Thr(Bn)-Ala-Val-OMe (69 mg, $0.139 \mathrm{mmol}, \quad 1.10 \mathrm{eq}), \quad N$-methylmorpholine $(0.056 \mathrm{~mL}, ~ 0.506 \mathrm{mmol}, ~ 4.00 \mathrm{eq})$, HOBT ($0.021 \mathrm{~g}, 0.139 \mathrm{mmol}, 1.10 \mathrm{eq}$) and EDC ($0.027 \mathrm{~g}, 0.139 \mathrm{mmol}, 1.10 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.27 \mathrm{~mL})$ was stirred at r.t. for 20 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica (hex:EA $=2: 1$) to yield the desired product 269 ($0.050 \mathrm{~g}, 0.065 \mathrm{mmol}, 51 \%$) as a colorless glass.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.97-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.19$ $(\mathrm{m}, 8 \mathrm{H}), 4.94-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.63(\mathrm{~m}, 3 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dd}, \mathrm{J}=$ 8.6, 5.3 Hz, 1H), $4.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.4$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dt}, J=4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 5 \mathrm{H}), 3.50(\mathrm{~d}, J=17.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{dt}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.98(\mathrm{dt}, J=12.9,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{dd}, J=14.3,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=172.8,172.5,172.4,172.3,171.3,169.1,138.1,128.5$, $128.5,127.9,127.8,127.7,80.4,77.0,74.5,71.4,64.4,62.3,57.9,57.5,56.2,52.2,48.8$, $45.9,31.7,31.0,28.6,28.4,24.4,19.4,19.0,18.9,18.1,18.0,15.2 \mathrm{ppm}$.

BocNH-OxGly-Val-Thr(Bn)-Ala-Val-OMe (272)

A mixture of TFA $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Thr}(\mathrm{Bn})$-Ala-ValOMe ($94 \mathrm{mg}, 0.186 \mathrm{mmol}, 1.10 \mathrm{eq}$), BocNH${ }^{\text {OxGly-Val-OH (} 51 \mathrm{mg}, ~} 0.169 \mathrm{mmol}, 1.00 \mathrm{eq}$), N-methylmorpholine $\quad(74.2 \mu \mathrm{~L}, \quad 0.675 \mathrm{mmol}, \quad 4.00 \mathrm{eq}), \quad \mathrm{HOBT} \quad(25.8 \mathrm{mg}$, $0.169 \mathrm{mmol}, 1.00 \mathrm{eq})$ and EDC ($32.3 \mathrm{mg}, 0.169 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was stirred at r.t. for 20 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica (hex:EA = 2:1) to yield $272(0.111 \mathrm{~g}, 0.164 \mathrm{mmol}, 97 \%)$ as a colorless glass.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.78-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-$ $4.58(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.42(\mathrm{~m}, 3 \mathrm{H}), 4.40-4.28(\mathrm{~m}, 3 \mathrm{H}), 4.07-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dd}$, $J=14.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=14.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.05$ (m, 2H), $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=174.8,172.2,171.6,169.2,137.7,128.6,128.0,127.8$, 79.1, 78.6, 74.4, 71.7, 62.3, 57.2, 55.3, 52.2, 49.2, 31.8, 31.2, 28.4, 19.7, 18.9, 18.1, 17.9, 17.7, 15.0 ppm .

CbzNH-Pro-Ox ${ }^{-}$Gly-Val-Thr(Bn)-Ala-Val-OMe (273)

A mixture of TFA $\mathrm{H}_{2} \mathrm{~N}-{ }^{-0 \times}$ Gly-Val-$\mathrm{Thr}(\mathrm{Bn})$-Ala-Val-OMe (29 mg , 0.050 mmol, $\quad 1.00 \mathrm{eq})$, CbzNH-Pro-OH ($25 \mathrm{mg}, 0.100 \mathrm{mmol}, 2.00 \mathrm{eq}$), N-methylmorpholine ($27 \mu \mathrm{~L}, 0.250 \mathrm{mmol}, 5.00 \mathrm{eq}$), HOBT ($15 \mathrm{mg}, 0.100 \mathrm{mmol}, 2.00 \mathrm{eq}$) and EDC ($19 \mathrm{mg}, 0.100 \mathrm{mmol}, 2.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was stirred at r.t. for 22 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right)$ to yield $273(0.038 \mathrm{~g}$, $0.047 \mathrm{mmol}, 94 \%$) as a colorless glass.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.40-7.29(\mathrm{~m}, 10 \mathrm{H}), 5.19-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.81$ $4.10(\mathrm{~m}, 10 \mathrm{H}), 4.05-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.73$ (s, 3H), $3.64-2.97$ (m, 4H), $2.21-1.80(\mathrm{~m}$, $6 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 3 \mathrm{H}), 0.96-0.86(\mathrm{~m}$, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=175.5,173.4,172.3,171.8,169.8,155.5,137.8,136.7$, 128.6, 128.6, 128.1, 127.9, 127.9, 127.8, 79.1, 74.9, 71.7, 67.1, 63.3, 60.6, 57.4, 55.5, $52.3,49.3,47.1,44.9,32.1,31.2,29.8,28.5,24.8,19.8,19.0,18.5,18.3,18.0,15.1 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+} 809.444$, found, 809.4447.

5.3 Experimental Procedures to Chapter 3

Methyl 2-(((benzyloxy)carbonyl)amino)-2-(oxetan-3-ylidene)acetate (326a)

To a solution of 305 (506 mg , $1.526 \mathrm{mmol}, 1.10 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.5 \mathrm{~mL})$ at r.t. was added $\operatorname{DBU}(220 \mu \mathrm{l}, 1.46 \mathrm{mmol}, 1.05 \mathrm{eq})$. The mixture was stirred for 10 min . $33(89 \mu \mathrm{l}, 1.39 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added. The mixture was stirred for 17.5 h . The crude mixture was purified by FC on silica (hex: $\mathrm{EtOAc}=1: 1$) to yield 326a ($330 \mathrm{mg}, 1.19 \mathrm{mmol}, 86 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.50-5.35(\mathrm{~m}$, $4 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=163.7,152.9,139.9,135.8,128.8,128.6,128.4,116.0$, 78.8, 78.8, 67.6, 52.9 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 300.0842$, found, 300.0839.

Methyl 2-((tert-butoxycarbonyl)amino)-2-(oxetan-3-ylidene)acetate (326b)
 To a solution of $306(517 \mathrm{mg}, 1.74 \mathrm{mmol}, 1.10 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15.8 \mathrm{~mL})$ at r.t. was added DBU $(250 \mu \mathrm{l}, 1.66 \mathrm{mmol}, 1.05 \mathrm{eq})$. The mixture was stirred for 10 min . 33 ($102 \mu \mathrm{l}, 1.58 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added. The mixture was stirred for 16.5 h . The crude mixture was purified by FC on silica (hex: $\mathrm{EtOAc}=1: 1$) to yield $\mathbf{3 2 6 b}(278 \mathrm{mg}, 1.14 \mathrm{mmol}, 72 \%)$ as a colorless foam.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.53(\mathrm{~s}, 1 \mathrm{H}), 5.45-5.34(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.43$ ($\mathrm{s}, 9 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=163.9,152.0,139.0,116.2,80.8,78.8,78.7,52.6$, 28.1 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$266.0999, found, 266.0997.

Methyl 2-(oxetan-3-ylidene)-2-(((2,2,2-trichloroethoxy)carbonyl)amino)acetate (326c)

To a solution of methyl 2-amino-2-(dimethoxyphosphoryl)acetate ($119 \mathrm{mg}, 0.604 \mathrm{mmol}, 1.50 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.51 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($107 \mu \mathrm{l}, 0.765 \mathrm{mmol}, 1.90 \mathrm{eq}$) followed by dropwise trichloroethyl chloroformate ($94 \mu \mathrm{l}, 0.684 \mathrm{mmol}, 1.70 \mathrm{eq}$) at r.t. The mixture was stirred for 30 min at r.t. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.52 \mathrm{~mL})$ and $\mathrm{DBU}(176 \mu \mathrm{l}, 1.167 \mathrm{mmol}, 2.90 \mathrm{eq})$ were added and the mixture was stirred for 10 min before $33(25.9 \mu \mathrm{~L}, 0.402 \mathrm{mmol}$, $1.00 \mathrm{eq})$ was added slowly. The crude mixture was purified by FC on silica (hex: $\mathrm{EtOAc}=1: 1$) to yield $\mathbf{3 2 6 c}(88 \mathrm{mg}, 0.276 \mathrm{mmol}, 69 \%)$ as a colorless foam.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.97(\mathrm{~s}, 1 \mathrm{H}), 5.48-5.38(\mathrm{~m}, 4 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 3.83$ (s, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=163.6,115.6,95.2,78.8,78.6,76.4,74.9,53.1 \mathrm{ppm}$.

Methyl 2-((methoxycarbonyl)amino)-2-(oxetan-3-ylidene)acetate (326d)

To a solution of methyl 2-(dimethoxyphosphoryl)-2((methoxycarbonyl)amino)acetate ($340 \mathrm{mg}, 1.33 \mathrm{mmol}, 1.10 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.1 \mathrm{~mL})$ at r.t. was added $\mathrm{DBU}(192 \mu \mathrm{~L}, 1.27 \mathrm{mmol}$, $1.05 \mathrm{eq})$. The mixture was stirred for $10 \mathrm{~min} .33(78 \mu \mathrm{~L}, 1.21 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added. The mixture was stirred for 16.5 h . The crude mixture was filtered over a pad of silica with EtOAc (80 mL). The solvent was removed under reduced pressure yielding $\mathbf{3 2 6 d}(0.240 \mathrm{~g}, 1.19 \mathrm{mmol}, 98 \%$) as a colorless foam.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.71(\mathrm{~s}, 1 \mathrm{H}), 5.49-5.31(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69$ (s, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=163.8,153.6,139.8,116.1,78.8,78.8,52.9$, 52.8 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$224.0529, found, 224.0533.

Methyl 2-((tert-butoxycarbonyl)amino)-2-(oxetan-3-yl)acetate (328b)

A mixture of $\mathrm{Rh}(\mathrm{BPE})(\mathrm{cod})$ triflate $(1.0 \mathrm{mg}, 1.64 \mu \mathrm{~mol}, 2.00 \mathrm{~mol}-\%)$ and 326b ($20 \mathrm{mg}, 0.082 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(0.66 \mathrm{~mL})$ was stirred under 10 atm of H_{2} for 36 h . The mixture was passed over a silica plug with EtOAc (20 mL) to remove the catalyst and the filtrate was concentrated to leave $\mathbf{3 2 8 b}$ ($20 \mathrm{mg}, 0.082 \mathrm{mmol}, 99 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.22(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.48(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 1.44$ (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=171.8,155.8,73.8,73.4,54.6,52.7,37.7,28.4 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$246.1336, found, 246.1341 .

Methyl 2-((methoxycarbonyl)amino)-2-(oxetan-3-yl)acetate (328d)

A mixture of $\mathrm{Rh}(\mathrm{BPE})$ (cod)triflate ($0.5 \mathrm{mg}, 0.81 \mu \mathrm{~mol}, 2.00 \mathrm{~mol}-\%$) and 326 d ($8.1 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{MeOH}(0.16 \mathrm{~mL})$ was stirred under 10 atm of H_{2} for 60 h . The mixture was purified by CC on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:acetone $\left.=9: 1\right)$ to yield $328 \mathbf{d}(5 \mathrm{mg}, 0.025 \mathrm{mmol}, 61 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.52(\mathrm{~m}, 5 \mathrm{H}), 3.74(\mathrm{~s}$, 3H), 3.71 (s, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=171.5,157.1,73.7,73.4,55.1,52.8,37.8 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{1} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$204.0866, found, 204.0868.
(Z)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-(3-methyloxetan-3-yl)acrylate (329a)

To a solution of $305(310 \mathrm{mg}$, $0.936 \mathrm{mmol}, 1.10 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL})$ at r.t. was added DBU ($0.136 \mathrm{~mL}, 0.905 \mathrm{mmol}, 1.05 \mathrm{eq})$. The mixture was stirred for 10 min . 3-methyloxetane-3-carbaldehyde ($125 \mathrm{mg}, 0.624 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.00 \mathrm{~mL})$ was added. The mixture was stirred for 17.5 h . The crude mixture was purified by FC on silica (hex:EtOAc = 1:1) to yield 329a ($185 \mathrm{mg}, 0.606 \mathrm{mmol}$, 97%) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.12$ ($\mathrm{s}, 2 \mathrm{H}$), $4.75(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.59$ (s, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=164.8,154.3,138.3,135.6,128.4,128.3,128.1,124.7$, 81.7, 67.7, 52.8, 41.0, 24.2 ppm .
(Z)-Methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methyloxetan-3-yl)acrylate (329b)

To a solution of methyl 306 ($1.00 \mathrm{~g}, 3.36 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(51 \mathrm{~mL})$ at r.t. was added $\operatorname{DBU}(0.56 \mathrm{~mL}, 3.70 \mathrm{mmol}, 1.10 \mathrm{eq})$. The mixture was stirred for 10 min . 3-methyl-oxetane-3-carbaldehyde ($1.97 \mathrm{~g}, 34 \mathrm{wt} \%$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.73 \mathrm{mmol}, 2.00 \mathrm{eq}$) was added. The mixture was stirred for 16 h . The crude mixture was filtered over a pad of silica with EA $(50 \mathrm{~mL})$ and concentrated under reduced pressure. The crude product was purified by FC on silica (hex:EtOAc $=2: 1$) yielding 329b ($0.82 \mathrm{~g}, 3.02 \mathrm{mmol}, 90 \%$) as a viscous colorless oil that solidified upon standing.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.54(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.39 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta=165.6,153.7,136.9,124.9,81.8,81.1,52.7,41.0$, 28.3, 24.2 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$294.1312, found, 294.1312.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3220,2962,2883,1718,1342,1277,1160,977,960,829$.
(S)-Methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methyloxetan-3-yl)propanoate (330b)

To a solution of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}(3.7 \mathrm{mg}, 9.2 \mu \mathrm{~mol}, 0.05 \mathrm{eq})$ and (R)-MonoPhos ($6.6 \mathrm{mg}, 18 \mu \mathrm{~mol}, 0.10$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.15 \mathrm{~mL}$) under nitrogen was added a solution of $\mathbf{3 2 9 b}(50.0 \mathrm{mg}, 180 \mu \mathrm{~mol}$, 1.00 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.46 mL). The flask was equipped with a hydrogen ballon for 4.5 h and the solution was concentrated under reduced pressure. The residue was purified by FC on silica (hex:EA = 1:1) yielding 330b ($24.1 \mathrm{mg}, 88.0 \mathrm{mmol}$, 48 \%) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta=5.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.12-1.93$ (m, 2H), $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=173.4,155.2,83.1,80.2,52.5,50.9,41.7,38.3,28.4$, 22.8.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$296.1468, found, 296.1464.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3335,2968,2871,1746,1713,1521,1367,1251,1166,978$. $[\alpha]^{23} \mathrm{D}-3.40\left(c=0.260, \mathrm{CHCl}_{3}\right)$

Methyl 6-(hydroxymethyl)-2-oxo-2,3,6,7-tetrahydro-1,3-oxazepine-4-carboxylate (334)

A solution of $\mathbf{3 2 9 b}(150 \mathrm{mg}, 0.553 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.42 \mathrm{~mL})$ and TFA $(1.11 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The mixture was poured into sat. aq. NaHCO_{3} solution (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield 334 ($50 \mathrm{mg}, 0.249 \mathrm{mmol}, 45 \%$).
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.35(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=12.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{dd}, J=12.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J$ $=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=163.7,156.3,125.3,123.1,72.2,67.3,53.6,42.6$, 20.2 ppm

Methyl
2-(dimethoxyphosphoryl)-2-(((2-
(trimethylsilyl)ethoxy)carbonyl)amino)acetate (335)

To a mixture of methyl 305 ($3.16 \mathrm{~g}, 9.54 \mathrm{mmol}, 1.00 \mathrm{eq}$) and palladium on carbon ($10 \mathrm{wt}-\% \mathrm{Pd}, 0.508 \mathrm{~g}, 0.477 \mathrm{mmol}, 5.00 \mathrm{~mol}-$ $\%$) under N_{2} was added $\mathrm{MeOH}(31.8 \mathrm{~mL})$. The flask was equipped with a hydrogen ballon for 5 h . The mixture was filtered over a pad of celite with $\mathrm{MeOH}(100 \mathrm{~mL})$. The filtrate was concentrated. THF (30 mL), $\mathrm{Et}_{3} \mathrm{~N}$ $(1.99 \mathrm{ml}, \quad 14.3 \mathrm{mmol}, \quad 1.50 \mathrm{eq})$ and 2,5-dioxopyrrolidin-1-yl (2(trimethylsilyl)ethyl) carbonate ($2.72 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.10 \mathrm{eq}$) were added and the mixture was stirred for 14 h . The mixture was concentrated and purified by FC on silica (EA:hex=2:1 \rightarrow EA) to yield $335(1.72 \mathrm{~g}, 5.02 \mathrm{mmol}, 53 \%)$ as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=5.50-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=22.6,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 9 \mathrm{H}), 1.14-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=167.4,156.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 64.4,54.2(\mathrm{~d}, J=6.4$ $\mathrm{Hz}), 54.1(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 53.4$, $52.0(\mathrm{~d}, J=148.4 \mathrm{~Hz}), 17.7,-1.44 \mathrm{ppm}$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=18.6 \mathrm{ppm}$.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{PSi}[\mathrm{M}+\mathrm{H}]^{+}$342.1132, found, 342.1130.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2955,1748,1715,1522,1311,1248,1212,1179,1029,859,834$, 776, 695.

3-Methyloxetane-3-carbaldehyde (311)

To a solution of oxalyl chloride ($3.77 \mathrm{~mL}, 43.1 \mathrm{mmol}, 1.10 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(89.9 \mathrm{~mL})$ was slowly added DMSO ($6.11 \mathrm{~mL}, 86.0 \mathrm{mmol}, 2.20 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 15 min (3-methyloxetan-3yl)methanol ($3.91 \mathrm{~mL}, 39.2 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(89.9 \mathrm{~mL}$) was added slowly. After stirring for $0.5 \mathrm{~h} \mathrm{Et} 3 \mathrm{~N}(16.4 \mathrm{~mL}, 117 \mathrm{mmol}, 3.00 \mathrm{eq})$ was added. The mixture was stirred for 30 min , warmed to r.t. and stirred for 10 min before quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(150 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 70 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a volume of about 5 mL to yield 3-methyloxetane-3-carbaldehyde ($2.67 \mathrm{~g}, 26.7 \mathrm{mmol}, 68 \%$) as a colorless solution (26.4 wt-\% by ${ }^{1} \mathrm{H}$ NMR with 1,4-dinitrobenzene as the internal standard) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Analytical data was in accordance with those reported in the literature. ${ }^{83}$
(Z)-Methyl 3-(3-methyloxetan-3-yl)-2-(((2(trimethylsilyl)ethoxy)carbonyl)amino)acrylate (329c)

To a solution of $335(0.258 \mathrm{~g}, 0.756 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(12.60 \mathrm{~mL})$ at r.t. was added 1,1,3,3-tetramethylguanidine ($0.104 \mathrm{~mL}, ~ 0.831 \mathrm{mmol}, 1.10 \mathrm{eq}$). The mixture was stirred for 10 min . 3-methyloxetane-3-carbaldehyde ($0.303 \mathrm{~g}, 0.907 \mathrm{mmol}, 1.20 \mathrm{eq})$ was added. The mixture was stirred for 28 h . The crude mixture was concentrated and purified by FC on silica (hex:EA $=4: 1 \rightarrow$ hex:EA $=1: 1$) to yield 329c (0.180 g , $0.571 \mathrm{mmol}, 76 \%$) as a very viscous colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.60(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.40 (d, J = 5.8 Hz, 2H), 4.17 (d, J = $17.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80 (s, 3H), 1.62 (s, 3H), 1.14 $0.92(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=165.4,154.9,137.7,128.5,81.8,64.4,52.8,41.0$, 24.2, 17.8, -1.3. ppm.

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NNaO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$338.1394, found, 338.1393.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3279,2954,2875,1717,1502,1437,1248,1233,1051,979,835$, 858.
(S)-Methyl

3-(3-methyloxetan-3-yl)-2-(((2(trimethylsilyl)ethoxy)carbonyl)amino)propanoate (330c)

To a mixture of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$ ($6.8 \mathrm{mg}, 0.017 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%$), (R)-MonoPhos ($12.1 \mathrm{mg}, 0.034 \mathrm{mmol}, 10.0 \mathrm{~mol}-\%$) under a H_{2} atmosphere was added was added a solution of 329c (106 mg , $0.336 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.00 \mathrm{~mL})$. The reaction mixture was stirred at r.t. under H_{2} (balloon) for 19 h . The crude mixture was concentrated and purified by FC on silica (hex:EA $=2: 1$) to yield $330 \mathrm{c}(93.0 \mathrm{mg}, 0.293 \mathrm{mmol}, 91 \%)$ as a colorless oil

A racemic sample was obtained by hydrogenation with palladium on charcoal ($5.00 \mathrm{~mol} \%$) as a catalyst in MeOH .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=5.03(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=5.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.19-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $2.15-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.04-0.86(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=173.3,156.2,83.2,83.1,63.8,52.6,51.3,41.6,38.4$, 22.8, 17.8, -1.4 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NNaO} 5 \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$340.1551, found, 340.1558.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3322,2955,2871,1747,1719,1530,1249,1211,1058,979,859$, 837.
$[\alpha]^{23} \mathrm{D}-3.44\left(c=0.545, \mathrm{CHCl}_{3}\right)$
(S)-methyl 2-(3-(4-bromophenyl)ureido)-3-(3-methyloxetan-3-yl)propanoate (333)

a) From Teoc-protected amino acid

To a solution of $330 \mathrm{c}(38.0 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.00 \mathrm{eq})$ in acetonitrile $(0.48 \mathrm{~mL})$ was added $\mathrm{CsF}(54.5 \mathrm{mg}, 0.359 \mathrm{mmol}$, 3.00 eq). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h diluted with sat. aq. NaHCO 3 solution (5 mL) and extracted with EA ($3 \times 15 \mathrm{~mL}$). The combined org. layers were dried over Na 2 SO 4 and concentrated.

The residue was redissolved in $\mathrm{CH} 2 \mathrm{Cl} 2(1.0 \mathrm{~mL})$ and to the solution was added 1-bromo-4-isocyanatobenzene ($28.4 \mathrm{mg}, 0.144 \mathrm{mmol}, 1.20 \mathrm{eq}$). The mixture was stirred for 15 h and then directly purified by preparative TLC (EA:hex=2:1) to yield 333 ($18.0 \mathrm{mg}, 0.048 \mathrm{mmol}, 41 \%$) as a colorless foam.
b) From Boc-protected amino acid

A solution of $330 \mathbf{b}\left(24.1 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.00\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.71 \mathrm{~mL}) / \mathrm{TFA}$ $(0.18 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ until starting material was fully consumed. To the solution was added toluene $(1 \mathrm{~mL})$ and all volatiles were removed. The residue was evaporated from toluene ($2 \times 1 \mathrm{~mL}$).

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.88 \mathrm{~mL})$ and 1-bromo-4isocyanatobenzene ($19.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.10$ equiv.) and N-ethyl- N-isopropyl-propan-2-amine ($0.08 \mathrm{~mL}, 0.44 \mathrm{mmol}, 5.00$ equiv.) were added. The mixture was stirred at r.t. overnight. The solution was concentrated under reduced pressure and the residue was purified by preparative TLC yielding $333(6.0 \mathrm{mg}$, $0.016 \mathrm{mmol}, 18 \%)$ as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 5.62-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.41$ $(\mathrm{m}, 1 \mathrm{H}), 4.38(\mathrm{dd}, \mathrm{J}=5.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=174.5,154.8,137.3,132.1,121.8,116.3,83.1,83.0$, 52.7, 50.4, 41.4, 38.4, 22.6 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 371.0601$, found, 371.0599 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3338,2926,2867,1743,1657,1592,1545,1489,1306,1210,978$, 827.
$[\alpha]^{23} \mathrm{D}+3.19\left(c=0.150, \mathrm{CHCl}_{3}\right)$

HPLC (derivative from 330c) Daicel Chiralcel OD-R, $55 \% \mathrm{H}_{2} \mathrm{O}, 45 \% \mathrm{ACN}$, $0.4 \mathrm{~mL} / \mathrm{min}, 27^{\circ} \mathrm{C}, 223 \mathrm{~nm}, 84 \%$ ee $\left(\mathrm{t}_{\mathrm{R}}(\right.$ major $)=32.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=30.6 \mathrm{~min}\right)$.

HPLC (derivative from 330b) Daicel Chiralcel OD-R, $55 \% \mathrm{H}_{2} \mathrm{O}, 45 \% \mathrm{ACN}$, $0.4 \mathrm{~mL} / \mathrm{min}, 27^{\circ} \mathrm{C}, 223 \mathrm{~nm},>98 \%$ ee $\left(\mathrm{t}_{\mathrm{R}}(\right.$ major $)=23.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=21.8 \mathrm{~min}\right)$.

(3-(Benzylamino)oxetan-3-yl)methanol (337)

To a solution of 131 ($2.00 \mathrm{~g}, 5.76 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{MeOH}(58 \mathrm{~mL})$ were added magnesium turnings ($1.40 \mathrm{~g}, 57.6 \mathrm{mmol}, 10.0$ equiv.). The mixture was stirred at r.t. for 2 h until all magnesium had dissolved. TLC (EA) still indicated remaining starting material. Magnesium turnings ($0.70 \mathrm{~g}, 28.8 \mathrm{mmol}, 5.00$ equiv.) were added, stirred for another 2 h . TLC (EA) indicated full conversion. The reaction mixture was diluted with EA $(50 \mathrm{~mL})$ and sat. aq. NH 4 Cl solution $(50 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ were added. The mixture was stirred until all solids had dissolved and was then extracted with EA ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over Na 2 SO 4 and concentrated. The crude residue was purified by FC on silica ($100 \% \mathrm{EA}$) to yield (3-(benzylamino)oxetan-3-yl)methanol ($0.651 \mathrm{~g}, 3.37 \mathrm{mmol}, 59 \%$) as a colorless wax.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.42$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=139.8,128.8,128.1,127.6,79.2,64.3,60.9$, 47.2 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$194.1176, found, 194.1175.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3356,2944,2872,1453,1045,968,737,698$.
(3-aminooxetan-3-yl)methanol (338)

To a mixture of 337 ($0.651 \mathrm{~g}, 3.37 \mathrm{mmol}, 1.00$ equiv.) and palladium on carbon ($0.179 \mathrm{~g}, 10 \mathrm{wt}-\%, 0.168 \mathrm{mmol}, 5 \mathrm{~mol}-\%$) under an atmosphere of N_{2} was added MeOH (34 mL). The resulting suspension was stirred under H_{2} (balloon) for 18 h . The mixture was filtered through a pad of celite with $\mathrm{MeOH}(50 \mathrm{~mL})$ and the filtrate was concentrated to yield (3-aminooxetan-3yl)methanol ($0.343 \mathrm{~g}, 3.33 \mathrm{mmol}, 99 \%$) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{MeOH}) \delta=4.57-4.38(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=82.2,67.3,57.7 \mathrm{ppm}$.
HRMS (ESI+): m / z calcd. for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{1} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$104.0706, found, 104.0708.

Benzyl (3-(hydroxymethyl)oxetan-3-yl)carbamate (312)

To a solution of $338(0.095 \mathrm{~g}, 0.921 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.21 \mathrm{ml})$ was added benzyl (2,5-dioxopyrrolidin-1-yl) carbonate (0.253 g , $1.01 \mathrm{mmol}, 1.10 \mathrm{eq})$ followed by $\mathrm{Et}_{3} \mathrm{~N}(0.257 \mathrm{ml}, 1.843 \mathrm{mmol}, 2.00 \mathrm{eq})$. The mixture was stirred for 15 h . TLC showed almost no conversion. DMAP ($0.034 \mathrm{~g}, 0.276 \mathrm{mmol}, 30.0 \mathrm{~mol} \%$) was added and the mixture was stirred for 50 min . The colorless solution was concentrated and the residue was purified by FC on silica (hex:EA=1:1) to yield $312(0.151 \mathrm{~g}, 0.636 \mathrm{mmol}, 69 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.70$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.5,136.0,128.8,128.5,128.4,78.2,67.2,65.7$, 57.2 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 260.0893$, found, 260.0894 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3370,2934,2889,1696,1509,1455,1237,1045,740$.
(Z)-methyl 3-(3-(((benzyloxy)carbonyl)amino)oxetan-3-yl)-2-((tertbutoxycarbonyl)amino)acrylate (336)

To a solution of oxalyl chloride ($0.116 \mathrm{~mL}, 1.33 \mathrm{mmol}, 1.10 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.50 \mathrm{~mL})$ was slowly added DMSO $(0.189 \mathrm{ml}, 2.66 \mathrm{mmol}$, $2.20 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 15 min BocHN 312 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.50 \mathrm{~mL})$ was added slowly. After stirring for 0.5 h $E t_{3} \mathrm{~N}$ ($0.506 \mathrm{ml}, 3.63 \mathrm{mmol}, 3.00 \mathrm{eq}$) was added. The mixture was stirred for 30 min , warmed to r.t. and stirred for 10 min before quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(150 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 70 \mathrm{~mL})$, washed with water $(50 \mathrm{~mL})$ dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was used in the next step without further purification.

To a solution of $306(0.300 \mathrm{~g}, 1.01 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.04 \mathrm{~mL})$ at r.t. was added DBU ($0.152 \mathrm{ml}, 1.01 \mathrm{mmol}, 1.00 \mathrm{eq}$). The mixture was stirred for 10 min . benzyl (3-formyloxetan-3-yl)carbamate (0.285 g , $1.21 \mathrm{mmol}, 1.20 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5.04 \mathrm{~mL})$ was added.The mixture was stirred for 14 h . The crude mixture was concentrated und purified by FC on silica (hex:EA = 2:1) yielding 336 (0.198 g , $0.487 \mathrm{mmol}, 48.3 \%$) as a colorless oil and $339(0.110 \mathrm{~g}, 0.294 \mathrm{mmol}, 29 \%)$ as a colorless solid.

336:
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.72$ (s, 4H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=165.2,155.3,153.7,136.2,128.6,128.3,128.2,126.5$, 81.6, 79.6, 66.9, 55.8, 53.0, 28.1 ppm .

HRMS (ESI+): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 429.1632$, found, 429.1629 . IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2926,1699,1511,1354,1265,1245,1155,1052,965,758,697$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.57-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 5.33$ $(\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=164.1,152.2,150.4,135.0,128.8,128.7,128.4,121.8$, 82.2, 77.4, 68.6, 64.4, 28.2 ppm .

Benzyl (3-(2-hydroxyethyl)oxetan-3-yl)carbamate (348)
$346(3.36 \mathrm{~g}, 23.6 \mathrm{mmol}, 1.00 \mathrm{eq})$ and benzylamine $(2.58 \mathrm{~mL}, 23.6 \mathrm{mmol}$,
NHCbz
$1.00 \mathrm{eq})$ were mixed neat and stirred at r.t. for 14 h . The crude product
was used in the next step without further purification.

To a suspension of LAH ($1.72 \mathrm{~g}, 45.3 \mathrm{mmol}, 1.92 \mathrm{eq})$ in THF $(89 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was drop wise added a solution of crude ethyl 2-(3-(benzylamino)oxetan-3-yl)acetate ($5.89 \mathrm{~g}, 23.6 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (30 mL). The mixture was further stirred for 10 min at $0^{\circ} \mathrm{C}$. To the mixture was added a half-sat. aq. solution of Rochelle's salt $(50 \mathrm{~mL})$. The emulsion was stirred for 30 min . The layers were separated and the aq. layer was extracted with EA ($2 \times 50 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield crude 347.

To a mixture of crude 347 (4.90 g , $23.6 \mathrm{mmol}, 1.00 \mathrm{eq}$) and palladium on carbon ($1.26 \mathrm{~g}, 1.18 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%$) under N_{2} was added MeOH (118 mL). The mixture was purged with H_{2} (balloon) and stirred under H_{2} for 16 h . The mixture was filtered through a pad of celite with EA (100 mL) and the filtrate was concentrated. To the filtrate were added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(6.59 \mathrm{ml}$, $47.3 \mathrm{mmol}, 2.00 \mathrm{eq}$) and benzyl (2,5-dioxopyrrolidin-1-yl) carbonate (5.89 g , $23.6 \mathrm{mmol}, 1.00 \mathrm{eq})$. The mixture was stirred for 20 h , concentrated and directly purified by FC on silica (hex:EA = 1:1) to yield $348(3.11 \mathrm{~g}, 12.4 \mathrm{mmol}, 52 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, $4.85(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (t, $J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$) \delta=155.4,136.1,128.6,128.3,128.2,81.0,66.9,59.0$, 55.9, 38.6 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$274.1050, found, 274.1052.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3313,2954,2883,1694,1523,1267,1058,971,737,696$.
(Z)-methyl 4-(3-(((benzyloxy)carbonyl)amino)oxetan-3-yl)-2-((tert-butoxycarbonyl)amino)but-2-enoate (350)

To a solution of oxalyl chloride ($434 \mu \mathrm{l}, 4.96 \mathrm{mmol}, 1.20 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.8 \mathrm{~mL})$ was slowly added DMSO ($646 \mu \mathrm{l}, 9.10 \mathrm{mmol}$, $2.20 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 15 min benzyl (3-(2-hydroxyethyl)oxetan-3-yl)carbamate (1.04 g, $4.13 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.8 \mathrm{~mL})$ was added slowly. After stirring for 0.5 h $\mathrm{Et}_{3} \mathrm{~N}(1.73 \mathrm{mLl}, 12.4 \mathrm{mmol}, 3.00 \mathrm{eq})$ was added. The mixture was stirred for 30 min , warmed to r.t. and stirred for 10 min before quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 ml). The mixture was extracted with DCM ($3 \times 70 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated und red. pressure to a volume of about 5 mL to yield crude benzyl (3-(2-oxoethyl)oxetan-3-yl)carbamate ($0.942 \mathrm{~g}, 3.78 \mathrm{mmol}$, 91%) as a light yellow solution (13.7 wt - \% by NMR with 1,4-dinitrobenzene as internal standard) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

To a solution of $306(0.600 \mathrm{~g}, 2.02 \mathrm{mmol}, 1.10 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.3 \mathrm{~mL})$ at r.t. was added DBU ($0.304 \mathrm{~mL}, 2.02 \mathrm{mmol}, 1.10 \mathrm{eq}$). The mixture was stirred for 10 min . Crude benzyl (3-(2-oxoethyl)oxetan-3-yl)carbamate (13.7 wt-\% in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.34 \mathrm{~g}$, $1.83 \mathrm{mmol}, 1.00 \mathrm{eq})$ was added. The mixture was stirred for 14 h . The crude
mixture was concentrated and purified by FC on silica (hex:EA $=2: 1$) yielding 350 ($0.640 \mathrm{~g}, 1.52 \mathrm{mmol}, 83 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta=7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.17$ (s, 1H), 6.00 (br s, 1H), $5.11(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.47$ ($\mathrm{s}, 9 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=164.9,155.1,153.6,136.5,132.4,129.4,128.6$, $128.2,128.1,81.4,80.0,66.6,55.7,52.7,36.0,28.3 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 443.1789$, found, 443.1787.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2961,2882,1701,1500,1250,1157,1048,1027,976,738$.
(S)-methyl 4-(3-(((benzyloxy)carbonyl)amino)oxetan-3-yl)-2-((tertbutoxycarbonyl)amino)butanoate (351)

To a mixture of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}(9.8 \mathrm{mg}, 0.024 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%)$ (R)-MonoPhos ($17.4 \mathrm{mg}, \quad 0.048 \mathrm{mmol}, 10.0 \mathrm{~mol} \%$) under an atmosphere of H_{2} was added 350 ($203 \mathrm{mg}, 0.483 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.1 \mathrm{~mL})$. The reaction mixture was stirred at r.t. 5.5 h . The solvent was removed under red. pressure and the residue was purified by FC on silica (EA:hex =1:2) to yield $351(0.166 \mathrm{~g}, 0.393 \mathrm{mmol}, 81 \%)$ as a colorless foam.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}$, 3H), $4.77-4.66$ (m, 2H), $4.48-4.41$ (m, 2H), $4.38-4.27$ (m, 1H), 3.76 (s, 3H), 2.19 $-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=172.8,155.5,154.7,136.2,128.8,128.4,128.3,80.5$, 80.3, 67.0, 56.2, 53.2, 52.6, 31.7, 28.4, 27.2 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 445.1945$, found, 445.1946.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2966,1710,1510,1259,1162,1051,1028,979,741$.
$[\alpha]^{23} \mathrm{D}-0.421\left(c=0.435, \mathrm{CHCl}_{3}\right)$
SFC Daicel Chiralpak IB, 95 \% CO2, 5.0 \% MeOH, $2.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, 208 \mathrm{~nm}$, $>98 \%$ ee $\left(\operatorname{trR}_{R}(\right.$ major $\left.)=16.5 \mathrm{~min}, \operatorname{tr}_{\mathrm{R}}(\operatorname{minor})=15.1 \mathrm{~min}\right)$.
(R,E)-benzyl (3-(2-((tert-butylsulfinyl)imino)ethyl)oxetan-3-yl)carbamate (345)

To a solution of benzyl (3-(2-oxoethyl)oxetan-3-yl)carbamate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($13.7 \mathrm{wt}-\%, 3.25 \mathrm{~g}, 1.78 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (8.9 mL) were added (R)-2-methylpropane-2-sulfinamide $(0.238 \mathrm{~g}$, $1.96 \mathrm{mmol}, \quad 1.10 \mathrm{eq})$ and tetraethoxytitanium $(0.746 \mathrm{~mL}$, $3.56 \mathrm{mmol}, 2.00 \mathrm{eq})$. The mixture was stirred at r.t. for 16 h and then poured into sat. aq. NaCl solution (100 mL). The resulting suspension was filtered over celite with EA $(100 \mathrm{~mL})$. The layers were separated and the aq. layer was extracted with EA ($2 \times 100 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA $=2: 1$) to yield 345 ($0.537 \mathrm{~g}, 1.52 \mathrm{mmol}, 86 \%$) as a colorless wax.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 8.05(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.54(\mathrm{~s}$, 1H), $5.15-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.75$ (dd, $J=19.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.44-$ $3.24(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=165.7,154.7,136.1,128.7,128.5,128.3,80.7,80.6$, 67.0, 57.1, 54.8, 41.7, 22.5 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$375.1349, found, 375.1346.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2960,1715,1623,1524,1265,1075,980$.
$[\alpha]^{23} \mathrm{D}-126\left(c=0.77, \mathrm{CHCl}_{3}\right)$

Benzyl (3-((S)-2-((R)-1,1-dimethylethylsulfinamido)but-3-en-1-yl)oxetan-3yl)carbamate (349)

To a solution of 345 ($287 \mathrm{mg}, 0.814 \mathrm{mmol}, 1.00 \mathrm{eq}$) in toluene $(10.9 \mathrm{~mL})$ was added vinylmagnesium bromide $(2.03 \mathrm{~mL}$, $2.04 \mathrm{mmol}, 2.50 \mathrm{eq}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 60 min . TLC still indicated the presence of starting material. Vinylmagnesium bromide ($1.22 \mathrm{~mL}, 1.22 \mathrm{mmol}, 1.50 \mathrm{eq}$) was added and the mixture was stirred for 60 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) was added. The mixture was extracted with EA $(3 \times 30 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA $=1: 2$) to yield $349(0.203 \mathrm{~g}, 0.534 \mathrm{mmol}, 66 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.41$ - 7.29 (m, 5H), 6.67 (s, 1H), 5.75 (ddd, $J=16.6$, 10.3, 5.8 Hz, 1H), $5.25-5.08(\mathrm{~m}, 4 \mathrm{H}), 4.72$ (dd, $J=13.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=$ $31.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H})$, $2.35-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=154.7,139.4,136.5,128.7,128.3,128.3,115.9,82.4$, 80.6, 66.7, 56.0, 55.7, 55.4, 41.5, 22.8 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$381.1843, found, 381.1849.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2957,2880,1711,1523,1264,1226,1046,983,925,741$.
$[\alpha]^{23}{ }_{\mathrm{D}}-55.6\left(c=0.90, \mathrm{CHCl}_{3}\right)$
(S)-Benzyl (3-(2-Boc-aminobut-3-en-1-yl)oxetan-3-yl)carbamate (344)
To a solution of $349(154 \mathrm{mg}, 0.405 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(2.0 \mathrm{~mL}) / \mathrm{MeOH}(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added HCl in dioxane $(4 \mathrm{M}$,
$506 \mu \mathrm{~L}, 2.02 \mathrm{mmol}, 5.00 \mathrm{eq})$. The mixture was stirred at that temperature for 30 min . The reaction was quenched with sat. aq. NaHCO_{3}
solution (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(141 \mu \mathrm{~L}, 0.607 \mathrm{mmol}, 1.50 \mathrm{eq})$ was added. The mixture was stirred for 16 h . The crude solution was purified by FC on silica (hex:EA = 3:1) to yield the title compound $344(147 \mathrm{mg}, 0.390 \mathrm{mmol}, 96 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.43$ - 7.28 (m, 5H), 6.34 (s, 1H), 5.79 (ddd, $J=16.3$, $10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.02(\mathrm{~m}, 4 \mathrm{H}), 4.93-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.45(\mathrm{~m}, 4 \mathrm{H}), 4.31$ - 4.18 (m, 1H), 2.33 (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=14.2,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=155.9,155.0,138.2,136.6,128.6,128.2,128.1$, $115.2,81.4,80.4,80.3,66.6,55.4,49.1,40.3,28.5 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$399.1890, found, 399.1892.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2975,1692,1512,1254,1167,1070,982,920$.
$[\alpha]^{23} \mathrm{D}+0.83\left(c=0.87, \mathrm{CHCl}_{3}\right)$
(S)-methyl 3-(3-(((benzyloxy)carbonyl)amino)oxetan-3-yl)-2-((tertbutoxycarbonyl)amino)propanoate (340)
 To a solution of $344(0.105 \mathrm{~g}, 0.279 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.5 \mathrm{~mL}) / \mathrm{MeOH}(3.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added NaOH in MeOH $(2.5 \mathrm{M}, ~ 0.558 \mathrm{~mL}, 1.40 \mathrm{mmol}, 5.00 \mathrm{eq})$. Ozonized oxygen was bubbled through the mixture until the color of the solution turned to blue. Nitrogen was bubbled through the blue solution until the color faded completely before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ were added and the solution was allowed to warm to r.t. Sodium thiosulfate (200 mg) was added, the layers were separated and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$.

The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield 340 ($0.091 \mathrm{~g}, 0.223 \mathrm{mmol}, 80 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.40-7.32$ (m, 5H), 6.26 (s, 1H), 5.33 (d, J = 7.8 Hz, $1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.49(\mathrm{~m}, 3 \mathrm{H}), 4.36(\mathrm{t}, J=8.4$ Hz, 1H), 3.74 (s, 3H), $2.63-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=14.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}$, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=172.7,155.9,154.9,128.9,128.7,128.3,128.2,81.1$, 80.9, 80.2, 66.8, 55.4, 52.9, 50.7, 38.7, 28.4 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 431.1789$, found, 431.1788.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2964,1699,1505,1366,1252,1163,1062,981,752,698$.
$[\alpha]^{23} \mathrm{D}+10.8\left(c=1.77, \mathrm{CHCl}_{3}\right)$

2-(3-(benzyloxy)oxetan-3-yl)acetaldehyde (317)

ㅇ. Phenylmethanol ($5.28 \mathrm{~mL}, \quad 50.8 \mathrm{mmol}, 6.50 \mathrm{eq})$ and $325(0.766 \mathrm{~g}$,
 $7.81 \mathrm{mmol}, 1.00 \mathrm{eq})$ and piperidine ($0.054 \mathrm{~mL}, 0.55 \mathrm{mmol}, 0.07 \mathrm{eq}$) were mixed neat and stirred for 6 h . The mixture was directly purified by FC on silica (hex:EA=2:1) to yield $317(0.975 \mathrm{~g}, 4.73 \mathrm{mmol}, 60.5 \%$ yield) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=9.80(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.93(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.25-2.85(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=199.4,137.6,128.7,128.1,127.5,80.2,66.4,48.9$ ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$224.1281, found, 224.1280.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2950,2877,1721,1251,1135,1047,1027,973,737,697$.
(Z)-Methyl 4-(3-(benzyloxy)oxetan-3-yl)-2-((tert-butoxycarbonyl)amino)but-2enoate (352)

To a solution of $306(0.438 \mathrm{~g}, 1.47 \mathrm{mmol}, 1.10 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(13.4 \mathrm{~mL})$ at r.t. was added $\operatorname{DBU}(0.222 \mathrm{ml}, 1.47 \mathrm{mmol}, 1.10 \mathrm{eq})$. The mixture was stirred for 10 min .317 ($0.276 \mathrm{~g}, 1.34 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added. The mixture was stirred for 16 h . The crude mixture was concentrated and purified by FC on silica (hex:EA $=1: 1$) yielding 352 ($0.388 \mathrm{~g}, 1.03 \mathrm{mmol}, 77 \%$) as a very viscous light yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.28$ (br s, 1H), $4.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $2.94(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=165.1,153.2,138.0,128.7,128.5,128.0,127.6,81.0$, 80.3, 78.3, 66.0, 52.6, 34.3, 28.4 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$400.1731, found, 400.1733.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3319,2953,2877,1715,1495,1367,1243,1157,975,1026,738$, 698.
(S)-Methyl

4-(3-(benzyloxy)oxetan-3-yl)-2-((tertbutoxycarbonyl)amino)butanoate (353)

To a solution of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}(11.5 \mathrm{mg}, 0.028 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%)$, (R)-MonoPhos ($20.3 \mathrm{mg}, \quad 0.056 \mathrm{mmol}, \quad 10.0 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.53 mL) was added a solution of 352 ($213 \mathrm{mg}, 0.564 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.6 \mathrm{~mL})$. The reaction mixture was stirred at r.t.
under H_{2} (balloon) for 5 h . The mixture was concentrated and purified by FC on silcia (hex:EA = 2:1) to yield methyl 353 ($210 \mathrm{mg}, 0.553 \mathrm{mmol}, 98 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (d, J = 6.7 Hz, 2H), 4.44 (d, J = 3.9 Hz, 2H), $4.43-4.31(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.16-$ $1.86(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=172.9,155.4,137.9,128.5,127.8,127.4,80.2,80.2$, 78.5, 65.4, 53.2, 52.4, 30.4, 28.3, 28.3, 26.3 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$402.1887, found, 402.1886.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3342,2953,2875,1744,1714,1454,1367,1164,1055,1027,977$, 739.
$[\alpha]^{23} \mathrm{D}+15.2\left(c=0.655, \mathrm{CHCl}_{3}\right)$

SFC Daicel Chiralpak IB, 98 \% CO2, 2.0 \% MeOH, $2.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, 208 \mathrm{~nm}$, $>98 \%$ ee $\left(\mathrm{t}_{\mathrm{R}}(\right.$ major $\left.)=13.4 \mathrm{~min}, \mathrm{tr}_{\mathrm{R}}(\operatorname{minor})=14.2 \mathrm{~min}\right)$.
(S)-Methyl 4-(3-(((4-bromophenyl)carbamoyl)oxy)oxetan-3-yl)-2-((tertbutoxycarbonyl)amino)butanoate (354)

To a mixture of palladium on carbon ($10 \mathrm{wt}-\%, 16.3 \mathrm{mg}$, $0.015 \mathrm{mmol}, 10.0 \mathrm{~mol} \%)$ and $353(58.0 \mathrm{mg}, 0.153 \mathrm{mmol}$, $1.00 \mathrm{eq})$ under N_{2} was added $\mathrm{MeOH}(1.53 \mathrm{~mL})$. The mixture was stirred under H_{2} (balloon) for 7 h . The suspension was filtered through a syringe filter (PTFE) with EA (5 mL) and the filtrate was concentrated.

To a solution of crude methyl 2-((tert-butoxycarbonyl)amino)-4-(3-hydroxyoxetan-3-yl)butanoate ($44.2 \mathrm{mg}, 0.152 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.61 \mathrm{~mL}$) were added DMAP ($1.9 \mathrm{mg}, 0.015 \mathrm{mmol}, 10.0 \mathrm{~mol} \%$) and 1-bromo-4-
isocyanatobenzene ($60.2 \mathrm{mg}, 0.304 \mathrm{mmol}, 2.00 \mathrm{eq}$). The mixture was stirred for 14 h . The mixture was purified by FC on silica (hex:EA $=2: 1$) to yield 354 $(41.0 \mathrm{~m} \mathrm{~g}, 0.084 \mathrm{mmol}, 55 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ $(\mathrm{s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.40$ - $4.33(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}$, 1H), 1.42 (s, 9H) ppm.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=172.8,155.5,151.4,136.7,132.2,120.4,80.4,79.6$, $53.2,52.7,30.2,29.9,28.4,26.6 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 487.1074$, 489.1057, found, 487.1070, 489.1053.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2967,1723,1532,1398,1210,1163,1052,827,759$.
$[\alpha]^{23} \mathrm{D}+6.33\left(c=0.430, \mathrm{CHCl}_{3}\right)$

X-Ray: single crystals were grown by diffusion of hexanes into a substrate solution in acetone. Absolute configuration was determined as (S).

3-(benzyloxy)-3-vinyloxetane (314)

To a solution of 33 ($0.893 \mathrm{ml}, 13.9 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{Et}_{2} \mathrm{O}(69 \mathrm{~mL})$ at $78^{\circ} \mathrm{C}$ was added vinylmagnesium bromide in diethyl ether (15.3 mL , $15.26 \mathrm{mmol}, 1.10 \mathrm{eq})$. The mixture was allowed to warm to r.t. over night. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (60 mL) was added. The layers were separated and the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to about 1 mL .

This solution (3-vinyloxetan-3-ol ($1.39 \mathrm{~g}, 13.9 \mathrm{mmol}, 1.00 \mathrm{eq}$)) was diluted with THF (139 mL). To this solution at $0^{\circ} \mathrm{C}$ was portion wise added $\mathrm{NaH}(0.610 \mathrm{~g}$, $15.3 \mathrm{mmol}, 1.10 \mathrm{eq})$. The mixture was stirred for 1 h before the addition of benzyl
bromide ($1.98 \mathrm{~mL}, 16.7 \mathrm{mmol}, 1.2 \mathrm{eq}$) and TBAI ($0.512 \mathrm{~g}, 1.39 \mathrm{mmol}, 0.10 \mathrm{eq}$). The resulting slurry was allowed to warm to r.t. over night. The mixture was poured into water (100 mL) and extracted with EA ($3 \times 100 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica (hex:EA = 9:1) to yield $314(1.90 \mathrm{~g}, 9.98 \mathrm{mmol}, 72 \%)$ over two steps as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta=7.49-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.11(\mathrm{dd}, J=17.5,10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.64-5.34(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~s}$, 2H) ppm.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=138.1,137.1,128.6,127.9,127.7,117.3,80.2,79.5$ ppm.

HRMS (EI+): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}$190.0994, found, 190.0989.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2949,2879,1719,1454,1275,1173,1026,977,751,714$.

3-(benzyloxy)oxetane-3-carbaldehyde (315)

Through a solution of $314(1.17 \mathrm{~g}, 6.15 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(123 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was passed ozonized oxygen until the solution turned blue. A stream of nitrogen was passed through the solution until the solution was colorless again. Triphenylphosphine ($4.84 \mathrm{~g}, 18.5 \mathrm{mmol}, 3.00 \mathrm{eq}$) was added and the mixture was allowed to warm to r.t. The mixture was stirred for 2 h and then washed with aq. 1M sodium thiosulfate solution (50 mL). The org. layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by FC on silica (hex:EA = 1:1) to yield $315(0.741 \mathrm{~g}, 3.86 \mathrm{mmol}, 63 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=9.84(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.77(\mathrm{~s}, 4 \mathrm{H}), 4.58$ ($\mathrm{s}, 2 \mathrm{H}$) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=199.0,136.8,128.8,128.5,128.0,82.8,75.7,68.4$ ppm.

HRMS (EI+): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{3}[\mathrm{M}]^{+}$192.0786, found, 192.0781.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2950,2880,1730,1454,1185,1026,976,736,697$.
(Z)-Methyl 3-(3-(benzyloxy)oxetan-3-yl)-2-((tert-butoxycarbonyl)amino)acrylate (355)

To a solution of $306(0.598 \mathrm{~g}, 2.01 \mathrm{mmol}, 1.10 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(18.3 \mathrm{~mL})$ at r.t. was added DBU ($0.303 \mathrm{ml}, 2.01 \mathrm{mmol}, 1.10 \mathrm{eq})$. The mixture was stirred for 10 min . 3-(benzyloxy)oxetane-3carbaldehyde ($0.352 \mathrm{~g}, 1.83 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added. The mixture was stirred for 14 h . The crude mixture was concentrated und purified by FC on silica (hex:EA $=4: 1$) yielding $355(0.650 \mathrm{~g}, 1.79 \mathrm{mmol}, 98 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.93$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.41$ (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta=164.7,152.3,137.2,128.5,128.1,128.0,127.6$, 124.2, 81.4, 81.3, 77.9, 67.0, 52.7, 28.0 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 386.1574$, found, 386.1575.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2976,2878,1717,1455,1367,1252,1153,1025,983,739$.

Methyl 3-(3-(benzyloxy)oxetan-3-yl)-2-((tert-butoxycarbonyl)amino)propanoate (356)

To a mixture of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}(6.8 \mathrm{mg}, 0.017 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%)$ and (R)-MonoPhos ($12.0 \mathrm{mg}, 0.033 \mathrm{mmol}, 10.0 \mathrm{~mol}-\%$) und H_{2} atmosphere was added a solution of $355(121 \mathrm{mg}, 0.333 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.32 \mathrm{~mL})$. The reaction mixture was stirred at r.t. under H_{2} (balloon) for 6 h , concentrated and purified by FC on silica (hex: $\mathrm{EtOAc}=2: 1$) to yield 356 ($0.082 \mathrm{~g}, 0.224 \mathrm{mmol}, 67 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.46-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 4.88-4.78(\mathrm{~m}$, $3 \mathrm{H}), 4.66(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{dd}, J=7.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl 3$) \delta=172.7,155.2,137.8,128.5,127.8,127.6,80.0,79.8$, $79.6,78.9,65.8,52.3,50.3,37.5,28.3 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NNaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$388.1731, found, 388.1734.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2965,1715,1366,1249,1165,1054,981,845,740$.
$[\alpha]^{23} \mathrm{D}-6.27\left(c=0.650, \mathrm{CHCl}_{3}\right)$
SFC Daicel Chiralcel OJ-H, $95 \% \mathrm{CO}_{2}, 5.0 \% \mathrm{MeOH}, 2.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, 211 \mathrm{~nm}$, $>98 \% e e,(\operatorname{tr}($ major $)=4.39 \mathrm{~min}, \operatorname{tr}($ minor $)=5.01 \mathrm{~min})$.
(R, E)-N-(2-(3-(benzyloxy)oxetan-3-yl)ethylidene)-2-methylpropane-2sulfinamide (357)

To a solution of $317(0.975 \mathrm{~g}, 4.73 \mathrm{mmol}, 1.00 \mathrm{eq})$ in THF $(23.6 \mathrm{~mL})$ were added (R)-2-methylpropane-2-sulfinamide (0.630 g , $5.20 \mathrm{mmol}, 1.10 \mathrm{eq}$) and tetraethoxytitanium ($1.98 \mathrm{~mL}, 9.46 \mathrm{mmol}$, $2.00 \mathrm{eq})$. The mixture was stirred at r.t. for 16 h . The mixture was quenched with sat. aq. NaCl solution $(50 \mathrm{~mL})$, filtered through a pad of celite and
extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated- The residue was purified by FC on silica (hex: $\mathrm{EtOAc}=2: 1 \rightarrow$ EtOAc) to yield $357(1.17 \mathrm{~g}, 3.79 \mathrm{mmol}, 80 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=8.10(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.85$ $(\mathrm{dd}, J=7.0,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=164.9,137.6,128.6,128.0,127.5,80.2,78.0,66.1$, 57.0, 41.5, 22.5 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$332.1291, found, 332.1297.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2955,2874,1622,1455,1364,1082,978$.
$[\alpha]^{23} \mathrm{D}-182\left(c=0.570, \mathrm{CHCl}_{3}\right)$
(R)-N-(1-(3-(benzyloxy)oxetan-3-yl)but-3-en-2-yl)-2-methylpropane-2-
sulfinamide (361)

To a solution of 357 (490 mg , $1.58 \mathrm{mmol}, 1.00 \mathrm{eq}$) in toluene (32 mL) at $-78{ }^{\circ} \mathrm{C}$ was added vinylmagnesium bromide $(4.75 \mathrm{~mL}$, $4.75 \mathrm{mmol}, 3.00 \mathrm{eq})$. The mixture was stirred at r.t. for 60 min . To the solution was added sat. aq. NaHCO_{3} solution $(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (EtOAc) to yield $361(0.160 \mathrm{~g}, 0.474 \mathrm{mmol}, 29.9 \%$ yield $)$ as a colorless oil.

Less polar diastereomer:
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.43-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.78-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.22$ $(\mathrm{m}, 1 \mathrm{H}), 5.24-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.92-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J$ $=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=138.4,137.5,128.6,127.9,127.6,117.2,80.1,79.9$, 79.5, 65.8, 55.1, 54.6, 42.3, 22.5 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$338.1784, found, 338.1789.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2952,2873,1455,1056,981,736$.
$[\alpha]^{22} \mathrm{D}-62.5\left(c=0.605, \mathrm{CHCl}_{3}\right)$

More polar diastereomer:
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.1,10.3,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dt}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.75(\mathrm{dt}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.49(\mathrm{~m}, 3 \mathrm{H}), 4.09-$ $3.99(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.14$ ($\mathrm{s}, 9 \mathrm{H}$) ppm.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=139.2,137.9,128.6,127.9,127.6,117.2,80.7,80.7$, 78.9, 65.6, 55.8, 55.7, 41.1, 22.6 ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{1} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$338.1784, found, 338.1781.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2950,2871,1420,1050,979,920,734$.
$[\alpha]^{22} \mathrm{D}-33.3\left(c=1.90, \mathrm{CHCl}_{3}\right)$

Tert-butyl (1-(3-(benzyloxy)oxetan-3-yl)but-3-en-2-yl)carbamate (362)

NHBoc To a solution of $361(150 \mathrm{mg}, 0.444 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
 $(2.22 \mathrm{~mL}) / \mathrm{MeOH}(2.22 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{HCl}(4 \mathrm{M}$ in dioxane, $556 \mu \mathrm{~L}, 2.22 \mathrm{mmol}, 5.00 \mathrm{eq})$. The mixture was stirred at that temperature for 45 min . The reaction was quenched with sat. aq. NaHCO_{3} solution (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(155 \mu \mathrm{~L}, 0.667 \mathrm{mmol}, 1.50 \mathrm{eq})$ was added. The mixture
was stirred for 13 h . The crude solution was purified by FC on silica (hex: $\mathrm{EA}=3: 1$) to yield362 $(103 \mathrm{mg}, 0.309 \mathrm{mmol}, 70 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=7.46-7.27(\mathrm{~m}, 4 \mathrm{H}), 5.79$ (ddd, $J=16.7,10.3,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=14.1,7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.41-4.33(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=155.18,138.28,138.07,128.66,127.88,127.66$, $115.15,80.59,80.42,79.35,65.75,50.13,40.28,28.54$ ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$356.1832, found, 356.1832.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2976,1702,1509,1366,1246,1167,979$.
$[\alpha]^{22} \mathrm{D}-2.36\left(c=0.665, \mathrm{CHCl}_{3}\right)$

Methyl 3-(3-(benzyloxy)oxetan-3-yl)-2-((tert-butoxycarbonyl)amino)propanoate (356)

To a solution of 362 ($38 \mathrm{mg}, 0.114 \mathrm{mmol}, 1.00 \mathrm{eq}$) in acetone $(2.53 \mathrm{~mL}) /$ water $(1.27 \mathrm{~mL})$ were added $\mathrm{NaIO}_{4}(122 \mathrm{mg}$, $\left.\mathrm{BnO}^{\vdots} 0.570 \mathrm{mmol}, 5.00 \mathrm{~mL}\right), \mathrm{KMnO}_{4}(12.6 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.70 \mathrm{eq})$ and $\mathrm{NaHCO}_{3}(9.57 \mathrm{mg}, 0.114 \mathrm{mmol}, 1.00 \mathrm{eq})$. The mixture was stirred at r.t. 40 min before diluting with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and $1 \mathrm{~m} \mathrm{NaHSO} 4(5 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{EtOAc}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was redissolved in benzene (1 mL) and treated with TMS-Diazomethane (2.00 M in $\mathrm{Et}_{2} \mathrm{O}, 114 \mu \mathrm{~L}$, $0.228 \mathrm{mmol}, 2.00 \mathrm{eq})$. After stirring for $10 \mathrm{~min} \mathrm{AcOH}(0.1 \mathrm{~mL})$ was added. The solution was poured into NaHCO_{3} solution $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The crude product was purified by FC on silica (hex:EA=2:1) to yield 356 (18 mg , $0.049 \mathrm{mmol}, 43 \%$) as a colorless oil.

For analytical data see above.
(R)-N-((R)-2-(3-(benzyloxy)oxetan-3-yl)-1-cyanoethyl)-2-methylpropane-2sulfinamide (358)

To a solution of diethylaluminium cyanide (1 m in toluene, 3.79 mL , $3.79 \mathrm{mmol}, 1.50 \mathrm{eq}$) in THF (3.0 mL) was added 2-propanol ($604 \mu \mathrm{~L}$, $7.83 \mathrm{mmol}, 3.10 \mathrm{eq})$. The mixture was stirred at r.t. for 15 min . This solution was then added to a solution of $357(782 \mathrm{mg}, 2.53 \mathrm{mmol}$, $1.00 \mathrm{eq})$ in THF (7.08 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 15 min the mixture was warmed to r.t. and stirred for 2 h . After cooling to $-78{ }^{\circ} \mathrm{C}$ again sat. aq. NaHCO_{3} solution (10 mL) was added. A solution of Rochelles salt (50 mL) was added and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined org layers were dried over $\mathrm{Na}_{2} \mathrm{SO}^{4}$. The solvent was removed under red pressure. On addition of hexanes:ether (1:2, 20 mL), $358(0.650 \mathrm{~g}, 1.932 \mathrm{mmol}, 76 \%$) precipitated and was collected by filtration.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.95$ (dd, $\left.J=7.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.76(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.31(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.48(\mathrm{~m}, 2 \mathrm{H})$, 1.13 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=137.4,128.8,128.2,127.7,119.1,79.4,79.3,78.5$, 66.3, 57.1, 42.2, 40.9, 22.5 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$337.1580, found, 337.1579.

Tert-butyl 3-(2-oxoethyl)azetidine-1-carboxylate (319)

$\underbrace{\substack{\text { O}}}_{\substack{\mathrm{N} \\ \text { Boc }}}$
To a solution of $363(1.06 \mathrm{~g}, 5.39 \mathrm{mmol}, 1.00 \mathrm{eq})^{88}$ in EA $(26.9 \mathrm{~mL})$ was added palladium on charcoal ($0.115 \mathrm{~g}, 0.108 \mathrm{mmol}, 2.00 \mathrm{~mol} \%$). The mixture was stirred under a H_{2} atmosphere for 16 h . The crude mixture was filtered through a pad of celite with EA (100 mL). The solvent was removed under red. pressure to yield 319 ($1.00 \mathrm{~g}, 5.02 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=9.76(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}, J=8.8$, $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.79(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=200.2,156.4,79.6,54.9,48.5,28.5,23.1 \mathrm{ppm}$.
HRMS (ESI+): m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$222.1101, found, 222.1102.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2974,2884,1694,1394,1365,1138,1070,859,772,560$.
(Z)-Tert-butyl 3-(3-(((benzyloxy)carbonyl)amino)-4-methoxy-4-oxobut-2-en-1-yl)azetidine-1-carboxylate (364)

To a solution of $305(1.77 \mathrm{~g}, 5.36 \mathrm{mmol}, 1.10 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32.5 \mathrm{~mL})$ at r.t. was added DBU ($770 \mu \mathrm{~L}, 5.11 \mathrm{mmol}, 1.10 \mathrm{eq}$). The mixture was stirred for 10 min .319 (970 mg , $4.87 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(16.2 \mathrm{~mL})$ was added. The mixture was stirred for 17.5 h . The mixture was concentrated to one third of its initial volume and purified by FC on silica (hex: $\mathrm{EA}=2: 1$) to yield $364(1.60 \mathrm{~g}, 3.96 \mathrm{mmol}, 81 \%)$ as a very viscous colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta=7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=8.6,5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.68-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=164.9,156.4,154.0,136.0,133.2,128.7,128.5$, $128.4,79.5,67.7,54.3,52.7,33.3,28.5,27.7 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 427.1840$, found, 427.1838.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2968,2882,1694,1400,1366,1223,1140,1045,1028,752,771$.
(S)-Tert-butyl 3-(3-(((benzyloxy)carbonyl)amino)-4-methoxy-4-oxobutyl)azetidine-1-carboxylate (365)

To a mixture of $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}(25.6 \mathrm{mg}, 0.063 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%)$ (R)-MonoPhos ($45.3 \mathrm{mg}, \quad 0.126 \mathrm{mmol}, ~ 10.0 \mathrm{~mol}-\%$) under an atmosphere of H_{2} was added 364 ($510 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31.5 \mathrm{~mL})$. The reaction mixture was stirred at r.t. for 15 h . The solvent was removed under red. Pressure and the residues was purified by FC on silica (EA:hex $=1: 2$) to yield $365(484 \mathrm{mg}, 1.19 \mathrm{mmol}, 94 \%)$ as a light yellow oil.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ $(\mathrm{s}, 2 \mathrm{H}), 4.43-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.37(\mathrm{~m}, 2 \mathrm{H})$, $2.57-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=172.7,156.4,155.9,136.3,128.7,128.4,128.3,79.4$, $67.2,54.5,53.7,52.6,30.2,30.0,28.5,28.4 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$429.1996, found, 429.1995.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2957,2879,1698,1406,1213,1141,1028,774,741$.
$[\alpha]^{23} \mathrm{D}+13.7\left(c=1.12, \mathrm{CHCl}_{3}\right)$

SFC Daicel Chiralpak IA, $90 \% \mathrm{CO}_{2}, 10 \% \mathrm{MeOH}, 2.5 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, 208 \mathrm{~nm}$, 98% ee $\left(\operatorname{tgr}_{R}(\right.$ major $)=5.97 \mathrm{~min}, \operatorname{tr}_{\mathrm{R}}($ minor $\left.)=5.63 \mathrm{~min}\right)$.

Tert-butyl 3-(3-(3-(4-bromophenyl)ureido)-4-methoxy-4-oxobutyl)azetidine-1carboxylate (366)

To a mixture of palladium on carbon (10 wt - $\%, 12.0 \mathrm{mg}$, 0.012 mmol, 0.05 eq) and 365 under N_{2} was added MeOH (2.3 mL). The mixture was stirred under H_{2} (balloon) for 2 h . The suspension was filtered through a syringe filter with EA $(10 \mathrm{~mL})$ and the filtrate was concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and 1-bromo-4-isocyanatobenzene ($0.050 \mathrm{~g}, 0.254 \mathrm{mmol}, 1.10 \mathrm{eq}$) was added. The solution was stirred for 2 h and then directly purified by FC on silica (hex:EA = 1:1 \rightarrow EA) to yield $366(105 \mathrm{mg}, 0.223 \mathrm{mmol}, 97 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.50(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, 2H), $4.57-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 2 \mathrm{H})$, $2.52-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=173.6,156.7,155.0,138.1,131.9,121.0,115.4,79.9$, 54.2, 52.5, 52.5, 30.1, 30.1, 28.4, 28.3 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 492.1105,494.1087$, found, 492.1104, 494.1085.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2958,2879,1743,1654,1699,1545,1489,1396,1206,1154,826$, 756.
$[\alpha]^{23} \mathrm{D}+19.6\left(c=0.620, \mathrm{CHCl}_{3}\right)$

Tert-butyl 3-(2-(1-(4-bromophenyl)-2,5-dioxoimidazolidin-4-yl)ethyl)azetidine-1carboxylate (367)

A solution of $366(96.0 \mathrm{mg}, 0.204 \mathrm{mmol}, 1.00 \mathrm{eq})$ and DBU $(0.046 \mathrm{ml}$, $0.306 \mathrm{mmol}, 1.50 \mathrm{eq})$ in toluene $(2.0 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$ for 4 h . The solvent was removed and the residue was purified by FC on silica (hex:EA = 1:2) to yield $367(59.0 \mathrm{mg}, 0.135 \mathrm{mmol}, 66 \%)$ as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}$, 2H), $4.26-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.49(\mathrm{~m}$, 1H), $1.96-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=172.3,156.5,156.0,132.4,130.5,127.6,122.2,79.7$, 56.8, 53.7, 29.4, 29.3, 28.6, 28.5 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 460.0842,462.0824$, found, 460.0842, 462.0824.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2969,2879,1718,1492,1408,1146,752,726,639$.
$[\alpha]^{23}{ }_{\mathrm{D}}-\mathbf{0 . 4 9 0}\left(c=0.535, \mathrm{CHCl}_{3}\right)$
X-Ray: Single crystals were obtained by diffusion of hexanes into a solution of the substrate in EA. Absolute configuration was determined as (S).
(R,E)-2-methyl-N-((3-methyloxetan-3-yl)methylene)propane-2-sulfinamide (321)

To a solution of (R)-2-methylpropane-2-sulfinamide (0.798 g , $6.58 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (32.9 mL) was added 3-methyloxetane-3carbaldehyde solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{wt}-\%, 2.79 \mathrm{~g}, 7.24 \mathrm{mmol}$, 1.10 eq) followed by tetraethoxytitanium ($2.75 \mathrm{~mL}, 13.2 \mathrm{mmol}, 2.00 \mathrm{eq}$). The mixture was stirred for 26 h and then poured into sat. aq. NaCl solution $(100 \mathrm{~mL})$. The resulting suspension was filtered over celite with EA (100 mL).

The layers were separated and the aq. layer was extracted with EA ($2 \times 100 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA = 1:1) to yield 321 ($1.14 \mathrm{~g}, 5.58 \mathrm{mmol}, 85 \%$) as a colorless wax.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta=8.18(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=6.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=169.8,79.7,79.4,57.1,44.9,22.4,21.3 \mathrm{ppm}$.
HRMS (ESI+): m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$204.1053, found, 204.1058.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2963,2872,1620,1088,985,836$.
$[\alpha]^{23} \mathrm{D}-252\left(c=0.93, \mathrm{CHCl}_{3}\right)$
(R)-2-methyl-N-(1-(3-methyloxetan-3-yl)allyl)propane-2-sulfinamide (368)

To a solution of $321(1.51 \mathrm{~g}, 7.43 \mathrm{mmol}, 1.00 \mathrm{eq})$ in toluene (74.3 mL) at $-78{ }^{\circ} \mathrm{C}$ was added vinylmagnesium bromide in THF $(1 \mathrm{M}, 11.2 \mathrm{~mL}$,
$11.2 \mathrm{mmol}, 1.50 \mathrm{eq})$. The mixture was stirred for 90 min . Still, starting material was detected by TLC. Hence, vinylmagnesium bromide in THF ($1 \mathrm{M}, 2.23 \mathrm{~mL}, 2.23 \mathrm{mmol}, 0.30 \mathrm{eq}$) was added and the mixture was stirred for 90 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) was added. The layers were separated and the aq. layer was extracted with EA ($2 \times 50 \mathrm{~mL}$). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica ($\varnothing 3.5 \mathrm{~cm}, h 40 \mathrm{~cm}, V 15 \mathrm{~mL}$, DCM:acetone = 6:1 (100 fractions), 4:1 (40 fractions), 2:1 (30 fractions) to 1:1 (30 fractions)) to yield the desired product in two diastereomers: a) the minor, less polar diastereomer (R)-2-methyl-N-((S)-1-(3-methyloxetan-3-yl)allyl)propane-2-sulfinamide \quad (0.441 g , $1.91 \mathrm{mmol}, 26 \%)$ and b) the major, more polar diastereomer (R)-2-methyl- $\mathrm{N}-((R)-$ 1-(3-methyloxetan-3-yl)allyl)propane-2-sulfinamide ($1.02 \mathrm{~g}, 4.41 \mathrm{mmol}, 59 \%$) as colorless oils.
(R)-2-methyl-N-((S)-1-(3-methyloxetan-3-yl)allyl)propane-2-sulfinamide
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=5.74$ (ddd, $\left.J=17.1,10.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.45-5.23$ $(\mathrm{m}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=12.9,6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=135.1,119.0,81.3,80.1,64.9,56.6,43.0,22.8,19.2$ ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$232.1366, found, 232.1371.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2963,2872,1620,1088,985,836$.
$[\alpha]^{23} \mathrm{D}-252\left(c=0.93, \mathrm{CHCl}_{3}\right)$
(R)-2-methyl-N-((R)-1-(3-methyloxetan-3-yl)allyl)propane-2-sulfinamide ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=5.61$ (ddd, $\left.J=17.0,10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.39-5.24$ $(\mathrm{m}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=11.4,6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.12-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl 3$) \delta=134.6,119.4,80.3,80.0,63.3,56.0,42.9,22.8,19.9$ ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$232.1366, found, 232.1362.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2961,2870,1457,1387,1363,1061,979,595$.
$[\alpha]^{23}{ }_{\mathrm{D}}-102\left(c=0.76, \mathrm{CHCl}_{3}\right)$

(R)-benzyl (1-(3-methyloxetan-3-yl)allyl)carbamate (369)

$\mathrm{Cbz}_{{ }_{\mathrm{NH}}} \quad \mathrm{To} \quad \mathrm{a}$ solution of (R)-2-methyl-N-((R)-1-(3-methyloxetan-3-yl)allyl)propane-2-sulfinamide ($329 \mathrm{mg}, 1.42 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF $(14.2 \mathrm{~mL})$ was added aq. $\mathrm{HCl}(2 \mathrm{M}, 3.56 \mathrm{~mL}, 7.11 \mathrm{mmol}, 5.00 \mathrm{eq})$. The mixture was vigorously stirred at r.t. for 2 h and then poured into sat. aq. NaHCO_{3} solution $(20 \mathrm{~mL})$. The aq. layer was extracted with $\mathrm{CH} 2 \mathrm{Cl} 2(4 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated.

The residue was dissolved in THF (7.1 mL) and benzyl (2,5-dioxopyrrolidin-1-yl) carbonate ($886 \mathrm{mg}, 3.56 \mathrm{mmol}, 2.50 \mathrm{eq}$) as well as $\mathrm{Et}_{3} \mathrm{~N}(496 \mu \mathrm{~L}, 3.56 \mathrm{mmol}$, $2.50 \mathrm{eq})$ were added. The mixture was stirred for 13 h and directly purified by FC on silica (hex:EA = 3:1) to yield $369(171 \mathrm{mg}, 0.654 \mathrm{mmol}, 46 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (300 MHz, CDCl3) $\delta=7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.69$ (ddd, $J=17.2,10.4,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.31-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{dd}$, $J=6.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=156.3,136.4,133.9,128.7,128.4,128.3,117.5,80.2$, 80.0, 67.2, 58.5, 42.4, 20.1 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 262.1438$, found, 262.1436 .
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2964,2875,1708,1532,1239,1074,977,739$.
$[\alpha]^{23} \mathrm{D}+31.7\left(c=0.50, \mathrm{CHCl}_{3}\right)$
(S)-Methyl 2-(((benzyloxy)carbonyl)amino)-2-(3-methyloxetan-3-yl)acetate (370)

To a solution of benzyl (1-(3-methyloxetan-3-yl)allyl)carbamate ($0.0400 \mathrm{~g}, 0.153 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.7 \mathrm{~mL}) / \mathrm{MeOH}(1.9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added NaOH in $\mathrm{MeOH}(2.5 \mathrm{M}, 0.306 \mathrm{~mL}, 0.765 \mathrm{mmol}$, 5.00 eq). Ozonized oxygen was bubbled through the mixture until the color of the solution turned to blue. Nitrogen was bubbled through the blue solution
until the color faded completely before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ were added and the solution was allowed to warm to r.t. Sodium thiosulfate $(200 \mathrm{mg})$ was added, the layers were separated and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield $370(0.0423 \mathrm{~g}, 0.143 \mathrm{mmol}, 94 \%)$ as a colorless wax.
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl3) $\delta=7.44-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.38(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{s}, 2 \mathrm{H}), 4.86-4.72(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl3) $\delta=171.2,156.5,136.1,128.8,128.5,128.4,80.1,79.8$, 67.6, 58.9, 52.7, 42.3, 19.8 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$294.1336, found, 294.1336.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2959,2880,1721,1532,1250,1218,1050,978,860,741$.
$[\alpha]^{23}{ }_{\mathrm{D}}+30.9\left(c=0.40, \mathrm{CHCl}_{3}\right)$
(S)-4-bromo-N-(1-(3-methyloxetan-3-yl)allyl)benzenesulfonamide (371)

To a solution of (R)-2-methyl-N-((S)-1-(3-methyloxetan-3yl)allyl) propane-2-sulfinamide ($59 \mathrm{mg}, 0.255 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (2.55 mL) was added aq. $\mathrm{HCl}(2 \mathrm{M}, 0.638 \mathrm{~mL}, 1.28 \mathrm{mmol}$, $5.00 \mathrm{eq})$. The mixture was vigorously stirred at r.t. for 2 h and then poured into sat. aq. NaHCO_{3} solution (20 mL). The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 20 \mathrm{~mL})$. The combined org. layers were dried over Na 2 SO 4 and concentrated.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and 4-bromobenzene-1-sulfonyl chloride ($98 \mathrm{mg}, 0.383 \mathrm{mmol}, 1.50 \mathrm{eq}$) as well as Et3N ($89 \mu \mathrm{~L}, 0.638 \mathrm{mmol}$,
$2.50 \mathrm{eq})$ were added. The mixture was stirred for 20 h and directly purified by FC on silica (hex:EA = 2:1) to yield $371(33 \mathrm{mg}, 0.095 \mathrm{mmol}, 37 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 5.44$ (ddd, J $=17.2,10.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=6.3$ Hz, 1H), $4.43(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=6.3,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 1 \mathrm{H})$, 1.23 (s, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=139.8,132.7,132.4,128.9,127.8,118.8,80.2,79.6$, 61.9, 42.7, 19.4 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$346.0107, 348.0087, found, 346.0103, 348.0084.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2966,2878,1576,1336,1161,1068,927,825,741$.

$$
[\alpha]^{23} \mathrm{D}+46.5\left(c=0.56, \mathrm{CHCl}_{3}\right)
$$

X-Ray: Single crystals were obtained by diffusion of hexanes into a solution of the substrate in EA. Absolute configuration was determined as (S).

1-(4-bromophenyl)-3-(1-(3-methyloxetan-3-yl)allyl)urea (372)
 $5.00 \mathrm{eq})$. The mixture was vigorously stirred at r.t. for 2 h and then poured into sat. aq. NaHCO_{3} solution (20 mL). The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 20 \mathrm{~mL})$. The combined org. layers were dried over Na 2 SO 4 and concentrated.

The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and 1-bromo-4-isocyanatobenzene ($38 \mathrm{mg}, 0.190 \mathrm{mmol}, 1.10 \mathrm{eq}$) as well as Et3N ($60 \mu \mathrm{~L}, 0.432 \mathrm{mmol}, 2.50 \mathrm{eq}$) were added. The mixture was stirred for 2 h and directly purified by FC on silica (hex:EA = 1:1) to yield 372 ($50 \mathrm{mg}, 0.154 \mathrm{mmol}, 89 \%$) as a colorless solid.
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (s, 1H), 5.74 (ddd, $J=16.7,10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, ~ J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.23$ (m, $2 \mathrm{H}), 4.69-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.40(\mathrm{dd}, J=9.1,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=155.3,137.7,134.3,132.1,121.8,117.7,116.2,80.1$, 79.5, 57.3, 42.4, 20.8 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$325.0546, 325.0546, found, 346.0103, 348.0084.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2955,1653,1592,1489,1229,983,824$.
$[\alpha]^{22} \mathrm{D}-52.4\left(c=0.255, \mathrm{CHCl}_{3}\right)$
(R, E)-2-methyl-N-(2-(oxetan-3-yl)ethylidene)propane-2-sulfinamide (320)

To a mixture of $325(1.01 \mathrm{~g}, 10.3 \mathrm{mmol}, 1.00 \mathrm{eq})$ and palladium on carbon ($0.547 \mathrm{~g}, 0.514 \mathrm{mmol}, 5.00 \mathrm{~mol}-\%$) under N_{2} was added EA $(34.3 \mathrm{~mL})$. The suspension was stirred under H_{2} (balloon) for 5 h . The mixture was then filtered through a pad of celite with EA (50 mL) yielding crude 2-(oxetan-3-yl)acetaldehyde ($0.865 \mathrm{~g}, 8.64 \mathrm{mmol}, 84 \%$) as a colorless oil

To a solution of crude 2-(oxetan-3-yl)acetaldehyde ($346 \mathrm{mg}, 3.46 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (17.3 mL) were added (R)-2-methylpropane-2-sulfinamide (461 mg , $3.80 \mathrm{mmol}, 1.10 \mathrm{eq}$) and tetraethoxytitanium ($1.45 \mathrm{~mL}, 6.91 \mathrm{mmol}, 2.00 \mathrm{eq}$). The mixture was stirred at r.t. for 16 h . The mixture was poured into sat. aq. NaCl solution (50 mL) and immediately filtered over a pad of celite with EA (50 mL). The layers of the filtrate were separated and the aq. layer was extracted with EA $(3 \times 50 \mathrm{~mL})$. The combined org. layers were dried over Na 2 SO 4 and concentrated. The residue was purified by FC on silica (hex:EA $=1: 1 \rightarrow E A$) to yield 320 ($593 \mathrm{mg}, 2.92 \mathrm{mmol}, 72 \%$) as a colorless oil
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=8.05(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.46-$ 4.38 (m, 2H), 3.49 - 3.33 (m, 1H), 2.93 (dd, $J=7.6,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=166.6,77.0,76.7,56.6,39.8,31.6,22.3 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}$ [M+H] ${ }^{+}$204.1053, found, 204.1048.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2962,2869,1622,1364,1085,976,858$.
$[\alpha]^{23}{ }_{\mathrm{D}}-244\left(c=0.66, \mathrm{CHCl}_{3}\right)$
(R)-2-methyl-N-((S)-1-(oxetan-3-yl)but-3-en-2-yl)propane-2-sulfinamide (373)

To a solution of $320(365 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.00 \mathrm{eq})$ in toluene $(35.9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added vinylmagnesium bromide in THF $(1 \mathrm{M}, 2.7 \mathrm{~mL}$, $2.69 \mathrm{mmol}, 1.50 \mathrm{eq})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 60 min . Sat. aq. NaHCO_{3} solution (10 mL) was added and the mixture was warmed to r.t. The layers were separated and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (EA) to yield 373 (305 mg , $1.32 \mathrm{mmol}, 73 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=5.77$ (ddd, $\left.J=17.5,10.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.28-5.11$ $(\mathrm{m}, 2 \mathrm{H}), 4.80-4.69(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}$, 9H) ppm.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=139.1,117.2,77.8,77.7,57.5,55.9,39.4,32.4,22.7$ ppm.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$232.1366, found, 232.1367.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2959,2867,1363,1056,977$.
$[\alpha]^{23}{ }_{\mathrm{D}}-87.2\left(c=0.58, \mathrm{CHCl}_{3}\right)$
(S)-benzyl (1-(oxetan-3-yl)but-3-en-2-yl)carbamate (374)
$\mathrm{Cbz}_{\text {NH }}$ To a solution of $373(195 \mathrm{mg}, 0.843 \mathrm{mmol}, 1.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.2 \mathrm{~mL}) / \mathrm{MeOH}(4.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added HCl in dioxane $(4 \mathrm{M}$, $527 \mu \mathrm{~L}, 2.11 \mathrm{mmol}, 2.5 \mathrm{eq})$. The mixture was stirred for 60 min before $\mathrm{Et}_{3} \mathrm{~N} \quad(587 \mu \mathrm{~L}, 4.21 \mathrm{mmol}, 5.00 \mathrm{eq})$ and benzyl (2,5-dioxopyrrolidin-1-yl) carbonate ($315 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.50 \mathrm{eq}$) were added. The mixture was allowed to warm to r.t. and stirred for 15 h . The mixture was directly purified by FC on silica (hex:EA $=2: 1$) to yield $374(132 \mathrm{mg}, 0.505 \mathrm{mmol}, 60 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.71$ (ddd, $J=17.2,10.4,5.9$ Hz, 1H), $5.21-5.04$ (m, 4H), $4.80-4.69$ (m, 2H), 4.63 (s, 1H), $4.40(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}$, 2H), $4.18-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.83(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=155.8,137.9,136.5,128.7,128.4,128.3,115.6,77.7$, $77.5,67.0,52.2,39.4,32.6 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$262.1438, found, 262.1437.

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2958,2873,1701,1532,1248,1068,974,739$.
$[\alpha]^{23} \mathrm{D}-3.93\left(c=0.56, \mathrm{CHCl}_{3}\right)$
(S)-Methyl 2-(((benzyloxy)carbonyl)amino)-3-(oxetan-3-yl)propanoate (375)
 the mixture until the color of the solution turned to blue. Nitrogen was bubbled through the blue solution until the color faded completely before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and water (10 mL) were added and the solution was allowed to warm to r.t. Sodium thiosulfate $(200 \mathrm{mg})$ were added, the layers were separated and the aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined org.
layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield 375 (0.0422 g , $0.143 \mathrm{mmol}, 54 \%)$ as a colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ $(\mathrm{s}, 2 \mathrm{H}), 4.80-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.29(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.05(\mathrm{~m}, 1 \mathrm{H})$, $2.32-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.96(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=172.5,155.8,136.2,128.7,128.5,128.3,77.3,77.1$, $67.3,52.7,52.6,37.0,32.2 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$294.1336, found, 294.1334.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2957,1720,1531,1441,1216,1060,975,699$.
$[\alpha]^{23} \mathrm{D}-9.96\left(c=0.50, \mathrm{CHCl}_{3}\right)$
(S)-methyl 2-((S)-2-(((benzyloxy)carbonyl)amino)-3-phenylpropanamido)-4-(3-(benzyloxy)oxetan-3-yl)butanoate (379)

First, crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Glu}(\mathrm{Ox}, \mathrm{OBn})$-OMe was obtained from 353 ($56 \mathrm{mg}, 0.145 \mathrm{mmol}, 1.00 \mathrm{eq}$) and isolated by azeotropic destillation following GP 5.

Following GP 2 using crude $\mathrm{H}_{2} \mathrm{~N}-\mathrm{Glu}(\mathrm{Ox}, \mathrm{OBn})-\mathrm{OMe}$ ($40.5 \mathrm{mg}, 0.145 \mathrm{mmol}, 1.00 \mathrm{eq}$), CbzNH-Phe-OH ($65.1 \mathrm{mg}, 0.218 \mathrm{mmol}, 1.50 \mathrm{eq}$), N-methylmorpholine $(0.096 \mathrm{~mL}, \quad 0.870 \mathrm{mmol}, \quad 6.00 \mathrm{eq}), \quad \mathrm{EDC} \cdot \mathrm{HCl} \quad(0.042 \mathrm{~g}$, $0.218 \mathrm{mmol}, 1.5 \mathrm{eq}$) and $\mathrm{HOBt}(0.033 \mathrm{~g}, ~ 0.218 \mathrm{mmol}, 1.5 \mathrm{eq}) 379$ (55 mg , $0.067 \mathrm{mmol}, 67 \%)$ was obtained as a colorless wax.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.53-7.26(\mathrm{~m}, 15 \mathrm{H}), 6.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (d, J = 7.9 Hz, 1H), $5.20-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.86-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{td}, J=7.3,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56-4.34(\mathrm{~m}, 5 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{qd}, J=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.63(\mathrm{~m}$, 4H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$) \delta=172.0,170.8,156.0,138.0,136.3,136.2,129.4$, 128.9, 128.7, 128.4, 128.2, 127.9, 127.5, 127.3, 80.2, 78.6, 67.3, 65.5, 56.4, 52.7, 52.2, 38.3, 30.3, 26.1 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 561.2595$, found, 561.2585.
IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2951,1669,1533,1454,1214,1052,977,742$.
$[\alpha]^{24} \mathrm{D}+1.14\left(c=0.46, \mathrm{CHCl}_{3}\right)$
(5S,8S)-benzyl 5-benzyl-8-(2-(3-(benzyloxy)oxetan-3-yl)ethyl)-3,6,9-trioxo-1-phenyl-2-oxa-4,7,10-triazadodecan-12-oate (380)

First, crude CbzNH-Phe-Glu(Ox, OBn)-OH was obtained from $379(40 \mathrm{mg}, \quad 0.071 \mathrm{mmol}, \quad 1.00 \mathrm{eq})$ following GP 3.

Following GP 2 using crude CbzNH-Phe-Glu(Ox, OBn)$\mathrm{OH}\left(39 \mathrm{mg}, \quad 0.071 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{~N}-\mathrm{Gly}-\mathrm{OBn}(36 \mathrm{mg}, ~ 0.107 \mathrm{mmol}$, $1.50 \mathrm{eq})$, N -methylmorpholine ($0.043 \mathrm{~mL}, 0.426 \mathrm{mmol}, 6.00 \mathrm{eq}$), EDC•HCl (0.015 g , $0.078 \mathrm{mmol}, 1.1 \mathrm{eq})$ and $\operatorname{HOBt}(0.012 \mathrm{~g}, 0.078 \mathrm{mmol}, 1.1 \mathrm{eq}) 380(32 \mathrm{mg}$, $0.046 \mathrm{mmol}, 65 \%)$ was obtained as a colorless wax.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta=7.39-7.11(\mathrm{~m}, 20 \mathrm{H}), 6.60-6.46(\mathrm{~m}, 2 \mathrm{H}), 5.33-$ $5.22(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-$ $4.43(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.31(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.02-1.70(m, 4H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=171.0,170.9,169.3,153.8,138.0,136.0,135.2$, 129.2, 128.8, 128.7, 128.6, 128.6, 128.6, 128.4, 128.3, 128.1, 127.8, 127.5, 127.2, 80.0, $79.8,78.9,67.3,67.2,65.5,56.5,52.6,41.2,38.1,30.7,25.8 \mathrm{ppm}$.

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$694.3123, found, 694.3117 .

IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2948,1646,1536,1455,1203,743$.
$[\alpha]^{24} \mathrm{D}-4.81\left(c=0.38, \mathrm{CHCl}_{3}\right)$

2-((S)-2-((S)-2-amino-3-phenylpropanamido)-4-(3-hydroxyoxetan-3yl)butanamido)acetic acid (378)

To a solution of 380 ($24 \mathrm{mg}, 0.035 \mathrm{mmol}, 1.00 \mathrm{eq}$) in MeOH $(1.7 \mathrm{~mL})$ was added palladium(II) acetate $(7.8 \mathrm{mg}$, $0.035 \mathrm{mmol}, 1.00 \mathrm{eq})$. The mixture was stirred under H_{2} (balloon) for 20 h . The suspension was filtered through a syringe filter (PTFE) and the filtrate was concentrated. The crude product was purified by preparative HPLC to yield 378 ($7.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 56 \%$) as a colorless foam.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.43-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.55(\mathrm{dd}, J=6.5,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.51-4.43$ (m, 3H), 4.15 (ddd, $J=7.2,5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.93$ (m, 0H), $3.91-$ $3.81(\mathrm{~m}, 0 \mathrm{H}), 3.27(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (ddd, $J=14.3,8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-$ $1.71(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=173.5,172.5,169.5,135.6,130.5,130.2,128.9,84.7$, 84.7, 74.4, 55.6, 54.6, 41.7, 38.6, 34.7, 27.5 ppm .

HRMS (ESI+): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 380.1816$, found, 380.1819.

5.4 Experimental Procedures to Chapter 4

Ethyl 2-(3-(N-allyl-4-methylphenylsulfonamido)oxetan-3-yl)acetate (384)

A mixture of $346(2.25 \mathrm{~g}, 15.83 \mathrm{~mol}, 1.00 \mathrm{eq})$ and allyl amine ($1.19 \mathrm{~mL}, 15.83 \mathrm{mmol}, 1.00 \mathrm{eq}$) was stirred for 4 d at r.t.

The resulting light yellow oil was dissolved in pyridine and to the solution were added $\mathrm{Ts}-\mathrm{Cl}(3.32 \mathrm{~g}, 17.39 \mathrm{mmol}, 1.10 \mathrm{eq})$ and $\mathrm{DMAP}(97 \mathrm{mg}, 0.79 \mathrm{mmol}$, $5.00 \mathrm{~mol}-\%$). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 26 h . After cooling to r.t. the dark brown suspension was poured into 1 m NaHSO 4 solution (50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EA $=2: 1$) to yield 3 ($5.14 \mathrm{~g}, 14.54 \mathrm{mmol}, 92 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.86-$ $5.74(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{q}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3$) \delta=170.5,143.8,138.0,135.2,129.8,127.7,117.9$, 117.9, 79.6, 61.4, 61.0, 49.7, 41.7, 21.6, 14.2 ppm .

N -allyl-4-methyl-N-(3-(2-oxoethyl)oxetan-3-yl)benzenesulfonamide (385)

To a solution of $384(0.611 \mathrm{~g}, 1.729 \mathrm{mmol}, 1.00 \mathrm{eq})$ in toluene $(17.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise DIBAL-H (1.2 M in toluene, $1.59 \mathrm{~mL}, 1.90 \mathrm{mmol}, 1.10 \mathrm{eq})$. The mixture was stirred for 10 min before $\mathrm{MeOH}(5 \mathrm{~mL})$ was added. To the solution was added sat aq Rochelle salt solution (20 mL) and the mixture was stirred for 30 min at r.t. The layers were separated and the aq. layer was extracted with EA $(2 \times 30 \mathrm{~mL})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was used in the next step without any further purification
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=9.83(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 5.77$ - 5.62 (m, 1H), 5.22 - 5.06 (m, 2H), 5.00 (d, J = 7.3 Hz, 2H), 4.41 (d, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (101 MHz, CDCl3) $\delta=199.1,143.9,137.2,134.2,129.6,127.3,118.2,79.3$, 77.2, 60.5, 50.0, 49.1, 21.4 ppm .
(S,E)-N-allyl-N-(3-(2-((tert-butylsulfinyl)imino)ethyl)oxetan-3-yl)-4methylbenzenesulfonamide (383)

To a solution of $384(0.527 \mathrm{~g}, 1.703 \mathrm{mmol}, 1.00 \mathrm{mmol})$ in THF (8.5 mL) were added (S)-2-methylpropane-2-sulfinamide $(0.227 \mathrm{~g}, 1.87 \mathrm{mmol}, 1.00 \mathrm{eq})$ and tetraethoxytitanium (0.713 mL , $3.41 \mathrm{mmol}, 2.00 \mathrm{eq})$. The mixture was stirred at r.t. for 14 h . The mixture was quenched with aq. NaCl , filtered through a pad of celite and extracted with EtOAc. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by FC on silica (hex:EtOAc $=1: 1$) to yield 2 ($0.585 \mathrm{~g}, 1.42 \mathrm{mmol}, 83 \%$) over 2 steps as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=8.15(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.31 (d, J = $8.2 \mathrm{~Hz}, 3 \mathrm{H}), 5.73-5.63$ (m, 1H), 5.19 - 5.04 (m, 2H), $5.01-4.92$ (m, 2H), $4.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, 1.20 (s, 9H) ppm.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta=199.1,143.9,137.2,134.2,129.6,127.3,118.2,79.3$, $77.2,60.5,50.0,49.1,21.4 \mathrm{ppm}$.

6

References

1. Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chemical Biology \& Drug Design 2013, 81, 136-147.
2. Fuster, V.; Sweeny, J. M. Circulation 2011, 123, 768-778.
3. Sneader, W. BMJ : British Medical Journal 2000, 321, 1591-1594.
4. Schmid, E. F.; Smith, D. A. Drug Discovery Today 2005, 10, 1031-1039.
5. Klebe, G. In Wirkstoffdesign; Spektrum Akademischer Verlag: 2009, p 97-112.
6. Macarron, R. Drug Discovery Today 2006, 11, 277-279.
7. Newman, D. J.; Cragg, G. M. Journal of Natural Products 2012, 75, 311-335.
8. Krier, M.; Bret, G.; Rognan, D. Journal of Chemical Information and Modeling 2006, 46, 512-524.
9. Klebe, G. In Wirkstoffdesign; Spektrum Akademischer Verlag: 2009, p 113-124.
10. Klebe, G. In Wirkstoffdesign; Spektrum Akademischer Verlag: 2009, p 265-282.
11. Jorgensen, W. L. Science 2004, 303, 1813-1818.
12. Drews, J. Science 2000, 287, 1960-1964.
13. Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Drug Discovery Today 2010, 15, 40-56.
14. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Advanced Drug Delivery Reviews 2001, 46, 3-26.
15. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. Journal of Combinatorial Chemistry 1999, 1, 55-68.
16. Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Journal of Medicinal Chemistry 2002, 45, 2615-2623.
17. Lipinski, C. A. Journal of Pharmacological and Toxicological Methods 2000, 44, 235-249.
18. DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G. Journal of Health Economics 2003, 22, 151-185.
19. DiMasi, J. A.; Grabowski, H. G. Managerial and Decision Economics 2007, 28, 469-479.
20. Rawlins, M. D. Nat Rev Drug Discov 2004, 3, 360-364.
21. Kola, I.; Landis, J. Nat Rev Drug Discov 2004, 3, 711-716.
22. Harding, F. A.; Stickler, M. M.; Razo, J.; DuBridge, R. B. mAbs 2010, 2, 256-265.
23. Riechmann, L.; Clark, M.; Waldmann, H.; Winter, G. Nature 1988, 332, 323327.
24. Beck, A.; Wurch, T.; Bailly, C.; Corvaia, N. Nat Rev Immunol 2010, 10, 345-352.
25. Chadd, H. E.; Chamow, S. M. Current Opinion in Biotechnology 2001, 12, 188194.
26. Yin, H.; Hamilton, A. D. Angewandte Chemie (International ed. in English) 2005, 44, 4130-4163.
27. Bray, B. L. Nat Rev Drug Discov 2003, 2, 587-593.
28. Brekke, O. H.; Sandlie, I. Nat Rev Drug Discov 2003, 2, 52-62.
29. McGregor, D. P. Current opinion in pharmacology 2008, 8, 616-619.
30. Kumar, D.; Bhalla, T. Appl Microbiol Biotechnol 2005, 68, 726-736.
31. Witt, K. A.; Gillespie, T. J.; Huber, J. D.; Egleton, R. D.; Davis, T. P. Peptides 2001, 22, 2329-2343.
32. Witt, K. A.; Davis, T. P. The AAPS journal 2006, 8, E76-88.
33. Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827-10852.
34. El-Faham, A.; Albericio, F. Chemical Reviews 2011, 111, 6557-6602.
35. Patch, J. A.; Barron, A. E. Curr Opin Chem Biol 2002, 6, 872-877.
36. Hruby, V. J.; Cai, M. Annu Rev Pharmacol Toxicol 2013, 53, 557-580.
37. Kaspar, A. A.; Reichert, J. M. Drug Discovery Today 2013, 18, 807-817.
38. Montanya, E. Expert Opinion on Pharmacotherapy 2012, 13, 1451-1467.
39. Janecka, A.; Fichna, J.; Janecki, T. Current topics in medicinal chemistry 2004, 4, 1-17.
40. Latham, P. W. Nat Biotech 1999, 17, 755-757.
41. Klebe, G. In Wirkstoffdesign; Spektrum Akademischer Verlag: 2009, p 283-302.
42. Assem, N.; Natarajan, A.; Yudin, A. K. Journal of the American Chemical Society 2010, 132, 10986-10987.
43. Assem, N.; Yudin, A. K. Nat. Protocols 2012, 7, 1327-1334.
44. Li, X.; Yudin, A. K. Journal of the American Chemical Society 2007, 129, 1415214153.
45. Valverde, I. E.; Lecaille, F.; Lalmanach, G.; Aucagne, V.; Delmas, A. F. Angewandte Chemie International Edition 2012, 51, 718-722.
46. Choudhary, A.; Raines, R. T. ChemBioChem 2011, 12, 1801-1807.
47. Avan, I.; Hall, C. D.; Katritzky, A. R. Chemical Society Reviews 2014, 43, 35753594.
48. Fairlie, D. P.; West, M. L.; Wong, A. K. Current medicinal chemistry 1998, 5, 2962.
49. Gellman, S. H. Accounts of Chemical Research 1998, 31, 173-180.
50. Ko, E.; Liu, J.; Burgess, K. Chemical Society Reviews 2011, 40, 4411-4421.
51. Beck, J. G.; Chatterjee, J.; Laufer, B.; Kiran, M. U.; Frank, A. O.; Neubauer, S.; Ovadia, O.; Greenberg, S.; Gilon, C.; Hoffman, A.; Kessler, H. Journal of the American Chemical Society 2012, 134, 12125-12133.
52. Merrifield, R. B. Journal of the American Chemical Society 1963, 85, 2149-2154.
53. Merrifield, R. B. Angewandte Chemie International Edition in English 1985, 24, 799-810.
54. Jones, J. H. Journal of Peptide Science 2007, 13, 363-367.
55. Bruckdorfer, T.; Marder, O.; Albericio, F. Current pharmaceutical biotechnology 2004, 5, 29-43.
56. Itoh, K.; Yamada, A. Cancer Science 2006, 97, 970-976.
57. Katsuno, M.; Adachi, H.; Doyu, M.; Minamiyama, M.; Sang, C.; Kobayashi, Y.; Inukai, A.; Sobue, G. Nat Med 2003, 9, 768-773.
58. Ladner, R. C.; Sato, A. K.; Gorzelany, J.; de Souza, M. Drug Discov Today 2004, 9, 525-529.
59. Lipinski, C. A. Drug Discovery Today: Technologies 2004, 1, 337-341.
60. Marx, V. Chemical \& Engineering News Archive 2005, 83, 17-24.
61. Morishita, M.; Peppas, N. A. Drug Discovery Today 2006, 11, 905-910.
62. Shah, R. B.; Ahsan, F.; Khan, M. A. Critical Reviews in Therapeutic Drug Carrier Systems 2002, 19, 135-169.
63. Badros, A. Z.; Vij, R.; Martin, T.; Zonder, J. A.; Kunkel, L.; Wang, Z.; Lee, S.; Wong, A. F.; Niesvizky, R. Leukemia 2013, 27, 1707-1714.
64. Meng, L.; Mohan, R.; Kwok, B. H. B.; Elofsson, M.; Sin, N.; Crews, C. M. Proceedings of the National Academy of Sciences 1999, 96, 10403-10408.
65. Kim, K. B.; Crews, C. M. Natural product reports 2013, 30, 600-604.
66. Njoroge, F. G.; Chen, K. X.; Shih, N.-Y.; Piwinski, J. J. Accounts of Chemical Research 2008, 41, 50-59.
67. Kim, J. J.; Culley, C. M.; Mohammad, R. A. American Journal of Health-System Pharmacy 2012, 69, 19-33.
68. Zeuzem, S.; Andreone, P.; Pol, S.; Lawitz, E.; Diago, M.; Roberts, S.; Focaccia, R.; Younossi, Z.; Foster, G. R.; Horban, A.; Ferenci, P.; Nevens, F.; Müllhaupt, B.; Pockros, P.; Terg, R.; Shouval, D.; van Hoek, B.; Weiland, O.; Van Heeswijk, R.; De Meyer, S.; Luo, D.; Boogaerts, G.; Polo, R.; Picchio, G.; Beumont, M. New England Journal of Medicine 2011, 364, 2417-2428.
69. McHutchison, J. G.; Manns, M. P.; Muir, A. J.; Terrault, N. A.; Jacobson, I. M.; Afdhal, N. H.; Heathcote, E. J.; Zeuzem, S.; Reesink, H. W.; Garg, J.; Bsharat, M.; George, S.; Kauffman, R. S.; Adda, N.; M.D., A. M. D. B. New England Journal of Medicine 2010, 362, 1292-1303.
70. Kiser, J. J.; Burton, J. R.; Anderson, P. L.; Everson, G. T. Hepatology 2012, 55, 1620-1628.
71. Wilby, K. J.; Partovi, N.; Ford, J.-A. E.; Greanya, E. D.; Yoshida, E. M. Canadian Journal of Gastroenterology 2012, 26, 205-210.
72. Reboul, M. Annales de Chimie (Cachan, France) 1878, <5>14, 477;-
73. Ezra, S.; Feinstein, S.; Bilkis, I.; Adar, E.; Ganor, J. Environmental Science E Technology 2005, 39, 505-512.
74. Tan, W.; Zhao, X.; Yu, Z. Journal of Organometallic Chemistry 2007, 692, 53955402.
75. Baum, K.; Berkowitz, P. T.; Grakauskas, V.; Archibald, T. G. The Journal of Organic Chemistry 1983, 48, 2953-2956.
76. Stutz, W.; Waditschatka, R.; Winter, K.; Von Frieling, M.; Gressly, R.; Jau, B.; Buerki, S.; Ciba-Geigy A.-G., Switz. . 1997, p 16 pp.
77. Pattison, D. B. Journal of the American Chemical Society 1957, 79, 3455-3456.
78. Ho, W.; Tutwiler, G. F.; Cottrell, S. C.; Morgans, D. J.; Tarhan, O.; Mohrbacher, R. J. Journal of Medicinal Chemistry 1986, 29, 2184-2190.
79. Kanoh, S.; Nishimura, T.; Naka, M.; Motoi, M. Tetrahedron 2002, 58, 7065-7074.
80. Mindemark, J.; Bowden, T. Polymer 2011, 52, 5716-5722.
81. Vigo, D.; Stasi, L.; Gagliardi, S. Tetrahedron Letters 2011, 52, 565-567.
82. Lewis, J. G.; Reich, N.; Chen, T.; Jacobs, J. W.; Charmot, D.; Navre, M.; Finn, P.; Carreras, C.; Spencer, A.; Ardelyx, I. N. C., Lewis, J. G., Reich, N., Chen, T., Jacobs, J. W., Charmot, D., Navre, M., Finn, P., Carreras, C., Spencer, A., Eds. 2013.
83. Loy, R. N.; Jacobsen, E. N. Journal of the American Chemical Society 2009, 131, 2786-2787.
84. Boyd, S.; Davies, C. D. Tetrahedron Letters 2014, 55, 4117-4119.
85. Eames, J.; Warren, S. Tetrahedron Letters 1996, 37, 3525-3528.
86. Robinson, P. L.; Barry, C. N.; Kelly, J. W.; Evans, S. A. Journal of the American Chemical Society 1985, 107, 5210-5219.
87. Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Fischer, H.; Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Angewandte Chemie International Edition 2006, 45, 7736-7739.
88. Burkhard, J. A.; Guérot, C.; Knust, H.; Rogers-Evans, M.; Carreira, E. M. Organic Letters 2010, 12, 1944-1947.
89. Okuma, K.; Tanaka, Y.; Kaji, S.; Ohta, H. The Journal of Organic Chemistry 1983, 48, 5133-5134.
90. Sone, T.; Lu, G.; Matsunaga, S.; Shibasaki, M. Angewandte Chemie International Edition 2009, 48, 1677-1680.
91. Vogt, F.; Jödicke, K.; Schröder, J.; Bach, T. Synthesis 2009, 2009, 4268-4273.
92. Ye, L.; He, W.; Zhang, L. Journal of the American Chemical Society 2010, 132, 8550-8551.
93. Sharma, R.; Williams, L. J. Organic Letters 2013, 15, 2202-2205.
94. Khoury, P. R.; Goddard, J. D.; Tam, W. Tetrahedron 2004, 60, 8103-8112.
95. Fernandez, J.; Myers, R. J.; Gwinn, W. D. The Journal of Chemical Physics 1955, 23, 758-759.
96. Bellon, L.; Taft, R. W.; Abboud, J.-L. M. The Journal of Organic Chemistry 1980, 45, 1166-1168.
97. West, R.; Powell, D. L.; Lee, M. K. T.; Whatley, L. S. Journal of the American Chemical Society 1964, 86, 3227-3229.
98. Berthelot, M.; Besseau, F.; Laurence, C. European Journal of Organic Chemistry 1998, 1998, 925-931.
99. Edward, J. T.; Farrell, P. G.; Shahidi, F. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1977, 73, 705-714.
100. The molecular volume of propane is used as an estimate: Zhou, T.; Battino, R. Journal of Chemical \& Engineering Data 2001, 46, 331-332.
101. Wuitschik, G.; Carreira, E. M.; Wagner, B.; Fischer, H.; Parrilla, I.; Schuler, F.; Rogers-Evans, M.; Müller, K. Journal of Medicinal Chemistry 2010, 53, 32273246.
102. Wuitschik, G.; Rogers-Evans, M.; Buckl, A.; Bernasconi, M.; Märki, M.; Godel, T.; Fischer, H.; Wagner, B.; Parrilla, I.; Schuler, F.; Schneider, J.; Alker, A.;

Schweizer, W. B.; Müller, K.; Carreira, E. M. Angewandte Chemie International Edition 2008, 47, 4512-4515.
103. Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Carreira, E. M. Angewandte Chemie International Edition 2010, 49, 9052-9067.
104. Burkhard, J. A.; Guérot, C.; Knust, H.; Carreira, E. M. Organic Letters 2012, 14, 66-69.
105. Burkhard, J. A.; Wagner, B.; Fischer, H.; Schuler, F.; Müller, K.; Carreira, E. M. Angewandte Chemie International Edition 2010, 49, 3524-3527.
106. Ruider, S. A.; Müller, S.; Carreira, E. M. Angewandte Chemie International Edition 2013, 52, 11908-11911.
107. McLaughlin, M.; Yazaki, R.; Fessard, T. C.; Carreira, E. M. Organic Letters 2014, 16, 4070-4073.
108. Powell, N. H.; Clarkson, G. J.; Notman, R.; Raubo, P.; Martin, N. G.; Shipman, M. Chemical Communications 2014, 50, 8797-8800.
109. Duncton, M. A. J.; Estiarte, M. A.; Tan, D.; Kaub, C.; O'Mahony, D. J. R.; Johnson, R. J.; Cox, M.; Edwards, W. T.; Wan, M.; Kincaid, J.; Kelly, M. G. Organic Letters 2008, 10, 3259-3262.
110. Duncton, M. A. J.; Estiarte, M. A.; Johnson, R. J.; Cox, M.; O'Mahony, D. J. R.; Edwards, W. T.; Kelly, M. G. The Journal of Organic Chemistry 2009, 74, 63546357.
111. Hubbs, J. L.; Fuller, N. O.; Austin, W. F.; Shen, R.; Creaser, S. P.; McKee, T. D.; Loureiro, R. M. B.; Tate, B.; Xia, W.; Ives, J.; Bronk, B. S. Journal of Medicinal Chemistry 2012, 55, 9270-9282.
112. Estrada, A. A.; Chan, B. K.; Baker-Glenn, C.; Beresford, A.; Burdick, D. J.; Chambers, M.; Chen, H.; Dominguez, S. L.; Dotson, J.; Drummond, J.; Flagella, M.; Fuji, R.; Gill, A.; Halladay, J.; Harris, S. F.; Heffron, T. P.; Kleinheinz, T.; Lee, D. W.; Pichon, C. E. L.; Liu, X.; Lyssikatos, J. P.; Medhurst, A. D.; Moffat, J. G.; Nash, K.; Scearce-Levie, K.; Sheng, Z.; Shore, D. G.; Wong, S.; Zhang, S.; Zhang, X.; Zhu, H.; Sweeney, Z. K. Journal of Medicinal Chemistry 2014, 57, 921-936.
113. Presset, M.; Fleury-Brégeot, N.; Oehlrich, D.; Rombouts, F.; Molander, G. A. The Journal of Organic Chemistry 2013, 78, 4615-4619.
114. Geden, J. V.; Beasley, B. O.; Clarkson, G. J.; Shipman, M. The Journal of Organic Chemistry 2013, 78, 12243-12250.
115. Coppi, D. I.; Salomone, A.; Perna, F. M.; Capriati, V. Angewandte Chemie International Edition 2012, 51, 7532-7536.
116. Rouquet, G.; Blakemore, D. C.; Ley, S. V. Chemical Communications 2014, 50, 8908-8911.
117. Wang, M.; Cornett, B.; Nettles, J.; Liotta, D. C.; Snyder, J. P. The Journal of Organic Chemistry 2000, 65, 1059-1068.
118. Malik, S.; Cusidó, R. M.; Mirjalili, M. H.; Moyano, E.; Palazón, J.; Bonfill, M. Process Biochemistry 2011, 46, 23-34.
119. Holan, G. Nature 1971, 232, 644-647.
120. Stepan, A. F.; Karki, K.; McDonald, W. S.; Dorff, P. H.; Dutra, J. K.; DiRico, K. J.; Won, A.; Subramanyam, C.; Efremov, I. V.; O’Donnell, C. J.; Nolan, C. E.; Becker, S. L.; Pustilnik, L. R.; Sneed, B.; Sun, H.; Lu, Y.; Robshaw, A. E.; Riddell, D.; O'Sullivan, T. J.; Sibley, E.; Capetta, S.; Atchison, K.; Hallgren, A. J.; Miller, E.; Wood, A.; Obach, R. S. Journal of Medicinal Chemistry 2011, 54, 7772-7783.
121. Austin, W. F.; Hubbs, J. L.; Fuller, N. O.; Creaser, S. P.; McKee, T. D.; Loureiro, R. M. B.; Findeis, M. A.; Tate, B.; Ives, J. L.; Bronk, B. S. MedChemComm 2013, 4, 569-574.
122. Wakenhut, F.; Tran, T. D.; Pickford, C.; Shaw, S.; Westby, M.; SmithBurchnell, C.; Watson, L.; Paradowski, M.; Milbank, J.; Stonehouse, D.; Cheung, K.; Wybrow, R.; Daverio, F.; Crook, S.; Statham, K.; Leese, D.; Stead, D.; Adam, F.; Hay, D.; Roberts, L. R.; Chiva, J.-Y.; Nichols, C.; Blakemore, D. C.; Goetz, G. H.; Che, Y.; Gardner, I.; Dayal, S.; Pike, A.; Webster, R.; Pryde, D. C. ChemMedChem 2014, 9, 1387-1396.
123. Burkhard, J. A.; Wuitschik, G.; Plancher, J.-M.; Rogers-Evans, M.; Carreira, E. M. Organic Letters 2013, 15, 4312-4315.
124. The project described in chapter 2 of this thesis was partially carried out together with Dr. Steffen Müller who was a postdoctoral fellow in the Carreira research group from March 2012 until September 2013.
125. Uhlig, T.; Kyprianou, T.; Martinelli, F. G.; Oppici, C. A.; Heiligers, D.; Hills, D.; Calvo, X. R.; Verhaert, P. EuPA Open Proteomics 2014, 4, 58-69.
126. Shen, W.-C. Drug Discovery Today 2003, 8, 607-608.
127. Torchilin, V. P.; Lukyanov, A. N. Drug Discovery Today 2003, 8, 259-266.
128. Van Dorpe, S.; Adriaens, A.; Vermeire, S.; Polis, I.; Peremans, K.; Spiegeleer, B. D. Journal of Peptide Science 2011, 17, 398-404.
129. Gante, J. Angewandte Chemie International Edition in English 1994, 33, 16991720.
130. Ripka, A. S.; Rich, D. H. Current Opinion in Chemical Biology 1998, 2, 441-452.
131. Angell, Y. L.; Burgess, K. In Chemical Society Reviews; The Royal Society of Chemistry: 2007; Vol. 36, p 1674-1689.
132. Pedersen, D. S.; Abell, A. European Journal of Organic Chemistry 2011, 2011, 2399-2411.
133. Babine, R. E.; Bender, S. L. Chemical Reviews 1997, 97, 1359-1472.
134. Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem Rev 2010, 110, 3600-3740.
135. Ellman, J. A.; Owens, T. D.; Tang, T. P. Accounts of Chemical Research 2002, 35, 984-995.
136. Kosugi, H.; Kitaoka, M.; Takahashi, A.; Uda, H. Journal of the Chemical Society, Chemical Communications 1986, 1268-1270.
137. Satoh, T.; Hirano, M.; Kuroiwa, A. Tetrahedron Letters 2005, 46, 2659-2662.
138. Satoh, T.; Hirano, M.; Kuroiwa, A.; Kaneko, Y. Tetrahedron 2006, 62, 9268-9279.
139. Satoh, T.; Sugiyama, S.; Kamide, Y.; Ota, H. Tetrahedron 2003, 59, 4327-4336.
140. Guichard, G.; Benkirane, N.; Zeder-Lutz, G.; van Regenmortel, M. H.; Briand, J. P.; Muller, S. Proceedings of the National Academy of Sciences 1994, 91, 97659769.
141. Corey, E. J.; Raju, N. Tetrahedron Letters 1983, 24, 5571-5574.
142. Motoi, M.; Nagahara, S.; Akiyama, H.; Horiuchi, M.; Kanoh, S. Polym J 1989, 21, 987-1001.
143. Berridge, M. S.; Franceschini, M. P.; Rosenfeld, E.; Tewson, T. J. The Journal of Organic Chemistry 1990, 55, 1211-1217.
144. Lohray, B. B. Synthesis 1992, 1992, 1035-1052.
145. Friedrich, M.; Savchenko, Andrei I.; Wächtler, A.; de Meijere, A. European Journal of Organic Chemistry 2003, 2003, 2138-2143.
146. Burkett, B. A.; Ting, S. Z.; Gan, G. C. S.; Chai, C. L. L. Tetrahedron Letters 2009, 50, 6590-6592.
147. Effenberger, F.; Burkard, U.; Willfahrt, J. Angewandte Chemie 1983, 95, 50-50.
148. Effenberger, F.; Burkard, U. Liebigs Annalen der Chemie 1986, 1986, 334-358.
149. Feenstra, R. W.; Stokkingreef, E. H. M.; Nivard, R. J. F.; Ottenheijm, H. C. J. Tetrahedron Letters 1987, 28, 1215-1218.
150. For a recent example see: Sund, C.; Belda, O.; Borkakoti, N.; Lindberg, J.; Derbyshire, D.; Vrang, L.; Hamelink, E.; Åhgren, C.; Woestenenk, E.; Wikström, K.; Eneroth, A.; Lindström, E.; Kalayanov, G. Bioorganic E Medicinal Chemistry Letters 2012, 22, 6721-6727.
151. Antoni, P.; Hed, Y.; Nordberg, A.; Nyström, D.; von Holst, H.; Hult, A.; Malkoch, M. Angewandte Chemie International Edition 2009, 48, 2126-2130.
152. Kurosawa, W.; Kan, T.; Fukuyama, T. Journal of the American Chemical Society 2003, 125, 8112-8113.
153. Nenajdenko, V. G.; Karpov, A. S.; Balenkova, E. S. Tetrahedron: Asymmetry 2001, 12, 2517-2527.
154. Hudlicky, T.; Rinner, U.; Finn, K. J.; Ghiviriga, I. The Journal of Organic Chemistry 2005, 70, 3490-3499.
155. Kim, S. K.; Jacobsen, E. N. Angewandte Chemie International Edition 2004, 43, 3952-3954.
156. Schmidt, F.; Keller, F.; Vedrenne, E.; Aggarwal, V. K. Angewandte Chemie International Edition 2009, 48, 1149-1152.
157. Meseguer, B.; Alonso-Díaz, D.; Griebenow, N.; Herget, T.; Waldmann, H. Chemistry - A European Journal 2000, 6, 3943-3957.
158. Feenstra, R. W.; Stokkingreef, E. H. M.; Nivard, R. J. F.; Ottenheijm, H. C. J. Tetrahedron 1988, 44, 5583-5595.
159. Studte, C.; Breit, B. Angewandte Chemie International Edition 2008, 47, 54515455.
160. Crombie, L.; Horsham, M. A.; Jarrett, S. R. M. Journal of the Chemical Society, Perkin Transactions 1 1991, 1511-1524.
161. Watson, T. J.; Ayers, T. A.; Shah, N.; Wenstrup, D.; Webster, M.; Freund, D.; Horgan, S.; Carey, J. P. Organic Process Research E Development 2003, 7, 521532.
162. Morley, J. S. Journal of the Chemical Society C: Organic 1967, 2410-2421.
163. Haigh, D.; Jefcott, L. J.; Magee, K.; McNab, H. Journal of the Chemical Society, Perkin Transactions 1 1996, 2895-2900.
164. Haigh, D.; Allen, G.; Birrell, H. C.; Buckle, D. R.; Cantello, B. C. C.; Eggleston, D. S.; Haltiwanger, R. C.; Holder, J. C.; Lister, C. A.; Pinto, I. L.; Rami, H. K.; Sime, J. T.; Smith, S. A.; Sweeney, J. D. Bioorganic \& Medicinal Chemistry 1999, 7, 821-830.
165. Nakagawa, Y.; Irie, K.; Yamanaka, N.; Ohigashi, H.; Tsuda, K.-i. Bioorganic \mathcal{E} Medicinal Chemistry Letters 2003, 13, 3015-3019.
166. Kitamoto, T.; Marubayashi, S.; Yamazaki, T. Chemistry Letters 2006, 35, 12641265.
167. Yazaki, R.; McLaughlin, M.
168. Elliott, R. L.; Marks, N.; Berg, M. J.; Portoghese, P. S. Journal of Medicinal Chemistry 1985, 28, 1208-1216.
169. Hammadi, A.; Nuzillard, J. M.; Poulin, J. C.; Kagan, H. B. Tetrahedron: Asymmetry 1992, 3, 1247-1262.
170. Yajima, H.; Mizokami, N.; Kiso, M.; Jinnouchi, T.; Kai, Y.; Kiso, Y. Chem. Pharm. Bull. 1974, 22, 1075-1078.
171. Mosnaim, A. D.; Puente, J.; Saavedra, R.; Diamond, S.; Wolf, M. E. Pharmacology 2003, 67, 6-13.
172. Roscetti, G.; Possenti, R.; Bassano, E.; Roda, L. G. Neurochem Res 1985, 10, 1393-1404.
173. Hambrook, J. M.; Morgan, B. A.; Rance, M. J.; Smith, C. F. C. Nature 1976, 262, 782-783.
174. Rochon, K.; Proteau-Gagné, A.; Bourassa, P.; Nadon, J.-F.; Côté, J.; Bournival, V.; Gobeil, F.; Guérin, B.; Dory, Y. L.; Gendron, L. ACS Chemical Neuroscience 2013, 4, 1204-1216.
175. Half-life times were estimated by an exponential decay fit with $c(t)=c(0) \bullet e-\lambda t$.
176. Half-life times were estimated by an exponential decay fit with $c(t)=c(0) \bullet e-\lambda t$.
177. Experiments described in this chapter were planned in cooperation with and executed as well as evaluated by Bastian Frehland, Dr. D. Schepmann and Prof. Dr. B. Wünsch at the Institute of Pharmaceutical and Medicinal Chemistry of the Westfälische Wilhelms-Universität Münster, Germany
178. Raynor, K.; Kong, H.; Chen, Y.; Yasuda, K.; Yu, L.; Bell, G. I.; Reisine, T. Molecular pharmacology 1994, 45, 330-334.
179. Bradford, M. M. Analytical Biochemistry 1976, 72, 248-254.
180. Stoscheck, C. M. Methods in enzymology 1990, 182, 50-68.
181. Cheng, Y.; Prusoff, W. H. Biochemical pharmacology 1973, 22, 3099-3108.
182. Experiments in this chapter were planned and evaluated together with and conducted by Dipl.-Biol. Bernd T. Wolfstädter who is a PhD student in the field of biology in the Carreira group.
183. Olson, K. R.; Eglen, R. M. ASSAY and Drug Development Technologies 2007, 5, 137-144.
184. van Der Lee, M. M.; Bras, M.; van Koppen, C. J.; Zaman, G. J. Journal of biomolecular screening 2008, 13, 986-998.
185. For a comprehensive review see: Rajagopal, S.; Rajagopal, K.; Lefkowitz, R. J. Nat Rev Drug Discov 2010, 9, 373-386.
186. Schoffelmeer, A. N.; De Vries, T. J.; Hogenboom, F.; Mulder, A. H. Journal of Pharmacology and Experimental Therapeutics 1993, 267, 205-210.
187. Bojnik, E.; Kleczkowska, P.; Marron Fernandez de Velasco, E.; Corbani, M.; Babos, F.; Lipkowski, A. W.; Magyar, A.; Benyhe, S. Comparative biochemistry and physiology. Part B, Biochemistry \& molecular biology 2014, 174, 29-35.
188. MARTIN, W. R. Pharmacological Reviews 1967, 19, 463-521.
189. Camí, J.; Farré, M. New England Journal of Medicine 2003, 349, 975-986.
190. Bidlack, J. M.; McLaughlin, J. P.; Wentland, M. P. Annals of the New York Academy of Sciences 2000, 909, 1-11.
191. Schiller, P. W.; Fundytus, M. E.; Merovitz, L.; Weltrowska, G.; Nguyen, T. M. D.; Lemieux, C.; Chung, N. N.; Coderre, T. J. Journal of Medicinal Chemistry 1999, 42, 3520-3526.
192. Experiments in this chapter were designed and carried out by Dr. Susanne Wolfrum, a postdoctoral fellow in the Carreira Group, and Dr. Daria PelegRaibstein, a senior scientist at the Institute of Food, Nutrition and Health at the ETH Zürich.
193. Eddy, N. B.; Leimbach, D. The Journal of pharmacology and experimental therapeutics 1953, 107, 385-393.
194. Casarrubea, M.; Sorbera, F.; Santangelo, A.; Crescimanno, G. Behavioural Brain Research 2011, 225, 177-183.
195. Matsuo, N.; Takao, K.; Nakanishi, K.; Yamasaki, N.; Tanda, K.; Miyakawa, T. Frontiers in behavioral neuroscience 2010, 4, 29.
196. DiMaio, J.; Nguyen, T. M. D.; Lemieux, C.; Schiller, P. W. Journal of Medicinal Chemistry 1982, 25, 1432-1438.
197. Hruby, V. J.; Agnes, R. S. Biopolymers 1999, 51, 391-410.
198. Morley, J. S. Annual Review of Pharmacology and Toxicology 1980, 20, 81-110.
199. Proteau-Gagné, A.; Bournival, V.; Rochon, K.; Dory, Y. L.; Gendron, L. ACS Chemical Neuroscience 2010, 1, 757-769.
200. Rinnová, M.; Nefzi, A.; Houghten, R. A. Bioorganic \& Medicinal Chemistry Letters 2002, 12, 3175-3178.
201. Spatola, A. F.; Saneii, H.; Edwards, J. V.; Bettag, A. L.; Anwer, M. K.; Rowell, P.; Browne, B.; Lahti, R.; Von Voigtlander, P. Life Sciences 1986, 38, 1243-1249.
202. Lajoie, G.; Lepine, F.; Lemaire, S.; Jolicoeur, F.; Aube, C.; Turcotte, A.; Belleau, B. Int J Pept Protein Res 1984, 24, 316-327.
203. de Bont, D. B. A.; Sliedregt-Bol, K. M.; Hofmeyer, L. J. F.; Liskamp, R. M. J. Bioorganic \& Medicinal Chemistry 1999, 7, 1043-1047.
204. George, J. M. Genome biology 2002, 3, Reviews3002.
205. Zuo, X.; Echan, L.; Hembach, P.; Tang, H. Y.; Speicher, K. D.; Santoli, D.; Speicher, D. W. Electrophoresis 2001, 22, 1603-1615.
206. Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Nature 1997, 388, 839-840.
207. Lewy, F. H. Die Lehre vom Tonus und der Bewegung : zugleich systematische Untersuchungen zur Klinik, Physiologie, Pathologie und Pathogenese der Paralysis agitans; J. Springer: Berlin, 1923.
208. Li, J.; Zhu, M.; Rajamani, S.; Uversky, V. N.; Fink, A. L. Chemistry E Biology 2004, 11, 1513-1521.
209. Jiang, M.; Porat-Shliom, Y.; Pei, Z.; Cheng, Y.; Xiang, L.; Sommers, K.; Li, Q.; Gillardon, F.; Hengerer, B.; Berlinicke, C.; Smith, W. W.; Zack, D. J.; Poirier, M. A.; Ross, C. A.; Duan, W. Journal of Neurochemistry 2010, 114, 419-429.
210. Zhu, M.; Rajamani, S.; Kaylor, J.; Han, S.; Zhou, F.; Fink, A. L. Journal of Biological Chemistry 2004, 279, 26846-26857.
211. Haydar, S. N.; Yun, H.; Staal, R. G. W.; Hirst, W. D. In Annual Reports in Medicinal Chemistry; John, E. M., Ed.; Academic Press: 2009; Vol. Volume 44, p 51-69.
212. Blazer, L. L.; Neubig, R. R. Neuropsychopharmacology 2008, 34, 126-141.
213. Choi, M. Y.; Kim, Y. S.; Lim, D.; Kang, S. J.; Kim, Y.-H.; Lee, K.; Im, H. Biochemical and Biophysical Research Communications 2011, 408, 334-338.
214. Kim, Y. S.; Lim, D.; Kim, J. Y.; Kang, S. J.; Kim, Y. H.; Im, H. Biochem Biophys Res Comтии 2009, 387, 682-687.
215. Giasson, B. I.; Murray, I. V.; Trojanowski, J. Q.; Lee, V. M. The Journal of biological chemistry 2001, 276, 2380-2386.
216. Gudasheva, T. A.; Vasilevich, N. I.; Ostrovskaya, R. U.; Trofimov, S. S.; Voronina, T. A.; Skoldinov, A. P.; Rozantsev, G. G. Pharm Chem J 1996, 30, 562-567.
217. Veitch, G. E.; Bridgwood, K. L.; Ley, S. V. Organic Letters 2008, 10, 3623-3625.
218. Studies described in this chapter were planned together with Dipl.-Chem. Isabelle Möller, a PhD student in the field of biophysics in the research group of Prof. S. Seeger at the University Zürich.
219. Biancalana, M.; Koide, S. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010, 1804, 1405-1412.
220. Levine, H. Protein Science 1993, 2, 404-410.
221. Campioni, S.; Carret, G.; Jordens, S.; Nicoud, L.; Mezzenga, R.; Riek, R. Journal of the American Chemical Society 2014, 136, 2866-2875.
222. Moreira, I. S.; Fernandes, P. A.; Ramos, M. J. Proteins: Structure, Function, and Bioinformatics 2007, 68, 803-812.
223. Tsai, C. J.; Lin, S. L.; Wolfson, H. J.; Nussinov, R. Protein Science : A Publication of the Protein Society 1997, 6, 53-64.
224. Stevenazzi, A.; Marchini, M.; Sandrone, G.; Vergani, B.; Lattanzio, M. Bioorganic \& Medicinal Chemistry Letters 2014, 24, 5349-5356.
225. Bommarius, A. S.; Schwarm, M.; Stingl, K.; Kottenhahn, M.; Huthmacher, K.; Drauz, K. Tetrahedron: Asymmetry 1995, 6, 2851-2888.
226. Fauchere, J. L.; Petermann, C. Int J Pept Protein Res 1981, 18, 249-255.
227. Bischoff, R.; Kolbe, H. V. J. Journal of Chromatography B: Biomedical Sciences and Applications 1994, 662, 261-278.
228. Tyler-Cross, R.; Schirch, V. Journal of Biological Chemistry 1991, 266, 2254922556.
229. Shi, Y.; Rhodes, N. R.; Abdolvahabi, A.; Kohn, T.; Cook, N. P.; Marti, A. A.; Shaw, B. F. Journal of the American Chemical Society 2013, 135, 15897-15908.
230. Weil-Malherbe, H. Biochemical Journal 1936, 30, 665-676.
231. Schousboe, A.; Scafidi, S.; Bak, L.; Waagepetersen, H.; McKenna, M. In Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain; Parpura, V., Schousboe, A., Verkhratsky, A., Eds.; Springer International Publishing: 2014; Vol. 11, p 13-30.
232. Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1966, 1711-1732.
233. Osborn, J. A.; Wilkinson, G.; Mrowca, J. J. In Inorganic Syntheses; John Wiley \& Sons, Inc.: 2007, p 67-71.
234. Knowles, W. S.; Sabacky, M. J. Chemical Communications (London) 1968, 14451446.
235. Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D. Journal of the Chemical Society, Chemical Communications 1972, 10-11.
236. Horner, L.; Büthe, H.; Siegel, H. Tetrahedron Letters 1968, 9, 4023-4026.
237. Horner, L.; Siegel, H.; Büthe, H. Angewandte Chemie International Edition in English 1968, 7, 942-942.
238. Kagan, H. B.; Dang Tuan, P. Journal of the American Chemical Society 1972, 94, 6429-6433.
239. Knowles, W. S. Angewandte Chemie International Edition 2002, 41, 1998-2007.
240. Knowles, W. S. Accounts of Chemical Research 1983, 16, 106-112.
241. Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. Journal of the American Chemical Society 1977, 99, 5946-5952.
242. Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D.; Weinkauff, D. J. Journal of the American Chemical Society 1975, 97, 2567-2568.
243. Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. Journal of the American Chemical Society 1980, 102, 7932-7934.
244. Noyori, R.; Takaya, H. Accounts of Chemical Research 1990, 23, 345-350.
245. Burk, M. J. Accounts of Chemical Research 2000, 33, 363-372.
246. Burk, M. J.; Allen, J. G.; Kiesman, W. F. Journal of the American Chemical Society 1998, 120, 657-663.
247. Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. Journal of the American Chemical Society 1993, 115, 10125-10138.
248. Burk, M. J.; Gross, M. F.; Martinez, J. P. Journal of the American Chemical Society 1995, 117, 9375-9376.
249. Chan, A. S. C.; Halpern, J. Journal of the American Chemical Society 1980, 102, 838-840.
250. Brown, J. M.; Chaloner, P. A. Journal of the American Chemical Society 1980, 102, 3040-3048.
251. Landis, C. R.; Halpern, J. Journal of the American Chemical Society 1987, 109, 1746-1754.
252. Noyori, R. Angewandte Chemie International Edition 2002, 41, 2008-2022.
253. Noyori, R.; Hashiguchi, S. Accounts of Chemical Research 1997, 30, 97-102.
254. Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.; Martorell, A.; Orpen, A. G.; Pringle, P. G. Chemical Communications 2000, 961-962.
255. Reetz, M. T.; Mehler, G.; Meiswinkel, A. Tetrahedron: Asymmetry 2004, 15, 2165-2167.
256. Reetz, M. T.; Mehler, G. Angewandte Chemie International Edition 2000, 39, 3889-3890.
257. van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. Journal of the American Chemical Society 2000, 122, 11539-11540.
258. van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Henderickx, H. J. W.; de Vries, J. G. Advanced Synthesis \mathcal{E} Catalysis 2003, 345, 308-323.
259. Bernsmann, H.; van den Berg, M.; Hoen, R.; Minnaard, A. J.; Mehler, G.; Reetz, M. T.; De Vries, J. G.; Feringa, B. L. The Journal of Organic Chemistry 2005, 70, 943-951.
260. For a comprehensive review on phosphoramidite ligands see: Teichert, J. F.; Feringa, B. L. Angewandte Chemie International Edition 2010, 49, 2486-2528.
261. Tang, W.; Zhang, X. Chemical Reviews 2003, 103, 3029-3070.
262. Pfaltz, A.; Bell, S. In The Handbook of Homogeneous Hydrogenation; Wiley-VCH Verlag GmbH: 2008, p 1049-1072.
263. Etayo, P.; Vidal-Ferran, A. Chemical Society Reviews 2013, 42, 728-754.
264. Shang, G.; Li, W.; Zhang, X. In Catalytic Asymmetric Synthesis; John Wiley \& Sons, Inc.: 2010, p 343-436.
265. For a comprehensive overview see: Carreira, E. M.; Kvaerno, L. Classics in Stereoselective Synthesis; Wiley, 2009.
266. Miyazaki, M.; Ando, N.; Sugai, K.; Seito, Y.; Fukuoka, H.; Kanemitsu, T.; Nagata, K.; Odanaka, Y.; Nakamura, K. T.; Itoh, T. The Journal of Organic Chemistry 2011, 76, 534-542.
267. Azuma, H.; Okano, K.; Fukuyama, T.; Tokuyama, H. Organic Syntheses 2011, 88, 152.
268. Hoshina, Y.; Doi, T.; Takahashi, T. Tetrahedron 2007, 63, 12740-12746.
269. del Carmen Terán Moldes, M.; Costantino, G.; Marinozzi, M.; Pellicciari, R. Il Farmaco 2001, 56, 609-613.
270. Marshall, J. A.; Garofalo, A. W. The Journal of Organic Chemistry 1993, 58, 36753680.
271. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. The Journal of Organic Chemistry 1981, 46, 3936-3938.
272. Davis, F. A.; Portonovo, P. S.; Reddy, R. E.; Chiu, Y.-h. The Journal of Organic Chemistry 1996, 61, 440-441.
273. Mathison, R.; Lo, P.; Moore, G.; Scott, B.; Davison, J. S. Peptides 1998, 19, 10371042.
274. Mathison, R. D.; Befus, A. D.; Davison, J. S. A novel submandibular gland peptide protects against endotoxic and anaphylactic shock, 1997; Vol. 273.
275. Mathison, R.; Davison, J. S.; Moore, G. Drug Development Research 1997, 42, 164-171.
276. Byars, N. E.; Ferraresi, R. W. Clinical and Experimental Immunology 1976, 24, 352-356.
277. Metwally, E.; Pires, J. M.; Moore, G. J.; Befus, D. A.; Davison, J. S.; Mathison, R. Peptides 2002, 23, 193-199.
278. Kosecka, U.; Marshall, J. S.; Crowe, S. E.; Bienenstock, J.; Perdue, M. H. The American journal of physiology 1994, 267, G745-753.
279. Scott, R. B.; Tan, D. T. Canadian journal of physiology and pharmacology 1996, 74, 320-330.
280. Experiment conducted by Dr. Steffen Müller
281. Huang, S.-X.; Powell, E.; Rajski, S. R.; Zhao, L.-X.; Jiang, C.-L.; Duan, Y.; Xu, W.; Shen, B. Organic Letters 2010, 12, 3525-3527.
282. Yajima, H.; Mizokami, N.; Kiso, M.; Jinnouchi, T.; Kai, Y.; Kiso, Y. Chemical \& pharmaceutical bulletin 1974, 22, 1075-1078.
283. Experiments conducted by B. Frehland, Dr. D. Schepmann
284. Experiments conducted by B. Wolfstädter
285. Experiments conducted by Dr. D. Peleg-Raibstein and Dr. S. Wolfrum

7

Appendix

Figure $44{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 78.

Figure $45{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 82 .

Figure $46{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 85

贔
1

Figure $47^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 80 .

Figure $48{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 86 .

Figure $49{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 119.

Figure $50{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 120.

Figure $51^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 121 .

Figure $52{ }^{1} \mathrm{H}$ - and Spectra of ${ }^{13} \mathrm{C}$-NMR 122.

Figure $53{ }^{1} \mathrm{H}$ - and Spectra of ${ }^{13} \mathrm{C}$-NMR 123.

Figure $54{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR Spectra of 126.

Figure $55^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 98.

Figure $56{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-$ NMR Spectra of 131 .

Appendix

Figure $57{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 115.

Figure $58{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-$ NMR Spectra of 118.

Figure $59{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 134.

Figure $60{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 137.

Figure $61{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 139.

Figure $62{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 135.

Appendix

Figure $63{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 138.

Figure $64{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 140 .

Figure $65{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 142 .

Figure $66^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 141.

Figure $67{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 132.

Figure $68{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-$ NMR Spectra of 147.

Figure $69{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 148.

Figure $70{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-$ NMR Spectra of 145.

Figure $71{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 150.

Figure $72{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 151 .

Figure $73{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 152.

Figure $74{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 149.

Figure $75{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 156.

$\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
Figure $76{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 153.

Figure $77{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 154 .

Figure $78{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 155 .

Figure $79{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 159.

Figure $80{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 160 .

Figure $81{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 161.

Figure $82{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 157.

Figure $83{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 162.

Figure $84{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 163.

Figure $85{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 164 .

Figure $86{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 158 .

				T T ָ N T T T T			$$							$\begin{aligned} & \underset{\sim}{T} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$					「	
$\stackrel{ }{ }$	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1
J. 0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{ppm} \end{aligned}$	4.5	4.0	3.5		3.0	2.5	2.0	1.5	1.0	0.5
					$\stackrel{\sim}{\sim}$	守		Nou				N	15	$\stackrel{\text { ¢ }}{\substack{\text { ® }}}$	$\stackrel{\text { ¢ }}{\substack{\text { in }}}$	$\stackrel{n}{m}$				

Figure $87{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 169.

Figure $88{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 170 .

Figure $89{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 171.

Figure $90{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 165.

Figure $91{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 172.

Figure $92{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 173.

Figure $93{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 166.

Figure $94{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 175 .

Figure $95{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 176.

Figure $96{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 177.

Figure $97{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 174.

Figure $98{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 178.

Figure $99{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 180 .

Figure $100{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 181.

Figure $101{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 182.

Figure $102{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 179.

Figure $103{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of 183.

Figure $104{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 185.

Figure $105{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 186.

Figure $106{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 188.

Figure $107{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 184.

Figure $108{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 191.

Figure $109{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 192.

Figure $110{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 193.

Figure $111{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 194.

Figure $112{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 189 .

Figure $113{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the less polar diastereomer of 195.

Figure $114{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the more polar diastereomer of 195.

Figure $115{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 199.

Figure $116{ }^{1} \mathrm{H}$-NMR Spectrum of 200.

Figure $117^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of 386.

Figure $118{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 196.

Figure $119{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 202.

Figure $120{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the less polar diastereomer of 203.

Figure $121{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the more polar diastereomer of 203.

Figure $122{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 204.

Figure $123{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 197 .

Figure $124{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 209.

Figure $125{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 210.

Figure $126{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 211.

Figure $127{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 208.

Figure $128{ }^{\mathbf{1}} \mathrm{H}$ - NMR Spectrum of 214.

Figure $129{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 215.

Figure $130{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 219.

Appendix

Figure $131{ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}-$ NMR Spectra of 230.

Figure $132{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 239.

[^1]

Figure $133{ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR Spectra of 244.

Figure $134{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73a.

Figure $135{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73b.

Figure $136{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73c.

Figure $137^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73d.

Figure $138{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 e .

Figure $139{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of epi-73e.

Figure $140{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 f .

Figure $141{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 g .

Figure $142{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 h .

Figure $143{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 i .

Figure $144{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 j .

Figure $145{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73k.

Figure $146{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 731 .

Figure $147{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 m .

Figure $148{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73n.

Figure $149{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 730 .

Figure $150{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 p .

Figure $151{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73q.

Figure $152{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 r .

Figure $153{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of epi-73v.

Figure $154{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73v.

Figure $155{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 73 w .

Figure $156{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 247e.

Figure 157 COSY, HSQC, HMBC Spectra of 247e.

Figure $158{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 247 b .

Figure 159 COSY, HSQC, HMBC Spectra of 247b.

Figure $160^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 250.

Figure $161{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 251.

Figure $162{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 247 d .

Figure 163 COSY, HSQC, HMBC Spectra of 247d.

Figure $164{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 249.

Figure $165{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 247 c .

Figure 166 COSY, HSQC, HMBC Spectra of 247c.

Figure $167^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 252 .

Figure $168{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 261.

Figure $169{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 266.

Figure $170{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 265.

Figure $171{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 267.

Figure $172{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 259a NH_{2}.

Figure $173{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 262.

Figure $174{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 270.

Figure $175{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 271.

Figure $176{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 259c OH .

Figure $177{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 260 .

Figure $178{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 268.

Figure $179{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of 259 b OH.

Figure $180^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 264 .

Figure $181{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 259a OH .

Figure $182{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 276.

Figure $183{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 275.

[^2]Figure $184{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 274.

Figure $185{ }^{1} \mathrm{H}$ - and HSQC-NMR Spectra of $259 \mathrm{~d} \mathrm{NH}_{2}$.

Figure $186{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 269.

Figure $187^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 272.

Figure $188{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 273.

Figure $189{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 326a.

Figure $190{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of $\mathbf{3 2 6 b}$.

Figure $191{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 326c.

Figure $192{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 326d.

Figure $193{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of $\mathbf{3 2 8 b}$.

Figure $194{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 328d.

Figure $195{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 329a.

Figure $196{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of $\mathbf{3 2 9 b}$.

Figure $197{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 330b.

Figure $198{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 335.

Figure $199{ }^{31} \mathrm{P}-\mathrm{NMR}$ Spectrum of 335.

Figure $200{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 329 c .

Figure $201{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 330c.

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110\end{array}$
Figure $202{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 333 .

Figure $203{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 337 .

Figure $204{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 338.

Figure $205{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 312 .

Figure $206{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 336 .

Figure $207{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 339 .

Figure $208{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 348.

Figure $209{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 350 .

Figure $210{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 351 .

Figure $211{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 345.

Figure $212{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 349.

Figure $213{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 344 .

Figure $214{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 340 .

Figure $215{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 317 .

Figure $216{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 352 .

Figure $217{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 353.

Figure $218{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 354.

Figure $219{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 314 .

Figure $220{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 315 .

Figure $221{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 355.

Figure $222{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 356 .

Figure $223{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 357.

Figure $224{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the less polar diastereomer of 361 .

Figure $225{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the more polar diastereomer of 361 .

Figure $226{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 362 .

Figure $227{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 319.

Figure $228{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 364 .

Figure $229{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 365.

Figure $230{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 366 .

Figure $231{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 367 .

Figure $232{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 321 .

Figure $233{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the minor diastereomer of 368.

Figure $234{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of the major diastereomer of 368 .

Figure $235{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 369.

Figure $236{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 370 .

Figure $237{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 371 .

Figure $238{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 372 .

Figure $239{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 320 .

Figure $240{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 373.

Figure $241{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 374.

Figure $242{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 375.

Figure $243{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 379 .

Figure $244{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 380 .

Figure $245{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 378 .

Figure $246{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 3 .

Figure $247{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 4.

Figure $248{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of 2 .

Table 13 Crystal Data and Structure Refinement for 354.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}{ }^{3}$
Z
@calcg/cm ${ }^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
$\mathrm{C}_{43} \mathrm{H}_{60} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{15}$
1032.77
100.0(2)
orthorhombic
P21212
16.7915(18)
24.133(3)
5.9888(6)

90
90
90
2426.8(4)

2
1.413
1.739
1072.0
$0.2 \times 0.19 \times 0.015$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.852 to 54.902
$-21 \leq \mathrm{h} \leq 21,-29 \leq \mathrm{k} \leq 31,-7 \leq 1 \leq 7$
19771
$5538\left[\mathrm{R}_{\text {int }}=0.0446, \mathrm{R}_{\text {sigma }}=0.0677\right]$
5538/306/301
1.014
$\mathrm{R}_{1}=0.0356, \mathrm{wR}_{2}=0.0680$
$\mathrm{R}_{1}=0.0487, \mathrm{wR}_{2}=0.0711$
0.71/-0.46
0.023(5)

Table 14 Crystal Data and Structure Refinement for 197.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
Qcalcmg/mm ${ }^{3}$
$\mathrm{m} / \mathrm{mm}^{-1}$
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
$\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
304.44
99.99
orthorhombic
P212121
5.4302(4)
15.9643(12)
19.0144(14)

90
90
90
1648.3(2)

4
1.227
0.206
664.0
$0.26 \times 0.26 \times 0.2$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.284 to 54.96°
$-7 \leq h \leq 6,-20 \leq k \leq 20,-24 \leq 1 \leq 24$
53403
$3758[R(\mathrm{int})=0.0267]$
3758/2/195
1.097
$\mathrm{R}_{1}=0.0268, \mathrm{wR}_{2}=0.0723$
$\mathrm{R}_{1}=0.0284, \mathrm{wR}_{2}=0.0747$
0.38/-0.19
0.002(9)

Table 15 Crystal Data and Structure Refinement for 371.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}{ }^{3}$
Z
@calcg $/ \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{3} \mathrm{~S}$
346.24
100.0(2)
monoclinic
P21
10.4172(17)
14.184(3)
11.086(2)

90
117.479(5)

90
1453.2(4)

4
1.583
2.975
704.0
$0.35 \times 0.32 \times 0.28$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
4.442 to 56.116
$-13 \leq h \leq 13,-18 \leq k \leq 18,-14 \leq 1 \leq 14$
73078
$6979\left[\mathrm{R}_{\text {int }}=0.0349, \mathrm{R}_{\text {sigma }}=0.0277\right]$
6979/387/351
1.054
$\mathrm{R}_{1}=0.0201, \mathrm{wR}_{2}=0.0498$
$\mathrm{R}_{1}=0.0221, \mathrm{wR}_{2}=0.0502$
0.49/-0.34
0.0153(19)

Table 16 Crystal Data and Structure Refinement for 191.

Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$
Formula weight	564.74
Temperature/K	99.99
Crystal system	orthorhombic
Space group	P 212121
a/Å	12.2783(9)
b/Å	12.6553(9)
$c / A ̊$	18.7589(16)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2914.9(4)
Z	4
@calcmg/mm ${ }^{3}$	1.287
$\mathrm{m} / \mathrm{mm}^{-1}$	0.226
F(000)	1208.0
Crystal size/mm ${ }^{3}$	$0.36 \times 0.16 \times 0.05$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection	4.622 to 55.93°
Index ranges	$-16 \leq h \leq 16,-16 \leq \mathrm{k} \leq 16,-24 \leq 1 \leq 24$
Reflections collected	49982
Independent reflections	$6995[\mathrm{R}(\mathrm{int})=0.0440]$
Data/restraints/parameters	6995/1/356
Goodness-of-fit on F^{2}	1.041
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0332, \mathrm{wR}_{2}=0.0789$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0387, \mathrm{wR}_{2}=0.0817$
Largest diff. peak/hole / e \AA^{-3}	0.59/-0.24
Flack parameter	0.009(18)

Table 17 Crystal Data and Structure Refinement for 358.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
@calcmg $/ \mathrm{mm}^{3}$
$\mathrm{m} / \mathrm{mm}^{-1}$
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
336.44

100(2)
Monoclinic
P2(1)
9.6369(4)
7.0655(3)
13.1139(6)

90
98.278(2)

90
883.62(7)

2
1.265
0.199

360
$0.52 \times 0.35 \times 0.15$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
1.57 to 27.90°
$-12 \leq h \leq 12,-8 \leq k \leq 9,-16 \leq 1 \leq 17$
7052
3847 [$\mathrm{R}(\mathrm{int})=0.0292]$
3847/1/303
1.391
$\mathrm{R}_{1}=0.0337, \mathrm{wR}_{2}=0.0822$
$\mathrm{R}_{1}=0.0413, \mathrm{wR}_{2}=0.0872$
0.427/-0.286

Table 18 Crystal Data and Structure Refinement for 183.

Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O} 6 \mathrm{Br}$
Formula weight	533.41
Temperature/K	99.99
Crystal system	orthorhombic
Space group	P212121
a/Å	10.0435(12)
b/Å	10.7709(14)
c/Å	24.399(3)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	90.00
$\gamma /{ }^{\circ}$	90.00
Volume/Å ${ }^{3}$	2639.4(6)
Z	4
@calcmg/mm ${ }^{3}$	1.342
$\mathrm{m} / \mathrm{mm}^{-1}$	1.597
$\mathrm{F}(000)$	1104.0
Crystal size/ mm^{3}	$0.16 \times 0.05 \times 0.015$
2Θ range for data collection	4.14 to 55.12°
Index ranges	$-13 \leq h \leq 13,-13 \leq k \leq 14,-31 \leq 1 \leq 31$
Reflections collected	19149
Independent reflections	$6080[\mathrm{R}(\mathrm{int})=0.0749]$
Data/restraints/parameters	6080/168/341
Goodness-of-fit on F^{2}	0.951
Final R indexes [I$\rangle=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0476, \mathrm{wR}_{2}=0.0825$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0896, \mathrm{wR}_{2}=0.0930$
Largest diff. peak/hole / e \AA^{-3}	0.57/-0.40
Flack parameter	0.013(9)

Table 19 Crystal Data and Structure Refinement for 367.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
Qcalcg $/ \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{4}$
438.32
99.99
monoclinic
P2 1
6.1826(6)
15.7445(14)
20.4012(19)

90
90.697(2)

90
1985.7(3)

4
1.466
2.099
904.0
$0.26 \times 0.09 \times 0.07$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
3.268 to 59.522
$-8 \leq h \leq 8,-21 \leq k \leq 21,-28 \leq 1 \leq 28$
80713
11284 [$\mathrm{R}_{\text {int }}=0.0332, \mathrm{R}_{\text {sigma }}=0.0296$]
11284/1/499
1.039
$\mathrm{R}_{1}=0.0223, \mathrm{wR}_{2}=0.0536$
$\mathrm{R}_{1}=0.0257, \mathrm{wR}_{2}=0.0544$
0.44/-0.34
0.0100(19)

Table 20 Crystal Data and Structure Refinement for 162.

Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
Formula weight	540.72
Temperature/K	100(2)
Crystal system	monoclinic
Space group	C_{2}
a/Å	19.1057(11)
b/Å	6.4391(4)
c/Å	23.2138(13)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.124(4)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	2730.6(3)
Z	4
@calcmg/ $/ \mathrm{cm}^{3}$	1.315
μ / mm^{-1}	2.070
F(000)	1152
Crystal size/mm ${ }^{3}$	$0.02 \times 0.01 \times 0.01$
Radiation	$\mathrm{Cu}(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	4.69 to 64.90
Index ranges	$-19 \leq \mathrm{h} \leq 22,-7 \leq \mathrm{k} \leq 7,-27 \leq 1 \leq 25$
Reflections collected	5774
Independent reflections	3193 [$\left.\mathrm{Rint}^{\text {a }}=0.0379\right]$
Data/restraints/parameters	3193/7/376
Goodness-of-fit on F^{2}	1.113
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0356, \mathrm{wR}_{2}=0.0884$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0410, \mathrm{wR}_{2}=0.0919$
Largest diff. peak/hole / e \AA^{-3}	0.185/-0.281

Table 21 Crystal Data and Structure Refinement for 156.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
@calcmg $/ \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 $\sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$
620.59

100(2)
monoclinic
P2 1
13.3441(6)
6.3849(2)
16.1360(7)

90
95.366(2)

90
1368.77(10)

2
1.506
1.696

642
$0.32 \times 0.06 \times 0.03$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
1.90 to 27.55
$-17 \leq h \leq 17,-7 \leq k \leq 8,-20 \leq 1 \leq 20$
21825
6125 [$\left.\mathrm{R}_{\text {int }}=0.0264\right]$
6125/1/346
0.970
$\mathrm{R}_{1}=0.0257, \mathrm{wR}_{2}=0.0607$
$\mathrm{R}_{1}=0.0310, \mathrm{wR}_{2}=0.0621$
0.386/-0.490

Table 22 Crystal Data and Structure Refinement for 123.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}{ }^{3}$
Z
@calcmg/ $/ \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 σ (I]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{5} \mathrm{~S}$
590.53

100(2)
monoclinic
P2 1
7.2768(5)
38.457(3)
10.1623(9)

90
109.743(3)

90
2676.7(4)

4
1.465
1.656

1224
$0.16 \times 0.12 \times 0.02$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2.12 to 27.63
$-9 \leq h \leq 9,-50 \leq k \leq 49,-11 \leq 1 \leq 13$
29888
12198 [$\mathrm{Rint}_{\text {int }}=0.0859$]
12198/5/676
0.934
$\mathrm{R}_{1}=0.0627, \mathrm{wR}_{2}=0.1067$
$R_{1}=0.1456, w R_{2}=0.1317$
0.698/-0.466

Table 23 Crystal Data and Structure Refinement for 178.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}{ }^{3}$
Z
@calcmg/cm ${ }^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{O}_{5}$
520.42

100(2)
Orthorombic
P212121
9.6689(5)
13.7338(7)
17.9303(11)

90
90
90
2381.0(2)

4
1.452
1.767

1080
$0.44 \times 0.28 \times 0.15$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2.27 to 27.65
$-11 \leq h \leq 12,-17 \leq k \leq 16,-23 \leq 1 \leq 23$
39635
5530 [Rint $=0.0297]$
5530/0/418
1.010
$\mathrm{R}_{1}=0.0202, \mathrm{wR}_{2}=0.0457$
$\mathrm{R}_{1}=0.0229, \mathrm{wR}_{2}=0.0463$
0.371/-0.198

Table 24 Crystal Data and Structure Refinement for 73d.

Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$
Formula weight	440.52
Temperature/K	100.0
Crystal system	monoclinic
Space group	P 21
a/A	$12.737(9)$
b / \AA	$5.931(4)$
c / \AA	$15.911(10)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$104.930(14)$
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	$1161.4(14)$
Z	2
Qcalcmg/mm ${ }^{3}$	1.260
$\mathrm{~m} / \mathrm{mm}^{-1}$	0.088
$\mathrm{~F}(000)$	472.0
Crystal size/mm ${ }^{3}$	$0.28 \times 0.04 \times 0.01$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection	4.742 to 50.132°
Index ranges	$-13 \leq \mathrm{h} \leq 15,-7 \leq \mathrm{k} \leq 6,-18 \leq 1 \leq 18$
Reflections collected	5255
Independent reflections	$3917[\mathrm{R}(\mathrm{int})=0.0397]$
Data/restraints/parameters	$3917 / 1 / 298$
Goodness-of-fit on F^{2}	1.014
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0465, \mathrm{wR} 2=0.0839$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0749, \mathrm{wR} 2=0.0937$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.18 /-0.17$
Flack parameter	$-2.0(10)$

Appendix

Curriculum Vitae

Born August 14 ${ }^{\text {th }} 1987$ in Düsseldorf, Germany

1997-2006	Carl-Friedrich von Weizsäcker-Gymnasium, Ratingen, Germany
2003-2004	Lancing College, Lancing, West Sussex, Great Britain
2006	Abitur
$\mathbf{2 0 0 6 - 2 0 1 1}$	Studies in Chemistry (Diplom), WWU Münster, Germany

10/2010-03/2011 Diplomarbeit in the group of Prof. Dr. Bernhard Wünsch, Institute for Pharmaceutical and Medicinal Chemistry, WWU Münster, Germany

Title: "Synthese spirocyclischer $\sigma 1$-Rezeptorliganden mit Pyridinstruktur"

03/2010-05/2010 Internship in the Discovery Chemistry division, Hoffmann-La Roche AG, Basel, Switzerland

03/2011 Diplom-Chemiker
07/2011-06/2015 Doctoral Studies in the group of Prof. Erick M. Carreira, ETH Zurich, Switzerland

Title: "Synthesis and Application of Oxetanyl Peptides"

Scholarships

2007-2011 Scholarship of the "Studienstiftung des deutschen Volkes e.V."

During my doctoral studies, I was once teaching assistant for an introductorylevel organic chemistry laboratory course and supervised one exchange student, two undergraduate students during research projects as well as an apprentice in the first year.

[^0]:

 To a solution of DIBAL-H (1.0 m solution in hexane, 3.00 mL , $3.00 \mathrm{mmol}, 1.88 \mathrm{eq})$ in $\mathrm{Et}_{2} \mathrm{O}(2.63 \mathrm{~mL})$ was added $\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexane, $1.88 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.88 \mathrm{eq}$) dropwise at $0^{\circ} \mathrm{C}$. After complete addition, the mixture was allowed to stir for 15 min at $0^{\circ} \mathrm{C}$, giving a 0.4 M solution of the ate-complex.

[^1]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & & & \end{array}$

[^2]: $\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & & & & \end{array}$

