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Abstract

Automatically detecting smoke and fire in natural scenes can poten-
tially lead to forest fire prevention and therefore to saving millions
of budget money. In this thesis, we develop a novel algorithm that
detects potential smoke regions in images. Data comes in the form
of sequences of three images (image triplets) of the each scene with
a bounding box highlighting the smoke whereabouts. The algorithm
extracts features from these images and uses unsupervised machine
learning techniques to detect potential smoke regions. First, The algo-
rithm divides images into superpixels, extracts features per superpixel
and then clusters the superpixels in such a way that separates smoke
regions from non-smoke ones.

The novelty of the algorithm comes from the fact that it operates in a
semi-supervised manner due to the absence of exact labels. It is built
in a modular way that is easy to debug and extend. It doesn’t rely on
fixed thresholds which makes it independent of specific datasets and
thus can generalize to new, unseen conditions.
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Chapter 1

Introduction

Forests represent an important part of Earth’s ecological system. They regu-
late Earth’s climate and serve as a habitat for millions of animals and plants’
species. Unfortunately, thousands of square kilometres are damaged by for-
est fires every year. According to [9], in the US alone there is between 60,000
- 240,000 forest fires burning between 12,000 to 40,000 square kilometres per
year.

The problem with forest fires is that forests are usually remote, abandoned
areas filled with trees, dry and parching wood, leaves that act as a fuel
source [11]. Fire ignition can be caused by several factors like human in-
tervention (barbecues, camp-fires) or natural sources like lightening or hot
temperatures. After ignition, forest fire spreads in an uncontrollable matter
due to the abundance of fuel sources and since forest locations are usually
remote, forest fires are usually detected at a late stage after damaging large
areas.

In general, smoke usually appears before flames. This means that sensors
that can detect smoke can be used to prevent forest fires early [5]. Conven-
tional indoor smoke detection techniques such as infra-red sensors, particle
sampling, air transparency testing can not be used to detect forest smoke.
This is due to the large distance between the point of installation of these
sensors and the smoke position. In order for these techniques to be effective
in open areas, smoke should fill a large fraction of these areas. Another
technique is to have human observers constantly observing forests through
staying in towers built in the forests for that purpose. This approach is
clearly costly and not scalable.

Recently, research has focused on smoke detection using surveillance cam-
eras. Satellites have been used to monitor forests but weather presents a
main limitation for this approach since image quality is severely affected by
weather conditions [11]. Another approach is to use CCD (charge-coupled
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1. Introduction

device) cameras to continuously monitor forest regions. Such cameras cap-
ture video footage or static images and send them to a computer program
in order to detect smoke. This is clearly a cheap and scalable approach since
cameras can monitor large areas and can be installed at numerous locations.
However, it still faces some challenges. First, Smoke usually doesn’t have
a fixed shape and thus it is hard to apply standard object recognition tech-
niques. Second, smoke can have various colours ranging from very light
gray to very dark gray in grayscale images. In addition, smoke is transpar-
ent and doesn’t completely block the background from the view. Such chal-
lenges make smoke detection a challenging task. However, existing research
currently focuses on smoke properties such as its motion or its tendency to
blur background objects to tackle the problem.

1.1 Thesis Contribution

In this thesis, we aim to detect smoke regions in static images of forest fires
in a semi-supervised manner. In order to do so, we develop an extensible
pipeline that divides incoming images to superpixels, extracts features from
these superpixels, excludes non-smoke areas based on these features until
only smoke areas are left. The pipeline easy to understand since it operates
in a modulate way. At each round, it chooses a new feature, and excluded
non-smoke regions based on this feature until only smoke regions are left.
This makes it easy to debug and add/remove new features.

The Novelty of this work comes from the fact that we are solving the task
for static (non-video) images. In addition, we solve the task in a semi-
supervised manner, since the only labels we have are rough labels that
shows roughly the whereabouts of the smoke in the scene. In addition,
the pipeline we develop is a flexible pipeline that learns from the data using
machine learning techniques instead of using fixed thresholds. This makes
the pipeline adaptive to unseen conditions.

1.2 Thesis Organization

In Chapter 2, the background is presented. In the Background, we present
literature review of the related work and provide an overview of the algo-
rithms used in this thesis, for example: SLIC algorithm, Optical Flow, etc. In
Chapter 3, the smoke detection pipeline is described in detail together with
the design decisions we made. In Chapter 4, We present the experiments,
their results and how the model parameters were selected. In chapter 5,
conclusion and suggestions for future work are presented.
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Chapter 2

Background

The problem of smoke detection has been widely studied in literature. Most
of the works aim at detecting smoke in video data and they use either rules
based on fixed thresholds or supervised learning techniques. In this section,
we describe some of the related approaches and focus on features they ex-
tract from images as well as the pipeline used to detect smoke. This helps
us later on in designing our own pipeline to solve the problem in a semi-
supervised manner on static images.

We could categorize the work of the literature to two main categories. The
first category extracts features from smaller smoke blocks and used super-
vised learning techniques to train a classifier how to separate between smoke
and non-smoke regions. The second category decides on some manual rules
like an intensity range for example, and use these manually crafted rules to
detect smoke regions.

2.1 Supervised learning for smoke detection

In [4], texture is used to characterize smoke in videos. First, each frame
is divided into square blocks and foreground blocks are selected using an
adaptive Gaussian Mixture Model for background subtraction. Afterwards,
Local Binary Pattern (LBP) feature is used to capture the block appearance.
For every pixel, LBP value is obtained by comparing pixel’s intensity value
to the values of neighbours. For pixel c with coordinates (Xc, Yc), LBP is
defined as:

LBPP,R(xc, yc) =
P−1

∑
p=0

s
(

gp − gc
)

2p (2.1)

where gc is the value of the central pixel, gp(p = 0,.., P-1) represent the gray
values of P equally spaced pixels on a circle of radius R(R >0) and s(x) is
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2. Background

the sign function. To compute LBP per block, LBP of individual pixels are
accumulated in a discrete LPB histogram which is used as the feature vector
of the block. Finally, block based features are used to train a Support Vector
Machine (SVM) classifier which is further used to classify test example.

In [5], spatial-temporal visual features are used to detect forest smoke in
video data. First, key frames are detected where a new frame is a key frame
if the intensity difference compared to last key frame is above a certain
threshold. A new key frame is partitioned into smaller blocks and moving
blocks are detected. In order to detect motion, each block is compared to
its corresponding block in the previous key frame and the block is declared
moving if the intensity difference between the block in the current and pre-
vious key frames is above a certain threshold. Afterwards, five features are
extracted per block, namely:

• Mean Intensity

• Intensity Skewness

• Average of wavelet energy

• Wavelet energy skewness

• Motion orientation

Authors chose these features based on the fact that smoke has higher in-
tensity, frequency and an upward motion tendency compared to the back-
ground. In the final stage of the pipeline, random forest are trained using
the previously extracted features and are used to test new forest videos.

In [6], a four-stage smoke-detection algorithm using video images is pro-
posed. First stage involves segmenting moving parts in a video frame using
background subtraction. Second, Fuzzy C Means (FCM) is used to cluster
segmented moving parts according to color information. The clusters closest
to the smoke color are selected for further processing. The extracted candi-
date regions are used to extract a number of feature. Centroid of a frame N
is computed as mean x and y positions of the candidate region of the frame
and then the following features are computed:

• Short Distance (SD): distance from the centroid of the previous frame,
to the centroid of the present frame

• Lond Distance (LD): distance from centroid of first video frame to the
centroid of the present frame

• Alpha: the angle between the long distance vector and the vertical axis
of the image.

• Mean Intensity of candidate region
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2.2. Manually crafted rules for Smoke detection

• Area randomness |An − An−1|, where An is number of pixels in frame
N.

• Variance of all previous features

Extracted features are then used to train an SVM classifier which is used
afterwards to test frames in test videos.

2.2 Manually crafted rules for Smoke detection

Some works of the literature use manually designed rules based on fixed
thresholds to solve the problem. In [15], slowly moving areas are detected
using background subtraction techniques. Authors then perform connectiv-
ity analysis to merge pixels of the moving regions into larger blobs. Clas-
sification of moving blobs into smoke is based on how much of the bob is
actually moving. Optical flow is used to detect motion within the blobs and
if more than 20% of the blob area is moving in the direction of smoke (angle
of [0,45 ◦] with image vertical axis), the blob is detected as smoke. Weber
Contrast analysis is used to exclude moving blobs that are not smoke.

In [7], authors present a fast technique for motion detection use use it to
detect smoke. Frames are segmented into smaller blocks and blocks are
declared as moving if the difference of the intensity sum of a block and
intensity sum of the same block in the previous frame is above a certain
threshold. To make computations faster, integral image is used to calculate
the block sum in a fast way. To estimate motion orientation, authors assume
that objects within the same block move in the same direction. For a given
block, they consider all the surrounding blocks with at most 3 pixels shift in
the vertical and 3 pixels shift in the horizontal directions and try to match the
considered block in the current frame to one of these blocks in the previous
frames. The current block is matched to the block in the previous frame that
produces that least difference of sum of block intensities. Finally, a frame
is declared moving if the ratio of blocks moving upwards compared to all
blocks is above a certain threshold.

In [16], smoke is detected in color video data. First, the current frame is seg-
mented into blocks and moving blocks are extracted if their mean absolute
intensity (MAD) difference is above a threshold where MAD is defined as:

MAD =
1
n2

n−1

∑
i=1

n−1

∑
j=1
|Cij − Ri,j| (2.2)

where n is the number of block pixels and Cij is the pixel of current block
and Rij os the corresponding pixel of the previous block.
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2. Background

Afterwards, smoke color is analysed. The authors classify smoke into two
categories: dark smoke ranging from black-greyish to black and light smoke
ranging from white-bluish to white. For the first category, red, green and
blue components should be roughly similar. For this category, block is
declared smoke is |max(R,G,B) - min(R,G,B)| < threshold. For the light
smoke category, authors observed that blue is the highest component and
that |R − G| < threshold. Finally, motion direction is estimated for each
block, and blocks showing upward motion are declared as smoke.

2.3 Relation between Related Works and Our Pipeline

We noticed that most of the related works follow a similar pipeline:

• Video frames are divided into smaller blocks

• Features are extracted per block

• Supervised learning algorithm is trained using labelled block data and
is used to classify new blocks

As we describe in 3, we follow a similar pipeline adapted to the task we are
trying to solve

• Images are divided into superpixels instead of square blocks. Features
are extracted per block

• Features are extracted per superpixel

• Algorithm is trained in a semi supervised manner to determine the
best features to use and the tuned pipeline is used to detect smoke
regions in test data

2.4 Related Algorithms Overview

2.4.1 SLIC Algorithm

SLIC (Simple Linear Iterative Clustering) algorithm in an algorithm that seg-
ments an image into superpixels. Superpixels are basically a group of neigh-
boring pixels that are homogeneous in color. This segmentation facilitates
applying image processing techniques later on as it allows dealing with each
superpixel as one unit in contrast to dealing with each individual pixel sepa-
rately. SLIC algorithm clusters an image in the color and image plane space
and produces superpixels that are roughly uniform in size, compact and
respect image boundaries [3].

The algorithm is a version of K-means that clusters image pixels based on
their x and y positions as well as the l,a,b values of the CIELAB color space.
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2.4. Related Algorithms Overview

The distance measure is defined as follows:

dlab =

√
(lk − li)

2 + (ak − ai)
2 + (bk − bi)

2 (2.3)

dxy =

√
(xk − xi)

2 + (yk − yi)
2 (2.4)

Ds = dlab +
m
S

dxy (2.5)

where m is the compactness factor that determines relative importance be-
tween distance and color measures. It controls how compact or loose the
superpixel can be while S is square root of superpixel size (side length if su-
perpixel was a square). The algorithm starts by initializing centres of super-
pixels and assigning nearby pixels to them. It then updates the superpixel
centres and iterates till convergence.

2.4.2 Optical Flow

Optical Flow is the pattern of motion that describes motion of objects in the
scene. It is typically depicted as a vector field describing motion (both mag-
nitude and direction) in the scene. It can be computed using two sequential
images of the same scene. In order to determine such a field, we assume
brightness constancy. This means that pixel at location x,y and time t will
move by δ x, δ y after time δ t, more formally:

I (x, y, t) = I (x + δx, y + δy, t + δt) (2.6)

after some derivations, we can arrive to the optical flow equation to solve as
in [14]:

IxVx + IyVy = −It (2.7)

where Ix is derivative of intensity w.r.t x direction, Iy derivative w.r.t y direc-
tion and It is derivative w.r.t. time. This is one equation with two unknowns.
Several techniques exist for solving this problem such as Lucas–Kanade or
Horn–Schunck methods. In this thesis, we use the optical flow implementa-
tion described in [13].
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2. Background

2.4.3 Histogram Equalization

Histogram equalization is a contrast enhancement technique that relies on
adjusting the image histogram. It is used to enhance the quality of images
for better visualization. In the Global Histogram Equalization technique,
image intensity values are mapped to new intensity values in such a way
that the resulting image histogram has a uniform distribution [1]. One prob-
lem with using the same intensity mapping for all image pixels is that it
just focuses on improving the global contrast in the image and ignores lo-
cal contrast of various image regions. This effect is observable in the sky
for example where the local contrast between the smoke and the sky has
decreased after applying the Global Histogram Equalization technique.

Another variation of Histogram Equalization is the Adaptive Histogram
Equalization. In this technique, pixel intensity values are transformed ac-
cording to a mapping derived from the histogram of the pixel neighbour-
hood. That is, the new value for the intensity of a pixel is proportional to
its rank among other pixels in the neighbourhood [2]. This helps enhancing
the local contrast of different image regions as in 2.1.

Figure 2.1: Figure showing a smoke image together with its histogram, the image after adaptive
histogram equalization together with its new histogram

2.4.4 Expectation Maximization

Expectation maximization is an iterative technique used to estimate latent
parameters in statistical models. It iterates between Expectation and Maxi-

8



2.5. Dataset Description

mization steps. In the expectation step, it creates a function of the Maximum
likelihood of the observed data using the parameter estimates (at first round
they are randomly initialized) while in the maximization step, it uses the
likelihood function to estimate model parameters that will maximize it.

In this thesis, we use Expectation Maximization for Gaussian Mixture Mod-
els. In this setting, underlying distribution of the data is assumed to be a
mixture of Gaussians with each Gaussian having mean vector and covari-
ance matrix as latent variables. The algorithm initially estimates a mean vec-
tor and covariance matrix for each cluster, computes membership weights
of points belonging to clusters (probability of each point belonging to every
cluster). New mean and and covariance matrices are computed from the
new assignment of points [12]. This is repeated until convergence, when the
points assignments don’t change any more.

2.5 Dataset Description

CCD (charge-coupled device) cameras are installed on top of towers located
in various locations in German forests. Cameras capture a triplet of images
for the view and then rotates to capture other angles. Typically, the camera
waits 20 seconds between first and second images as well as between second
and third images and then rotates 45 degrees to capture a new view. All in
all, we have 189 triplets of images all of which contain smoke. 52 triplets
were captured in May 2015 while the rest (137) were captured in June of
the same year. The dataset features smoke situations at different times of
the day as well as at varying distances from the camera locations as in the
figures 2.2 and 2.3.

In addition to the triplets, ground truth for each triplet is also provided.
Since exact smoke boundaries are unclear and large variance will exist any-
way between human observers, ground truth was provided as rectangles
surrounding the smoke area (figure 2.4). This renders the problem of detect-
ing smoke as an instance of unsupervised or semi-supervised learning.

It is possible that the camera can shake because of wind. In this case, pix-
elwise comparison of images within the triplet would be useless. For this
purpose, stabilization was already performed on the given dataset using a
robust, subpixel accurate algorithm based on SIFT features [10]. We checked
the quality of stabilization by taking every possible pair of the triplets (first
and second, second and third, first and third), and for each pair, one image
is shifted horizontally and vertically against the other, and the mean of the
intensity difference between the image pair for each possible shift was cal-
culated. We found that, the best shift in all pairs in all the triplets was zero
which indicates that images are well stabilized.
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2. Background

Figure 2.2: Distance between camera and smoke location

Figure 2.3: time of day at which smoke occurred
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2.5. Dataset Description

Figure 2.4: A triplet of images with its ground truth. First, second and third triplet images are
shown at Top left, top right, bottom left respectively. Bottom right image shows the ground
truth where white represents smoke region

The images consist of mainly a forest and a sky part separated by a nearly
horizontal horizon line. Forests are usually dark, with the possibility of
having brighter parts with no vegetation at all. As for the sky part, it is a
uniform region that can have some objects like clouds, windmills or smoke.

Images in the same triplet can differ in the following ways:

• Motion and expansion of smoke (figure 2.4)

• Forest motion caused by wind

• Clouds motion (very rare to occur)

• Illumination change (figure 2.6)

• Cloud shadows casted on the forest part

• Moving objects (ex: cars if there’s a road or windmills in the sky)
(figure 2.5)

• Movement of water (if a river, canal is present) in the forest part

11
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Figure 2.5: Moving Cars

Figure 2.6: Illumination Change
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Chapter 3

Algorithm Description

In this chapter, we describe how we designed the pipeline used for smoke
region detection as well as the trade-offs of the design decision made. Our
goal is to detect regions of smoke in static images as accurate as possible. We
tuned the algorithm to make use of the fact that we have triplets of images,
but it can be tuned to work on arbitrary sequences of length n where n > 0.
In the following sections we describe individual parts of the algorithm and
present an overview of the complete pipeline in the end.

3.1 Image Preprocessing

Images come in tif format with each pixel having an integer value in the
interval [0, 65535 ]. However, a typical histogram of intensity values of
an image doesn’t occupy the full range. Thus we first normalize intensity
values per triplet to lie in the interval [0,1] as follows:

• Merge all intensity values of all pixels in the triplet together

• Get the value corresponding to the 99.9th percentile of all intensity
values from the previous step

• Divide all pixel values by the maximum value

• Set any pixel with value greater than one to one

We merge all intensity values of the triplet together and choose the max-
imum value from the mixed values to ensure dividing all images in the
triplet by the same value. The reason of choosing the 99.9th percentile value
instead of maximum value is to avoid outlier pixel intensities. This helps
stretching the resulting histogram to fill the whole [0,1] range as in figure
3.1.
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3. Algorithm Description

3.2 Image Segmentation

The first step in the algorithm is to segment incoming images to superpixels
using SLIC algorithm. The benefits of using SLIC (compared to segmenting
images into square blocks) is that superpixels are homogenous and respect
image boundaries. This can be observed at the horizon line where super-
pixels never include simultaneously parts above and below the horizon line,
an observation which allows clean separation of forest and sky regions later
on.

To use SLIC algorithm, we should decide on the number of superpixels
as well as the compactness factor 2.4.1. After experimenting with various
segmentations, we chose number of superpixels to be 500 per image and
the compactness factor to be 40. These results produced visually appealing
results.

It should be noted that SLIC initially produced segmentations with rough
boundaries. To solve the problem, we tried performing median filtering,
gaussian filtering, median + gaussian filtering before image segmentation.
We observed that filtering improved the segmentation quality by reduc-
ing roughness of superpixel boundaries 3.2. However, gaussian filtering
(whether performed alone or combined with median filtering) caused blur-
ring at the edges which results in some superpixel that only include the
blurred parts of the edges. Thus we chose performing only median filtering
before image segmentation.

We also experimented with the window size of the median filter and ob-
served that it doesn’t cause significant changes in the quality of the segmen-
tation. We used a 10*10 window size in our experiments.

One challenge with the segmentation is that if we apply SLIC individually
to each of the triplet, superpixels would have different boundaries across im-
ages within the same triplet making it hard to establish correspondence be-
tween superpixels across different images in the triplet. Images of the same
triplet are taken successively with a temporal difference of 20 seconds be-
tween successive images. This means that image boundaries do not change
much between an image and its successor within the same triplet. We used
this fact to perform segmentation only on the first image within the triplet
and apply segmentation results to the second and third triplet images. This
enabled establishing 1:1 correspondence between superpixels of the three
images within the triplet. As we later describe, we segment each image
within the triplet to superpixels, extract features from superpixels and de-
cide based on these features whether the superpixel is smoke or not. By
using same segmentation across the triplet images, we facilitate combining
information obtained from corresponding superpixels in different images of
the same triplet 3.3.
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3.3. Splitting Forest and Sky Regions

3.3 Splitting Forest and Sky Regions

In this thesis, we target detecting smoke on forest settings. Thus, it is safe
to assume that incoming images would contain a bottom large part of for-
est with vegetation and various structures (cars, electricity towers, animals,
water, etc.) and an upper relatively smaller sky region with the horizon line
separating both parts. We verified this observation by looking into images of
the dataset and we found that sky and forest parts are always separated by
a nearly horizontal horizon line. We used this observation to separate forest
from sky parts. This separation allows solving two smaller sub-problems
(detecting smoke in forest and sky parts separately) instead of solving the
original problem (detecting smoke in the whole image).

To perform this separation, we used the fact that sky is much brighter com-
pared to forest and that at the horizon line, there is a sudden large drop in
intensity. To detect where the drop happens, we calculated the mean inten-
sity of pixel of each row in the image from top to bottom and plotted it on a
curve. We determine the horizon to be at the rows that show the largest neg-
ative slope in the plot. We verified this method by applying it to the whole
dataset and found that it produced reasonable separation of forest and sky
regions as in figure 3.4.

One challenge that we faced was that the horizon line isn’t exactly horizontal.
While the cut produced by this method is strictly a horizontal cut. Here, we
made use of the fact that superpixels respect image boundaries and that they
do not cross over the horizon line and classified each superpixel in a given
image segmentation to belong to the sky if most of its area lies above the
boundary line or to the forest otherwise. This helped producing a cleaner
separation between forest and sky regions with minor erroneous superpixels
belonging to the wrong side.

3.4 Feature Extraction

This is the core part of the algorithm since detection of smoke relies mainly
on the features extracted. Good features that provide distinction between
smoke and non-smoke regions mean higher accuracy of smoke region detec-
tion. Clearly, the perfect feature would be a feature that has the value of one
at smoke superpixels and zero otherwise. This would allow for the utmost
separation between smoke and non-smoke regions. However, such a perfect
single feature is hard to arrive at since smoke can take many forms, intensity
values and doesn’t have a specific shape. In this work, we investigate the
use of a set of features that describe smoke properties well and can together
help in smoke region detection. To assess whether the feature would be
useful for our task or not, we usually inspect feature values at the region
of smoke and determine whether there is some special pattern at the smoke
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regions. Usually, it is the case that features we extract have relatively higher
values at smoke regions compared to other regions in the image. We next
describe features used, how we extracted them and why we believe they are
useful for our task.

3.4.1 Intensity

In grayscale images, smoke can have various intensity values ranging from
very dark gray to very light shades of gray. In forest regions, we noticed that
smoke is always lighter in color compared to the rest of the forest (figure 3.5)
This can be attributed to the fact that forest is dark in color by default and
because the type of fuel burnt (vegetation in that case). We verified this
observation by looking at all images in the dataset. Thus, for forest parts we
can expect smoke to be found in the lighter areas and we can safely discard
darker regions. However, in the sky part, there was no clear rule for the
color of smoke. In some images, smoke was found to be relatively very
bright compared to the background while in others it was very dark as in
figure 3.6. Thus, we use the intensity feature only in the forest part.

3.4.2 Intensity Standard Deviation (SD)

This is the standard deviation of intensity values per superpixel. We ex-
pect smoke to have a relatively high intensity standard deviations due to its
non-uniform nature. Within the smoke plume, we can observe that smoke
exhibit different shades of grey and non-uniform texture. However, by ob-
serving heat maps of intensity standard deviation values at smoke regions
compared to other regions, we found in many cases that the assumption
of smoke regions having higher intensity standard deviation values was
violated. Thus, we decided to exclude intensity standard deviation from
features considered.

3.4.3 Difference (Diff) Image Intensity

Diff image intensity is a very important feature. To calculate it, we first calcu-
late the pixel wise absolute difference between an image pair. The value of
the feature for each superpixel is the mean intensity value of the diff image
at the superpixel location. Diff intensity is useful because it helps location
parts that change in appearance across different images of the triplet. By ob-
serving heat maps of various diff images 3.7, we found that smoke regions
tend to have relatively high diff intensity values compared to other regions.
Diff intensity can be high as well for moving parts in the forest, or when the
illumination changes.

It should also be noted that diff intensity can be greatly affected by the
presence of noise. For this reason, we perform median filtering on images
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before computing the diff image.

3.4.4 Diff Intensity SD

The problem with diff intensity is that it can’t differentiate between motion
and intensity changes like shadows or scene illumination changes. However,
the diff intensity standard deviation can tell the difference since in case of
illumination changes or shadows, the pixel wise changes in the diff inten-
sity values is uniform and thus standard deviation in these cases would be
relatively of low magnitude. In figure 3.7, we can see diff intensity stan-
dard deviation values at smoke regions and it can be noticed that they are
relatively high compared to other regions.

3.4.5 Motion Magnitude

We used Optical flow algorithm to detect moving parts of the image. Optical
flow requires as input two consecutive images and calculates motion vector
the horizontal (Vx) and vertical (Vy) motion components. We calculate mo-
tion magnitude as follows

MotionMagnitude =
√

V2
x + V2

y (3.1)

Motion magnitude for a superpixel is calculated as the mean of motion mag-
nitudes of individual pixels comprising that superpixel. We made a design
decision to use motion magnitude instead of individual motion components
Vx or Vy since for Vx (horizontal motion), smoke can be moving to the left or
right while for Vy (vertical component), it can be the case that smoke doesn’t
move upwards between two consecutive images. Also, smoke moves in all
directions, x or Vy components can cancel out. This is not the case with the
magnitude since it is always a positive quantity. As we can see in the figure
3.8, motion magnitude tends to have higher values at smoke regions due to
the moving nature of the smoke.

3.4.6 Motion Magnitude SD

Despite the tendency of moving upwards, it can be observed that smoke
particles move in all directions. The smoke plume has no rigid shape and
it keeps changing over the course of burning. Motion magnitude standard
deviation can be used to differentiate between motion of the smoke and
other moving objects having more rigid shapes (figure 3.8). For example,
wind blowing will cause leaves of the forest to move in the same direction.
Also, rigid objects would have some low motion standard deviation since
all particles of the object move in the same direction with roughly the same
velocity vector.
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3.4.7 Correlation

Correlation is a feature that measures the degree of deformation or change
between two images (figure 3.9). Local correlation at pixel Cij is calculated
as follows:

C(x) =
∑

xi∈Ω(x)
(It(xi)− Īt(x))(It+dt(xi)− Īt+dt(x))√

∑
xi∈Ω(x)

(It(xi)− Īt(x))2 ∑
xi∈Ω(x)

(It+dt(xi)− Īt+dt(x))2
(3.2)

when A is the first image in the image pair, B is the second image, N is
the window size side length of the neighbourhood used to compute the
correlation value. Expectations are taken over the neighbourhood of the
pixel for which correlation is computed (Cij). By substituting in the equation
above with very different values (different images), we obtain a very low or
negative correlation. Foe this reason, we redefine our correlation value as:

New Correlation = min(1, 1− correlation) (3.3)

where correlation is the value previously computed. This yield values in
the interval [0,1] with 0 meaning no change in the image and 1 meaning
severe change in the image. Correlation is useful for smoke detection be-
cause smoke changes the image appearance over the time. First, it moves
and occupies new regions. Second, smoke blurs the background behind it.
Thus, a high correlation value can be an indication of smoke. We verified
this assumption by observing heat map of correlation values.

3.4.8 Correlation Standard Deviation

We have visualized the standard deviation of the correlation by means of
heat maps and observed that it can’t differentiate well between smoke and
non smoke regions. Thus, we excluded it from the set of features we con-
sider.

3.4.9 Other features

In this part, we describe some of the features that we tried but didn’t work.
We mainly compute to check whether the feature can separate smoke regions
or not. We tried to extract edges and compute intensity of edge image
for each superpixel. The motivation was that smoke blur the background
and thus smoke regions would have lesser edges. However this was not
completely true. Intensity varied greatly within the smoke plume. These
variations caused edge operators to detect edges at smoke regions and thus
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we could not differentiate between smoke and non smoke regions. Another
approach we tried is to blur the image using Gaussian filter and calculate
the difference in intensity before and after blurring. The motivation was
that smoke has already blurred the background and thus blurring would
not have a great effect on smoke regions but would severely distort non
smoke regions but again by visualizing the heat map, the feature was not
distinctive enough.

3.4.10 Note on Feature Choice

We were careful to choose features that would differentiate between smoke
and non-smoke regions. Features chosen would generally have relatively
higher values at smoke regions and lower values at other regions. For Forest
regions, the relevant features are:

• Intensity

• Diff Intensity

• Diff intensity standard deviation

• Motion magnitude

• Motion magnitude standard deviation

• Correlation

while for sky parts, relevant features are

• Diff Intensity

• Diff intensity standard deviation

• Motion magnitude

• Motion magnitude standard deviation

• Correlation

3.5 Combining All Together

Having described individual parts of the algorithm we describe now the full
pipeline. For a new image triplet, we segment the first image into superpix-
els (500 Superpixels) and use the same segmentation for second and third
images in the triplet.

We divide the triplet to 3 pairs. First pair comprises first and second im-
ages. Second pair comprises second and third images while the third pair
comprises first and third images. Image pairs are needed to extract features
like diff intensity or motion magnitude. For every pair, we have an initial
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image (image taken earlier in time) and latter image (taken at a later point in
time). Features requiring only one image to be computed (ex: intensity) are
extracted from the initial image while features requiring a pair of images (ex:
diff intensity) are obtained by considering corresponding superpixels in the
initial and the latter image. Thus, for a new triplet, we extract around 500
data points (SLIC implementation used computes a close number to the user
specified superpixel count) from the pair of first and second images in the
triplet. In this image pair, intensity is captured from the first image, while
the rest of the features are captured using both images. We repeat the same
procedure for the second image pair (second and third triplet images) and
for the third image pair (first and third triplet pairs). This results in around
1500 data points per triplet with each data point having 6 dimensions (in-
tensity, diff intensity, diff intensity standard deviation, motion magnitude,
motion magnitude standard deviation, correlation). It should be noted that
for every superpixel, there are 3 data points from the 3 pairs corresponding
to it.

Now we arrive at the stage where we need to determine which of these data
points correspond to smoke and which doesn’t. We first split the extracted
data points into two sets, one set for forest data points and the other from
sky data points. We then perform the following procedure on each of the
sets independently:

• Repeat for the number of rounds of current set of data points (forest
or sky)

– Pick a new feature from the feature set to be applied on the cur-
rent set of data points (whether forest or sky)

– Cluster the data points in the set into 2 clusters using the EM
algorithm

– Discard data points belonging to the cluster with lower mean
value.

• Declare left data points as smoke regions

The idea behind the procedure is that we already chose features that have
higher values for smoke regions and lower values otherwise. Thus by clus-
tering into two clusters, smoke regions would be part of the cluster with
higher mean value and thus at each clustering round the goal is to discard
non-smoke regions so that in the end we would have the potential smoke
regions left. At each clustering round, we cluster only based on one feature.
This helps keeping the pipeline simple and understandable. In addition, we
limit the number of clusters at each round to two clusters and only choose
one cluster out of the two to limit the search space of potential configura-
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tions (Other possible configurations include choosing top one out of three
clusters or even top two out of three clusters based on cluster mean value).

Each superpixel in the segmentation was represented initially using three
data points (one data point from each pair of images). If the superpixel
is having at least one data point in the set of left data points, then this
superpixel is declared as a smoke superpixel. We arrived at this rule since it
is less dangerous to have false positive regions declared as smoke compared
to missing the actual smoke regions.

3.6 Extending the Algorithm to Image Sequences of
Arbitrary Length

So far we have discussed applying the pipeline image triplets (sequences
of length three). However the algorithm can be applied on a sequence of
one or more images. In case of one image, some features that require a
pair of images (diff Intensity, motion magnitude) won’t be possible to use,
however, features like intensity or intensity standard deviation can still be
used. we have divided the triplet of images into 3 pairs (first and second
images, second and third images, first and third images), extracted features
from each pair and then combined the results in the end. This can be done
also on longer image sequences, by dividing sequences into image pairs
(perhaps not all possible pairs since this can be an overkill in case of longer
sequences), extract features from individual image pairs, combine the results
from individual pairs to decide on the regions of interest. When using a
triplet of images, we decided that a superpixel is a smoke superpixel if it
appeared in at least one of the image pairs as smoke. However, we can
change this rule since it would mean lots of false positive regions in case of
longer sequences.

3.7 Another Variant of the Algorithm

The algorithm described above handles one triplet at a time. In this variant,
We handle all superpixels from all triplets at once. We combine all data
points of the forests of all triplets and apply clustering rounds to them and
repeat the same procedure for the sky part in the same fashion as previously
described (using one feature at a time, clustering into two clusters using
EM algorithm and keeping the cluster with higher mean). The aim of this
approach is to investigate whether combining superpixels from all triplets
together can improve the clustering results.
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Figure 3.1: Figure showing an image with its histogram before and after normalization
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Figure 3.2: Figure showing an image segmented using SLIC algorithm without median filtering
(top) and with median filtering (bottom)
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Figure 3.3: Figure showing the second image of a triplet with its SLIC segmentation (left), and
the same image with SLIC boundaries from segmentation of first triplet image is applied to it
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Figure 3.4: Figure showing the separation of an image to forest (blue) and sky (green) regions

Figure 3.5: Figure showing a forest region with Smoke and its corresponding Heat map
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Figure 3.6: Figure showing instances of very bright and very dark smoke occurring in the sky

Figure 3.7: Figure showing two images of a triplet, first image top left and second top right,
together with heat map for diff intensity (bottom left) and diff intensity standard deviation
(bottom right)
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Figure 3.8: Figure showing two images of a triplet, first image top left and second top right,
together with heat map for motion magnitude (bottom left) and motion magnitude standard
deviation (bottom right)

Figure 3.9: Figure showing two images of a triplet, first image (top left) and second (top right),
together with heat map for the correlation between them

27





Chapter 4

Experiments and Results

4.1 Dataset Split

The task at hand is a semi-supervised learning task since we have only crude
labels for smoke regions. We split the data into training and test parts. For
the training part, we choose the 52 triplets captured in May 2015, while the
test set would comprise the 137 triplets occurring in June 2015. We tune the
algorithm by choosing features to be used, number of clustering rounds on
the training set and then report the results on the test set. The chosen dataset
split enables us to determine whether the algorithm can generalize well to
triplets captured at a later point in the future. It also allows determining the
algorithm’s ability to generalize to new scenes as the test set contains new
scenes not included in the training set.

4.2 Evaluation Metrics

We considered various metrics to evaluate the accuracy of smoke region de-
tection. Our main priority is to hit the smoke in as many images as possible.
In the meantime, we aim at minimizing the area of false positive regions
(non-smoke areas detected as smoke). For this purpose we defined two met-
rics, namely the hit rate and the false positive rate.

4.2.1 Hit Rate

Hit rate is a binary variable that assumes the value of zero (smoke region
isn’t hit) or one (smoke region is hit) for each image triplet. This variable has
value one if the intersection between the ground truth label and the regions
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of interest has an area of at least an average superpixel size. More formally:

Hit Rate =

{
1, if (ROI ∩ Ground Truth) ≥ Average Superpixel Size
0, otherwise

(4.1)

where ROI stands for Regions Of Interest detected by our algorithm as po-
tential smoke regions and

Average Superpixel Size =
Number o f Pixels in Image

Number o f Superpixels in Image
(4.2)

4.2.2 False Positive Rate (FPR)

This metric measures the false positive regions that are falsely detected as
smoke. It assumes real values in interval [0,1], where zero means that no
area outside the ground truth (white box in figure 2.4) is detected as smoke
while one means that all the area out of the ground truth label is falsely
detected as potential smoke region. The metric is formulated as follows:

FPR =
ROI ∩ Non Ground Truth Area

Non Ground Truth Area
(4.3)

where the non ground truth area is the black area in the ground truth (2.4).
It is clear that for achieving high accuracy of smoke region detection, we
should maximize the hit rate while minimizing the FPR. The priority is
given to maximizing the Hit Rate because we can not afford missing the
smoke region. However, having a relatively higher FPR can be acceptable
because images can then be passed to a human inspector for verification of
the true smoke regions.

4.2.3 Other Metrics

We considered some other metrics such as the True Positive Rate (TPR) and
the Jaccard similarity. We defined the TPR as the area inside the ground
truth that we could detect as smoke, more formally:

TPR =
ROI ∩ Gorund Truth

Ground Truth
(4.4)

The problem with this metric is that most of the ground truth area is non
smoke since ground truth is provided only as a box roughly surrounding
the smoke area. Thus maximizing this quantity does not necessarily mean
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that we are hitting true smoke regions. Regarding the Jaccard similarity we
defined it as follows:

Jaccardsimilarity =
ROI ∩ Gorund Truth
ROI ∪ Gorund Truth

(4.5)

The problem with this metric is that by maximizing it, we can’t enforce the
fact that we consider hitting the smoke to be more important than reducing
the false positive regions.

4.3 Experimental Setup

In this section, we aim to find the most relevant features to use, the number
of rounds as well as the order by which features are applied. As we previ-
ously described in chapter 3, we divided the problem into 2 sub-problems,
namely: detecting smoke in forest regions and in sky regions separately. In
forest regions, the relevant features are: intensity, diff intensity, diff inten-
sity SD, motion magnitude, motion magnitude SD and correlation. For sky,
the relevant features are: diff intensity, diff intensity SD, motion magnitude,
motion magnitude SD and correlation.

We decided to tackle each part separately. This is done by splitting each
image into 2 parts, one part containing sky superpixels and another with
forest superpixels. We also split the ground truth box into 2 parts, one for
the smoke in the forest region and one for the smoke in the sky region. We
run the pipeline separately and then compute the hit rate and FPR metrics
for each part separately. For example for the forest regions, the hit rate is
defined as how many smoke regions in all of the forest smoke regions do
we hit. While the forest FPR would be the areas of forest out of the forest
smoke label that are falsely detected as smoke.

In each part, we determine the best feature configurations that produce best
accuracy of smoke detection. Afterwards, We combine best configurations
of both parts together and run the experiments but this time calculating the
hit rate and the FPR for the whole image instead of for each region sepa-
rately. We determine the configurations that yield best accuracy in terms
of the metrics (high hit rate and low FPR). Finally, we run the the selected
configurations on the test set and report the results. We also try the other
variant of the algorithm described in chapter 3.7 and compare its results to
the main algorithm.

4.3.1 Determining best feature configuration in Forest Region

For the forest region, trying all possible feature combinations with all pos-
sible number of rounds meant 1956 experiments (6P1 + 6P2 + ... + 6P6 ).
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To reduce the search space, we decided only to first explore the features:
intensity, diff intensity, motion magnitude and correlation. Afterwards, we
try adding standard deviation features like diff intensity SD and motion
magnitude SD as additional rounds in the end. Thus, we initially try all
combinations of the four features (intensity, diff intensity, motion magni-
tude, correlation) with all possible number of rounds (1,2,3 and 4 rounds)
resulting in 64 configurations (4P1 + 4P2 + 4P3 + 4P4). We run these configu-
ration and compute for each of them the hit rate and the FPR of the forest
part only. We plot the hit rate vs the FPR in order to be able to choose the
best configurations to continue experimenting with. Best configurations are
those producing a high hit rate while keeping the FPR low. Such configura-
tion are typically found at the bottom right of the plot. We show the results
in figure 4.1 with the best configurations plotted in green. We also number
the best configurations and provide features used in them in table 4.1.

Figure 4.1: Plot of hit rate vs FPR of forest region using all combinations of intensity, diff
intensity, motion magnitude and correlation features with all possible number of rounds. Best
experiments are plotted in green

and configurations shown in table 4.1 .

We choose the green marked experiments (8 configurations) as the best con-
figurations and we discard the rest of the other configurations. Configura-
tions (2,3,4,7,8) achieves high hit rate while maintaining low FPR. We still
choose configurations (1,5,6) since they maximize the hitrate and this is our
main priority. For the best 8 configurations, we combine them with the
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Table 4.1: Table showing best forest configurations using features intensity, motion magnitude,
correlation, diff intensity

Experiment Rounds Features Used
1 1 intensity
2 1 diff intensity
3 2 intensity, motion mag.
4 2 diff intensity, motion mag.
5 2 correlation, diff inetnsity
6 3 correlation, motion mag., diff intensity
7 4 intensity, motion mag., diff intensity, correlation
8 4 motion mag., diff intensity, correlation, intensity

standard deviation features resulting in the following 40 configurations:

• Eight original configurations without any extra rounds

• Eight configurations with an extra round of diff intensity SD

• Eight configurations with an extra round of motion magnitude SD

• Eight configurations with extra two rounds: motion magnitude SD +
diff intensity SD

• Eight configurations with extra two rounds: diff intensity SD + motion
magnitude SD

We run the 40 configurations and plot the results in figure 4.2. We choose
the 10 configurations shown in table 4.2 as the best configurations for the
forest part. Kindly note that the ids of the best experiments 1 through 10 are
just sequential ids. The first 8 experiments with ids 1 through 8 are different
from the first 8 experiments in 4.1 and in table 4.2.

4.3.2 Determining best feature configuration in Sky Region

We follow a similar technique in determining the best feature configuration
for the sky region. We first pick the features: diff intensity, motion magni-
tude intensity and correlation, and run all possible configurations with all
possible numbers of clustering rounds. This results in 15 (3P1 + 3P2 + 3P3)
experiments shown in the figure 4.3 and in table 4.3.

We choose the best 10 configurations that produce the highest hit rates while
keeping FPR low and combined them with the motion magnitude standard
deviation and the diff intensity standard deviation features like we did in
the forest. Results are shown in the figure 4.4 and in 4.4
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Figure 4.2: Plot of hit rate vs FPR of forest region after adding diff intensity standard deviation
and motion magnitude standard deviation features

Table 4.2: Table showing best forest configurations after adding motion magnitude SD and diff
intensity SD

Experiment Rounds Features Used
1 1 diff intensity
2 2 intensity, motion mag. SD
3 2 diff intensity, motion mag. SD
4 3 intensity, motion mag., motion mag. SD
5 2 diff intensity, diff intensity SD
6 5 intensity, motion mag., diff intensity, correlation,

diff intensity SD
7 4 intensity, motion mag., motion mag. SD,

diff intensity SD
8 4 diff intensity, motion mag., motion mag. SD,

diff intensity SD
9 3 diff Intensity, diff Intensity SD, motion mag. SD
10 6 motion Mag., diff Intensity, correlation, intensity,

diff Intensity SD, motion Mag. SD

4.3.3 Combining forest and sky configurations

We combine the best 10 forest configurations with the best 10 Sky configu-
ration resulting in 100 experiments. We run all experiments and plot the hit
rate vs the FPR of the forest and sky parts combined in figure 4.5.

We then select the best 20 configurations and run them on the test set result-
ing in figure 4.6.
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Table 4.3: Table showing best sky configurations with features diff intensity, motion magnitude,
correlation

Experiment Rounds Features Used
1 1 diff intensity
2 1 correlation
3 1 motion mag.
4 2 correlation, motion mag.
5 3 diff intensity, correlation, motion magnitude
6 3 diff intensity, motion magnitude, correlation
7 3 correlation, diff intensity, motion mag.
8 3 motion mag., diff intensity, correlation

Figure 4.3: Plot of hit rate vs FPR of sky region using all combinations of diff intensity, motion
magnitude and correlation features with all possible number of rounds. Best configurations are
plotted in green.

We also tried the variant of performing the clustering step on all superpixels
from all triplets at one as described in 3.7. We run the same 20 configurations
again on the test set but with clustering all superpixels at once. Results are
shown in figure 4.7.
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Figure 4.4: Plot of hit rate vs FPR of sky region after adding diff intensity standard deviation
and motion magnitude standard deviation features. Best configurations are plotted in green.

Figure 4.5: Plot of hit rate vs FPR of whole images with forest and sky regions combined
together. Best 20 configurations shown in green.
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Table 4.4: Table showing best sky configurations after adding motion magnitude SD and diff
intensity SD

Experiment Rounds Features Used
1 1 motion mag.
2 2 diff intensity, motion mag. SD
3 2 motion mag., motion mag. SD
4 2 correlation, diff intensity SD
5 2 motion mag., diff intensity SD
6 3 correlation, motion mag., diff intensity SD
7 3 motion mag., motion mag. SD, diff intensity SD
8 5 diff intensity, correlation, motion mag.

motion mag. SD, diff intensity SD
9 5 diff Intensity, correlation, motion mag.

diff intensity SD, motion mag. SD
10 5 motion Mag., diff Intensity, correlation

diff Intensity SD, motion Mag. SD

Figure 4.6: Plot of hit rate vs FPR on the test set
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Figure 4.7: Plot of hit rate vs FPR on the test set, clustering superpixels from all triplets
together at the same time

4.4 Visualization Of results

In this section, we show pairs of images showing original smoke image
and image with potential smoke regions highlighted. Forest smoke is high-
lighted in blue while sky smoke is highlighted in green. Results are shown
in figures 4.8, 4.9, 4.10, 4.11 and 4.12

Figure 4.8: Figure showing algorithm results

4.5 Discussion

In this section we try to interpret the results obtained in the previous section.
First, we adopted the strategy of searching for the best configurations of for-
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Figure 4.9: Figure showing algorithm results

Figure 4.10: Figure showing algorithm results

Figure 4.11: Figure showing algorithm results. Wind mills are mistankely inluded as smoke

est and sky regions separately before combining the configurations. Such a
greedy strategy is effective at limiting the search space but can’t guarantee
reaching the globally optimal combined feature configuration of forest and
sky. This is because in a combined feature configuration (forest + sky config-
uration that solves the problem for the whole image), metrics such as the hit
rate relies on the combination of forest and sky configurations. Let’s assume
that we have two forest configuration f1 and f2 such that forestHitRate(f1) <
forestHitRate(f2). Lets also assume that there is a sky configuration s1 and
another configuration s2 such that skyHitRate(s1) < skyHitRate(s2). It can
be the case that f1 when combined with s1 produce a hit rate higher than

Figure 4.12: Figure showing algorithm results. Some forest regions are mistakenly included as
smoke
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f2 combined with s2. This can occur when the number of distinct triplets in
which smoke is hit by combined configuration f1 + s1 is greater than num-
ber of distinct triplets in which smoke is hit by the combined configuration
f2 + s2.

We can also observe that hitrates achieved in forest part alone 4.2 or sky
part alone 4.4 are generally lower than hitrates achieved in combined con-
figurations 4.5. In sky or forest alone, hit rate barely exceeds 90% while in
combined configurations we reach perfect hit rates. This is because, when
we run experiments on whole images, the hit rate per triplet is one if smoke
is hit in sky region or if it is hit in forest region of in both.

In general, FPR is lesser in case of forest experiments 4.2 compared to forest
experiments (figure 4.4) with most of the forest experiments achieving a FPR
of less than 0.1 compared to sky experiments where FPR is generally lower
than 0.2. We believe that this is caused by the fact that sky region has more
noise than the forest region. We believe that photon noise follows a Poisson
distribution, which means that the standard deviation is equal to the mean.
The more photons that hit the camera, the higher the noise. This is the case
with sky regions since they are usually brighter.

When applying the algorithm on test set (figure 4.6), we notice a very good
performance. Configurations 9 and 10 achieve hit rates of 94% and 93%
respectively while having FPR of 0.035 and 0.04 respectively.

When comparing the main algorithm results on the test set 4.6 to the algo-
rithm’s variant results on the test set (figure 4.7), we notice that our algo-
rithm performs better in terms of hit rate when considering one image at a
time. This is shown in configurations 1 and 7 that achieve 97% hit rate when
algorithm is applied on a single image at a time compared to when all su-
perpixels are clustered together (both achieving less than 90% hit rate). This
can be explained by the fact that feature distributions vary across different
images. For example, We consider two images, one with a very dark forest
and the second with a very bright forest. The intensity values of the darker
forest would be lesser than intensity values of a bright forest. This means
that brighter parts of the darker forest wouldn’t have same intensity values
as brighter parts of bright forest. Thus combining superpixels of both forests
together and clustering on intensity feature and choosing the bright super-
pixels from the set of combined superpixels would most probably lead to
discarding the bright regions of the darker forest and leading to potentially
missing the smoke in it. We also observe that considering one triplet at a
time as in the main algorithm cause a higher FPR than when all images are
clustered at once. However, we give higher priority to the hit rate than the
false positive rate since missing smoke is more dangerous than having extra
false positive regions.

It should be noted that for the best performing configurations (configura-
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tions 9,10) on the test set 4.6, the forest features used are: diff intensity
followed by motion magnitude SD. For the sky part, configuration 9 uses
motionMagnitude, motionMagnitude SD, diff Intensity SD while configura-
tion 10 uses: diff Intensity,correlation,motion magnitude,motion magnitude
SD,diff intensity SD. We think this is the case in the forest as diff intensity
helps choosing the moving parts while the motion magnitude sd separates
the smoke from the rest of the moving parts. For the sky part, the diff image
intensity isn’t as good due to the noise present in the sky. However, the se-
quence of features motion magnitude, motion magnitude SD, diff intensity
SD can be explained in a similar way. The motion magnitude first chooses
the moving parts while the motion magnitude SD and diff intensity SD help
separating smoke from non-smoke regions.
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Chapter 5

Conclusion

In this thesis, we developed an algorithm for smoke region detection. The
algorithm takes as input triplets of images of the same scene (though can
theoretically take image sequences of any length) and detects potential re-
gions of smoke in a semi-supervised manner. We separated the problem
into two subproblems, namely: detecting smoke regions in forest and sky
regions separately. We investigated the use of several features for each of the
subproblems and experimented various ways of combining them to achieve
the best accuracy of smoke detection. At each round, we pick a new fea-
ture and use it to discard non-smoke regions. The algorithm is relatively
simple to understand since we only use one feature at each round and rely
on the simple yet powerful Expectation Maximization algorithm to differen-
tiate between potential smoke and non-smoke regions. This makes it easier
to debug the pipeline, incorporate new features and adapt it to new scenes.
All what is required is to retrain the model using new scenes, select the
best features to use in the new conditions and incorporate newer features if
necessary.

We tested the algorithm on a test set captured later in time and contained
new scenes. We could achieve a 94% hit rate while keeping the FPR at 0.04
(configuration 9 of the test set using diff intensity, motion magnitude SD for
forest and diff intensity, motion magnitude SD and diff intensity SD for the
sky).

5.1 Model limitations and Future work

The main model limitation is that it only uses local information of super-
pixels. This means that a superpixel with similar appearance as smoke and
some motion can be mistakenly detected as a potential smoke region as in
figure 5.1.
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5. Conclusion

This limitation can be addressed by using Markov Random fields to incor-
porate global information. For example, a superpixel is more likely to be a
smoke superpixel if its neighbour is a smoke superpixel too.

The pipeline presented in this thesis can be extended by incorporating more
features. Some of these features include:

• Texture description features: It can be useful to add features that de-
scribe smoke patterns, An example of such a feature is the Local Binary
Pattern [4].

• Wavelet features: Smoke tends to blur the region behind it leading to
a reduction in the high frequency components of the image. Wavelets
can help determine the drop in the high frequency components in a
particular region

Another Idea is to employ object detection techniques to remove certain
objects from the images. An example of this is implementing a windmill
detector that removes superpixels containing windmills/electricity towers
from the sky. This can be achieved by using a vertical edge detector operator
to determine such objects.

Last but not least, by manually labelling the exact smoke regions, one can
use the whole domain of supervised learning to be able to solve the prob-
lem. Manual labels can be obtained via crowd-sourcing or through the help
of volunteers. After extracting the regions of interest using the algorithm
described in this thesis, extracted regions can be used to train a classifier.
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5.1. Model limitations and Future work

Original Image

False positive regions similar to smoke surrounded in red

Figure 5.1: False positive Smoke similar superpixels
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