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Abstract

A pivotal task in shape deformation is calculation of weight functions, also named coordinates,
to blend transformations defined at control handles, binding the shape to the handles. This has
previously been attacked by meshing the shape and optimizing a global energy at bind time.
In this thesis, we develop a novel, mesh-less method to compute coordinates by solving in-
dividual, decoupled problems at each point and using radial basis interpolation to interpolate
coordinates smoothly across the domain. This shift reduces the cost of the binding step signifi-
cantly and hence allows user-driven interactive modification of weights during pose time, which
is infeasible with previous methods. Our method can also handle shapes comprising parts with
different dimensionality, in contrast to mesh-based approaches. Preservation of salient details
of the shape that are defined during interaction is possible in our framework by coupling weight
optimization locally.
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Introduction 
Geometry and image deformation is one of the fundamental operations in processing of 
visual content. One proven way of deforming a shape is via a reduced space with intuitive 
controls such as handles. In order to allow for intuitive interaction and robust deformations, 
the interpolating functions, called coordinates, need to satisfy certain properties. So far, 
these properties are enforced by formulating a constrained optimization problem, which is 
solved by using finite element methods. This requires costly meshing, leading to reduced 
smoothness and limiting the methods to mesh-able domains, and an expensive solution of a 
global system. Furthermore, it does not allow for user control by steering the weights. In this 
project, we will develop a mesh-less method for defining coordinates, which will solve all 
mentioned problems. 
 
Task Description 
• Reading and understanding the literature on deformations and kernels 
• Implementing an application for 2D image plane deformation 
• Experimenting with different kernels, sampling methods, and deformation controls 
• Extending the implementation to 3D for surface and general non-manifold deformations 

 
Skills 
• Good programming skills 
• Curiosity and creativity 
 
Remarks 
A written report and an oral presentation conclude the thesis. The thesis is will be overseen 
by Prof. Markus Gross and supervised by Dr. Cengiz Öztireli. 
 
 
Contact 
For further information, please contact the thesis coordinator (cgl-thesis@inf.ethz.ch) 
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1 Introduction

Shape deformation is a central topic in shape and geometry processing, with applications such
as character animation, motion synthesis and image warping. A lot of deformation metaphors
have been used in order to model the way an object changes its shape, including free-form
transforms, curve-based or RBF-based methods, and approaches using cages or skeletons to
provide a simplified version of the object’s structure. Most of these approaches involve a set of
control structures bound on the object, each of which is associated with a specific affine space
transformation. These transformations are then combined, or blended, at each point of the object
to produce the final deformation. Irrespective of the particular blending scheme that is used (for
instance linear blend skinning), the blending weights of the control handles’ transformations are
subject to certain requirements that guarantee intuitive deformation results.

More specifically, the weights should ideally be smooth, shape-aware and local, meaning that a
control handle influences only nearby parts of the shape significantly. Additionally, the weights
should respect any structure that is present in the object. Recent work on designing blending
weights has gradually moved towards covering an ever growing subset of these abstract proper-
ties.

Further requirements for the weights (also named coordinates) are expressed in a more formal,
mathematical setting for the linear blend skinning case and they also aid intuitiveness of the
deformation. First, weights should partition the unity, so that when the same transformation is
applied to all control handles, the whole object is also transformed in this way. Second, when no
transformation is applied to the control handles, the rest-pose of the shape should be reproduced
(reproduction property). Third, the weight of a control handle should be 1 at this control handle
and 0 at all others, which implies that each control handle only influences itself (Lagrange
property). Fourth, in cage-based deformation, where control handles constitute simple points
and are only subject to pure translations, weights should be linear on all edges and faces of the
cage, to ensure that the latter always preserve their linearity. Finally, several authors, such as
Jacobson et al. [1], argue for non-negative weights, while others, such as Wang et al. [2], accept
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1 Introduction

negative weights of small magnitude.

Most recent works on designing weights [1, 3, 2] use a mesh to represent the object. This type of
approach restricts weight smoothness to the granularity of the mesh. Moreover, shapes compris-
ing structures of different dimensionality, e.g. volumes combined with surfaces in 3D, cannot
be handled in the mesh-based setting. Weights are usually computed via global optimization
of some rigidity energy over the mesh. The high computational cost of this step leads almost
invariably to a clear temporal separation between the binding or rigging stage (weight calcula-
tion) and the deformation stage (blending of control handle transformations using the calculated
weights), which hinders interactivity. To the best of our knowledge, the only exception to this
paradigm is the method in [2], where the user can interactively add or remove control handles
but does not have direct control on the corresponding weights.

Kernel coordinates is a novel method for computing weights to blend control handle trans-
formations, based on reproducing kernel bases. It involves meshless sampling of the object’s
domain and optimization of weights defined at individual point samples, which are subject to
user control. Weights at sampling locations are constrained during optimization to satisfy the
aforementioned properties. Eventually, dual kernel functions are used to smoothly interpolate
these weights at any point of the object and get coordinate functions that automatically inherit
all prescribed properties.

More formally, suppose that a real function f is sampled at n locations x1, . . . , xn. The value
of the kernel for a pair of these sampling locations is denoted by k(xi, xj) and, for an arbitrary
point x, we write the kernel function corresponding to the i-th sampling location as

ki(x) = k(x, xi) (1.1)

and stack all of them in vector

k(x) =
[
k1(x) · · · kn(x)

]T
. (1.2)

Using this notation, the n× n kernel matrix is defined as

K =


k(x1)T

...

k(xn)T

 (1.3)

and its (i, j)-th element is denoted by kij = k(xi,xj).

The above defined kernel functions are used as a basis to interpolate f at sampling locations.
Denote by

f =
[
f(x1) · · · f(xn)

]T
the vector of values of f at sampling locations. Interpolation coefficients a are by definition the
solution of the linear system

Ka = f ⇒ a = K−1f . (1.4)

Thus, the interpolant f̄ is expressed as

f̄(x) = aTk(x) = fTK−1k(x), (1.5)

2



where vector
a(x) =

[
a1(x) · · · an(x)

]T
= K−1k(x) (1.6)

contains the dual kernel functions.

In the coordinates setting, there are m control handles, each one associated with a coordinate
function. Dropping the bar notation for the sake of simplicity, the interpolant of the i-th coordi-
nate function wi at the above set of sampling locations is similarly given by

wi(x) = wi
Ta(x). (1.7)

We stack the samples of all coordinate functions in matrix

W =


w1

T

...

wm
T

 , (1.8)

the elements of which are subject to optimization that is based on user input and satisfaction of
certain properties. The vector of kernel coordinates at point x can then be expressed as

w(x) = Wa(x). (1.9)

The main idea behind our approach is the direct transfer of all desired properties that are pos-
sessed by weights of matrix W to kernel coordinates w(x). We defer the analysis for this result
to Chapter 3, pointing out that the key related property is

n∑
j=1

kj(x) = 1. (1.10)

Sampling the shape with points instead of using a proper mesh enables handling of non-closed
shapes with non-manifold junctions and parts of different dimensionality. Initialization of
weights at sampling locations can be done in a way that respects the shape, e.g. via heat dif-
fusion from control handles using geodesic distances, so that shape-awareness and locality are
guaranteed.

Optimization is then performed individually for each point sample based on the initial values
of the corresponding weights, which can drastically reduce running time, as parallelization is
straightforward. This acceleration paves the way for a new level of interaction: the user can
inspect deformations produced with current weights and provide feedback in the form of a local
modification of weights, e.g. using a smooth brush, to reach a more intuitive deformation. The
system then re-optimizes only for points with modified weights based on user input, enabling
a fast response. This way, a design loop at a low level (direct manipulation of the weights) is
introduced, which effectively integrates the binding with the deformation stage.

Another important direction we aim at is user-driven structure-aware deformation, which cor-
responds to design of weights at a higher level. This can be performed in two modes: first, the
user initially defines structural features of the original object that should be respected through
the entire interaction. These features can be symmetries, which induce symmetric weights, or

3



1 Introduction

salient lines (or sets of lines) of the shape that should be preserved as such (under translations)
or deform in the same way. Second, the user paints regions that should deform as rigidly as
possible with a soft rigidity brush, which is introduced in [1]. Rigidity terms in the objective in-
duce a coupling between points, albeit only at a local level in the vicinity of the painted region,
which relieves us of the need for global optimization and allows re-optimizing at interactive
rates, similarly to direct weight manipulation.

4



2 Related Work

Reproducing kernels have been proposed in [4] as an alternative to standard pointwise sampling
in image synthesis. In this work, Lessig et al. use dual kernel functions as continuous basis
functions for representing signals, introducing a sampling approach which we transfer to the
coordinate functions setting for blending transformations.

Shape deformation has received great interest from researchers during recent years. A popu-
lar approach is to compute generalized barycentric coordinates across the interior of a control
structure called a cage, which is a polyhedron that encloses the shape and captures the basic
structure of it. One of the early cage-based methods is mean value coordinates [5, 6], which ac-
cept a closed-form solution based on geometry of the cage but assume large negative values for
non-convex shapes and are not shape-aware. Harmonic coordinates [7] address the negativity
issue by employing a volumetric solution in the interior of the cage and constitute shape-aware,
local weights with no interior extrema. Further advance towards locality has been made by
Zhang et al. in their local barycentric coordinates work [3], where the shape is discretized us-
ing a triangular mesh (a common choice in most recent works) and optimization on this mesh
involves an objective that induces sparsity to the weights. Bounded biharmonic weights [1]
are differentiated from previous methods in that they are not essentially generalized barycentric
coordinates, but they combine control handles of different types, such as points, skeletons and
cages, which can be placed directly on the object. While optimization in the bounded bihar-
monic weights framework can incorporate energy terms that help to preserve certain parts of
the shape more faithfully during deformation, it does not impose linear reproduction like other
methods do, which brings about unintuitive deformations under linear transformation functions
for cage handles.

A different paradigm for shape deformation originates in the as rigid as possible (ARAP)
method [8], where the shape is represented as a triangular mesh, control handles coincide with
certain vertices of the mesh and a two-step global optimization is run at pose time to limit tri-
angle distortion. Similar elastic energies are utilized in [9] to produce skinning deformations in
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2 Related Work

real time by optimizing a non-linear reduced model in the subspace of deformations. The linear
subspace design proposed in [2] elaborates the use of subspaces in deformation and unifies lin-
ear blend skinning and generalized barycentric coordinates, minimizing a mesh-based quadratic
ARAP energy that guarantees linear reproduction and enables interactive addition and removal
of control handles at pose time, which is not feasible for existing cage-based methods.

Radial basis interpolation has been previously used in [10] to devise a 3D RBF-based defor-
mation scheme which uses a set of spheres that model rigidity of the object’s interior along
with a set of points on its surface to guide interpolation. The authors choose a compact inverse
multiquadric function as the basis function in contrast to our choice of Gaussian RBF, and use
interior distance with respect to the shape as the argument of the RBF to gain shape-awareness.
A meshless technique is presented in [11] to equip 2D deformation spaces of smooth basis func-
tions with theoretical guarantees for injectivity and bounded distortion, by enforcing relevant
constraints on a set of carefully selected points.

Structure-based shape editing relies on identifying meaningful parts of objects and establishing
parameters for each individual part and relations between distinct parts, encapsulating struc-
ture as additional constraints on the deformation. State of the art methods for structure-aware
deformation are summarized in [12]. A representative of these methods is iWires [13], which
preserves geometric features of salient crease lines (“wires”) of man-made objects and relations
between these “wires”, while trying to stay close to user-specified constraints. The deformation
approach for images proposed by Schaefer et al. [14] also incorporates structural features of the
image in the form of lines to control deformation at crucial parts of the image.
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3 Theoretical Analysis of Kernel
Coordinates

3.1 Derivation of Properties

We extend the analysis of Chapter 1 towards justification of our claim that kernel coordinates
automatically inherit the various properties required for blending weights. We use the same
notation as in Chapter 1 in the following.

3.1.1 Dual Kernel Functions

First, we derive partition of unity, Lagrange property and reproduction for dual kernel functions
which are used to perform interpolation in the kernel coordinates framework.

Under certain assumptions for sampling and the parameters of the kernel (see Section 3.2 for
a detailed study of the regular sampling and Gaussian kernel case), it holds for the values of
kernel functions at an arbitrary point x that

n∑
j=1

kj(x) = c,

where c is a positive constant. Simply scaling the kernel by 1/c yields

n∑
j=1

kj(x) = 1⇒ k(x)T1 = 1. (3.1)

Since (3.1) is true at all sampling points, we can collect the n corresponding individual equations

7



3 Theoretical Analysis of Kernel Coordinates

into
K1 = 1⇒ K−11 = 1. (3.2)

Based on (3.1), (3.2) and symmetry of K, we show that the dual kernel functions aj(x), j =
1, . . . , n satisfy the partition of unity property:

n∑
j=1

aj(x) = a(x)T1 = k(x)TK−11 = k(x)T1 = 1. (3.3)

Furthermore, the dual kernel functions obey the Lagrange property by definition. In particular,
we denote the l-th column of K−1 by k−1

l and, due to symmetry of K, we obtain

a(xj) = K−1k(xj) =
n∑
l=1

kjlk
−1
l ⇒ ai(xj) =

n∑
l=1

kjlk
−1
il =

(
K−1K

)
ij

= δij. (3.4)

Last, we turn to the reproduction property and confine our derivation to the case of a Gaussian
kernel. Let Gσ(x) be the isotropic Gaussian with standard deviation σ that is centered at the
origin, given by

Gσ(x) = exp

(
−‖x‖

2

2σ2

)
. (3.5)

The scale of the Gaussian simply coincides with σ in this setting. This Gaussian will serve as
the kernel function in the spatial domain. The Gaussian kernel is then expressed as

k (xi,xj) = Gσ(xi − xj). (3.6)

Point x is reproduced by the dual kernel functions aj(x) if and only if

n∑
j=1

aj(x)xj = x. (3.7)

The first step towards proving (3.7) is to differentiate (3.1) and exploit the form of the Gaussian
gradient:

∇

(
n∑
j=1

kj(x)

)
= − 1

σ2

n∑
j=1

(x− xj)kj(x) = 0⇒

n∑
j=1

xkj(x) =
n∑
j=1

xjkj(x)⇒

x =
n∑
j=1

xjkj(x). (3.8)

Denoting
X =

[
x1 . . . xn

]
, (3.9)
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3.1 Derivation of Properties

(3.8) can be rewritten in matrix form as

x = Xk(x). (3.10)

In addition, collecting all n equations of the form (3.10) at sampling locations, we arrive at

X = XKT ⇒ XK−1 = X. (3.11)

We use (3.10) and (3.11) to derive (3.7) as follows:

n∑
j=1

aj(x)xj = Xa(x) = XK−1k(x) = Xk(x) = x. (3.12)

3.1.2 Kernel Coordinates

Based on the properties which have been derived for dual kernel functions, we show that kernel
coordinates defined through (1.9) also satisfy the same properties, if we enforce appropriate
constraints on weights at sampling locations which constitute matrix W.

More specifically, we require that weights at every sampling point xj partition the unity, which
is expressed as

m∑
i=1

wij = 1, ∀j ∈ {1, . . . , n} (3.13)

or equivalently
1TW = 1T . (3.14)

Additionally, we demand that weights at every sampling point reproduce the latter as a combi-
nation of the respective control points. If we stack control points as columns of a single matrix
C, i.e.

C =
[
c1 . . . cm

]
, (3.15)

then the above requirement for point xj reads:

Cwj = xj. (3.16)

Collecting for all sample points yields

CW = X. (3.17)

We also require that weights on sample points which coincide with control points obey the
Lagrange property. Sampling is performed in such a way that every control point is also a
member of the set of sampling locations. However, since in general there are more sampling
points than control handles, i.e. n > m, we need to establish a convenient correspondence
between indices of the two sets. Without loss of generality, we set xi = ci, i = 1, . . . , m, so
that control points correspond to sample points with the smallest m indices. Then, Lagrange
property is expressed as

wij = δij, ∀i, j ∈ {1, . . . , m}. (3.18)
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3 Theoretical Analysis of Kernel Coordinates

The above constraints on weights are enforced in an optimization step which is presented in
Chapter 4. These constraints suffice to show that the prescribed properties are satisfied every-
where in space by kernel coordinates.

We begin with partition of unity, which is shown using (3.3) and (3.14):

m∑
i=1

wi(x) = 1Tw(x) = 1TWa(x) = 1Ta(x) = 1. (3.19)

It is also straightforward to prove reproduction for kernel coordinates by combining (3.12) with
(3.17):

m∑
i=1

wi(x)ci = Cw(x) = CWa(x) = Xa(x) = x. (3.20)

Finally, we show that Lagrange property holds for kernel coordinates due to (3.4) and (3.18):

w(ci) = w(xi) = Wa(xi) = Wei = wi = ei, (3.21)

where ei is the i-th standard basis vector of the respective Euclidean space.

3.2 Anti-aliasing Analysis for Regular Sampling in 2D

To determine anti-aliasing conditions when sampling the Gaussian kernel, we utilize its Fourier
transform (we use angular frequency as the independent variable in the Fourier domain). In 2D,
this is given by

FT {Gσ(x, y)} = 2πσ2 exp

(
−ω1

2 + ω2
2

2
(

1
σ

)2

)
. (3.22)

In the two-dimensional setting, the set of sampling locations forms a regular 2D grid in the
simplest case. Let T be the common sampling period in both dimensions, so that consecutive
samples along a horizontal or vertical line of the grid are T units of length away from each
other. This corresponds to sampling the kernel function with a 2D periodic impulse train which
can be expressed through a double infinite sum of Dirac deltas:

s(x, y) =
+∞∑

n1=−∞

+∞∑
n2=−∞

δ(x− n1T )δ(y − n2T ). (3.23)

The 2D Fourier transform of the impulse train of (3.23) is then

FT{s(x, y)} = S(ω1, ω2) =
4π2

T 2

+∞∑
k1=−∞

+∞∑
k2=−∞

δ

(
ω1 − k1

2π

T

)
δ

(
ω2 − k2

2π

T

)
. (3.24)

We aim at deriving the optimal scale for the Gaussian kernel under the above sampling config-
uration. This involves a trade-off between:
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3.2 Anti-aliasing Analysis for Regular Sampling in 2D

• avoiding aliasing effects, and

• ensuring good conditioning of the resulting kernel matrix.

To avoid aliasing, it is essential to pick a large enough scale that leads to an adequately con-
centrated Gaussian at the origin of the frequency domain, with negligible overlap with every
impulse except the one at the origin. On the other hand, the scale needs to be small enough,
in order for the spatial Gaussian not to flatten excessively and thus render the kernel matrix
ill-conditioned. A quantification of this argument follows.

When we sample the Gaussian kernel using (3.23), the sampled signal l(x) =
∑

i k (x,xi) is
given by the convolution of the kernel with the impulse train and its Fourier transform is directly
related to the product of their respective Fourier transforms:

l(x, y) = Gσ(x, y) ∗ s(x, y)
FT−→

L (ω1, ω2) =
8π3σ2

T 2
exp

(
−ω1

2 + ω2
2

2
(

1
σ

)2

)
+∞∑

k1=−∞

+∞∑
k2=−∞

δ

(
ω1 − k1

2π

T

)
δ

(
ω2 − k2

2π

T

)
.

(3.25)

The Gaussian in the frequency domain has standard deviation σF = 1/σ. As previously men-
tioned, we want this Gaussian not to overlap with any impulse except the one at the origin. This
is effectively true if the Gaussian has decayed enough at the impulses that are closest to the
origin, i.e. 2π/T units away from its mode. Its value at these locations is

2πσ2 exp

(
−2π2σ2

T 2

)
. (3.26)

The ratio of the above value over the zero-frequency magnitude of the Gaussian is

exp

(
−2π2σ2

T 2

)
(3.27)

and depends on the ratio σ/T . We pick σ such that (3.27) is as small as possible. Putting the
closest impulses 3σF away from the Gaussian’s mode means that σ = 3T/2π and results in
(3.27) being approximately 1.1 · 10−2, which is small but not completely negligible. Instead,
we set 2π/T equal to 6σF to obtain:

σ̂ =
3T

π
. (3.28)

For the last choice, (3.27) becomes approximately 1.5 ·10−8, which is negligible. Consequently,
we use (3.28) to choose the scale of the kernel based on the sampling period.

Substituting in (3.25), we obtain:

L (ω1, ω2) = 72π exp

(
−ω1

2 + ω2
2

2
(

1
σ̂

)2

)
+∞∑

k1=−∞

+∞∑
k2=−∞

δ

(
ω1 − k1

2π

T

)
δ

(
ω2 − k2

2π

T

)
.

(3.29)
Demanding that l(x, y) = c and equating the initial value of the resulting Fourier transform to
the one derived from (3.29), we arrive at

l(x, y) =
18

π
. (3.30)
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Figure 3.1: Sums of rows of kernel matrix K for points forming a 2D grid with spacing T = 1.

3.3 Experimental Verification of Derived Properties

3.3.1 Regular Sampling

Using the result of (3.28), we evaluate K for a 2D grid of 101× 101 points, spaced at intervals
of length T = 1. We then compute the sums of rows of K (equal to

∑1012

j=1 k(xi,xj) for the i-th
row), which should ideally be constant, according to the relevant property. Since each row of K
corresponds to a particular point of the grid, we plot these sums as a color image in Figure 3.1.
One can observe that near the grid boundary, the sums become significantly smaller, due to the
finiteness of the grid (it would be constant everywhere only for an infinite grid). Other than that,
they are effectively constant in the whole interior of the grid’s region. For different spacings of
the grid’s samples, i.e. T 6= 1, we also observe an identical behavior of the examined sums.

The numerical inversion of K, which is constructed based on the analysis in Section 3.2, is
performed without any warnings in MATLAB. Its condition number is in the order of magnitude
of 103 for all experiments. This confirms that the matrix is not ill-conditioned.

At this point, one is able to evaluate the dual kernel functions for a point x, which assume the
form of an n-vector:

a(x) = K−1k(x), (3.31)

where k(x) is defined as

k(x) =
[
k(x,x1) . . . k(x,xn)

]T
. (3.32)

We evaluate the dual kernel functions that correspond to a 2D grid of 41×41 points on a denser
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3.3 Experimental Verification of Derived Properties

“background” grid of 201× 201 points. The evaluation points are placed in the central quarter
of the sampling grid. We experiment with T = 2 and T = 0.5 for the spacing of points and
get practically identical results in both cases. The dual kernel functions for 3 selected points
of the grid are shown in Figure 3.2. As expected, the functions vary with the same frequency
as the sampling frequency of the grid. The profile of the functions is smooth, with no abrupt
changes. A significant observation is that at certain locations, the functions assume strictly
negative values.

We also examine the rest of the desired properties of the functions for the above grid. Firstly,
we check whether the partition of unity holds, by computing the maximum absolute deviation
of the dual kernel functions’ sum from 1, i.e. maxx |a(x)T1 − 1|. This quantity is 2.2 · 10−4,
which indicates a good compliance with the property at every point.

Next, we focus on the Lagrange property. We isolate the grid points that lie in the evaluation area
and compare the corresponding functions to their ideal values, summing the absolute differences
of the respective elements over all points:

n∑
i=1

n∑
j=1

|ai(xj)− δij| .

This “deviation” is equal to 5.1 ·10−11, which means that the Lagrange property is satisfied with
very high accuracy.

Last, we measure how precisely the reproduction property is satisfied. We utilize the l∞ norm
of the displacement of a reproduced point from its initial position, normalized by the spacing of
sample points:

D(x) =
‖
∑n

i=1 ai(x)xi − x‖∞
T

.

We compute certain statistics for D over all background points: its maximum value is 3.4 ·
10−3, its mean value 0.60 · 10−3 and its median value 0.33 · 10−3. Based on these figures, the
reproduction property is approximately satisfied, since there is a non-negligible displacement
relative to the spacing of the evaluation points.

3.3.2 Blue Noise Sampling

We further test dual kernel functions using blue noise sampling. More specifically, we construct
a point distribution, based on the code provided by Balzer et al. [15], which consists of 1024
points scattered over the region [−30, 30]2. For this experiment, we set σ = 2.5 and compute
K, plotting the sums of its rows in Figure 3.3. The result is similar to the one obtained for a grid
(Figure 3.1). However, in the blue noise case, there are small fluctuations of the value of the
sums even in the inner part of the region. The condition number of K is approximately 2.3 ·105.
We observed that for larger values of σ, the aforementioned fluctuations attenuate a little, albeit
at the cost of a condition number that is some orders of magnitude larger. On the contrary,
smaller values of σ result in a better-conditioned kernel matrix, but also in larger fluctuations of
the sums, which render kernel coordinates imprecise.

The next step of this experiment is to evaluate dual kernel functions on a grid of 160 × 160
points. The evaluation points are placed in the central quarter of [−30, 30]2. The dual kernel

13
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Figure 3.2: Dual kernel functions of 3 selected points of a 41×41 grid, evaluated over the inner
quarter of the grid’s region. The functions correspond to (a) the central point of the
grid, (b) a point in the lower left part of the evaluation area and (c) the point at the
lower left corner of the grid which does not lie inside the evaluation area.
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Figure 3.3: Sums of rows of kernel matrix K for 1024 points distributed as blue noise, with
σ = 2.5.

functions for 3 selected points of the distribution are shown in Figure 3.4. The functions are
smooth and vanish as distance from their corresponding point increases. Their profile is not
identical for distinct points (as was the case for regular sampling), since the local configuration
of points varies spatially. Still, the dominant frequency of the profiles is roughly the same for
different coordinates. Again, the functions do assume negative values.

We test the desired properties of dual kernel functions, using the same measures as in Section
3.3.1. The maximum absolute deviation of the functions’ sum from 1 is 3.4 · 10−4, which
indicates a good compliance with partition of unity at every point.

The Lagrange property is slightly more difficult to test, as in general there are no evaluation
points coinciding exactly with any point of the blue noise distribution. In view of this fact, we
compute dual kernel functions at the points of the distribution and do not use the background
grid at all. The deviation we defined in Section 3.3.1 is 5.7 · 10−9, which reflects that the
Lagrange property is quite accurately satisfied.

Finally, we examine the reproduction property, measuring the l∞ norm of the displacement of a
reproduced point from its initial position:∥∥∥∥∥

n∑
i=1

ai(x)xi − x

∥∥∥∥∥
∞

.

We compute certain statistics for this measure over all evaluation points: its maximum value is
1.1 ·10−2, its mean value 0.15 ·10−2 and its median value 0.10 ·10−2. Based on these figures, the
reproduction property is approximately satisfied, since there is a non-negligible displacement
relative to the spacing of the points of the distribution, which is in the order of magnitude of 1.
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Figure 3.4: Dual kernel functions of 3 selected points from a blue noise distribution, evaluated
over the inner quarter of the distribution’s region. The scale of the Gaussian kernel
is σ = 2.5. The functions correspond to (a) a point near the center of the region, (b)
a point in the lower right part of the evaluation area and (c) a point which does not
lie inside the evaluation area.
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3.4 Local Extrema of Kernel Coordinates

3.4 Local Extrema of Kernel Coordinates

Several previous works that introduce weights to blend transformations, such as [7, 1, 3], have
stressed the importance of absence of local extrema in the interior of the shape and verified it
for their weights either theoretically or experimentally. A notable exception to this collection of
works is [2], where the authors justify the small, attenuating oscillations of their weights around
zero with fairness that is gained in interpolation. We use a 1D setting similar to the one in [2]
to investigate how kernel coordinates behave with respect to local extrema.

In particular, let us consider the case of regular sampling in 1D. Our focus is on the general
case of interpolating a function f (not necessarily one corresponding to a weight) sampled at
regularly spaced locations, using our kernel interpolation approach. We use the Gaussian kernel
for our analysis. Let j ∈ Z index sample points xj and suppose that for some l ∈ Z it holds that

f(xj) = 0, ∀j > l and (3.33)
f(xj) > 0, ∀j ≤ l. (3.34)

As we have shown in our experimental examination of the regular sampling case in 2D in Figure
3.2, dual kernel functions assume bounded negative values at certain regions of the space. It can
be shown that in 1D, function al(x) that corresponds to sample point xl assumes its minimum,
which has negative value, in the interval (xl+1, xl+2). Denote the corresponding minimum point
by x∗. We will show that under (3.33), (3.34) and one more assumption on f , its interpolant f̄
has a strict local minimum in (xl+1, xl+2).

At x∗, the value of the interpolant is given by

f̄(x∗) =
∑
j

aj(x
∗)f(xj)

(3.33)
=
∑
j≤l

aj(x
∗)f(xj)

=
+∞∑
k=0

al−k(x
∗)f(xl−k)

=
+∞∑
k=0

al−2k(x
∗)f(xl−2k) + al−2k−1(x∗)f(xl−2k−1).

It can be shown that al−2k(x
∗) < 0 and al−2k−1(x∗) > 0, ∀k ∈ N. Moreover, |al−2k(x

∗)| >
|al−2k−1(x∗)|, ∀k ∈ N. If we further assume for f that

f(xl−2k)

f(xl−2k−1)
>
|al−2k−1(x∗)|
|al−2k(x∗)|

, ∀k ∈ N, (3.35)

then al−2k(x
∗)f(xl−2k) + al−2k−1(x∗)f(xl−2k−1) < 0, ∀k ∈ N and summing over all k leads to

f̄(x∗) < 0. Combining this with f̄(xl+1) = f̄(xl+2) = 0, which is due to the Lagrange property,
shows that f̄ has a strict local minimum in (xl+1, xl+2).
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Figure 3.5: Function f defined in (3.36), sampled regularly at 21 points.

We provide an example for the above analysis, using 21 samples x1, . . . , x21 spaced regularly
with period T = 1 in the interval [−10, 10]. The interpolated function is defined as

f(x) =

 −x/10, x < 0

0, x ≥ 0

 (3.36)

and its samples are illustrated in Figure 3.5. In this case, l = 10. We use the optimal scale
parameter for the Gaussian kernel based on (3.28) (the analysis is almost the same in 1D as in
2D). We show the dual kernel function for x11 = 0 in Figure 3.6. Finally, Figure 3.7 demon-
strates the existence of a local minimum of the interpolant f̄ in (x11, x12) = (0, 1). Oscillation
of the interpolant also extends to the next interval, although at a smaller magnitude.

We turn to a function that is more relevant for our method, namely a weight function obtained
with heat diffusion starting from a certain point (we provide details for heat diffusion in Section
4.7). In particular, we define 101 regularly spaced samples with sampling period T = 1 in the
interval [−50, 50]. We run heat diffusion from the point x21 = −30 and evaluate the interpolant
of the resulting weights in the interval [−30, 30]. Results for 5 iterations of heat diffusion
are shown in Figure 3.8 and for 20 iterations in Figure 3.9. In both cases, there are obvious
oscillations of the interpolant, which are slightly less intense for 20 iterations. Figures 3.8(c)
and 3.9(c) clearly show that even when samples have strictly positive values, the interpolant
may assume negative values in between, due to the ripple effect. Figures 3.8(d) and 3.9(d)
depict the continuation of oscillations between positive and negative values in the far right part
of the evaluation interval, albeit with a rapidly attenuating magnitude.
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Figure 3.6: Dual kernel function a11(x) pertaining to sample point x11 = 0, refined to interval
[−3, 3].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.05

0

0.05

0.1

0.15

0.2

x

f̄
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Figure 3.8: Example of interpolation of weights obtained with heat diffusion. (a) Weight sam-
ples after 5 heat diffusion iterations, (b) Interpolant refined to the interval [−30, 30],
(c) Zoom of (b) in the interval [−25, −20], (d) Zoom of (b) in the interval [10, 30].
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Figure 3.9: Example of interpolation of weights obtained with heat diffusion. (a) Weight
samples after 20 heat diffusion iterations, (b) Interpolant refined to the interval
[−30, 30], (c) Zoom of (b) in the interval [−9, −4], (d) Zoom of (b) in the inter-
val [10, 30].
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3.5 Jacobian Matrix for 2D Deformation with Kernel
Coordinates

Poranne and Lipman [11] connect the distortion induced by a continuously differentiable planar
(2D) mapping to the singular values of its Jacobian matrix. In the case of kernel coordinates,
this Jacobian can be derived straightforwardly when linear blend skinning is the underlying
model for applying the deformation to the shape.

More specifically, let f(x) denote the image of an arbitrary point x (both in homogeneous
representation) under the examined mapping and Ti denote the transformation related to ci, i =
1, . . . , m. Linear blend skinning implies that given the weights w(x) for this point, its image
is simply given by

f(x) =
[
T1x · · · Tmx

]
w(x). (3.37)

(3.37) can be re-expressed as

f(x) =
[
T1 · · · Tm

]
w1(x)Id+1

...

wm(x)Id+1

x, (3.38)

so that standard properties of matrix differentiation can be used to compute the Jacobian matrix.
In particular, if we denote the final linear blend skinning transformation applied to x by T(x),
it follows that

Jf(x) =
[
T1 · · · Tm

]

w1(x)Id+1

...

wm(x)Id+1

+


x∇w1(x)T

...

x∇wm(x)T




= T(x) +
[
T1x · · · Tmx

]
Jw(x). (3.39)

In our kernel coordinates framework, the weights are computed as an interpolation of user-
defined weights W with dual kernel functions K−1k(x), leading to the following form:

w(x) = WK−1k(x). (3.40)

Due to linearity of the differential operator, the Jacobian matrix for (3.40) is

Jw(x) = WK−1Jk(x). (3.41)

Focusing on the Gaussian kernel, the gradient of the i-th element of k(x), as defined in (3.32),
is

∇k(x, xi) = − 1

σ2
k(x, xi)(x− xi). (3.42)

Using the notation of (3.9), we obtain

Jk(x) = − 1

σ2
diag (k(x))

(
1xT −XT

)
. (3.43)
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3.5 Jacobian Matrix for 2D Deformation with Kernel Coordinates

Finally, we combine (3.39) with (3.41) and (3.43) into

Jf(x) = T(x)− 1

σ2

[
T1x · · · Tmx

]
WK−1 diag (k(x))

(
1xT −XT

)
. (3.44)
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4 Weight Optimization

In our framework, we let the user interact with the application and input her preferred weights
for various parts of the object. However, user-specified weights (or weights used to initialize the
interface) do not possess all the desired properties in general. Ideally, we would like weights
to be as “close” to what the user has indicated as possible and at the same time satisfy all
properties. We construct various objectives that measure this proximity and use different sets of
constraints to model the desired properties, which lead to distinct optimization problems.

4.1 Quadratic Programming

First, we employ a quadratic cost for the deviation from the input weights, which leads to a well-
defined quadratic program for each point. For the j-th input point xj , let wj

(0) be the vector of
input weights for this point and wj the final weight vector, which is subject to optimization.

The quadratic objective is defined as

min
wj

{∥∥wj −wj
(0)
∥∥2

2

}
and it can be reformulated by dropping the constant term as

min
wj

{
wj

Twj − 2
(
wj

(0)
)T

wj

}
.

The properties of the weights—reproduction, partition of unity and non-negativity—can be
expressed in matrix notation as linear equalities or inequalities, hence resulting in a quadratic
program. Consequently, n quadratic programs are to be solved in total, the j-th of which is
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4 Weight Optimization

min
wj

{
wj

Twj − 2
(
wj

(0)
)T

wj

}
(4.1a)

s.t. Cwj = xj, (4.1b)

1Twj = 1, (4.1c)
wj ≥ 0. (4.1d)

4.2 Lifting Non-negativity

Solving a quadratic program like (4.1) can be costly, especially if the number of control weights,
i.e. the dimensionality of the problem, is relatively large. Therefore, it is possible to omit the
non-negativity constraint (4.1d) and recast the optimization in a form that admits an closed-form
solution:

min
wj

{
wj

Twj − 2
(
wj

(0)
)T

wj

}
(4.2a)

s.t. Cwj = xj, (4.2b)

1Twj = 1. (4.2c)

We form the Lagrangian for (4.2) as

L(wj, λ, µ) = wj
Twj − 2

(
wj

(0)
)T

wj + λT (Cwj − xj) + µ
(
1Twj − 1

)
(4.3)

and set its partial derivatives to 0 to obtain the expressions for the Lagrange multipliers and the
optimal weight vector:

λ = 2

(
CCT − 1

m
C1 (C1)T

)−1(
Cwj

(0) +
1− 1Twj

(0)

m
C1− xj

)
, (4.4)

µ

2
=

1Twj
(0) − 1− 1

2
1TCTλ

m
, (4.5)

wj = wj
(0) − 1

2
CTλ− µ

2
1. (4.6)

Based on (4.4)–(4.6) which only involve linear operations, we can compute the output weights
very fast, compared to the original quadratic program that included the non-negativity con-
straint. Of course, this comes at the expense of weights assuming negative values at certain
areas of the object.

4.3 Linear Precision on Edges

Unfortunately, omitting the non-negativity constraint leads to loss of linear precision on the
edges (or faces) of the cage, since reproduction alone cannot force the weights to be linear on
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4.4 `1 Optimization

the edges when they can assume negative values. In order to guarantee linear precision on the
edges, we must explicitly set all weights to zero for sample points that lie on some edge, except
the ones corresponding to the control points at the ends of this edge.

For such a 2D point x, let k, l ∈ {1, . . . , m} be the distinct indices of the control points at the
ends of the edge. Partition of unity and reproduction at this point mean that

wk + wl = 1,

wkck + wlcl = x.

We solve this linear system to obtain expressions for the two non-zero weights:

wk =
(x− cl)

T (ck − cl)

‖ck − cl‖2 , (4.7a)

wl =
(x− ck)

T (cl − ck)

‖ck − cl‖2 . (4.7b)

4.4 `1 Optimization

Instead of a quadratic cost, it is also valid to penalize the `1 distance of the output weights from
the desired weights. This way, the difference of the two vectors becomes sparse. We denote this
difference by vj = wj −wj

(0) and, omitting the non-negativity constraint again, the problem is
formulated as

min
vj

{
‖vj‖1

}
(4.8a)

s.t. Cvj = xj −Cwj
(0), (4.8b)

1Tvj = 1− 1Twj
(0). (4.8c)

This minimization of `1 norm under linear equality constraints is studied in [16], where the
problem is recast to a linear program and solved via a primal-dual algorithm. Candès and
Romberg provide in the supplementary material of [16] a MATLAB function, l1eq_pd, that
performs the relevant optimization. We use this function to solve (4.8).

4.5 `1-norm Regularization

While the problem of (4.8) guarantees a sparse difference vector between the desired weights
and the optimized ones, we would rather have sparse optimized weights, which implies locality
of the weights and aids interpretation of how each control handle influences the shape. The
least absolute shrinkage and selection operator (LASSO) [17] regularizes a quadratic cost with
an `1 norm term to induce sparsity in the resulting vector. However, the LASSO pertains to an
unconstrained setting, whereas our framework (e.g. (4.1)) essentially involves constraints that
guarantee reproduction, partition of unity and non-negativity. Therefore, adding an `1-norm
regularizer results in the following modification of (4.1), where λ > 0:
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4 Weight Optimization

min
wj

{∥∥wj −wj
(0)
∥∥2

2
+ λ ‖wj‖1

}
(4.9a)

s.t. Cwj = xj, (4.9b)

1Twj = 1, (4.9c)
wj ≥ 0. (4.9d)

The combination of constraints (4.9c) and (4.9d) implies that for any feasible point of (4.9),
‖wj‖1 = 1. This means that the `1-norm regularizer is constant for all feasible weights
and hence can be omitted from the objective function, reducing problem (4.9) to our origi-
nal quadratic programming formulation (4.1). Consequently, `1-norm regularization does not
provide us with a different (potentially sparse) result than the one obtained with quadratic pro-
gramming.

4.6 Weight Initialization with Heat Diffusion

The initial weights wj
(0) of the optimization affect the obtained solution greatly, no matter

which of the above formulations is used. For our first, simple experiments, initialization can be
performed synthetically, using the inverse squared Euclidean distance between the sample point
and the control point:

wij
(0) =

1

1 +
(
‖xj−ci‖

p

)2 . (4.10)

However, using Euclidean distances of the ambient space to compute weights is known to disre-
spect the particularities of the processed shape. To ensure shape-awareness of the initial values
of the weights which are fed to optimization, we employ heat diffusion on the shape. More
specifically, each coordinate is initialized to a Dirac delta at the corresponding control point:

wij
(0) ← δij, i = 1, . . . , m, j = 1, . . . , n. (4.11)

In (4.11), we use the same convention for indexing sample points as in (3.18) (the first indices
of sample points correspond to the control points) to simplify the expression. Subsequently,
we iteratively update weights for sample points other than those coinciding with control points
by diffusing heat from the latter. This operation involves the same Gaussian kernel matrix K
that we use to interpolate weights. We note that weights at control points are kept fixed during
diffusion to their initial values which obey the Lagrange property. Each iteration of the diffusion
can be expressed in matrix form as

W
(0)
:,D ←W(0)K:,D, (4.12)

where D = {m + 1, . . . , n} indexes all sample points apart from the control points. We refer
to the above variant as heat diffusion with impulse initialization.

In practice, we also want sample points along the edges of a cage to have linear initial weights,
so that subsequent optimization is trivially guided to these linear values that satisfy all con-
straints. For this reason, we use (4.7) to initialize weights for such points to linear values and

28



4.7 Experimental Results

keep them fixed across heat diffusion iterations. As a result, the update equation for heat diffu-
sion is modified to

W
(0)
:,I ←W(0)K:,I , (4.13)

where I indexes sample points that do not lie on an edge. We term this variant heat diffusion
with fixed linear weights on edges.

4.7 Experimental Results

We experiment on a 2D grid consisting of 101 × 101 points, spaced at intervals of length
T = 0.1. We use four control points at the corners of the grid and define synthetic initial weights
based on (4.10), using p = 1. These synthetic weights are shown in Figures 4.1(a)–4.1(d). We
perform optimization for the weights with all above-mentioned methods and present the results
in Figures 4.1(e)–4.1(t). Partition of unity has forced the weights to grow in the middle area
of the grid and become less local, however the smoothness of the initial weights has been pre-
served in all cases. The solutions obtained with `1 optimization and quadratic cost minimization
appear smoother, whereas quadratic programming produces weights that are not differentiable
along certain lines of the grid’s region. It is noteworthy that for quadratic cost minimization, the
weights become negative near the corner opposite the respective control point. On the contrary,
despite the fact that non-negativity is not explicitly included in the formulation of `1 minimiza-
tion, the resulting weights assume positive values almost in the entire grid and the few negative
weights have very small magnitude.

We also test weight initialization with heat diffusion on the above grid, using both variants
described in Section 4.6. For the processed grid, we ran 5 iterations of heat diffusion in both
cases. Initial weights acquired with heat diffusion with impulse initialization are shown in
Figures 4.2(a)–4.2(d). We perform optimization for these weights with all methods (except
quadratic cost minimization with no linear precision on edges) and present the results in Fig-
ures 4.2(e)–4.2(p). Results for quadratic programming and `1 optimization are almost identical
with initialization through inverse squared distance weights. On the other hand, quadratic cost
minimization without non-negativity constraints yields linearly decaying weights in the interior
of the grid, while weights on the edges deviate from this pattern because of enforcement of
linear precision.

Heat diffusion with fixed linear weights on edges results in initial weights shown in Figures
4.3(a)–4.3(d). We run optimization on these weights with all methods (apart from quadratic
cost minimization with explicit linear precision on edges, since the input weights to optimiza-
tion already satisfy all properties, including linear precision) and demonstrate the optimization
output in Figures 4.3(e)–4.3(p). Results for quadratic programming and `1 optimization are al-
most identical with the ones obtained using heat diffusion with impulse initialization. Further-
more, the weights obtained with quadratic cost minimization without non-negativity constraints
only differ with the previous result near the boundary of the grid’s region, where we observe
a smoother transition from linear values to the distinct linear pattern of the interior that also
occurs with the previous heat diffusion variant.

To further verify that the optimized weights are intuitive, we isolate the points on the diago-
nals of the grid and on its edges. We visualize the results for the control point at the lower
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Figure 4.1: Comparison of approaches to weight selection on a 101 × 101 grid. Four con-
trol points are used, each one corresponding to a column of the figure. The input
weights, based on the reciprocal quadratic distance from the control points, are pre-
sented in the first row. The weights are computed with quadratic programming
(second row), quadratic cost minimization without non-negativity constraints (third
row), quadratic cost minimization without non-negativity constraints and with linear
precision on edges (fourth row) and `1 norm minimization (fifth row).
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Figure 4.2: Comparison of approaches to weight selection on a 101 × 101 grid. Four con-
trol points are used, each one corresponding to a column of the figure. The input
weights, based on heat diffusion with impulse initialization, are presented in the
first row. The weights are computed with quadratic programming (second row),
quadratic cost minimization without non-negativity constraints and with linear pre-
cision on edges (third row) and `1 norm minimization (fourth row).
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Figure 4.3: Comparison of approaches to weight selection on a 101 × 101 grid. Four con-
trol points are used, each one corresponding to a column of the figure. The input
weights, based on heat diffusion with fixed linear weights on edges, are presented in
the first row. The weights are computed with quadratic programming (second row),
quadratic cost minimization without non-negativity constraints (third row) and `1

norm minimization (fourth row).
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4.7 Experimental Results

Method Time (s) Time per point (ms)

QP 17.1 1.7

QEC 0.109 0.011

`1 7.61 0.75

Table 4.1: Running times of different optimization approaches for weight selection. QP stands
for quadratic programming and QEC for minimization of quadratic cost only with
equality constraints.

left corner of the grid in Figures 4.4, 4.5 and 4.6, which correspond to initialization via inverse
squared distance, heat diffusion with impulse initialization and heat diffusion with fixed lin-
ear weights on edges respectively. The results were identical for the rest of the control points.
We found that for quadratic programming and `1 optimization, weights are effectively mono-
tonic along the neighboring edges of the control point and the relevant diagonal, irrespective
of the initialization method (Figures 4.4(a)–4.4(c), 4.4(m)–4.4(o), 4.5(a)–4.5(c), 4.5(i)–4.5(k),
4.6(a)–4.6(c), 4.6(i)–4.6(k)). On the contrary, weights resulting from quadratic cost minimiza-
tion without non-negativity are not monotonic on the diagonal in any case. Furthermore, these
weights do not satisfy linear precision on the edges when it is not enforced explicitly or ensured
through proper initialization, as we can deduce from Figures 4.4(f)–(g). This is due to weights
of control points away from the edges assuming non-zero values, which is illustrated in Figure
4.4(h). Once linear precision is enforced by calculating the relevant weights directly from the
constraints (Figures 4.4(j)–(k) and 4.5(f)–(g)) or ensured via providing linear initial weights to
the optimization (Figures 4.6(f)–(g)), weights do become linear along the edges. As regards
`1 optimization and quadratic programming, linear precision on edges is effectively satisfied
even without any explicit constraints, since weights from control points away from an edge are
practically zero (Figures 4.4(d), 4.4(p), 4.5(d) and 4.5(l)). We should also note that the profile
of weights for quadratic programming along the diagonal of the grid (Figures 4.4(a), 4.5(a) and
4.6(a)) bears a clear resemblance to the example we have illustrated in Section 3.4 and more
specifically in Figures 3.5–3.7. Therefore, when interpolating these weights to evaluate kernel
coordinates, we should expect oscillations around zero near the point where weights exhibit the
characteristic “knee”.

We measured the running time for weight optimization with each method. In Table 4.1, we
provide the total running time for each method, as well as the average time spent for each point
of the grid (in order to have a result that is independent of the grid size). As expected, the
closed-form solution of quadratic cost without non-negativity constraints takes by far the least
time to compute. Between the two remaining methods, `1 optimization is at least twice as fast
as quadratic programming, needing only few iterations of the primal-dual algorithm to reach
the optimum of the corresponding linear program.
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Figure 4.4: Variation of optimized weights on the diagonal and edges of a 101 × 101 grid with
four control points. Weights were initialized with (4.10). The control point at the
lower left corner of the grid was chosen to create the plots. The horizontal axis of
the plots shows the point number on the diagonal or edge, starting from the point
farthest from the examined control point. We compare quadratic programming (first
row), quadratic cost without non-negativity constraints (second row), quadratic cost
without non-negativity constraints and with linear precision on edges (third row) and
`1 cost (fourth row). The first column corresponds to the weights on the diagonal,
the second column to the weights on the edge to the left of the control point, the
third column to those on the edge to the right of the control point and the fourth
column to those on an edge that lies away from the control point.
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Figure 4.5: Variation of optimized weights on the diagonal and edges of a 101 × 101 grid with
four control points. Weights were initialized with heat diffusion with impulse initial-
ization. The control point at the lower left corner of the grid was chosen to create
the plots. The horizontal axis of the plots shows the point number on the diago-
nal or edge, starting from the point farthest from the examined control point. We
compare quadratic programming (first row), quadratic cost without non-negativity
constraints and with linear precision on edges (second row) and `1 cost (third row).
The first column corresponds to the weights on the diagonal, the second column to
the weights on the edge to the left of the control point, the third column to those on
the edge to the right of the control point and the fourth column to those on an edge
that lies away from the control point.
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Figure 4.6: Variation of optimized weights on the diagonal and edges of a 101 × 101 grid with
four control points. Weights were initialized with heat diffusion with fixed linear
weights on edges. The control point at the lower left corner of the grid was chosen
to create the plots. The horizontal axis of the plots shows the point number on the di-
agonal or edge, starting from the point farthest from the examined control point. We
compare quadratic programming (first row), quadratic cost without non-negativity
constraints (second row) and `1 cost (third row). The first column corresponds to
the weights on the diagonal, the second column to the weights on the edge to the left
of the control point, the third column to those on the edge to the right of the control
point and the fourth column to those on an edge that lies away from the control
point.
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5 Structure-aware Weights

To simplify the interface for weight design, we examine the possibility of exploiting inherent
structure of the processed object. Our motivation comes from the well-justified principles of
structure-aware shape processing that are consolidated in [12]. Structure-based models pave
the way for intuitiveness and plausibility of the edited shape, since they incorporate non-local
relations and preserve structure, in contrast to local differential operator methods. More specif-
ically, the authors of [12] argue that if a user is only allowed to process the object at a very low
level related to geometric primitives, she is significantly deprived of design freedom. They pro-
pose processing at a higher, structural level as a solution to this “content creation bottleneck”.
In our framework, the user applies local modifications to control weights, which are at a rather
low level with respect to the final deformation. Consequently, it is crucial that we provide her
with some high-level handles as well, to make interaction more efficient and intuitive.

5.1 Generic Framework

Mitra et al. point out in [12] that most of the approaches to structure-aware shape editing include
two main steps:

1. an analysis step, in which structure in the input data is discovered.

2. a processing step, in which the original shape is edited (deformed) to produce new ver-
sions.

The analysis step is essential, as the input data are usually not annotated with structure. While
identifying structure might be cast to the user manually indicating several parts of the object
which are related, it is preferable to automatically recognize structural properties and relieve
the user from this burden. In particular, deformation models like cage-based methods focus on
single input shapes and use an a priori model to represent relations between parts of the object.
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5 Structure-aware Weights

This model encodes constraints on differential properties of deformation functions (e.g. related
to smoothness). Therefore, structure can be extracted by fitting this fixed model to the input
shape. A key source of structure that drives this kind of analysis is symmetry.

The resulting structure is encoded as a constraint which restricts the ways in which the object
can deform during the processing step, leading to fewer degrees of freedom in editing and mak-
ing it easier to achieve satisfactory edits. This is the essence of structure-aware shape editing.
We refer to structure-aware shape editing that employs deformation models as structure-aware
deformation.

5.2 Parts, Parameters and Relations

Mitra et al. [12] provide a unifying definition of structure for a given shape. A shape is a
collection of distinct parts, each one equipped with a set of parameters, which are coupled by
certain relations regarding their arrangement. Structure-aware deformation aims at preservation
of abstract relations, like salient features of the shape or specific types of symmetry. To achieve
these goals, researchers have introduced adaptivity of the deformation to the content of the
shape and established global relations between parts of the object.

For instance, let us consider the iWires approach of [13] to deform man-made objects. The
key concept of “wires”, which are crease lines detected on the object’s surface, serves as the
metaphor for the parts of object. Salient properties of these wires and relations between them,
like co-planarity, are respected during deformation, creating additional constraints that are com-
bined with user constraints to compute the final deformed version of the object.

Therefore, a pivotal step towards integrating structure-aware deformation into the rest of our
kernel coordinates pipeline is identifying parts, parameters and relations in the cage-based de-
formation context. For example, one could argue that each handle of the cage corresponds to a
part of the object.

5.3 Lines

In the linear subspace design framework of [2], regions with fully specified affine transforma-
tions serve as alternative controls to simple control points that undergo only translations. In that
framework, it is relatively easy to model some user-defined structural relations between these
regions, which serve as parts. For instance, let us consider the case where the user wants two
lines which are parallel in the original shape to remain parallel in all subsequent deformations
of the interaction session. After defining the lines, the user can simply indicate that their affine
transformations should always be the same, so that when she deforms one of them, the same de-
formation is automatically applied to the other. This way, the lines will always remain parallel.
In fact, we can argue that the structural relations are “hard-coded” in this setting.

A similar approach is not possible in the kernel coordinates framework, since our method does
not model hard constraints. Instead, a plausible path to preserving high-level features such as
parallelism is via constraining the weights of the deformation. This means effectively that the
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5.3 Lines

c1 c2

c3

p1

p2
p3

(l1)

Figure 5.1: A simple cage with three control points and a line (l1) inside it, with three distinct
points.

weights of all points lying on parallel lines become coupled.

At this point, we make some important clarifications regarding the following analysis.

• We examine the final kernel coordinates along lines, not weights at sampling locations.
However, the relevant processing is ultimately performed on the latter and the derived
relations are “propagated” to the former.

• We assume that control handles undergo pure translations without any rotation, as is usu-
ally the case in standard cage-based methods. In case the user adds a rotation to a control
handle, then the defined lines become curves as they lack rigidity, and parallelism is no
longer relevant.

5.3.1 Preservation of Lines

A necessary condition for lines to remain parallel is that both are deformed into a line. Thus,
we begin the analysis of conditions on the weights by demanding exactly the above statement.

Let us consider a cage comprising m control points ci, i ∈ {1, . . . , m} and a line (l1) inside
this cage which contains three distinct points p1, p2, p3. A two-dimensional instance of this
setting is shown in Figure 5.1.

Since all three points lie on the same line, it holds for some a, b 6= 0 that

a (p2 − p1) + b (p3 − p1) = 0. (5.1)

The control points undergo arbitrary translations ci
′ = ci + ti, which we stack in matrix

T =
[
t1 . . . tm

]
. We assume that the weights of all three points satisfy the reproduc-

tion property and that the ones for the first two points are given. Our goal is to identify the
weights of the third point so that the deformed points p1

′, p2
′, p3

′ still lie on a single line. This
means that there exist some c, d 6= 0 such that for all T

c (p2
′ − p1

′) + d (p3
′ − p1

′) = 0. (5.2)
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5 Structure-aware Weights

From reproduction, it follows that

pj
′ = pj +

m∑
i=1

wi(pj)ti, j = 1, 2, 3.

Using matrix notation, we get

p2
′ − p1

′ = p2 − p1 + T(w(p2)−w(p1)) and (5.3)
p3
′ − p1

′ = p3 − p1 + T(w(p3)−w(p1)). (5.4)

We choose c = a and d = b to obtain

T(a(w(p2)−w(p1)) + b(w(p3)−w(p1))) = 0, ∀T.

Since this equality must hold for all T, the vector multiplying it must be zero, which leads to

w(p3) = w(p1)− a

b
(w(p2)−w(p1)). (5.5)

Reproduction and partition of unity can be easily verified for the derived w(p3), assuming that
they hold for w(p1) and w(p2). Equation (5.5) simply indicates that it is sufficient that weights
vary linearly across the line in order for it to be preserved under arbitrary translations. Given the
weights just at two distinct points on the line, we can compute the weights for every other point
based on this linear variation. Let p1, p2 be the points where the weights are given; we will call
these the base points from now on. Then, elaborating on (5.5), we can express the weight of an
arbitrary point p on (l1) as

w(p) = w(p1) + sgn
(
(p− p1)T (p2 − p1)

)
‖p− p1‖

w(p2)−w(p1)

‖p2 − p1‖
. (5.6)

We will denote d1 = w(p2)−w(p1)
‖p2−p1‖ , which is the vector that determines the linear variation of

weights along (l1). The sufficient condition (5.6) for line preservation ensures that when the
line is deformed, a uniform scaling is applied to the original spacing of a set of points on it.

5.3.2 Preservation of Parallelism

We use the result of Section 5.3.1 to examine under which conditions two lines that are parallel
in the original shape remain parallel under arbitrary translations. An indicative sketch is given
in Figure 5.2.

More specifically, let p1, p2, p3 be three distinct points on (l1) and p4, p5, p6 be three distinct
points on (l2). Suppose that the base points are p1 and p2 for (l1) and p4 and p5 for (l2).
Consequently, the expressions for the weights of the remaining points, p3 for (l1) and p6 for
(l2), are

w(p3) = w(p1) + sgn
(
(p3 − p1)T (p2 − p1)

)
‖p3 − p1‖d1 and (5.7)

w(p6) = w(p4) + sgn
(
(p6 − p4)T (p5 − p4)

)
‖p6 − p4‖d2. (5.8)
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5.3 Lines

c1 c2

c3

p1

p2
p3

p4
p5

p6

(l1)

(l2)

Figure 5.2: A simple cage with three control points and two parallel lines (l1) and (l2) inside it.

Since the pairs (p1, p3) and (p4, p6) lie in parallel lines, it holds for some a, b 6= 0 that

a (p3 − p1) + b (p6 − p4) = 0. (5.9)

Following the same steps as in the analysis for a single line, we obtain the following sufficient
condition for the parallelism to hold for the deformed points as well:

a(w(p3)−w(p1)) + b(w(p6)−w(p4)) = 0.

Substituting (5.7) and (5.8) and using the fact that

a

b
= − sgn

(
(p3 − p1)T (p6 − p4)

) ‖p6 − p4‖
‖p3 − p1‖

,

we arrive at the following relation between d1 and d2:

d2 =
sgn

(
(p3 − p1)T (p6 − p4)

)
sgn

(
(p3 − p1)T (p2 − p1)

)
sgn ((p6 − p4)T (p5 − p4))

d1. (5.10)

A careful analysis of the sign functions occurring in (5.10) yields the final result:

d2 = sgn
(
(p2 − p1)T (p5 − p4)

)
d1. (5.11)

The sign function merely accounts for situations such as the one in Figure 5.2, where the con-
figurations of the base points are not “consistent” between the lines. In words, it suffices that
the linear variation of weights along the two lines follows exactly the same pattern in order
for the lines to remain parallel under any translation. Moreover, (5.11) implies that the same
amount of uniform scaling is applied to both lines, which corresponds intuitively to an affine
transformation.

5.3.3 Implementation

At interaction time, the user can define line segments on the shape by indicating their start and
end point. Regular sampling is then performed on these lines, followed by inverse mean shift
sampling of the shape, where samples on edges and lines are kept fixed. The user can also
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5 Structure-aware Weights

choose to load a sampling distribution for the processed shape from a previous session where
she had already defined certain lines.

Having determined the set of sampling points, we run heat diffusion similarly to the scenario
where no lines are defined. Next, we use the start and end point of each line segment as its
base points and run optimization only for these two samples of each line to get their weights.
Let us denote the base points of some line with xs and xe and their optimized weights with ws

and we respectively. The weights of all intermediate samples along this line can be calculated
directly from (5.6) using linear interpolation independently for each coordinate. This way,
kernel coordinates will also assume a linear profile along the line (since they interpolate weights
at sampling points), provided that weights of neighboring points near the line do not deviate
excessively from those of points on the line. This last condition is enforced by post-processing
the optimized weights of these neighboring points (which have been computed agnostically to
the presence of the line) so that their values approximate the weights on the line as distance
from it decreases.

5.4 Rigidity

Another powerful structural feature whose preservation is very often desirable is rigidity. In the
framework of bounded biharmonic weights developed in [1], the notion of rigidity is directly
incorporated into optimization as an additional energy term. This term penalizes the squared
magnitude of variation (gradient) of the weights over a region Π that should behave as rigid.
Moreover, the user can control how strict this rigidity constraint is at each part of Π by painting
with a rigidity brush to define a positive weighting function ρ, yielding a term of the form

R =
m∑
j=1

1

2

∫
Π

ρ ‖∇wj‖2 dV (5.12)

to be included in the objective. While in [1] the above integral is discretized on a mesh, our
method is meshless and hence we can directly compute the gradient appearing in (5.12). Taking
into account (3.41) and (3.43), the Jacobian matrix of the weight vector at x is

Jw(x) = − 1

σ2
WK−1 diag (k(x))

(
1xT −XT

)
. (5.13)

In terms of this Jacobian, the rigidity term R is just the integral of its squared Frobenius norm
over Π weighted by ρ. Denoting the j-th row of W by wj

T and making use of the Hadamard
product, this can be expressed as

R =
1

2σ4

m∑
j=1

∫
Π

ρ
∥∥∥(wj

TK−1 diag (k(x))
(
1xT −XT

))T∥∥∥2

dx

=
1

2σ4

m∑
j=1

∫
Π

ρwj
TK−1

[(
k(x)k(x)T

)
�
((

1xT −XT
) (

1xT −XT
)T)]

K−1wj dx.

(5.14)
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5.4 Rigidity

The form of (5.14) expresses the rigidity energy for kernel coordinates in the general case.
Assuming a soft rigidity brush, the user may have created a mask of arbitrary form, so we cannot
directly express R in terms of the user-controlled weights W. A simplification is applicable if
we assume a constant mask over the whole region. In this particular case, due to linearity of
matrix multiplication and the integral operator, we get

R =
ρ

2σ4

m∑
j=1

wj
TK−1

(∫
Π

(
k(x)k(x)T

)
�
((

1xT −XT
) (

1xT −XT
)T)

dx

)
K−1wj.

(5.15)
We denote the integral in (5.15), which constitutes an n × n matrix, by P. In general, the
value of this integral depends on the particular shape of region Π, which is controlled by the
user. We estimate it using the same sampling as the one for kernel coordinates computation, by
calculating the sum of the integrand values over all the points of the sampling distribution that
lie inside Π. For regular sampling, this can be expressed as

P ≈ T d
∑

s:xs∈Π

(
k(xs)k(xs)

T
)
�
((

1xs
T −XT

) (
1xs

T −XT
)T)

. (5.16)

For blue noise sampling, factor T d in (5.16) is replaced by |Π|/q, where q is the total number
of points that lie in Π. This implies that we need an estimate of the volume of Π in order to
calculate P. However, when the sampling distribution is regular enough like in our pipeline, the
above factor is approximately the same for any chosen Π, which allows us to use only the sum in
(5.16) as an estimate of P and adjust parameter ρ accordingly, so that the weight of the rigidity
term remains the same. Once P has been computed, we can also compute L = K−1PK−1 and
the rigidity energy in terms of L is simply

R =
ρ

2σ4

m∑
j=1

wj
TLwj. (5.17)

We can write the sum of quadratic forms of L in (5.17) as a single quadratic form, using vector

wfull =


w1

...

wn

 ,
which stacks all weight vectors of individual points into a single vector of nm elements. In
particular, rigidity energy becomes

R =
ρ

2σ4
wfull

TLfullwfull, (5.18)

where Lfull is a sparse (nm)× (nm) matrix (with non-zero elements originating from L) of the
form

Lfull =


l11Im · · · l1nIm

... . . . ...

ln1Im · · · lnnIm

 . (5.19)
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5 Structure-aware Weights

The sparsity pattern of Lfull indicates that optimization of user-driven weights is globally cou-
pled and cannot be performed individually for the points lying in Π.

Nevertheless, we can exploit the sparsity of P to decouple optimization by performing a suitable
change of variables. More specifically, the form of the left factor of the Hadamard product in
(5.16) indicates that pkl is practically zero if either xk or xl have larger distance from Π than a
certain threshold θ. Let N = {i : d(xi, Π) ≤ θ} denote the index set corresponding to points
that are closer to Π than this threshold, with cardinality r. We use this index set to select the
corresponding rows and columns of P and obtain the r × r submatrix

P̃ = PNN (5.20)

which contains all non-zero elements of P. We will generally use the tilde accent to indicate
the part of a matrix that pertains to sample points close enough to Π. The remaining factors of
the quadratic forms in (5.17) can be grouped by setting

uj = K−1wj, j = 1, . . . , m. (5.21)

This can also be expressed in matrix form as

U = WK−1 ⇒W = UK. (5.22)

Using N to select columns from U, we obtain the m× r matrix

Ũ = U:,N . (5.23)

We stack all columns of Ũ into a vector with rm elements:

ũ = vec(Ũ). (5.24)

Exploiting the fact that the only non-zero elements of P are in P̃, we write the rigidity energy
only in terms of ũ as

R(ũ) =
ρ

2σ4

m∑
j=1

uj
TPuj =

ρ

2σ4
ũT


p̃11Im · · · p̃1rIm

... . . . ...

p̃r1Im · · · p̃rrIm

 ũ. (5.25)

For brevity, from now on we will write

B =
ρ

2σ4


p̃11Im · · · p̃1rIm

... . . . ...

p̃r1Im · · · p̃rrIm

 . (5.26)

The above form reveals the decoupling of weights of points farther from Π than θ from the
rigidity energy, so that we have to optimize jointly only for r points, where r is generally much
smaller than n.
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5.4 Rigidity

In practice, in order for weights in a rigid part of the object to be in congruence with weights at
surrounding points, we follow a slightly modified approach. Let us define two extra index sets,

I = {i : xi ∈ Π} (5.27)

and

O = N \ I. (5.28)

These sets correspond to points inside Π and outside but near Π respectively, and it holds that
N = I∪O. Without loss of generality, we assume that every element of I is smaller than every
element of O, so that it is valid to write

P̃ =

 PII PIO

POI POO

 , (5.29)

ũ =

 ũI

ũO

 , (5.30)

and, with a slight abuse of notation,

B =

 BII BIO

BOI BOO

 . (5.31)

The method we apply to modify weights towards preservation of rigidity is summarized in the
following steps:

1. We optimize individually for all points of the shape with quadratic programming to obtain
matrix W and compute the “decoupled” weights ũ for points inside and near Π using
(5.22), (5.23) and (5.24).

2. We optimize the rigidity term (5.25) only for weights of points inside Π, ũI , while keeping
weights ũO of points outside Π fixed. This way, we force weights inside Π to stay close
to the surrounding pattern.

3. The original representation of weights with matrix W is recovered through (5.22), using
the updated values of U for points in Π.

Regarding the constraints for optimization of the rigidity term, the reproduction constraints
(4.1b) for each point xj, j ∈ I can be reformulated using (5.22) and exploiting the sparsity

pattern of K. Let us denote X̃ = X:,N , x̃ = vec(X̃) =
[
x̃TI x̃TO

]T
and K̃ = KNN . Then,
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5 Structure-aware Weights

stacking constraints for all points gives
k̃11C · · · k̃1rC

... . . . ...

k̃q1C · · · k̃qrC


 ũI

ũO

 = x̃I ⇒


k̃11C · · · k̃1qC

... . . . ...

k̃q1C · · · k̃qqC

 ũI = x̃I −


k̃1(q+1)C · · · k̃1rC

... . . . ...

k̃q(q+1)C · · · k̃qrC

 ũO. (5.32)

Similarly, the partition of unity constraints (4.1c) can be expressed collectively as
k̃111

T · · · k̃1q1
T

... . . . ...

k̃q11
T · · · k̃qq1

T

 ũI = 1−


k̃1(q+1)1

T · · · k̃1r1
T

... . . . ...

k̃q(q+1)1
T · · · k̃qr1

T

 ũO. (5.33)

Finally, the non-negativity constraints (4.1d) for each point can be brought into the following,
joint format: 

k̃11Im · · · k̃1qIm
... . . . ...

k̃q1Im · · · k̃qqIm

 ũI ≥ −


k̃1(q+1)Im · · · k̃1rIm

... . . . ...

k̃q(q+1)Im · · · k̃qrIm

 ũO. (5.34)

To sum up, a single quadratic program is solved to obtain the modified weights for all points
affecting Π:

min
ũI

{
ũTIBIIũI − 2ũTOBOIũI

}
(5.35a)

s.t.


k̃11C · · · k̃1qC

... . . . ...

k̃q1C · · · k̃qqC

 ũI = x̃I −


k̃1(q+1)C · · · k̃1rC

... . . . ...

k̃q(q+1)C · · · k̃qrC

 ũO, (5.35b)


k̃111

T · · · k̃1q1
T

... . . . ...

k̃q11
T · · · k̃qq1

T

 ũI = 1−


k̃1(q+1)1

T · · · k̃1r1
T

... . . . ...

k̃q(q+1)1
T · · · k̃qr1

T

 ũO, (5.35c)


k̃11Im · · · k̃1qIm

... . . . ...

k̃q1Im · · · k̃qqIm

 ũI ≥ −


k̃1(q+1)Im · · · k̃1rIm

... . . . ...

k̃q(q+1)Im · · · k̃qrIm

 ũO. (5.35d)
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6 Results

6.1 Implementation Details

After optimizing for weights at sample points that are contained in the m×n matrix W, kernel
coordinates are evaluated at a set of query points x, according to (3.40). These query points
can be, for instance, all pixels of an image that is deformed, and their number is in general
much greater than the number of sample points, n. Our goal is to determine a fast method to
implement (3.40), avoiding direct inversion of n × n matrix K, which is prohibitive when n
grows large for detailed shapes.

We begin with the observation that K is inherently sparse, with few elements of non-negligible
magnitude, corresponding to pairs of sample points that are close to each other. To implement
(3.40), we set all elements kij for which d(xi, xj) > θ = 5σ to zero, so that K admits a
sparse representation. We perform a Cholesky decomposition of this “sparsified” version of K,
exploiting its symmetry and positive definiteness:

K = RTR, (6.1)

where R is upper triangular. Computing the Cholesky decomposition is fast due to sparsity of
K. We use R to solve m linear systems

UK = W (6.2)

with respect to the unknowns in the m × n matrix U. This is done fast in two steps that
include only one forward and one back substitution, thanks to the triangular structure of R.
Regarding kernel functions k(x), we use the same sparse representation as for K to reduce
memory requirements and speed up the final multiplication

w(x) = Uk(x), (6.3)

enabling inexpensive evaluation of kernel coordinates.
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6 Results

6.2 Evaluation of Kernel Coordinates on 2D Shapes

We combine the results of Chapters 3 and 4 to compute the blending weights for simple 2D
shapes and compare our method to previous approaches.

6.2.1 Star Shape

In [3], Zhang et al. use a five-pointed star with ten control points to manifest the behavior of
their local barycentric coordinate scheme. We sample this shape with a regular grid that extends
a little beyond the star in every direction, so that computation of kernel coordinates is precise
inside the shape. Note that we did not construct the grid in a way that the edges of the star are
sampled by it. We run heat diffusion with impulse initialization and then perform optimization
to get W. Finally, we compute w(x) following the pipeline described in Section 6.1.

We present the blending weights for two representative control points, which are the same as in
[3]. The first one lies at a convex vertex of the star, while the second lies at a concave vertex,
which is in the convex hull of the rest of the control points. The weights are shown in linear scale
for all optimization methods in Figure 6.1 and in logarithmic scale for quadratic programming
and `1 optimization in Figure 6.2. With respect to Figure 6.2, we must point out that all weights
of value smaller or equal to 10−5 (therefore negative weights as well) are mapped to the lower
end of the colorscale.

Table 6.1 summarizes the properties that are satisfied (up to a certain precision) with each opti-
mization method on the star, using grid sampling. We note that for QP and `1 optimization, the
Lagrange property does hold for convex vertices. Furthermore, blending weights for QP assume
negative values in areas that are far from the respective control point. However, the magnitude
of these negative weights remains quite small (in the order of 10−3). `1 weights are practically
non-negative throughout the entire region of the star, since only 9 evaluation points have at least
one negative weight. All these points lie at some convex vertex of the star and their negative
weights correspond to control points at either of the “opposite” convex vertices. As far as QEC
is concerned, the fact that grid sampling is used hinders linear precision, because there are no
sample points exactly on the edges which could be explicitly forced to have linear weights.

In the QEC case, we observe that the weight of the concave vertex (Figure 6.1(d)) becomes
larger at the close convex vertices than it is at the control point itself, which means that locality
is lost. Comparing QP and `1 optimization, the former produces slightly more local weights,
taking into account the logarithmic plots of Figure 6.2. Finally, QEC is the fastest method to
optimize W on the star, followed by `1 optimization.

A different approach to sampling the star is via blue noise. This way, it is possible to sample
the edges of the shape regularly and then use an inverse mean shift approach with a Gaussian
kernel to distribute points uniformly across the interior. In particular, edges of the shape are
sampled so that the sampling period is approximately equal for distinct edges. Sample points in
the interior are initialized randomly and their positions are iteratively updated by taking gradient
descent steps, while points on edges are kept fixed across all iterations. We use superscript (t)
to denote the position of a sample point at the t-th iteration of this algorithm. The inverse mean
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Figure 6.1: Blending weights for a five-pointed star with ten control points sampled with a reg-
ular grid. Results for two representative control points are shown. The first column
pertains to a control point at a convex vertex, while the second column to one at
a concave vertex. Heat diffusion with impulse initialization is used for weight ini-
tialization. Optimization of W is done with quadratic programming (first row),
quadratic cost minimization without non-negativity constraints (second row) and `1

optimization (third row).
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Figure 6.2: Blending weights in logarithmic scale for a five-pointed star with ten control points
sampled with a regular grid. Results for two representative control points are shown.
The first column pertains to a control point at a convex vertex, while the second
column to one at a concave vertex. Heat diffusion with impulse initialization is used
for weight initialization. Optimization of W is done with quadratic programming
(first row) and `1 optimization (second row).
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Properties QP QEC `1

Reproduction Yes Yes Yes

Partition of unity Yes Yes Yes

Lagrange property No No No

Linear precision on edges No No No

Non-negativity No No Yes

Table 6.1: Properties of weights derived with different optimization methods for W and grid
sampling of the star. QP stands for quadratic programming and QEC for minimiza-
tion of quadratic cost only with equality constraints.

shift iteration for an individual point in the interior of the shape is

x
(t)
k = x

(t−1)
k + λ

n∑
j=1

x
(t−1)
k − x

(t−1)
j

s2
Gs(x

(t−1)
k − x

(t−1)
j ), (6.4)

where λ is a constant step size that is chosen empirically. We also underline that in general, the
scale s of the Gaussian which is used in (6.4) is different than the scale σ of the Gaussian kernel
used to compute the coordinate functions in (3.6).

We used 80 points to sample the edges of the star and afterwards initialized 130 points near its
center, as shown in Figure 6.3(a). We then ran inverse mean shift according to (6.4), using a
step size of λ = 4 · 10−4 for the updates and s = 0.03 for the Gaussian kernel. After 4000
iterations, the interior points were stabilized at the configuration of Figure 6.3(b).

Using the distribution of Figure 6.3(b), we repeat the same procedure as in the previous grid
sampling setting to calculate the blending weights w(x). We set σ = 0.13 for the Gaussian
kernel. The weights for the two representative control points are presented in Figure 6.4 (linear
scale) and Figure 6.5 (logarithmic scale).

Table 6.2 summarizes the properties that are satisfied (up to a certain precision) with each opti-
mization method on the star, using blue noise sampling. Reproduction and partition of unity are
satisfied with all methods, but the respective precision is rather low. We note that for QP and
`1 optimization, the Lagrange property does hold for convex vertices. Furthermore, blending
weights for QP assume negative values in areas that are far from the respective control point.
However, the magnitude of these negative weights remains quite small (in the order of 10−2).
`1 weights are practically non-negative throughout the entire region of the star.

Weights for QEC exhibit artifacts (Figures 6.4(c)–(d)), apparently due to enforcement of linear
precision on edges without appropriate modification of W for points close to an edge. Com-
paring QP and `1 optimization, the former produces slightly more local weights, taking into
account the logarithmic plots of Figure 6.5. With respect to speed, the ranking of the 3 methods
is the same as for grid sampling.

The inadequate accuracy in reproduction and partition of unity with the previous blue noise
sampling method is related to the fact that we only sample the interior of the star, which results

51



6 Results

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)
−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 6.3: Blue noise sampling of the star shape. Sample points on edges are shown in red and
those in the interior of the star are shown in blue. (a) depicts the initial configuration
of sample points. (b) shows the final distribution of points after 4000 inverse mean
shift iterations.

Properties QP QEC `1

Reproduction Yes Yes Yes

Partition of unity Yes Yes Yes

Lagrange property No Yes No

Linear precision on edges No Yes No

Non-negativity No No Yes

Table 6.2: Properties of weights derived with different optimization methods for W and blue
noise sampling of the star. QP stands for quadratic programming and QEC for mini-
mization of quadratic cost only with equality constraints.
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Figure 6.4: Blending weights for a five-pointed star with ten control points sampled with blue
noise. Results for two representative control points are shown. The first column
pertains to a control point at a convex vertex, while the second column to one at
a concave vertex. Heat diffusion with impulse initialization is used for weight ini-
tialization. Optimization of W is done with quadratic programming (first row),
quadratic cost minimization without non-negativity constraints (second row) and `1

optimization (third row).
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Figure 6.5: Blending weights in logarithmic scale for a five-pointed star with ten control points
sampled with blue noise. Results for two representative control points are shown.
The first column pertains to a control point at a convex vertex, while the second
column to one at a concave vertex. Heat diffusion with impulse initialization is used
for weight initialization. Optimization of W is done with quadratic programming
(first row), quadratic cost minimization without non-negativity constraints (second
row) and `1 optimization (third row).
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Figure 6.6: Blue noise sampling of the star shape. Sample points on edges are shown in red and
those in the interior or the exterior of the star are shown in blue. We show the final
distribution of points after 4000 inverse mean shift iterations for interior points and
30000 iterations for exterior points.

in deviations, mainly at points near the boundary. To solve this issue, we augment our sampling
distribution with points from the region that surrounds the star. In particular, we ran inverse
mean shift on 915 points which were bounded from inside by the sample points on the edges
of the star and from outside by some fixed points regularly distributed on the edges of a square.
We used λ = 3 · 10−4 and s = 0.025 for these exterior points and, after 30000 iterations, the
algorithm converged to the distribution that is shown in Figure 6.6.

Furthermore, blending weights obtained with the previous two methods generally lack linear
precision on edges and do not satisfy the Lagrange property, which is due to the way we com-
pute W. In Chapter 4, we showed that initialization via heat diffusion with fixed linear weights
along the edges results in linear W on the edges. It is therefore reasonable to choose this method
in the setting of the star too, in hope of getting linearly precise blending weights. We calculate
the blending weights w(x) using the distribution of Figure 6.6. The weights for the two rep-
resentative control points are presented in Figure 6.7 (linear scale) and Figure 6.8 (logarithmic
scale).

Table 6.3 summarizes the properties that are satisfied (up to a certain precision) with each opti-
mization method on the star when we combine blue noise sampling of the interior and exterior of
the star with heat diffusion with fixed linear weights on edges. Reproduction, partition of unity
and Lagrange property are very accurately satisfied with all methods. While non-negativity is
not satisfied with any method, we note that the magnitude of all negative weights is rather small
(in the order of 10−2). Notably, no method achieves linear precision on edges, however, we
observed that the respective weights are generally close to the ideal values.

The ripples occurring in the weights with the last method imply local extrema in the interior
of the star, which in turn result in unintuitive weights, as pointed out in [3]. This behavior is
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Figure 6.7: Blending weights for a five-pointed star with ten control points and blue noise sam-
pling of its interior and exterior (Figure 6.6). Results for two representative con-
trol points are shown. The first column pertains to a control point at a convex
vertex, while the second column to one at a concave vertex. Heat diffusion with
fixed linear weights on edges is used for initialization. Optimization of W is done
with quadratic programming (first row), quadratic cost minimization without non-
negativity constraints (second row) and `1 optimization (third row).
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Figure 6.8: Blending weights in logarithmic scale for a five-pointed star with ten control points
and blue noise sampling of its interior and exterior (Figure 6.6). Results for two rep-
resentative control points are shown. The first column pertains to a control point at
a convex vertex, while the second column to one at a concave vertex. Heat diffusion
with fixed linear weights on edges is used for initialization. Optimization of W is
done with quadratic programming (first row), quadratic cost minimization without
non-negativity constraints (second row) and `1 optimization (third row).
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Properties QP QEC `1

Reproduction Yes Yes Yes

Partition of unity Yes Yes Yes

Lagrange property Yes Yes Yes

Linear precision on edges No No No

Non-negativity No No No

Table 6.3: Properties of weights derived with different optimization methods for W, blue noise
sampling of the star (Figure 6.6) and heat diffusion with fixed linear weights on
edges. QP stands for quadratic programming and QEC for minimization of quadratic
cost only with equality constraints.

apparently caused by the relatively sparse distribution of Figure 6.6 that we used to sample the
domain. To mitigate this effect, we sample the star and its surrounding region more densely,
using 300 points for the edges, 1500 points for the interior and 7500 points for an even narrower
region surrounding the star bounded by a square. We run inverse mean shift separately for the
interior points and the exterior points, performing 4000 iterations with s = 0.01 and λ = 10−4 to
distribute the former, and 28000 iterations with s = 7.5·10−3 and λ = 5·10−5 for the latter. The
resulting distribution, which is shown in Figure 6.9, is then used to compute skinning weights,
using heat diffusion with fixed linear weights on edges as initialization for the optimization.

Moreover, the standard deviation of the Gaussian kernel is tuned according to the trade-off
analyzed in Section 3.2. This is done by converting the distribution of Figure 6.9 into a 1000×
1000 grayscale image, where all pixels are black except those that contain a point. The Fourier
spectrum of this image (using DFT) includes an impulse at the origin and a region with near-zero
values around it (a property of blue noise). We select σ so that the Fourier-domain Gaussian
is concentrated in this region. A visualization of this selection is provided in Figure 6.10,
where we plot the magnitude of the Fourier transforms of the aforementioned image and the
(discretized) Gaussian kernel for σ = 0.02 along the bisector of the second and fourth quadrant,
which provides sufficient information because of isotropy of both functions. For this particular
value of σ, the Gaussian fits nicely into the zero-content region of the distribution’s transform
and thus we use σ = 0.02 to instantiate the kernel.

The configuration outlined above leads to the weights depicted in Figure 6.11 (linear scale) and
Figure 6.12 (logarithmic scale). With this configuration, the decay as the distance from the
control point increases is much smoother and visually pleasing, without intense ripples. We
note that in the QEC case, weights are far less local, exhibiting the same linear decay pattern in
the interior of the star as in Figure 6.1.

Table 6.4 summarizes the properties that are satisfied (up to a certain precision) with each op-
timization method on the star when we combine dense blue noise sampling of the interior and
exterior of the star with heat diffusion with fixed linear weights on edges. Reproduction, par-
tition of unity and Lagrange property are very accurately satisfied with all methods. While
non-negativity is not satisfied with any method, we note that the magnitude of all negative
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Figure 6.9: Blue noise sampling of the star shape with 1800 points in its interior and 7500 points
outside its boundary. Sample points on edges (300 in total) are shown in red and
those in the interior or the exterior of the star are shown in blue. We show the final
distribution of points after 4000 inverse mean shift iterations for interior points and
28000 iterations for exterior points.
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Figure 6.10: Fourier spectra of the distribution in Figure 6.9 (blue) and the Gaussian kernel for
σ = 0.02 (red).

59



6 Results

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a)

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(b)

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

(d)

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(e)

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(f)

Figure 6.11: Blending weights for a five-pointed star with ten control points and dense blue
noise sampling of its interior and exterior (Figure 6.9). Results for two represen-
tative control points are shown. The first column pertains to a control point at a
convex vertex, while the second column to one at a concave vertex. Heat diffusion
with fixed linear weights on edges is used for initialization. Optimization of W is
done with quadratic programming (first row), quadratic cost minimization without
non-negativity constraints (second row) and `1 optimization (third row).
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Figure 6.12: Blending weights in logarithmic scale for a five-pointed star with ten control points
and dense blue noise sampling of its interior and exterior (Figure 6.9). Results for
two representative control points are shown. The first column pertains to a control
point at a convex vertex, while the second column to one at a concave vertex. Heat
diffusion with fixed linear weights on edges is used for initialization. Optimization
of W is done with quadratic programming (first row), quadratic cost minimization
without non-negativity constraints (second row) and `1 optimization (third row).
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Figure 6.13: Blending weights along the edges of a five-pointed star with ten control points and
dense blue noise sampling of its interior and exterior. We “scan” adjacent edges
consecutively, starting from a control point and circling around the star to produce
the plots. Results for two representative control points are shown. The first column
pertains to a control point at a convex vertex, while the second column to one at
a concave vertex. Heat diffusion with fixed linear weights on edges is used for
initialization. Optimization of W is done with quadratic programming (first row),
quadratic cost minimization without non-negativity constraints (second row) and
`1 optimization (third row).
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Properties QP QEC `1

Reproduction Yes Yes Yes

Partition of unity Yes Yes Yes

Lagrange property Yes Yes Yes

Linear precision on edges No No No

Non-negativity No No No

Table 6.4: Properties of weights derived with different optimization methods for W, blue noise
sampling of the star (Figure 6.9) and heat diffusion with fixed linear weights on
edges. QP stands for quadratic programming and QEC for minimization of quadratic
cost only with equality constraints.

QP MATLAB Implementation Time (s)

Serial (for) 28.5± 0.2

Parallel (parfor) 8.28± 0.06

Table 6.5: Speed-up of QP optimization for star shape of Figure 6.9 by exploiting core-level
parallelism in MATLAB.

weights for QP and `1 is very small (in the order of 10−3). As in the sparser sampling case of
Table 6.3, linear precision on edges is not satisfied in a strict sense, despite the fact that weights
along the edges “follow” the desired pattern (Figure 6.13).

Optimization of weights at sampling locations is trivially parallelizable, since individual prob-
lems for each sample point must be solved. In Table 6.5, we compare running times of a serial
implementation and a parallel implementation in MATLAB for QP on the input of Figure 6.9
which contains 9600 points, in order to demonstrate the benefit of parallelism. The experiment
is run on an Intel Core i5 3.20 GHz computer with 16 GB of memory and 4 CPU cores. The
parallel implementation makes use of core-level parallelism, leveraging MATLAB’s parfor
structure.

We test computation of weights for a rigid region on the star using the last configuration. The
region Π is defined as the inner part of the bottom right leg of the star and points lying inside it
are presented in green in Figure 6.14.

We set the rigidity parameter ρ = 10−4 and θ = 5σ and solve the quadratic program (5.35)
using MATLAB function quadprog. In this particular case, the number of sample points inside
region Π is q = 141, the number of points inside or close to Π is r = 395 and optimization
with quadratic programming requires approximately 2 seconds in MATLAB. We present the
resulting weights in Figure 6.15 in linear scale and in Figure 6.16 in logarithmic scale. These
figures include results for six representative control points and are to be compared with Figures
6.11(a)–(b) and 6.12(a)–(b) respectively. We note that weights obtained using the rigidity term
satisfy exactly the same set of properties that is presented in Table 6.4.
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Figure 6.14: A region that should behave as rigid is defined on the star shape, using the sampling
distribution of Figure 6.9. Points inside the region are shown in green.

6.2.2 Stick Figure

A shape that contains parts of different dimensionalities is the stick figure of Figure 6.17. More
specifically, the figure’s head constitutes a 2D area, while its sticks that represent the torso and
limbs are one-dimensional structures. We define 14 control points for the stick figure: one
control point at the end of each limb, two control points at the junctions of the legs and the
arms and eight control points placed symmetrically at intervals of 45◦ around the head. We
sample the stick figure in a similar fashion to the star shape of Section 6.2.1, i.e. we first place
samples on the control points and sample the sticks regularly. This gives us a total of 238 points.
Afterwards, keeping these points fixed, we distribute 6000 points in the region that surrounds
the figure, using inverse mean shift with s = 0.03 and λ = 10−3. After 2000 inverse mean shift
iterations, we obtain the sampling distribution of Figure 6.18.

We calculate kernel coordinates inside the head and on the sticks of the stick figure using the
sampling distribution shown in Figure 6.18, initializing weights at sampling locations via heat
diffusion with fixed linear weights along sticks and setting σ = 0.06 for the Gaussian kernel.
We visualize the weights obtained with each distinct optimization method in Figures 6.19–6.21
for the head in logarithmic scale and in Figures 6.22–6.24 for the sticks. In order for the results
to be concise, we present weights inside the head only for control points on the right side of the
head (the ones on the left side have symmetric weights), at the junction of the two arms and at
the ends of the right arm and leg. Similarly, we present weights on the sticks only for control
points at the ends of them and for the control point at the top of the head (the rest control points
around the head have weights similar to the latter).

Coordinates obtained with quadratic programming are the most local, whereas quadratic cost
minimization without non-negativity constraints gives weights that globally influence every part
of the head almost equally, as shown in Figure 6.20. A very important observation is that
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Figure 6.15: Blending weights for a five-pointed star with ten control points and a triangular
rigid region at the inner part of its bottom right leg (Figure 6.14). Results for six
representative control points are shown. Heat diffusion with fixed linear weights
on edges is used for initialization. Optimization of W is done with quadratic
programming, jointly for points influencing the rigid region and individually for
the rest.
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Figure 6.16: Blending weights in logarithmic scale for a five-pointed star with ten control points
and a triangular rigid region at the inner part of its bottom right leg (Figure 6.14).
Results for six representative control points are shown. Heat diffusion with fixed
linear weights on edges is used for initialization. Optimization of W is done with
quadratic programming, jointly for points influencing the rigid region and individ-
ually for the rest.
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Figure 6.17: Illustration of the stick figure shape. The figure includes a circular head and one-
dimensional sticks that model the neck, torso, arms and legs. The boundary of the
head and the sticks are shown in blue.
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Figure 6.18: Blue noise sampling of the stick figure with 230 points on its sticks (red), 8 points
as controls of the head (red) and 6000 points in the interior of the head and around
the shape (blue). We show the final distribution of points after 2000 inverse mean
shift iterations.
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Figure 6.19: Blending weights inside the head of the stick figure with quadratic programming
in logarithmic scale. Heat diffusion with fixed linear weights on sticks is used for
initialization. Results for eight representative control points are shown.
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Figure 6.20: Blending weights inside the head of the stick figure with quadratic cost minimiza-
tion without non-negativity constraints in logarithmic scale. Heat diffusion with
fixed linear weights on sticks is used for initialization. Results for eight represen-
tative control points are shown.
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Figure 6.21: Blending weights inside the head of the stick figure with `1 optimization in loga-
rithmic scale. Heat diffusion with fixed linear weights on sticks is used for initial-
ization. Results for eight representative control points are shown.
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Figure 6.22: Blending weights along the sticks of the stick figure with quadratic programming.
Heat diffusion with fixed linear weights on sticks is used for initialization. Results
for eight representative control points are shown. The horizontal axis is split into
distinct sticks—which are not consecutive—for illustration purposes. Their start
is marked with their acronym; N: neck, RA: right arm, LA: left arm, T: torso, RL:
right leg, LL: left leg.
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Figure 6.23: Blending weights along the sticks of the stick figure with quadratic cost min-
imization without non-negativity constraints. Heat diffusion with fixed linear
weights on sticks is used for initialization. Results for eight representative control
points are shown. The horizontal axis is split into distinct sticks—which are not
consecutive—for illustration purposes. Their start is marked with their acronym;
N: neck, RA: right arm, LA: left arm, T: torso, RL: right leg, LL: left leg.
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Figure 6.24: Blending weights along the sticks of the stick figure with `1 optimization. Heat
diffusion with fixed linear weights on sticks is used for initialization. Results for
eight representative control points are shown. The horizontal axis is split into
distinct sticks—which are not consecutive—for illustration purposes. Their start
is marked with their acronym; N: neck, RA: right arm, LA: left arm, T: torso, RL:
right leg, LL: left leg.
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6 Results

Properties QP QEC `1

Reproduction Yes Yes Yes

Partition of unity Yes Yes Yes

Lagrange property Yes Yes Yes

Linear precision on edges No No No

Non-negativity No No No

Table 6.6: Properties of weights derived with different optimization methods for W, blue noise
sampling of the stick figure (Figure 6.18) and heat diffusion with fixed linear weights
on sticks. QP stands for quadratic programming and QEC for minimization of
quadratic cost only with equality constraints.

control points other than the ones on the boundary of the head have weights that assume large
values inside the head irrespective of the optimization method (Figures 6.19(f)–(h), 6.20(f)–(h),
6.21(f)–(h)). Even the control points at the end of the arms and legs influence a great part of
the figure’s head. Since we fix weights to linear values along sticks throughout heat diffusion
iterations, control points at the ends of sticks are “favored” during heat diffusion over control
points around the head, as weights for the latter are diffused only from a single sample point
(the one lying at the control handle) instead of several sample points (the ones lying on sticks
that are adjacent to the control handle).

Table 6.6 summarizes the properties that are satisfied (up to a certain precision) with each op-
timization method on the stick figure. Reproduction, partition of unity and Lagrange property
are very accurately satisfied with all methods. While non-negativity is not satisfied with any
method, we note that the magnitude of all negative weights for QP and `1 is rather small (in the
order of 10−3). Linear precision on sticks is not satisfied in a strict sense with any method, but
weights along sticks are quite close to the ideal linear values.

6.3 Interface for Interactive Weight Design

6.3.1 Interface Outline

We implement an interaction interface in MATLAB, where the user can modify the weights and
inspect the resulting deformation of 2D objects. The interaction window is split into two basic
plots. In the left plot, the object along with the control points are shown. In the right plot, user-
driven weights W of individual control points are visualized and the user can redesign them by
painting. The workflow for weight design is the following:

• The shape together with its sampling distribution of points is loaded. The user can ei-
ther choose to draw some high-level structures such as lines, which requires that a new
sampling distribution is computed for the shape, or load an already existing sampling
distribution from a previous session.
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• The weights at sampling locations are initialized through heat diffusion and a first round
of optimization is run, in order for the interaction to begin with valid weights.

• The user selects a particular control point, for which she would like to modify the control
weights. The current weights for this particular point are then plotted on the right side.

• The user paints these weights by dragging the mouse over certain parts of the plot. A
small, spatially smooth increment is applied to the weights in order to compute their new
desired values.

• Once the user finishes painting, all painted weights are re-optimized, using the currently
selected optimization method. The updated weights of the selected control point are
shown on the right. The user can then select another control point and follow the same
steps, further modifying the weights.

• The left plot of the window, which shows the processed image, also contributes to in-
teraction. Interlaced with atomic painting moves, the user can move the control points
and deform the object based on the current weights using linear blend skinning, so as to
decide whether the resulting deformations appeal to her.

• At any point during interaction, the user can reset the shape to its rest pose by click-
ing a reset button and restart applying a different sequence of transformations to control
handles.

• There is also a radio button pane which allows the user to change the optimization method
at interaction time. Once the user selects a different optimization method from the one
that is currently used, the initial heat diffusion weights are used as input to optimiza-
tion, so any painting moves that the user had performed intermediately are disregarded.
Since optimization is performed for the whole object, this feature of the interface is not
interactive for large input shapes.

• The above procedure is continued, until the user is satisfied with the achieved deformation
of the original object.

6.3.2 Rectangular Shape

As a first experiment, we deform a rectangular 2D object, with four control points at its cor-
ners. We use a 256 × 256 image of a checkerboard pattern with distinguishable corners to aid
visualization of deformations and define a sparser 29× 29 grid of sampling locations. This grid
extends a little beyond the image boundaries, so that the computed kernel coordinates are exact
even near the image boundary (cf. Figure 3.1). We initialize the weights using heat diffusion
with linear weights on the edges of the image and present some indicative screenshots of the
interaction window during an interaction session, where quadratic programming is used for op-
timization. To render the deformed versions of the image, MATLAB function griddata is
utilized.

The interaction window is initialized in the form that we present in Figure 6.25. No control point
has been selected, so no weights are shown yet. The first operation of the user is to select the
upper right control point, whose weights are then shown on the right (Figure 6.26). This control
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Figure 6.25: Starting screen of interaction interface.

point is dragged slightly downwards and to the right, resulting in the deformed image of Figure
6.27. The next operation is a painting move at the middle right part of the grid, which leads to a
modification of the weights and a subsequent update of the deformation (a careful observation
of the checkerboard pattern of Figure 6.28 at the region corresponding to the modified weights
reveals a slight change). The user then chooses to reset the image to its original form, as shown
in Figure 6.29. This brings only the image back to its rest pose, whereas the painting move
previously performed on the weight of the upper right control point is not undone. Finally, the
user applies a large translation to the lower right control point, so that a fold-over appears in the
result, shown in Figure 6.30.

6.3.3 Star Shape

We experiment further with deforming the stap shape of Section 6.2.1. Again, a checkerboard
pattern is used to add texture to the shape and help inspect the deformations. We sample the star
and its surrounding region with the distribution of Figure 6.9 and run heat diffusion with fixed
linear weights along the edges of the star to initialize weights at sampling locations. Due to
non-convexity of this particular shape, rendering with griddata causes artifacts in the image
of the deformed shape. Instead, we implement rendering of the deformed shape via linear
interpolation based on a triangular mesh that is defined on the grid of pixels of the undeformed
image, using MATLAB function tri2grid.

In Figure 6.31, we show an instance of the interaction window right after the control point at
the corner of the bottom right leg of the star has been clicked. The initially chosen optimization
method is `1. The user left-clicks and drags this point (which corresponds to translating it) to
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Figure 6.26: The upper right control point has been selected and its corresponding weights are
plotted on the right.

Figure 6.27: The upper right control point has been dragged and the current weights have been
blended with linear blend skinning to produce the presented deformation of the
pattern.
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Figure 6.28: The user has painted some weights and they have been re-optimized, changing the
deformed image as well.

Figure 6.29: The user has clicked the reset button placed under the shape and all previous defor-
mations are undone, bringing the checkerboard image pattern back to its original
form.
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Figure 6.30: The lower right control point has been translated to further deform the image. Con-
vexity of the deformed boundary holds no longer and hence a fold-over appears.

produce the deformation of Figure 6.32 and then right-clicks it and drags the pointer (which
corresponds to rotating it) to produce the deformation of Figure 6.33. Another move is made
by rotating the control point at the end of the top leg (Figure 6.34). A different method, namely
quadratic programming, is selected for optimization, which yields a reoptimization of weights
across the entire shape and consequently a modified deformation with the new weights (Figure
6.35). Finally, a transformation of a concave control point, namely a translation, is applied in
Figure 6.36.

We provide a comparison of deformation results for the star shape with and without a region
that should behave as rigid. The rigid part of the star is the same as in Section 6.2.1, namely
the inner part of the bottom right leg (Figure 6.14). Figure 6.37 presents the deformed versions
of the star after the control point at the end of the bottom right leg has been translated inwards.
A careful observation of the deformed checkerboard pattern for the “simple” and the “rigid”
version reveals that squares in the bottom right leg of the latter are deformed in a more rigid
fashion, preserving their right angles better.

Figure 6.38 shows the sampling distribution for the star in the case where the user has drawn a
line on it. We utilize MATLAB function getline to provide the interface with the line-drawing
feature. The spacing of points near the line (whose regularly spaced samples are shown in red)
has been successfully adjusted by inverse mean shift so that these points do not fall too close
to points on the line. In this case, the parameters of the algorithm are set to s = 1 and λ = 1
(larger values are due to larger scale of the shape) and 5000 iterations are run to get the final
sampling distribution.

79



6 Results

Figure 6.31: The control point at the bottom right leg of the star has been selected and its corre-
sponding weights are plotted on the right.

Figure 6.32: The control point at the end of the bottom right leg of the star has been translated
outwards.
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Figure 6.33: The control point at the end of the bottom right leg of the star has been rotated
clockwise.

Figure 6.34: The control point at the end of the top leg of the star has been rotated clockwise.
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6 Results

Figure 6.35: Change of selected method for optimization to quadratic programming.

Figure 6.36: The control point at the junction of the two left legs of the star has been translated
outwards.
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(a)

(b)

Figure 6.37: Effects of using a rigid region on deformation of the star shape. (a) shows the
deformed shape without any rigid part defined, whereas (b) is obtained using the
rigid region of Figure 6.14.
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Figure 6.38: Blue noise sampling of the star shape with 300 sample points on edges (red), 21
points along the user-defined line (red) and 9300 more points for the rest of the
shape’s interior and exterior. The final distribution of points has been obtained
after 5000 inverse mean shift iterations.

6.3.4 Shapes in Images

Our deformation interface can handle general 2D shapes that are contained in images. In this
case, a cage has to be defined on the image, in such a way that it encloses the shape. The user
can define this cage as a closed polygonal line interactively or she can load a cage constructed
in a previous interaction session. Afterwards, sampling is performed in the interior of the cage
using inverse mean shift, again allowing the user to load the sampling distribution of a previous
session. The remaining features of the interface are similar to the ones presented for the cases
of the rectangular and star shapes in Sections 6.3.2 and 6.3.3.

In Figure 6.39, we present the deformation of a butterfly, whose initial pose is illustrated to-
gether with the user-defined cage of 26 control points in Figure 6.39(a). We have used opti-
mization with `1-norm cost to compute weights at sampling locations with our kernel coordi-
nates method and compare our result to bounded biharmonic weights [1]. More specifically,
three control points at the upper part of the butterfly’s wing, marked green in Figure 6.39(a), are
translated to new positions in an attempt to shrink that part of the wing. We present the sum of
these points’ weights in Figure 6.39(b) for our method and in Figure 6.39(c) for bounded bihar-
monic weights. The latter method achieves better locality, but lacks the reproduction property
which is guaranteed by kernel coordinates. The deformation results are illustrated in Figure
6.39(d) for kernel coordinates and Figure 6.39(e) for bounded biharmonic weights. Judging
from the deformed shape, the two methods produce a similar deformation, albeit kernel coordi-
nates suffer from some delicate artifacts in the hind limbs of the butterfly.

We provide a comparison of running times of the two aforementioned methods for the butterfly
input in Table 6.7. We used both a serial and a parallel implementation for both methods: for
bounded biharmonic weights, weights for individual control handles are computed in parallel,
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(a)

(b) (c)

(d) (e)

Figure 6.39: Deformation of a butterfly. (a) shows the original pose of the butterfly along with
the user-defined cage around it. Control points in green are manipulated by the
user. (b) and (c) demonstrate weights obtained with kernel coordinates (`1 opti-
mization) and bounded biharmonic weights respectively, as a sum over all green
control points. (d) and (e) present the deformed versions of (a) with the aforemen-
tioned methods after the three green control points have been translated.
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Type of Implementation KC - `1 (s) BBW (s)

Serial (for) 11.3 29.9

Parallel (parfor) 9.2 11.4

Table 6.7: Computation timings in MATLAB for kernel coordinates (KC) with `1 optimization
and bounded biharmonic weights (BBW), using the butterfly shape of Figure 6.39.

while for kernel coordinates, computation is parallelized at the level of point samples. Our
method is faster in both cases, even though the overhead for setting up parallel computations in
MATLAB diminishes the returns to a greater extent for our method than for bounded biharmonic
weights.

Figure 6.40 demonstrates the deformation of an image of Mufasa, using kernel coordinates with
`1 optimization. Two control points near the paw of Mufasa’s front right leg (marked green
in Figure 6.40(a)) are translated forward and Mufasa moves his leg in that direction (Figure
6.40(c)).
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(a)

(b)

(c)

Figure 6.40: Deformation of Mufasa. (a) shows the original pose of Mufasa along with the user-
defined cage around him. The two control points in green are manipulated by the
user. (b) demonstrates weights obtained with kernel coordinates (`1 optimization)
as a sum over the two green control points. (c) presents the deformed version of
(a) after the green control points have been translated.
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7 Conclusion and Outlook

This thesis has presented kernel coordinates as a mesh-less method to compute generalized
barycentric coordinates for control handles that are used as a metaphor to deform shapes. Our
method is based on radial basis interpolation at point samples with dual kernel functions, which
is leveraged to produce coordinates of the same smoothness level as that of the basis functions
across the entire shape. We avoid expensive global optimization that has been employed in most
previous approaches, and optimize separately for weights of each point, penalizing deviation
from an initial value which is obtained with a simple heat diffusion process from cage elements.
This alternative, decoupled optimization is amenable to parallel implementation, which pro-
vides a significant advantage in speed compared to the aforementioned methods and paves the
way for interactive processing of weights by the user. More thoroughly, the main contributions
of the thesis are the following:

• The theoretical framework for radial basis interpolation using dual kernel functions is
presented and its generic properties are established, focusing on the Gaussian kernel.
We provide proofs for direct “inheriting” of these properties by interpolated coordinate
functions, and determine the optimal empirical value of the standard deviation of the
Gaussian RBF for the case of regular sampling.

• The conditions under which local extrema can occur in radial basis interpolation with
Gaussian kernel are examined, providing indicative examples of interpolated functions
that give rise to this behavior.

• A closed-form expression is derived for the Jacobian matrix of the mapping that is induced
by using kernel coordinates as weights for linear blend skinning.

• An efficient heat diffusion algorithm is defined to initialize weights at sampling locations
in a shape-aware fashion and guide subsequent optimization properly, ensuring linear
weights on the cage boundary.

• We explore various formulations of weight optimization at individual points, experiment-
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ing with different objectives and sets of constraints. The quadratic objective combined
with pure equality constraints (which correspond to reproduction and partition of unity)
after omitting non-negativity constraints admits the fastest solution, using the closed form
that we have derived. However, this comes at the expense of weights assuming negative
values of large magnitude at certain parts of the shape, causing unintuitive deformations.
Proper quadratic programming including non-negativity as inequality constraints is far
more expensive, yet the resulting weights are guaranteed to be non-negative and they van-
ish away from the respective control handles, achieving better locality. A similar behavior
is also observed for weights obtained using the `1-norm cost without non-negativity con-
straints. This optimization problem can be recast to a linear program which is solved
faster than the aforementioned quadratic program, and the resulting weights are close to
being non-negative (any negative weight has negligible magnitude).

• Constraints on weights for preservation of certain structural features are determined. We
derive linear variation of weights at points along lines which should be preserved under
translation-only transformations at handles. For parts of the object that should behave
rigidly, we implement soft constraints by minimizing a quadratic energy that couples
weights of all points inside or close to these parts and penalizes large gradients.

• We use a sampling algorithm based on inverse mean shift to distribute points uniformly
in the interior of the cage, so that they are in congruence with samples spaced regularly
on cage elements.

• An interface is implemented in MATLAB for interactive 2D shape deformation. Its key
features include interactive cage construction, interactive manipulation of weights by the
user, change of optimization method, application of translations and rotations to control
handles for generation of new poses, and a reset option to restore the original pose of
the shape. This interface has been used to create the deformation results presented in the
thesis.

There are several interesting directions for future work in kernel coordinates. First, a more
thorough analysis of the effect of optimization on initial weights computed via heat diffusion
can be performed, examining the conditions under which interior locality of the weights is
preserved after imposing the property-related constraints. In addition, different radial basis
functions may be used for interpolation instead of the Gaussian on which we have focused our
method, exploring the suitable range for their respective parameters. Last, we have exploited
parallelism for optimization only at a CPU core level, which limits the relative speed-up to the
number of cores of the machine. There is further margin for improving speed by leveraging
thread-level parallelism on a GPU.

90



Bibliography
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