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ABSTRACT
Developing and reasoning about systems using eventually
consistent data stores is a difficult challenge because these
systems can sometimes exhibit weakly consistent behaviors
that are unexpected and difficult to understand.

This paper makes several contributions which advance our
conceptual understanding and reasoning capabilities of even-
tually consistent systems: (i) a new serializability criterion
which generalizes conflict serializability, but is based on a
dependency model with two algebraic properties: commuta-
tivity and absorption; our model enables precise reasoning
about programs that use high-level replicated data types,
common in modern systems; (ii) two dynamic analysis al-
gorithms for detecting violations of our criterion; (iii) a
complete implementation of the analysis algorithm.

We performed a thorough experimental evaluation on two
realistic use cases: debugging cloud-backed mobile appli-
cations and implementing clients of a popular eventually
consistent key-value store. Our experimental results indi-
cate that our criterion matches the programmers’ notion
of correctness, is more effective in finding bugs than prior
approaches, and can be used during the development of
practical applications under weak guarantees.

1. INTRODUCTION
Modern distributed systems increasingly rely on replicated

data stores [7, 13, 26, 14] in order to achieve high scalability
and availability. As dictated by the CAP theorem [11],
consistency, availability and partition-tolerance cannot be
achieved at the same time. While various trade-offs exist,
most replicated stores tend to provide relaxed correctness
notions that are variants of eventual consistency: updates are
not immediately but eventually propagated to other replicas,
and replicas observing the same set of operations reflect the
same state.

However, relaxations of strong consistency come at a price
as applications may now experience unexpected behaviors
that are not possible under strong consistency. These behav-
iors may lead to serious errors, and make the development
of such applications more challenging.

In such cases, it is tempting to require that applications
guarantee by themselves a stronger notion of consistency,
like serializability. One can then reason about application
correctness without considering the effects of weak consis-
tency, and importantly serializability violations can guide
the derivation of correct synchronization where needed. Such
violations, however, are very difficult to detect in general
(in fact, NP-hard [21]). This is where stronger serializability
criteria, like conflict serializability, come into play.

Challenges. To be practically useful, a serializability crite-
rion must possess at least three properties. First, it must
be general in the sense that it supports reasoning about a
wide range of practical data stores and operations. Second,
it must be weak enough so it rules out few desirable behav-
iors. And third, it must be strong enough so that it can be
checked efficiently on realistic systems. Previous approaches
are typically restricted to systems with guarantees stronger
than eventual consistency, can only reason about primitive
reads and writes, or are computationally difficult to check.

This work. We propose a new serializability criterion for
eventually consistent systems that satisfies the above three
properties. Technically, our criterion generalizes the classic
notion of conflict serializability [21]: (i) to deal with relaxed
behaviors induced by eventually consistent data stores, while
(ii) handling high-level replicated data types (such as repli-
cated maps and lists [23, 5]), which are commonly used in
modern distributed applications. Our generalization lever-
ages commutativity of operations, and the fact that some
operations mask the effects of others. This allows us to
permit executions not possible under strong consistency, yet
equivalent to executions that are strongly consistent. Since
our criterion only assumes eventual consistency, it immedi-
ately applies to all consistency levels that strengthen eventual
consistency in various ways [27, 16, 5, 6].

To substantiate the usefulness of our criterion, we built
a dynamic analyzer that checks whether the criterion holds
on program executions, and evaluate our analyzer on two
application domains. First, we analyzed 33 mobile apps writ-
ten in TouchDevelop [28], a framework which uses weakly
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consistent cloud types [5]. The experimental results indicate
that our serializability criterion captures the programmers’
intentions. Moreover, our analyzer found violations of the
criterion leading to errors in the applications. Second, we
implemented the database benchmark TPC-C [29] using
the eventually consistent data store Riak and show how
our criterion can guide developers to derive correct client
implementations.

We note that our serializability criterion need not be used
on the entire application (as this is likely to be too restrictive).
Instead, it is most useful when applied to specific parts
of the program intended to be serializable (e.g., payment
check-out). This usage scenario is in line with how standard
conflict serializability is used for shared memory concurrent
programming (e.g., [30]).

Contributions. The main contributions of our paper are:

• An effective serializability criterion for clients of even-
tually consistent data stores. Our criterion generalizes
conflict serializability to deal with weakly consistent
behaviors and high-level data types.

• Polynomial-time algorithms to check whether the crite-
rion holds on a given program execution.

• An implementation of our algorithms for to data stores:
the TouchDevelop cloud platform for mobile device
applications, and the distributed database Riak.

• A detailed evaluation that indicates that our criterion:
captures an intuitive understanding of correctness; is
useful for finding previously undetected errors; can help
in building correct and scalable applications running
on eventually consistent data stores.

2. OVERVIEW
In this section we provide an intuitive understanding of

the challenges our approach addresses. Full formal details
are provided in later sections.

Motivating example. Consider the following code fragment,
adapted from a mobile gaming library 1

1 Players.at(G, I).user.setIfEmpty(userID)
2 if Players.at(G, I).user != userID
3 // try next position

Here, Players is a distributed map, mapping a game G

and a position I to a user participating in the game. A
user identifier is stored in the field user. Suppose that each
operation runs in its own transaction. The intended behavior
is that each spot can only be taken by up to one user. Indeed,
this is exactly what happens under strong consistency: if
two competing accesses to the same spot are performed
concurrently, one of the setIfEmpty operations will remain
without effect, and the corresponding client has to try the
next spot in the game.

Suppose we now execute the code using an eventually
consistent data store where updates such as setIfEmpty

are asynchronously executed at other replicas, while queries
are only read from the local replica. Figure 1a shows a
1“cloud game lobby”, written in TouchDevelop and avail-
able on http://touchdevelop.com.
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(b) Dependency,
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Figure 1: Execution of motivating example, with operations:
u1 map(G,I).user.setIfEmpty("Destroyer")

u2 map(G,I).user.setIfEmpty("Widowmaker")

q1 map(G,I).user returns "Destroyer"
q2 map(G,I).user returns "Widowmaker"

possible execution of such a system. Two users ‘Destroyer’
and ‘Widowmaker’ try to acquire the same position I in
game G. The graph denotes with vi whether an operation is
observed by a second operation, and by ar the order in which
update conflicts are eventually resolved by the system. Here,
each query only observes one of the updates, causing both
clients to think they acquired the spot in the game. The
behavior is not serializable: There is no sequential execution
of u1, q1, u2, q2, in which the queries return these values.

In this work we use the classical notions of dependency and
anti-dependency to characterize serializability: intuitively, a
query depends on an update which is visible, if the result
of the query would change had the update become invisi-
ble. Similarly, a query anti-depends on an update that is
invisible, if the query result would change had the update
become visible. Figure 1b shows the dependencies ⊕ and
anti-dependencies 	 in our example. If the four relations
of dependency, anti-dependency, program order po and ar-
bitration order ar form a cycle, then the execution is not
serializable.

Key challenge. A precise serializability criterion requires a
precise notion of dependency. For reads and writes, this is
fairly straightforward: a read depends on the last-arbitrated
write that is visible to it and accesses the same record. For
high-level operations such as counters, maps, sets and tables,
however, this is not as straightforward. Consider for instance
the case where there is a second function in the above gaming
library which lists all games a player participates in:
1 Games := Players.select(_.user == userID)

Suppose now, user ‘Destroyer’ reserves a spot in a game
via the update setIfEmpty("Destroyer"), and at the same
time ‘Widowmaker’ lists the games that he participates in
via the above query. Here, Destroyer’s update is not a
dependency of Widowmaker’s query as no matter whether
it is visible or not the result of the query will be the same:
Destroyer’s reservation does not influence Widowmaker’s
participation. The reson is that, even though both operations
access the same data, they actually commute (uq ≡ qu).
Thus, determining dependencies precisely requires reasoning
about commutativity.In this work we show how to leverage
commutativity properties of arbitrary operations in order to
capture the dependencies between them.

While useful, commutativity alone is not sufficient. Con-
sider again the execution shown in Figure 1b, but suppose
that now, we had used a set instead of a setIfEmpty. Even
though both updates do not commute with both queries, the
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execution is serializable in the order u1q1u2q2. This is be-
cause u2 hides the effect of u1 to q2, and therefore q2 does not
depend on u1. We call this absorption, u1u2 ≡ u2. Again,
if the operations are reads and writes, absorption is easy to
define: updates absorb each other if and only if they are
non-commutative. However, for the richer operations consid-
ered in this work (e.g., those of high level data types), the
definition of absorption may be more involved: arbitrary op-
erations such as setIfEmpty may be non-absorbing, partially
absorbing, or absorbing only under specific conditions.

Summary. In summary, this paper introduces a new serial-
izability criterion for programs using eventual consistency
based on both, commutativity and absorption, enabling pre-
cise reasoning of arbitrary operations in both transactional
and non-transactional programs. In what follows, we formally
present our model, state our main theorem and evaluate the
approach on several realistic data stores.

Related work. Checking for serializability is NP-hard [21]
in general. Conflict serializability defines a stronger criterion
on executions in an attempt to be computationally feasible
(also [21]) by using a conflict relation between operations
which was first defined via basic reads and writes, but also
can be defined through commutativity [31]. However, it
assumes a serial schedule where all conflicts are resolved,
and is not therefore not applicable to executions in weakly
consistent systems.

Several works have provided serializability conditions on
executions on data stores with various guarantees, e.g., Snap-
shot Isolation [9] as well as a variety of weak memory models
(e.g., [25, 20, 2]). As with our criterion, these are typically
based on detecting cycles in graphs involving some notion of
dependency and anti-dependency. The main differences to
our work are that (a) they assume stronger consistency guar-
antees provided by the data store, and (b) they use low-level
read and write reasoning instead of algebraic reasoning. Our
work is a generalization of these previous criteria that makes
them applicable to a broader class of real-world systems.

Similarly to our work, Fekete et al [9] use serializability
checking to check an implementation of the TPC-C database
benchmark. However, they use static checking and a database
guaranteeing snapshot isolation, while our work is based on
dynamic checking and an eventually consistent database.
Zellag et al. [32] use a criterion similar to [9] to quantify
the anomalies in applications using eventually consistent
data stores. They do not prove the criterion correct w.r.t.
eventual consistency and reason only about reads and writes.

Several works suggest reasoning about the preservation
of integrity invariants in weakly consistent data stores (see,
e.g., [1]). While reasoning about integrity invariants directly
can allow more behaviors than serializability, and can also
lead to additional performance gains due to weak replication,
it requires detailed manual specifications which are notori-
ously difficult to provide. However, light annotations of which
parts of the application should be serializable are practically
useful and easy to provide. We thus provide this option to
developers, a capability similar to how atomicity annotations
were used in [30] for shared memory concurrency.

3. WEAKLY CONSISTENT SYSTEMS
We continue with a model of weakly consistent systems,

which we will later use to reason about serializability. Our
model is loosely based on [4]. We consider a system of
processes that interact with a weakly consistent data store.
Interaction between a process and the store happens in a
sequence of atomic actions issued to manipulate the stored
data. Our interest lies in the possible behaviors of such a
system, which we model as a set of the action histories.

3.1 Actions and traces
An action represents an atomic operation performed by a

process against the replicated data store. For example, one
could set a given record x to zero, or also, observe that the
record holds the value zero. These would be the x.set(0) and
the x.get():0 actions. More formally, an action is an operation
combined with concrete argument and return values.

We assume that action semantics is given as a prefix-closed
set of legal action sequences. For example, x.set(0) x.get():0
would be legal, while x.set(0) x.get():1 would be not. Under
this style of specification, two action sequences α and β are
equivalent iff they are legal in exactly the same contexts:

α ≡ β iff {(χ, γ) | χαγ legal} = {(χ, γ) | χβγ legal}.

For example, two actions might commute, or one action might
(right-)absorb another, as expressed by the equivalences:

x.set(0) y.set(1) ≡ y.set(1) x.set(0)
z.set(0) z.set(1) ≡ z.set(1)

3.1.1 Traces
The order of commuting actions in a given sequence is

irrelevant, and we will prefer to work with traces [19] instead
of sequences. A trace relaxes the total order that actions have
in a sequence to a partial one, such that all non-commuting
actions nevertheless remain ordered. With the switch to a
partial order, we will refer to action occurrences as events.
The partial order itself has to be lower-finite, i.e., every event
has to be preceded by finitely many others.

Definition 1. A trace is a lower-finite partial order τ of a
countable set E of events such that for all f, g ∈ E:

(1.1) f τ−→ g or fg ≡ gf or g τ−→ f , and

(1.2) if f τ−→ g but f τ−→ h
τ−→ g for no h ∈ E, then fg 6≡ gf .

The first condition ensures that the trace orders all pairs
of non-commuting actions, while the second one ensures that
no unnecessary ordering is introduced. Below is an example
of a trace where the record x gets incremented twice:

x.get():0

x.add(1) x.add(2)

x.get():3

Similarly to taking subsequences, we can restrict a trace
to a subset of its events. Then, (1.1) will still hold but (1.2)
does not need to. For example, if we restrict the above trace
to the two get actions, then they remain ordered even though
they commute. Such restrictions will be useful later, and we
will call them semi-traces.

Operations on sequences other than restriction transfer
to semi-traces too. For example, the above trace equals
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the concatenation of its prefix x.get():0→ x.add(1) and its
suffix x.add(2)→ x.get():3. We can thus speak of semi-trace
legality, and also of semi-trace equivalence.

3.1.2 Updates and queries
In order to simplify our arguments, we assume that actions

divide into either updates or queries. An update may modify
the store but does not indicate a return value. On the other
hand, a query may not modify the store but may indicate a
return value. Furthermore, we assume that an update can
always be applied, i.e., that it is free of any pre-conditions.
Our assumptions are non-restrictive as any action can be
split into an query after an update, and also, any update can
be made to skip if its pre-condition is not met.

3.2 Histories and schedules
As standard, we model a process in the system as a possibly

infinite sequence of action events. Thus, each process has a
definitive start but need not have an end. A transaction is a
contiguous segment of a specific process, and is intended to
execute atomically with respect to the other system processes.
Taken together, these components form a history:

Definition 2. A history (E, po, T ) consists of

– a countable set E of events (each labeled by an action),

– a partial ordering po that partitions E into processes,

– a partition T of the processes into transactions.

The externally observable behavior of the system is char-
acterized by the set of histories that the system can possibly
leave. To prevent undesired behaviors, the store may put
some constraints on this set. For example, it could allow
only histories where transactions are atomic. As usual, we
attribute such guarantees to whether a history has a schedule
of a specific kind. More specifically, we are interested in two
kinds of schedules: serial ones and eventually consistent ones.

Definition 3. A serial schedule of a history (E, po, T ) is a
linear ordering so of E such that:

(3.1) the union po ∪ so is lower-finite and acyclic,

(3.2) every prefix of so is legal, and

(3.3) no two transactions t1 6= t2 ∈ T overlap, i.e., either:

(a) f so−→ g for all f ∈ t1, g ∈ t2, or

(b) g so−→ f for all g ∈ t2, f ∈ t1.

A history is serializable if it has a serial schedule, that is,
if its transactions are atomic in a linear order. Serializability
eases reasoning about concurrent processes dramatically, but
is typically too expensive to be ensured by a system in a
replicated setting. That is why many data stores ensure the
much weaker but cheaper property of eventual consistency.
Data store clients then have to deal with atomicity issues by
some other means.

We consider what is sometimes called strong eventual
consistency [24]. Informally, it is a combination of two
properties: first, every process observes a consistent view
but only of a subset of the updates in the system so far;
second, every update eventually propagates to the view of
every process.

Relation Type Description
po E × E process ordering
so E × E serial ordering
vi U ×Q update visibility
ar U × U update arbitration
⊕ U ×Q dependency
	 Q× U anti-dependency

Table 1: Model relations over a set E = U ∪Q of update U
and query Q events.

Definition 4. An eventually consistent schedule (vi, ar) of
a history (E, po, T ) consists of

– a relation vi indicating the updates that queries observe,

– trace ar of the updates in E arbitrating their order,

and such that they meet three conditions:

(4.1) the union po ∪ vi is lower-finite and acyclic,

(4.2) each query q is legal in ar restricted to {u | u vi−→ q},

(4.3) for any update u the set {q | u 6 vi−→ q} is finite.

The first two conditions are analogous to the ones for serial
schedules, and deal with consistency. The third condition
deals with update propagation. For brevity, we will omit
“eventually consistent” and just use the term schedule. An
example of a schedule is given in Figure 1.

Note that any serial schedule has an implicit visibility
relation and an implicit arbitration trace. Moreover, for
them the conditions (4.1)-(4.3) hold automatically, thus the
serial schedule can be seen as an eventually consistent one.

Whenever (4.1) holds but (4.3) or (4.2) possibly do not,
we will speak of a pre-schedule. If it happens that (4.2) holds
for a specific query q, then we will say that q is legal in the
pre-schedule. These technicalities prove to be quite useful in
the next section, where we reason about serializability.

4. A SERIALIZABILITY CRITERION
We will present a sufficient criterion that tells whether a

history is serializable given one of its schedules. The main
idea is to derive a certain digraph, known as the depen-
dency serialization graph, from the schedule. The digraph
relates all transactions in the history so that their lower-finite
topological orderings correspond to serial schedules. Thus,
acyclicity becomes a sufficient condition for serializability.

4.1 Dependency
The main motive in our criterion is the notion of a query

depending on an update. A query in a schedule depends on
an update if this update is visible and it may influence the
query legality. For example, consider the serial schedule

x.add(1) y.set(1) x.set(0) x.add(2) x.get():2 y.get():1.

Here, x.get():2 depends on both x.set(0) and x.add(2). If we
remove any of them, the the query becomes illegal. However,
if we remove any other actions, then the query remains legal.
Similarly, y.get():1 depends only on y.set(1).

There could be different reasons why an update happens
to be a dependency, or rather, why it fails to be one. In order
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to decide that, we will use two properties: commutativity
and absorption. Recall that given two actions f and g

1. f and g commute iff fg ≡ gf ;

2. f is absorbed by g iff fg ≡ g.

In example above, y.set(0) is not a dependency of x.get():2
as it commutes with all updates on x. Thus, the schedule is
equivalent to one where y.set(0) is not visible to x.get():2

x.add(1) x.set(0) x.add(2) x.get():2 y.set(1) y.get():1.

Here, x.set(0) absorbs x.add(1). Thus, x.add(1) is not a
dependency of x.get():2 as no matter whether it is present
or not we get an equivelent serial schedule.

Now, let us consider an eventually consistent schedule
(vi, ar). To find out the dependencies of a query q we restrict
ar to the updates that q observes. We then append q and
inspect the result. Consider, e.g.,

u1

v1

v2

u2

u3 u4

q

Here, solid arrows indicate the trace order, and dashed arrows
indicate absorption. The two updates v1 and v2 are not
dependencies of q because they do not precede it in the trace
order, and therefore can be “moved past” q. The update
u2 is not a dependency of q either as it gets absorbed by
the adjacent update u4. But after that u1 and u3 become
adjacent, and so u1 can get absorbed by u3. What remains
are the two dependencies u3 and u4 of q.

We capture the above observations with two operations and
that remove non-dependencies from a given visibility relation:
one for commutativity, and one for absorption. With their
help, we define the dependency relation of a pre-schedule:

Definition 5. For a given pre-schedule (vi, ar) we define
two operations over relations R from updates to queries:

(5.1) (u, q) ∈ R] iff u
R−→ q and there is an update v R−→ q

such that vq 6≡ qv, and either u ar−→ v or u = v.

(5.2) (u, q) ∈ R′ iff u
R−→ q and also for all updates v vi]−→ q

if u ar−→ v but u ar−→ w
ar−→ v for no w R−→ q, then uv 6≡ v.

The dependency relation of a pre-schedule (vi, ar) is the
largest ⊕ ⊆ vi] such that ⊕ = ⊕′.

The main property of the dependency relation is that
making any set of non-dependencies invisible to a query
preserves the query legality:

Theorem 1. Given some pre-schedule (vi, ar), for every
relation R such that ⊕ ⊆ R ⊆ vi, a query q is legal in (vi, ar)
iff it is legal in the pre-schedule (R, ar).

Proof. To make our argument simpler, let us introduce
some notation. We are looking at relations in the inteval

[⊕, vi] = {R | ⊕ ⊆ R ⊆ vi}.

For brevity, let us collect all the restrictions of ar that such
a relation R determines into a single map 〈R〉:

q 7→ ar �{u | u R−→ q}.

Operations on semi-traces extend pointwisely to such maps,
and if we denote q 7→ q with Q, then our claim becomes:

∀R ∈ [⊕, vi]. 〈R〉 ·Q is legal ⇐⇒ 〈⊕〉 ·Q is legal.

The basis of our proof is that ⊕ can be derived from any
relation R ∈ [⊕, vi] as the limit of the decreasing sequence:

R = R0 ⊇ R0 ∩ vi] = R1 ⊇ R′1 = R2 ⊇ R′2 = R3 ⊇ . . .

This is a simple consequence of vi being lower-finite plus a
standard fixed-point argument applied to the ′ operation
(see, e.g., [10, Proposition II-2.4]). From here we will show
that every step i above preserves legality in the sense that

〈R〉 ·Q is legal ⇐⇒ 〈Ri〉 ·Q is legal.

That turns to be sufficient as the above property is preserved
when taking limits, again a consequence of lower-finiteness.

So let us make the first step. The vi] relation splits 〈R〉
into two parts, the second one commuting with Q:

〈R〉 ·Q ≡ 〈R ∩ vi]〉 · 〈R \ vi]〉 ·Q ≡ 〈R ∩ vi]〉 ·Q · 〈R \ vi]〉.

Since updates are free of pre-conditions, the right-most side
is legal iff its prefix 〈R ∩ vi]〉 ·Q is legal.

Now, the remaining steps. It is enough to show that the
restrictions of ar that they give rise to are all equivalent. Let
us first study how updates get absorbed when applying the ′
operation. Recall definition (5.2), and consider the relation:

u ≺qi v iff (u, q) ∈ Ri \Ri+1 breaks (5.2) because of v vi]−→ q.

Because absorption is transitive, this relation is transitive in
the sense that for all i > j:

u ≺qi v ≺
q
j w =⇒ u ≺qi w.

This allows us to conclude that if we remove (u, q) at step i,
then it is always because of some v visible to q at that step:

(u, q) ∈ Ri \Ri+1 =⇒ u ≺qi v
Ri−−→ q for some v.

Indeed, recursively tracing the reason for removals, we get a
sequence of steps i = in ≥ in−1 ≥ · · · ≥ i1 and updates:

u ≺qin vn ≺qin−1
· · · ≺qi1 v1 = v,

such that v Ri−−→ q (for otherwise, v was removed even earlier
and we can continue the sequence).

We are now ready to prove that 〈Ri〉 ≡ 〈Ri+1〉 for i ≥ 1.
By our previous argument, the updates removed from their
relation Ri with q are the non-maximal vertices of the dag

(V = {u | u Ri−−→ q}, E =≺qi ).

After sorting the non-maximal vertices u1, . . . , un(q) in V
topologically, consider the sequence of trace restrictions:

α0 = ar �V ⊃ α1 = α0 \ u1 ⊃ · · · ⊃ αn = αn−1 \ un(q).

By definition (5.2), every αj is of the form βjujvjγj , where
βjvjγj = αj+1 and uj ≺qi vj . Here, vj absorbs uj , and
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therefore αj ≡ αj+1. We conclude that α1 ≡ αn(q) for every
query q, or in other words 〈Ri〉 ≡ 〈Ri+1〉.

4.2 Anti-dependency
The notion of dependency has a natural counterpart called

anti-dependency. An anti-dependency of a query in a given
schedule is an update not visible to the query but such that
making it visible would turn it into a dependency.

Definition 6. Given an update and a query u 6 vi−→ q in a
pre-schedule (vi, ar), let ⊕uq be the dependency relation with
respect to the modified visibility viuq = vi∪ (u, q). We define
the anti-dependency relation of the pre-schedule as

q
	−→ u iff u

⊕uq

−−−→ q.

The main property of the anti-dependency relation is that
making any set of non-anti-dependencies visible to a query
introduces no new dependencies:

Theorem 2. If (vi1, ar) and (vi2, ar) are two pre-schedules
such that vi1 ⊆ vi2, and 	−1

1 ∩ vi2 = ∅, then ⊕1 ⊇ ⊕2.

Proof. Reasoning about commutativity is more or less
straightforward, and we will focus on absorbtion only, i.e.,
assume vi1 = vi]1, and vi2 = vi]2.

Consider any two pre-schedules (viX , ar) and (viY , ar), such
that viX ⊆ viY . The respective operations ′X and ′Y possess
a kind of monotonicity property. For every pair of relations
A ∈ [⊕X , viX ] and B ∈ [⊕Y , viY ], update u, and a query q

A(u, q) ⊇ B(u, q) =⇒ A′X (u, q) ⊇ B′Y (u, q),

where R(u, q) stands for the set {v R−→ q | u ar−→ v or u = v}.
By the fixed-point argument from the proof of Theorem 1,
this property transfers to the respective fixed-points:

A(u, q) ⊇ B(u, q) =⇒ ⊕X(u, q) ⊇ ⊕Y (u, q).

Moving on to the two pre-schedules (vi1, ar) and (vi2, ar),
suppose that (u, q) ∈ vi2. As vi1(v, p) ⊇ ⊕uq1 (v, p) for every
pair (v, p) ∈ vi1, we conclude that

⊕1(v, p) ⊇ ⊕uq1 (v, p).

But q 6	1−−→ u, i.e., u 6
⊕uv

1−−−→ q, and therefore ⊕1 ⊇ ⊕uq1 . With
this fact at hand, we will prove that for all (u, q) ∈ ⊕2

⊕1(u, q) ⊇ ⊕2(u, q).

Proceeding by well-founded induction on the set ⊕2(u, q),
let v 6= u belong to it. By the inductive hypothesis:

⊕1(u, v) ⊇ ⊕1(v, q) ⊇ ⊕2(v, q) 3 v.

We can, therefore, conclude that ⊕1(u, q) \ u ⊇ ⊕2(u, q) \ u.
Now, if we let R = ⊕1 ∪ (u, q), then we obtain:

R(u, q) ⊇ ⊕2(u, q)

Because the relation R belongs to the interval [viuq1 ,⊕uq1 ], the
monotonicity property applies here, and so:

⊕1(u, q) ⊇ ⊕uq1 (u, q) ⊇ ⊕2(u, q).

4.3 Serializability
Our serializability criterion essentially provides a sufficient

condition for when a given schedule can be converted into
a serial one. We require that the serial schedule preserves
four relations: po, ar, ⊕ and 	. The first one, po, has to
be preserved by any serial schedule. Preserving the other
relations is just a choice that automatically implies that any
serial pre-schedule so ⊇ po ∪ ar ∪⊕ ∪	 is in fact a schedule.
To check whether such a pre-schedule exists we consider the
digraph obtained from the above union by collapsing every
transaction into a vertex:

Definition 7. The dependency serialization graph of a given
pre-schedule (vi, ar) of a history (E, po, T ) is a digraph over
the set of transaction T , where an arc (s, t) is present iff the
union po∪ ar∪⊕∪	 relates an event f ∈ s to another g ∈ t.

It turns out that the required serial schedule so exists if
the dependency serialization graph contains no cycles. This
leads to the following serializability crierion:

Theorem 3. A history (E, po, T ) with a finite number of
processes is serializable if it has a schedule (vi, ar) with an
acyclic dependency serialization graph.

Proof. Suppose that there exists a serial pre-schedule
so ⊇ po ∪ ar ∪ ⊕ ∪ 	. Let us denote its visibility relation
with viso. The intersection vi∩ = vi∩ viso meets the condition
⊕ ⊆ vi∩ ⊆ vi of Theorem 1, and therefore every query in E is
legal in the pre-schedule (vi∩, ar). In turn, this pre-schedule
meets the condition of Theorem 2 with respect to (viso, ar),
and therefore ⊕so ⊆ ⊕∩ ⊆ viso. Applying Theorem 1 once
more, we conclude that so is a schedule.

We still need to establish that such a pre-schedule so exists.
Because the dependency serialization graph is acyclic and
there is a finite number of processes, we could use a simple
round-robin scheduler to produce so. We only need to prove
that every transaction t has a finite number of predecessors.

Because the schedule (vi, ar) is eventually consistent, all
the relations po, ar, ⊕, and 	 are lower-finite. This implies
that every transaction has only a finite number of immediate
predecessors. Thus, if a transaction s precedes t, then the
process of s has a po-last transaction that does the same
(for otherwise we would run into a cycle). Because po is
lower-finite, and also, there are finitely may processes, we
conclude that only finitely many transactions precede t.

5. DETECTION ALGORITHM
In this section, we give two algorithms for detecting seri-

alizability violations in a schedule (vi, ar). The first one is
general, while the second makes assumptions on the data
types but is asymptotically more efficient. Detecting serializ-
ability violations amounts to determining the dependencies
⊕ and anti-dependencies 	 of the pre-schedule, and perform-
ing cycle detection. The latter has well-known linear-time
solutions, we focus on computing ⊕ and 	 here.

Our algorithms assume, for each data type, two speci-
fications, commutativity specification ] and the absorption
specification �, which give sufficient conditions for commu-
tativity and absorption:

u ] v =⇒ uv ≡ vu,
u� v =⇒ uv ≡ v.

In practice, for each pair of operations, we provide a first-
order logic formula that can can be checked in constant time
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putx[k′, v′] getx[k′, v′] sizex[n′]
putx[k, v] k 6= k′ or v = v′ k 6= k′ never
getx[k, v] k 6= k′ always always
sizex[n] never always always

Figure 2: Commutativity of dictionary actions.

Algorithm 1 Generic algorithm for determining the depen-
dencies for a schedule with updates U , queries Q, visibility
vi and arbitration ar
1: function Dependencies(U,Q, vi, ar)
2: (⊕,	) ← (∅, ∅)
3: for q ∈ Q do
4: Ur ← {u ∈ U | (u, q) ∈ vi]}
5: (Up, Ep) ← Prune (Ur, ar �Ur)
6: ⊕ ← ⊕∪ (Up × {q})
7: for u ∈ {u ∈ U | u 6 vi−→ q} do
8: (Uu, Eu) ← Prune (Up ∪ u, ar �Up ∪ u)
9: if u ∈ Uu then

10: 	 ← 	∪ (q, u)
11: return (⊕,	)

12: function Prune(V,E)
13: E ← TReduction(E)
14: W ← E
15: while W 6= ∅ do
16: ((u1, u2) : W ) ← W
17: if u1 � u2 then
18: (V,E,N) ← DelFromRed(V,E, u1)
19: W ← E ∩ (W ∪N)
20: return (V,E)

given the arguments and return values of the two operations.
For an example of a very simple commutativity specification
for a dictionary, see Figure 2.

5.1 Generic algorithm
Algorithm 1 gives an algorithm that directly applies the

results of Section 4.1. Here, Prune (line 12) computes the
fixed-point ⊕ = ⊕′ using a standard work-list algorithm. In
every step of the work-list computation, it is checked whether
an update is absorbed by its successor in the transitively
reduced arbitration order. If so, DelFromRed in line 18
removes the update u from a transitively reduced graph
(V,E), inserts edges from all predecessors to all successors of
u, recomputes the transitive reduction, and returns all newly
inserted edges. It thereby preserves both reachability and
transitive reduction over removals.

Dependencies uses Prune to compute both ⊕ and 	.
For each query q, it first determines the set Ur of all updates
that may directly or independently form dependencies of
q. Ur corresponds to all updates related with q by vi] in
Definition 5. It then uses Prune to eliminate all absorbed
updates. All remaining updates are dependencies of q. In
the second step (line 7 onwards), it reinserts one invisible
update after the other, and checks whether it is absorbed
by the dependencies of q. If not, it is added to the anti-
dependencies. The complexity of the algorithm is O(n4m)
where n = |U |+ |Q| and m = |ar|.

Algorithm 2 Optimized algorithm for determining the de-
pendencies for an execution with updates U , queries Q, visi-
bility vi, and arbitration ar
1: function FastDependencies(U,Q, vi, ar)
2: ca ← TClosure(vi)
3: (⊕,	) ← (∅, ∅)
4: for q ∈ Q do
5: Ur ← {u ∈ U | (u, q) ∈ vi]}
6: for u ∈ (U \ Ur) do
7: if u 6 vi−→ q ∧ u 6 ] q ∧ q 6 ca−→ u then
8: 	 ← 	∪ (q, u)
9: for u, u′ ∈ Ur with (u, u′) ∈ ar do

10: if u� u′ ∧ u′ vi−→ q then
11: Ur ← Ur \ {u}
12: for u ∈ Ur do
13: if u vi−→ q then
14: ⊕ ← ⊕∪ (u, q)
15: else
16: 	 ← 	∪ (q, u)
17: return (⊕,	)

5.2 Optimized algorithm
To derive an asymptotically more efficient algorithm, we

will make use of a strengthened (‘long-reaching’) absorption
relation u � v ⇐⇒ ∀χ ∈ U∗.uχv ≡ χv. Using � allows
us to be agnostic to what happens in between two updates
when pruning absorbed operations, relieving us of the task
of recomputing the transitive reduction in every step. If we
have � = �, the algorithm remains precise. This is true for
many practical systems, including the two discussed in the
following sections. It is not true, e.g. if a system contains a
swap operation that atomically swaps to fields of a record.
Here, � and � differ: Whether u absorbs v may depend on
whether a swap took place in-between.

The algorithm is listed in Algorithm 2. First, it computes
Ur, the set of all updates that may form direct or indirect
dependencies, or indirect anti-dependencies, as in the generic
version. We then check for all other updates, whether they
are invisible and non-commutative with q, and thus form
direct anti-dependencies. For a significant constant speed-up,
we filter updates that are guaranteed to happen in the future
(after q) by the causality ca, the transitive closure of vi. In
the second step (line 9), all updates absorbed by q-visible
successors in the arbitration order are eliminated. Depending
on them being visible to q or not, the remaining elements
of the set are added as dependencies and anti-dependencies,
resp., in the final step. The complexity of the algorithm
is O(min(nm,n3)), where n = |U |+ |Q| and m = |ar|, and
thereby significantly faster than the generic version.

6. APPLICATION: DEBUGGING CLOUD-
BACKED MOBILE SOFTWARE

In this section, we describe and evaluate a dynamic analysis
tool for checking serializability issues in TouchDevelop [28]
applications. TouchDevelop is a platform for mobile device
applications providing direct integration of replicated cloud-
backed storage. We compare our results to the notion of
commutativity races [8] and show that our criterion is better
suited for debugging, as it captures harmful violations more
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precisely: over all applications, our criterion flags 75% less
potential serializability violations.

First, we describe the TouchDevelop system briefly.
Then, we discuss a prototype implementation of our tool
ECRacer. Finally, we discuss the results of our study of
and the serializability violations found.

While we focus on a relatively narrow type applications
targeting a specific system, the ideas in this section are
generally applicable to a large class of the so called causally
consistent data stores [16, 17, 5, 22].

6.1 Cloud types
TouchDevelop uses the global sequence protocol [5] to

implement a replication system providing prefix consistency.
In a prefix-consistent system, a client observes a global prefix
of all updates including its own ones. This property is
stronger than causal consistency, but weaker than snapshot
isolation [6]. All three are stronger than eventual consistency
and therefore our criterion can be used directly.

All TouchDevelop code executes within weak transac-
tions that provide atomic visibility, that is, they guarantee a
stable view of a prefix-consistent snapshot of the data store.
Updates propagate asynchronously to other clients at the
end of each transaction. Transaction boundaries are inserted
whenever the runtime is idle, e.g., between execution of event
handlers or during execution of blocking operations.

The replication system is exposed to the programmer as
cloud types: data types that behave similarly to regular heap-
stored data structures, but are replicated automatically to
other clients. Cloud types include high-level data structures
such as maps and lists, but also simple data types with a
richer set of atomic operations. For example, a cloud integer
can be set to a certain value using set, but also supports a
commutative add operation.

To synchronize, clients can query whether their last update
on a cloud type is confirmed, meaning that the update was
included in the global prefix, and all operations that precede
it in the prefix are visible to the client.

6.2 Prototype implementation
Our tool ECRacer performs dynamic off-line serializabil-

ity analysis based on the algorithm in Section 5.2. First, the
TouchDevelop client runtime is instrumented to record
the execution schedule of the a client. Second, a analysis
back-end reads the recorded schedules of two or more clients
and detects serializability violations as discussed in the pre-
vious sections. The violations, which are embodied by cycles
in DSGs, are then mapped back to source code locations and
reported to the user.

Recording. The instrumentation of the TouchDevelop
runtime records operations and stores them locally. To
reconstruct the visibility relation vi between operations in
the system, we use vector clocks [18] implemented with the
replicated data store of TouchDevelop itself. That is, we
keep a replicated a map from client identifiers to integers,
and every update to replicated data is instrumented with a
double increment to the clients’ logical clock. Queries are
versioned with the odd numbers between the even versions
of updates. This simplification is sound, since the relative
ordering of queries does does not matter and it is important to
avoid the overhead of incrementing the replicated counter on
every query. The correctness of the computed vector clocks

is guaranteed by the fact that the effect of a transaction
is made atomically visible to other clients. In total, each
record consists of (1) unique identifiers for program, client,
and transaction, (2) a local operation counter to reconstruct
po, (3) logical time in form of a vector clock, (4) operation
name, concrete parameters, and return values, to determine
absorption and commutativity between operations, and (5)
a unique identifier of the AST node issuing the operation to
map operations back to program locations. The arbitration
order ar is not recorded, as it is not directly known to the
client, it can however be partially inferred from operation
return values, and otherwise we assume an arbitration by
physical time.

Analysis. The analysis back-end implements the algorithm
from Section 5.2. In addition to the generic analysis frame-
work, the implementation contains a module specific to
TouchDevelop, providing both absorption and commu-
tativity specifications for all operations on cloud types and
facilities to map analysis results back to Touch Develop ASTs.

6.3 Restricting the scope of the criterion
Requiring serializability for all operations in a program

is typically too strong because it often involves harmless
serializability violations on data displayed to the user. For
example, a violation occurs when a counter is incremented by
two clients and displayed by one of them while not observing
the increments from the other:

x.add(1)

x.get():1

x.add(1)

x.get():1

	po po

To deal with these harmless violations, we suppose a
lightweight specification of what subset of the operations in
the program requires serializability. We borrow this idea
from the atomic sets of [30]. For the sake of the experiment,
where no user-written annotations are available, we exclude
from our analysis queries issued within rendering/display
code, as they are very frequently executed (every time a page
is rerendered), guaranteed to have no other side effects in
the program and are almost always harmless in practice. We
report on serializability violations on all other operations.

6.4 Experimental set-up
We analyzed 33 different applications in total. Of them,

24 were written by regular TouchDevelop users; 6 were
written by Microsoft employees to showcase or test the cloud-
functionality of TouchDevelop (marked with † in Figure 3).
In addition, we analyze 3 cases where we fixed some of the
bugs that we found (marked with ‡ in the table). Before
analysis, each app is modified to operate on cloud data that
is disjoint from that of the original app, as to not obstruct
real users with the experiments. In addition, we remove
any ability of apps to make use of TouchDevelop’s ability
to work on user-private data instead of the common public
data.

Each application is exercised on two client nodes in parallel
via our own random exploration tool for roughly 3 minutes.
For 4 games (marked with ∗ in Figure 3) more involved
interaction was required, and we executed some of the op-
erations manually. The clients are independently restarted
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at random during the execution to achieve realistic overlap
in their lifetimes. Both clients are located in Europe, while
synchronizing through a data center in the US.

6.5 Analysis results
We compare our serializability criterion to commutativity

races. A commutativity race [8] is a pair of non-commutative
operations unrelated by causality. Their absence is a suffi-
cient condition for serializability under causal consistency
with atomic visibility. (To see this, observe that (1) under
atomic visibility, every cycle in the DSG contains at least one
	 edge, since ar, po are acyclic by definition, and ⊕ edges
cannot introduce cycles as mutual dependency of transac-
tions is impossible under atomic visibility, and (2) every 	
edge forms a commutativity race under causal consistency.)

Figure 3 lists the result of our experiment. Columns
Ops. and Trans. denote the number of operations and
transactions, resp., executed within the analyzed schedule.
Column Time [s] contains the time it took to analyze the
schedule on a system equipped with an Intel Core i7-4600U
CPU with 2.10GHz and 12GB of memory.

We define the number of serializability violations in a pro-
gram as the number of 	 edges involved in cycles in the
DSG, mapped from events down to program locations. This
is a natural metric, as it overapproximates the number of
operations whose order must be fixed by synchronization
to resolve the violation. Furthermore, it makes the num-
ber of commutativity races, column CR in the table, and
serializability violations, column SV, comparable: SV ≤ CR.

6.6 Discussion
The experiments show the general trend that significantly

fewer serializability violations than commutativity races are
reported. We detect 75% less serializability violations than
commutativity races. In particular, 21 applications contain
commutativity races, but only 8 contain serializability vi-
olations. This means that the programmer has to inspect
significantly fewer program locations when evaluating the
serializability of a system, or none at all.

We inspected the violations reported by our analysis man-
ually and found several real bugs, which we describe in the
next section. However, some of the reported serializability
violations are harmless. In some cases, this is caused by
the way TouchDevelop’s operations are implemented. For
example, the clear operation on a cloud-backed map is not
an atomic operation, but is implemented as a sequence of (a)
first acquiring all keys in the map and (b) removing every
element in the map. Some invocations of clear are correctly
flagged as non-serializable, as it can easily occur that one
client observes the original list with the newly inserted el-
ement, while another observes a list with just the inserted
element, a behavior that is not serializable. While this is
certainly unexpected behavior, it is unlikely that such bugs
would be fixed by a developer.

6.7 Real serializability violations and their fixes
Out of the eight applications that contained serializability

violations, we found four bugs that are likely to be fixed by
the developer. In this section, we discuss the four serializabil-
ity violations found in our experiment, their corresponding
fixes and how they relate to the alarms reported by the
serializability violation detection.

The bugs share the common trait that the developer mis-
took weak transactional semantics of TouchDevelop for
serializable transactions. We propose bug-fixes and argue
that establishing their correctness requires precise serializ-
ability reasoning.

Tetris. One bug appears in in the game “tetris”, in which
the following program fragment is executed when a new high
score is to be saved to the replicated store:
1 if (curScore > cloud.highScore)
2 cloud.highScore := curScore

Here, a high score of the player’s account is stored in
a cloud integer. When a game is completed, its score is
compared to the local replica of highScore. If it is larger,
the highScore is overwritten. The update is later propagated
to other clients, potentially overwriting higher scores achieved
on other clients. When the above transaction is executed
concurrently at two clients, the execution schedule shows
both a commutativity race and a serialization violation and
is thereby detected by ECRacer (see Figure 3, id “gcane”).

Implementing a fix is not trivial, as there is no atomic
max-function on cloud integers provided by TouchDevelop.
A fix can instead make use of high-level data structures to
store all scores instead of only the first:
1 var scoreRec := cloud.scores.add_row
2 scoreRec.val := curScore
3 while (!scoreRev.val.confirmed)
4 sleep(0.2)
5 var highScore = 0
6 foreach (s in cloud.scores)
7 if (s.val > highScore)
8 highScore = s.val

The fix adds the newest score to a replicated list, and
then waits until the update is appended to the global prefix.
Finally, it selects the highest value among all values stored
in the list. The synchronization in lines 2-3 is required to
not incorrectly determine that the new score is a high score.
As seen in Figure 3, the fix still exhibits a commutativity
race between the inserts to the list. However, there is no
serialization violation, as the program is serializable.

Events. The event management app “Events” is non-serializable
when it tries to sort its cloud-backed list of events (we omit
the code for space reasons here). The algorithm works by (a)
removing all elements from the cloud list, (b) sorting them
locally and (c) reinserting all elements into the cloud list. If
two such transactions are executed in parallel, all elements
in the list will be duplicated, since the concurrent removes
are merged, while the re-insertions create new unique ele-
ments per client. This bug leads to an exponential growth
of elements in the worst case scenario. Both commutativity
races and serialization violations are effective in detecting
the problem. Again, the best fix for the bug is to compute
the desired view after querying the data, in this case, to sort
a local copy of the cloud-replicated list before accessing it.

Sky Locale. The “Sky Locale” quiz game allows a user to
overwrite the account of an existing user, because of an
incorrect uniqueness check. The serializability violation is
correctly detected by ECRacer, however the fixed version
still contains a commutativity race. The essential problem is
embodied by the following code:
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ID Name Category Ops. Trans. CR SV SV
CR [%] Time [s]

sxjua Cloud Paper Scissors † Game 244 96 7 2 29 0.066
uvlma Color Line ∗ Game 5 4 1 0 0 0.003
ycxbc guess multi-player demo † Game 293 66 3 1 33 0.104
kqfnc HackER Game 115 91 12 6 50 0.181
ohgxa keyboard hero ∗ Game 2 2 0 0 - 0.001
wccqepeb Online Tic Tac Toe Multiplayer Game 565 184 57 17 30 0.324
uvjba pentix ∗ Game 6 6 3 0 0 0.002
padg sky locale ∗ Game 347 266 2 1 50 0.118
– sky locale ∗ ‡ Game 264 195 0 0 - 0.047
gcane tetris ∗ Game 8 4 2 1 50 0.002
– tetris ∗ ‡ Game 14 8 1 0 0 0.003
fqaba Chatter box Social 131 75 3 0 0 0.020
etww Contest Voting † Social 57 57 0 0 - 0.065
eijba ec2 demo chat † Social 72 36 0 0 - 0.009
gbtxe Hubstar Social 263 183 0 0 - 0.120
nggfa instant poll † Social 81 81 0 0 - 0.019
qnpge metaverse Social 20 4 3 0 0 0.005
ruef Relatd Social 118 65 7 0 0 0.014
cvuz Super Chat Social 170 58 0 0 - 0.029
wbuei unique poll Social 166 143 2 0 0 0.071
qzju cloud card Tool 32 8 0 0 - 0.006
kzwue Cloud Example Tool 178 170 2 1 50 0.099
blqz cloud list † Tool 302 261 2 0 0 0.082
qwidc Events Tool 1458 80 5 2 40 0.772
– Events ‡ Tool 520 65 0 0 - 0.158
nvoha expense recorder † Tool 67 60 3 0 0 0.007
wkvhc Expense Splitter Tool 25 14 0 0 - 0.007
kmac FieldGPS Tool 12 12 1 0 0 0.005
kjxzcgcv NuvolaList 2 Tool 297 223 6 0 0 0.340
eddm Save Passwords Tool 345 259 0 0 - 0.118
cavke TouchDatabase Tool 232 58 0 0 - 0.048
qzeua TouchDevelop Jr. Tool 64 49 1 0 0 0.029
whpgc Vulcanization calculator Tool 54 30 1 0 0 0.009

Figure 3: Result of the dynamic analysis of 33 TouchDevelop applications.

1 if (!Users.at(name).Created) {
2 Users.at(name).Created := true
3 // ...
4 }

The code tries to enforce a uniqueness constraint over
user names, however, TouchDevelop’s transactions only
guarantee a causally consistent snapshot and atomic applica-
tion of updates, not sufficing for the serializable execution of
mixed (update and query) transactions. It is possible that
two clients reserve the same name after concurrently reading
false in line 2. A fix can be derived by reserving the name,
forcing synchronization with the other clients and checking
if we have won the race for the name reservation.

For example, this implementation could be used:

1 Users.at(name).Created := client_id
2 while (!Users.at(name).Created.confirmed)
3 sleep(0.2)
4 if (!Users.at(name).Created == client_id)
5 // ...

Online Tic Tac Toe Multiplayer. The game “Online Tic
Tac Toe Multiplayer” uses “cloud game lobby”, mentioned
in section 1 to correctly synchronize access to games and
managing participants. However, it only allows one game to
be played at the same time, as moves from different games
use the same data structures. In this case, we do not propose
a specific fix, as the application simply does not use a correct
data model.

7. APPLICATION: DEVELOPING CLIENTS
OF WEAKLY CONSISTENT DATABASES

In this section, we show that our dynamic analysis can
guide the developer while implementing an application against
an eventually consistent data store. The analysis is useful
when the application has consistency constraints that are not
automatically guaranteed by the data store. In our experi-
ment, our analysis always reported violations that lead to
real synchronization problems (or missing lightweight specifi-
cation). Moreover, the analysis correctly classifies all of our
fixes as serializable.

In our case study we use Riak [13], a distributed key-value
data store based on a similar design as Amazon’s Dynamo [7].
Riak replicates data across a cluster of nodes and keeps it
eventually consistent. Operations are typically performed in
a highly available manner, where queries only contact a subset
of the replicas, and updates return to the client before being
confirmed by all nodes. To resolve update-update conflicts
in a convergent manner, Riak provides implementations
of several conflict-free replicated data types [23] such as
counters, sets, flags, maps and last-writer-wins registers.

7.1 Dynamic analysis of Riak-backed applica-
tions

We integrate our runtime instrumentation as a shim layer
around the official Python client library of Riak. This layer
serves two purposes: (1) if dynamic analysis is enabled, the
layer records all executed operations of the client application
to an independent database (2) it gives the developer the
ability to provide lightweight specifications in addition to
the purely operational API of Riak.

Recorded information. As in section 6, we require the
knowledge of visibility vi, arbitration ar, and program order
po, as well as be able to check commutativity ] and absorp-
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tion � between operations. po can be trivially determined
by sequentially numbering all operations performed by the
same client and recording it. To check commutativity and
absorption, we record all arguments and return values of
each operation.

In contrast to section 6, here visibility vi cannot be tracked
using vector clocks, as Riak does not provide causal con-
sistency, and a client operation is therefore not guaranteed
to observe all of its causal predecessors. Furthermore, up-
dates are only guaranteed to become atomically visible on a
per-key basis. That is why we track visibility information
for every stored value separately. Each value is embedded
in a Riak-DT-Map [3], along with a set of unique identifiers
of all the updates applied to the value. These identifiers
correspond directly to vi edges in the DSG. Since changes
to the map provide atomic visibility, a client has observed
an update if and only if that update’s identifier is in the
set. Deletions are not performed directly, but instead, the
value-embedding map also contains a flag which marks the
record as deleted.

Using this instrumentation, the data stored in the database
grows linearly in the number of operations performed on the
database. It must therefore be noted that such an instru-
mentation makes sense only during testing and not during
production. This restriction can be partially lifted by making
further assumptions: For example, by assuming that clients
remain connected to the same node, implying that the set
of observed updates is monotonically increasing, one can
track observed updates for each client separately and prune
observed updates from the observed sets. We do not apply
such a technique in our evaluation, as short execution traces
suffice for our purposes.

Light-weight specifications. If the dynamic analysis is
used without any developer annotations, every operation will
be observed as single-operation transaction. In that case,
ECRacer essentially checks for sequential consistency [15] of
the recorded execution. Our client library provides two ways
of expressing the developer’s intent: (1) one may designate
that a set of operations forms a transaction, that is, expected
to have serializable behavior; (2) the developer may exclude
query operations from the serializability checking. We then
allow such operations to return inconsistent values.

Offline analysis. The offline analysis is performed in the
same manner, and in fact, with the same core implementa-
tion as in Section 6, despite that it targets different systems.
ECRacer is extended with commutativity and absorption
specifications for all operations provided by Riak. Here, we
use the semantics of Riak’s CRDTs to derive the arbitra-
tion order. For example: for an increment-only counter, all
updates are unordered as they all commute, therefore the
arbitration order is empty. For an add-wins set, concurrent
adds are unordered, concurrent removes are unordered, and
every add is ordered after all concurrent removes. Finally,
for a last-writer-wins register, all updates to the register are
totally ordered by their physical timestamps.

7.2 Implementing TPC-C using ECRacer
TPC-C [29] is one of the most well-known database bench-

marks. It defines a database-backed whole-sale supplier
application, featuring among others payment, delivery, order
status, stock level status, and order creation transactions.

It is typically implemented by vendors of databases which
provide serializable transactions, but has also extensively
been used for the benchmarking of weakly synchronized
distributed databases [1].

We use our analysis to derive a correctly synchronized ver-
sion of a TPC-C implementation, by iteratively eliminating
violations detected by our analysis. Initially, we start with
an implementation of TPC-C (in Python), loosely based on
the sample programs given in Appendix A of the TPC-C
specification [29]. These programs use a standard table-based
data model and assume support for serializable transactions
from the database.

Each version of the implementation is run with the previ-
ously described runtime instrumentation for 20 seconds with
3 clients in parallel on a minimal three node setup of Riak on
a remote server. The number of transactions and operations
executed, the analysis time and the detected violations are
listed in Figure 4.

Version 1. In the first version, the analysis detects 9 viola-
tions. 3 of those are due to increments being performed in a
non-atomic way:

txn: DELIVERY

C.get(”C BALANCE”):25

C.set(”C BALANCE”, 25-13)

disp C.get(”C BALANCE”):12

txn: DELIVERY

C.get(”C BALANCE”):25

C.set(”C BALANCE”, 25-15)

disp C.get(”C BALANCE”):10

	po po
ar

po 	 po⊕ ⊕

The update to the balance is lost, since Riak does not
provide transactional atomicity guarantees. The problem
can easily be solved without coordination, by replacing
C BALANCE by a CRDT counter with commutative incre-
ments. Note how the second part of the transactions is
serializable: the left update is arbitrated before the right
update, and the right update absorbs the left one. A serial-
ization can therefore order the set/get pair sequentially to
get a legal execution.

Version 2. The result of replacing non-atomic increments
of counters by commutative counter increments, leads to the
following execution fragment:

txn: DELIVERY

C.add(”C BALANCE”,-12)

disp C.get(”C BALANCE”):13

txn: DELIVERY

C.add(”C BALANCE”,-15)

disp C.get(”C BALANCE”):10

⊕ ⊕
		po po

Note the difference to the previous fragment: Here, the two
increments are unordered by arbitration (as they commute),
and they do not absorb each other. Therefore, we get two
	 edges, forming a cycle in the DSG. In any serialization,
one of the get queries must read the balance -2. However,
since the value is only displayed to the user and has no effect
on database consistency, we decide to add annotations to
exclude all query operations that are merely performed for
displaying data on the terminal from the analysis.
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Version 3. In Version 3, ECRacer detects 2 violations. 1
of those is due to partial observation of transactions, as in
the following cycle between NEW ORDER and DELIVERY:

txn: NEW ORDER

ORDERS.insert(33,...)

NEW ORDERS.insert(33)

txn: DELIVERY

NEW ORDERS.get first():33

ORDERS.get(33):empty
	
⊕po po

The left transactions inserts a new order, and inserts a
foreign key to that order into the NEW ORDERS table. The
right transaction observes the foreign key, but does not
observe the corresponding order record. The DSG defines
that, in a serialization, the order insertion must follow the
order retrieval to make its return value legal, but also requires
the foreign key insertion to be ordered before the foreign key
retrieval, creating a cycle with the program order.

We can solve this and similar errors by denormalizing data
and combining tables into nested data structures. In this
example, we embed the NEW ORDER flag into the ORDERS
record. Similarly, the lines of the order are embedded as a
set CRDT in the ORDERS record.

Version 4. In Version 4 of the implementation, only one vio-
lation is detected: Two parallel increments to D NEXT O ID
(the district’s next, serially assigned order number) and two
queries to that value in the same NEW ORDER transaction:

txn: NEW ORDER

dist.add(’D NEXT O ID’)

dist.get(’D NEXT O ID’):13

ORDERS.insert(13,...)

txn: NEW ORDER

dist.add(’D NEXT O ID’)

dist.get(’D NEXT O ID’):13

ORDERS.insert(13,...])

		po

po

po

po

Clearly, this behavior is non-serializable, as it should not
be possible for both transaction instances to read value 13
in the second operation. This problem is classic for TPC-C
and it was previously shown to be impossible to implement
without coordination [1]. To resolve the problem (which is not
directly possible in Riak), we use atomic counters, externally
synchronized by ZooKeeper [12], a high-performance service
for distributed synchronization.

Version 5. Finally, after running the Version 4 several times,
the analysis reported potential double delivery, a rare cir-
cumstance due to the infrequent execution of the delivery
transaction:

txn: DELIVERY

ORDERS.query(new=true):x

x.set(new=false)

txn: DELIVERY

ORDERS.query(new=true):x

x.set(new=false)

		po po

Here, the transactions receives all new orders from the
database, and subsequently disables the new flag. Behaving

Version #Txns #Ops Time [s] #Viol.
1 280 7197 28.064 9
2 307 6907 24.806 6
3 365 7236 20.938 2
4 441 6903 7.678 1
5 475 7192 8.113 1
6 449 6903 6.823 0

Figure 4: Analysis results for each version of TPC-C. #Txns
is the number of transactions, #Ops the number of opera-
tions recorded, Time is the total analysis time in seconds,
#Viol. are the number of detected violations

correctly under serializable guarantees, this implementation
may lead to double deliveries. We solve the problem by
exploiting the rarity of the delivery transactions: We can
force its execution on a single server and lock it locally,
without compromising performance.

Version 6. In the final version, no serializability violation is
detected. While ECRacer, being a dynamic analysis, cannot
provide a guarantee about the absence of violations, one can
gain significant confidence by creating bad-case scenarios
(network partitions, node failure, etc.) during the dynamic
analysis.

7.3 Scalability
Finally, we evaluate the throughput of our incrementally

derived, partially serializable implementation to an implemen-
tation with straight-forward synchronization. The former,
labeled Custom in Figure 5 corresponds to Version 6 from
the previous subsection, while the latter, labeled Locked, cor-
responds to Version 1, extended with an uninformed attempt
at correct synchronization: Clients lock parts of the database
that they access using ZooKeeper primitives.

We run both version on 4 to 10 m4-large Amazon EC2
instances with 2 virtual cores and 8GiB of RAM each, running
clustered instances of both Riak an ZooKeeper. Riak is
run in its default configuration with triple replication and
Apache SOLR providing advanced querying on top of the
key-value store.

Our benchmark follows standard usage of distributed
databases: it replicates data across nodes for failure tol-
erance, and it does not use stored procedures to implement
transactions. It is therefore not directly comparable to opti-
mized implementations, and much higher throughputs can
be achieved with further domain knowledge. However, the
benchmark clearly shows that the manual synchronization de-
rived from our analysis result, without any domain knowledge,
scales much better then the uninformed locking approach.

8. CONCLUSION
We presented a new serializability criterion for eventually

consistent data stores. The criterion generalizes the clas-
sic notion of conflict serializability to deal with high level
data types by leveraging the concepts of commutativity and
absorption.

We built a prototype dynamic analyzer for detecting vio-
lations of our criterion and evaluated it on both mobile ap-
plications that use weak-replication as well as a well-known
database benchmark. Our experimental results indicate that
the criterion is practically useful: it captures one’s intuitive
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Figure 5: Performance comparison of Version 6 (Custom)
and a primitively synchronized variant of Version 1 (Locked)

notion of correctness in this setting and led to finding several
previously undetected bug.

As a result, we believe the concepts and systems presented
in this work are a useful step forward in helping build correct
and efficient applications on top of eventually consistent data
stores.
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