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Abstract—The generator matrix of a polar code is obtained
by selecting rows from the Kronecker product of a lower-
triangular binary square matrix. The selection is based on the
Bhattacharyya parameter of the row, which is closely related
to the error probability of the corresponding input bit under
sequential decoding. This work investigates the properties of the
index set pointing to those rows in the infinite blocklength limit.
In particular, the Lebesgue measure, the Hausdorff dimension,
and the self-similarity of this set will be discussed. It is shown
that these index sets fulfill several properties that are common
to fractals.

I. INTRODUCTION

Applying the polarization transform proposed by Arıkan [1]

to sufficiently many instances of a binary-input memoryless

channel, causes a portion of the resulting channels to have

a capacity close to one, while the remaining portion has a

capacity close to zero. These polarized channels can thus

be split into two sets: The set of “good” channels, and the

set of “bad” channels. Despite their importance for code

construction, very little is known about their structure. A recent

exception is the work by Renes, Sutter, and Hassani, stating

conditions under which polarized sets are aligned, i.e., under

which the good (bad) channels derived from one binary-input

memoryless channel are a subset of the good (bad) channels

derived from another [2].

Polar codes are Kronecker product-based codes. Such a code

of block-length 2n is based on the n-fold Kronecker product

G(n) := F⊗n, where

F :=

[
1 0
1 1

]

. (1)

Following the terminology of [3], a rate-K/2n Kronecker

product-based code is uniquely defined by a set F of K in-

dices: Its generator matrix is the submatrix of G(n) consisting

of the rows indexed by F . For polar codes, in which each row

of G(n) can be interpreted as a (partially polarized) channel,

F consists of rows corresponding to the K channels with the

lowest Bhattacharyya parameter [4] (see Section II).

That Kronecker product-based codes, such as polar

codes [1] or Reed-Muller codes, possess a fractal nature has

been observed in [3], where it was noted that G(n) resembles

a Sierpinski triangle. Much earlier, Abbe suspected that the set

of “good” channels has fractal nature [5]. Nevertheless, to the

best of the author’s knowledge, no definite statement regarding

this fractal nature has been made yet. In this paper, we try

to fill this gap and present results about the set of “good”

channels (Sections III). Specifically, we study the properties

of the set F for infinite blocklengths, i.e., for n → ∞.

To simplify analysis, we represent every infinite binary

sequence indexed in F by a point in the unit interval [0, 1].
Let Ω = {0, 1}∞ be the set of infinite binary sequences, and

let b := (b1b2 · · · ) ∈ Ω be an arbitrary such sequence. We

abbreviate bn := (b1b2 · · · bn). Let (Ω,B,P) be a probability

space with B the Borel field generated by the cylinder sets

S(bn) := {w ∈ Ω: w1 = b1, . . . , wn = b2} and P a probability

measure satisfying P(S(bn)) = 1/2n. The following function

f : Ω → [0, 1] permits us to convert these sequences to real

numbers:

f(b) :=
∞∑

n=1

bn
2n

(2)

Letting D := [0, 1] ∩ {p/2n: p ∈ Z, n ∈ N} denote the set

of dyadic rationals in the unit interval, we recognize that f is

not injective:

Example 1. f maps both b = (01111111 · · · ) and b =
(10000000 · · · ) to 0.5. We call the latter binary expansion

terminating.

However, as the following lemma shows, f is bijective if

we exclude the dyadic rationals:

Lemma 1 ([6, Exercises 7-10, p. 80]). Let B[0,1] be the Borel

σ-algebra on [0, 1] and let λ be the Lebesgue measure. Then,

the function f in (2) satisfies the following properties:

1) f is measurable w.r.t. B[0,1]

2) f is bijective on Ω \ f−1(D)
3) for all I ∈ B[0,1], P(f

−1(I)) = λ(I)

We believe that the results we prove in the following not

only improve our understanding of polar codes: Since its

introduction in 2009, the polarization technique proposed by

Arıkan has found its way into areas different from polar

coding. Haghighatshoar and Abbe showed in the context

of compression of analog sources that Rényi information

dimension can be polarized [7], and Abbe and Wigderson used

polarization for the construction of high-girth matrices [8].

Recently, Nasser proved that a binary operation is polarizing

if and only if it is uniformity preserving and its inverse

is strongly ergodic [9], [10]. We believe that our results

might carry over to these areas as well and point to possible

extensions in Section IV.

II. PRELIMINARIES FOR POLAR CODES

We adopt the notation of [1]: Let W : {0, 1} → Y be

a binary-input memoryless channel with output alphabet Y ,

capacity 0 < I(W ) < 1, and with Bhattacharyya parameter

Z(W ) :=
∑

y∈Y

√

W (y|0)W (y|1). (3)
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That Z(W ) = 0 ⇔ I(W ) = 1 and Z(W ) = 1 ⇔ I(W ) = 0
is a direct consequence of [1, Prop. 1].

The heart of Arıkan’s polarization technique is that two

channel uses of W can be combined and split into one use of

a “worse” channel

W 0
2 (y

2
1 |u1) :=

1

2

∑

u2

W (y1|u1 ⊕ u2)W (y2|u2) (4a)

and one use of a better channel

W 1
2 (y

2
1 , u1|u2) :=

1

2
W (y1|u1 ⊕ u2)W (y2|u2) (4b)

where u1, u2 ∈ {0, 1} and y1, y2 ∈ Y . In essence, the combin-

ing operation codes two input bits by F in (1) and transmits

the coded bits over W via two channel uses, creating a vector

channel. The splitting operation splits this vector channel into

the two binary-input memoryless channels indicated in (4). Of

these, the better (worse) channel has a strictly larger (smaller)

capacity than the original channel W , i.e., I(W 0
2 ) < I(W ) <

I(W 1
2 ), while the sum capacity equals twice the capacity of the

original channel, i.e., I(W 0
2 ) + I(W 1

2 ) = 2I(W ) [1, Prop. 4].

The effect of combining and splitting on the channel capac-

ities I(W 0
2 ) and I(W 1

2 ) admits no closed-form expression; the

effect on the Bhattacharyya parameter at least admits bounds:

Lemma 2 ([1, Prop. 5 & 7]).

Z(W 1
2 ) = g1(Z(W )) = Z2(W ) < Z(W ) (5a)

Z(W ) < Z(W 0
2 ) ≤ g0(Z(W )) = 2Z(W )− Z2(W ) (5b)

with equality if W is a binary erasure channel.

Channels with larger blocklengths 2n, n > 1, can either be

obtained by direct n-fold combining (using the matrix G(n))
and n-fold splitting, or by recursive pairwise combining and

splitting. For bn ∈ {0, 1}n, we obtain
(

W bn

2n ,W
bn

2n

)

→
(

W bn0
2n+1 ,W bn1

2n+1

)

(6)

where bn0 and bn1 denote the sequences of zeros and ones

obtained by appending 0 and 1 to bn, respectively. Note that

g1 and g0 from Lemma 2 are non-negative and non-decreasing

functions mapping the unit interval onto itself, hence the

inequality in (5b) is preserved under composition:

Z(W bn

2n ) ≤ pbn(Z(W )) := gbn(gbn−1
(· · · gb1(Z(W )) · · · ))

(7)

The channel polarization theorem shows that, with proba-

bility one, after infinitely many combinations and splits, only

perfect or useless channels remain, i.e., either I(W b
∞) = 1 or

I(W b
∞) = 0 for b ∈ {0, 1}∞. This is made precise in:

Proposition 1 ([1, Prop. 10]). With probability one, the limit

RV I∞(b) := I(W b
∞) takes values in the set {0, 1}: P(I∞ =

1) = I(W ) and P(I∞ = 0) = 1− I(W ).

If the polarization procedure is stopped at a finite block-

length 2n for n large enough, it can still be shown that the vast

majority of the resulting 2n channels are either almost perfect

or almost useless, in the sense that the channel capacities

are close to one or to zero (or, that the corresponding Bhat-

tacharyya parameters are close to zero or to one). The idea of

polar coding is to transmit data only on those channels that are

almost perfect: n-fold combining, which employs the matrix

G(n), leads to 2n virtual channels, each corresponding to a

row of G(n). The channels with high capacity are indicated

by the set F , and the generator matrix of the corresponding

polar code is precisely the submatrix of G(n) consisting of

those indicated rows.

The difficulty of polar coding lies in code construction, i.e.,

in determining which channels/row indices are in the set F .

This immediately translates to the question which sequences

b ∈ {0, 1}∞ correspond to combinations and splits leading to

a perfect channel (or which finite-length sequences bn lead to

channels with capacity sufficiently close to one). Determining

the capacity of the virtual channels is an inherently difficult

operation, since, whenever W is not a binary erasure channel

(BEC), the cardinality of the output alphabet increases expo-

nentially in 2n [11, Ch. 3.3], [12, p. 36]. To circumvent this

problem, Tal and Vardy presented an approximate construction

method in [13], that relies on working with reduced output

alphabet channels that are either upgraded or degraded w.r.t.

the real channel. As these upgrading/degrading properties –

mentioned earlier in Korada’s PhD thesis [12] – will play a

fundamental role in this work, we present

Definition 1 (Channel Up- and Degrading). A channel

W−: {0, 1} → Z is degraded w.r.t. the channel W (short:

W− 4 W ) if there exists a channel P : Y → Z such that

W−(z|u) =
∑

y∈Y

W (y|u)P (z|y). (8)

A channel W+: {0, 1} → Z is upgraded w.r.t. the channel W
(short: W+ < W ) if there exists a channel P : Z → Y such

that

W (y|u) =
∑

z∈Z

W+(z|u)P (y|z). (9)

Moreover, W+ < W if and only if W 4 W+.

The upgraded (degraded) approximation remains upgraded

(degraded) during combining and splitting:

Lemma 3 ([12, Lem. 4.7] & [13, Lem. 3]). Assume that

W− 4 W 4 W+. Then,

I(W−) ≤ I(W ) ≤ I(W+) (10a)

Z(W−) ≥ Z(W ) ≥ Z(W+) (10b)

(W−)12 4 W 1
2 4 (W+)12 (10c)

(W−)02 4 W 0
2 4 (W+)02. (10d)

It can be shown that the better channel (4b) obtained

from combining and splitting is upgraded w.r.t. the original

channel (as already mentioned in [11, p. 9]). That the worse

channel (4a) is degraded holds at least for the BEC:

Lemma 4. W 4 W 1
2 . If W is a BEC, then W 0

2 4 W 4 W 1
2 .

Proof. The proof of the first part follows by choosing

P (y|y21 , u1) =

{

1, if y = y2

0, else.
(11)
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For the BEC, note that if W has erasure probability ǫ, then

W 1
2 is a BEC with erasure probability ǫ2 and W 0

2 is a BEC

with erasure probability 2ǫ − ǫ2 [1, Prop. 6]. The channel

W 1
2 is an upgrade of W , because it can be degraded to W

by appending a BEC with erasure probability ǫ/(1 + ǫ). The

channel W 0
2 is degraded w.r.t. W by appending a BEC with

erasure probability ǫ.

III. PROPERTIES OF THE SETS G AND B

In this section we develop the properties of the sets of good

and bad channels. For the sake of brevity, we only sketch the

proofs here; complete proofs are given in [14].

Definition 2 (The Good and the Bad Channels). Let G denote

the set of good channels, i.e.,

x ∈ G ⇔ ∃b ∈ f−1(x): I(W b
∞) = 1; (12)

let B denote the set of bad channels, i.e.,

x ∈ B ⇔ ∃b ∈ f−1(x): I(W b
∞) = 0. (13)

Proposition 2. For almost all x, there exists a value 0 ≤
ϑ(x) ≤ 1 such that Z(W ) < ϑ(x) implies x ∈ G. If W is a

BEC, then additionally Z(W ) > ϑ(x) implies x ∈ B.

Sketch of Proof: This proposition is an adaption of [15,

Lem. 11] to our setting: The lemma states that, for P-

almost every sequence b, there is a threshold θ(b) such that

limn→∞ pbn(z) converges to zero (one) if z is smaller (larger)

than θ(b). The rest follows from Lemma 2.

Note that if W is not a BEC, it may occur that Z(W ) >
ϑ(f(b)) while still I(W b

∞) = 1. This in turn opens the

question whether the set of good channels is (almost surely)

increasing with decreasing Bhattacharyya parameter: Are there

channels W and W ′ (from the same family) with good channel

sets G and G′, respectively, such that Z(W ) > Z(W ′) >
ϑ(f(b)), but I(W b

∞) = 1 and I(W ′b
∞) = 0? We leave this

question for future research but mention that Proposition 2

answers it negatively for BECs: The set of good channels for

a BEC is also good for any binary-input memoryless channel

with a smaller Bhattacharyya parameter [16].

Example 2. For x ∈ D, ϑ(x) = 1: If Z(W ) < 1, i.e.,

if the channel is not completely useless a priori, the non-

terminating expansion of x will make it a perfect channel

(cf. Proposition 3).

Example 3. Let x = 2/3, hence f−1(x) = 101010101 · · · .
The binary expansion is recurring. It thus suffices to consider

exactly one period of the recurring sequence and determine

its fixed points. In this case we get p10(z) = 2z2 − z4. Its

fixed point lies at the intersection of p10(z) and z; removing

the trivial intersections at z = 0 and z = 1 leaves two further

roots at (±
√
5 − 1)/2. One of these roots lies outside [0, 1]

and is hence irrelevant. The remaining root determines the

threshold: ϑ(2/3) = (
√
5− 1)/2. Now let W be a BEC with

erasure probability ǫ = Z(W ) = ϑ(2/3). Since ǫ = ϑ(2/3) is

a fixed point of the iterated function system corresponding to

the recurring binary expansion, one gets Z(W
f−1(2/3)
∞ ) = ǫ /∈

{0, 1}. This example illustrates why Proposition 1 holds only

almost surely.

Proposition 3. G ∩ B = D.

Sketch of Proof: The proof is based on the fact that

dyadic rationals admit two possible binary expansions (see Ex-

ample 1): The Bhattacharyya parameter of the non-terminating

expansion ak111 · · · , for ak ∈ {0, 1}k an appropriate prefix,

is driven down to zero by squaring Z(W ak

2k ) infinitely often.

The terminating expansion has the same prefix ak with

the last bit inverted. All binary sequences starting with this

prefix lead to a channel that is upgraded w.r.t. the one

corresponding to the terminating expansion (Lemmas 3 and 4).

By Proposition 1, some sequences with this prefix lead to bad

channels, hence the terminating expansion must lead to a bad

channel as well.

That the intersection of the sets of good and bad channels

is non-empty is a direct consequence of the non-injectivity of

f . Note further that this intersection cannot be larger, since

D is the only set to which f maps non-injectively. Since D,

a common subset of G and B, is dense in [0, 1], both the set

of good channels and the set of bad channels are dense in the

unit interval. But even if dyadic rationals are excluded, results

about denseness can be proved:

Proposition 4. G \ D is dense in [0, 1]. If W is a BEC, then

also B \ D is dense in [0, 1].

Sketch of Proof: We sketch only the first part of the

proof, the second part involving BECs follows along the same

lines. The proof is based on the polynomial pb(z). Let bn

be an arbitrary prefix (corresponding to a dyadic rational),

leading to a Bhattacharyya parameter Z(W bn

2n ). There exists

a sequence ak with one zero and sufficiently many ones such

that pak(z) < z for all z below a certain threshold z∗(ak) >

Z(W bn

2n ). It follows by Lemma 2 that Z(W bnakak···
∞ ) ≤

pakak···(Z(W bn

2n )) → 0, hence f(bnakak · · · ) ∈ G. Finally,

between any two dyadic rationals a rational can be found with

binary expansion bnakak · · · that satisfies these properties.

This proves that the good channels are dense even excluding

the dyadic rationals. The inequality in Lemma 2 is the reason

why denseness of bad channels can only be proved for BECs.

The proposition states that, at least for the BEC, there is no

interval which contains only good channels. Hence, given a

specific channel W bn

2n , it is not possible to assume that a well-

specified subset of channels (e.g., all W bna
∞ for a starting with

1) generated from this channel by combining and splitting

will be perfect. The construction algorithm for an infinite-

blocklength, vanishing-error polar code hence cannot stop at

a finite blocklength, as it can be done for a finite-blocklength

polar code, cf. [17].

Proposition 5. G is Lebesgue measurable and has Lebesgue

measure λ(G) = I(W ). B is Lebesgue measurable and

has Lebesgue measure λ(B) = 1 − I(W ). The Hausdorff

dimensions of G and B satisfy d(G) = 1 and d(B) = 1.

Sketch of Proof: The proof for the good channels follows
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Fig. 1. The polar fractal for a BEC. The center plot shows the thresholds ϑ(x) for x ∈ [0, 1], while the bottom and the top plots show these thresholds for
the scaled and shifted sets [0, 0.5] and [0.5, 1], respectively. Hence, the thresholds in the top plot are larger than the thresholds in the center plot, which are
larger than those in the bottom plot. The set G is obtained by setting each value in the plot to one (zero) if the erasure probability ǫ is smaller (larger) than
the threshold.

from the fact that λ(G) = λ(G \D), from Definition 2 stating

x /∈ D: x ∈ G ⇔ I(W f−1(x)
∞ ) = 1, (14)

and from Proposition 1; the proof for the bad channels follows

along the same lines. That the Hausdorff dimension of both

sets is unity follows from the fact that the one-dimensional

Hausdorff measure of a set equals its Lebesgue measure up to

a constant [18, eq. (3.4), p. 45].

Note that despite the fact that λ(G ∪B) = 1, G∪B ⊂ [0, 1].
The reason is that convergence to good or bad channels is only

almost sure, and that there may be channels W b
∞ which are

neither good nor bad (see Example 3).

We finally come to the claim that polar codes are fractal.

Following Falconer’s definition [18, p. xxviii], a set is fractal

if it is (at least approximately) self-similar and has detail on

arbitrarily small scales, or if its fractal dimension (e.g., its

Hausdorff dimension) is larger than its topological dimension.

Whether or not the result shown below will convince the

reader of this property is a mere question of definition; strictly

speaking, we can show only quasi self-similarity of G:

Proposition 6. Let Gn(k) := G ∩ [(k− 1)2−n, k2−n] for k =
1, . . . , 2n. G = G0(1) is quasi self-similar in the sense that,

for all n and all k, Gn(k) = Gn+1(2k − 1) ∪ Gn+1(2k) is

quasi self-similar to its right half:

Gn(k) ⊂ 2Gn+1(2k)− k2−n (15)

If W is a BEC, Gn(k) is quasi self-similar:

2Gn+1(2k − 1)− (k − 1)2−n ⊂ Gn(k) ⊂ 2Gn+1(2k)− k2−n

(16)

Sketch of Proof: We only prove the result for x /∈ D,

since the dyadic rationals are self-similar and since D ⊂ G.

If bnk = b1b2 · · · bn is the terminating binary expansion of

(k − 1)2−n, every value in [(k − 1)2−n, k2−n] has a binary

expansion bnka for some a ∈ {0, 1}∞, where bn = 1 if

and only if (k − 1) is odd. Similarly, and since (2k − 1)
is always odd, every value in [(2k − 1)2−n−1, k2−n] has a

binary expansion bnk1a
′ for some a′ ∈ {0, 1}∞. Assume that

a′ = a. Then, by Lemmas 3 and 4, W
bn
k
a

∞ 4 W
bn
k
1a

∞ for all

a. Hence, if f(bnka) ∈ Gn(k), then f(bnk1a) ∈ Gn+1(2k). The

proof follows by showing that 2f(bnk1a)−f(bnk+1) = f(bnka).
For the BEC, the proof follows from the fact that by Lemmas 3

and 4, W
bn
k
0a

∞ 4 W
bn
k
a

∞ for all a.

In other words, at least for the BEC, G is composed of two
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similar copies of itself (see Fig. 1). Along the same lines, the

quasi self-similarity of B can be shown.

Example 4. By careful computations we obtain ϑ(1/6) ≈
0.214, ϑ(1/3) ≈ 0.382, and ϑ(2/3) ≈ 0.618. Indeed, if we

consider 1/3 in G, then 1/6 and 2/3 are the corresponding

values in G1(1) and G1(2). Since ϑ(1/6) < ϑ(1/3) < ϑ(2/3),
for the BEC we have the inclusion indicated in Proposition 6.

IV. DISCUSSION & OUTLOOK

That polar codes satisfy fractal properties has long been

suspected: Every nontrivial, partly polarized channel W bn

2n

gives rise, by further polarization, to both perfect and useless

channels, regardless how close I(W bn

2n ) is to zero or one.

This fact is reflected in our Propositions 3 and 4, which state

that the good channels are dense in the unit interval (and so

are the bad channels for BECs): A partial polarization with

sequence bn corresponds to an interval with dyadic endpoints,

and denseness implies that in this interval there will be both

perfect and useless channels. Proposition 6, claiming the self-

similarity of the sets of good and bad channels, goes one step

further and gives these sets structure: If a channel polarized

according to the sequence bna is good, then so is the channel

polarized according to bn1a. Proposition 2 is also of interest

in this context: In [14, Prop. 3], we prove that the thresholds

ϑ(x) are symmetric, in the sense that ϑ(1− x) = 1− ϑ(x), a

fact that is also visible in Fig. 1.

An obvious extension of our work should deal with the

fractal properties of non-binary polar codes. If q is a prime

number, then every invertible ℓ × ℓ matrix with entries from

{0, . . . , q − 1} is polarizing, unless it is upper-triangular [11,

Thm. 5.2]. The n-fold Kronecker product of one of these

matrices generates ℓn channels. It should be easily possible to

design a function mapping {0, . . . , ℓ− 1}∞ to [0, 1] (cf. (2)),

admitting an analysis similar to the one presented in this paper.

Since choosing appropriate polarization matrices for non-

binary alphabets is not trivial, we propose to evaluate choices

based on the properties of the corresponding polar fractal

(see Fig. 1). This would, in addition to error probabilities or

polarization rates, present another objective for the design of

non-binary polar codes.

Whether binary or not, it is presently not clear if our infinite-

blocklength results can be carried over to practically relevant

finite-length codes. If this was the case, a possible application

of our results would be code construction, which requires

knowledge about the structure of the set of good channels.

Future work shall investigate this issue.
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