
ETH Library

Using Additional Information in
Streaming Algorithms

Master Thesis

Author(s):
Buff, Raffael

Publication date:
2016

Permanent link:
https://doi.org/10.3929/ethz-a-010705660

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010705660
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Department of Computer Science
Information Technology and Education

Using Additional Information
in Streaming Algorithms

Raffael Buff

Master’s Thesis

2016

Prof. Dr. Juraj Hromkovič
Dr. Hans-Joachim Böckenhauer
Dr. Dennis Komm

Supervisors:

Abstract

Streaming problems are algorithmic problems that are mainly characterized by their
massive input streams. Because of these data streams, the algorithms for these
problems are forced to be space-efficient, as the input stream length generally exceeds
the available storage. In this thesis, the two streaming problems most frequent
item and number of distinct items are studied in detail relating to their algorithmic
complexities, and it is compared whether the verification of solution hypotheses has
lower algorithmic complexity than computing a solution from the data stream. For
this analysis, we introduce some concepts to prove space complexity lower bounds
for an approximative setting and for hypothesis verification.

For the most frequent item problem which consists in identifying the item which
has the highest occurrence within the data stream, we can prove a linear space
complexity lower bound for the deterministic and probabilistic setting. This implies
that, in practice, this streaming problem cannot be solved in a satisfactory way since
every algorithm has to exceed any reasonable storage limit. For some settings, the
upper and lower bounds are almost tight, which implies that we have designed an
almost optimal algorithm. Even for small approximation ratios, we can prove a
linear lower bound, but not for larger ones. Nevertheless, we are not able to design
an algorithm that solves the most frequent item problem space-efficiently for large
approximation ratios. Furthermore, if we want to verify whether a hypothesis of the
highest frequency count is true or not, we get exactly the same space complexity
lower bounds, which leads to the conclusion that we are likely not able to profit from
a stated hypothesis.

The number of distinct items problem counts all different elements of the input
stream. If we want to solve this problem exactly (in a deterministic or probabilistic
setting) or approximately with a deterministic algorithm, we require once again
linear storage size which is tight to the upper bound. However, for the approximative
and probabilistic setting, we can enhance an already known space-efficient algorithm
such that it is usable for arbitrarily small approximation ratios and arbitrarily good
success probabilities. The hypothesis verification leads once again to the same lower
bounds.

However, there are some streaming problems that are able to profit from additional
information such as hypotheses, as e.g., the median problem.

i

Acknowledgement

I would like to thank Prof. Juraj Hromkovič for the interesting thesis topic. I es-
pecially value that he always wanted to discuss the proofs and their concepts to
understand and evaluate the basis of the thesis, instead of just observing rough
overviews or summaries.

A big thanks goes to my advisors Hans-Joachim Böckenhauer and Dennis Komm
for all the discussions, guidelines and helpful comments on the content and how to
structure this thesis. I really appreciate their constructive inputs on the optimal
degree of formalism, especially for the definitions, and that they made sure that the
mathematical formulas and algorithm concepts are described well enough to have a
good readability.

Last but not least, I would like to thank my friends Sonja Bachl and Marco Poltera
for proofreading my thesis and identifying all my lingual shortcomings such that the
reader is now able to focus on the content.

iii

Contents

List of Figures vii

List of Tables vii

1 Introduction 1
1.1 Overview and Structure of the Thesis 3

Structure of the Thesis . 4

2 Related Work 5

3 Definitions 7
3.1 Streaming Problems and Algorithms 7
3.2 Determinism and Randomization . 11
3.3 Space and Time Complexity . 13
3.4 Approximation Ratio and Success Probability 14

Approximation Ratio of a Streaming Counting Problem 14
Success Probability . 16

3.5 Solvability . 17
3.6 Basic Calculations . 19

4 Lower Bounds on Space Complexity 23
4.1 Introduction to Communication Complexity 23
4.2 Lower Bound for General Streaming Problems 25

Lower Bound for an Exact Deterministic Streaming Problem 25
Lower Bound for an Exact Probabilistic Streaming Problem 26
Lower Bound for an Approximative Deterministic Streaming Problem 28
Lower Bound for an Approximative Probabilistic Streaming Problem 29

4.3 Lower Bounds for Hypotheses Verifications 31

5 Most Frequent Item Problem 35
5.1 General Streaming Problem Analysis 35

Exact Deterministic Most Frequent Item Problem 35
Exact Probabilistic Most Frequent Item Problem 45
Approximative Deterministic Most Frequent Item Problem 52
Approximative Probabilistic Most Frequent Item Problem 64
Summary of the General Most Frequent Item Problem 70

5.2 Hypothesis Verification Analysis . 72
5.3 Analysis Conclusion . 78

v

6 Number of Distinct Items Problem 79
6.1 General Streaming Problem Analysis 79

Exact Deterministic Number of Distinct Items Problem 79
Exact Probabilistic Number of Distinct Items Problem 83
Approximative Deterministic Number of Distinct Items Problem . . 85
Approximative Probabilistic Number of Distinct Items Problem . . . 90
Summary of the General Number of Distinct Items Problem 100

6.2 Hypothesis Verification Analysis . 102
Verification of All Possible Hypotheses 102
Justification of One Correct Hypothesis 106

6.3 Analysis Conclusion . 107

7 Conclusion 109
7.1 Summary . 109
7.2 Conclusion . 111
7.3 Future Work . 111

List of Figures

1.1 Thesis Overview . 3

5.1 Illustration of the space complexity of the exact deterministic most
frequent item problem . 40

5.2 Illustration of the lower bound factor 49
5.3 Illustration of h(p) . 51

6.1 Illustration of the probability distribution of rmax 93
6.2 Illustration of the probability gap of rmax 95

List of Tables

5.1 Summary of general most frequent item problem 71

6.1 Summary of general number of distinct items problem 101

vii

Chapter 1

Introduction

The title of this thesis, Using Additional Information in Streaming Algorithms,
presses for three simple questions: What is a streaming algorithm? What is meant
by the all-encompassing additional information? And what can additional informa-
tion be used for in streaming algorithms? We address these questions in the following.

What is a streaming algorithm? A streaming algorithm processes massive data
streams to compute a certain function on these data. From a practical point of view,
a data stream means that these data are successively generated and not completely
known upfront. The streaming algorithm processes the generated data piecewise to
calculate intermediate and final results for a given streaming problem. Furthermore,
streaming algorithms may only read the streaming data once because, generally, they
cannot store the entire data stream, as the massive stream length often exceeds the
possible storage capacity. Facing these conditions, the basic question is whether a
streaming problem can be solved within practical time and space boundaries or not.
Generally, a poly-logarithmic space complexity in relation to the data stream size is
considered practical. The time needed to process a current data value is also required
to be low, as otherwise the new values generated have to be cached in the meantime,
i.e., stored, which might on the other side exceed the allowed storage size because
queues build up when incoming data stream exceeds processing capacity. The study
of streaming problems includes both the identification of streaming algorithms solving
the streaming problem with a certain space and time complexity and the analysis of
lower bounds on the required intermediate storage size to successively calculate a
certain function on the data stream. The following examples illustrate the kind of
thoughts and analysis necessary to construct an algorithm that solves a streaming
problem.

As an example, a simple streaming problem is the identification of the maximal
integer value within a massive data stream of integers. Let us assume that this data
stream contains 108 numbers, each with any integer value between one and 109. Of
course, one can easily solve this problem with an algorithm that simply tracks the
highest already known value. At the end, after reading all 108 values, this algorithm
outputs the highest observed value between one and 109. This algorithm would only
require small storage to encode this highest value.

A slightly more complex example would be the calculation of the k-th highest

1

2 Chapter 1. Introduction

value within this same data stream. Once again one could store the already known,
now k highest values and would therefore use k times more storage than for the simple
streaming problem above. For small k, e.g., k < 100, this is generally still practical.
A more difficult streaming problem is, e.g., the calculation of the most frequent value,
i.e., the value which occurs the most within the data stream. Here, one cannot easily
generate a streaming algorithm using sub-linear storage. Furthermore, we will later
present a proof that shows that this problem requires at least linear storage.

With the technique of communication complexity, we will be able to prove space
complexity lower bounds, which imply that any possible algorithm that solves a
certain streaming problem requires at least a certain space size. If the identified
algorithm requires the same amount of bits for its storage as the proven lower bound,
we have found an optimal algorithm in relation to the space complexity. If there is a
gap between the upper and lower bound, it might be possible to find an algorithm
with a lower space complexity.

These types of analyses - finding time and space efficient algorithms to solve a
streaming problem and proving necessary space complexities - are the core of the
study of streaming algorithms. This leads to the second question:

What is meant by the all-encompassing additional information? Addi-
tional information may help solve a certain streaming problem. One possible usage
of this additional information is when it represents a solution hypothesis. This means
that the streaming algorithm receives a solution hypothesis upfront, e.g., that the
number 20 appears within the data stream the most with a frequency of 39 times.
Now the streaming problem is transformed from a general solution search problem
to the decision problem of verifying whether this hypothesis is true for the given
input stream. For this decision problem of hypothesis verification, one can similarly
analyze the possible space and time complexities.

For the hypothesis verification, a streaming algorithm has to verify any possible
hypothesis for a certain input stream. This type of problem is relevant, if we have a
powerful but untrusted source. Then, we may calculate a solution hypothesis with
this source solving the general streaming problem and verify the hypothesis with an
eventually more space and time efficient algorithm.

What can additional information be used for in streaming algorithms?
The concepts of streaming problems with and without additional information are
compared. Namely, the possible algorithms and proofs for both the general solution
search problem and the hypothesis verification problem determine whether the
additional information is helpful, i.e., the required time and space complexities are
lower. In some cases, the additional information is useless for solving the streaming
problem with lower algorithmic complexities.

More specifically, this thesis introduces some concepts to evaluate, whether the
hypothesis verification is significantly easier than the general solution search problem.
Here, easier means that the algorithm to verify the hypothesis is faster or requires
less storage than the algorithm for the general solution search problem requires in the
optimal case. Additionally, some streaming problems are stated where the hypothesis
verification is equally difficult as the general streaming problem, which means that
the additional information is not useful for the streaming algorithm at all.

1.1. Overview and Structure of the Thesis 3

1.1 Overview and Structure of the Thesis

The goal of this thesis is to analyze the impact of additional information (more
specifically, a hypothesis of the solution) on the algorithmic space complexities of
several streaming problems.

To this end, different streaming problems are analyzed and compared. The two
problems most frequent item and number of distinct items, with many configurations
of different result accuracies and probabilities, are deeply studied. Both lower and
upper bounds for the space and time complexity for deterministic and probabilistic
environments are analyzed with respect to possible improvements due to additional
information. The general solution search problem is compared to the decision problem
where a solution hypothesis has to be satisfied.

Figure 1.1 illustrates this approach, which is explained in more detail in the
following. Based on this illustration, the following different layers are described:
Streaming problems (gray boxes), decision vs. search problems (dark blue boxes),
deterministic vs. probabilistic settings (light blue boxes), exact solutions vs. ap-
proximations (yellow boxes) and lower vs. upper bounds of algorithmic complexities
(orange boxes).

Figure 1.1. Thesis Overview

Streaming Problems: The following streaming problems are analyzed. The goal
of the most frequent item problem is to identify the value which is most frequent
within a data stream x = (x1, x2, . . . , xn). The streaming problem number of distinct
items identifies the amount of different values, i.e., the size of the subset of the data
stream without any duplications. As sketched in the last section of this thesis, the
introduced approach and technique to analyze upper and lower bounds that are used
to analyze the two streaming problems can be used for further streaming problems
as well.

4 Chapter 1. Introduction

Decision vs. Search Problems: Our aim is to prove or disprove the possible
benefits of additional information (in the form of a solution hypothesis) for solving
one of the mentioned streaming problems. Therefore, the best possible algorithms
with respect to space and time complexity are identified for both the search problem,
where the optimal solution has to be found and for the decision problem, where one
has to verify or refuse a certain solution hypothesis. One can verify that the decision
problem is not more complex than the search problem because, for the decision
problem, one can always compute the solution as in the search problem and compare
it to the hypothesis. Therefore, the question is, whether the decision problem (with
additional information, i.e., a hypothetical solution) has a smaller complexity, and if
so, by how much.

Deterministic vs. Probabilistic Approaches: Deterministic algorithms differ
from probabilistic ones in both the result accuracy and the required time and
space complexity. Therefore, the impact of additional information (i.e., a solution
hypothesis) is compared for both deterministic and probabilistic algorithms.

Exact Solutions vs. Approximations: Streaming optimization problems such
as the most frequent item problem may allow an approximation of the solution.
Identifying an exact solution and allowing approximative results yield fundamentally
different implications on the time and space complexities of its streaming algorithms.

Lower vs. Upper Bounds: For a certain streaming problem and its configuring
setting (decision or search problem, deterministic or probabilistic approach, and
exact solution or approximation), the best possible algorithms with respect to space
and time complexity are identified. Concrete algorithms deliver upper bounds. Fur-
thermore, formal proofs lead to space complexity lower bounds for certain streaming
problems.

Structure of the Thesis

After this introduction, Chapter 2 discusses an overview of the literature providing
similar topics. Chapter 3 introduces and describes the relevant definitions. Chapter 4
covers the approaches to prove space complexity lower bounds. Chapter 5 and
Chapter 6 contain the detailed analysis of the most frequent item problem and the
distinct item problem. The summary of the results, the thesis conclusion and an
outlook on possible future work is given in Chapter 7.

Chapter 2

Related Work

In this chapter, we introduce some relevant papers, articles and books for the topic of
this thesis. We first state some related work on streaming problems and algorithms.
To prove space complexity lower bounds, we use the technique of communication
complexity. Therefore, we state some resources about communication complexity
and its usage on other problems. At last, we list five papers on the two analyzed
streaming problems, the most frequent item problem and the number of distinct items
problem.

Streaming Problems and Algorithms: There are different resources addressing
the area of streaming problems and data streams. Aggarwal [Agg07] gives a brief
overview of the characteristics of a data stream and lists several interesting streaming
problems. Babcock et al. [BBD+02] study data streams from a more practical point
of view, including optimized database queries and time measures. A more formal and
theoretical analysis of some streaming problems is given by Muthukrishnan [Mut05].
The doctoral thesis by Prakash about Efficient Delegation Algorithms for Outsourcing
Computations on Massive Data Stream [Pra15] is a recommended literature because
it introduces the relevant parts of streaming problems, their characteristics and their
analysis including lower-bound proofs.

Communication Complexity: For a significant analysis of streaming problems,
we have to prove space complexity lower bounds, besides designing efficient streaming
algorithms. For these proofs, we will use the technique of communication complexity,
which was originally introduced by Yao [Yao79]. The principles of communication
complexity are introduced in detail later on, namely, in Chapter 4. A more broad
and formal introduction is given by Hromkovič [Hro97]. A more practical resource
on communication complexity is given by Roughgarden [Rou15], which focusses on
communication complexity for algorithm designers. Halstenberg and Reischuk [HR88]
introduce different communication complexity models and Kremet et al. [KNR01]
focus on one of these models, the one-round communication complexity, which is also
the basis for the lower-bound proofs of the two analyzed streaming problems. Babai
et al. [BFS86] introduce different communication complexity classes. Yao [Yao83],
Paturi and Simon [PS84], as well as Ablayev [Abl96] wrote useful papers on proving
lower bounds in a probabilistic setting. For our lower bound proofs in a randomized
setting, we will use the theorems by Ablayev [Abl96].

5

6 Chapter 2. Related Work

Based on the communication complexity theory, there are different papers il-
lustrating the usage of this technique. As an example, Kalyanasundaram and
Schnitger [KS92] analyze the probabilistic communication complexity of set intersec-
tion. The distributional complexity of disjointness is analyzed by Razborov [Raz92].
Munro and Paterson [MP80] focus on selection and sorting with limited storage
and the approximate counting of inversions in a data stream is studied by Ajatai
et al. [AJKS02]. Indyk and Woodruff [IW05] analyze the optimality of frequency
moment algorithms.

Most Frequent Item and Number of Distinct Items Problem: The two
studied streaming problems of this thesis are analyzed in several resources. Carmode
and Hadjieleftheriou [CH09] as well as Manku and Motwani [MM12] give concrete
implementations of algorithms for the most frequent item problem. The paper
Space Complexity of Approximating the Frequency Moments by Alon et al. [AMS99]
introduces an efficient algorithm for the number of distinct items problems and
analyzes the space complexity lower bounds of both streaming problems for a
deterministic and probabilistic setting. Karp et al. [KSP03] as well as Trevisan and
Williams [TW12] state further lower bounds for the most frequent item problem for
some conditions of the input values.

The relevant results of these resources are gathered in detail in the corresponding
chapters of the streaming problems, namely in Chapter 5 for the most frequent item
problem and in Chapter 6 for the number of distinct items problem.

Chapter 3

Definitions

Before we can start analyzing concrete streaming algorithms with respect to space
and time complexity, we first have to formally define what a streaming algorithm is.
Yet before, a definition for a streaming problem has to be provided. Additionally,
in the following chapters we will often use special cases of streaming problems or
algorithms – these special cases are also introduced here. Therefore, this chapter
contains several basic definitions for streaming problems and algorithms.

First, the general definitions for streaming problems, algorithms and their spe-
cial cases are given (Section 3.1, Section 3.2). Then, for streaming algorithms, we
introduce how the time and space complexities are identified (Section 3.3). The
problem characteristics success probability and approximation ratio are explained
(Section 3.4). Definitions on solvability (Section 3.5) and a few basic calculations for
further analysis (Section 3.6) conclude this chapter.

3.1 Streaming Problems and Algorithms
In this section, streaming problems and algorithms are introduced and formally
defined. First, the general definition of a streaming problem is explained and then,
two special cases are defined: The streaming counting problem and the streaming
decision problem. All analyzed streaming problems can be reduced to one of these
two. The general definition of the streaming problem is introduced to show the
similarity of these two cases and to avoid duplications of definitions and theorems
that are valid for both cases. These formal definitions are required to allow the
mathematical analysis of space complexity lower bounds.

As outlined in the introduction (Chapter 1), a streaming problem is mainly
characterized by the enormous size of the data stream as its input. As we will see in
the following definition, this input stream is defined as a sequence of n input values,
where n represents a very large number. The set of feasible output values defines
which outputs are allowed for every possible input stream. Finally, the problem
function defines which one of the feasible output values is the optimal or correct one
for a certain input stream. All of this together leads to the following definition.

7

8 Chapter 3. Definitions

Definition 3.1. A streaming problem S is a triple (X ,Y, f) containing a class
of input streams X , where each input stream xj ∈ X is a sequence of n input values,
i.e., xj = (xj1, . . . , xjn), with n ∈ N+. The second element of the triple is a class
of feasible output sets Y = {Yx1 , . . . ,Yxd} with d = |X |, where every input stream
xj ∈ X has a corresponding feasible output set Yxj . Additionally, the streaming
problem contains a problem function f : X → Y∗x, where, for every input stream
x ∈ X , one or more values from the feasible output set are indicated as optimal or
correct output value, namely f(x) ⊆ Yx.

With this general definition of a streaming problem, one can either define a
classical optimization problem or a decision problem. For optimization problems, one
has to be defined how good non-optimal output values are, such that this metric can
be optimized. For a decision problem, the problem function can simply be interpreted
as determining the correct decisions.

As an illustration of this definition, the simple streaming problem from above
(Chapter 1), in which the task was simply to identify the maximum integer value
within the input stream, could be formally defined as follows.

• Input streams: Each input stream x = (x1, . . . , xn) ∈ X contains a series of n
integers between 0 and a fixed m ∈ N+, namely, xi ∈ {0, . . . ,m}.

• Feasible output sets: For every input stream x ∈ X , the corresponding output
set allows every integer between 0 and m, namely Yx = {0, . . . ,m} ∈ Y.

• Problem function: For every certain input stream x ∈ X , it defines the optimal
or correct output value from the feasible output set Yx = {0, . . . ,m}, which is
f(x) = max{xi | 1 ≤ i ≤ n}.

With this definition of X , Y , and f , we defined a streaming problem S = (X ,Y, f),
that searches for the maximum value in an input stream. The introduced formalism
seems to be too complicated for such a simple problem. But for more complicated
problems, this level of formalism is required to identify algorithms that solve it and,
especially, to prove some space complexity lower bounds.

Now, we will distinguish two special cases of the general streaming problem, the
streaming counting problem and the streaming decision problem.

First, we will introduce the streaming counting problem. In counting problems,
we deal with series of integers as input streams and integers as output values, and
the aim is always to evaluate some counting function. Some examples of streaming
counting problems are the sum of all input values, their median, or the most frequent
item.

A streaming counting problem has input streams with n integer values from the
set from 1 to m ∈ N+. The resulting counting value of an input stream is an integer
between 0 and a fixed value s(n,m), which depends on the input stream length and
its values. This result size is specific to each streaming problem.

We will describe a few examples of how s(n,m) could be defined to illustrate
its usage. To find a maximum number and its position within the input stream,
s(n,m) = max{n,m} is a reasonable result size, as higher values are not possible. To
identify the most frequent item within the input streams, s(n,m) = n seems suitable,

3.1. Streaming Problems and Algorithms 9

as an item cannot occur more often than n times. To sum up all numbers within
the input stream, s(n,m) = nm is a meaningful result size. Now, the feasible output
values of an input stream are any possible counting values between 0 and s(n,m).

The problem function is just the counting function on the input stream, which
is the core of a certain counting problem. The goal of a streaming algorithm is to
produce this optimal value or, in some cases, a good approximation of this optimal
value. We can capture this in the following definition.

Definition 3.2. A streaming counting problem S# = (X ,Y, f, s) is a streaming
problem S = (X ,Y, f) together with a result-size function s(n,m) ∈ N+ with the
following additional constraints: The input streams x = (x1, . . . , xn) ∈ X have input
values xi ∈ {1, . . . ,m}, with m ∈ N+. For every feasible input stream x ∈ X , the
possible output values are y ∈ Yx with y ∈ {0, . . . , s(n,m)}. The problem function
defines, for every input stream x ∈ X , exactly one counting value y ∈ Yx as the
optimal counting result.

An example of a streaming counting problem is the frequency moment.

Definition 3.3. For every k ∈ N, we define the frequency moment Fk of a
streaming counting problem S# = (X ,Y, f, s) as

Fk :=
m∑
j=1

(fj)k,

where fj counts the frequency of the item j in the input stream, namely,

fj :=
∣∣{i | 1 ≤ i ≤ n and xi = j

}∣∣.
F0 counts the number of distinct items within the input stream, F1 counts the

input stream length, namely F1(x) = n and F∞ is defined as the most frequent item,
namely, F∞ := maxmj=1 fj.

Note that, indeed, we have a relation between the general definition of the
frequency moment fk for f ∈ N and F∞ because

k
√
Fk −−−→

k→∞
F∞ = max

1≤j≤m
fj .

Besides the streaming counting problem, the second special case is the streaming
decision problem. The only constraint for this streaming problem type is that the
problem function defines exactly one feasible output value as correct. A general
streaming problem might have several optimal output values, as, e.g., the streaming
problem answering the question: Which is the shortest path from one point to
another? Therefore, the streaming decision problem is defined as follows.

Definition 3.4. A streaming decision problem Sdecision = (X ,Y, f) is a stream-
ing problem with the constraint that the problem function defines, for every possible
input stream, exactly one feasible output value as the correct one.

10 Chapter 3. Definitions

A binary streaming decision problem allows only two different feasible output
values, namely Yx := {0, 1}. For every input stream, either 0 or 1 is the correct
decision.

With the general and the two specialized definitions of a streaming problem, we
will now discuss streaming algorithms, which may solve a certain streaming problem.
Just like any classical algorithm, a streaming algorithm also produces a feasible
output value for every possible input stream. As known from the introduction,
streaming problems have massive data streams, which can only be read once, as
the size of the entire input generally exceeds the storage limit. Now, a streaming
algorithm can be understood as a series of n update-algorithm computations, in
which every update-algorithm computation processes one input value and modifies
the intermediate storage. This intermediate storage is a binary string of maximal size
d ∈ N+ that has in total 2d different states. Of course, a concrete implementation of
a streaming algorithm does not have to store all d bits, e.g., when the first half of the
bit string is only containing zeros. Therefore, the set of all storage states contains
the empty bit string λ, the bit string “1” and all possible combinations of bit strings
of length at most d which have a “1” at the beginning. Formally, this cache set is
defined as:

C = {λ, 1} ∪
{

(1, x) | x ∈ {0, 1}i and 1 ≤ i ≤ d− 1
}
.

As required, the different storage states have a size of 2d, because,

|C| = |{λ, 1}|+
(
d−1∑
i=1

2i
)

= 2 + (2d − 2) = 2d.

The initial cache state is the empty bit string λ. During the algorithm execution,
this cache can be used to store intermediate results. Finally, after considering all
n input values, an output algorithm transforms the last cache state into a feasible
output value of the streaming problem. This leads to the following definition of a
streaming algorithm.

Definition 3.5. A streaming algorithm A = (Aupdate,Aoutput) for a streaming
problem S = (X ,Y, f) contains an update algorithm Aupdate such that Aupdate(ci−1, xi) =
ci and an output algorithm Aoutput such that Aoutput(cn) = y ∈ Y.

For an input stream x ∈ X , the algorithm A computes a feasible output value
y = A(x) using the following approach: First, the cache c0 ∈ C is empty, namely
c0 = λ. Iteratively, all n inputs values are processed with the update algorithm
Aupdate, namely, for all i ∈ (1, . . . , n), ci := Aupdate(ci−1, xi). Then, the output value
y ∈ Yx is generated as y := Aoutput(cn).

This means, the streaming algorithm A computes a series of intermediate cache
storages ci ∈ C. The first update algorithm computation processes an empty
cache state c0 = λ and the first input value x1 ∈ (x1, . . . , xn) = x, namely
Aupdate(c0, x1) = c1. The next update computation processes the second input
value, namely Aupdate(c1, x2) = c2. This is analogously repeated, until the last input
value is processed, namely Aupdate(cn−1, xn) = cn.

We write Akupdate(ci, x) = ci+k to indicate that the update algorithm is executed
k times on the starting cache state ci, using the input values (xi+1, . . . , xi+k). The

3.2. Determinism and Randomization 11

input values have to be a substream of the input stream, namely (xi+1, . . . , xi+k) is
a substream of (x1, . . . , xn) = x. One can therefore conclude that,

A(x) = Aoutput(cn) = Aoutput(Anupdate(c0, x)) = Aoutput(Anupdate(λ, x)).

We say that a streaming algorithm A solves a certain streaming problem S if A
is a streaming algorithm for S as defined above. This implies that for every input
stream x ∈ X of the streaming problem, the streaming algorithm computes a feasible
output value, namely A(x) ∈ Yx for all x ∈ X .

We assume, that the streaming algorithm knows the input stream size n.

The definition of streaming problem and streaming algorithm are leaned on the
idea by Komm [Kom15], Prakash [Pra15], and Muthukrishnan [Mut05]. The definition
of the frequency moment is based on the results by Alon et al. [AMS99].

3.2 Determinism and Randomization

Streaming problems can be solved by streaming algorithms that are either deter-
ministic or probabilistic. For any input stream, a deterministic streaming algorithm
produces the same intermediate cache states and final results in every computation.
Therefore, Definition 3.5 defines a deterministic streaming algorithm Adet. The
next definition will demonstrate the essential difference between deterministic and
probabilistic streaming algorithms.

Probabilistic algorithms use random decisions in their computations. Random-
ization is modelled by a random bit string. This random bit string contains a
finite number of random bits, which are used for the algorithm’s computation. The
number of random bits depends on the input stream size n. Therefore, we define
the length of the random bit string of at most d(n) ∈ N+. For the computation of
a probabilistic algorithm Aprob, both update and output algorithm may use some
random bits b ∈ B =

⋃d(n)
l=0 {0, 1}l. The number of consumed random bits at an

update step or in the output algorithm can vary, based on the input stream and on
previous random decisions. But the sum of all consumed random bits is limited by
d(n). The consequence of the use of these random bits is that the algorithm does
not necessarily always produce the same cache states or the same final results. We
define a probabilistic streaming algorithm as follows.

Definition 3.6. A streaming algorithm Aprob for a streaming problem S = (X ,Y, f)
is called probabilistic if the algorithm uses, within the update or output computations,
a random bit string b of length l ≤ d(n) ∈ N+, namely b ∈ {0, 1}l. The term Aprob(x)
defines a probability distribution over all feasible output values y ∈ Yx, namely, for
all y ∈ Yx, we have 0 ≤ Pr[y = Aprob(x)] ≤ 1 and

∑
y∈Yx Pr[y = Aprob(x)] = 1.

Note, that Pr[. . .] is the used notation to indicate the probability of a certain
event according to the given probability distribution.

As described, probabilistic algorithms do not necessarily always produce the
same results for a fixed input stream x ∈ X . We define the deterministic streaming
algorithm Ab that uses an already generated random bit string b and produces the
output Ab(x) = A(x, b) = y ∈ Yx. One can see that Aprob(x) computes the same

12 Chapter 3. Definitions

probability distribution as the set of deterministic algorithms A(x, b) where the
bit string b ∈ B is chosen uniformly at random. Using a random bit string of size
l ≤ d(n), the probability of producing a certain output value y ∈ Yx is defined by the
probability distribution and can be calculated by identifying the number of different
random bit strings which lead to the corresponding output value. Namely,

Pr[y = Aprob(x)] = |{b | b ∈ B and y = A(x, b)}|
2l .

For a probabilistic streaming algorithm Aprob for a decision problem Sdecision,
the two special cases one-sided and two-sided Monte Carlo algorithm are defined.

Monte Carlo algorithms require the streaming decision problem to have binary
decision values, i.e., there are only two possible decision values Yx = {0, 1}. In the
following, these two types of algorithms are introduced.

Monte Carlo Algorithms

We call a probabilistic algorithm Aprob for a binary streaming decision problem
Sdecision, in which there are only two decision possibilities, namely Yx = {0, 1} for all
input streams x ∈ X , to be a Monte Carlo algorithm if we have a certain required
success probability. This probabilistic streaming algorithm has to identify the correct
decision with a probability of at least 1

2 . We further distinguish between the one-sided
Monte Carlo algorithm and the two-sided Monte Carlo algorithm.

A one-sided Monte Carlo algorithm allows false positives, but never false negatives.
This means that if the correct decision is one (f(x) = 1), then the algorithm always
has to indicate this result. However, if the correct decision is zero (f(x) = 0), then
the algorithm is required to produce this result at least in every second computation
on average. This leads to the following definition.

Definition 3.7. Let Aprob be a probabilistic streaming algorithm for a binary stream-
ing decision problem Sdecision with Yx = {0, 1}. We call Aprob a one-sided Monte
Carlo algorithm if, for all x ∈ X with f(x) = 1, Pr[f(x) = Aprob(x)] = 1 and for
all x ∈ X with f(x) = 0, Pr[f(x) = Aprob(x)] ≥ 1

2 .

Two-sided Monte Carlo algorithms are similar to one-sided algorithms, but now
both false positives and false negatives are allowed. However, the probability of
identifying the correct decision has to be at least 2

3 . Therefore, we have the following
definition.

Definition 3.8. Let Aprob be a probabilistic streaming algorithm for a binary stream-
ing decision problem Sdecision with Yx = {0, 1}. We call Aprob a two-sided Monte
Carlo algorithm if, for all x ∈ X , Pr[f(x) = Aprob(x)] ≥ 2

3 .

The definition of a probabilistic streaming algorithm is leaned on the results by
Hromkovič [Hro97], Definition 2.5.5.1 on randomized protocols. The definition on 1-
and 2-sided Monte Carlo algorithms are similar to the Definition 2.5.5.4 in [Hro97]

3.3. Space and Time Complexity 13

3.3 Space and Time Complexity

A streaming algorithm A for a streaming problem S can be analyzed with respect to
its space and time complexity. The space complexity states the maximal number of
required bits in the storage over the entire computation. As stated in the definition of
a streaming algorithm (Definition 3.5), the algorithm is a composition of an update
algorithm, which is executed n times for every input value and an output algorithm.
Each update algorithm computation produces an intermediate result ci ∈ C, which is
stored in the cache. The space complexity is the maximal number of bits required to
store the intermediate results and the output value in the cache. We use the notation
of |ci| and |y| to represent the required number of bits to store the content of the
cache state ci and the output value y. Note, that |ci| and |y| are not the absolute
values, as both do not have to be numbers. Formally, we define the space complexity
of a streaming algorithm A and a certain input stream x ∈ X as follows,

space(A, x) = max
{
|c1|, |c2|, . . . , |cn−1|, |y|

}
= max

{
|Aupdate(λ, x1)|, |A2

update(λ, x)|, |A3
update(λ, x)|,

. . . , |Anupdate(λ, x)|, |A(x)|
}
.

The overall space complexity of a streaming algorithm is simply the worst case
space complexity on all possible input streams with the corresponding stream length
n, i.e.,

space(A) = max
{

space(A, x) | x ∈ X
}
.

With the space complexity analysis of a streaming algorithm, one has an upper
bound of the space complexity of the streaming problem S. The space complexity
of the streaming problem is the space complexity of the best streaming algorithm
solving the problem, i.e.,

space(S) = min
{

space(A) | A solves S
}
.

We conclude with this definition of the space complexity approximation.

Definition 3.9. For any streaming algorithm A that solves S, we define the space
complexity as follows.

space(S) ≤ space(A) = max
{

space(A, x) | x ∈ X ∈ S
}
.

We have seen how the space complexity of a streaming algorithm A can be
evaluated. On the other hand, the time complexity indicates the required computation
time. Time complexity analysis is always done using the big-O notation. Basic
mathematical operations such as comparison, addition, or multiplication on values
with a fixed size are made within O(1) time steps. These basic mathematical
operations on numbers relative to n, i.e., i ∈ {1, . . . , n}, require a time complexity
of O(log(n)). Similarly, computations on the input values of a streaming counting
problem with input values xi ∈ {1, . . . ,m} have a time complexity of O(log(m)).

14 Chapter 3. Definitions

Read or write requests to the storage of (current) size k require O(log(k)) time steps
for a random-access storage.

With these time measures, the time complexities of the update and output-
algorithms can be identified. Formally, time(Aupdate) and time(Aoutput) are the sum
of the individual basic time measures. The update time complexities indicate the
required time for processing a single input value. For the time complexity analysis
of a streaming algorithm, we are interested in two different measures. First, the
worst-case time complexity for a single update algorithm basically indicates how fast
the individual input values of an input stream can be evaluated or, in other words,
how fast they might arrive.

Definition 3.10. We define the update time complexity of a streaming algorithm
as the worst-case time complexity of a single update algorithm execution, which is,

update-time(A) = max{time(Aupdate(ci−1, xi)) |
1 ≤ i ≤ n, ci−1 ∈ C and xi ∈ x ∈ X}.

Second, the overall time complexity is the sum of all update time complexities
and the output time complexity. For a fixed input stream x ∈ X , this is:

time(A, x) =
n∑
i=1

time(Aupdate(ci−1, xi))

+ time(Aoutput(cn)).

We state the second definition on the time complexity.

Definition 3.11. The overall time complexity is the worst-case time complexity
for any possible input streams x ∈ X :

time(A) = max{time(A, x) | x ∈ X}.

For probabilistic algorithms, the worst-case time complexities state the maximal
required time for any possible random decision b ∈ B.

3.4 Approximation Ratio and Success Probability
In this section, the approximation ratio for streaming counting problems is introduced,
which defines the approximation of an output value, compared to the optimal output
value. Afterwards, the success probability for probabilistic algorithms is defined
that renders the probability that the algorithm produces the optimal output value
or one within an acceptable approximation ratio. With approximation ratio and
success probability, the deterministic, exact streaming problem can be modified to
get a deeper analysis and a more differentiated understanding of the usefulness of
additional information.

Approximation Ratio of a Streaming Counting Problem

A streaming algorithm A (a deterministic or probabilistic one) for a streaming
counting problem S# (see Definition 3.2) may produce results with a tolerated

3.4. Approximation Ratio and Success Probability 15

approximation of the optimal output value. We will first introduce how one can
identify the approximation ratio of a given streaming algorithm for a streaming
maximization problem.

Basically, the approximation ratio stands for the fraction between the optimal
result and the output value produced by the streaming algorithm. The approximation
ratio α may have any value α ∈ R, α ≥ 1, where an approximation ratio of α = 1
implies an optimal result. In more general terms, the lower the approximation ratio,
the more accurate the result.

Suppose we are given a deterministic streaming algorithm Adet that solves a
streaming counting problem S# = (X ,Y, f, s). Then, for a certain input stream
x ∈ X and the output value Adet(x) = y ∈ Yx, we define the approximation value
for this specific input stream as the fraction between the produced output value and
the optimal value, namely,

approx(Adet, x) = max
{

f(x)
Adet(x) ,

Adet(x)
f(x)

}
.

The max-clause is used for both the approximation value below the optimal
output value (first term) and the approximation values above the optimal output
value (second term). We observe that if and only if the streaming algorithm pro-
duces the optimal value, the approximation value is 1. Furthermore, we define the
approximation ratio over all input streams as follows.

Definition 3.12. Let Adet be a deterministic streaming algorithm for a streaming
counting problem S# = (X ,Y, f, s). The approximation ratio is the maximal
approximation value among all possible input streams, which is,

approx-rate(Adet,X) = max{approx(Adet, x) | x ∈ X}

= max
{

f(x)
Adet(x) ,

Adet(x)
f(x)

∣∣∣∣∣x ∈ X
}
.

We observe that this definition of the approximation ratio may always allow
approximative output values both above and below the optimal output value. Some-
times, only a 1-sided approximation with feasible output values below the optimal
result is allowed. Then, we define the approximation value only with output values
below the optimal result as valid. This is formally defined as follows.

Definition 3.13. Let Adet be a deterministic streaming algorithm for a streaming
counting problem S# = (X ,Y, f, s). The 1-sided approximation ratio is the
maximal 1-sided approximation value among all possible input streams, which is,

1-sided-approx-rate(Adet,X) = max{1-sided-approx(Adet, x) | x ∈ X} with

1-sided-approx(Adet, x) =

f(x)
Adet(x) , if Adet(x) ≤ f(x)

∞, else.
(3.1)

This definition of the 1-sided approximation ratio assumes that the streaming
counting problem is a maximization problem. With the second case of (3.1), we
ensure feasible output values below the optima one, as the approximation ratio is
infinite and, as a consequence, useless.

16 Chapter 3. Definitions

Corollary 3.1. For a certain deterministic streaming algorithm Adet that solves a
streaming counting problem S# with an approximation ratio approx-rate(Adet,X) = 1,
Adet always produces an optimal output result for every possible input stream x ∈ X .

For a probabilistic streaming algorithm Aprob, we can determine a success proba-
bility for any fixed approximation ratio α ≥ 1, which is introduced in the following.
For a single computation, which uses a certain random bit string b ∈ B, we can
similarly define the approximation value,

approx(Aprob, x, b) = max
{

f(x)
Aprob.(x, b) ,

Aprob(x, b)
f(x)

}
.

Based on this approximation value of a single computation, we will see in the
following how one can evaluate the lowest approximation ratio for a fixed success
probability such that the success probability is still given. Some streaming algorithms
have the possibility to produce an arbitrarily good approximation ratio α = 1 + ε for
any small ε > 0.

Success Probability

Besides the approximation ratio, we introduce the success probability. For a proba-
bilistic streaming algorithm Aprob that solves a certain streaming counting problem
S#, we define the success ratio as the probability that Aprob produces a result within
the tolerated approximation ratio. We define, for a fixed input stream x ∈ X , the set
of all output values within the approximation ratio α ≥ 1 as Ỹαx , which is,

Ỹαx =
{
y | y ∈ Yx and f(x)

α
≤ y ≤ f(x) · α

}
.

Given a probabilistic streaming algorithm Aprob for a streaming counting problem
S# and a fixed approximation ratio α ≥ 1, the success probability to produce
an output value within the tolerated approximation is the sum of all individual
probabilities, that Aprob outputs any ỹx ∈ Ỹx. Therefore,

success(Aprob, x, α) = pr

[
f(x)
α
≤ Aprob(x) ≤ f(x) · α

]
=

∑
ỹx∈Ỹαx

pr
[
Aprob(x) = ỹx

]
.

Similarly to the approximation ratio, we can define the success probability of a
probabilistic streaming algorithm for a streaming counting problem as the lowest
success ratio among all possible input streams.

Definition 3.14. For a probabilistic streaming algorithm Aprob solving a streaming
counting problem S# = (X ,Y, f, s) and an approximation ratio α ≥ 1, the success
probability for the streaming counting problem is defined as,

success-probability(Aprob,X , α) = min{success(Aprob, x, α) | x ∈ X}.

3.5. Solvability 17

If and only if the success probability is 1, then the probabilistic streaming algo-
rithm always produces a result within the allowed approximation ratio. We use the
notation Sα,p to indicate a streaming problem with an approximation ratio of α ≥ 1
and a success probability of p ≤ 1.

Similarly to the case of a streaming counting problem, we can define the success
probability for a probabilistic streaming algorithm Aprob on a streaming decision
problem Sdecision. As we do not have approximation ratios because streaming decision
problem just distinguish between correct and wrong decisions, the success probability
just measures the minimum probability to produce the correct result over all possible
input streams.

Definition 3.15. For a probabilistic streaming algorithm Aprob solving a streaming
decision problem Sdecision = (X ,Y, f), the success probability for the streaming
decision problem is defined as,

success-probability(Aprob,X) = min
{

Pr[Aprob(x) = f(x)] | x ∈ X
}
.

As stated before, studies of approximation ratios of α > 1 for streaming decision
problems are meaningless. Here, we are only interested in the success probabilities of
exact solutions using the same formulas as above but simply with α = 1. Generally,
a probabilistic streaming algorithm Aprob for a streaming decision problem Sdecision
is required to have a fixed success probability of at least p > 1

2 . Otherwise it is
possible that a wrong decision may be amplified more often than the correct one. An
exception is the 1-sided Monte Carlo algorithm, as there are only two possible values
and the wrong decision cannot be amplified, as false negatives are not allowed.

In a deterministic environment, the study of different success probabilities other
than 1 is obviously not meaningful, as deterministic streaming algorithms do not use
any random bits.

3.5 Solvability

In this section, some measures are introduced by which a certain streaming algorithm
can be identified as practical or useful. As explained in the introduction, the algorithm
cannot store the entire input stream and compute the entire function in the last final
output algorithm. It was also stated that the required space complexity should be
sub-linear. But what does this mean in detail?

We will recall the definition from the well-known complexity class POLYLOG and
use this measure to classify the required space complexity of a streaming algorithm
as space-efficient (if it is poly-logarithmic) or not space-efficient (if it is not poly-
logarithmic). If a space-efficient algorithm for a certain streaming problem has a
poly-logarithmic time complexity for each update algorithm computation, we then
call the corresponding streaming problem efficiently solvable. If we can prove that
any possible streaming algorithm that solves a certain streaming problem has either
a not space-efficient space complexity or any update algorithm computation has
a time complexity outside the poly-logarithmic class, we then call this streaming
problem not efficiently solvable.

18 Chapter 3. Definitions

Later, this classification of streaming problems into efficiently solvable and not
efficiently solvable will be very helpful to distinguish different streaming problems
and the possible advantage of additional information like hypothesis verification.
Now we will introduce these categories more formally.

First, we recall: A streaming algorithm A is said to solve a streaming problem
Sα,p with an approximation ratio α ≥ 1 and a success probability p ≤ 1 if, for every
possible input stream x ∈ X , it writes an output value within the approximation
ratio with at least the according success probability. Streaming decision problems
always have an approximation ratio of α = 1 to ensure correct decisions.

As a basis: The poly-logarithmic complexity class POLYLOG(n) includes all al-
gorithms A, where there exists a d ∈ N+, such that time-complexity(A) ∈ O(logd(n))
and space-complexity(A) ∈ O(logd(n)). The word polylogarithmic is standardized by
NIST and , for example, listed in the dictionary of algorithms and data structures
by Sant [San04].

Definition 3.16. A streaming algorithm A for a streaming problem S = (X ,Y, f)
with input streams x ∈ X of length n = |x| is said to be space-efficient, if
space(A,X) ∈ POLYLOG(n). On the other hand, if space(A,X) 6∈ POLYLOG(n),
the streaming algorithm A for S is called not space-efficient.

A streaming problem S is said to be efficiently solvable if there exists a space-
efficient streaming algorithm A that solves the streaming problem S and each update
algorithm computation has time(Aupdate) ∈ POLYLOG(n) and the output algorithm
has time(Aoutput) ∈ POLYLOG(n).

A streaming problem S is said to be not efficiently solvable if, for any possible
streaming algorithm A that solves S, either space(A,X) 6∈ POLYLOG(n) or there
exists an update algorithm computation such that time(Aupdate) 6∈ POLYLOG(n).

Of course, to prove that a streaming problem is not efficiently solvable by
verifying that the time complexity of a certain update algorithm is outside the
poly-logarithmic class is very difficult, as hardly any time-complexity lower bound
proofs exist. Therefore, the later presented proofs of streaming problems being not
efficiently solvable are made by disproving space-efficiency.

3.6. Basic Calculations 19

3.6 Basic Calculations
For several analyses, the binomial coefficient

(n
k

)
has to be approximated. We will

provide the used approximation at this point, so that this proof and calculation
does not have to be repeated. The main content of this approximation is described
in [Dob10] in Exercise 2.151, a) and b).

Lemma 3.1 (Dobrushkin [Dob10], Exercise 2.151, b). For any n, k ∈ N+ with
0 < k < n:(

n

k

)k
<

(
n

k

)
<

nn

kk · (n− k)n−k .

Lemma 3.2 (Dobrushkin [Dob10], Exercise 2.151, a). For any n ∈ N+,

2n√
2n

<

(
n

n/2

)
<

2n√
1.5n+ 1

.

Lemma 3.3. For any n ∈ N+,(
n

n/2− 1

)
>

2n ·
√

2n
2n+ 4 .

Proof. We prove this lemma by starting from the result of Lemma 3.2, which is
2n√
2n <

(n
n/2
)
. Using a simple relation between

(n
n/2−1

)
and

(n
n/2
)
will lead to the above

stated approximation:(
n

n/2− 1

)
= n!

(n/2− 1)! · (n/2 + 1)! definition of binomial coefficient

= n! · (n/2)
(n/2)! · (n/2)! · (n/2 + 1) basic transformation

=
(
n

n/2

)
· n/2
n/2 + 1 definition of binomial coefficent

Therefore, we can replace the left side of the claim using the equality,(
n

n/2− 1

)
=
(
n

n/2

)
· n/2
n/2 + 1 transformation from above

=
(
n

n/2

)
· n

n+ 2 basic transformation

>
2n · n√

2n · (n+ 2)
Lemma 3.2

= 2n ·
√

2n
2n+ 4 . basic transformation �

Next, we want to approximate
(n
n/4
)
. The proof for this approximation is a bit

more complicated, as the stated approximation for the general case
(n
k

)
(Lemma 3.1)

leads to a very bad approximation, namely,(
n
n
4

)
>

(
n
n
4

)n
4

= 4
n
4 = 20.5n � 20.915n ≈

(
n
n
4

)

20 Chapter 3. Definitions

With the approach of the following, hand-made proof, we can achieved the last
approximation, namely, 20.915n and one can similarly verify the referenced exercise
from the literature used in Lemma 3.1 and Lemma 3.2.

Lemma 3.4. For any n > 100, n = 4 · l, l ∈ N+,(
n

n/4

)
>

0.916√
n
· 2n·(

1
2 +log2(4/3)) >

0.916√
n
· 20.915n.

Proof. First, we have to recall the Stirling formula for the approximation of the
faculty,

√
2πn ·

(
n

e

)n
≤ n! ≤

√
2πn ·

(
n

e

)n
· e

1
12n .

With the Stirling formula we get the following approximation.(
n

n/4

)
= n!(

n
4
)
! · (3n

4)!
(3.2)

≥
√

2πn · (ne)n(√
2π n4 · (

(n4)
e)

n
4 · e

4
12·n

)
·
(√

2π 3n
4 · (

3n
4
e)

3n
4 · e

4
12·3n

) (3.3)

=
√

2πn · (ne)n(√
π n2 · (

n
4e)

n
4 · e

1
3n
)
·
(√

π 3n
2 · (

3n
4e)

3n
4 · e

1
9n
) (3.4)

=
√

2πn · (ne)n
√

3
2 πn · (

n
4e)n · 3

3n
4 · e

4
9n

=

√
2πn·nn

en
√

3πn·nn·3
3n
4 ·e

4
9n

2·(4e)n

(3.5)

=
√

2πn · nn · 2 · (4e)n

en ·
√

3πn · nn · 3
3n
4 · e

4
9n

=
√

2πn · 2 · 4n
√

3πn · 3
3n
4 · e

4
9n

(3.6)

After replacing the binomial coefficient with the corresponding faculties (3.2), we
approximate these faculties using the Stirling approximation from above (3.3). (3.4)
and (3.5) are some basic mathematical transformations to simplify the term. The
end of (3.5) leads to the possibility of transforming the double fraction to a simple
fraction in (3.6), in which in the last term equal parts are cancelled.

Some parts of this remaining term can now be simply approximated. These are√
2π > 2.506, and

√
3 · π < 5.442. Furthermore, for any n > 100, one can easily

verify that e
4

9n < 1.005. Therefore, we can use this approximations to make the term
simpler:(

n

n/4

)
≥
√

2πn · 2 · 4n
√

3πn · 3
3n
4 · e

4
9n

approx. as above

>
2 · 2.506 ·

√
n · 4n

5.442 · n · 3
3n
4 · 1.005

using new single approx.

> 0.916 ·
√
n · 4n

n · 30.75n basic transformations

= 0.916 ·
√
n · 40.25n

n
· 40.75n

30.75n split 4n into 40.25n · 40.75n

3.6. Basic Calculations 21

= 0.916 · 20.5n
√
n
·
(4

3

)0.75n
basic transformations

Now, one can transform 4
3 = 2log2(4

3) > 20.415. With this approximation we can
prove the statement of the lemma:(

n

n/2

)
> 0.916 · 20.5n

√
n
·
(4

3

)0.75n
approx. as above

= 0.916√
n
· 2n·(

1
2 +log2(4/3)) replace

(4
3

)
as explained

>
0.916√
n
· 20.915n final, basic transformation �

22 Chapter 3. Definitions

Chapter 4

Lower Bounds on
Space Complexity

For every streaming problem S, we want to analyze both upper and lower bounds
for the achievable space complexity. For the upper bound, one has to find a certain
streaming algorithm that solves S. Such an algorithm can afterwards be analyzed
with respect to its required space and time complexities. To prove a lower bound
on the space complexity, the technique of communication complexity theory is used,
which is described by Hromkovič [Hro97] or in the initial paper by Yao [Yao79].

4.1 Introduction to Communication Complexity
Communication complexity is a study area that tries to identify the required com-
munication for a distributed algorithmic problem. The most common model is the
two-computer model, in which two distributed computers have to calculate a certain
function value. Both computers have a part of the input value and have unbounded
computation power and storage resources, but a limited communication channel
to each other. The main question is: How many communication bits do the two
computers have to exchange to calculate the function value for a given input value
separation? With this model, it is possible to mathematically analyze lower bounds
on the communication complexity.

One special type of the communication complexity is the one-way communication.
In this model, we have two computers, named as the left one CL and the right one
CR, both having a part of the input value. In the one-way communication model,
only the left computer is allowed to communicate to the other computer. To evaluate
a certain function on the distributed input value, the left computer processes its
input value part and transmits some communication. The right computer uses this
communication and the second input value part to compute the function.

Obviously, if the left computer transmits its whole input value part, the right
computer can easily evaluate the correct output value, as it has unbounded storage
and computation resources. For some functions, the output value can be computed
with a significantly lower communication complexity. For example, if one wants
to identify the highest integer of a certain set of integers as input values, that is
distributed among the two computers, the left computer can just communicate its

23

24 Chapter 4. Lower Bounds on Space Complexity

maximal integer and the right computer outputs the correct output value easily. With
this approach, we have a space complexity of one integer instead of communicating
the whole input value part.

For this model of one-way communication, we can define a fooling set that allows
us to prove a certain communication complexity lower bound. The idea of a fooling
set is to list some input value candidates, that force any algorithm to use different
communications from CL to CR in order to distinguish these input value candidates.
This concept of one-way communication between two computers can be transformed
to a streaming problem setting where we can prove a certain space complexity lower
bound. In the following, we will define two fooling set concepts and prove in the
following section why these fooling sets imply a space complexity lower bound for
streaming problems.

But first, we have to define the deterministic one-way communication more
formally: For the two computers CL and CR we may introduce a fooling set F
containing d input values Ii ∈ X , where X is the set of all feasible input values and
each Ii = (IiL, IiR) has an input value partition on the two computers CL and CR,
where IiL is assigned to CL and IiR to CR. The first kind of fooling set approach is
described in detail by Ablayev [Abl96], and the second one by Hromkovič [Hro97].

One can define a fooling set for the one-way communication complexity as the
combination of a set of representatives and a test set. The representatives are located
at the left computer, the tests at the right one. Such a combination is called a
fooling set if, for every two representatives, there is at least one test such that the
communication from CL to CR has to be different. This is the case if the correct
algorithm has to compute two different output values for these two representatives
combined with the same test entry. This communication complexity concept can be
used to prove space complexity lower bounds for streaming problems. Formally, a
fooling set for a streaming problem is defined as follows.

Definition 4.1. For a streaming problem S = (X ,Y, f), a fooling set F =
(FL,FR) contains a set of representatives FL = {I1

L, . . . , I
d
L} and a test set FR =

{I1
R, . . . , I

d′
R }, such that each combination of representative and test is an input stream,

i.e., ∀IiL ∈ FL,∀I
j
R ∈ FR : (IiL, I

j
R) ∈ X . F = (FL,FR) is a fooling set for S if

∀IiL, I
j
L ∈ FL with IiL 6= IjL : ∃IvR ∈ FR s.t. f(IiL, IvR) 6= f(IjL, I

v
R).

We call FR a test for the representatives FL if F = (FL,FR) is a fooling set for
the given streaming problem.

In the second approach, the space complexity lower bound is calculated using the
matrix rank from an output value matrix. Similarly to the first approach, a matrix
fooling set defines two input value sets for the left and the right computer. The
output value matrix defines, for every possible combination of input values from the
left and the right computer, the result of a correct algorithm, namely the problem
function f of the streaming problem S. The rank of this output value matrix defines
the space complexity lower bound. The following definition gives a more formal
description.

4.2. Lower Bound for General Streaming Problems 25

Definition 4.2. For a streaming problem S = (X ,Y, f), the matrix fooling set
F = (FL,FR) contains two input sets FL = {I1

L, . . . , I
d′′
L } and FR = {I1

R, . . . , I
d′
R },

such that each combination is an input stream, i.e., ∀IiL ∈ FL, ∀I
j
R ∈ FR : (IiL, I

j
R) ∈

X . The result matrixM with the entries of FL as rows and FR as columns is defined
asM(i, j) = f(IiL, I

j
R).

The rank of the result matrix d = rank(M) is the fooling set size.

With a matrix fooling set of rank d, we have d independent columns and, as a
consequence, d different input value parts that have to be distinguished from the
right computer CR, and therefore we have an equivalent situation as with a fooling
set of size d from the first approach.

Based on these two approaches, with a fooling set F with either size d in the
first approach or a result matrix of rank d in the second approach, a communication
complexity lower bound of at least log2(d) between these two computers is proven.
We define |F| := |FL| = d for the first approach and |F| := rank(M) = d ≤
max{|FL|, |FR|} for the second approach.

4.2 Lower Bound for General Streaming Problems
In the following, we show how the techniques of communication complexity can be
used for lower bounds on the space complexity of deterministic and probabilistic
streaming problems that require an exact result or may allow approximative output
values.

Lower Bound for an Exact Deterministic Streaming Problem

With the following theorem, one can prove space complexity lower bounds for an
exact deterministic streaming problem, i.e., the approximation ratio is α = 1 and
the success probability is p = 1. Such problems are abbreviated by S1,1.

Theorem 4.1. A fooling set F of size |F| = d for a streaming problem S proves, for
an exact (approximation ratio α = 1) and deterministic (success probability p = 1)
setting, a space complexity lower bound of size

space(S1,1) ≥ log2(d) = log2(|F|).

Proof. An input stream x = (x1, . . . , xn) ∈ X for a streaming problem S can be split
into two sub-streams x′ = (x1, . . . , xl) and x′′ = (xl+1, . . . , xn) for any input stream
cut l ∈ {1, . . . , n − 1}. The streaming algorithm is forced to process first the sub-
stream x′ and only then x′′. Thus, it can be understood as one-way communication
from a (left) computer processing x′, which then transmits its intermediate storage
cl ∈ C to a (right) computer that processes the second sub-stream x′′ and generates
the final output value.

Or in other words, the first (left) computer CL is given the input values IL =
(x1, . . . , xl) ∈ FL, and the second (right) computer CR is given the input values
IR = (xl+1, . . . , xn) ∈ FR, for any input stream cut l ∈ {1, . . . , n − 1}. The
communication complexity lower bound for this distributed problem with a cut
and the two computers CL and CR allow to bound the minimally required space after
reading (x1, . . . , xl) to compute the correct result for S.

26 Chapter 4. Lower Bounds on Space Complexity

Therefore, a fooling set of size |F| = d for the distributed two-computer model
with any cut l implies a space complexity lower bound for the streaming problem S
of size space(S1,1) ≥ log2(d). �

This deterministic lower bound is now extended to cases where randomization is
allowed to compute the result.

Lower Bound for an Exact Probabilistic Streaming Problem

The following space complexity lower bounds (Theorem 4.2 and Theorem 4.3) for
probabilistic (streaming) problems were introduced by Ablayev [Abl96]. As this
thesis uses a slightly different notation than the referred paper, the theorems are
restated using our notation.

The first result states that the probabilistic space complexity lower bound is in
the logarithmic order of the deterministic one.

Theorem 4.2 (Ablayev [Abl96], Theorem 4). Let S be a (streaming) problem
with a fooling set F = (FL,FR) according to the first approach with representatives
FL and a test set FR. The exact probabilistic (streaming) problem (approximation
ratio α = 1) with a success probability p > 1

2 has a space complexity lower bound of,

space(S1,p) ≥ log2(space(S1,1))− log2

(
log2

(2 · p+ 1
2 · p− 1

))
− 1

≥ log2(log2(|FL|))− log2

(
log2

(2 · p+ 1
2 · p− 1

))
− 1.

For success probabilities that are not very close to 1
2 , the second term of this

lower bound is insignificant. Therefore, we state the following corollary.

Corollary 4.1. Let S be a (streaming) problem with a fooling set F = (FL,FR)
according to the first approach with representatives FL and test FR. The exact prob-
abilistic (streaming) problem (approximation ratio α = 1) with a success probability
p ≥ 0.505 has a space complexity lower bound of,

space(S1,p) ≥ log2(space(S1,1))− 4 ≥ log2(log2(|FL|))− 4.

Proof. This corollary can easily be verified by evaluating the second term of Theo-
rem 4.2 with success probabilities of p ≥ 0.505. �

The next theorem proves a lower bound on the probabilistic space complexity
that is sometimes closer to the deterministic one. For this purpose, it is required
that the test set is minimal. The minimality of the test is proven when it is shown
that every test entry has to be used to verify the fooling set. Or in other words, the
test set is minimal if the removal of just one test entry would make it impossible to
justify the fooling set.

4.2. Lower Bound for General Streaming Problems 27

Theorem 4.3 (Ablayev [Abl96], Theorem 1). Let S be a (streaming) problem
with a fooling set F = (FL,FR) according to the first approach with representatives
FL and a minimal test set FR. The exact probabilistic (streaming) problem (approx-
imation ratio α = 1) with success probability p > 1

2 has a space complexity lower
bound of

space(S1,p) ≥ space(S1,1) ·
(

1− |FR|
space(S1,1) · h(p)

)
− 1

≥ log2(|FL|) ·
(

1− |FR|
log2(|FL|)

· h(p)
)
− 1,

with h(p) = −p · log2(p)− (1− p) · log2(1− p).

As stated above, we have to verify the minimality of the test set to use this
theorem. We can do this by showing that any single test is required. This means
literally that for any test (4.1), there are two representatives (4.2) such that the
streaming problem result for these two representatives and the test is different (usual
fooling set condition, (4.3)) and for all other tests (4.4), the streaming problem would
generate the same result for the two representatives (4.5). Then, if we would exclude
this test element (4.1), it will no longer be a fooling set because of this representative
pair (4.2). Or, formally, a fooling set F = (FL,FR) for a streaming problem S has a
minimal test set if:

∀IvR ∈ FR, For all elements of the test set, (4.1)
∃IiL, I

j
L ∈ FL, I

i
L 6= IjL there are two different representatives, (4.2)

s.t.
(
S(IiL, IvR) 6= S(IjL, I

v
R) such that the cache states

have to be different.
(4.3)

and ∀Iv′R ∈ (FR \ IvR) : And for all other tests, (4.4)

S(IiL, Iv
′
R) = S(IjL, I

v′
R)
)

they are not required to be different. (4.5)

The term (4.3) literally states, that the intermediate storage after l input values
is forced to have a different cache state after processing IiL, or I

j
L, as different output

values have to be generated with the same test element. On the opposite, (4.5) implies,
that the cache state for the other test elements is not required to be different. We
have this alleviated formulation because it is possible that with different intermediate
storage cache states the algorithm will produce the same output value for a certain
test entry v′.

We can conclude, that with a space complexity lower bound proof for an exact
deterministic streaming problem using the first approach with a set of representatives
and tests, we can prove a space complexity lower bound for an exact probabilistic
streaming problem with a success probability p > 1

2 using the theorems above.
Besides these two theorems, Ablayev [Abl96] states some further lower bound proofs,
which are not used in this thesis and therefore not introduced and explained here.
However, they might be useful for further analysis as well.

This summary explicitly states that the above lower bound proofs are only valid
for exact solutions, i.e., with an approximation ratio of α = 1. In the following, we
will introduce an approach to get space complexity lower bounds in an approximative
setting.

28 Chapter 4. Lower Bounds on Space Complexity

Lower Bound for an Approximative Deterministic
Streaming Problem

The existence of a fooling set implies a space complexity lower bound because it forces
the right computer to distinguish the different representatives or the second part of
the update computations to presume different cache states. If a streaming algorithm
is allowed to produce an approximative result, some of these representatives are not
necessarily required to be distinguished as these might have different optimal output
values that might still be within a given approximation ratio. Therefore, we have to
implement this approximation ratio into the fooling set.

For this purpose, we define an α-fooling set that forces the different representatives
to differ more from each other.
Definition 4.3. For a streaming problem S = (X ,Y, f) and a fixed approximation
ratio α ≥ 1, an α-fooling set Fα = (FαL ,FαR) contains a set of representatives
FαL = {I1

L, . . . , I
d
L} and a test set FαR = {I1

R, . . . , I
d′
R }, such that each combination of

representative and test is an input stream, i.e., ∀IiL ∈ FαL , I
j
R ∈ FαR : (IiL, I

j
R) ∈ X .

Fα is an α-fooling set for S if,
∀IiL, I

j
L ∈ F

α
L with IiL 6= IjL : ∃IvR ∈ FαR such that

f(IiL, IvR)
f(IjL, IvR)

<
1
α

or f(IiL, IvR)
f(IjL, IvR)

> α.

If the fraction between the problem function values f(IiL, IvR) and f(IjL, IvR) are
separated by a factor of more than α, i.e., smaller than 1

α or larger than α, then we
have the same situation as with the inequality of the normal fooling set, that the
algorithm has to store two different cache states, to calculate for both representatives
the correct output value.

One can easily see that a 1-fooling set (which demands an exact solution as the
approximation ratio is 1) is equal to the common fooling set from above using the
first approach.

With the definition of an α-fooling set, we can derive the following space com-
plexity lower bound.
Theorem 4.4. Let S# = (X ,Y, f, s) be a streaming counting problem with an α-
fooling set Fα = (FαL ,FαR) for a fixed α ≥ 1. The α-approximative deterministic
streaming counting problem Sα,1 (approximation ratio α, success probability p = 1)
with a 1-sided approximation (see Definition 3.13) has a space complexity lower bound
of,

space(Sα,1) ≥ log2(|Fα|) = log2(|FαL |).

Proof. As explained above, an α-fooling set contains entries such as the typical fooling
set which force any algorithm to change its cache states, even when the algorithm
may allow a 1-sided approximation of α. Following the proof of Theorem 4.1, the
space complexity lower bound for Sα,1 is also proven. �

Recall, the 1-sided approximation allows only approximations below the optimal
output values, as defined in Definition 3.13. For the 2-sided approximation that
allows approximative output values both above and below the optimal one, we can
prove the same lower bound only for a smaller approximation ratio.

4.2. Lower Bound for General Streaming Problems 29

Theorem 4.5. Let S# = (X ,Y, f, s) be a streaming counting problem with an α-
fooling set Fα = (FαL ,FαR) for a fixed α ≥ 1. The

√
α-approximative deterministic

streaming counting problem S√α,1 (approximation ratio
√
α, success probability p = 1)

with a 2-sided approximation (see Definition 3.12) has a space complexity lower bound
of,

space(S√α,1) ≥ log2(|Fα|) = log2(|FαL |).

Proof. If an approximation algorithm may compute results both above and below
the optimal output value, an α-fooling set implies for an allowed approximation ratio
of
√
α, that the cache states between any two representatives of the α-fooling set is

forced to be different, because
√
α

2 = α.
Or, in other words, if a streaming algorithm wants to approximate two optimal

output values a and b, with b > a · α, as given from the α-fooling set, it cannot
approximate both, a and b, with just one intermediate value k, that is a ≤ k ≤ b,
and an approximation ratio

√
α, because

∀k ∈ (a, b) : max
{
k

a
,
b

k

}
>
√
α, because

b

k
>
√
α if k ≤ a ·

√
α as b > a · α and otherwise, k

a
>
√
α if k > a ·

√
α. �

In the last part of this section, we will argue how the theorems for probabilistic
space complexity lower bounds from Ablayev [Abl96] are also valid for an approxi-
mative environment.

Lower Bound for an Approximative Probabilistic Problem

Based on an α-fooling set for a streaming counting problem S# and a deterministic
space complexity lower bound space(Sα,1) for 1-sided approximations (see Theo-
rem 4.4) or space(S√α,1) for 2-sided approximations (see Theorem 4.5), one can
apply Theorem 4.2 and Theorem 4.3 to prove α-approximative, or,

√
α-approximative

probabilistic space complexity lower bounds for success probabilities of p > 1
2 .

The general fooling set is mainly a formal definition of forcing the left computer
to a different communication for the communication complexity model or forcing
the cache states to be different after processing l input values for the streaming
problem model. In an approximative setting, this is analogously achieved with
the formally defined α-fooling set. One can in addition apply the same proof idea
by Ablayev [Abl96] on the α-fooling set to justify the correctness of the usage of
Theorem 4.2 and Theorem 4.3.

As stated below Theorem 4.3, in a probabilistic setting, the test set is required
to be minimal. This minimality of an α-fooling set can similarly be verified with the
following expression.

30 Chapter 4. Lower Bounds on Space Complexity

∀IvR ∈ FR, For all elements of the test set, (4.6)
∃IiL, I

j
L ∈ FL, I

i
L 6= IjL there are two different representatives, (4.7)

s.t.
((

f(IiL, IvR)
f(IjL, IvR)

<
1
α

such that the cache states
have to be different

(4.8)

or f(IiL, IvR)
f(IjL, IvR)

> α

)
as stated above in Definition 4.3. (4.9)

and
(
∀Iv′R ∈ (FR \ IvR) : And for all other tests, (4.10)

1
α
≤ f(IiL, Iv

′
R)

f(IjL, Iv
′
R)
≤ α

))
they are not required to be different. (4.11)

In the following section, we will address the approach to prove space complexities
for hypothesis verification.

4.3. Lower Bounds for Hypotheses Verifications 31

4.3 Lower Bounds for Hypotheses Verifications

In this thesis, the algorithmic complexities of some general streaming problems are
compared to the space complexities of hypothesis verification. A streaming hypothe-
sis verification problem verifies a certain solution hypothesis, namely whether the
streaming problem function outputs the stated hypothesis for a certain input stream.
It is therefore a binary streaming decision problem, which is defined in Definition 3.4.
Contrary to a classical decision problem, we can consider the approximation ratio
of the general streaming problem in the hypothesis verification by adapting the
streaming problem function such that it indicates a hypothesis as correct when it is
within the approximation ratio of the general streaming problem function.

Hypothesis verification needs to verify, for every possible input stream and feasible
output value as hypothesis, whether this hypothesis is correct or not. We can identify
the following space complexity dependency between the general streaming problem
and the hypothesis verification,

space(General S) ≥ space(Verify all possible hypotheses for S).

Let us assume we have a certain streaming algorithm A that solves a general
streaming problem S. We can easily adapt this algorithm such that it compares
the final output value with the stated hypothesis and then indicates the correctness
of it. However, it might be possible that the verification of a hypothesis requires
less storage as, e.g., the indication of an inequality of two bit strings if we know
the position of the differing bit as hypothesis. That is why space(General S) ≥
space(Verify all possible hypothesis for S).

We can formally define a fooling set for proving space complexity lower bounds if
we want to verify all possible solution hypotheses.

Definition 4.4. For a streaming problem S = (X ,Y, f), a hypothesis fooling
set FHYP = (FHYP

L ,FHYP
R) contains a set of representatives FHYP

L = {I1
L, . . . , I

d
L}

and a test set FHYP
R = {I1

R, . . . , I
d′
R }. Each representative IiL ∈ FHYP

L contains a
solution hypothesis, followed by an input stream part as in the normal fooling set,
i.e., IiL = (yi, x̃i) with yi ∈ Yx and x̃i is a substream of x ∈ X . Each combination of
representative and test contains an input stream, i.e., ∀IiL = (yi, x̃i) ∈ FHYP

L ,∀IjR ∈
FR : (x̃i, IjR) ∈ X . FHYP = (FHYP

L ,FHYP
R) is a hypothesis fooling set for S if,

IiL = (yi, x̃i), IjL = (yj , x̃j) ∈ FHYP
L with IiL 6= IjL : ∃IvR ∈ FHYP

R such that(
yi = f(x̃i, IvR)

)
6⇐⇒

(
yj = f(x̃j , IvR)

)
.

The two terms
(
yi = f(x̃i, IvR)

)
and

(
yj = f(x̃j , IvR)

)
are Boolean terms that are

either true (i.e., 1) or false (i.e., 0).

The inequality from the definition above literally states that the cache states after
processing the two representatives have to be different because the right computer or
the second part of the update computations with the test IvR have to decide on a
correct hypothesis, i.e., 1, for one representative and on false, i.e., 0, for the other
representative.

32 Chapter 4. Lower Bounds on Space Complexity

Similarly to Theorem 4.1, we have proven a space complexity lower bound of
space

(
SHYP

1,1

)
≥ log2(|FHYP

L |) for the hypothesis verification of a streaming problem
S1,1, if we can define a hypothesis fooling set FHYP = (FHYP

L ,FHYP
R).

To use Theorem 4.3 for proving space complexity lower bounds in a probabilistic
setting, we additionally have to verify the minimality of the test set. Similarly to the
test set minimality verification of a normal fooling set, we can verify this minimality
by showing this term:

∀IvR ∈ FR, For all elements of the test set, (4.12)
∃IiL = (yi, x̃i), IjL = (yj , x̃j) there are two different (4.13)
∈ FL, IiL 6= IjL representatives, (4.14)

s.t.
((
yi = f(x̃i, IvR)

)
6⇐⇒ such that the cache states (4.15)(

yj = f(x̃j , IvR)
)

have to be different. (4.16)

and ∀Iv′R ∈ (FR \ IvR) : And for all other tests, (4.17)(
yi = f(x̃i, Iv′R)

)
⇐⇒ they are not required (4.18)(

yj = f(x̃j , Iv′R)
))

to be different. (4.19)

Additionally, we require a further definition of a hypothesis fooling set for the
approximative environment.

Definition 4.5. For a streaming problem S = (X ,Y, f) and a fixed approximation
ratio α ≥ 1, a hypothesis α-fooling set FHYP,α = (FHYP,α

L ,FHYP,α
R) contains a

set of representatives FHYP,α
L = {I1

L, . . . , I
d
L} and a test set FHYP,α

R = {I1
R, . . . , I

d′
R }.

Each representative IiL ∈ F
HYP,α
L contains a solution hypothesis, followed by an input

stream part as in the normal α-fooling set, i.e., IiL = (yi, x̃i) with yi ∈ Yx and x̃i ⊆
x ∈ X . Each combination of representative and test contains an input stream, i.e.,
∀IiL = (yi, x̃i) ∈ FHYP,α

L ,∀IjR ∈ F
HYP,α
R : (x̃i, IjR) ∈ X . FHYP,α = (FHYP,α

L ,FHYP,α
R)

is a hypothesis α-fooling set for S if,

IiL = (yi, x̃i),IjL = (yj , x̃j) ∈ FHYP,α
L with IiL 6= IjL : ∃IvR ∈ F

HYP,α
R such that(

1
α
≤ f(x̃i, IvR)

yi
≤ α

)
6⇐⇒

(
1
α
≤ f(x̃j , IvR)

yj
≤ α

)
.

Once again, the two terms at the left and the right side of the inequality above
are Boolean terms that are either true (i.e., 1) or false (i.e., 0).

The inequality from the definition above literally states that the cache states after
processing the two representatives have to be different because the right computer
or the second part of the update computation with the test IvR have to decide on a
correct hypothesis, i.e., 1, for one representative, because the hypothesis is within
the approximation ratio, and false, i.e., 0, for the other representative, because it is
outside the approximation ratio.

Again, similarly to Theorem 4.4 and Theorem 4.5, we can prove a space com-
plexity lower bound of space

(
SHYP
α,1

)
≥ log2(|FαL |) for the hypothesis verification

4.3. Lower Bounds for Hypotheses Verifications 33

of a streaming problem with a 1-sided approximation ratio of α, or a 2-sided ap-
proximation ratio or

√
α, respectively, if we can define a hypothesis α-fooling set

FHYP,α = (FHYP,α
L ,FHYP,α

R).
Similarly as above, we can verify the minimality of the set by showing the

following.

∀IvR ∈ FR, For all elements of the test set, (4.20)
∃IiL = (yi, x̃i), IjL = (yj , x̃j) there are two different (4.21)
∈ FL, IiL 6= IjL representatives, (4.22)

s.t.
((

1
α
≤ f(x̃i, IvR)

yi
≤ α

)
6⇐⇒ such that the cache states

have to be different
(4.23)(

1
α
≤ f(x̃j , IvR)

yj
≤ α

)
as stated above in Definition 4.5. (4.24)

and ∀Iv′R ∈ (FR \ IvR) : And for all other tests, (4.25)(
1
α
≤ f(x̃i, Iv′R)

yi
≤ α

)
⇐⇒ they are not required

to be different, (4.26)(
1
α
≤ f(x̃j , Iv′R)

yj
≤ α

))
because both hypotheses
are true or false

(4.27)

With these two definitions of hypothesis fooling sets, we can prove space complex-
ity lower bounds for hypothesis verification on exact and approximative streaming
problems. With Theorem 4.2 and Theorem 4.3, we can also prove lower bounds in a
probabilistic setting.

In the following two chapters, we will analyze the streaming problems most
frequent item and number of distinct items and use these techniques and concepts to
prove space complexity lower bounds.

34 Chapter 4. Lower Bounds on Space Complexity

Chapter 5

Most Frequent Item Problem

In this chapter, the streaming problem of computing the most frequent item is
analyzed. Some already known upper and lower bound proofs from the literature are
presented and enhanced with more exact bounds.

After the problem definition, the general streaming problem with several different
approximation ratios and success probabilities is analyzed first. Then, the hypothesis
verification is analyzed, in which, for every input stream, every possible solution
hypothesis has to be verified. At the end, the results are summed up and the insights
are described.

5.1 General Streaming Problem Analysis
The general streaming counting problem most frequent item problem SF∞ is defined
as follows.
Definition 5.1. The counting problem most frequent item SF∞ = (X ,Y, f, s) has
input values x = (x1, . . . , xn) ∈ X containing n numbers with xi ∈ {1, . . . ,m}. The
result size function is s(n,m) = n, which implies that the feasible output values are
Yx = {0, . . . , n}. The problem function f defines the most frequent item over items
j ∈ {1, . . . ,m}:

f(x) = f((x1, . . . , xn)) = max
1≤j≤m

∣∣∣{i | i ∈ {1, . . . , n} and xi = j
}∣∣∣.

The most frequent item problem SF∞ is therefore a frequency moment (Defini-
tion 3.3) with k =∞.

For the analysis, we assume, for ease of presentation, that n and m are even. If n
or m would be odd, then the proofs would often lead to the exact same results and
sometimes affect the space complexity by an additive constant value (but not by a
factor). As these effects are normally negligible and the proofs are less complicated,
we are presuming that they are even. In the following subsections, the most frequent
item problem is analyzed with respect to different approximation ratios and success
probabilities.

Exact Deterministic Most Frequent Item Problem

First, the exact deterministic most frequent item streaming problem is analyzed.
With a success probability of 1, an exact solution (approximation ratio α = 1) has to

35

36 Chapter 5. Most Frequent Item Problem

be found. After some already known upper and lower bounds, more exact bounds are
introduced. We use the notation of SF∞,1,1 for the exact deterministic most frequent
item problem.

Known Bounds from the Literature

There are three different lower bounds already known for the exact deterministic
case. These are stated in the next three theorems.

Theorem 5.1 (Alon et al. [AMS99]). The streaming problem SF∞,1,1 has, for
any m

2 ≤ n ≤ 2m, a space complexity lower bound of

space
(
S
m
2 ≤n≤2m
F∞,1,1

)
∈ Ω(m).

This theorem states that the required space complexity is at least a constant
amount of bit for every possible item. Note that the condition n ≥ m

2 is not stated
in the original paper. It is only stated, that n ≤ 2m and, in another theorem of
this paper, with the condition of n = m

2 this lower bound of Ω(m) is also stated.
The paper did not indicate a lower bound condition on n (such as n ≥ m

2), as they
assumed that n is of the order of m, even though they did not officially mention it.
Of course, for very small n, e.g., for n ∈ Θ(

√
m), this lower bound of Ω(m) is wrong,

as the complete input stream only requires Θ(n · log(m)) = Θ(
√
m · log(m)) which

is less than linear storage bits. For the purpose of correctness, we added the lower
bound condition of n ≥ m

2 . The proof from this paper can be extended, such that
this space complexity lower bound order is given for any n ∈ Θ(m).

Theorem 5.2 (Karp et al. [KSP03]). The streaming problem SF∞,1,1 has, for
any n > 4m, a space complexity lower bound of

space
(
Sn>4m
F∞,1,1

)
∈ Ω

(
m · log

(
n

m

))
.

For the given condition, the lower bound complexity order of Theorem 5.1 is
increased by the factor log(nm).

Theorem 5.3 (Trevisan and Williams [TW12]). The streaming problem SF∞,1,1
has, for any m > n2, a space complexity lower bound of

space
(
Sm>n2

F∞,1,1

)
∈ Ω(n · log(m)).

This theorem states, that if m > n2, we are required to store the data in the
same complexity order as the entire input size, which is Θ(n · log(m)) bits.

These three lower bounds prove the impracticability of any concrete implementa-
tion of an exact, deterministic algorithm. That is why the literature did not study
upper bounds in detail besides the trivial one of O(m · log(n)), which is achieved with
a simple histogram storage, that counts the frequency of any item. One exemplary
realisation is described by Indyk and Woodruff [IW05]. Unfortunately, these lower
bounds are only given in the Ω-notation, but not with an exact bound. Later, we
will compare these algorithms with the ones for hypothesis verification. To get better
insights from this comparison, we are interested in exact upper and lower bounds,
which are given below.

5.1. General Streaming Problem Analysis 37

Enhanced Upper Bounds

First, we introduce a trivial streaming algorithm solving the streaming problem
SF∞,1,1 with a space complexity of O(m · log(n)). Then, we will show how to decrease
it with a simple trick to O(n · log(nm)), which is, for n > 4m, of the same order as
the lower bound from Theorem 5.2 and therefore solves the problem optimally, up to
constant factors.

Theorem 5.4. The streaming problem SF∞,1,1 has, for any n,m ∈ N+, a space
complexity upper bound of

space
(
SF∞,1,1

)
≤ m · dlog2(n)e ∈ O(m · log(n)).

Proof. This upper bound can be achieved with a trivial algorithm that stores the
frequency for every possible item j ∈ {1, . . . ,m}.

Therefore, any cache state c ∈ C requires m · dlog2(n)e bits, in which the first
dlog2(n)e bits are the binary representation of the frequency of the item 1. The next
dlog2(n)e bits are the binary representation of the frequency of the item 2. This is
continued until them-th item. The initial cache state is empty. The update algorithm
Aupdate processes a single input stream value xi ∈ {1, . . . ,m} by incrementing the
binary representation of the value j = xi by one. After the computation of the update
algorithm on a complete input stream, the cache state represents the frequency for
each item j ∈ {1, . . . ,m}, namely the number of its occurrences in the input stream.
The output algorithm just outputs the highest frequency count.

Obviously, this algorithm solves the most frequent item streaming problem
deterministically and exactly. Furthermore, in order to represent all possible cache
states, this algorithm requires m · dlog2(n)e bits. �

Now, we will use the technique of self-delimitation to decrease the order of the
upper bound space complexity. We observe that, for a fixed input stream, many bits
will never be used with the algorithm of Theorem 5.4, as it is impossible that all m
items count from zero to n. With this insight, we can find the following better upper
bound.

Theorem 5.5. The streaming problem SF∞,1,1 has, for any n ≥ m, a space complex-
ity upper bound of

space
(
Sn≥mF∞,1,1

)
≤ 2m ·

(⌈
log2

(
n

m

)⌉
+ 1

)
− 2 ∈ O

(
m · log

(
n

m

))
.

Proof. With a similar approach, the algorithm will count the frequency of every item
j ∈ {1, . . . ,m}. But now, we will not allocate upfront dlog2(n)e bits for every item,
but will count each item frequency with the least required amount of bits. Of course,
we need to have some delimiter to indicate whether a new frequency count starts.
Therefore, we define the bit-tuples “00” and “01” as counting values for the frequency
counts and “10” as delimiter. The initial cache state is empty once again, but the first
update procedure will store (m−1) delimiters to the intermediate storage. With each
input value processed, the corresponding frequency representation is increased using
the two binary representatives “00” and “01”. Finally, the output algorithm delivers
the maximal frequency, namely the highest integer represented by the original, binary
representation.

38 Chapter 5. Most Frequent Item Problem

This algorithm also finds the optimal output value, as the frequency count is
strictly enumerated. Next, we have to argue why the total amount of required cache
bits is at most 2m ·

(⌈
log2

(
n
m

)⌉
+ 1

)
− 2. First, the delimiters require (2m− 2) bits,

as every one of the (m − 1) delimiters requires two bits, i.e., “10”. The n input
values can have any possible distribution over the m different items. In the most
space-efficient way, all n input values are all the same item, then, we require dlog2(n)e
bit pairs only at one position, and all other items do not require any further bits.
If, e.g., the half of this frequency is now separated on other items, we require only
one bit pair less to store the new frequency, namely, dlog2(n2)e, but the other items
require more than one bit pair. Therefore, the total amount of bits to store all
frequency counts is increased. In the extreme case, the worst space-efficient storage
occurs when the n input values are distributed equally likely on all items. Then,
each position requires dlog2(nm)e bit pairs, which in total amounts to 2m ·

⌈
log2

(
n
m

)⌉
bits. With these completely balanced frequency counts, we cannot increase the size
of storage bits by modifying the frequencies of the individual items, because we only
require 1 additional bit pair if we raise the frequency to the next higher power of
two, which reduces the amount of bit pairs to represent another frequency count.
Therefore, we have in the worst case the following number of total bits:

2m− 2 + 2m ·
⌈
log2

(
n

m

)⌉
= 2m ·

(⌈
log2

(
n

m

)⌉
+ 1

)
− 2 ∈ Ω

(
m · log

(
n

m

))
.
�

This self-delimitation technique allows to have an upper bound which is of the
same complexity order as the given lower bound in Theorem 5.2. For a detailed
analysis, an exact space complexity lower bound is required. Such an exact lower
bound is given in the following part, but first, we will further improve this upper
bound. The above described realization of a streaming algorithm using the self-
delimitation technique has some space inefficiency, as, e.g., the bit-tuple “11” is never
used. If we include three of the four bit-tuples for the counting value, we can get
a more space efficient representation, as we are currently only using the two tuples
“00” and “01”. More generally, if the factor n

m is large, the delimiter can be chosen
more efficiently, e.g., with a bit-triple that uses “000” to “110” as frequency counting
values zero to seven and “111” as the delimiter.

Theorem 5.6. The streaming problem SF∞,1,1 has, for any n ≥ m and any delimiter
size d ≥ 2, d ∈ N+, a space-complexity upper bound of

space
(
Sn≥mF∞,1,1

)
≤ d ·m ·

(
1 +

⌈
log2

(
n
m

)
log2(2d − 1)

⌉)
− d.

Proof. For any delimiter size d ≥ 2, we define basic bit-strings of length d. d-times
a 1 is the delimiter. All other basic bit-strings of length d are required for the
frequency counting representing the numbers 0 to 2d − 2. Similar to the algorithm in
Theorem 5.5, the first update algorithm computation stores the (m− 1) delimiters in
the cache and the frequency per item is counted afterwards. As the basic bit-string
can represent the numbers 0 to 2d − 2, we are not counting with a binary base, but
have a base of (2d− 1). The output algorithm transforms the highest frequency from
the basis (2d − 1) to a binary base and outputs it.

5.1. General Streaming Problem Analysis 39

Of course, this streaming algorithm solves the most frequent item problem, as it
is a simple transformation of the algorithm in Theorem 5.5. The described streaming
algorithm requires d · (m− 1) bits for the delimiters. Analogously to Theorem 5.5,
the worst space-efficient input stream has a uniform distribution over all items. Then,
we have to represent the value

⌈
n
m

⌉
in the numeral system of basis (2d − 1), which

requires
⌈
log2d−1

(
n
m

)⌉
basic bit strings. Therefore, we have in total

d · (m− 1) + d ·m ·
⌈
log2d−1

(
n

m

)⌉
= d ·m ·

(
1 +

⌈
log2

(
n
m

)
log2(2d − 1)

⌉)
− d

bits. �

While this formula can give an improved upper bound, it might also be useless
if one chooses a bad d. For any fixed n,m, one can identify the best d to decrease
the space complexity upper bound. This space complexity function is, dependent on
d, similar to a parable: There is a lowest point and, for all delimiter sizes above or
below, the space complexity function will output a higher result. Therefore, one can
simply evaluate the space complexity function from above with some d ∈ {2, 3, . . . }
until the lowest space complexity has been located.

But to illustrate the usage of Theorem 5.6, we can show that, for any n ≥ m
and with d = 2, the space complexity upper bound is generally below the one from
Theorem 5.5. One can see this with the following inequality:

space
(
SF∞,1,1

)
≤ d ·m ·

(
1 +

⌈
log2(nm)

log2(2d − 1)

⌉)
− d Theorem 5.6

= 2m ·
(

1 +
⌈

log2(nm)
log2(3)

⌉)
− 2 replace d = 2

≤ 2m ·
(

1 +
⌈
log2

(
n

m

)⌉)
− 2 Theorem 5.5

As an example, if we have n = 1012 and m = 106, one can calculate upfront the
space complexity of Theorem 5.6 with different d ≥ 2, as illustrated in Figure 5.1.
For these concrete n and m, we choose d = 3 as it leads to the most space-efficient
approach. For the sake of comparison, the space complexity of Theorem 5.5 has been
added to this figure.

In the following, we will see some lower bound proofs for the space complexity of
the most frequent item problem. Some are used as basis for further, more complicated
proofs in the setting of approximation and randomization. One proof will get a tight
lower bound for the general one in Theorem 5.2, which is only given in Ω-notation.
This exact lower bound is then better comparable with the exact upper bounds of
Theorem 5.5 and Theorem 5.6.

Enhanced Lower Bounds

In this part, we will prove a tight lower bound for the exact deterministic most
frequent item streaming problem. Furthermore, it is an exact bound for the one in
Theorem 5.1, which is only given in Ω-notation. Additionally, it is more general,
as there are no conditions on n and m. The first one illustrates the usage of the

40 Chapter 5. Most Frequent Item Problem

2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

·107

d

sp
ac

e(S F ∞
,1
,1

)
Theorem 5.6
Theorem 5.5

Figure 5.1. Illustration of the space complexity of the exact deterministic most
frequent item problem

fooling set in detail, which was introduced in Chapter 4. This analysis and proof
idea is later used to extend this lower bound to an approximative and probabilis-
tic setting. The second lower bound proof will deliver an exact bound of Theorem 5.2.

First, we will start with a simple and intuitively comprehensible lower bound of
Ω(min{m,n}).

Theorem 5.7. The streaming problem SF∞,1,1 has, for any n,m ∈ N+, a space
complexity lower bound of

space
(
SF∞,1,1

)
≥ min{n,m} − 1

2 · log2(min{n,m})− 1
2

≥ min{n,m} − log2(min{n,m}) ∈ Ω(min{n,m}).

Proof. To show this lower bound, we will distinguish between two different cases:
The first one for n ≤ m and the second one for m > n. For both cases, we will i)
introduce a fooling set, ii) show, that it is a fooling set for the most frequent item
problem, and iii) calculate the space complexity lower bound with the fooling set size.

Case 1: If n ≤ m, we define a fooling set of size
(n
n/2
)
consisting of sequences of

n
2 different elements as representatives, which are associated with the left computer
for the two-computer model or stand for the first input stream parts, respectively.
The right side contains some test entries, each with n

2 occurrences of the same item.
Then, for any two representatives, we can choose one test with some item that is
present in only one representative. As a consequence, the highest frequency is always
different, which is the condition of a fooling set. We now describe the three steps i),
ii), and iii) in detail.

5.1. General Streaming Problem Analysis 41

i) We define the fooling set Fn≤m = (Fn≤mL ,Fn≤mR) with the cut in the middle
(l := n

2) by the following approach: A set half contains n
2 different values from

{1, . . . , n} ⊆ {1, . . . ,m}. Fn≤mL contains all possible, different set halves. This way,
there are no two representatives that are equal. This implies that all representatives
have a length of n

2 , a frequency of exactly 1, and consequently, n
2 distinct items.

Obviously, there exist
(n
n/2
)
distinct set halves. The test simply contains n different

IvR ∈ F
n≤m
R of n2 times the same value, namely Fn≤mR = {{1, . . . , 1}, . . . , {n, . . . , n}}.

ii) Now we have to verify that Fn≤mR is a test for the representatives Fn≤mL .
The definition of the representatives states that no two representatives are equal.
Therefore, for any two representatives, there exists an item v that is present in only
one of the representatives, i.e.,

∀IiL, I
j
L ∈ F

n≤m
L , IiL 6= IjL,∃v ∈ {1, . . . , n} such that v ∈ IiL and v 6∈ IjL.

For these two representatives IiL, I
j
L, we choose IvR = {v, . . . , v} as a test, then

the highest frequency is either n
2 (if v is not present in the representative) or n

2 + 1
(if v is present). Formally, the inequality is

f(IiL, IvR) = n

2 + 1 6= n

2 = f(IjL, I
v
R).

Therefore, Fn≤m = (Fn≤mL ,Fn≤mR) has a test for any two representatives, so that
the highest frequency is different and the cache states have to be different. Hence, it
is a fooling set for SF∞ .

iii) At last, we can calculate the space-complexity lower bound. Based on
Theorem 4.1 and the approximation in Lemma 3.2, we can prove the space complexity
lower bound for SF∞,1,1 and n ≤ m of

space(Sn≤mF∞,1,1
) ≥ log2(|Fn≤mL |) = log2

((
n

n/2

))
fooling set size

> log2

(2n√
2n

)
= n− log2(

√
2n) Lemma 3.2

= n− log2(2n)
2 = n− log2(n)

2 − 1
2 basic transformation

≥ n− log2(n) ∈ Ω(n) basic transformation

This is the space complexity lower bound for the first case.

Case 2: If m < n, then we define the set of representatives similar to the
first case, but now, for each element of the fooling set, we use only m

2 different
elements from the set of all possible items. The testing set is also similar to above,
but now we have to fill it up more repetitively, until the representative and test
set contain n input values. The three steps i), ii), and iii) are now described in detail.

i) We define the fooling set Fm<n = (Fm<nL ,Fm<nR) as follows: The set of
representatives contains, similarly to the first case, all different set halves, each
with m

2 different items from {1, . . . ,m}. Then the representative set has a size of

42 Chapter 5. Most Frequent Item Problem

|Fm<nL | =
(m
m/2

)
. Now, the cut between representatives and test is not in the middle,

but at l := m
2 < n

2 . The test simply contains m different IvR, each with (n− m
2) times

the same value, namely

Fm<nR = {{1, . . . , 1}, . . . , {m, . . . ,m}}.

ii) Now, we verify that Fm<n = (Fm<nL ,Fm<nR) is a fooling set, because it
contains an item v for every possible two representatives, such that v is represented
in only one of the two. Then, the highest frequency is either (n − m

2) (if v is not
present at the representative) or (n− m

2 + 1) (if v is present). More formally, this
inequality can be shown as follows:

∀IiL, I
j
L ∈ F

m<n
L , IiL 6= IjL ∃v ∈ {1, . . . ,m} such that v ∈ IiL and v 6∈ IjL.

With IvR = {v, . . . , v}, we have |IvR| = n− m
2 and the required inequality

f(IiL, IvR) = n− m

2 + 1 6= n− m

2 = f(IjL, I
v
R).

Therefore Fm<n is a fooling set for SF∞ .

iii) Based on Theorem 4.1 and the approximation in Lemma 3.2, we can similarly
prove a space complexity lower bound for SF∞,1,1 and m < n of

space(Sm<nF∞,1,1
) ≥ log2(|Fm<nL |) = log2

((
m

m/2

))
fooling set size

> log2

(2m√
2m

)
= m− log2(

√
2m) Lemma 3.2

≥ m− log2(m) ∈ Ω(m) basic transformation

With these two cases, we can summarize that, for any m,n ∈ N+, the space
complexity lower bound is given by

space(SF∞,1,1) ≥ min{n,m} − log2(min{n,m}) ∈ Ω(min{n,m}). �

Now, we will prove a tight lower bound for the known space complexity of
Ω
(
m · log

(
n
m

))
for any n > 4m, as stated in Theorem 5.2.

Theorem 5.8. The streaming problem SF∞,1,1 has, for any n > 4m, a space-
complexity lower bound of

space
(
SF∞,1,1

)
≥ m

2 · log2

(
n

m

)
− 0.21m ∈ Ω

(
m · log

(
n

m

))
.

Proof. To get a space complexity lower bound in the order of Ω
(
m · log

(
n
m

))
, we

are required to have an enormously larger fooling set, compared to the ones from
Theorem 5.7 of size ≈ 2n or ≈ 2m, respectively. Instead, we require a fooling set of
the order of ≈ 2m·log2(n/m).

5.1. General Streaming Problem Analysis 43

To build such a large set of representatives, we vary the frequency count within
the representatives. The representatives of the fooling set in Theorem 5.7 have a
frequency of one. If we now vary the frequency within the representatives, we are
challenging the situation that, at the end, every input stream is required to have a
length of n input values. Therefore, we will use the items {1, . . . , m2 } for the frequency
influence and the second half of the items, namely {m2 + 1, . . . ,m}, as spacer with a
frequency below a certain minimum. Then, we can fill up the rest of the space until
we have the required n input values, but these spacer items are not affecting the
overall streaming problem result, as their frequency is at most as high as that of the
test entries. We will define this minimum as a fraction dependent on n and m. Once
again, we will i) introduce the fooling set formally, ii) justify that it is a fooling set
(namely, that any combination of representative and test have the required input
stream size of n and that for any two representatives, there is a test element such
that the highest frequency is different), and iii) calculate the space-complexity lower
bound.

i) First, we define the frequency maximum for the spacer items as the frequency
minimum for the testing set. This fraction is defined as follows,

frac :=
⌊

n
m
2 + 1

⌋
=
⌊ 2n
m+ 2

⌋
.

The fooling set F = (FL,FR) has a cut at l := (n − frac), we define a test
set of size m

2 , each test with frac times the same item from {1, . . . , m2 }, namely
FR = {{1, . . . , 1}, . . . , {m2 , . . . ,

m
2 }}. Consequently, the representatives are sets of

size l = (n− frac). Each representative can logically be split into two parts, a content
part and a spacer part. We construct a set of representatives with ≈ (frac

2)
m
2 different

content parts. Each content item j ∈ {1, . . . , m2 } has a frequency from the range
{d frac

2 e, . . . , frac}. Then, we can vary the frequency of every content item individually,
and we will have in total

(# frequency states)(# content items) =
(

frac−
⌈ frac

2

⌉
+ 1

)m
2

(5.1)

≥
(frac

2

)m
2

(5.2)

different content parts, such that there exists, for any two representatives, a content
item v ∈ {1, . . . , m2 } with different frequencies of v in the two representatives. These
content parts have in total between d frac

2 e ·
m
2 and frac · m2 input values. The spacer

part of every representative is filled up with spacer items {m2 + 1, . . . ,m} with a
frequency of at most frac.

ii) Second, we will verify that this spacing approach will lead to input streams of
size n and afterwards, that F = (FL,FR) is a fooling set for the most frequent item
streaming problem.

We further use the following approximation that, for any n > 4m,

2n
m

> frac > 3
2 ·

n

m
with frac =

⌊
n

m
2 + 1

⌋
=
⌊ 2n
m+ 2

⌋
. (5.3)

44 Chapter 5. Most Frequent Item Problem

The first inequality is obvious. The second is also clear, using the condition that
n > 4m.

As stated above, the content parts of the representatives have a size between
d frac

2 e ·
m
2 and frac · m2 . If the content part contains only d frac

2 e ·
m
2 items, we have to

verify that the maximal amount of spacer items with limited frequency are sufficient
to get a representative size of l = (n− frac). The spacer part has a maximal size of
frac · m2 . Therefore, we can validate that,⌈ frac

2

⌉
· m2 + frac · m2 ≥

frac
2 · m2 + frac · m2 simple approximation

= frac ·
(
m

4 + m

2

)
basic transformation

>
3
2 ·

n

m
· 3m

4 = 9n
8 inequality from (5.3)

> n− frac = l.

On the other side, we have to verify that, if the content part contains the maximum
of frac · m2 entries, it does not exceed the size limit of the representatives, namely its
size remains below l = n− frac. Or, in other words, the maximal content part plus
the testing size is required to be at most n. Therefore,

frac · m2 + frac =
⌊ 2n
m+ 2

⌋
· m2 +

⌊ 2n
m+ 2

⌋
using the definition

≤
⌊ 2n
m+ 2 ·

m

2 + 2n
m+ 2

⌋
simple approximation

=
⌊2n ·m+ 4n

2 · (m+ 2)

⌋
=
⌊2n · (m+ 2)

2 · (m+ 2)

⌋
basic transformation

= bnc = n.

Now, we know that this approach will lead to a valid input stream length. Next,
we need to verify that F = (FL,FR) is a fooling set for the most frequent item
problem. By definition, every two representatives have a content item v ∈ {1, . . . , m2 }
such that their frequency of this content item is different. With the corresponding
representative IvR ∈ FR, the highest frequency is different. As a consequence, the
cache states are required to be different and we have proven that F is a fooling set
for the most frequent item problem.

iii) At last, we can calculate the tight space complexity lower bound for SF∞,1,1
and n > 4m, which is,

space(Sn>4m
F∞,1,1

) ≥ log2(|FL|) Theorem 4.1

= log2

((
frac−

⌈ frac
2

⌉
+ 1

)m
2
)

fooling set size

≥ log2

((frac
2

)m
2
)

approx. from (5.1), (5.2)

= m

2 · log2

(frac
2

)
basic transformation

5.1. General Streaming Problem Analysis 45

>
m

2 · log2

(3
4 ·

n

m

)
approx. from (5.3)

= m

2 · log2

(
n

m

)
+m ·

(log2(3)
2 − 1

)
basic transformation

>
m

2 · log2

(
n

m

)
− 0.21 ·m simple approximation

∈ Ω
(
m · log

(
n

m

))
. �

In the following, we will analyze the possible decreases of the upper bound and
the validity of the lower bounds in a probabilistic setting.

Exact Probabilistic Most Frequent Item Problem

The exact probabilistic most frequent item problem with a success probability of p < 1
is analyzed. Once again, the output value has to be exact, namely the approximation
ratio is α = 1. We use the notation of SF∞,1,p for the exact probabilistic most frequent
item problem.

Known Bounds from the Literature

The known space complexity lower bound of Ω(m) for any m
2 ≤ n ≤ 2m from

Theorem 5.1 stated by Alon et al. [AMS99] is also valid in the probabilistic setting,
specifically if p ≥ 1

2 . The lower bounds of Theorem 5.2 and Theorem 5.3 are not
proven again for a probabilistic environment.

The upper bound of O(m · log(n)) described by Indyk and Woodruff [IW05] is,
of course, also valid in a probabilistic environment. However, so far, there are no
known literature proposing streaming algorithms for the most frequent item problem
with a lower complexity order for the probabilistic setting.

Enhanced Upper Bounds

In the following parts, we introduce a simple technique to decrease the deterministic
upper bound by a multiplicative factor of the success probability p. Afterwards,
the two lower bound proofs from Theorem 5.7 and Theorem 5.8 are extended for a
probabilistic environment.

Above, we have seen three algorithms to solve the most frequent item problem
exactly and have deterministically proven that,

• space
(
SF∞,1,1

)
≤ m · dlog2(n)e bits (Theorem 5.4),

• space
(
SF∞,1,1

)
≤ 2m ·

(⌈
log2

(
n
m

)⌉
+ 1

)
− 2 bits (Theorem 5.5), and

• space
(
SF∞,1,1

)
≤ d ·m ·

(
1 +

⌈
log2(nm)

log2(2d−1)

⌉)
− d bits (Theorem 5.6).

With a simple trick, we can show that the space complexity of these three
algorithms can be decreased by a multiplicative factor of p < 1 for the corresponding
success probability, namely,

space
(
SF∞,1,p

)
≤ p · space

(
SF∞,1,1

)
.

46 Chapter 5. Most Frequent Item Problem

The three deterministic algorithms are all storing a histogram of the frequencies
of all individual items j ∈ {1, . . . ,m} in a more or less space-efficient way. For a
success probability of p < 1, we will just track p ·m randomly chosen items and
output the highest frequency of the tracked items. For example, for a required
success probability of p = 1

2 , we will just analyze every second item. Namely, at the
beginning, the algorithm flips a coin and decides whether the even or odd items are
counted. With this approach, the probabilistic algorithm requires only half the space
and gets the exact correct result with a success probability of at least p = 1

2 . For a
required success probability of p = 3

4 , one can randomly choose one excluded number
out of the four values {0, 1, 2, 3}, and then the algorithm just counts all items, where
the item modulo 4 is not the excluded one. Then, once again, the success probability
for an exact result is the probability that the modulo 4 value of the most frequent
item is not the excluded one, which is at least p = 3

4 . If p is any rational number, i.e.,
p ∈ Q+ or p = a

b for some a, b,∈ N+, then we can randomly choose a numbers out of
the set {0, . . . , b− 1} and count only the items with a result of modulo b within this
chosen items.

We could describe these algorithms in detail and more formally, but we observe
the following: This approach may reduce the space complexity, but the effect is only
minor, and, therefore, it is not interesting for a concrete implementation. But the
study of probabilistic algorithms for the most frequent item problem shows that it
is possible to decrease the space complexity slightly. Furthermore, it seems to be
very hard, if not impossible, to decrease the space complexity using random bits in a
really effective way.

Therefore, we will now analyze what order the space complexity lower bounds
have in a probabilistic environment.

Enhanced Lower Bounds

We will prove, for any m,n ∈ N+ and some fixed success probability p > 1
2 , an exact

space complexity lower bound for the probabilistic most frequent item problem of
Ω(min(m,n)), which is of the same order as the deterministic lower bound given in
Theorem 5.1 and Theorem 5.7. For the lower bound proof, we use a similar fooling
set as in the proven theorem above. With Theorem 4.3, we can show an exact space
complexity lower bound, completing the already known lower bound, which is given
in the Ω-notation.

Theorem 5.9. The streaming problem SF∞,1,p has, for any n,m ∈ N+ and a success
probability of p = 1− ε with ε < 1

2 , a space complexity lower bound of,

space(SF∞,1,p) ≥(min{n,m} − log2(min{n,m}))·
(1 + 1.01p · log2(p) + 1.01ε · log2(ε))− 1.

Proof. Similarly to the proof for the deterministic lower bound, we distinguish the
two cases n ≤ m and m > n. To use Theorem 4.3, we have to verify that the test set
is minimal. As stated in (4.1) to (4.5), we can verify the following term to ensure
the minimality of the test set:

5.1. General Streaming Problem Analysis 47

∀IvR ∈ FR, For all elements of the test set,
∃IiL, I

j
L ∈ FL, I

i
L 6= IjL there are two different representatives,

s.t.
(
S(IiL, IvR) 6= S(IjL, I

v
R) such that the cache states

have to be different.
and ∀Iv′R ∈ (FR \ IvR) : And for all other tests,

S(IiL, Iv
′
R) = S(IjL, I

v′
R)
)

they are not required to be different.

With a small modification of the test set from the fooling set in Theorem 5.7, we
have a valid fooling set with a minimal test set so that we can use Theorem 4.3 to
have a space complexity lower bound for a probabilistic environment.

Case 1: n ≤ m. We will i) define the fooling set, ii) show that it is a fooling
set and has a minimal test set, and iii) calculate the probabilistic space complexity
lower bound.

i) We define the fooling set Fn≤m = (Fn≤mL ,Fn≤mR) with the same set of repre-
sentatives from Theorem 5.7, namely the

(n
n/2
)
different set halves from {1, . . . , n} ⊆

{1, . . . ,m}, which are all of length n
2 . The test set contains n−1 different IvR ∈ F

n≤m
R

of n2 times the same value, namely Fn≤mR = {{1, . . . , 1}, . . . , {n− 1, . . . , n− 1}}.

ii) First, it is verified, that Fn≤m is still a fooling set, even though the test
set is missing one test (i.e., {n, . . . , n}) and, in advance, that Fn≤mR is minimal.
In Theorem 5.7, we justified the fooling set with the argument that for any two
representatives there is at least one item v ∈ {1, . . . , n} such that v is only present in
one representative, and as a consequence, the highest frequency will be different for
the corresponding test IvR. The new test set is missing one test. Nevertheless, Fn≤m
is still a fooling set because in any pair of representatives not only one but at least
two different items occur at only one representative, say v, v′ ∈ {1, . . . , n}, because
all representatives have the same length and are all distinct. From these two items
that are only present in one of the two representatives, we will take the smaller one
(w.l.o.g., assume v < v′ ≤ n). With the test IvR, which is definitely present in the
test set, we can show the inequality of the highest frequency. Therefore, Fn≤m is a
fooling set for the most frequent item problem.

As introduced above, we have to verify (4.1) to (4.5) to prove the minimality of
the test set. Therefore, for all v ∈ {1, . . . , n− 1}, or their corresponding test entries
IvR ∈ F

n≤m
R respectively, we choose two different representatives IiL, I

j
L ∈ F

n≤m
L that

have (n2 − 1) times the same items from ({1, . . . , n} \ {v, n}) and the n
2 -th item is v

for IiL and n for IjL. Then, these two representatives have exactly (n2 − 1) items in
common and there are only two items, i.e., v and n, that are only present in one of
the two representatives. Now, f(IiL, IvR) = n

2 + 1 6= n
2 = f(IjL, IvR), because the most

frequent item of (IiL, IvR) is v with a frequency of 1 at the representative and n
2 at

the test. The other pair only gets a highest frequency of n2 . Next, we want to verify
that the cache states are not forced to be different for all other tests. We check this
for each v′ ∈ ({1, . . . , n− 1} \ {v}), or its corresponding test entry Iv′R ∈ F

n≤m
R . The

48 Chapter 5. Most Frequent Item Problem

item v′ is either present in both or in none of the two representatives, because the
only distinguished items are v, n and v′ 6∈ {v, n}. If v′ is present in both, the highest
frequency for both representatives n

2 + 1; if not, then the most frequent item is still
v′ with a frequency of n2 . Therefore, we have verified (4.1) to (4.5) for the fooling set
Fn≤m and shown, that the test set is minimal. As a consequence, we may apply the
referenced theorem.

iii) Finally, we can calculate the space complexity lower bound for the most
frequent item problem having a success probability of p > 1

2 . Using Theorem 4.3
and the approximation from Lemma 3.2, the space complexity lower bound for the
streaming problem Sn≤mF∞,1,p

with p > 1
2 is given by

space(Sn≤mF∞,1,p
) ≥ log2(|Fn≤mL |) ·

(
1− |F

n≤m
R | · h(p)

log2(|Fn≤mL |)

)
− 1 Theorem 4.3

= log2

((
n

n/2

))
·
(

1− (n− 1) · h(p)
log2(

(n
n/2
)
)

)
− 1 fooling set size

> (n− log2(
√

2n)) ·
(

1− (n− 1) · h(p)
n− log2(

√
2n)

)
− 1 Lemma 3.2

> (n− log2(n)) · (1− 1.01 · h(p))− 1, apx. for large n

where h(p) = −p · log2(p)− (1− p) · log2(1− p), as defined in Theorem 4.3.
We have shown the probabilistic space complexity lower bound for the case n ≤ m.

Case 2: If m < n, we can similarly prove a probabilistic space complexity lower
bound. We define the fooling set Fm<n = (Fm<nL ,Fm<nR) that is almost the same
one as in the second case of Theorem 5.7, but similarly to above, exclude the last
element of the test set such that Fm<nR = {{1, . . . , 1}, . . . , {m− 1, . . . ,m− 1}}. With
the same argument as above, it is evident that Fm<n is still a fooling set and that the
test set is minimal. If one wants to repeat the detailed proof of ii), one can simply
replace in the proof above the letters n with m and the possible streaming problem
result of n2 and n

2 + 1 respectively, with n− m
2 and n− m

2 + 1 respectively. At last,
the probabilistic space complexity lower bound can be approximated analogously as,

space(Sm<nF∞,1,p
) ≥ log2(|Fm<nL |) Theorem 4.3

·
(

1− |Fm<nR |
log2(|Fm<nL |) · h(p)

)
− 1

= log2

((
m

m/2

))
fooling set size

·
(

1− (m− 1)
log2(

(m
m/2

)
) · h(p)

)
− 1

> (m− log2(m)) · (1− 1.01 · h(p))− 1. approx. as in Case 1

Therefore, we can conclude that for any n,m ∈ N+, the space complexity lower
bound for the probabilistic most frequent item streaming problem with a success

5.1. General Streaming Problem Analysis 49

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p

1
−

1.
01
·h

(p
)

Figure 5.2. Illustration of the lower bound factor

probability of p = 1− ε with ε < 1
2 is,

space(SF∞,1,p) ≥ (min{n,m} − log2(min{n,m})) · (1− 1.01 · h(p))− 1
= (min{n,m} − log2(min{n,m}))·

(1 + 1.01p · log2(p) + 1.01ε · log2(ε))− 1.

With this analysis, we have proven the stated theorem. �

This probabilistic space complexity lower bound is dependent on the success
probability and as a result, difficult to compare to the deterministic one. Figure 5.2
illustrates the term (1− 1.01 · h(p)) for the success probability p > 1

2 .
This illustration shows that, with large success probabilities close to p = 1, we

have the same space complexity lower bound as the deterministic one. For small
success probabilities of p ≤ 0.558, we have a meaningless lower bound, because it is
negative. However, on the other side, for any p ≥ 0.559, we have a lower bound of
the space complexity order Ω(min{n,m}).

As two concrete examples, we have the following space complexity lower bounds
for the success probabilities p = 0.75 and p = 0.95.

Corollary 5.1. The streaming problem SF∞,1,p has, for any n,m ∈ N+ and a success
probability of p = 0.75 or p = 0.95, a space complexity lower bound of ,

space(SF∞,1,0.75) ≥ 0.181 · (min{n,m} − log2(min{n,m}))− 1 and

space(SF∞,1,0.95) ≥ 0.711 · (min{n,m} − log2(min{n,m}))− 1.

This result can be achieved by just evaluating the theorem above with p = 0.75
or p = 0.95. This analysis shows that the space complexity lower bound is of the
same order as the deterministic one. With the next theorem, we prove that the

50 Chapter 5. Most Frequent Item Problem

probabilistic space complexity lower bound is of the same order of Ω
(
m · log

(
n
m

))
as

the deterministic ones in Theorem 5.2 and Theorem 5.8. This tight lower bound will
allow a more interesting analysis and conclusion.

Theorem 5.10. The streaming problem SF∞,1,p has, for any n ≥ m and a success
probability of p = 1− ε with ε < 1

2 , a space complexity lower bound of,

space(Sn≥mF∞,1,p
) ≥ m

2 · log2

(
n

m

)
− 0.21m− m · h(p)

2 − 1

≥ m

2 · log2

(
n

m

)
− 0.71m− 1.

Proof. Fortunately, the introduced fooling set of the deterministic proof has an
already minimal test set. Therefore, i) we can simply use exactly the same fooling set
as in Theorem 5.8, ii) which is also proven to be a fooling set. We just have to verify
that the test set is minimal. And then, iii) we can calculate the space complexity
lower bound.

ii) All representatives have different frequencies of the content items j ∈ {1, . . . , m2 }.
With this fact, for any test IvR = {v, . . . , v} ∈ FR, we can simply choose two represen-
tatives that have equal frequencies of the content items except the item v. Then, IvR
is a test, as the highest frequency is different between these two representatives, but
all other tests Iv′R for v′ ∈ ({1, . . . , m2 } \ {v}) are not forcing different cache states, as
the most frequent item will always be v′ with a frequency of frac. Therefore, the test
set is minimal.

iii) Now, we can use Theorem 4.3 to prove a probabilistic space complexity lower
bound.

space(Sn≥mF∞,1,p
) ≥ log2(|Fn≥mL |) · (1− |F

n≥m
R | · h(p)

log2(|Fn≥mL |)
)− 1 Theorem 4.3

>

(
m

2 · log2

(
n

m

)
− 0.21m

)
· Theorem 5.8(

1−
m
2 · h(p)

m
2 · log2

(
n
m

)
− 0.21m

)
− 1

= m

2 ·
(

log2

(
n

m

)
− 0.42

)
basic transformation

·
(

1− h(p)
log2

(
n
m

)
− 0.42

)
− 1

= m

2 ·
(

log2

(
n

m

)
− h(p)− 0.42

)
− 1 basic transformation

= m

2 · log2

(
n

m

)
− 0.21m− m · h(p)

2 − 1 basic transformation

≥ m

2 · log2

(
n

m

)
− 0.71m− 1 as h(p) ≤ 1

With this calculation, we have finished the proof of this space complexity lower
bound. �

5.1. General Streaming Problem Analysis 51

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p

h
(p

)=
−
p
·l

og
2(
p
)−

(1
−
p
)·

lo
g 2

(1
−
p
)

Figure 5.3. Illustration of h(p)

Corollary 5.2. The streaming problem SF∞,1,p has, for any n ≥ m ∈ N+ and a
success probability of p = 0.75 or p = 0.95, a space complexity lower bound of

space(Sn≥mF∞,1,0.75
) ≥ m

2 · log2

(
n

m

)
− 0.616m− 1 and

space(Sn≥mF∞,1,0.95
) ≥ m

2 · log2

(
n

m

)
− 0.353m− 1.

This result can be achieved by just evaluating the theorem above with p = 0.75
or p = 0.95.

Similarly to Figure 5.2, we will illustrate the relevant part of the factor of the
minor term m·h(p)

2 , namely h(p) for the success probabilities p > 1
2 , in Figure 5.3.

We observe that the dominant part, i.e., m
2 · log2

(
n
m

)
, is not affected by the

success probability. This implies that for a large factor between n and m, the
usage of randomization does not significantly decrease the proven space complexity
lower bound. Furthermore, with the algorithm of Theorem 5.6 and cleverly chosen
n,m, and d, we may get a space complexity that is very close to m ·

(
1 + log2

(
n
m

))
.

Therefore, the dominant part of this space complexity is, for a large fraction n
m , only

twice the given space complexity lower bound. If we additionally decrease the space
complexity using the randomization approach from Section 5.1, we have a space
complexity dominant part that is close to p ·m · log2

(
n
m

)
. For the validity of the

probabilistic lower bound, with a success probability of p > 1
2 , this is very close to

the above lower bound. Now, we can conclude that these upper and lower bounds
are almost tight. As a consequence, it is impossible to significantly improve the
probabilistic algorithm from above for the exact most frequent item problem. Or in
other words, the above described algorithm is almost optimal.

52 Chapter 5. Most Frequent Item Problem

In the following, we will analyze the effect of allowing solution approximations
on the upper and lower bound of the space complexity.

Approximative Deterministic Most Frequent Item Problem

Once again, we first introduce the known space complexities from the literature and
then explain some techniques and proofs to enhance the space complexity bounds.
We use the notation of SF∞,α,1 for the approximative deterministic most frequent
item problem.

Known Bounds from the Literature

The only space complexity bound we are aware of for an approximation rate of α > 1
for the most frequent item streaming problem is the following one:

Theorem 5.11 (Alon et al. [AMS99]). The streaming problem SF∞,α,1 with a 2-
sided approximation ratio of α = 4

3 ≈ 1.333, has, for any m
2 ≤ n ≤ 2m, a space

complexity lower bound of,

space
(
S
m
2 ≤n≤2m
F∞, 4

3 ,1

)
∈ Ω(m).

Probably, because of the same complexity order of this lower bound, there are no
further, well-known results. The stated algorithm by Indyk and Woodruff [IW05] is
for sure also valid for an approximative environment, as it solves the task exactly,
but it is not further optimized.

We show in the following how we can cut the space size in half if we allow
approximations of the ratio α =

√
2. Or more generally, how to divide the space

size with factor d if we allow an approximation of α =
√
d. Afterwards, we show an

exact space complexity lower bound of the same order as the one above, but with
an approximation ratio of α <

√
2 for a 2-sided approximation. Finally, we show a

technique to prove a space complexity lower bound for α ≥
√

2 and explain why it is
difficult to find a better one.

Enhanced Upper Bounds

Similar to the approach in the probabilistic environment, we can reduce the space
complexity of the algorithms in Theorem 5.4, Theorem 5.5, and Theorem 5.6 by
allowing approximative results.

If a 2-sided approximation ratio of α =
√

2 is allowed, we modify the histogram-
counting of the individual algorithms. We do not count the frequencies of every
individual item, but count the item pairs {1, 2}, {3, 4}, and so on. After processing
the entire input stream and counting the frequency pairs, the algorithms simply
outputs the highest frequency of any such pair divided by

√
2. With this approach,

the algorithm will output a result that has an approximation ratio of at most α =
√

2.
We observe, that the highest pair-frequency is at most twice the optimal result and
at the other extrema, the highest pair-frequency is exactly the optimal result. At
one first extreme, an item-pair has a frequency of twice the optimal, namely 2 · f(x).

5.1. General Streaming Problem Analysis 53

Then the algorithm will output 2·f(x)√
2 and the approximation value is at most

√
2

because,
2·f(x)√

2
f(x) = 2√

2
=
√

2.

In the second extreme, the highest pair-frequency is just f(x). However, the
approximation value between the delivered result of f(x)√

2 and the optimal value is
still at most

√
2, since

f(x)
f(x)√

2

= 1
1√
2

=
√

2.

For any result between these two extrema, the approximative value is even better.
Therefore, this approach will deliver an approximation of the most frequent item
with an approximation ratio of

√
2 with half the required space as in the algorithms

of Theorem 5.4, Theorem 5.5, and Theorem 5.6.

Similarly, we can achieve a reduction of the required space size by the factor d if
we allow an approximation ratio of

√
d. We get this, by counting frequency tuples of

always d items, namely by counting the total frequency of {1, . . . , d}, {d+ 1, . . . , 2d},
and so on. At the end, the algorithm divides the tuple frequency by

√
d. Obviously,

this algorithm requires d times less storage. The highest tuple frequency is between
f(x) and d · f(x). With the same argument as above, one can simply verify the
claimed bound on the approximation ratio.

Of course, this approach is only valid if both approximation values above and
below the optimal result are allowed. If only 1-sided approximations are allowed, we
are not allowed to eventually overestimate the optimal value and therefore, cannot
use this approach.

In the following, we will analyze two space-complexity lower bounds for the
approximative deterministic most frequent item streaming problem.

Enhanced Lower Bounds

For a space complexity lower bound in an approximative environment, we have to
identify an α-fooling set for the corresponding streaming problem. As introduced
in Theorem 4.4, we have to verify that the cache states for any two representatives
have to be different. This implies that the streaming problem result between any two
representatives and their test entry is required to be different by a factor of more
than α. With such an α-fooling set, we can prove a space complexity lower bound
of log2(|FL|), if an approximation ratio of α is allowed for 1-sided approximations.
If 2-sided approximations are allowed, then we have the same lower bound, if an
approximation ratio of

√
α is allowed.

Theorem 5.12. The streaming problem SF∞,α,1 has, for any n,m ∈ N+ and a
1-sided approximation ratio of α < 2, a space complexity lower bound of

space
(
SF∞,α<2,1

)
≥ min

{
n− log2(n), m2 −

log2(m)
2

}
∈ Ω(min{n,m}).

54 Chapter 5. Most Frequent Item Problem

Proof. To prove this theorem, we use a case distinction between n ≤ m and m < n
and, for both cases, i) introduce the α-fooling set, ii) verify the α-fooling set, and
iii) calculate the space complexity lower bound. For ease of presentation, we assume,
that m is not only even, but a multiple of 4, i.e., m = 4 · d for some d ∈ N+.

First, one may realize, that the fooling sets of the two cases from Theorem 5.7
from above are not usable to verify any fixed approximation ratio α < 2, because
the streaming problem will produce the following output values for any possible
representative IiL ∈ FL and test entry IvR ∈ FR:

f(IiL, IvR) ∈
{
n

2 ,
n

2 + 1
}
∪
{
n− m

2 , n−
m

2 + 1
}
.

The fraction between the streaming problem output of two different represen-
tatives is very low, namely below 1

min{n,m} . With this fooling set, we calculate the
space complexity lower bound for an approximation ratio of α < 1

min{n,m} . As we
want to show an approximation ratio of α < 2, we are looking for a fooling set whose
entries will lead to highest frequencies of two different values that are apart by a
factor of at least 2. In the following, we will describe and justify such an α-fooling set.

Case 1: If n ≤ m, we will define and analyze the fooling set as follows:
i) We define the α-fooling set Fn≤mF∞,α<2,1

= (Fn≤mL ,Fn≤mR) with a cut at l := n−2.
This means, that the representatives contain n − 2 items and the test set only
two input values. Each representative has (n2 − 1) different items from the set
{1, . . . , n} ⊆ {1, . . . ,m}, but each item occurs twice. Therefore, every representative
has 2 ·(n2 −1) = n−2 input values. In total, there are

(n
n/2−1

)
different representatives.

As test set, we choose n−1 entries each containing one value from {1, . . . , n−1} twice,
namely Fn≤mR = {{1, 1}, {2, 2}, . . . , {n− 1, n− 1}}. Intentionally, the test set does
not contain the logical completing element {n, n} such that the test set is minimal (to
be proven later), and the entire fooling set can be used for the probabilistic analysis
in the later parts as well.

ii) Then, we have to verify, that Fn≤mF∞,α<2,1
is an α-fooling set for the most frequent

item problem. As stated and explained in Definition 4.3, we have to verify that,

∀IiL, I
j
L ∈ FL with IiL 6= IjL : ∃IvR ∈ FR s.t. f(IiL, IvR)

f(IjL, IvR)
<

1
α

or f(IiL, IvR)
f(IjL, IvR)

> α.

Similarly to the proof in Theorem 5.9, any two representatives will lead to at
least two items v, v′ ∈ {1, . . . , n}, such that v and v′ are only present in one of the
two representatives. W.l.o.g, we assume v < v′ ≤ n. With the test IvR = {v, v}, we
have a highest frequency of 4, if v is present in the representative, or 2 if not. Finally,
one of the following two conditions is satisfied:

f(IiL, IvR)
f(IjL, IvR)

= 2
4 = 1

2 <
1
α

or f(IiL, IvR)
f(IjL, IvR)

= 4
2 = 2 > α.

Therefore, Fn≤mF∞,α<2,1
is an α-fooling set for the most frequent item problem for

any α < 2.

5.1. General Streaming Problem Analysis 55

iii) At last, we can calculate the space complexity lower bound:

space(Sn≤mF∞,α<2,1
) ≥ log2(|Fn≤mL |) = log2

((
n

n/2− 1

))
fooling set size

> log2

(
2n ·
√

2n
2n+ 4

)
Lemma 3.3

= n+ log2(
√

2n)− log2(2n+ 4) basic transformation

= n+ log2(n)
2 + 1

2 − log2(n+ 2)− 1 basic transformation

> n+ log2(n)
2 + 1

2 − log2(n)− 1− 1 simple approximation

= n− 1
2 · log2(n)− 1.5 basic transformation

> n− log2(n) simple approximation

This is the space complexity lower bound for the first case.

Case 2: If m < n, it is a little bit more complicated to ensure an α-fooling set,
because we cannot simply encode frequencies of 2 and 4, as we did in the first case,
because the highest frequency will be at least d nme, which is larger than 4 for some
m� n. We will therefore define a basic value replication dependent on the fraction
between n and m. Similarly to Theorem 5.8, we will implement this basic value
replication using content items and fill up the stream with spacer items.

i) Before we define the α-fooling set, we define the basic value replication as

r :=
⌊
n
m
2

⌋
=
⌊2n
m

⌋
≥ 2. (5.4)

With this basic value replication r, we define the α-fooling set Fm<n with
Fm<n = (Fm<nL ,Fm<nR), such that all possible input stream combinations of any
representative and test entry will lead to a problem function value that is either r or
2r, more formally,

∀IiL ∈ Fm<nL , ∀IvR ∈ Fm<nR : f(IiL, IvR) ∈ {r, 2r}.

We define the α-fooling set Fm<nF∞,α<2,1
= (Fm<nL ,Fm<nR) with a cut at l = n− r =

n− b2n
m c. The test set contains (m2 − 1) different test entries, each with r times the

same item j ∈ {1, . . . , m2 − 1}, namely,

Fm<nR =
{
{1, . . . , 1}, . . . ,

{
m

2 − 1, . . . , m2 − 1
}}

.

The representatives are representing possible combinations of m4 different elements
from the content items {1, . . . , m2 } ⊂ {1, . . . ,m}. Each content item occurs r times
in the corresponding representative. Therefore, each representative has r · m4 input
values with the content items. The rest of the representative stream is filled up with
spacer items j ∈ {m2 + 1, . . . ,m} with a maximal frequency of r. Therefore, there
are in total (l − r · m4) such spacer values within every representative, as l is the size

56 Chapter 5. Most Frequent Item Problem

of the input stream of the representatives and r · m4 stands for the ones filled with
the content items. As at most r · m2 spacer items are allowed to ensure the highest
frequency of r of every spacer item, we have to verify that

0 ≤ l − r · m4 ≤ r ·
m

2 . (5.5)

The left inequality of (5.5) states that the number of required spacer items is not
negative. It can be easily shown with the following calculation:

l − r · m4 = n− r − r · m4 = n− r ·
(

1 + m

4

)
basic transformation

= n−
⌊2n
m

⌋
·
(

1 + m

4

)
definition of r, (5.4)

≥ n− 2n
m
·
(

1 + m

4

)
simple approximation

= n− 2n
m
− n

2 basic transformation

= n ·
(1

2 −
2
m

)
basic transformation

≥ 0

Next, the right inequality of (5.5) states that the frequency limit of r for the
spacer item does not have to be exceeded to fill the representatives with l = n− r
input values. As b2n

m c ≥ 2, the effect of rounding down the replication value r is at
most a factor of 1

3 , namely from 2.9̄ to 2, therefore

b2n
m
c ≥ 2n

m
· 2

3 = 4n
3m. (5.6)

Using this approximation, we can verify the right inequality as follows:

l − r · m4 = n− r − r · m4 = n− r ·
(

1 + m

4

)
basic transformation

= n−
⌊2n
m

⌋
·
(

1 + m

4

)
use definition of r, (5.4)

≤ n− 4n
3m ·

(
1 + m

4

)
approximation of (5.6)

= n− 4n
3m −

n

3 = 2n
3 −

4n
3m basic transformation

<
2n
3 simple approximation

= 4n
3m ·

m

2 basic transformation

≤
⌊2n
m

⌋
· m2 approximation of (5.6)

= r · m2

Therefore, the set of representatives is valid, which means that it has input
streams of length l, whose frequencies are additionally at most r. Now, we have to

5.1. General Streaming Problem Analysis 57

verify that Fm<nF∞,α<2,1
is an α-fooling set for α < 2.

ii) Similarly to the proof of the first case, any two representatives IiL, I
j
L ∈ F

m<n
L

will lead to at least two content items v, v′ ∈ {1, . . . , m2 }, such that v and v′ are only
present in one of the two representatives. W.l.o.g., we assume v < v′ ≤ m

2 . With the
test IvR = {v, . . . , v}, we have a highest frequency of exactly 2r, if v is present in the
representative, or r if not. Therefore, we have one of the two conditions,

f(IiL, IvR)
f(IjL, IvR)

= r

2r = 1
2 <

1
α

or f(IiL, IvR)
f(IjL, IvR)

= 2r
r

= 2 > α.

That is why Fm<nF∞,α<2,1
is an α-fooling set for the most frequent item problem for

any α < 2.

iii) At last, we can calculate the space complexity lower bound, which is,

space(Sm<nF∞,α<2,1
) ≥ log2(|Fm<nL |) = log2

((
m/2
m/4

))
fooling set size

> log2

(
2m/2√
m

)
Lemma 3.2

= m

2 − log2(
√
m) basic transformation

= m

2 −
log2(m)

2 . basic transformation

Therefore, we can conclude a space complexity lower bound for any approximation
ratio α < 2 and for any m,n, as follows,

space
(
SF∞,α<2,1

)
≥ min

{
n− log2(n), m2 −

log2(m)
2

}
∈ Ω(min{n,m}).

�

Corollary 5.3. The streaming problem SF∞,α,1 has, for any n,m ∈ N+ and a 2-sided
approximation ratio of α <

√
2, a space complexity lower bound of

space
(
SF∞,α<√2,1

)
≥ min

{
n− log2(n), m2 −

log2(m)
2

}
∈ Ω(min{n,m}).

This corollary follows directly from the proven α-fooling set from Theorem 5.12
with Theorem 4.5 on space complexity lower bounds for 2-sided approximations.

When we compare the two space complexity lower bounds for the exact and
approximative setting, one can observe that, for the first case, which is n ≤ m, both
lower bounds are exactly the same. This does not necessarily imply that it is not
possible to decrease the space complexity of streaming algorithms with approximative
results, as we have seen in Section 5.1. But the equality is an indicator that it might
be hard to decrease the space complexity significantly. For the other case, which is
m < n, the space complexity lower bound for the approximative setting is half the
one from the exact environment. But with a smaller approximation ratio of α = 1.19,
instead of α < 2, we can show a space complexity lower bound that is closer to the
one of the non-approximative setting.

58 Chapter 5. Most Frequent Item Problem

Theorem 5.13. The streaming problem SF∞,α=1.19,1 has, for any n > m ≥ 100 with
n,m ∈ N+ and for a 1-sided approximation ratio of α = 1.19, a space complexity
lower bound of

space
(
Sm<nF∞,1.19,1

)
≥ 0.915m− log2(m)

2 − 1 ∈ Ω(m).

Proof. To prove this theorem, the fooling set will, once again, use the idea of content
and spacer items. However, they are no longer strictly separated but individually
distributed per representative. As a consequence, the α-fooling set will allow a lower
approximation ratio than in the case above, but we are able to have a fooling set
with more representatives and as a consequence, a higher space complexity lower
bound is proven. Once again, we will i) define the fooling set, ii) verify it and iii)
calculate the space complexity lower bound. For ease of presentation, we also assume,
that m is a multiple of 4, i.e., m = 4 · d for some d ∈ N+.

i) Similarly to Theorem 5.12, we first define a basic value replication, which is

r :=
⌊

n
m
4 + 1

⌋
=
⌊ 4n
m+ 4

⌋
. (5.7)

With this basic value replication, we define an α-fooling set FF∞,α=1.19,1 = (FL,FR)
with a cut at l = n − r. The test set contains (m − 1) entries with r times the
same item j ∈ {1, . . . ,m − 1}, namely FR = {{1, . . . , 1}, . . . , {m− 1, . . . ,m− 1}}.
The set of representatives contains an entry for every possible set quarter, that
contains m

4 different content items from {1, . . . ,m}. As a consequence, we have in
total

(m
m/4

)
different representatives. Each representative contains these m

4 different
content items with a frequency of r. Then, we have to fill up each representative with
spacer items until they have an input stream length of l, which means we require
l − r · m4 = n − r · (1 + m

4) spacer item values. They are chosen from the other
m− m

4 spacer items (more precisely: the items that are not chosen as set quarter)
with a uniform distribution, such that the highest frequency of these spacer items is
minimal. As a consequence, the highest frequency of these spacer items is

⌈# spacer values
spacer items

⌉
=
⌈
l − r · m4
m− m

4

⌉
=
⌈
n− r ·

(
1 + m

4
)

m− m
4

⌉
. (5.8)

Similarly to Theorem 5.12, we have to verify that the amount of spacer values is
not negative, namely l − r · m4 ≥ 0. For this, we require the following approximation
of the basic replication value r, i.e.,

3n
m+ 4 ≤ r ≤

4n
m+ 4 . (5.9)

The right approximation of (5.9) is trivial, as the removal of the floor operator
on the definition of r, see (5.7), always leads to an equal or a greater value. The left
inequality of (5.9) can be verified by analyzing the highest possible impact of the
floor operators. As we assume m ≥ 100 in this theorem, r ≥ 3, because 4n

m ≥ 4 for
any m < n, and the addition of 4 impacts the non-rounded result by at most 1.04

5.1. General Streaming Problem Analysis 59

for any m ≥ 100. Therefore, the highest impact of the decrease is from 3.9̄ down to
3, which is a factor of at most 3

4 . Therefore,

r =
⌊ 4n
m+ 4

⌋
≥ 3

4 ·
4n

m+ 4 = 3n
m+ 4 . (5.10)

Now, the positiveness of the amount of spacer items can be shown with following
approximation:

spacer values = l − r · m4 definition of spacer values

= n− r ·
(

1 + m

4

)
definition of cut l

= n−
⌊ 4n
m+ 4

⌋
·
(

1 + m

4

)
definition of r, (5.7)

≥ n− 4n
m+ 4 ·

m+ 4
4 approx. of r, (5.10)

= n− n ≥ 0

As a consequence, this approach leads to a set of representatives and tests with
the required amount of input values.

ii) To verify, that FF∞,α=1.19,1 is an α-fooling set with α = 1.19, we approximate
the highest frequency of the spacer items as intermediate result. We use the formula
from above and approximate it, namely,⌈# spacer values

spacer items

⌉
=
⌈
l − r · m4
m− m

4

⌉
definition from (5.8)

=
⌈
n− r ·

(
1 + m

4
)

m− m
4

⌉
definition of cut l

≤
⌈
n− 3n

m+4 ·
m+4

4
m− m

4

⌉
approx. of r, (5.10)

=
⌈

n
4

3m
4

⌉
basic transformation

=
⌈
n

3m

⌉
basic transforamtion

≤ n

m
simple approx. for m < n

Therefore, the highest frequency of any spacer item is at most n
m . Finally, we

can verify the α-fooling set. For any two representatives IiR, I
j
R ∈ FR, there are at

least two items v, v′ ∈ {1, . . . ,m}, such that both v and v′ are content items in only
one of the representatives, which means, that these two items are present with a
frequency of exactly r in only one of the two representatives. W.l.o.g., we assume
that v < v′ ≤ m and IiR contains v with a frequency of r, namely v is a content
item of IiR. With the test entry IvR = {v, . . . , v}, we have a highest frequency of
either 2r = f(IiL, IvR), if v is present with a frequency of r in the representative, or a
highest frequency of r +

⌈
spacer values
spacer items

⌉
= f(IjL, IvR), if v is not a content item of the

60 Chapter 5. Most Frequent Item Problem

representative. Therefore, for any two representatives, there is a test entry such that
the fraction between the two highest frequency counts is more than α = 1.19:

f(IiL, IvR)
f(IjL, IvR)

= 2r
r +

⌈
spacer values
spacer items

⌉ definition from above

≥
2 · 3n

m+4
4n

4+m + n
m

approx. from above

= 6n
m+ 4 ·

(m+ 4) ·m
4nm+ n · (m+ 4) basic transformation

= 6m
5m+ 4 basic transformation

≥ 6m
5.04m = 6

5.04 > 1.19 for m ≥ 100

Therefore, FF∞,α=1.19,1 = (FL,FR) is an α-fooling set for α = 1.19 for the most
frequent item problem.

iii) Now, we can calculate the space complexity lower bound:

space(Sm<nF∞,α=1.19,1
) ≥ log2(|FL|) = log2

((
m

m/4

))
fooling set size

> log2

(0.916√
m
· 20.915m

)
Lemma 3.4

= 0.915m+ log2(0.916)− log2(
√
m) basic transformation

> 0.915m− log2(m)
2 − 1 simple approximation

With this calculation, we have finished the proof of this space complexity lower
bound. �

Corollary 5.4. The streaming problem SF∞,α=1.09,1 has, for any n > m ≥ 100 with
n,m ∈ N+ and for a 2-sided approximation ratio of α = 1.09, a space complexity
lower bound of

space
(
Sm<nF∞,α=1.09,1

)
≥ 0.915m− log2(m)

2 − 1 ∈ Ω(m).

This corollary follows directly from the proven α-fooling set from Theorem 5.13
and Theorem 4.5.

In Theorem 5.8 and Theorem 5.10, we have proven a space complexity lower
bound of Ω(m · log(nm)) for the exact (approximation ratio is α = 1), deterministic
and probabilistic setting. The introduced fooling set leads, for any representative
IiL ∈ FL and test IvR ∈ FR, to a highest frequency of

f
(
IiL, I

v
R

)
∈
{⌈ frac

2

⌉
+ frac, . . . , 2 · frac

}
.

With these optimal output values, it is complicated to find a space complexity
lower bound of the same order for any approximation ratio α > 1, because the

5.1. General Streaming Problem Analysis 61

differences between these highest frequencies are, for any pair of representatives
IiL, I

j
L ∈ FL and a test entry IvR ∈ FR, bounded by,

1 ≤ max
{
f(IiL, IvR)
f(IjL, IvR)

,
f(IjL, IvR)
f(IiL, IvR)

}
≤ 2 · frac⌈

frac
2

⌉
+ frac

≤ 4
3 .

The left side of the inequality is still very close to 1 for differing frequencies.
This small gap between the highest frequencies makes it hard to define an α-fooling
set with the same fooling set concept. Therefore, we will now focus on another
aspect. So far, we have analyzed the space complexity lower bound of approximation
ratios α < 2 for 1-sided approximations. When we want to prove such a lower
bound for approximation ratios of α ≥ 2, we have the following challenge: For all
representatives IiL ∈ FL and tests IvR ∈ FR, the highest frequency of the combination
of representative and test is at most the addition of the individual ones, namely,

max
{
f(IiL), f(IvR)

}
≤ f

(
IiL, I

v
R

)
≤ f(IiL) + f(IvR) ≤ 2 ·max

{
f(IiL), f(IvR)

}
.

The left inequality is trivial, because f(IiL), f(IvR) ≥ 0 for all representatives and
tests. The middle inequality reaches equality if and only if the most frequent items
of both representative and test are the same. Otherwise, if the most frequent items
are not the same, then the highest frequency of the combination is lower. The right
inequality is likewise trivial.

From these estimations, we can conclude: To ensure, that Fα is an α-fooling
set with an α ≥ 2, we cannot combine representatives and tests cleverly as in the
theorems above, but we have to encode different frequency values in either the
representative or test entries.

We will now introduce a possible way to prove a space complexity lower bound for
an approximation ratio of α ≥ 2. This lower bound is very small, but unfortunately,
we are not able to design a better approximative algorithm that may benefit from
this small space complexity lower bound significantly, as we have seen in the previous
section.

Theorem 5.14. The streaming problem SF∞,α≥2,1 has, for any n,m ∈ N+ and for a
1-sided approximation ratio of α ≥ 2, a space complexity lower bound of

space
(
SF∞,α≥2,1

)
≥ log2

(
log2

(
min

{
n,
m− 1

2

}))
− log2

(
log2

(3
2 · α

))
.

Proof. Once again, we do a case distinction between n ≤ m and m < n.

Case 1: If n ≤ m: We define the α-fooling set Fn≤mF∞,α≥2,1
= (Fn≤mL ,Fn≤mR) that

has a cut at l = n− 1. The set of tests contains only one entry that covers the item
m, namely, Fn≤mR = {{m}}. The set of representatives contains different entries
Fn≤mL = {I1

L, . . . , I
d
L} such that, for any i ∈ {1, . . . , d}, the representative IiL contains

k(i) times the item 1 and l− k(i) = n− 1− k(i) different items from {2, . . . ,m− 1}.
Next, we will define this function k(i) that encodes different frequencies. But first,
we observe, that f(IiL, IvR) = k(i) for any representative and test.

To define the frequency function k(i), we will use the definition of

α+ : = α+ ε for an arbitrarily small ε > 0. (5.11)

62 Chapter 5. Most Frequent Item Problem

The frequency function k(i) assigns the first representative I1
L a frequency of

1, namely, k(1) = 1. The second representative is required to have a fraction to
f(I1

L) = 1 of more than α. Therefore, k(2) = dα+e. The third representative is
defined as k(3) = dα+ · k(2)e. Consequently, we define the frequency function k(i)
recursively:

k(1) = 1 and k(i) = dα+ · k(i− 1)e for all i ≥ 2.

We use d representatives, with the highest possible d, such that k(d) < n. If
k(d) ≥ n, the representative cannot contain only l = n− 1 items with k(d) ≥ n times
the item 1. One may observe that the effect of rounding up by the evaluation of the
recursive k(i) is always below 3

2 . This value is reached for k(2) with α = 2, then
dα+e = 3. Therefore, we can conclude, for a sufficiently small ε > 0, that,

k(i) = dα+ · k(i− 1)e ≤ 3
2 · α · k(i− 1),

with α+ as defined in (5.12).
With this insight, we can approximate the size of the set of representatives with

the following idea:

We presume k(d) < n, which is true when
(3

2 · α
)(d−1)

< n,

therefore, we have a d = log 3
2 ·α

(n) = log2(n)
log2

(
3
2 · α

) .
Obviously, this definition of Fn≤mF∞,α≥2,1

= (Fn≤mL ,Fn≤mR) results in an α-fooling
set for α ≥ 2, because any two representatives IiL, I

j
L ∈ F

n≤m
L will lead to fractions

of their highest frequency value of at least (α+)|i−j| ≥ (α+)1 > α. Therefore, we can
show a space complexity lower bound of,

space(Sn≤mF∞,α≥2,1
) ≥ log2(|Fn≤mL |) = log2

 log2(n)
log2

(
3
2 · α

)
 fooling set size

= log2(log2(n))− log2

(
log2

(3
2 · α

))
. basic transformation

This is the space complexity lower bound for the first case. For the second case,
we will use almost the same approach.

Case 2: If m < n, we cannot implement a highest frequency of only 1 as for I1
L

from the first case. We will always have at least a highest frequency of f(IiL, IvR) ≥
d nme, which is the case when the input values are uniformly distributed on the items.
Therefore, we define this basic replication of r := d nme. With a cut of l = n−r, the set
of representatives from the α-fooling set Fm<nF∞,α≥2,1

= (Fm<nL ,Fm<nR) contains r times
the item m, namely Fm<nR = {{m, . . . ,m}}. The set of representatives simulates the
frequency values r, dr · α+e, ddr · α+e · α+e, . . . as in the first case. More formally,
the frequency function k(i) is now defined recursively as

k(1) = r =
⌈
n

m

⌉
and k(i) = dα+ · k(i− 1)e , for all i ≥ 2,

5.1. General Streaming Problem Analysis 63

with α+ as defined in (5.12).
The representatives are filled up with further items from {2, . . . ,m− 1} with a

maximal frequency of up to r. Obviously, this leads to a valid definition of a fooling
set because

k(i) + r · (m− 2) + r ≥ r · (m− 1) + r =
⌈
n

m

⌉
·m ≥ n.

Once again, we have to ensure that k(d) ≤ l = n− r, therefore,⌈
n

m

⌉
·
(3

2 · α
)d−1

≤ n− r = n−
⌈
n

m

⌉
,

which is true with,

d = log 3
2 ·α

(
n− d nme
d nme

)
≥ log 3

2 ·α

(
m− 1

2

)
=

log2(m−1
2)

log2(3
2 · α)

. (5.12)

The left inequality from (5.12) is a simple approximation using the fact that
n
m ≤ d

n
me ≤ 2 · nm for any n > m. Of course, with this definition of Fm<nF∞,α≥2,1

=
(Fm<nL ,Fm<nR), we still have an α-fooling set for any α ≥ 2 because the frequency
count fraction between any two representatives is at least α+ > α. That is why we
can calculate the space complexity as,

space(Sm<nF∞,α≥2,1
) ≥ log2(|Fm<nL |) = log2

 log2(m−1
2)

log2

(
3
2 · α

)
 fooling set size

= log2

(
log2

(
m− 1

2

))
− log2

(
log2

(3
2 · α

))
. basic transf.

With both cases, we can conclude the finale space complexity lower bound:

space
(
SF∞,α≥2,1

)
≥ log2

(
log2

(
min

{
n,
m− 1

2

}))
− log2

(
log2

(3
2 · α

))
.

�

Corollary 5.5. The streaming problem SF∞,α≥√2,1
has, for any n,m ∈ N+ and for

a 2-sided approximation ratio of α ≥
√

2, a space complexity lower bound of

space
(
SF∞,α≥√2,1

)
≥ log2

(
log2

(
min

{
n,
m− 1

2

}))
− log2

(
log2

(3
2 · α

))
.

This corollary follows directly from the proven α-fooling set from Theorem 5.14
and Theorem 4.5.

This space complexity lower bound is very low, because the term log2(log2(i))
increases very slowly for higher i. For example, for one million, this value is only
log2(log2(106)) ≈ 4.3. As another example, log2(log2(1012)) ≈ 5.3, for an input
stream with a trillion numbers. Nevertheless, this analysis shows on the other side
that it is possible to prove a lower bound above a constant value.

Unfortunately, it is impossible to prove a space complexity lower bound of a
higher order than Θ(log(n)) using the technique of communication complexity.

64 Chapter 5. Most Frequent Item Problem

Theorem 5.15. For any 2-sided approximation ratio α ≥
√

2, it is impossible to
prove a higher space complexity lower bound than dlog2(n)e using the proof technique
of communication complexity.

Proof. Communication complexity assumes to have two computers CL and CR that
have infinite resources but a limited communication between each other. We can
show that, for any input stream distribution among the two computers (xl for the
left and xr for the right computer, such that (xl, xr) ∈ X) with a communication
complexity of dlog2(n)e, the two computers can solve the most frequent item problem
with a 2-sided approximation ratio of α =

√
2, using the following algorithm:

The left computer calculates the highest frequency of its input part, namely f(xl)
and communicates this value to the right computer. This requires at most dlog2(n)e
communication bits. The right computer calculates its own highest frequency f(xr),
sums up the two values and outputs (f(xl) +f(xr))/

√
2. Of course, this output value

is a
√

2-approximation of f(x), as proven in Section 5.1.
Therefore, with only dlog2(n)e communication bits, the two-computer model

of the communication complexity theory solves the most frequent item streaming
problem with a 2-sided approximation ratio of α =

√
2. Therefore, it is impossible to

prove a lower bound that is higher than this one using the technique of communication
complexity. �

With this theorem, we have shown that we cannot increase the proven lower bound
to the known upper bound for this setting using the technique of communication
complexity. We will now focus on the last setting that allows both approximative
and probabilistic output values.

Approximative Probabilistic Most Frequent Item Problem

In the following, we will mainly transform the three approximative space complexity
lower bounds to a probabilistic setting. As in the previous section, we will first
introduce the known bounds from the literature and briefly discuss enhanced upper
bounds. We use the notation of SF∞,α,p for the approximative probabilistic most
frequent item problem.

Known Bounds from the Literature

The proven space complexity lower bound of Ω(m) for any m
2 ≤ n ≤ 2m by Alon

et al. [AMS99] is valid for any success probability p > 1
2 and approximation ratio

α ≤ 4
3 .

The known upper bounds are not further improved for a probabilistic setting. As
we will see in the following lower bound analysis, it seems to be impossible to benefit
significantly from the randomization.

Enhanced Upper Bounds

We have seen in the analysis of the exact, probabilistic most frequent item streaming
problem that the space complexity can be reduced by a multiplicative factor of the
success probability p < 1. In the analysis of the approximative, deterministic most
frequent item problem, we have seen that if 2-sided approximations are allowed, we

5.1. General Streaming Problem Analysis 65

can further decrease the space by a factor of d ∈ N+ if we allow an approximative
error of α =

√
d.

Obviously, these two concepts are independent of each other and can therefore
be combined. Which means that it is possible to create an algorithm that produces
an α-approximation for any α2 ∈ N+ with success probability p < 1, such that it
only requires p

α2 times the space complexity of the algorithms from Theorem 5.4,
Theorem 5.5, or Theorem 5.6.

The space complexity decrease with the approach above is not significant. There-
fore, we do not introduce the procedure to generate such an algorithm in detail or
formally, but we will now verify, that the space complexity lower bounds for the
deterministic approximation are also valid for the probabilistic environment.

Enhanced Lower Bounds

As we are interested in using Theorem 4.3 to prove a probabilistic lower bound, we
have to verify the minimality of the test set of the α-fooling set. As introduced in
(4.6) to (4.11), we can verify this by showing that:

∀IvR ∈ FR, For all elements of the test set,
∃IiL, I

j
L ∈ FL, I

i
L 6= IjL there are two different representatives,

s.t.
((

f(IiL, IvR)
f(IjL, IvR)

<
1
α

such that the cache states
have to be different

or f(IiL, IvR)
f(IjL, IvR)

> α

)
as stated above in Definition 4.3.

and
(
∀Iv′R ∈ (FR \ IvR) : And for all other tests,

1
α
≤ f(IiL, Iv

′
R)

f(IjL, Iv
′
R)
≤ α

))
they are not required to be different.

Now, we will analyze the space complexity lower bound for the probabilistic and
approximative most frequent item problem. The first proof is a probabilistic version
of Theorem 5.12.

Theorem 5.16. The streaming problem SF∞,α,p has, for any n,m ∈ N+, a success
probability of p > 1

2 , and a 1-sided approximation ratio of α < 2, a space complexity
lower bound of

space
(
SF∞,α<2,p

)
≥ min

{
n,
m

2

}
· (1− h(p))−min

{
log2(n), log2(m)

2

}
− 1.

Proof. Both fooling set definitions Fn≤mF∞,α<2,1
= (Fn≤mL ,Fn≤mR) and Fm<nF∞,α<2,1

=
(F<nL ,F<nR) from Theorem 5.12 already contain minimal test sets. Therefore we will
use exactly these α-fooling sets. We just have to i) verify the minimality of the test
sets and ii) calculate the probabilistic space complexity lower bound for both cases.

Case 1: Suppose n ≤ m:
i) We have to verify (4.6) to (4.11) to show the minimality of the test set. For

every item v ∈ {1, . . . , n−1}, or its corresponding test entry IvR = {v, v}, respectively,

66 Chapter 5. Most Frequent Item Problem

we choose two representatives that are only different in two items, namely v and n.
More formally, these two representatives IiL and IjL contain n

2 − 2 equal items out
of {1, . . . , n} ⊆ {1, . . . ,m}, each twice, and IiL covers additionally {v, v} whereas IjL
covers {n, n}. Of course, (4.8) and (4.9) are true because

f(IiL, IvR)
f(IjL, IvR)

= 4
2 = 2 > α.

Now, for all other Iv′R = {v′, v′} with v′ ∈ ({1, . . . , n} \ {v, n}), this fraction is
either

f(IiL, Iv
′
R)

f(IjL, Iv
′
R)

= 4
4 = 1, and then 1

α
≤ 1 ≤ α,

if v′ is present in IiL and IjL. If v′ is not present in both representatives, we have:

f(IiL, Iv
′
R)

f(IjL, Iv
′
R)

= 2
2 = 1, and then 1

α
≤ 1 ≤ α.

Therefore, we have shown (4.6) to (4.11) and proven the minimality of the test set.

ii) Using Theorem 4.3, we have the following space complexity lower bound:

space(Sn≤mF∞,α≤2,p
) ≥ log2(|Fn≤mL |) ·

(
1− |F

n≤m
R | · h(p)

log2(|Fn≤mL |)

)
− 1 Theorem 4.3

= log2

((
n

n
2 − 1

))
·

1− (n− 1) · h(p)
log2(

(n
n
2−1

)
)

− 1 fooling set size

> log2

(
2n ·
√

2n
2n+ 4

)
·

1− (n− 1) · h(p)
log2

(
2n·
√

2n
2n+4

)
− 1 Lemma 3.3

> (n− log2(n)) ·
(

1− (n− 1) · h(p)
(n− log2(n))

)
− 1 Theorem 5.12

= n− log2(n)− (n− 1) · h(p))− 1 basic transf.
> n · (1− h(p))− log2(n)− 1, simple approx.

with h(p) = −p · log2(p) − (1 − p) · log2(1 − p). Then, we have proven the space
complexity lower bound for the first case.

Case 2: Suppose m < n:
i) We similarly verify the minimality of the test set Fm<nR with (4.6) to (4.11).

For every item v ∈ {1, . . . , m2 − 1} or its test entries IvR = {v, . . . , v} ∈ Fm<nR , we
choose two representatives IiL, I

j
L ∈ F

m<n
L that have the same m

4 − 1 content items
{1, . . . , m2 } ⊂ {1, . . . ,m}, each with a frequency of r. Additionally, IiL contains r
times the content item v and IjL contains r times the content item m

2 . Then, the
cache states for these two representatives have to be different because,

f(IiL, IvR)
f(IjL, IvR)

= 2r
r

= 2 > α.

5.1. General Streaming Problem Analysis 67

And for all other items v′ ∈ ({1, . . . , m2 } \ {v,
m
2 }), or the test entries Iv′R =

{v′, . . . , v′}, respectively, the highest frequency is either f(IiL, Iv
′
R) = 2r = f(IjL, Iv

′
R)

or f(IiL, Iv
′
R) = r = f(IjL, Iv

′
R). Therefore, the test set is minimal.

ii) Similarly to the first case, we can calculate the space complexity lower bound:

space(Sm<nF∞,α≤2,p
) ≥ log2(|Fm<nL |) ·

(
1− |F

m<n
R | · h(p)

log2(|Fm<nL |)

)
− 1 Theorem 4.3

= log2

((
m/2
m/4

))
·

1−
(
m
2 − 1

)
· h(p)

log2(
(m/2
m/4

)
)

− 1 fooling set size

> log2

(
2m/2√
m

)
·

1−
(
m
2 − 1

)
· h(p)

log2(2m/2√
m

)

− 1 Lemma 3.2

>

(
m

2 −
log2(m)

2

)(
1−

(
m
2 − 1

)
· h(p)

m
2 −

log2(m)
2

)
− 1 Theorem 5.12

= m

2 −
log2(m)

2 −
(
m

2 − 1
)
· h(p)− 1 basic transf.

>
m

2 · (1− h(p))− log2(m)
2 − 1, simple approx.

with h(p) = −p · log2(p)− (1− p) · log2(1− p).
Therefore, we have a space complexity lower bound for both cases, which is,

space
(
SF∞,α<2,p

)
≥ min

{
n,
m

2

}
· (1− h(p))−min

{
log2(n), log2(m)

2

}
− 1

�

Corollary 5.6. The streaming problem SF∞,α,p has, for any n,m ∈ N+, a success
probability of p > 1

2 , and a 2-sided approximation ratio of α <
√

2, a space complexity
lower bound of

space
(
SF∞,α<√2,p

)
≥ min

{
n,
m

2

}
· (1− h(p))−min

{
log2(n), log2(m)

2

}
− 1.

This corollary follows directly from the proven α-fooling set from Theorem 5.16
and Theorem 4.5.

The second space complexity lower bound proof corresponds to Theorem 5.13,
but now in a randomized setting.

Theorem 5.17. The streaming problem SF∞,1.19,1 has, for any n > m ≥ 100 with
n,m ∈ N+, a success probability of p > 1

2 and a 1-sided approximation ratio of
α = 1.19, a space complexity lower bound of

space
(
Sm<nF∞,1.19,p

)
≥ m · (0.915− h(p))− log2(m)

2 − 3.

Proof. As in the theorem above, we can use the definition of the α-fooling set
FF∞,α=1.19,1 = (FL,FR) from the deterministic proof, namely Theorem 5.13. Now, we

68 Chapter 5. Most Frequent Item Problem

are only required to verify the minimality of the test set and then, we can calculate
the space complexity lower bound.

For every item v ∈ {1, . . . ,m−1}, or its corresponding test entry IvR = {v, . . . , v} ∈
FR, respectively, we choose two representatives IiL, I

j
L ∈ FL such that they have

m
4 − 1 content items in common. This means that there are m

4 − 1 content items
j ∈ ({1, . . . ,m}\{v,m}) that have a frequency of r =

⌊
4n
m+4

⌋
for both representatives.

By definition, both representatives have an additional, but different item with the
same frequency of r. For IiL, we choose this last content item as v, and for IjL, this
content item is m. Then, we have,

f(IiL, IvR) = 2r and f(IjL, I
v
R) = r +

⌈# spacer values
spacer items

⌉
= r +

⌈
n− r · (1 + m

4)
m− m

4

⌉
.

In Theorem 5.13, we have proven that the fraction between f(IiL, IvR) = 2r and
f(IjL, IvR) is more than 1.19. Therefore, (4.8) and (4.9) of the test set minimality
verification are satisfied. For every other item v′ ∈ ({1, . . . ,m} \ {v,m}), we can
show that

1
α
≤ f(IiL, IvR)
f(IjL, IvR)

≤ α.

If v′ is one of the content items for the two representatives, namely v′ has a
frequency of r in both IiL and IjL, then this fraction is 2r

2r = 1 and we have the
required condition. Otherwise, if v′ is a spacer item for the two representatives, then
v′ has a frequency of either

⌈
spacer values
spacer items

⌉
or
⌊

spacer values
spacer items

⌋
. By definition of the

α-fooling set, the required spacer values are distributed uniformly over all available
3m
4 spacer items. Therefore, the frequency of v′ in the representatives is one of the
two.

1
α

= 1
1.19 ≤

r +
⌊

spacer values
spacer items

⌋
r +

⌈
spacer values
spacer items

⌉ ≤ f(IiL, Iv
′
R)

f(IjL, Iv
′
R)
≤
r +

⌈
spacer values
spacer items

⌉
r +

⌊
spacer values
spacer items

⌋ ≤ 1.19 = α

This implies that (4.10) and (4.11) are true and the test set is minimal. Now, we
will calculate the space complexity lower bound:

space(SF∞,1.19,p) ≥ log2(|FL|) ·
(

1− |FR|
log2(|FL|)

· h(p)
)
− 1 Theorem 4.3

= log2

((
m

m/4

))
·
(

1− (m− 1) · h(p)
log2(

(m
m/4

)
)

)
− 1 fooling set size

= log2

((
m

m/4

))
− (m− 1) · h(p)− 1 basic transf.

>

(
0.915m− log2(m)

2 − 1
)
− Theorem 5.13

(m− 1) · h(p)− 1

= m · (0.915− h(p))− log2(m)
2 − h(p)− 2 basic transf.

> m · (0.915− h(p))− log2(m)
2 − 3, simple approx.

5.1. General Streaming Problem Analysis 69

with h(p) = −p · log2(p)− (1− p) · log2(1− p). �

As usual, the lower bound can also be transformed to the setting where 2-sided
approximations are allowed.

Corollary 5.7. The streaming problem SF∞,α,p has, for any n > m ≥ 100 with
n,m ∈ N+, with a success probability of p > 1

2 and a 2-sided approximation ratio of
α = 1.09, a space complexity lower bound of

space
(
Sm<nF∞,1.09,p

)
≥ m · (0.915− h(p))− log2(m)

2 − 3.

This corollary follows directly from the proven α-fooling set from Theorem 5.17
and Theorem 4.5.

The next theorem refers to Theorem 5.14.

Theorem 5.18. The streaming problem SF∞,α≥2,p has, for any n,m ∈ N+, with a
success probability of p > 1

2 , and a 1-sided approximation ratio of α ≥ 2, a space
complexity lower bound of

space
(
SF∞,α≥2,p

)
≥ log2

(
log2

(
min

{
n,
m

2

}))
− log2

(
log2

(3
2 · α

))
− 2.

Proof. We will use the α-fooling sets from Theorem 5.14 for this proof,
Fn≤mF∞,α≥2,1

= (Fn≤mL ,Fn≤mR) for the first case and Fm<nF∞,α≥2,1
= (Fm<nL ,Fm<nR) for the

second case. Obviously, both test sets are minimal as they contain only one test entry.
Therefore, we can just calculate the probabilistic space complexity lower bound:

space(SF∞,α≥2,p) ≥ log2(|FL|) ·
(

1− |FR| · h(p)
log2(|FL|)

)
− 1 Theorem 4.3

≥ log2(|FL|)− |FR| · h(p)− 1 basic transf.

≥ log2

(
log2

(
min

{
n,
m

2

}))
− Theorem 5.14

log2

(
log2

(3
2 · α

))
− h(p)− 1

≥ log2

(
log2

(
min

{
n,
m

2

}))
− simple approx.

log2

(
log2

(3
2 · α

))
− 2 �

This theorem implies that the space complexity lower bound for the probabilistic
setting is only 2 bits lower than the deterministic one. Of course, we can transform
this theorem to a 2-sided approximative setting, too.

Corollary 5.8. The streaming problem SF∞,α≥√2,p
has, for any n,m ∈ N+, a success

probability of p > 1
2 , and a 2-sided approximation ratio of α ≥

√
2, a space complexity

lower bound of

space
(
SF∞,α≥√2,p

)
≥ log2

(
log2

(
min

{
n,
m

2

}))
− log2

(
log2

(3
2 · α

))
− 2.

This corollary follows directly from the proven α-fooling set from Theorem 5.18
and Theorem 4.5.

70 Chapter 5. Most Frequent Item Problem

Summary of the General Most Frequent Item Problem

With the proven theorems, we can create an overview of all space complexity upper
and lower bounds for the general most frequent item problem, which are listed in
table 5.1. For a probabilistic setting, we assume that the success probability is at
least p > 1

2 . Any results on the approximative setting cover the analysis of the
2-sided approximation.

In the deterministic setting, the known space complexity lower bound order from
Theorem 5.1 and Theorem 5.2 is proven as an exact lower bound in Theorem 5.7 and
Theorem 5.8. With the described algorithm of Theorem 5.5 and Theorem 5.6, we
have an almost tight lower bound for the case n ≥ m. As the space complexity lower
bounds for a probabilistic setting are of the same order as the deterministic one, we
can conclude that randomization does not help to improve the algorithmic complexity
significantly. The known lower bound complexity of Ω(m) described in Theorem 5.11
is also valid for an approximation ratio of α = 4

3 ≈ 1.333. With Corollary 5.3 and
Corollary 5.6, the same complexity order could be extended to an approximation
ratio of α <

√
2 ≈ 1.414 > 1.333 and to a probabilistic setting. Unfortunately, it was

not possible to extend the lower bound order of Ω(m · log(nm)) for the case n ≥ m from
Theorem 5.2, Theorem 5.8, or Theorem 5.10 in a randomized environment using the
same fooling set concept. For an approximation ratio α ≥

√
2, we have a large gap

between the upper bound, which is O(m · log(nm) · p
α2), that is informally described in

Section 5.1 and the proven lower bound of Ω(log(log(min{n,m}))− log(log(α))) from
Corollary 5.5 and Corollary 5.8. The difference between these two space complexity
orders is very large, but it could not be closed with the analysis of this thesis. Possibly,
one can find an approach to decrease the upper bound or increase the lower bound
to the described limitation of communication complexity (Theorem 5.15).

5.1. General Streaming Problem Analysis 71

Approx.
ratio

Succ.
prob. Space bound Condition Reference

1 1 Ω(m) m
2 ≤ n ≤ 2m [AMS99]

1 1 Ω
(
m · log

(
n
m

))
n > 4m [KSP03]

1 1 Ω(n · log(m)) m > n2 [TW12]

1 1 ≤ m · dlog2(n)e — Theorem 5.4

1 1 ≤ 2m ·
(⌈

log2
(
n
m

)⌉
+ 1

)
− 2 n ≥ m Theorem 5.5

1 1 ≤ d ·m ·
(

1 +
⌈

log2(nm)
log2(2d−1)

⌉)
− d n ≥ m, d ≥ 2 Theorem 5.6

1 1 ≥ min{n,m} − log2(min{n,m}) — Theorem 5.7

1 1 ≥ m
2 · log2

(
n
m

)
− 0.21m n > 4m Theorem 5.8

1 p
≥ (min{n,m} − log2(min{n,m}))·
(1− 1.01 · h(p)− 1 — Theorem 5.9

1 p ≥ m
2 · log2

(
n
m

)
− 0.71m− 1 — Theorem 5.10

α = 4
3 1 Ω(m) m

2 ≤ n ≤ 2m [AMS99]

α <
√

2 1 ≥ min
{
n− log2(n), m2 −

log2(m)
2

}
— Corollary 5.3

α = 1.09 1 ≥ 0.915m− log2(m)
2 − 1 n > m ≥ 100 Corollary 5.4

α ≥
√

2 1
≥ log2

(
log2

(
min

{
n, m2

}))
−

log2

(
log2

(
3
2 · α

)) — Corollary 5.5

α <
√

2 p
≥ min

{
n, m2

}
· (1− h(p))−

min
{

log2(n), log2(m)
2

}
− 1 — Corollary 5.6

α = 1.09 p ≥ m · (0.915− h(p))− log2(m)
2 − 3 n > m ≥ 100 Corollary 5.7

α ≥
√

2 p
≥ log2

(
log2

(
min

{
n, m2

}))
−

log2

(
log2

(
3
2 · α

))
− 2 — Corollary 5.8

Table 5.1. Summary of general most frequent item problem

72 Chapter 5. Most Frequent Item Problem

5.2 Hypothesis Verification Analysis
In this section, we analyze the impact of additional information on the most frequent
item problem. We identify some upper and lower bounds if we want to verify any
possible hypothesis.

For the hypothesis verification, there is no known literature about this kind
of problem configuration. That is why we will directly introduce the identified
complexities.

We are able to reproduce the proof from Corollary 5.3 and Corollary 5.6 in the
setting of hypothesis verification. These two corollaries and their corresponding
theorems state a space complexity lower bound of Ω(min(n,m)) in the setting of
approximation and randomization with any approximation ratio α <

√
2 for a 2-sided

approximation and a success probability p > 1
2 . Now, we will show that these fooling

and α-fooling sets can be transformed to hypothesis fooling and hypothesis α-fooling
sets of the same size. These two types of fooling sets are defined in Definition 4.4
and Definition 4.5.

We use the notation of SHYP
F∞,1,1

, SHYP
F∞,1,p

, SHYP
F∞,α,1

, or SHYP
F∞,α,p for the different settings

of the verification of any possible solution hypothesis for the most frequent item
problem.

Theorem 5.19. The streaming problem SHYP
F∞,α,p , that has any n,m ∈ N+, a success

probability of p > 1
2 , and a 1-sided approximation ratio of α < 2, requires a space

complexity of at least

space
(
SHYP
F∞,α<2,p

)
≥ min

{
n,
m

2

}
· (1− h(p))−min

{
log2(n), log2(m)

2

}
− 1.

Proof. We introduce a hypothesis α-fooling set as defined in Definition 4.5, that uses
the same concept as the α-fooling set from Theorem 5.12. In the following, i) this
fooling set is defined, ii) verified and iii) the space complexity is calculated. We
make a case distinction between n ≤ m and m < n.

Case 1: Suppose n ≤ m.
i) We define the hypothesis α-fooling set FHYP,n≤m

F∞,α<2,1
= (FHYP,n≤m

L ,FHYP,n≤m
R)

with a cut at l := n−2. All representatives IiL = (yi, x̃i) ∈ FHYP,n≤m
L contain as solu-

tion hypothesis the frequency number 4 = yi ∈ Yx = {1, . . . ,m}. The second part of
the representatives contains (n2−1) different items from {1, . . . , n} ⊆ {1, . . . ,m}, each
with a frequency of 2 as the representatives from Theorem 5.12. Therefore, each repre-
sentative input part has 2·(n2−1) = n−2 items in total, and there are

(n
n/2−1

)
different

representatives. The test set contains n− 1 different entries with twice the same item
from {1, . . . , n− 1} ⊂ {1, . . . ,m}, namely, FHYP,n≤m

R = {{1, 1}, . . . , {n− 1, n− 1}}.

ii) Now, we verify, that FHYP,n≤m
F∞,α<2,1

is a hypothesis α-fooling set and that the test
set is minimal. As stated in Definition 4.5, we can show that we have a hypothesis
α-fooling set, with this term:

∀IiL = (yi, x̃i),IjL = (yj , x̃j) ∈ FαL with IiL 6= IjL : ∃IvR ∈ FαR s.t.(
1
α
≤ f(x̃i, IvR)

yi
≤ α

)
6⇐⇒

(
1
α
≤ f(x̃j , IvR)

yj
≤ α

)

5.2. Hypothesis Verification Analysis 73

For every pair of representatives IiL = (4, x̃i), IjL = (4, x̃j) ∈ FHYP,n≤m
L , we choose

an item v ∈ {1, . . . , n− 1}, or the corresponding test entry IvR = {v, v} ∈ FHYP,n≤m
R

such that this v is only present in one of the two representatives, or their input
stream parts. In previous theorems, as e.g., in Theorem 5.12, we have verified the
existence of such an item. W.l.o.g., we assume that v ∈ x̃i ∈ IiL. Then, we have

f(x̃i, IvR)
yi

= 4
2 = 2 and f(x̃j , IvR)

yj
= 2

2 = 1.

Therefore, for any 1 ≤ α < 2, the left term from the desired inequality of the
boolean values above will be false, because 2 � α and the right boolean value will be
true, because 1

α ≤ 1 ≤ α. Then, we have the required inequality.
For the verification of the minimality of the test set, we have to prove (4.20)

to (4.27): For every item v ∈ {1, . . . , n − 1}, or its corresponding test entry IvR =
{v, v} ∈ FHYP,n≤m

R , we choose two representatives that have as input stream part
n
2 − 2 times the same items from ({1, . . . , n} \ {v, n}). IiL additionally contains the
item v, and IjL the item n. Then, we have, with exactly the same argument as above,
the required inequality for the two representatives IiL, I

j
L and the test entry IvR, that

is: (
1
α
≤ f(x̃i, IvR)

yi
= 4

4 = 1 ≤ α
)
⇐⇒ true

6⇐⇒ false ⇐⇒
(

1
α
≤ 1

2 = 2
4 = f(x̃j , IvR)

yj
≤ α

)

And we have, for all other representatives Iv′R ∈ F
HYP,n≤m
R with v′ ∈ ({1, . . . , n}\

{v, n}), either an item v′ that is represented in both representative’s input stream
part or one that is in none of the two. In the first case, if v′ is an item of the
input stream part of the two representatives, both fractions f(x̃i,IvR)

yi
and f(x̃j ,IvR)

yj
are

4
4 = 1, both Boolean terms are true, and the required equality is given. In the other
case, if v′ is not present in both representatives, then this fraction is 2

4 = 1
2 . As a

consequence, both boolean terms are false, because 1
α �

1
2 for any α < 2, and as a

consequence, both Boolean terms outputs are equal. Therefore, the minimality of
the test set is proven and we may apply Theorem 4.3.

iii) Now, we calculate the space complexity lower bound for the probabilistic,
approximative verification of a hypothesis on the most frequent item problem. We
have an approximation ratio of α < 2 and a success probability of p > 1

2 . Then,

space(SHYP,n≤m
F∞,α<2,p

) ≥ log2(|FHYP,n≤m
L |)· Theorem 4.3(

1− |FHYP,n≤m
R |

log2(|FHYP,n≤m
L |)

· h(p)
)
− 1

= log2

((
n

n
2 − 1

))
· fooling set size1− n− 1

log2(
(n
n
2−1

)
) · h(p)

− 1

74 Chapter 5. Most Frequent Item Problem

> n · (1− h(p))− log2(n)− 1 Theorem 5.16

with h(p) = −p · log2(p)− (1− p) · log2(1− p).
Then, we have proven the space complexity lower bound for the first case.

Case 2: Suppose m < n.
i) We define the hypothesis α-fooling set FHYP,m<n

F∞,α<2,1
= (FHYP,m<n

L ,FHYP,m<n
R)

that is similar to the second case of Theorem 5.12. We define the basic value
replication as r := b2n

m c ≥ 2. The hypothesis α-fooling set has a cut at l := n − r.
The test set contains (m2 − 1) different test entries, each with r times the same item
j ∈ {1, . . . , m2 − 1}, namely,

FHYP,m<n
R =

{
{1, . . . , 1}, . . . ,

{
m

2 − 1, . . . , m2 − 1
}}

The representatives IiL = (yi, x̃i) contain, as input stream part x̃i, m4 different
content items from {1, . . . , m2 } ⊂ {1, . . . ,m}, each with a frequency of r. The rest
of the input stream part, namely l − r · m4 = n − r · (1 + m

4) input values, is filled
up with spacer items {m2 + 1, . . . ,m} ⊂ {1, . . . ,m} with a maximal frequency of r.
Theorem 5.12 states, why this filling of spacer items still leads to a valid fooling set.
All representatives have a solution hypothesis yi := 2r.

ii) Now, we will verify similarly to the first case that we have a hypothesis
α-fooling set and show the minimality of the test set.

For every pair of representatives IiL = (2r, x̃i), IjL = (2r, x̃j) ∈ FHYP,m<n
L , we

choose an item v ∈ {1, . . . ,m− 1}, or its corresponding test entry IvR = {v, . . . , v} ∈
FHYPm<n
R , that is only present in one of the two representatives. In the second case

of Theorem 5.12, we have proven the existence of such an item v. W.l.o.g., we assume
that v is in the representative IiL, namely v ∈ x̃i. Then, we have the two Boolean
terms:(

1
α
≤ f(x̃i, IvR)

yi
≤ α

)
⇐⇒

(1
α
≤ 2r

2r ≤ α
)
⇐⇒

(1
α
≤ 1 ≤ α

)
⇐⇒ true

(
1
α
≤ f(x̃j , IvR)

yj
≤ α

)
⇐⇒

(1
α
≤ r

2r ≤ α
)
⇐⇒

(1
α
≤ 1

2 ≤ α
)
⇐⇒ false

Therefore, we have verified, that we have a hypothesis α-fooling set. Now, we verify
the minimality of the test set. For every item j ∈ {1, . . . , m2 −1}, or its corresponding
test entry IvR = {v, . . . , v} respectively, we choose two representatives IiL, I

j
L ∈

FHYP,m<n
L , such that they have (m4 − 1) content items from ({1, . . . , m2 } \ {v,

m
2 }) in

common, each with a frequency of r. IiL additionally has v as content item and IjL
has m

2 as last content item. Then, obviously, we have,(
1
α
≤ f(x̃i, IvR)

yi
≤ α

)
⇐⇒

(1
α
≤ 2r

2r ≤ α
)
⇐⇒ true

6⇐⇒ false ⇐⇒
(1
α
≤ r

2r ≤ α
)
⇐⇒

(
1
α
≤ f(x̃j , IvR)

yj
≤ α

)
.

5.2. Hypothesis Verification Analysis 75

And, for all other items v′ ∈ ({1, . . . , m2 } \ {v,
m
2 }), or their representatives

Iv
′
R = {v′, . . . , v′} respectively, the fraction in between the α-inequality is either

f(x̃i, Iv′R)
yi

= 2r
2r = 1 = 2r

2r = f(x̃j , Iv′R)
yj

or (5.13)

f(x̃i, Iv′R)
yi

= r

2r = 1
2 = r

2r = f(x̃j , Iv′R)
yj

, (5.14)

because v′ is either present in both representatives (5.13) or in none (5.14). Therefore,
in both cases, we have verified the two Boolean term to be equal and as a consequence,
the term to prove the minimality of the test set is verified.

iii) Because of the verification above, we can calculate the space complexity lower
bound for the second case as,

space(SHYP,m<n
F∞,α<2,p

) ≥ log2(|FHYP,m<n
L |)· Theorem 4.3(

1− |FHYP,m<n
R |

log2(|FHYP,m<n
L |)

· h(p)
)
− 1

= log2

((
m/2
m/4

))
· fooling set size1−

m
2 − 1

log2(
(m/2
m/4

)
)
· h(p)

− 1

>
m

2 · (1− h(p))− log2(m)
2 − 1 Theorem 5.16,

with h(p) = −p · log2(p)− (1− p) · log2(1− p).
Then, we have also proven the space complexity lower bound for the second case.

Finally, we can conclude the space complexity on both cases:

space
(
SHYP
F∞,α<2,p

)
≥ min

{
n,
m

2

}
· (1− h(p))−min

{
log2(n), log2(m)

2

}
− 1.

�

Corollary 5.9. The streaming problem SHYP
F∞,α,p, that has any n,m ∈ N

+, a success
probability of p > 1

2 , and a 2-sided approximation ratio of α <
√

2, requires a space
complexity of at least

space
(
SHYP
F∞,α<

√
2,p

)
≥ min

{
n,
m

2

}
· (1− h(p))−min

{
log2(n), log2(m)

2

}
− 1.

This corollary follows directly from the proven hypothesis α-fooling set from
Theorem 5.19 and Theorem 4.5.

Corollary 5.10. The streaming problem SHYP
F∞,α,1

, that has any n,m ∈ N+ and a
1-sided approximation ratio of α < 2, requires a space complexity of at least

space
(
SHYP
F∞,α<2,1

)
≥ min

{
n− log2(n), m2 −

log2(m)
2

}
∈ Ω(min{n,m}).

76 Chapter 5. Most Frequent Item Problem

Proof. For this corollary, we can use the verified hypothesis α-fooling set from
Theorem 5.19. This theorem defines the hypothesis α-fooling set and justifies it. The
fooling set sizes of this hypothesis α-fooling set is exactly the same as the fooling set
size in Theorem 5.12. Therefore, we have the same space complexity lower bound.�

Corollary 5.11. The streaming problem SHYP
F∞,α,1

, that has any n,m ∈ N+ and a
2-sided approximation ratio of α <

√
2, requires a space complexity of at least

space
(
SHYP
F∞,α<

√
2,1

)
≥ min

{
n− log2(n), m2 −

log2(m)
2

}
∈ Ω(min{n,m}).

This corollary follows directly from Corollary 5.10 and Theorem 4.5.

When we compare the space complexity lower bounds of these theorems and
corollaries (Theorem 5.19, Corollary 5.9, Corollary 5.10, Corollary 5.11) with the
lower bounds from the general most frequent item problem, we observe that they
are equal. This implies that it is impossible that the verification of a hypothesis is
efficiently solvable as defined in Definition 3.16, as the space complexity is at least
linear to m or n, but not poly-logarithmic. It is still possible that the hypothesis
verification is slightly more space efficient, because there is still a small gap between
the identified upper bound of the general streaming problem and the proven lower
bounds for the hypothesis verification. This study of upper and lower bounds did
not reveal such an algorithm, which implies, that there might exist an approach
to verify the hypothesis with significantly less storage, but more likely, we cannot
benefit anything from the additional information.

For the general most frequent item problem, we were able to prove a space
complexity lower bound of Ω(m · log(nm)) for any n > 4m. If we want to transform
this proof to the hypothesis verification, we will struggle to find a good hypothesis
such that, for every pair of representatives, we can ensure that the cache states have
to be different. This leads to the following conjecture that is supported afterwards.

Conjecture 5.1. It is not possible to prove a space complexity lower bound for the
streaming problem SHYP

F∞,1,1
of Ω(m · log(nm)).

In Theorem 5.8, we defined a fooling set of size ≈ 2m·log2(n/m) that has, for
m
2 content items, different frequencies between

(⌈
frac

2

⌉
+ frac

)
and 2 · frac with

frac =
⌊

2n
m+2

⌋
. If we want to prove a space complexity lower bound of Ω(m · log(nm)),

we are required to have a fooling set with a similar size. If we study the fooling set
from Theorem 5.8, we can observe that, for any representative IiL ∈ FL and any
cleverly chosen frequency value

yi ∈
{⌈ frac

2

⌉
+ frac, . . . , 2 · frac

}
,

we only have to simulate the same Boolean values (yi = f(x̃i, IvR)), which is either
true or false, with any possible test entry IvR ∈ FR for just a second representative IjL.
Then, we cannot verify the required inequality of the Boolean term as the definition
of the hypothesis fooling set states. As we have ≈ 2m·log2(n

m
) representatives, but only

5.2. Hypothesis Verification Analysis 77

2m/2 different 0/1 possibilities, there will always be one representative IjL, such that
the required inequality from the hypothesis fooling set that is defined in Definition 4.4
is not given.

As a consequence of this conjecture, we can make the following statement on the
approximative and randomized setting:

Corollary 5.12. If it is not possible to prove a space complexity lower bound for the
streaming problem SHYP

F∞,1,1
of Ω(m·log(nm)), as stated in Conjecture 5.1, it is impossible

to prove a space complexity lower bound of the same order in an approximative or
probabilistic setting.

Proof. Any space complexity lower bound in an approximative or probabilistic
setting is always given for an exact and/or deterministic setting. If we have a space
complexity lower bound for an approximation ratio α > 1 and a success probability
p < 1, then this lower bound is also true for the exact and/or deterministic setting,
because any (hypothesis) α-fooling set is also a (hypothesis) fooling set and any
deterministic setting has a success probability of p = 1. With this proof of the
contrary, the stated corollary is true. �

78 Chapter 5. Most Frequent Item Problem

5.3 Analysis Conclusion
In this chapter, we have seen several space complexity upper and lower bounds for
the most frequent item problem in many different settings. First of all, the most
frequent item problem is not efficiently solvable, because it requires linear space, even
for approximation, randomization, or for hypothesis verification. The proven lower
bound of Ω(m · log(nm)) for the most common case of m ≤ n can be achieved with an
algorithm of the same complexity order. If approximative and probabilistic output
values are allowed, we can improve the streaming algorithms and space complexity
upper bound by a multiplicative factor of p

α2 for a success probability p < 1 and
2-sided approximation ratio α > 1, with α2 ∈ N+. With a success probability of
p > 1

2 and a 2-sided approximation ratio of α <
√

2, we proved a space complexity
lower bound that is almost tight to the upper bound for the case n ≤ m, which implies
that we have identified almost the optimal streaming algorithm for this setting. For
a 2-sided approximation ratio α ≥

√
2, we only proved a space complexity lower

bound of the order Ω(log(log(min{n,m}))− log log(α))). But, we were not able to
design a streaming algorithm that solves the most frequent item problem with a
lower complexity order than O(m · log(nm) · p

α2).
The analysis of hypothesis verification showed that the verification of any hy-

pothesis requires at least linear storage size. While the proof for a lower bound of
Ω(m · log(nm)) could not be reproduced for the hypothesis verification, it was still
not possible to design a verification algorithm that requires a space size of a lower
complexity order.

Chapter 6

Number of Distinct
Items Problem

The second studied streaming problem is the number of distinct items streaming
problem. Some known upper and lower bound proofs from the literature are presented
and enhanced with more exact bounds.

After the problem definition, the general streaming problem with several different
approximation ratios and success probabilities is studied first. Then, the algorithmic
complexities of the verification of hypotheses are analyzed. At the end, the results
are summarized and our insights are described.

6.1 General Streaming Problem Analysis
The general streaming counting problem number of distinct items problem SF0 is
defined as follows:

Definition 6.1. The counting problem number of distinct items SF0 = (X ,Y, f, s)
has input streams x = (x1, . . . , xn) ∈ X containing n numbers with xi ∈ {1, . . . ,m}.
The result size function is s(n,m) = m, which implies that the feasible output values
are Yx = {0, . . . ,m}. The problem function f defines the number of distinct items,
i.e.,

f(x) = f((x1, . . . , xn)) =
∣∣∣{j | j ∈ (x1, . . . , xn) with j ∈ {1, . . . ,m}

}∣∣∣.
The number of distinct items problem SF0 is therefore a frequency moment

(Definition 3.3) with k = 0.
For the ease of presentation, we assume that n and m are even. Similarly to

searching the most frequent item, if n or m would be odd, then the proofs would
often lead to the exact same results and sometimes affect the space complexity by
an additive constant (but not a factor). These effects are normally negligible but the
proofs for even numbers are less complicated.

Exact Deterministic Number of Distinct Items Problem

First, we will analyze the exact deterministic streaming problem, which asks for an
approximation ratio of α = 1 and a success probability of p = 1. We use the notation

79

80 Chapter 6. Number of Distinct Items Problem

of SF0,1,1 for the exact deterministic number of distinct items problem. Alon et al.
state the following space complexity lower bound:

Theorem 6.1 (Alon et al. [AMS99]). The streaming problem SF0,1,1 has, for
2n = m, a space complexity lower bound of,

space
(
S2n=m
F0,1,1

)
∈ Ω(m).

Alon et al. define as fooling set using set quarters that contain m
4 different items

from the set of all items {1, . . . ,m}. Each of these set quarters has at most m
8 items

in common with any other set quarter. The authors state, that there exist 2Ω(m)

such set quarters, that have at most m
8 items in common with any other set quarter.

With these set quarters, they prove the above lower bound of Ω(m).
With the same argumentation, one can generalize this proof by replacing the

strict condition 2n = m with the more general n ∈ Θ(m). This means that, for any
n ∈ Θ(m), we have a space complexity lower bound of Ω(m). Later, we will prove
this statement formally.

Furthermore, the authors state, that this lower bound is, apart from a constant
factor, tight. An upper bound of O(m) follows, if we simply track the existence of any
possible item with a bit string. More formally, we obtain the following complementing
theorem.

Theorem 6.2. The streaming problem SF0,1,1 has, for any n,m ∈ N+, a space
complexity upper bound of

space
(
SF0,1,1

)
≤ m+ dlog2(m)e ∈ O(m).

Proof. We will describe a simple streaming algorithm A = (Aupdate,Aoutput) that
solves the streaming problem exactly and deterministically. The cache state represents
a bit string of length m, where each item j ∈ {1, . . . ,m} is associated with one entry
in the bit string. At the first computation of the update algorithm, this bit string is
generated with all bit-entries set to 0. Then, every update computation (including
the first one) processes the corresponding input value xi, and turns the bit entry
j := xi to 1 if it is currently still 0. At the end, after all update computations, this
bit string gives a mapping which items occurred in the input stream. The output
algorithm counts all bit entries that are 1, and outputs this value.

Obviously, this algorithm computes the number of distinct items exactly and de-
terministically. It requires a storage size ofm for the given bit string and, additionally,
at most dlog2(m)e bits for counting the output value. �

We will now prove a space complexity lower bound for the exact and deterministic
setting, that is almost tight for any n ≥ m. The following fooling set leads to a space
complexity lower bound of min{m,n}− log2(min{m,n}). As we will show right after
this theorem, it is possible to define a fooling set that yields a space complexity lower
bound of min{m,n} − 1. However, this better fooling set cannot be used for the
probabilistic setting, because we cannot verify the minimality of the test set. That is
why we will introduce it afterwards.

6.1. General Streaming Problem Analysis 81

Theorem 6.3. The streaming problem SF0,1,1 has, for any n,m ∈ N+, a space
complexity lower bound of

space
(
SF0,1,1

)
≥ min{m,n} − log2(min{m,n}) ∈ Ω(min{m,n}).

Proof. To prove this space complexity lower bound, we will define two fooling sets
for the two cases n ≤ m and m < n. For both cases, we will i) formally define a
fooling set, ii) verify that it is a fooling set, and iii) calculate the space complexity
lower bound.

Case 1: If n ≤ m, we will define the fooling set with a set of representatives
that contains

(n
n/2
)
different set halves.

i) We define the fooling set Fn≤m = (Fn≤mL ,Fn≤mR) with a cut in the middle, i.e.,
at l := n

2 . Recall, that we assume that n is even. The set of representatives contains
all different set halves with n

2 different items from the set {1, . . . , n} ⊆ {1, . . . ,m}.
The test set contains n − 1 different entries, each with n

2 times the same item
j ∈ {1, . . . , n− 1}, i.e.,

Fn≤mR = {{1, . . . , 1}, . . . , {n− 1, . . . , n− 1}}.

ii) Fn≤m is a fooling set for SF0,1,1 , if, for any two representatives IiL, I
j
L ∈ F

n≤m
L ,

there is at least one test entry IvR ∈ F
n≤m
R , such that the cache states have to be

different, i.e., f(IiL, IvR) 6= f(IjL, IvR). For any two representatives, there are at least
two items v, v′ ∈ {1, . . . , n} that are only present in one of the two representatives,
as verified e.g., in Theorem 5.9. W.l.o.g., we assume that v < v′ ≤ n and v ∈ IiL.
Then, we have f(IiL, IvR) = n

2 , because we have n
2 different items with the set half of

IiL, but IvR does not add another item. On the other side, we have f(IjL, IvR) = n
2 + 1,

because v ∈ IvR is a further, distinct item for the representative IjL. Therefore, we
have the required inequality and Fn≤m is a fooling set for SF0,1,1 .

iii) Now we can calculate the space complexity lower bound for the first case,
which is

space(Sn≤mF0,1,1
) ≥ log2(|Fn≤mL |) = log2

((
n

n/2

))
fooling set size

> n− log2(n) ∈ Ω(n). approx. as in Theorem 5.7

As a result, we have proven the claimed space complexity lower bound for the
first case.

Case 2: If m < n, we can similarly define set halves, but as m < n, we choose
the set halves from the set of all items, i.e., {1, . . . ,m}.

i) We define the fooling set Fm<n = (Fm<nL ,Fm<nR), this time with a cut at
l := m

2 . The set of representatives contains all different set halves containing m
2

different items from {1, . . . ,m}. The test set has m− 1 different entries. Each test
IvR ∈ Fm<nR with a v ∈ {1, . . . ,m− 1} contains the item v in total n− m

2 times.

82 Chapter 6. Number of Distinct Items Problem

ii) Similarly, we can verify the fooling set. For any two representatives IiL, I
j
L ∈

Fm<nL , there are at least two items v, v′ ∈ {1, . . . ,m} such that both v and v′ are
present in only one representative. W.l.o.g., we assume that v < v′ ≤ m. Then, with
the test entry IvR = {v, . . . , v}, we have a number of distinct items of either m

2 if v
is present in the representative, or m

2 + 1 if v is not present in the representative.
Therefore, Fm<n is a fooling set for SF0,1,1 .

iii) As a consequence, the second case has a space complexity lower bound of,

space(Sm<nF0,1,1
) ≥ log2(|Fm<nL |) = log2

((
m

m/2

))
fooling set size

> m− log2(m) ∈ Ω(m). approx. as in Theorem 5.7

Therefore, we can conclude that the space complexity lower bound of SF0,1,1 , for
any n,m ∈ N+, is

space
(
SF0,1,1

)
≥ min{m,n} − log2(min{m,n}) ∈ Ω(min{m,n}). �

With this lower bound, we can conclude that, for any n ≥ m, the upper and
lower bound are almost tight. Even the constant factor of the leading term is the
same. The only minor difference is 2 · log2(m). With this, we can formally prove the
statement from above.

Corollary 6.1. The streaming problem SF0,1,1 has, for any n ∈ Ω(m), a space
complexity lower bound of space

(
Sn∈Ω(m)
F0,1,1

)
∈ Ω(m).

Proof. If n ∈ Ω(m), then, by the definition of the Ω-notation, there are two positive
numbers a, b ∈ R+, such that n ≥ a ·m− b. Therefore, we have a space complexity
lower bound of

space
(
Sn∈Ω(m)
F0,1,1

)
≥ min{m,n} − log2(min{m,n}) Theorem 6.3

≥ min{m, am− b} a, b such that
− log2(min{m, am− b}) n ≥ a ·m− b

∈ Ω(m).

Thus, we have proven the stated corollary. �

The above stated difference between the upper and the lower bound of 2 · log2(m)
bits can be decreased to log2(m), when we use the following fooling set Fn≤m: The
representatives of Fn≤m for the first case contain m− 1 input values with different
combinations of 1 to n− 1 different items from {1, . . . ,m}. The test set contains m
entries, each with one item v ∈ {1, . . . ,m}. The set of representatives contains m
different representatives with one item,

(m
2
)
different representatives with two items,

and
(m
d

)
different representatives with d different items. We have, therefore, a fooling

set size of |Fn≤mL | =
∑m−1
i=1

(m
i

)
= 2m − 2.

The validity of the fooling set can be seen with the following argument: For
any two representatives IiL, I

j
L ∈ F

n≤m
L , we have either two representatives with the

6.1. General Streaming Problem Analysis 83

same number of distinct items, i.e., f(IiL) = f(IjL) or not, i.e., f(IiL) 6= f(IjL). In
the first case, we have at least one item v ∈ {1, . . . ,m} which is only present in one
representative, as shown in previous theorems, and we get the required inequality of
f(IiL, IvR) 6= f(IjL, IvR). In the second case, we choose an item v that is present in the
representative with the higher number of distinct items. Then, the inequality still
holds. With this fooling set, we have a space complexity lower bound of at least

space
(
Sn≤mF0,1,1

)
≥ log2(|FL|) = log2(2m − 2) > m− 1.

Similarly, one can show a space complexity lower bound of space
(
Sm<nF0,1,1

)
≥ n− 1

for the second case. However, both fooling sets cannot be used for the probabilistic
setting, because we were not able to verify the minimality of the test set with similar
arguments as in previous theorems. The argumentation from below Theorem 4.3
is not strong enough, since for any test entry IvR = v, we do not have a pair of
representatives IiL, I

j
L ∈ FL, such that f(IiL, IvR) 6= f(IjL, IvR), and for all other items

v′ ∈ {1, . . . , n} \ {v}, we have f(IiL, Iv
′
R) = f(IjL, Iv

′
R).

For the case n ≤ m, it seems hard to find an algorithm that requires less storage
than m+ dlog2(m)e, but with n� m, we can always just store the complete input
stream, which has a size of n · dlog2(m)e. Nevertheless, the study of this case for
space complexities between Ω(n) and O(m) is useless, as streaming problems are
characterized by their enormous input stream length and to store “only” Ω(n) is not
practical. Therefore, we will study the streaming problem in another setting.

Exact Probabilistic Number of Distinct Items Problem

For a probabilistic environment, we are able to reproduce a space complexity lower
bound of the same complexity order as the deterministic one, namely Ω(min{m,n}).
Depending on the success probability p > 1

2 , we have a space complexity that is only
a constant factor smaller than in the deterministic environment, which still implies
that a streaming algorithm cannot solve the problem efficiently, which is formally
defined in Definition 3.16.

If we allow randomization and require any fixed success probability p < 1, we
were unfortunately not able to significantly benefit from this randomization. In the
most frequent item problem, we could reduce the space complexity by a multiplicative
factor of p. This was the case, because we were storing a histogram of the individual
item frequencies and by just ignoring (1− p) ·m items, we had a chance of at least p
to have tracked the item with the highest frequency. If we want to transform this
concept to the number of distinct item problem, i.e., we only track the existence of
some, but not all items, we are likely to have an approximative but not an exact result.
Therefore, this concept can only by applied to an approximative and probabilistic
setting. As we will see later, there exists a significantly more space-efficient approach
for this setting.

But first, we will verify that the identified space complexity lower bound for
the deterministic setting is also valid for the probabilistic environment. We use the
notation of SF0,1,p for the exact probabilistic number of distinct items problem.

84 Chapter 6. Number of Distinct Items Problem

Theorem 6.4. The streaming problem SF0,1,p has, for any n,m ∈ N+ and success
probability p > 1

2 , a space complexity lower bound of

space(SF0,1,p) ≥(min{n,m} − log2(min{n,m})) · (1− 1.01 · h(p))− 1
with h(p) = −p · log2(p)− (1− p) · log2(1− p).

Proof. To prove this probabilistic lower bound, we want to use Theorem 4.3, which
requires a minimal test set. As both fooling sets from Theorem 6.3 have a minimal
test set, we will use exactly the same definitions of the fooling sets. Therefore, we
only have to i) verify the minimality of both test sets and ii) calculate the space
complexity lower bound for both cases. Recall, that we can verify the minimality of
the test set of the fooling set by showing (4.1) to (4.5), i.e.,

∀IvR ∈ FR, For all elements of the test set,
∃IiL, I

j
L ∈ FL, I

i
L 6= IjL there are two different representatives,

s.t.
(
S(IiL, IvR) 6= S(IjL, I

v
R) such that the cache states

have to be different.
and ∀Iv′R ∈ (FR \ IvR) : And for all other tests,

S(IiL, Iv
′
R) = S(IjL, I

v′
R)
)
. they are not required to be different.

Case 1: Suppose n ≤ m:
i) As described above, first, we will verify the minimality of the test set. We choose

for every item v ∈ {1, . . . , n− 1}, or its corresponding test entry IvR = {v, . . . , v} ∈
Fn≤mR , two representatives IiL, I

j
L ∈ F

n≤m
L , which have n

2 − 1 different items from
{1, . . . , n} \ {v, n} in common. IiL additionally contains the item v and IjL the item
n. Then, we have

f(IiL, IvR) = n

2 6=
n

2 + 1 = f(IjL, I
v
R), as shown in the proof of Theorem 6.3.

And, for all other items v′ ∈ {1, . . . , n} \ {v, n}, we have either

f(IiL, Iv
′
R) = n

2 = f(IjL, I
v′
R) if v′ is present in both representatives, or

f(IiL, Iv
′
R) = n

2 + 1 = f(IjL, I
v′
R) if v′ is not present in the representatives.

Therefore, Fn≤mL from Theorem 6.3 has a minimal test set.

ii) We can calculate the space complexity lower bound for the first case. We
assume a success probability of p > 1

2 . We get

space(Sn≤mF0,1,p
) ≥ log2(|Fn≤mL |) ·

(
1− |F

n≤m
R | · h(p)

log2(|Fn≤mL |)

)
− 1 Theorem 4.3

= log2

((
n

n/2

))
·
(

1− (n− 1) · h(p)
log2(

(n
n/2
)
)

)
− 1 fooling set size

> (n− log2(n)) · (1− 1.01 · h(p))− 1, approximation as in
Theorem 5.9

6.1. General Streaming Problem Analysis 85

where h(p) = −p · log2(p)− (1− p) · log2(1− p), as defined in Theorem 4.3. Conse-
quently, we have shown the probabilistic space complexity lower bound for the case
n ≤ m.

Case 2: Suppose m < n:
i) We can verify the minimality of the test set from the fooling set Fm<n of

Theorem 6.3 with the same argument as in the first case. For every item v ∈
{1, . . . ,m− 1}, or its corresponding test entry IvR = {v, . . . , v} ∈ Fm<nR , we choose
two representatives IiL, I

j
L ∈ F

m<n
L that are equal in all but one item, such that IiL

additionally contains the item v and IjL the item m. Then, we have

f(IiL, IvR) = m

2 6=
m

2 + 1 = f(IjL, I
v
R).

And, for all other items v′ ∈ {1, . . . ,m} \ {v,m}, we have either

f(IiL, Iv
′
R) = m

2 = f(IjL, I
v′
R) or f(IiL, Iv

′
R) = m

2 + 1 = f(IjL, I
v′
R).

That is why we have a minimal test set, too.

ii) Similarly, we can calculate the space complexity lower bound for a success
probability of p > 1

2 . We obtain

space(Sm<nF0,1,p
) ≥ log2(|Fm<nL |) ·

(
1− |F

m<n
R | · h(p)

log2(|Fm<nL |)

)
− 1 Theorem 4.3

= log2

((
m

m/2

))
·
(

1− (m− 1) · h(p)
log2(

(m
m/2

)
)

)
− 1. fooling set size

> (m− log2(m)) · (1− 1.01 · h(p))− 1, same apx. as above

Therefore, we have proven a space complexity lower bound for the probabilistic
setting in both cases, which is

space(SF0,1,p) ≥ (min{n,m} − log2(min{n,m})) · (1− 1.01 · h(p))− 1. �

The factor 1− 1.01 · h(p) is the same as in Theorem 5.9 from the most frequent
item streaming problem and therefore has the same shape as Figure 5.2.

With this theorem, we have proven that the relaxation on probabilistic results
does not enable a significant space complexity reduction. At most, it might be
reduced by the multiplicative factor of 1− 1.01 · h(p). However, as we showed above,
it seems to be very complicated, if not impossible, to decrease the space complexity
of a concrete streaming algorithm significantly for this setting. Therefore, we will
now focus on the approximative, deterministic streaming problem in the next part.

Approximative Deterministic Number of Distinct Items Problem

For the approximative and deterministic setting, we will show a technique to decrease
the space complexity by a factor of α2 if a 2-sided approximation ratio of α with
α2 ∈ N+ is allowed. Later, we will prove space complexity lower bounds for 2-sided
approximation ratios α <

√
3
2 , α <

√
2, and α ≥

√
2. We use the notation of SF0,α,1

for the approximative deterministic number of distinct items problem.

86 Chapter 6. Number of Distinct Items Problem

Theorem 6.5. The streaming problem SF0,α,1 has, for any n,m ∈ N+ and a 2-sided
approximation ratio α with α2 ∈ N+ a space complexity upper bound of

space
(
SF0,α,1

)
≤
⌈
m

α2

⌉
+ dlog2(m)e ∈ O

(
m

α2 + log(m)
)
.

Proof. We adapt the streaming algorithm from Theorem 6.2 by limiting the bit
string length. For the exact algorithm, we used a bit string of length m to track
the presence of any item. Now, we only have one bit for all items {1, . . . , α2}, a
second bit is used for the items {α2 + 1, . . . , 2 · α2}, and so on. Therefore, we require
only

⌈
m
α2

⌉
bits for the entire bit string. At the beginning, this bit string is set to 0,

as in the original algorithm (Theorem 6.2). Now, each update algorithm processes
the input value xi and sets the corresponding bit entry to 1, if it was 0 before. As
illustrated above, the input value xi corresponds to the

⌈
xi
α2

⌉
-th bit of the bit string.

As a consequence, at the end, the j-th bit of the bit string is set of 1, if at least
one item of {α2 · (j − 1) + 1, · · · , α2 · j} occurred in the input stream. The output
algorithm counts the number of 1s in the bit strings and multiplies it by α. This is
the output value.

With this approach, the algorithm will produce, for any input stream, an output
value within a 2-sided approximation ratio of α. If we analyze a certain item set
{d · α2 + 1, . . . , (d+ 1) · α2} that is represented by a single bit, we can observe the
following fact: If none of these items occur in the input value, the output value will
not be affected by these items, because the bit value will remain zero. If only one
item occurs in the input stream, the output algorithm will falsely add α to the overall
output value, even though only 1 would have been correct. However, the factor α

1 is
still within the tolerated approximation ratio. In the other extreme case, if all α2

items from this item set occur in the input stream, then the output algorithm will
only add α to the overall output value instead of α2, which would have been correct.
Once again, the approximative factor α2

α = α is still acceptable. For all number of
items between 1 and α2, we have a better approximation value. Therefore, any item
set will lead to a tolerated approximative output value and, as a logical consequence,
the algorithm will produce, for any input stream, an output value within the accepted
approximation ratio. �

With this algorithm, we are able to reduce the space complexity, but only with a
massive decrease of result accuracy.

In Theorem 6.1, we have introduced a space complexity lower bound of Ω(m) for
2n = m by Alon et al. [AMS99], and proved that this lower bound is also valid for
all n ∈ Θ(m) (Corollary 6.1). The original theorem states this lower bound for a
2-sided approximation ratio of α = 1.1. We will now enhance this approximation
ratio to any α <

√
3
2 .

Theorem 6.6. The streaming problem SF0,α< 3
2 ,1

has, for any n ∈ Θ(m) and a
1-sided approximation ratio of α < 3

2 , a space complexity lower bound of

space
(
SF0,α< 3

2 ,1

)
∈ Ω(m).

6.1. General Streaming Problem Analysis 87

Proof. The proof of Theorem 6.1 uses a set of set quarters of m4 different items, but
any two set quarters have m

8 items in common. Alon et al. state that there exist
2Ω(m) such set quarters. If we choose all these set quarters as representatives and
as tests, we have an α-fooling set for any α < 3

2 . For any two representatives IiL, I
j
L,

we can just choose a test that is equal to one of the representatives, i.e., IiR := IiL.
Then, we have f(IiL, IiR) = m

4 and f(IjL, IiR) = m
4 + m

8 = 3
2 ·

m
4 , because I

j
L has m

8
items different to the test entry. Therefore, we have a factor between the two optimal
output values of 3

2 and, as a consequence, we have an α-fooling set for any α < 3
2 .

This implies that the 1-sided streaming problem SF0,α,1 has, for any approximation
ratio α < 3

2 , a space complexity lower bound of Ω(m). �

With this argument, we have enhanced the originally stated approximation ratio
of α = 1.1 to α =

√
3
2 − ε > 1.225− ε for any arbitrarily small ε > 0.

Corollary 6.2. The streaming problem SF
0,α<
√

3
2 ,1

has, for any n ∈ Θ(m) and a

2-sided approximation ratio of α <
√

3
2 , a space complexity lower bound of

space
(
SF

0,α<
√

3
2 ,1

)
∈ Ω(m).

This corollary follows directly from the α-fooling set from Theorem 6.6 and
Theorem 4.5.

We have proven a space complexity lower bound of Ω(m) for any approximation
ratio of α ≤ 1.225. In the following, we will analyze the possible space complexity
lower bounds for larger 2-sided approximation ratios, namely for α <

√
2 and α ≥

√
2.

Theorem 6.7. The streaming problem SF0,α<2,1 has, for any n,m ∈ N+ and a
1-sided approximation ratio of α < 2, a space complexity lower bound of

space
(
SF0,α<2,1

)
≥ 1
α− 1 · log2(min{m,n} · (α− 1)).

Proof. To prove the claimed space complexity lower bound, we will define two fooling
sets Fn≤m = (Fn≤mL ,Fn≤mR) and Fm<n = (Fm<nL ,Fm<nR) for the two cases n ≤ m
and m < n. We will define and analyze these two sets in parallel, because they are
very similar. We will i) define the fooling sets, ii) verify them, and iii) calculate the
space complexity lower bounds.

i) For both fooling sets, we define a basic distinctness value d as

d :=
⌊ 1
α+ − 1

⌋
for an α+ = α+ ε with an arbiraty small ε > 0. (6.1)

Both fooling sets have a cut at l := d, which implies that each representative
has a length of d. The set of representatives Fn≤mL for the first case contains

(n
d

)
different entries, each with d different items from {1, . . . , n} ⊆ {1, . . . ,m}. On the
other side, there are

(m
d

)
representatives in Fm<nL , each with d different items from

{1, . . . ,m}. The two test sets contain n − 1 entries in the first, and m − 1 entries
in the second case respectively. Every test entry IvR ∈ F

n≤m
R ∪ Fm<nR contains

88 Chapter 6. Number of Distinct Items Problem

n− d times the same item v, i.e., Fn≤mR = {{1, . . . , 1}, . . . , {n− 1, . . . , n− 1}} and
Fm<nR = {{1, . . . , 1}, . . . , {m− 1, . . . ,m− 1}}.

ii) With this definition of the two fooling sets, any combination of representative
and test from a certain fooling set will have either d distinct items if the item from
the test entries present in the representative, or d+ 1 distinct items if the item from
the test entry is not present in the representative. This implies that the fraction
between d + 1 and d will definitely be interesting. Before we justify why we have
indeed two fooling sets, we will first make the following, useful approximation:

d+ 1
d

= 1 + 1
d

= 1 + 1⌊
1

α+−1

⌋ ≥ 1 + 1
1

α+−1
= 1 + (α+ − 1) = α+ > α. (6.2)

For any two representatives IiL, I
j
L ∈ F

n≤m
L from the first case, we have at least

two items v, v′ ∈ {1, . . . , n} that are only present in one of the two representatives.
W.l.o.g., we assume that v < v′ ≤ n. With the test entry IvR = {v, . . . , v} ∈ Fn≤mR ,
we have either d or d + 1 distinct items, and therefore, using (6.2), Fn≤m is an
α-fooling set for any α < 2. Similarly, one can prove that Fm<n is an α-fooling set
for any α < 2.

iii) Therefore, we can calculate the space complexity lower bounds by,

space(Sn≤mF0,α<2,1
) ≥ log2(|Fn≤mL |) = log2

((
n

d

))
fooling set size

> log2

((
n

d

)d)
= d · log2

(
n

d

) Lemma 3.1 and
basic operation

=
⌊ 1
α+ − 1

⌋
· log2

 n⌊
1

α+−1

⌋
 definition of d, (6.2)

>
1

α− 1 · log2(n · (α− 1)). simple approximation

Similarly, we can calculate the lower bound for the second case by,

space(Sm<nF0,α<2,1
) ≥ log2(|Fm<nL |) = log2

((
m

d

))
fooling set size

>
1

α− 1 · log2(m · (α− 1)). approximation as above

Finally, we obtain the general space complexity lower bound of both cases:

space(SF0,α<2,1) ≥ 1
α− 1 · log2(min{m,n} · (α− 1)).

�

Observe that, for any α ≥ 2, the basic distinctness value d, as defined in (6.1),
would be zero and as a consequence, we do not have a fooling set any more, because
there would be zero representatives. This is why we have the restriction α < 2.

6.1. General Streaming Problem Analysis 89

Corollary 6.3. The streaming problem SF0,α<
√

2,1
has, for any n,m ∈ N+ and a

2-sided approximation ratio of α <
√

2, a space complexity lower bound of

space
(
SF0,α<

√
2,1

)
≥ 1
α− 1 · log2(min{m,n} · (α− 1)).

This follows directly from the α-fooling set from the proof of Theorem 6.7 and
Theorem 4.5. Next, we want to identify a space complexity lower bound for a 1-sided
approximation ratio of α ≥ 2.

Theorem 6.8. The streaming problem SF0,α≥2,1 has, for any n,m ∈ N+ and a
1-sided approximation ratio of α ≥ 2, a space complexity lower bound of

space
(
SF0,α≥2,1

)
≥ log2(log2(min{n,m}))− log2

(
log2

(3
2 · α

))
.

Proof. As this theorem states a very low space complexity lower bound and the
proof of this theorem is very close to the proof of Theorem 5.14, we will only give a
proof sketch. One can easily repeat the detailed definitions and calculations with the
original theorem as basis.

With exactly the same concept as in the proof of Theorem 5.14, we can create
two fooling sets for both cases n ≤ m and m < n, such that the representatives
IiL simulate a distinctness function d(i) which is similarly defined as the frequency
function k(i) from the original theorem. This distinctness function is recursively
defined as

d(1) = 1 and d(i) = dα+ · d(i− 1)e for all i ≥ 2,

with the condition that d(i) < min{n,m}. For the first case, we have exactly the
same lower bound as in the most frequent item problem. For the second case, we
had to define k(1) = d nme, because this is the highest frequency one gets at least
for any m < n. For the number of distinct items problem, we do not have such a
condition, because all input values could be the same item. Therefore, we have a
space complexity lower bound that is analogue to the first case. �

Corollary 6.4. The streaming problem SF0,α≥
√

2,1
has, for any n,m ∈ N+ and a

2-sided approximation ratio of α ≥
√

2, a space complexity lower bound of

space
(
SF0,α≥

√
2,1

)
≥ log2(log2(min{n,m}))− log2

(
log2

(3
2 · α

))
.

This follows directly from the α-fooling set from the proof of Theorem 6.8 and
Theorem 4.5.

Similarly to the argumentation in Theorem 5.15, one can observe that, for any 2-
sided approximation ratio α ≥

√
2, it is impossible to prove a higher space complexity

lower bound than Θ(log(m)) using the proof technique of communication complexity.

Theorem 6.9. For any 2-sided approximation ratio α ≥
√

2, it is impossible to
prove a higher space complexity lower bound than dlog2(m)e using the proof technique
of communication complexity.

90 Chapter 6. Number of Distinct Items Problem

Proof. Similarly to Theorem 5.15, we can prove this theorem. The communication
complexity assumes to have two computers CL and CR and their corresponding input
stream parts xl and xr. With a communication complexity of dlog2(m)e, the two
computers can solve the number of distinct items problem with an approximation
ratio of α =

√
2. This is the case with the following algorithm:

The left computer calculates the number of distinct items of its input stream
part and communicates this value to the right computer, i.e., f(xl). This requires at
most dlog2(m)e communication bits. The right computer calculates its own number
of distinct items f(xr), sums up the two values and outputs f(xl)+f(xr)√

2 . This output
value is a

√
2-approximation of f(x), as one can verify with the same argument as

for Theorem 5.15.
Therefore, with only dlog2(m)e communication bits, the two-computer model of

the communication complexity theory solves the number of distinct items problem
with a 2-sided approximation ratio of α ≥

√
2. Therefore, it is impossible, to prove

a lower bound, that is higher than this one, using the technique of communication
complexity. �

What follows next is the analysis of the approximative and probabilistic setting.
Surprisingly, we can reduce the space complexity significantly, such that the number
of distinct items problem can be solved efficiently.

Approximative Probabilistic Number of Distinct Items Problem

Alon et al. state that the number of distinct items problem can be solved for certain
approximation ratios and success probabilities with a logarithmic space complexity.
We use the notation of SF0,α,p for the approximative probabilistic number of distinct
items problem.

Theorem 6.10 (Alon et al. [AMS99]). The streaming problem SF0,α,p has, for
any n,m ∈ N+, a 2-sided approximation ratio of α > 2, and a success probability of
p = 1− 2

α , a space complexity upper bound of

space
(
SF0,α>2,p

)
∈ O

(
log

(
m
))
.

Proof. We will only sketch the proof of Proposition 2.3 [AMS99] and use it as an
introduction to this algorithmic concept, which is used in an enhanced approach
later on.

The algorithm requires a finite field F = GF (2d) with a smallest integer d with
2d > m, that is used as a linear hash function. Observe that all items j ∈ {1, . . . ,m}
can be interpreted as entries of this finite field F. Upfront the algorithm chooses
two random members a, b ∈ F, which are represented by binary vectors of length d.
For processing the first input value x1, which can also be interpreted as a binary
vector of length d, the update algorithm computes z1 = a · x1 + b, with addition
and multiplication in F. Then, z1 is once again a binary vector of length d. The
first update computation analyzes this vector and counts, starting at its end, the
number of successive zeros and stores this value r1 ∈ {0, . . . , d − 1}. The second
update algorithm computation calculates, with the input value x2, the binary vector

6.1. General Streaming Problem Analysis 91

z2 = a · x2 + b within F and counts the number of successive zeros at its end, which
is stored as a value r2. After that, the value rmax is cached as the maximum of r1
and r2. Any further update algorithm computation calculates, for the input value xi,
the binary vector zi, the number of successive 0s ri, and updates rmax if the current
ri is larger than rmax. At the end, the algorithm outputs 2rmax .

This algorithm requires only O(log(m))) storage bits for the three variables a, b,
and rmax, because the bit vector size d that determines the storage size of a and
b is in Θ(log(m)). Furthermore, rmax requires only O(log2(d)) = O(log2(log2(m)))
storage bits. The intermediate results zi and ri are not required to be stored.

Now, we want to analyze the behaviour and probability distribution of any ri.
With the linear hash function zi = a ·xi+ b on the finite field F, we have, for a certain
input value xi, the probability Pr[ri = 0] = 0.5 that ri is zero. The probability
that ri is 1 is the probability that the binary vector zi ends with “ . . . 10”, which
is Pr[ri = 1] = 0.25 = 1

4 . Likewise, ri is 2 for a binary vector that ends with of
“ . . . 100”, which has a probability of Pr[ri = 2] = 1

8 = 1
23 . Therefore, we can derive

the following probability distribution of ri.

Pr[ri = k] =
(1

2

)k+1
∀k ∈ {0, . . . , d− 1} and Pr[ri = d] = Pr[zi = “0 . . . 0”] =

(1
2

)d
.

With f(x) distinct items, we have f(x) random samples of ri and it is very
likely that the maximal ri of these f(x) random samples, rmax, is roughly log2(f(x)).
Therefore, the output value 2rmax is with a reasonable probability 2rmax ≈ f(x).
This informal analysis of the success probability and approximation ratio is proven
mathematically for an approximation ratio of any α > 2 and a corresponding success
probability of p = 1− 2

α by Alon et al. [AMS99]. �

Before we introduce an enhanced approach for solving SF0,α,p , we study the
behaviour and the probability distribution of rmax in more detail. With a linear
hash function in F as used in the proof of Theorem 6.10, we have an independent
probability distribution of ri on any individual input value. All input values with the
same value will lead to the same zi and ri, therefore, we have exactly f(x) different
samples of ri. Now, we can analyze the probability distribution of rmax for a certain
input stream x with f(x) distinct items. If we know the probability distribution of
rmax explicitly, we can use this information to improve the concept of Theorem 6.10.
For this purpose, we will now analyze the behaviour and probability distribution of
rmax = 0, rmax = 1 and so on, until we can formulate an explicit probability function
on any rmax ∈ {0, . . . , d− 1}.

The probability that rmax is 0 is the probability that all f(x) different samples of
ri are zero, i.e.,

Pr[rmax = 0] = (Pr[ri = 0])f(x) =
(1

2

)f(x)
.

Next, the probability that rmax is 1, is the probability that at least one sample of
ri is 1, but none is larger. This is the probability that all different samples of ri are
at most 1, i.e., (Pr[ri = 0] + Pr[ri = 1])f(x), minus the probability that rmax is zero,
which is,

92 Chapter 6. Number of Distinct Items Problem

Pr[rmax = 1] = (Pr[ri = 0] + Pr[ri = 1])f(x) − (Pr[ri = 0])f(x)

=
(1

2 + 1
4

)f(x)
−
(1

2

)f(x)
=
(3

4

)f(x)
−
(1

2

)f(x)
.

Likewise, the probability of rmax being 2 is the probability that none of the f(x)
samples of ri are larger than 2, but at least one sample has ri = 2, which is,

Pr[rmax = 2] = (Pr[ri = 0] + Pr[ri = 1] + Pr[ri = 2])f(x)

− Pr[rmax = 1]− Pr[rmax = 0]

=
(1

2 + 1
4 + 1

8

)f(x)
−
((3

4

)f(x)
−
(1

2

)f(x)
)
−
(1

2

)f(x)

=
(7

8

)f(x)
−
(3

4

)f(x)
.

Consequentially, we have, for rmax = 3, a probability of,

Pr[rmax = 3] = (Pr[ri = 0] + · · ·+ Pr[ri = 3])f(x)

− (Pr[rmax = 2] + · · ·+ Pr[rmax = 0])

=
(1

2 + · · ·+ 1
16

)f(x)

−
(((7

8

)f(x)
−
(3

4

)f(x)
)

+ · · ·+
(1

2

)f(x)
)

=
(15

16

)f(x)
−
(7

8

)f(x)
.

With this analysis, we obtain the following probability distribution of rmax = k
for a certain input stream x and its number of distinct items f(x) for any k < d with
a simple induction argument:

Pr[rmax = k] =
(

2k+1 − 1
2k+1

)f(x)

−
(

2k − 1
2k

)f(x)

=
(

1− 1
2k+1

)f(x)
−
(

1− 1
2k
)f(x)

for all k ∈ {0, . . . , d− 1}

This probability distribution is illustrated in Figure 6.1. For different numbers of
distinct items f(x) ∈ {10, . . . , 1 000} in the x-axis, this plot illustrates the probability
distribution on the y-axis for some rmax = k ∈ {4, . . . , 8}. The dotted lines illustrate
the further behavior of the probability function, but it might be possible that it
is not defined, e.g., if f(x) = m. In this case, for, e.g., f(x) = m = 100, we have
d := 7, because d is the smallest integer such that 2d > m = 100, and the probability
distribution is only defined for k < d = 7. This is why the probability distribution for
f(x) = 100 is only guaranteed to be defined for k ≤ 6, but dotted for k ≥ 7 (violet
or blue line) in Figure 6.1.

Even though we do not know the number of distinct items f(x), the algorithm
that uses the linear hash function in the finite field F = GF (2d) calculates rmax with

6.1. General Streaming Problem Analysis 93

101 102 103
0

5 · 10−2

0.1

0.15

0.2

0.25

f(x)

Pr
[r

m
ax

=
k
]

k = 4
k = 5
k = 6
k = 7
k = 8

Figure 6.1. Illustration of the probability distribution of rmax

the probability distribution from above as it has f(x) independent samples of ri. If we
would execute the algorithm of Theorem 6.10 infinite times and stochastically learn the
probability distribution of Pr[rmax = k] for some different k, then we could determine
the exact probability for rmax = k, for any k < d. Furthermore, we could calculate the
number of distinct items f(x) from an input stream with the probability formula above,
some k < d, and the corresponding, exactly determined probabilities Pr[rmax = k].
If we knew the probability of some event Pr[rmax = k] for just one k < d perfectly,
we could determine one or two possible f(x). As an example, for Pr[rmax = 6] ≈ 0.2,
we have f(x) ∈ {41, 165}. In other words, for the values f(x) ∈ {41, 165} on the
x-axis, we have a probability of 0.2 for k = 6 (the red line in Figure 6.1). With a
second probability Pr[rmax = k′] for any k 6= k′ < d, we can determine the exact
f(x). E.g., for the example above, with Pr[rmax = 4] ≈ 0.0053 (the yellow line in
Figure 6.1), we know that f(x) = 165, because

(
1− 1/25)165−

(
1− 1/24)165 ≈ 0.0053,

but
(
1− 1/25)41 −

(
1− 1/24)41 ≈ 0.201.

So far, we assumed that the algorithm is executed infinitely many times. If we
learn the probability distribution with just a finite number of computations, we
are able to approximate the number of distinct items f(x) for a certain success
probability. Unfortunately, the proof of this statement is not trivial. That is why we
state this upper bound only as a conjecture, but not as a formally proven theorem.
The detailed analysis in the proof sketch after the conjecture states why it is very
probable to be true.

94 Chapter 6. Number of Distinct Items Problem

Conjecture 6.1. The streaming problem SF0,α,p has, for any n,m ∈ N+, a 2-sided
approximation ratio of α < 2, and a success probability of p > 1

2 , for any arbitrarily
small ε, δ > 0 with α = 1 + ε and p = 1− δ, a space complexity upper bound of,

space
(
SF0,α,p

)
≤ 3 · log2(m) · (46 000)2

(α− 1)2 · (1− p) ∈ O
(log(m)

(α− 1)2 · (1− p)

)
= O

(log(m)
ε2 · δ

)
with α = 1 + ε and p = 1− δ.

As we stated above, if we knew the probability distribution of rmax perfectly,
we could exactly calculate the number of distinct items f(x). We will show in this
proof sketch that, for a fixed approximation ratio α > 1 and a success probability
p < 1, with g(α, p) parallel executions of the algorithm described in Theorem 6.10,
we have a success probability of p to indicate the number of distinct items within an
approximation ratio of α. This function g(α, p) is defined as g(α, p) = (46 000)2

(α−1)2·(p−1) .
The algorithm works as follows: It uses parallely g(α, p) different linear hashes in

the finite field F = GF (2d) with the smallest integer d such that 2d > m. This means,
that the algorithm chooses g(α, p) different aj , bj ∈ F uniformly at random. For
every input value xi, the algorithm produces, similarly to the proof of Theorem 6.10,
zi,j = aj · xi + bj and stores the current rmax,j for all g(α, p) different, parallel
executions. The output algorithm creates a histogram for all different rmax,j and
estimates the probability distribution with the g(α, p) samples of rmax. Then, it
identifies the most frequent k̂max of this histogram, such that Pr[rmax = k̂max]
is the largest one. After that, it calculates the number of distinct items f(x)
with the formula Pr[rmax = k] =

(
1− 1

2k+1

)f(x)
−
(
1− 1

2k
)f(x)

and k := k̂max − 2
and the observed statistical probability of Pr[rmax = k]. As this formula is not
stated explicitely to solve it for f(x), we can simply approximate f(x) optimally
with few iteartion steps, as f(x) ∈ N+, using Newton’s method (e.g., by Stoer
et al. [SBB+02], Deuflhard [Deu04] or Kelley [Kel03]) that identifies the root of
h(f(x)) =

(
1− 1

2k+1

)f(x)
−
(
1− 1

2k
)f(x)

− Pr[rmax = k] for the fixed k = k̂max − 2
and the stochastically observed Pr[rmax = k] with a starting point at f(x) = 2k̂max .

Now we want to analyze the correctness of this algorithm. Since we are considering
2-sided errors with approximation ratios of α > 1, we are allowed to produce any
output value between f(x)

α and f(x) · α. If we analyze the probability Pr[rmax =
k̂max−2], we observe that the function is continuously decreasing. E.g., for f(x) = 100,
as Figure 6.1 demonstrates, it is very likely that with a sample size of g(α, p), we
have k̂max = 6, which corresponds to the red line. Even if k̂max were 5 or 7, the line
corresponding to k̂max − 2 is continuously decreasing between f(x)

α and f(x) · α for
any 1 < α < 2. Therefore, if the algorithm produces a sample frequency for k̂max − 2
between((

1− 1
2k̂max−1

)f(x)·α
−
(

1− 1
2k̂max−2

)f(x)·α
)

and

(1− 1
2k̂max−1

) f(x)
α

−
(

1− 1
2k̂max−2

) f(x)
α

,

6.1. General Streaming Problem Analysis 95

100.05 100.1 100.15 100.2 100.25 100.3
10−7

10−6

10−5

10−4

10−3

10−2

10−1

α

pr
ob

ab
ili
ty

ga
p

f(x) = 50, kmax = 4
f(x) = 50, kmax = 5
f(x) = 50, kmax = 6
f(x) = 100, kmax = 5
f(x) = 100, kmax = 6
f(x) = 100, kmax = 7
f(x) = 250, kmax = 6
f(x) = 250, kmax = 7
f(x) = 250, kmax = 8

(α− 1)/10 000

Figure 6.2. Illustration of the probability gap of rmax

our approach will produce a number of distinct items within the accepted approxi-
mation ratio. This implies that, if the observed frequency sample is within these two
boundaries, which depend on α, we have an approximation ratio of α with a success
probability of p. This probability gap is illustrated in Figure 6.2.

One can see that the probability gap is smaller if the measured k̂max is not
the theoretical one, but a lower one. With g(α, p) = (46 000)2

(α−1)2·(1−p) samples, we can
practically exclude the case that the observed most frequent k̂max differs from the
theoretical kmax by 2 or more, because kmax has a theoretical probability of more
than 0.225, but kmax ± 2 has a probability of less than 0.175, as one can easily verify
by studying Figure 6.1. More formally, we can analyze the probability distribution
of rmax and calculate the probability, that with g(α, p) samples, kmax ± 2 gets a
higher occurrence than kmax. For this purpose, we can analyze the probability of the
binomial distribution B = (n, p) with n = g(α, p) and p ≤ 0.175 to get a frequency
of more than 0.2 · g(α, p), which is only half the battle to have a higher occurrence of
kmax ± 2 than kmax. Now, this binomial distribution can be approximated using the
normal distribution, which leads to the outcome, that we have a difference between
the expected frequency of 0.175 · g(α, p) and the required occurrence of 0.2 · g(α, p)
for kmax ± 2 of a few hundred standard deviations, as g(α, p) is quite large. As
an example, we have outliers of only 7 standard deviations with a probability of
p ≈ 1.3 · 10−12. Therefore, for any overall success probability p < 1− 10−100, we can
ensure, that the described algorithm will lead to a k̂max ∈ {kmax − 1, kmax, kmax + 1}.

With a counting argument, we can verify that, for any f(x) ∈ N+, α > 1 and

96 Chapter 6. Number of Distinct Items Problem

k̂max ∈ {kmax − 1, kmax, kmax + 1}, the probability gap is at least α−1
10 000 . For the

purpose of this thesis, this counting argument has been verified for any f(x) ∈
{10, . . . , 10 000} and plenty of different, small α-values. However, the mathematical
proof of this statement is not trivial and is thus not given in this thesis. That is
why this upper bound is ‘only’ a conjecture, but not a mathematically proven theorem.

Based on this assumption, one only has to verify that the measured frequency is
within these gap boundaries with a probability of p. The frequency of k̂max has a
theoretical probability of 0.3 > p > 0.2. With g(α, p) samples, we can be positive
that the measured probability of kmax ± 1 is 0.3 > p̃ > 0.05. The probability, that
this is not the case, is almost insignificant for the largely chosen samples size of
g(α, p). For a complete mathematical proof, one has to calculate the probability of
this case and formulate a success probability upper bound or further increase the
sample size. The binomial distribution of resulting a sample in k̂max or not, which
defines the stochastical probability Pr[rmax = k̂max], has a confidence interval of√

g(α, p) · p̃ · (1− p̃)
g(α, p) <

√
0.3 · 0.7√
g(α, p)

<
0.46√
g(α, p))

,

which has to be smaller than α−1
10 000 .

Therefore, with (46 000)2

(α−1)2 samples, we have the probability of one standard devia-
tion, namely p ≈ 0.6827 that the algorithm produces a result within the tolerated
approximation ratio α. If we want to achieve a (fixed) success probability p < 1, we
can calculate the number of standard deviations that are required to prove a success
probability of p. One can easily verify that this number is below 1

1−p . Therefore,
with g(α, p) = (46′000)2

(α−1)2 · 1
1−p , we have a sample size such that the algorithm produces

an output value within the approximation ratio α with a success probability of p.
For any of the g(α, p) samples this algorithm requires less than 3 · log2(m) bits

to store the linear hash values aj , bj ∈ F and the maximum for rmax,j as analyzed in
Theorem 6.10. Therefore, it is reasonable that we have, for the streaming problem
SF0,α,p with any approximation ratio 1 < α < 2 and success probability 1

2 < p < 1 a
space complexity of

space
(
SF0,α,p

)
≤ 3 · log2(m) · (46 000)2

(α− 1)2 · (1− p) ∈ O
(log(m)

(α− 1)2 · (1− p)

)
.

With this algorithm, we can achieve an arbitrarily small approximation ratio
α > 1 for SF0 with an arbitrarily high success probability p < 1, and require only
a space complexity logarithmic in m for a fixed approximation ratio and success
probability. This implies that the streaming problem SF0,α,p is efficiently solvable.
With a more exact analysis, one may prove a space complexity upper bound with a
constant factor significantly smaller than 3 · (46 000)2. Furthermore, it is probably
possible to decrease the factor 1

1−p to a lower order.
For a more mathematical analysis, one can transform the binomial distribution

of reaching occurrences within the stated probability gap to an normal distribu-
tion, and then, calculate the probability, dependent on g(α, p) samples, that we
reach a frequency of k̂max within the probability gap with a success probability of
at least p. With this approach, the stated sample size factor of 1

1−p may be optimized.

6.1. General Streaming Problem Analysis 97

We will now investigate if the identified lower bounds in the approximative setting
are also valid if we allow randomization.

For space complexity lower bounds in a probabilistic setting, we generally try to
apply Theorem 4.3. For this, we have to verify the minimality of the test set. The two
fooling sets defined in Theorem 6.7 could be used for the probabilistic lower bound.
Furthermore, one can similarly verify the minimality of the test sets. Nevertheless,
applying Theorem 4.3 will lead to a useless lower bound, because this theorem states
a probabilistic lower bound of

space(Sα,p) ≥ log2(|FL|) ·
(

1− |FR|
log2(|FL|)

· h(p)
)
− 1. (6.3)

If we use the α-fooling sets from Theorem 6.7, we have a size of representatives of

|FL| =
(

min{n,m}
d

)
>

1
α− 1 · log2(min{m,n} · (α− 1)).

However, the test sets contain n−1 entries, orm−1 entries respectively. Therefore,
for a fixed approximation ratio α > 1 and large enough n,m, we can approximate
the fraction of (6.3) with

|Fn≤mR |
log2(|Fn≤mL |)

= n− 1(n
d

) >
n− 1

1
α−1 · log2(n · (α− 1))

> 1, respectively,

|Fm<nR |
log2(|Fm<nL |) = m− 1(m

d

) >
m− 1

1
α−1 · log2(m · (α− 1))

> 1.

With this fact, (6.3) will result in a negative space complexity lower bound for
most n,m, which is true yet useless. With Theorem 4.2, we can at least prove the
following lower bound.

Theorem 6.11. The streaming problem SF0,α<2,p has, for any n,m ∈ N+, a 1-sided
approximation ratio of α < 2, and a success probability of p > 1

2 , a space complexity
lower bound of

space(SF0,α<2,p) ≥ log2

(log2(min{m,n} · (α− 1))
α− 1

)
− log2

(
log2

(2p+ 1
2p− 1

))
− 1.

Proof. To prove this lower bound, we use the α-fooling set from the proof of The-
orem 6.7 and Theorem 4.2. We do not have to verify it again as this was already
done in the proof of Theorem 6.7. Therefore, we can directly calculate the space
complexity lower bound. We start with the first case, where n ≤ m. We obtain,

space(Sn≤mF0,α<2,p
) ≥ log2(log2(|Fn≤mL |)) Theorem 4.2

− log2

(
log2

(2p+ 1
2p− 1

))
− 1

= log2

(
log2

((
n

d

)))
fooling set size

98 Chapter 6. Number of Distinct Items Problem

− log2

(
log2

(2p+ 1
2p− 1

))
− 1

> log2

(log2(n · (α− 1))
α− 1

)
Theorem 6.7

− log2

(
log2

(2p+ 1
2p− 1

))
− 1.

For the second case, where m < n, we get,

space(Sm<nF0,α<2,p
) ≥ log2(log2(|Fm<nL |)) Theorem 4.2

− log2

(
log2

(2p+ 1
2p− 1

))
− 1

= log2

(
log2

((
m

d

)))
fooling set size

− log2

(
log2

(2p+ 1
2p− 1

))
− 1

> log2

(log2(m · (α− 1))
α− 1

)
Theorem 6.7

− log2

(
log2

(2p+ 1
2p− 1

))
− 1

Therefore, we have

space(SF0,α<2,p) ≥ log2

(log2(min{m,n} · (α− 1))
α− 1

)
− log2

(
log2

(2p+ 1
2p− 1

))
− 1.

This completes the proof. �

As a consequence, we also have a space complexity lower bound for 2-sided
approximations.

Corollary 6.5. The streaming problem SF0,α<
√

2,p
has, for any n,m ∈ N+, a 2-sided

approximation ratio of α <
√

2, and a success probability of p > 1
2 , a space complexity

lower bound of

space
(
SF0,α<

√
2,p

)
≥ log2

(log2(min{m,n} · (α− 1))
α− 1

)
− log2

(
log2

(2p+ 1
2p− 1

))
− 1.

This corollary follows directly from the proven α-fooling set from the proof of
Theorem 6.11 and Theorem 4.5. The idea is to approximate the space complexity
from above using Corollary 4.1 for any success probability of p ≥ 0.505.

Corollary 6.6. The streaming problem SF0,α<
√

2,p
has, for any n,m ∈ N+, a 2-sided

approximation ratio of α <
√

2, and a success probability of p ≥ 0.505, a space
complexity lower bound of

space
(
SF0,α<

√
2,p

)
≥ log2

(log2(min{m,n} · (α− 1))
α− 1

)
− 4.

Next, we want to prove a space complexity lower bound for a 1-sided approxima-
tion ratio of α ≥ 2 in the probabilistic setting.

6.1. General Streaming Problem Analysis 99

Theorem 6.12. The streaming problem SF0,α≥2,p has, for any n,m ∈ N+, a 1-sided
approximation ratio of α ≥ 2, and a success probability of p > 1

2 , a space complexity
lower bound of

space
(
SF0,α≥2,p

)
≥ log2(log2(min{n,m}))− log2

(
log2

(3
2 · α

))
− 2.

Proof. In the proof sketch of Theorem 6.8, we have described the two fooling sets for
n ≤ m and m < n. Both test sets are obviously minimal, because they contain only
one entry. Therefore, we have the following space complexity lower bound:

space
(
SF0,α≥2,p

)
≥ log2(|FL|) ·

(
1− |FR|

log2(|FL|)
· h(p)

)
− 1 Theorem 4.3

≥ log2(|FL|) ·
(

1− |FR|
log2(|FL|)

)
− 1 as h(p) ≤ 1

= log2(|FL|)− |FR| − 1 basic trans.
> log2(log2(min{n,m})) Theorem 6.8

− log2

(
log2

(3
2 · α

))
− 2 �

This theorem leads to the conclusion that the effect of randomization for a 1-sided
approximation ratio of α > 2 only decreases the space complexity lower bound by 2
bits.

Corollary 6.7. The streaming problem SF0,α≥
√

2,p
has, for any n,m ∈ N+, a 2-sided

approximation ratio of α ≥
√

2, and a success probability of p > 1
2 , a space complexity

lower bound of

space
(
SF0,α≥

√
2,p

)
≥ log2(log2(min{n,m}))− log2

(
log2

(3
2 · α

))
− 2.

This follows directly from Theorem 6.12 and Theorem 4.5.

In the approximative, deterministic setting we have seen a further lower bound:
Corollary 6.2 states that, for any n ∈ Ω(m), the space complexity is at least
space(SF

0,α<
√

3
2 ,1

) ∈ Ω(m). This lower bound can be transformed to the probabilistic

setting. Of course, we cannot apply Theorem 4.3, because the fooling set from
Theorem 6.6, which addresses the 1-sided approximation and introduces the fooling
set, has a test set size of 2Ω(m), which is obviously not minimal. However, we can
still use Theorem 4.2 to identify a interesting space complexity lower bound.

Theorem 6.13. The streaming problem SF
0,α<
√

3
2 ,p

has, for any n ∈ Ω(m), a 2-

sided approximation ratio of α <
√

3
2 , and a success probability of p ≥ 0.505, a space

complexity lower bound of

space
(
SF0,α<

√
3/2,p

)
≥ log2(m) + Ω(1).

100 Chapter 6. Number of Distinct Items Problem

Proof. Theorem 6.6 defines an α-fooling set of size 2Ω(m) for the streaming problem
SF

0,α<
√

3
2 ,p

. Using Theorem 4.2, we have a space complexity lower bound of,

space
(
SF0,α<

√
3/2,p

)
≥ log2(log2(|FL|)) Theorem 4.2

− log2

(
log2

(2p+ 1
2p− 1

))
− 1

= log2

(
log2

(
2Ω(m)

))
fooling set size

− log2

(
log2

(2p+ 1
2p− 1

))
− 1

= log2(Ω(m))− log2

(
log2

(2p+ 1
2p− 1

))
− 1 basic trans.

= log2(Ω(m))− 4 p ≥ 0.505
= log2(m) + Ω(1), basic transf.

which proves the claim. �

This theorem leads to the following conclusion. For a fixed approximation ratio
α <

√
3/2 and a fixed success probability p < 1, we have a space complexity lower

and upper bound of the same complexity order. The upper bound increases with
small approximation ratios and high success probabilities. Nevertheless, the gap
between the proven upper and lower bound is small.

Summary of the General Number of Distinct Items Problem

With the proven theorems, we can create table 6.1 as an overview of all space
complexity upper and lower bounds for the number of distinct items problem. For a
probabilistic setting, we assume that the success probability is at least p > 1

2 . Any
result on the approximative setting covers the analysis of the 2-sided approximation.

We have seen that with the relaxation of both result accuracy and success proba-
bility, the space complexity of SF0 can be decreased from a linear to a logarithmic
space complexity. For all three cases, exact deterministic (Theorem 6.3), exact
probabilistic (Theorem 6.4) and approximative deterministic (with an approxima-
tion ratio α <

√
3/2, Corollary 6.2), we proved a space complexity lower bound of

Ω(m), which is of the same order as the exact deterministic algorithm described
in Theorem 6.2 that requires m + dlog2(m)e storage bits. The approach by Alon
et al. [AMS99], which solves SF0,α,p with approximation ratio α > 2 and success
probability p = 1 − 1

α , and which has a space complexity of O(log(m)), could be
enhanced (Conjecture 6.1) to an arbitrarily good approximation α > 1 and arbitrarily
high success probability p < 1, with a space complexity of only O(log(m)

(α−1)2·(1−p)). In
an approximative and probabilistic environment, we were able to prove a space
complexity of at least Ω(log(m)) for approximation ratios α <

√
3/2 (Theorem 6.13).

For larger approximation ratios, the proven space complexity lower bounds have a
log log complexity order, as for the most frequent item problem.

In the following, we will analyze the impact of additional information on the
streaming problem SF0 .

6.1. General Streaming Problem Analysis 101

Approx.
ratio

Succ.
prob. Space bound Condition Reference

1 1 Ω(m) 2n = m [AMS99]

1 1 ≤ m+ dlog2(m)e — Theorem 6.2

1 1 ≥ min{m,n} − log2(min{m,n}) — Theorem 6.3

1 1 Ω(m) n ∈ Ω(m) Corollary 6.1

1 p
≥ (min{n,m} − log2(min{n,m}))·

(1− 1.01 · h(p))− 1 — Theorem 6.4

α 1 ≤
⌈
m
α2

⌉
+ dlog2(m)e α2 ∈ N+ Theorem 6.5

α 1 ∈ Ω(m) α <
√

3/2
n ∈ Ω(m) Corollary 6.2

α 1 ≥ 1
α−1 · log2(min{m,n} · (α− 1)) α <

√
2 Corollary 6.3

α 1
≥ log2(log2(min{n,m}))−

log2

(
log2

(
3
2 · α

)) α ≥
√

2 Corollary 6.4

α p O
(
log

(
m
)) α > 2,

p = 1− 2
α

[AMS99]

α p O
(

log(m)
(α−1)2·(1−p)

)
α < 2 Conjecture 6.1

α p ≥ log2

(
log2(min{m,n}·(α−1))

α−1

)
− 4 α <

√
2,

p ≥ 0.505
Corollary 6.6

α p
≥ log2(log2(min{n,m}))−

log2

(
log2

(
3
2 · α

))
− 2 α ≥

√
2 Corollary 6.7

α p ≥ log2(m) + Ω(1) n ∈ Ω(m)
α <

√
3/2 Theorem 6.13

Table 6.1. Summary of general number of distinct items problem

102 Chapter 6. Number of Distinct Items Problem

6.2 Hypothesis Verification Analysis

In this section, we will analyze the space complexities of verifying hypotheses.

Verification of All Possible Hypotheses

As we have seen in Theorem 6.2, the exact deterministic general streaming problem
SF0,1,1 can be solved with a space complexity of at mostm+dlog2(m)e bits. Of course,
the verification of any solution hypothesis can be solved with the same amount of
storage bits. Furthermore, we are able to reproduce the proof of Theorem 6.3 with a
hypothesis fooling set, which implies that the hypothesis verification is, similar to the
original problem, almost tight for n ≥ m.

We use the notation of SHYP
F0,1,1

, SHYP
F0,1,p

, SHYP
F0,α,1

, and SHYP
F0,α,p

for the four different
settings of the verification of any possible solution hypothesis for the number of
distinct items problem.

Theorem 6.14. The streaming problem SHYP
F0,1,1

that has any n,m ∈ N+, requires a
space complexity of at least

space
(
SHYP
F0,1,1

)
≥ min{m,n} − log2(min{m,n}).

Proof. For the two cases n ≤ m and m < n we define the hypothesis fooling
sets FHYP,n≤m = (FHYP,n≤m

L ,FHYP,n≤m
R) and FHYP,m<n = (FHYP,m<n

L ,FHYP,m<n
R)

that are very similar to the two fooling sets from the proof of Theorem 6.3. Both
test sets are the one from Theorem 6.3 of the general streaming problem. The
representatives IiL = (yi, x̃i) ∈ FHYP,n≤m

L , and Ii′L = (yi′ , x̃i′) ∈ FHYP,m<n
L , have as

input stream parts x̃i, and x̃i′ , respectively, exactly the representatives of Theorem 6.3.
The hypotheses yi, and yi′ , respectively, are just the cut-value ln≤m = n

2 =: yi, and
yi
′ := lm<n = m

2 , respectively. In the following, we will justify that we have indeed
hypothesis fooling sets and calculate the space complexity lower bound.

As stated in Definition 4.4, we have a hypothesis fooling set if

∀IiL = (yi, x̃i), IjL = (yj , x̃j) ∈ FHYP
L with IiL 6= IjL : ∃IvR ∈ FHYP

R such that(
yi = f(x̃i, IvR)

)
6⇐⇒

(
yj = f(x̃j , IvR)

)
.

For any two representatives IiL = (yi, x̃i), IjL = (yj , x̃j) ∈ FHYP,n≤m
L , or Ii′L =

(yi′ , x̃i′), Ij
′

L = (yj′ , x̃j′) ∈ FHYP,m<n
L , respectively, there is at least one item v ∈

{1, . . . , n− 1}, or v′ ∈ {1, . . . ,m− 1}, respectively, such that v, or v′ respectively, is
only present in one of the two representatives. We have proven the existence of such
an item in previous theorems, as e.g. Theorem 6.3. W.l.o.g, we assume that v ∈ x̃i,
or v′ ∈ x̃i′ . With the test entry IvR = {v, . . . , v}, or Iv′R = {v′, . . . , v′} respectively, we
have, (

yi = f(x̃i, IvR)
)
⇐⇒

(
n

2 = n

2

)
⇐⇒ true

6⇐⇒ false ⇐⇒
(
n

2 = n

2 + 1
)
⇐⇒

(
yj = f(x̃j , IvR)

)
, or

6.2. Hypothesis Verification Analysis 103

(
yi
′ = f(x̃i′ , Iv′R)

)
⇐⇒

(
m

2 = m

2

)
⇐⇒ true

6⇐⇒ false ⇐⇒
(
m

2 = m

2 + 1
)
⇐⇒

(
yj
′ = f(x̃j′ , Iv′R)

)
, respectively.

Therefore, we have proven that we have a hypothesis fooling set. As the fooling
set sizes are the same as in the proof of Theorem 6.3, we have the same general space
complexity lower bound. �

With this theorem, we have the same upper and lower bound for the exact,
deterministic setting for both the general streaming problem and the hypothesis veri-
fication. Furthermore, we can prove the same lower bound for the exact probabilistic
setting as well.

Theorem 6.15. The streaming problem SHYP
F0,1,p

that has any n,m ∈ N+ and a success
probability p > 1

2 requires a space complexity of at least

space
(
SHYP
F0,1,p

)
≥ (min{n,m} − log2(min{n,m})) · (1− 1.01 · h(p))− 1

with h(p) = −p · log2(p)− (1− p) · log2(1− p).

Proof. For this proof, we can use the hypothesis fooling sets from Theorem 6.14 and
apply Theorem 4.3. To use Theorem 4.3, we have to verify the minimality of the
test sets. As stated after Definition 4.4, we can verify the minimality by checking
(4.12) to (4.19), namely,

∀IvR ∈ FR, For all elements of the test set,
∃IiL = (yi, x̃i), IjL = (yj , x̃j) there are two different
∈ FL, IiL 6= IjL representatives,

s.t.
((
yi = f(x̃i, IvR)

)
6⇐⇒ such that the cache states(

yj = f(x̃j , IvR)
)

have to be different.

and ∀Iv′R ∈ (FR \ IvR) : And for all other tests,(
yi = f(x̃i, Iv′R)

)
⇐⇒ they are not required(

yj = f(x̃j , Iv′R)
))
. to be different.

We will verify the minimality of the two test sets from the hypothesis fooling sets
of Theorem 6.14 for both cases individually.

If n ≤ m, then, for every item v ∈ {1, . . . , n − 1}, or the corresponding test
entry IvR = {v, . . . , v} ∈ FHYP,n≤m

R , respectively, we choose two representatives
IiL = (yi, x̃i), IjL = (yj , x̃j) ∈ FHYP,n≤m

L that have in their input stream parts x̃i and
x̃j exactly n

2 − 1 items in common from the item set {1, . . . , n} \ {v, n}. The input
stream part x̃i contains additionally the item v, and x̃j contains the item n. Then,
we have the inequality from (4.15) and (4.16), i.e.,

104 Chapter 6. Number of Distinct Items Problem

(
yi = f(x̃i, IvR)

)
⇐⇒

(
n

2 = n

2

)
⇐⇒ true

6⇐⇒ false ⇐⇒
(
n

2 = n

2 + 1
)
⇐⇒

(
yj = f(x̃j , IvR)

)
.

Furthermore, for all other v′ ∈ {1, . . . , n} \ {v, n}, or their test entry Iv
′
R =

{v′, . . . , v′} ∈ FHYP,n≤m
R , respectively, we have either,(

yi = f(x̃i, Iv′R)
)
⇐⇒

(
n

2 = n

2

)
⇐⇒ true

⇐⇒
(
n

2 = n

2

)
⇐⇒

(
yj = f(x̃j , Iv′R)

)
,

if v′ is present in both representatives, or,(
yi = f(x̃i, Iv′R)

)
⇐⇒

(
n

2 = n

2 + 1
)
⇐⇒ false

⇐⇒
(
n

2 = n

2 + 1
)
⇐⇒

(
yj = f(x̃j , Iv′R)

)
,

if v′ is not present in either representative. Therefore, FHYP,n≤m has a minimal test
set.

If m < n, we can easily verify the minimality of the test set FHYP,m<n
R from the

hypothesis fooling set FHYP,m<n by exactly the same argument as above by just
replacing the variable n with m.

As both test sets are minimal, we can apply Theorem 4.3 on the hypothesis
fooling sets. Since these sets have exactly the same sizes as the fooling sets from
Theorem 6.14, we have consequentially the same complexity lower bound. �

Therefore, also for the exact probabilistic setting, we have the same space
complexity lower bound as in the classical number of distinct items problems. For
the probabilistic deterministic environment, we can solve hypothesis verifications
with O(m

α2 + log(m)) storage bits for any approximation ratio α > 1, as described
in Theorem 6.5. Furthermore, we can once again prove the same space complexity
lower bounds. Here, we will only introduce a proof sketch, as the argumentation is
very similar to above proofs.

Theorem 6.16. The streaming problem SHYP
F0,α,1

, that has any n,m ∈ N+ and some
different, 2-sided approximation ratios α, requires a space complexity of at least,

space
(
SHYP
F0,α<

√
3/2,1

)
∈ Ω(m) for n ∈ Ω(m) if α <

√
3
2 and

n ∈ Ω(m),

space
(
SHYP
F0,α<

√
2,1

)
≥ 1
α− 1 · log2(min{m,n} · (α− 1)) if α <

√
2, and

space
(
SHYP
F0,α≥

√
2,1

)
≥ log2(log2(min{n,m})) if α ≥

√
2.

− log2

(
log2

(3
2 · α

))

6.2. Hypothesis Verification Analysis 105

Proof. We can prove these three space complexity lower bounds with hypothesis
α-fooling sets, that are very similar to the α-fooling sets from the general streaming
problem, i.e., as in the proofs of Theorem 6.6 for α <

√
3
2 , Theorem 6.7 for α <

√
2,

and Theorem 6.8 for α ≥
√

2. We choose as hypothesis α-fooling sets the same
test sets, and as input stream parts of the representatives from the hypothesis α-
fooling sets simply the representatives of the corresponding original α-fooling sets.
As hypothesis, we choose yi := m

4 for α <
√

3
2 . For the second lower bound, i.e.,

for α <
√

2, we choose yi := d =
⌊

1
α+−1

⌋
. And, finally, we choose for the third

lower bound for the approximation ratio α ≥
√

2 as hypothesis yi := d(i), with the
distinctness function that is defined in Theorem 6.8.

Using exactly the same approach as in the proof of Theorem 6.15, we can
simply verify the hypothesis α-fooling sets. As they have the same set sizes as the
original α-fooling sets from the general number of distinct items problem, we have
the same lower bounds as Theorem 6.6, Theorem 6.7, and Theorem 6.8, or their
corresponding corollaries Corollary 6.2, Corollary 6.3, and Corollary 6.4 for the
2-sided approximations. �

Furthermore, we can also verify the same space complexity lower bounds for the
approximative, probabilistic setting as for the general streaming problem.

Theorem 6.17. The streaming problem SHYP
F0,α,p

, that has any n,m ∈ N+, a success
probability p ≥ 0.505, and some different, 2-sided approximation ratios α, requires a
space complexity of at least,

space
(
SHYP
F0,α<

√
3/2,p

)
≥ log2(m) + Ω(1) if α <

√
3
2 and

n ∈ Ω(m),

space
(
SHYP
F0,α<

√
2,p

)
≥ log2

(log2(min{m,n} · (α− 1))
α− 1

)
− 4 if α <

√
2, and

space
(
SHYP
F0,α≥

√
2,p

)
≥ log2(log2(min{n,m})) if α ≥

√
2.

− log2

(
log2

(3
2 · α

))
− 2

Proof. For this theorem, we can use the sketched hypothesis α-fooling sets from the
proof of Theorem 6.16. For the first case, if α <

√
3
2 and n ∈ Ω(m), we can directly

use the hypothesis α-fooling set from Theorem 6.16 and apply Theorem 4.2. Then,
we have the same space complexity lower bound as in the original Theorem 6.13,
which is at least log2(m) + Ω(1).

For the second case, if α <
√

2, we can once again use the sketched hypothesis
α-fooling set from Theorem 6.16. When we apply Theorem 4.2, which does not
require the minimality of the test set, and obtain the same lower bound on the space
complexity as for the general streaming problem described in Corollary 6.6.

If α ≥
√

2, we can directly apply Theorem 4.3 on the sketched hypothe-
sis α-fooling set from Theorem 6.16. As the test set contains only one entry,
it is obviously minimal. Therefore, we get a space complexity lower bound of
log2(log2(min{n,m})) − log2

(
log2

(
3
2 · α

))
− 2, as calculated in the proof of Theo-

rem 6.12. �

106 Chapter 6. Number of Distinct Items Problem

With this theorem we have proven the equivalent space complexity lower bounds
for both the general streaming problem and hypothesis verification in the approxima-
tive and probabilistic setting. This analysis shows that we can repeat all introduced
space complexity lower bound proofs from the general streaming problem in any
setting for hypothesis verification. Still, we have a gap between these lower bounds
and the upper bounds for the general streaming problem. Next, we will study,
whether we are able to profit from this gap and find an algorithm, that verifies a
hypothesis with a lower space complexity.

Conjecture 6.2. SHYP
F0

has the same space complexity upper bound order as SF0.

In the exact (both deterministic and probabilistic) setting, as well as in the
approximative and deterministic setting, we have proven in Theorem 6.14, Theo-
rem 6.15, and Theorem 6.16, that the space complexity lower bounds are exactly the
same as for the general streaming problem. For the exact and the approximative,
deterministic setting with a 2-sided approximation ratio of α <

√
3/2, we have a

lower and an upper bound of the same order. This implies that even if it were
possible to profit from the hypothesis, it will have the same complexity order as the
general streaming problem.

For the approximative, probabilistic setting, the space complexity lower bounds
for both the general streaming problem and hypothesis verification are exactly the
same, but nevertheless not very significant. For SF0 we stated an algorithm in
Conjecture 6.1 that solves the streaming problem with any approximation ratio
α > 1 and success probability p < 1 with a space complexity in O

(
log(m)

(α−1)2·(1−p)

)
.

For a fixed approximation ratio α <
√

3/2 and a fixed success probability, we have
a tight complexity order for both the general streaming problem and hypothesis
verification. The factor of O

(
1

(α−1)2·(1−p)

)
, that is dependent on the approximation

ratio and the success probability, is required to ensure that, e.g., the four possible
output values f(x)

α ± 1 and f(x) · α± 1 are distinguished, because two are within the
tolerated approximation ratio, but not the other two. If we want to verify solution
hypotheses, we also have to distinguish these cases. Therefore, we may assume that
the required factor for SF0 to solve it with an arbitrarily small approximation ratio
α > 1 and an arbitrarily high success probability p < 1, is also required for SHYP

F0
.

If we could improve this accuracy factor of O
(

1
(α−1)2·(1−p)

)
for hypothesis verifica-

tion, it is very likely that it could be applied to the general streaming problem as well.

This conjecture states that it is likely that we are not able to profit from the
additional information if we want to verify solution hypotheses.

Justification of One Correct Hypothesis

We can formulate another type of hypothesis verification. In this case, we do not
have to verify any possible hypothesis, but just need to justify for every input stream
only one correct hypothesis. We can justify the correctness of a certain hypothesis by
indicating some argument or proof, why this hypothesis is correct. If this hypothesis
would be wrong, the algorithm does not have to indicate any result or can just output
a random one. Therefore, this second setting is a non-determinism, where we only
have a usable result for a certain correct hypothesis.

6.3. Analysis Conclusion 107

In the deterministic setting, a bit map could be used as a solid argument or proof
to justify the correctness of a hypothesis, but this would requires m bits.

For the probabilistic setting, we can justify the correctness of the hypothesis by
showing that the probability distribution of rmax from the algorithm from Theo-
rem 6.10 corresponds to the stated hypothesis. For the exact, probabilistic setting,
we can significantly decrease the space complexity. If we have a correct hypothesis of
the number of distinct items, we can determine the exact probability distribution
of rmax. With O

(
1

1−p

)
computations of the algorithm from Theorem 6.10, we can

justify the correctness of the probability distribution with a probability of p, as
stated in Conjecture 6.1. Therefore, with a space complexity of O

(
log(m)

1−p

)
, compared

to the proven space complexity lower bound of Ω(min(m,n)) for the verification of
any hypothesis (Theorem 6.15) and the general streaming problem (Theorem 6.4).
Similarly, we can justify a correct hypothesis for the approximative and probabilistic
setting for small approximation ratios α > 1.

6.3 Analysis Conclusion
In the analysis of the general number of distinct items problem, we have seen that
we require a linear storage size for an exact result for both a deterministic and a
probabilistic setting. While this is also the case for the verification of any possible
hypothesis, we can significantly improve the upper bound in the exact, probabilistic
setting if we only want to justify a correct hypothesis. This insight leads to the
conclusion that in the special scenario of justification of one correct hypothesis in an
exact, probabilistic setting, the additional information helps to decrease the space
complexity to a complexity order, such that the problem is efficiently solvable, because
the space complexity is poly-logarithmic in both n and m. In the approximative and
deterministic setting, we have a large gap between the upper and the lower bound,
but so far it seems to be impractical to close this gap, i.e., to find better upper or
lower bounds for either the general streaming problem or the verification of any
hypothesis. For the approximative, probabilistic setting, we expanded the algorithm
from Alon et al. to a setting where we may have an arbitrarily small approximation
ratio α > 1 and an arbitrarily high success probability p < 1.

108 Chapter 6. Number of Distinct Items Problem

Chapter 7

Conclusion

In the final chapter, we first summarize the entire thesis and most important results.
Afterwards, we state the resulting conclusion and gained insights. Finally, we list
some possibilities how one may improve the stated space complexity bounds and
how one may apply the introduced concepts on other streaming problems.

7.1 Summary

In the summary of this thesis, we focus on three different aspects: The introduced
concept to prove lower bounds on space complexity and the proven results of the
two streaming problems, the most frequent item problem and the number of distinct
items problem.

Lower Bounds on Space Complexity: In Chapter 4, we have introduced two
types of fooling sets (Definition 4.1 by Ablayev [Abl96] and Definition 4.2 by
Hromkovič [Hro97]) based on the communication complexity theory, that prove
a lower bound on space complexity for streaming problems in an exact, determin-
istic setting, as stated in Theorem 4.1. With Theorem 4.2 and Theorem 4.3 by
Ablayev [Abl96], we have two concepts to prove a lower bound in a probabilistic
setting.

Furthermore, this already known concept has been transmitted to an approxima-
tive setting by introducing an α-fooling set as defined in Definition 4.3. An α-fooling
set ensures, that any two representatives of this α-fooling set lead to different cache
states because, for at least one test entry, the function value differ by a multiplicative
factor of more than the approximation ratio α. With such an α-fooling set, we
can prove a space complexity lower bound on a 1-sided approximation ratio of α
(Theorem 4.4), or a 2-sided approximation ratio of

√
α (Theorem 4.5), respectively.

Additionally, in Section 4.3, we have introduced a technique to prove space
complexity lower bounds for hypothesis verifications. If we want to verify any
hypothesis for a given streaming problem, we have to find a hypothesis fooling set
(Definition 4.4) for the exact, or a hypothesis α-fooling set (Definition 4.5) for the
approximative setting. Similarly to the general streaming problem, we can prove
lower bounds on the space complexity in any exact or approximative, deterministic
or probabilistic setting with such a hypothesis fooling set or hypothesis α-fooling set.

109

110 Chapter 7. Conclusion

With the proven theorems in Chapter 5 and Chapter 6, we have illustrated the
usage of these concepts to prove lower bounds on space complexity.

Most Frequent Item Problem: In the analysis of the most frequent item prob-
lem, we have seen that it is not efficiently solvable. We have seen a space complexity
upper bound of O

(
m · log

(
n
m

))
(Theorem 5.5 and Theorem 5.6) for the exact de-

terministic setting, which can be further improved by a multiplicative factor of p
α2

for a probabilistic or approximative setting with any success probability p < 1 and
a 2-sided approximation ratio α > 1, respectively. For any problem setting, we
proved a linear space complexity lower bound of Ω(m) (Theorem 5.7, Theorem 5.9,
Corollary 5.3, and Corollary 5.6) if the success probability is at least p > 1

2 and
we have a 2-sided approximation ratio of at most α <

√
2. For approximation

ratios of α ≥
√

2, we only have weak lower bounds, which are of the complexity
order Ω(log(log(m))− log(log(α))) (Corollary 5.5 and Corollary 5.8). For the exact,
deterministic or probabilistic setting, we are able to prove a lower bound that is of
the same complexity order as the upper bound, namely Ω

(
m · log

(
n
m

))
(Theorem 5.8

and Theorem 5.10)
For the hypothesis verification, we can reprove most linear lower bounds (Corol-

lary 5.9 and Corollary 5.11), but not the one that is of the same order as the upper
bound (Conjecture 5.1 and Corollary 5.12). Nevertheless, we were not able to design
an algorithm that may profit from this gap between Ω(m) and O

(
m · log

(
n
m

))
for

the hypothesis verification.

Number of Distinct Items Problem: The number of distinct items problem is
efficiently solvable in an approximative and randomized setting. Alon et al. [AMS99]
state an upper bound of O(log(m)) for the conditional setting with an approximation
ratio α > 2 and a success probability of p = 1− 2

α . We could enhance this limitation
such that, for any arbitrarily small approximation ratio α > 1 and arbitrarily good
success probability p < 1, we can efficiently solve the number of distinct items
problems with a storage size of O

(
log(m)

(α−1)2·(1−p)

)
(Conjecture 6.1). For approximation

ratios α <
√

3/2, we can prove a lower bound of complexity order Ω(log(m))
(Corollary 6.2, Corollary 6.3, and Theorem 6.13), that is of the same order as the
upper bound for some fixed approximation ratio and success probability.

For the other three settings, namely, the exact deterministic, exact probabilistic,
and approximative deterministic setting, we can prove a linear lower bound, namely
Ω(m) ([AMS99], Theorem 6.3, Corollary 6.1, Theorem 6.4, and Corollary 6.2). This
lower bound order is only valid for approximation ratios α <

√
3/2. On the other

hand, the upper bound is O
(
m
α2

)
(Theorem 6.2 and Theorem 6.5), which is almost

tight to the lower bound for the exact deterministic setting.
For the hypothesis verification, we reproved the same lower bounds as for the

general streaming problem (Theorem 6.14, Theorem 6.15, Theorem 6.16, and Theo-
rem 6.17). Furthermore, in Conjecture 6.2, we argued, why we are not able to find
an improved space complexity lower bound for the verification of any hypothesis
compared to the general streaming problem.

7.2. Conclusion 111

7.2 Conclusion

Based on this summary, we can conclude that the introduced techniques to prove
lower bounds on space complexity are very useful. In most cases, we could prove
lower bounds that are of the same order as the identified upper bound, and, e.g., for
the exact deterministic number of distinct items problem, we have an almost tight
bound. This is not only the case for the different settings of the general streaming
problems, but also for the hypothesis verification. Only for larger approximation
ratios, namely α ≥

√
2, the technique of fooling sets based on communication

complexity reveals some weaknesses. The communication complexity uses as a basis
a model of two computers that have unbounded storage and computation resources,
but a limited communication. As we have stated in Theorem 5.15 and Theorem 6.9, it
is impossible to prove a linear lower bound for the two analyzed streaming problems
for approximation ratios of α ≥

√
2 using the technique of communication complexity

with the two computer model.
For both streaming problems and approximation ratio of α <

√
2, the upper

and lower bounds are close to each other, and, therefore, we can conclude that the
described streaming algorithms of the upper bounds are almost optimal.

7.3 Future Work

In this last section, we discuss a few points how one may extend or improve the
results and proofs. We structure this with three elements: How one may improve
the stated proofs, which further proofs might be possible and a short outlook, for
which further streaming problems the introduced concepts could be applied.

Improvement of Stated Theorems: In many space complexity lower bound
proofs, we used a fooling set that has a fooling set size of

(k
k/2
)
, as e.g., in Theorem 5.7,

Theorem 5.16, or Theorem 6.14. This fooling set size leads to a space complexity of
log2

((k
k/2
))
> k − log2(k). In some cases, this second order term can be eliminated

with a more clever definition of the fooling set. For example, for Theorem 6.3, we can
define the fooling set with a cut at l := n− 1 and the representatives IiL contain any
combination of distinct items with a distinctness of f(IiL) ∈ {1, . . . ,m− 1}. Then,
we have not only

(m
m/2

)
elements in the set of representatives, but

|FL| =
m−1∑
i=1

(
m

i

)
= 2m − 2.

With such a fooling set, we have a space complexity lower bound of m−1, instead
ofm−log2(m). This transformation can be made for some deterministic lower bounds.
But it is possible that, for such a fooling set, we might fail to verify the minimality of
the test set, which is required for applying Theorem 4.3 on a probabilistic lower bound.

Some streaming algorithms are only space-, but not time-efficient. E.g., the
introduced algorithms for the exact deterministic most frequent item problem in
Theorem 5.5 or Theorem 5.6 that space-efficiently store the histogram, would require
large update times, as the individual frequency counts are not indexed, but only

112 Chapter 7. Conclusion

listed one after the other. The update algorithm, that increases the frequency count
xi, would have to parse the entire data-list, until the xi-th frequency count is found,
namely, until xi − 1 delimiters have been counted. In a concrete implementation of
this algorithm, one may be interested in using a larger storage size, that enables a
faster update procedure.

Further Proofs: For the number of distinct items problem, we could only for-
mulate a conjecture for the approximative, probabilistic setting (Conjecture 6.1),
but not mathematically prove the lower bound of the probability gap, which was
illustrated in Figure 6.2. If one can show the correctness of this intermediate step
and use some better approximations, one has proven the statement of Conjecture 6.1.

For approximation ratios α ≥
√

2, we were only able to design lower bound proofs
with a Ω(log(log(k)) complexity order for both streaming problems. As we have
stated in Theorem 5.15 and Theorem 6.9, it is impossible to prove a lower bound
above Ω(log(k)) with the two-computer model of the communication complexity.
Nevertheless, one may probably design a fooling set that leads to an increased lower
bound, which is closer to this limit.

Further Streaming Problem: As future work, one may apply these proof con-
cepts to other streaming problems. At the development of this thesis, the two
streaming problems Equality and Median were shortly touched and the main results
are summarized in the following for possible future work.

Streaming Equality Problems: The streaming binary decision problem (Defi-
nition 3.4) equality has input streams x = (x1, . . . , xn) that represent two bit-strings
b1 = (x1, . . . , xk) and b2 = (xk+1, . . . , xn) with k = n

2 , that have to be analyzed,
whether they are equal or not, namely,

b1 = b2 ⇐⇒ ∀i ∈ {1, . . . , k} : xi = xk+i.

This streaming equality problem can be solved deterministically with k = n
2

storage bits that store b1. We can prove a space complexity lower bound of k =
n
2 with a matrix fooling set (Definition 4.2) that contains all possible bit-strings
bi = (x1, . . . , xk) as rows and columns. This matrix fooling set has a rank of 2k,
as it is the identity matrix. Therefore, we have a space complexity lower bound of
log2(2k) = k = n

2 , which is tight to the upper bound.
With Corollary 4.1 based on Theorem 4.2, we have a space complexity lower

bound of log2(n2) − 4 = log2(n) − 5 for the probabilistic equality problem with a
success probability of p ≥ 0.505. This is almost tight to the 1-sided Monte Carlo
algorithm (Definition 3.7) for the equality problem, that requires only O(log(n))
storage bits, as e.g., explained in detail by Hromkovič [Hro97], in Example 2.5.5.6.

The hypothesis verification will lead to exactly the same lower bounds, when one
chooses the same hypothesis for the entire fooling set. Therefore, as the upper and
lower bound from the general equality problem are almost tight, it is very likely, that
the equality problem does not profit from a hypothesis.

7.3. Future Work 113

Streaming Median Problems: The streaming median problem is a streaming
counting problem (Definition 3.2) that has to identify the median of the input values.
If the input stream length is odd, the median is just the input value in the middle, if
one would sort the input stream. Otherwise, if the input stream length is even, the
median is defined as the average between the two values in the middle of the sorted
input values.

Obviously, this streaming problem can easily be solved with a histogram, as for the
most frequent item problem, which requires a space complexity of O

(
m · log

(
n
m

))
. If

we have the condition n ∈ Θ(m), we can prove a space complexity lower bound of Ω(n)
for the exact, deterministic and probabilistic setting. For the ease of presentation,
we assume that n is odd and n ≤ m. This lower bound complexity is possible with a
fooling set that has a cut at l := n+1

2 . Each representative contains l = n+1
2 distinct

items from the set {2, . . . , n − 1} ⊂ {1, . . . ,m}. The test set contains n+1
2 entries

with different frequencies of the item 1 and m, namely,

FR := {{1, 1, . . . , 1, 1}, {1, 1, . . . , 1,m}, . . . , {1,m, . . . ,m,m}, {m,m, . . . ,m,m}}.

For any two representatives, if we sort the items of the representatives, we have
at least one input value index, such that the two input values are differing. Then, we
can cleverly choose a test entry, or its frequencies of 1 and m, such that this differing
item is the median. This argument verifies that we have a fooling set. The size of
the fooling set is

|FL| =
(
n− 2
n+1

2

)
∈ Ω(2n).

Therefore, for the given condition, we have a space complexity lower bound of
Ω(n). As future work, one can extend this fooling set concept to a more general
condition and mathematically prove that it satisfies the properties of a fooling set.

Interestingly, for the median problem, the hypothesis verification is very space-
efficient. For any hypothesis, we can just count the number of input values above
and below the hypothesis to justify the correctness of a hypothesis. Therefore, the
hypothesis verification requires only a space complexity of O(log(n)), which is from
a lower complexity order than the proven lower bound from the general streaming
problem.

In this thesis, we have seen that, for several problems and settings, one cannot
significantly decrease the space complexity by just verifying a hypothesis instead of
computing the solution to a general streaming problem. Nevertheless, the median
problem and further streaming problems demonstrate the possible advantage of
additional information.

114 Chapter 7. Conclusion

Bibliography

[Abl96] Farid M. Ablayev. Lower bounds for one-way probabilistic communication
complexity and their application to space complexity. Theor. Comput.
Sci., 157(2):139–159, 1996.

[Agg07] Charu C. Aggarwal. An introduction to data streams. In Data Streams -
Models and Algorithms, pages 1–8. 2007.

[AJKS02] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Approximate
counting of inversions in a data stream. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada, pages 370–379, 2002.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137–
147, 1999.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. Models and issues in data stream systems. In Proceedings
of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 3-5, Madison, Wisconsin, USA,
pages 1–16, 2002.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in
communication complexity theory (preliminary version). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 337–347, 1986.

[CH09] Graham Cormode and Marios Hadjieleftheriou. Finding the frequent
items in streams of data. Commun. ACM, 52(10):97–105, 2009.

[Deu04] Peter Deuflhard. Newton methods for nonlinear problems : affine invari-
ance and adaptive algorithms. Springer series in computational math-
ematics. Springer, Berlin, Heidelberg, New York, 2004. Autre tirage :
2006.

[Dob10] Vladimir A. Dobrushkin. Methods in Algorithmic Analysis. Chapman &
Hall/CRC Computer and Information Science Series, 2010.

[HR88] Bernd Halstenberg and Rüdiger Reischuk. On different modes of commu-
nication (extended abstract). In Proceedings of the 20th Annual ACM

115

116 Bibliography

Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 162–172, 1988.

[Hro97] Juraj Hromkovic. Communication Complexity and Parallel Computing.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1997.

[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the
frequency moments of data streams. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, Baltimore, MD, USA, May
22-24, 2005, pages 202–208, 2005.

[Kel03] C. T. Kelley. Solving Nonlinear Equations with Newton’s Method. Funda-
mentals of Algorithms / Nicholas J. Higham. Philadelphia, 2003.

[KNR01] Ilan Kremer, Noam Nisan, and Dana Ron. Errata for: On randomized one-
round communication complexity. Computational Complexity, 10(4):314–
315, 2001.

[Kom15] Dennis Komm. Eine Einführung in Online-Algorithmen. Skript zur
Vorlesung APPROXIMATIONS- und ONLINE-ALGORITHMEN, ETH
Zürich, 2015.

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic com-
munication complexity of set intersection. SIAM J. Discrete Math.,
5(4):545–557, 1992.

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A
simple algorithm for finding frequent elements in streams and bags. ACM
Trans. Database Syst., 28:51–55, 2003.

[MM12] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency
counts over data streams. PVLDB, 5(12):1699, 2012.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited
storage. Theor. Comput. Sci., 12:315–323, 1980.

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Founda-
tions and Trends in Theoretical Computer Science, 1(2), 2005.

[Pra15] Ved Prakash. Efficient Delegation Algorithms for Outsourcing omputations
on Massive Data Streams. PhD thesis, National University of Singapore,
2015.

[PS84] R. Paturi and J. Simon. Probabilistic communication complexity. In
Proceedings of the 25th Annual Symposium onFoundations of Computer
Science, 1984, SFCS ’84, pages 118–126, Washington, DC, USA, 1984.
IEEE Computer Society.

[Raz92] Alexander A. Razborov. On the distributional complexity of disjointness.
Theor. Comput. Sci., 106(2):385–390, 1992.

Bibliography 117

[Rou15] Tim Roughgarden. Communication complexity (for algorithm designers).
Electronic Colloquium on Computational Complexity (ECCC), 22:156,
2015.

[San04] Paul M. Sant. Dictionary of Algorithms and Data Structures. NIST:
National Institute of Standards and Technology, 17 December 2004.

[SBB+02] Josef Stoer, Roland Bulirsch, Richard H. Bartels, Walter Gautschi, and
Christoph Witzgall. Introduction to numerical analysis. Texts in applied
mathematics. Springer, New York, 2002.

[TW12] Luca Trevisan and Ryan Williams. Notes on streaming algorithms. CS154:
Automata and Complexity, 2012.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive
computing (preliminary report). In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta,
Georgia, USA, pages 209–213, 1979.

[Yao83] Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (ex-
tended abstract). In 24th Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7-9 November 1983, pages 420–428, 1983.

118 Bibliography

MH
Eidgenössische Technische Hochschute Zürich
Swiss Federat lnstitute of Technotogy Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis,
Master's thesis and any other degree paper undertaken during the course of studies, including the
respective electron ic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters)

Us, n3 AJJì l,^uL [" L.,ot[on }re.or",, r,5 Atgoi,t!,* stn

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

B"lÇ R'F,.L

With my signature I confirm that
I have committed none of the forms of plagiarism described in the 'Citation etiquette' information
sheet.

- I have documented all methods, data and processes truthfully.

- I have not manipulated any data.

- I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism

Place, date Signature(s)

Zoàrt, oÅ.o\.Lu 6

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

