I. Total Synthesis of Pallambins A and B
 II. Ti(III)-Mediated Regioselective Epoxide Opening
 III. Synthesis of Raman-Active Epoxyisoprostane Analogs

A dissertation submitted to ETH ZURICH
for the degree of DOCTOR OF SCIENCES
presented by

CHRISTIAN EBNER
M.Sc. ETH Zurich
born on 05.05.1988

Citizen of the Federal Republic of Germany

Accepted on the recommendation of Prof. Dr. Erick M. Carreira, examiner

Prof. Dr. Karl-Heinz Altmann, co-examiner

Acknowledgements

I am grateful to Prof. Dr. ERICK M. CARREIRA for supervising my graduate studies. I am indebted to him for his constant trust in me and the projects I was working on as well as the scientific freedom I enjoyed during the last four years. I want to thank him for entrusting me with the organization of lectures, exercises and exams as well as with the Synfacts team. His constructive and critical input provided the basis for the success of my graduate studies.

I would like to express my sincere gratitude to Prof. Dr. KARL-HEINZ ALTMANN for accepting the co-examination of my thesis. His valuable comments and corrections are highly appreciated.

A special thank goes to the proofreaders of this thesis, Dr. HANNES ZIPFEL, MATTHIAS WESTPHAL, STEFAN FISCHER, ADRIEN JOLITON, JOHANNES BOSHKOW and SARA DA ROS for their effort and time to thoroughly proofread this manuscript. Their suggestions, comments and corrections substantially improved my thesis.

I am grateful to my chemistry mentors, Dr. Tina voci, Dr. STEFAN DIETHELM and Dr. CHRISTIAN NILEWSKI for their constant effort to teach me invaluable experimental and theoretical skills, for their time and patience and all their enthusiasm during my education.

Furthermore, I want to thank Dr. sébastien goudreau, Dr. nikolas Huwyler, Dr. SIMON BREITLER, ADRIEN JOLITON, STEFAN FISCHER, LEONARDO NANNINI and MICHAEL IMHOF of the I. B. in G338 for the fantastic time we spent together. I cannot express how important it was to me to be able to work with such an outstanding group of people over the last four years. Your support and friendship is invaluable to me.

Additionally, I want to thank all past and present members of the Carreira group. It was highly inspiring for me to collaborate with such talented, friendly and helpful people. The scientific environment in this group is inimitable. I highly appreciated that there was always an open ear and helpful advice for every chemical problem I had over the time. Special thanks goes to Prof. Dr. DAVID SARLAH for all his time, enthusiasm and valuable advice. Furthermore, I want to thank STEFAN FISCHER, ADRIEN JOLITON, LEONARDO NANNINI, MARCO brandstätter, Dr. ERIK DA funder, Prof. Dr. David sarlah, andrej shemet, johannes BOSHKOW, Dr. HANNES ZIPFEL and MATTHIAS WESTPHAL for the amazing time outside the lab during the Wine-Hikes, the Yugo-Trips, the Munich-Soccer-Trips and all the numerous awesome nights we spent together.

I consider myself fortunate that I was allowed to supervise ALEXANDRA EbERLE during her three-year apprenticeship as a laboratory technician. I want to thank her not only for the valuable synthetic support but also for her unique character with which she was able to cheer up all our moods in G338. I am sure no matter how much she thinks she learned from me, I have certainly learned more from her.

ANKE KLEINT is acknowledged for taking care of organizational and administrative issues.

This thesis would have never been possible without the excellent infrastructure at ETH Zurich. Accordingly, I want to thank the MS service with LOUIS BERTSCHI, OSWALD GRETER, rolf häfliger and Dr. xiangyang zhang, the NMR service with René arnold, rainer FRANKENSTEIN, PHILIPP ZUMBRUNNEN, STEPHAN BURKHARDT and Dr. MARC-OLIVER EBERT and the SMoCC-team with Dr. NILS TRAPP and MIChaEl SOLAR. Furthermore, I am thankful to the whole Schalter- and Entsorgungs team.

Vorrei ringraziare la famiglia Stra per la loro incredibile ospitalità e iminensa generosità. Il tempo trascorso a Novello mi ha sempre dato nuovo forze - Grazie mille.

Besonders möchte ich mich bei Philip JütTner für die tiefe Freundschaft der letzten 16 Jahre bedanken. Immer wenn mir die Dinge während des Doktorats drohten über den Kopf zu wachsen konnte ich mich an dich wenden und mich wieder über das Schöne und Wesentliche im Leben freuen. Danke fürs Aufheitern, die zahlreichen Trainings, die vielen unvergesslichen Abende, die geniale Thailand-Reise und für die ganzen tollen Jahre - auf das noch viele Weitere folgen mein Freund.

Mein besonderer Dank gilt meinen Eltern. Erst eure bedingungslose Unterstützung und euer Glaube an mich, brachte mich an den Punkt an dem ich heute stehe - Danke!

Zuletzt möchte ich mich bei SARA DA ROS für die unglaublich schöne Zeit und die grenzenlose Unterstützung bedanken. Ich bin dankbar für deine Liebe und Zuneigung und freue mich auf unsere gemeinsame Zukunft. Ich liebe dich!

Publications

K. C. Nicolaou, C. R. H. Hale, C. Ebner, C. Nilewski, C. F. Ahles, D. Rhoades

Synthesis of Macroheterocycles through Intramolecular Oxidative Coupling of Furanoid $\boldsymbol{\beta}$-Ketoesters

Angew. Chem. Int. Ed. 2012, 51, 4726-4730.

K. C. Nicolaou, C. Nilewski, C. R. H. Hale, C. F. Ahles, C. A. Chiu, C. Ebner, A. ElMarrouni, L. Yang, K. Stiles, D. Nagrath
Synthesis and Biological Evaluation of Dimeric Furanoid Macroheterocycles: Discovery of New Anticancer Agents

J. Am. Chem. Soc. 2015, 137, 4766-4770.
C. Ebner, E. M. Carreira

Pentafulvene for the Synthesis of Complex Natural Products: Total Syntheses of (\pm)-Pallambins A and B

Angew. Chem. Int. Ed. 2015, 54, 11227-11230.

Poster and Oral Presentations

Speaker at the $\mathbf{4}^{\text {th }}$ SSCI-Symposium
ETH Zurich, December 2013

Poster Contribution to the $5^{\text {th }}$ SSCI-Symposium
ETH Zurich, January 2015

Poster Contribution to the Novartis-Day
ETH Zurich, September 2015

Table of Contents

Abstract vi
Zusammenfassung viii
List of Abbreviations, Acronyms and Symbols
Part I Total Synthesis of Pallambins A and B 1
1 Introduction 3
1.1 Natural Products Isolated from Pallavicinia 3
1.2 Other Syntheses of Pallavicinia Terpenoids 7
2 Synthetic Strategy 17
2.1 General Considerations 17
2.2 Retrosynthetic Analysis 18
2.3 Conclusion 19
3 Results and Discussion 21
3.1 Fulvene as a Diene in Diels-Alder Reactions 21
3.2 $\mathrm{C}(3)$-Ketone Formation and α-Functionalization 26
$3.3 \quad \mathrm{C}(9)-\mathrm{C}(10)$ Bond Formation 31
3.4 Cyclopropanation of the endo Olefin 39
3.5 Revision of the Synthetic Strategy 41
3.6 Selective Cyclopropanation and Hydrogenation 42
3.7 $\quad \mathrm{C}(3)$-Ketone Generation and Modified α-Functionalization 45
3.8 C(9)-C(10) Bond Formation via C-H Insertion 51
3.9 Stereoselective Functionalization of $\mathrm{C}(8)$ and $\mathrm{C}(9)$ 53
3.10 Elaboration of the Bromoisoxazoline 55
3.11 Alkoxycarbonylation and Completion of the Synthesis 62
4 Conclusion 67
Part II Regioselective Ti(III)-Mediated Epoxide Opening 71
5 Introduction 73
5.1 Established Methods for Reductive Epoxide Openings 73
6 Aim of the Project 81
6.1 Total Synthesis of Microcin SF608 81
6.2 Studies on the Origin of Selectivity 82
7 Results and Discussion 85
7.1 Substrate Design and Preparation 85
7.2 Exploration of the Substrate Scope 88
8 Conclusion 93
Part III Synthesis of Raman-Active Epoxyisoprostane Analogs 95
9 Introduction 97
9.1 Investigation of the Role of Oxidized Phospholipids in Inflammatory Diseases 97
10 Aim of the Project 103
10.1 Mode of Action of EC and CycloEC 103
10.2 Imaging of Alkyne-Tagged Biomolecules in Living Cells by Raman Spectroscopy 104
10.3 Conclusion 107
11 Synthetic Strategy 109
12 Results and Discussion 111
12.1 Synthesis of PDEC and PDCycloEC 111
12.2 Conclusion and Outlook 113
Part IV Experimental Section 115
13 Experimental Procedures 117
13.1 General Methods 117
13.2 Chemicals 117
13.3 Analytics 118
13.4 Experimental Procedures 119
13.5 X-Ray Chrystallographic Data 177
13.6 NMR Spectra 201

Abstract

In 2012, the two cyclopropane-containing diterpenoids pallambins A (I) and B (II) were isolated by lou and co-workers from the Chinese liverwort Pallavicinia ambigua (Figure I). Additionally, the structurally related pallambins C (III) and D (IV) were also present in the extracts. Pallambins A (I) and B (II) are endowed with thus far unprecedented tetracyclo[4.4.0 $0^{3,5} .0^{2,8}$]decane core structures, embedding cyclopropanes in a sterically encumbered environment. Furthermore, these natural products possess ten contiguous stereocenters, two of which are quaternary. These challenging structural aspects render pallambins A and B intriguing targets for total synthesis. The first part of this thesis describes the development of a synthetic strategy, which ultimately culmintated in the first total synthesis of I and II.

Figure I: Structures of pallambins A-D (I-IV) isolated by LOU and co-workers.
Due to the challenges associated with the preparation of the highly congested tetracyclic core of the pallambins A and B, our synthetic strategy focused on the development of an efficient entry towards key intermediate VIII (Scheme I).

Scheme I: Total synthesis of pallambins A (I) and B (II).
Upon thorough analysis of the latter, we became intrigued by the idea to generate the bicyclo[2.2.1]heptane moiety via a Diels-Alder reaction between pentafulvene (V) and a suitable dienophile. Due to the lack of precedents, extensive optimization studies were necessary to enable this reaction. Ultimately, methyl acrylate was found to be a dienophile, leading to ester VI. Further transformations into diazo ketone VII included oxidative decarboxylation, regio- and diastereoselective cyclopropanation and diastereoselective hydrogenation of the exo olefin. A highly efficient $\mathrm{C}-\mathrm{H}$ insertion then completed the
synthesis of tetracycle VIII, which was further converted into the targeted diterpenoids within several additional steps. Pallambins A and B were obtained in a total of 22 steps and 0.5% (pallambin A) respectively 3.8% (pallambin B) overall yield from pentafulvene (V).

In the second part of this thesis, a $\mathrm{Ti}(\mathrm{III})$-mediated epoxide opening showing remarkable regioselectivities due to intramolecular hydrogen atom transfer was investigated (Scheme II). The results obtained suggest that this reaction proceeds via a $\mathrm{S}_{\mathrm{H}} 2$ mechanism including the transfer of a proximal heteroatom bound hydrogen atom (X) leading to radical XI. The latter then subsequently undergoes one electron reduction to XII. In addition to the exploration of the substrate scope, this transformation could be rendered catalytic using manganese as the stoichiometric reductant.

Scheme II: Ti(III)-mediated regioselective epoxide opening via intramolecular hydrogen atom transfer.
The last part of this thesis describes the synthesis of phenyldiyne-tagged Raman active analogs of epoxyisoprostane EC (XIII) and CycloEC (XV) for live cell imaging of these antiinflammatory agents (Scheme III). The synthetic strategy is widely based on the total synthesis of CycloEC (XV) developed previously in our group. The crucial phenyldiyne moiety was introduced by a late-stage palladium-catalyzed $\mathrm{C}(\mathrm{sp})-\mathrm{C}(\mathrm{sp})$ coupling reaction.

Scheme III: Synthesis of phenyldiyne-tagged Raman active analogs of EC (XIV) and CycloEC (XV).

Zusammenfassung

Im Jahre 2012 wurden die zwei Cyclopropan-Diterpenoide Pallambine A (I) und B(II) von LOU und Mitarbeitern aus dem chinesischen Moos Pallavicinia ambigua isoliert (Abbildung I). Des Weiteren waren auch die strukturell verwandten Pallambine C (III) und D (IV) in den Extrakten vorhanden. Die Pallambine A (I) und B (II) sind mit bislang unbekannten Tetracyclo[4.4.0 $0^{3,5} .0^{2,8}$]decan-Kernen ausgestattet, welche Cyclopropane in sterisch sehr gehinderter Umgebung enthalten. Zusätzlich besitzen diese Naturstoffe zehn aufeinanderfolgende Stereozentren, von denen zwei quaternärer Natur sind. Diese strukturellen Aspekte machen die Pallambine A und B zu faszinierenden Zielmolekülen für die Totalsynthese. Der erste Teil dieser Dissertation behandelt die Entwicklung einer Synthesestrategie, welche schlussendlich zur ersten Totalsynthese von I und II führte.

Pallambin C (III)

Pallambin D (IV)

Abbildung I: Struktur der Pallambine A-D (I-IV), isoliert von Lou und Mitarbeitern.
Aufgrund der Schwierigkeiten im Zusammenhang mit der Herstellung des hochgradig geballten tetracyclischen Kerns der Naturstoffe, zielte unsere Synthesestrategie auf die Entwicklung eines effizienten Zugangs zu Schlüsselintermediat VIII (Schema I).

Schema I: Totalsynthese der Pallambine A (I) und B (II).
Eine gründliche Analyse der Pallambine A und B hat uns von der Idee begeistert, die Bicyclo[2.2.1]heptan-Grundstruktur mittels einer Diels-Alder Reaktion zwischen Pentafulven (V) und einem passenden Dienophil aufzubauen. Wegen des Fehlens von Präzedenzfällen waren umfassende Optimierungsstudien nötig um diese Reaktion zu ermöglichen. Letztendlich wurde Methylacrylat als Dienophil benutzt um Ester VI zu erhalten. Weitere Transformationen, die zu Diazoketon VII führten, waren unter anderem eine oxidative Decarboxylierung, eine regio- und diastereoselektive Cyclopropanierung,
sowie die Hydrierung des exo Olefins. Eine hocheffiziente C-H Insertion vollendete die Synthese des wichtigen Tetracycluses VIII, von wo aus die Synthese in weiteren Schritten beendet wurde. Die Pallambine A und B wurden auf diesem Wege in einer Gesamtzahl von 22 Schritten und 0.5% (Pallambin A), beziehungsweise 3.8% (Pallambin B), Gesamtausbeute ausgehend von Pentafulven (V) erhalten.

Der zweite Teil dieser Dissertation, behandelt die Erforschung einer Ti(III)-vermittelten Epoxidöffnung, welche bemerkenswerte Regioselektivitäten aufgrund intramolekularen Wasserstoffatomtransfers zeigt (Schema II). Die Resultate dieser Studie legen nahe, dass diese Reaktion via eines $\mathrm{S}_{\mathrm{H}} 2$ Mechanismus eines intramolekular übertragenen heteroatomgebundenen Wasserstoffatoms abläuft, was zur Bildung von Radikal XI führt. Dieses wird dann durch eine Ein-Elektronen-Reduktion zu XII umgesetzt. Zusätzlich zur Erforschung des einsetzbaren Substratbereichs, wurde diese Transformation auch katalytisch durchgeführt, wobei Mangan als stöchiometrisches Reduktionsmittel benutzt wurde.

Schema II: Ti(III)-vermittelte regioselektive Epoxidöffnung via intramolekularem Wasserstoffatomtransfer.
Der letzte Teil dieser Dissertation beschreibt die Synthese von Phenyldiin-markierten ramanaktiven Analoga der Epoxyisoprostanoide EC (XIII) und CycloEC (XV) zur Untersuchung dieser entzündungshemmenden Reagenzien in der lebenden Zelle (Schema III). Die Strategie beruht weitgehend auf der Totalsynthese von CycloEC (XV), welche in unserer Gruppe entwickelt wurde. Die ausschlaggebende Phenyldiin-Gruppe wurde auf einer späten Stufe durch eine Palladium-katalysierte C(sp)-C(sp) Kupplungsreaktion eingeführt.

Schema III: Synthese von Phenyldiin-markierten ramanaktiven Analoga von EC (XIV) und CycloEC (XV).

List of Abbreviations, Acronyms and Symbols

Abbreviations and Acronyms

9-BBN 9-borabicyclo[3.3.1]nonane
ABSA acetamidobenzenesulfonyl azide

Ac acetyl
acac
AIBN
app
atm
b
BHT
BMDC
acetylacetonato
azobisisobutyronitrile
apparent
atmosphere
broad
2,6-di-tert-butyl-4-methylphenol

Bn
bone marrow-derived dendritic cells

Boc
Bu
Bz benzoyl
C Celsius
c
concentration, centi
cal
calorie
calcd
CAM
cat
Cbz carboxybenzyl
CD circular dichroism
cf
COSY
Cp
CPBA
CSA
d
d.r.
dba
DBU
corger
confer
correlation spectroscopy
cyclopentadienyl
chloroperoxybenzoic acid
camphor-10-sulfonic acid
doublet
diastereomeric ratio
dibenzylideneacetone
1,8-diazabicyclo[5.4.0]undec-7-ene

DEPT	distortionless enhancement by polarization transfer
DIBAL	diisobutylaluminum hydride
DMAP	4-dimethylaminopyridine
DME	dimethyl ether
DMF	N, N-dimethylformamide
DMP	Dess-Martin periodinane
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
DMSO	dimethylsulfoxide
DQF	double-quantum filtered
EC	epoxycyclopentenone isoprostanes
$e e$	enantiomeric excess
EI	epoxyisoprostane, impact ionization
equiv	equivalents
ESI	electron spray ionization
esp	$\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramethyl-1,3-benzenedipropionate
Et	ethyl
ETH	Eidgenössische Technische Hochschule
FT	fourier transform
g	gram
h	hour
HMBC	heteronuclear multiple bond coherence
HMDS	hexamethyldisilazide
HMPA	hexamethylphosphortriamide
HRMS	high resolution mass spectrometry
HSQC	heteronuclear single quantum coherence
Hz	Hertz
i	iso
IBX	2-iodoxybenzoic acid
IC_{50}	half maximal inhibitory concentration
IL	Interleukin
IPr	N, N '-bis(2,6-diisopropylphenyl)-imidazol-2-ylidiene
IR	infrared
J	coupling constant
k	kilo

Keap1	Kelch-like ECH-associated protein 1
L	liter
M	molar, mega
M	molecular ion
m	milli, meter, multiplet or unresolved
m	meta
MALDI	matrix-assisted laser desorption/ionization
Me	methyl
min	minute
MOM	methoxymethyl acetal
MS	molecular sieves
Ms	methanesulfonyl
n	nano
n	normal
NBS	N -bromosuccinimide
NCS	N -chlorosuccinimide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
Nrf2	Nuclear factor-erythroid-2-related factor 2
o	ortho
ORTEP	oak ride thermal ellipsoid plot
OxPL	oxidized phospholipid
p	para
PC	phosphatidylcholine
PDC	pyridinium dichromate
PECPC	epoxycyclopentenone isoprostane phospholipid
PEIPC	epoxyisoprostane phospholipid
pH	negative decadic logarithm of hydrogen ion concentration
Ph	phenyl
Piv	pivaloyl
pK a	negative decadic logarithm of the acid dissociation constant
pmdba	bis(4-methoxybenzylidene)acetone
PPAR- γ	peroxisome proliferator-activated receptor gamma
ppm	parts per million

PPTS	pyridinium p-toluenesulfonate
Pr	propyl
PTAD	(1-adamantyl)-(N-phtalimido)acetate
q	quartet
quant	quantitative
Ra-Ni	Raney nickel
R_{f}	retention factor
RT	room temperature
s	singlet, second
T	temperature
t	triplet
t	tert
TBAF	tetra- n-butylammonium fluoride
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
TC	thiophene-2-carboxylate
TES	triethylsilyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMP	$2,2,6,6-$ tetramethylpiperidine
TMS	trimethylsilyl
TMTU	tetramethylthiourea
Ts	p-toluenesulfonyl
UV	ultraviolet
X	halogen atom

Symbols

-

A
$[\alpha]^{\mathrm{T}}{ }_{\mathrm{D}}$
δ
μ
v
degree
Ångström
specific rotation at temperature T at the sodium D line
chemical shift in ppm
micro
wavenumber

Part I

Total Synthesis of Pallambins A and B

1 Introduction

1.1 Natural Products Isolated from Pallavicinia

1.1.1 Background

Bryophytes are all-green, seedless embryophyta, which lack vascular tissue (Figure 1.1). They belong to the most primitive land plants, grow on rocks, trees and soil and are distributed all over the world. To date, about 24000 species are known. Bryophytes are further divided into three classes, Marchantiophyta (liverwort), Bryophyta (moss) and Anthocerotophyta (hornwort). ${ }^{1}$ On the basis of their secondary metabolites, liverworts are classified into two subclasses, Jungermannidae and Marchantiidae. ${ }^{2}$ Both subclasses comprise of numerous orders and species.

Figure 1.1: Selected examples of bryophytes: a) Liverwort (Pallavicinia subciliata); b) Moss (Sphagnum sp.); c) Hornwort (Phaeoceros laevis). ${ }^{3}$

Due to their antibacterial activity, mosses have been used in traditional Chinese folk medicine to treat burns, eczemas and external wounds. These features have also been exploited to dress wounds during World War I, when material supply was impeded. Despite this inarguably interesting biological profile, phytochemical investigations of liverworts only started in the last decades. A reason for this might have beeen the difficulties associated with species classification and collection of larger amounts of pure samples. ${ }^{\text {1a) }}$

[^0]
1.1.2 Phytochemical Investigations

Phytochemical investigations of bryophytes revealed a variety of natural product classes, namely flavonoids, phenolic compounds and most relevant for biological activity, terpenes and terpenoids (Figure 1.2). ${ }^{4}$

spathulenol (1)

calomene (2)

bicycloelemene (3)

bicyclogermacrene (4)

cuparene (5)

Figure 1.2: Selected natural products isolated from different bryophytes.

1.1.2.1 Pallavicinia Subciliata

Although liverworts synthesize a variety of intriguing natural products, a first study on Pallavicinia species, P. subciliata and P. lyelli revealed already known compounds, such as terpenes, fatty acids and sterols. ${ }^{5}$ However, during their investigation of P. subciliata, collected near Taipei City, wU et al. identified a novel 7,8 -secolabdanoid diterpene with the molecular formula $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}$ and named it pallavicinin (6, Figure 1.3). In 1999, the same authors also found neopallavicinin (7), a diastereomer of pallavicinin (6). ${ }^{6}$ The structural assignments of both natural products were based on NMR studies (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \operatorname{COSY},{ }^{13} \mathrm{C}$ DEPT, HMBC, NOE), which revealed the presence of two olefins, four tetrasubstituted carbons, a ketone and a lactone. The final structure and relative configuration could be established by X-ray diffractometry.

In 1998, ASAKAWA and co-workers isolated five novel terpenoids $\mathbf{8 - 1 3}$ (Figure 1.3). ${ }^{\text {4d) }}$ Structurally, $\mathbf{8}$ is an oxidized version of pallavicinin (6), while $\mathbf{9}$ suffered from ether bond cleavage. Lactone $\mathbf{1 0}$, which was only later entitled pallambin $\mathrm{D},{ }^{7}$ possesses an additional site of unsaturation within the bicyclo[3.2.1]octane core. Noteworthy, the γ-lactone is endowed with a β, γ-olefin, which is a recurring structural feature of the terpenoid natural products shown in Figure 1.3.

[^1]
pallavicinin (6)

9

neopallavicinin (7)

18-hydroxypallavicinin
(8)

Figure 1.3: Terpenoid natural products isolated from Pallavicinia subciliata by WU and ASAKAWA.

1.1.2.2 Pallavicinia Ambigua

In 2005, LI et al. isolated the already known (+)-pallavicinin (6), (-)-neopallavicinin (7) and (-)-18-hydroxypallavicinin (8) also from a different species, Pallavicinia ambigua and determined the absolute configurations using a combination of NMR and CD studies. ${ }^{8}$

In 2012, LOU and co-workers discovered four norditerpenoid natural products and named them pallambins A-D ($\mathbf{1 0}$ and $\mathbf{1 4 - 1 6}$, Figure 1.4). ${ }^{7}$ While one of them turned out to be the previously reported compound 10, the remaining three, pallambins A-C (14-16), were unknown. The researchers collected the liverworts from Zunyi, Guizhou province, P. R. China. After authentication of the species, grinding, gel column chromatography and high performance liquid chromatography, pallambins A-D could be obtained in pure form. High resolution electrospray ionization mass spectrometry revealed that all four compounds possess the same molecular formula $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$. Initial inspection of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy indicated that pallambins A (14) and B(15) as well as pallambins C (16) and D (10) must be pairs of geometric isomers. Since 10 was already known, the structural assignment of pallambin $C(\mathbf{1 6})$ was rather straightforward. After the structure was confirmed by ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HSQC}, \mathrm{COSY}$ and HMBC, X-ray analysis disclosed that $\mathbf{1 0}$ and $\mathbf{1 6}$ only differ in the ethylidene olefin geometry.

[^2]
pallambin A (14)

pallambin $B(15)$

pallambin C (16)

pallambin $D(10)$

Figure 1.4: Pallambins A-D isolated by LOU and co-workers from Pallavicinia ambigua.
Structural assignment of pallambins A (14) and B(15) proved to be more challenging. The ${ }^{13} \mathrm{C}$-NMR spectrum displayed the presence of a ketone and an ester carbonyl group as well as a single olefin. Given the molecular formula of $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$, this finding implied a hexacyclic structure to achieve the degree of unsaturation of nine. Analysis of the HSQC spectrum showed four tetrasubstituted carbons in addition to the two carbonyl groups. Furthermore, the COSY and HMBC spectra revealed the presence of a cyclopropane incorporated in a norbornane fragment. The common tetrahydrofuran γ-lactone motif equipped with an ethylidene side chain was established by comparison to known natural products 6, 7, 10 and 16 and further proven by HMBC correlations. Taken these information together, pallambins A (14) and B (15) possess a tetracyclo[4.4.0 $0^{3,5} .0^{2,8}$]decane core. Detailed NOE spectroscopy enabled the assignment of the relative structure, which was further confirmed by X-ray diffractometry.

1.2 Other Syntheses of Pallavicinia Terpenoids

1.2.1 Total Synthesis of (\pm)-Pallavicinin and (\pm)-Neopallavicinin

In 2006, PENG and wong reported the total synthesis of (\pm)-pallavicinin (6) and (\pm)-neopallavicinin (7). ${ }^{9}$ As depicted in Scheme 1.1, their retrosynthetic analysis relies on a 1,4-conjugate addition to butenolide 17, which is envisioned to be generated from furan 18. Additionally, an aldol reaction would trigger the formation of the tricyclo[3.2.1]octane core. The Wieland-Miescher ketone (19) was chosen as starting material. ${ }^{10}$

Scheme 1.1: Retrosynthetic analysis of (\pm)-pallavicinin (6) by PENG and WONG.
The Wieland-Miescher ketone (19) was first selectively reduced and protected. Introduction of the geminal dimethyl group furnished 20. Oxidation with PDC, followed by reduction and protecting group exchange yielded alcohol 21. The crucial furan moiety was installed via Suzuki coupling. Hydroboration and a sequence of protecting group manipulations provided the precursor for a Grob fragmentation. The latter occurred upon treatment of TBS ether 24 with TBAF, followed by $\mathrm{KO} t \mathrm{Bu}$ in 56% overall yield. The stage was now set for the construction of the tricyclo[3.2.1]octane core via an intramolecular aldol reaction. Thus, the ketal of $\mathbf{2 5}$ was cleaved under acidic conditions and subsequently treated with $\mathrm{NaO} t \mathrm{Bu}$ to yield diketone 26 after oxidation with IBX. The selectively reprotected ketone was exposed to excess MeLi, which not only installed the tertiary alcohol, but also deprotonated the furan 2-position. The thus formed anion was trapped with TMSCl and the furan oxidized to butenolide 28. Base-mediated 1,4-conjugate addition occurred in only moderate yield (43% for $\mathbf{2 9}$ and $\mathbf{1 0 \%}$ for 30). After separation of the diastereomers, $\mathbf{2 9}$ and $\mathbf{3 0}$ were separately carried through a three-step sequence to install the ethylidene side chain and to deprotect the remaining ketal. In conclusion, (\pm)-pallavicinin (6) and (\pm)-neopallavicinin (7) were obtained in 32 steps and 0.0006% (6), respectively 0.00004% (7), overall yield.

[^3]

Scheme 1.2: WONG’s total synthesis of (\pm)-pallavicinin (6) and (\pm)-neopallavicinin (7). Reagents and conditions: a) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}, 95 \%$; b) BzCl , pyridine, 96%; c) $\mathrm{KO} t \mathrm{Bu}$, MeI, $t \mathrm{BuOH}, 74 \%$; d) ethylene glycol, TsOH ($10 \mathrm{~mol} \%$), $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 98%; e) $\mathrm{KOH}, \mathrm{MeOH}$, reflux, 96%; f) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$; g) $\mathrm{BH}_{3} \cdot \mathrm{THF}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to RT; h) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; i) NaOMe, THF, 56% over three steps; j) $\mathrm{Na}, \mathrm{NH}_{3}, \mathrm{THF}-\mathrm{MeOH}(4: 1)$, $-78{ }^{\circ} \mathrm{C}, 79 \%$; k) $\mathrm{NaH}, \mathrm{BnBr}, n \mathrm{Bu} \mathrm{u}_{4} \mathrm{NI}$, THF, reflux, 92%; 1) TBAF, THF, reflux, 93%; m) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; n) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{PhNTf}_{2}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 86 \%$; o) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}, 2$-furylboronic acid, THF, reflux, 84%; p) $9-\mathrm{BBN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 76 \%$; q) TBSCl, imidazole, DMF, 84%; r) $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w})$, $\mathrm{MeOH}, 97 \%$; s) $\mathrm{MsCl}, \mathrm{NEt}_{3}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 77 \%$; t) TBAF, THF; u) KOtBu, 18 -crown- $6, t \mathrm{BuOH}, 40^{\circ} \mathrm{C}$ to $50{ }^{\circ} \mathrm{C}, 56 \%$ over two steps; v) TsOH ($10 \mathrm{~mol} \%$), Me $\mathrm{Me}_{2} \mathrm{CO}$; w) $t \mathrm{BuONa}, t \mathrm{BuOH}, 60^{\circ} \mathrm{C}$; x) IBX, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 56 \%$ over three steps; y) ethylene glycol, $\mathrm{TsOH}(10 \mathrm{~mol} \%), \mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 72%; z) MeLi, THF $-78{ }^{\circ} \mathrm{C}$ to RT , then $\mathrm{TMSCl}, 0{ }^{\circ} \mathrm{C}, 54 \%$; aa) $\mathrm{MeCO}_{3} \mathrm{H}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT; bb) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF}, 0^{\circ} \mathrm{C}$, then $\mathrm{AcOH}, 56 \%$ over two steps; cc) DBU, toluene, reflux, 43% for $29,10 \%$ for $\mathbf{3 0}$; dd) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{MeCHO},-78{ }^{\circ} \mathrm{C}$; ee) $\mathrm{NEt}_{3}, \mathrm{MsCl}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT ; ff) $\mathrm{TsOH}(10 \mathrm{~mol} \%), \mathrm{Me}_{2} \mathrm{CO}, 0^{\circ} \mathrm{C}$ to $\mathrm{RT}, 30 \%$ over three steps for (\pm)-pallavicinin (6), 9% over three steps for (\pm)-neopallavicinin (7).

Shortly after publication of our work on the total synthesis of pallambins A and B, JIA and co-workers reported an asymmetric approach towards (-)-pallavicinin (6) and (+)-neopallavicinin (7). ${ }^{11}$ As presented in Scheme 1.3 their synthetic strategy also relies on an intramolecular 1,4-addition of a tertiary alcohol to a butenolide. Furthermore, a serendipitously discovered LiBHEt_{3} induced fragmentation would provide diketone $\mathbf{3 1}$ from hydroxy epoxide 32.

[^4]

Scheme 1.3: Retrosynthetic analysis of (-)-pallavicinin (6) and (+)-neopallavicinin (7) according to JIA and coworkers.

The synthesis commences with an enantioselective palladium-catalyzed decarboxylative allylation of $\mathbf{3 4}$ as developed by STOLTZ and co-workers. ${ }^{12} \mathbf{3 4}$ could be prepared in three steps following a procedure described by TROST et al. ${ }^{13}$ After reduction and elimination, enone 37 was converted into the corresponding TBS enol ether and underwent oxidative cyclization upon treatment with catalytic amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of molecular oxygen. Subsequent conjugate addition and allylic oxidation gave access to allylic alcohol 38 in 88% yield. Stereoselective vanadium-mediated epoxidation and Dess-Martin oxidation yielded diketone 39. Although the following addition of 2-trimethylsilyl-5-lithiofuran occurred from the undesired $S i$ face to produce 40 , an intriguing LiBHEt_{3}-mediated fragmentation took place, converting 40 into ketone 41 in excellent yield (84%). ${ }^{14}$ After reoxidation and 1,2-addition, furan 42 was oxidized in the presence of $m \mathrm{CPBA}$ to give unstable butenolide 17. Treatment of 17 with DBU produced 30% of $\mathbf{4 3}$ along with 15% of $\mathbf{4 4}$. The synthesis was completed after a two-step aldol condensation, providing (-)-pallavicinin (6) and (+)-neopallavicinin (7). In conclusion, these first enantioselective syntheses provided the natural products in 20 steps and 0.8% (pallavicinin) respectively 0.09% (neopallavicinin) overall yield.

[^5]

Scheme 1.4: Asymmetric total synthesis of (-)-pallavicinin (6) and (+)-neopallavicinin (7) by JIA and coworkers. Reagents and conditions: a) $35(6 \mathrm{~mol} \%), \mathrm{Pd}_{2}(\mathrm{pmdba})_{3}(2.5 \mathrm{~mol} \%)$, toluene, $50{ }^{\circ} \mathrm{C}, 79 \%, 85 \% \mathrm{ee}$; b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, then $\mathrm{H}_{2} \mathrm{SO}_{4}, 90 \%$; c) $i \mathrm{Pr}_{2} \mathrm{NLi}$, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{TBSCl}, \mathrm{HMPA}$; d) $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, DMSO, $\mathrm{O}_{2}(1 \mathrm{~atm}), 65^{\circ} \mathrm{C}$; e) vinylmagnesium bromide, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$, THF, $-40^{\circ} \mathrm{C}$, d.r. $=10: 1,73 \%$ over three steps; f) NaH , MeI, DME, 93%; g) $\mathrm{SeO}_{2}, t \mathrm{BuO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$; h) VO(acac) $)_{2}(15 \mathrm{~mol} \%), t \mathrm{BuO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 64%; i) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 79 \%, 99 \%$ ee after recrystallization; j) 2-trimethylsilyl-5-lithiofuran, $\mathrm{Et}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}, 72 \%$; k) $\mathrm{LiBHEt}_{3}, \mathrm{THF}, 60{ }^{\circ} \mathrm{C}, 84 \%$; 1) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 89 \%$; m) MeMgBr , THF, $-40^{\circ} \mathrm{C}, 80 \%$; n) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; o) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, from 427% of $\mathbf{4 3}, 15 \%$ of $\mathbf{4 4}$; p) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$, then $\mathrm{MeCHO},-78{ }^{\circ} \mathrm{C}$; q) $\mathrm{MsCl}, \mathrm{NEt}_{3}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, from 4355% of (-)-pallavicinin (6), from 4412% of (+)-neopallavicinin.

1.2.2 Total Synthesis of Pallambins C and D

In 2012, WONG and co-workers reported the first total synthesis of (\pm)-pallambins C and D. ${ }^{15}$ As for (\pm)-pallavicinin and $(\pm$)-neopallavicinin, their route relies on the WielandMiescher ketone (19) as the starting material. However, as shown in Scheme 1.5, the researchers envisioned to employ a palladium-catalyzed alkoxycarbonylation for the installation of the γ-lactone-tetrahydrofuran bicycle. The tricyclo[3.2.1]octane core should again be generated by an intramolecular aldol reaction.

[^6]

Scheme 1.5: WONG's retrosynthetic analysis of pallambin D (10).
The Wieland-Miescher ketone (19) firstly needed to be decorated with additional substituents. Therefore, both ketones were reduced and the resulting hydroxy groups protected as its benzyl ethers (Scheme 1.6). Subsequent epoxidation and nucleophilic opening with MeMgI installed the $\mathrm{C}(4)-\mathrm{Me}$ group. The remaining tertiary alcohol was eliminated and the corresponding olefin exposed to standard hydroboration/oxidation conditions. After several functional group interconversions, WONG and co-workers arrived at vinyl iodide 51, which underwent Pd-catalyzed carboxylation in the presence of CO and MeOH . Reduction with DIBAL and subsequent protection was followed by another hydroboration/oxidation sequence. After additional functional group interconversions, acetate $\mathbf{5 3}$ could be obtained. Cleavage of the acetate followed by treatment with $\mathrm{KO} t \mathrm{Bu}$ at elevated temperature mediated both, a Grob fragmentation and the envisioned intramolecular aldol reaction to furnish 54. Furthermore, the oxidation states of the newly formed alcohol and the ketone needed to be inverted. Thus, oxidation to the diketone was followed by a moderately selective reduction and protection. Since nucleophilic addition of methyl nucleophiles led to the incorrect configuration at $\mathrm{C}(8)$, a detour had to be taken. Hence, Ti-mediated olefination followed by hydroxyl directed $\mathrm{VO}(\mathrm{acac})_{2}$ epoxidation provided epoxide 56. Regioselective opening of the epoxide was effected by LiAlH_{4}. The remaining primary alcohol was oxidized and treated with vinylmagnesium bromide to yield the precursor for the palladium-catalyzed alkoxycarbonylation. Exposure of $\mathbf{5 8}$ to established conditions generated the γ-lactonetetrahydrofuran $\mathbf{5 9}$ in 78% yield. ${ }^{16}$ The ethylidene side chain was then introduced by an aldol reaction with acetaldehyde and subsequent treatment with MsCl and NEt_{3} in the presence of catalytic amounts of DMAP. After separation of the olefin isomers, the same deprotection, oxidation sequence was used for the conversion into pallambins $C(\mathbf{1 6})$ and $D(\mathbf{1 0})$ in 37 steps and 0.2% (16), respectively $0.1 \%(\mathbf{1 0})$, overall yield.

[^7]

Scheme 1.6: WONG's total synthesis of (\pm)-pallambins C (16) and D (10). Reagents and conditions: a) NaBH_{4}, $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}, 86 \%$; b) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 95 \%$, c) $m \mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \%$; d) MeMgI , $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 89%; e) SOCl_{2}, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 92 \%$; f) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O}$, then THF- $\mathrm{H}_{2} \mathrm{O}(1: 1), \mathrm{H}_{2} \mathrm{O}_{2}$, $\mathrm{NaOH}, 82 \% ;$ g $) \mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP ($13 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 99 \%$; h) $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}), \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{EtOH}, 95 \%$; i) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Me}_{2} \mathrm{CO}, 0^{\circ} \mathrm{C}, 92 \%$; j) $\mathrm{CH}(\mathrm{OEt})_{3}, \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, 61 \%$; k) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$; l) $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{NEt}_{3}, \mathrm{EtOH}$, reflux; m) $\mathrm{I}_{2}, 1,1,3,3$-tetramethylguanidine, THF, 84% over three steps; n) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ to RT; o) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$, ethylene glycol, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 89% over two steps; p$) \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, $\mathrm{NEt}_{3}, \mathrm{CO}(1 \mathrm{~atm}), \mathrm{MeOH}-\mathrm{DMF}(7: 1), 55^{\circ} \mathrm{C}, 81 \%$; q) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 97 \%$; r) MOMCl, pyridine, DMAP ($1 \mathrm{~mol} \%$), toluene, RT to $70{ }^{\circ} \mathrm{C} ; 96 \%$; s) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O}$, then $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(1: 1), \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, 77 \%$; t) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP ($20 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; u) $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}), \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{EtOH}, 5{ }^{\circ} \mathrm{C}$; v) MsCl , $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$ over two steps; w) PPTS ($10 \mathrm{~mol} \%$), $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$ (9:1), reflux, 85%; x) PhSeCl , $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOAc}$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, pyridine, $\mathrm{H}_{2} \mathrm{O}_{2}, 71 \%$; y) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 98 \%$; z) $\mathrm{KO} t \mathrm{Bu}, t \mathrm{BuOH}, 70^{\circ} \mathrm{C}, 61 \%$; aa) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; bb) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}, 3 \times$ recycled, 78%; cc) TBSOTf, NEt_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 90 \%$; dd) $\mathrm{Mg}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{THF}(7: 2), 77 \%$; ee) PPTS, NaI, butanone- $\mathrm{H}_{2} \mathrm{O}$ ($10: 1$), reflux, 56%; ff) $\mathrm{VO}(\mathrm{acac})_{2}(2 \mathrm{~mol} \%), t \mathrm{BuOOH}, \mathrm{C}_{6} \mathrm{H}_{6}, 86 \%$; gg) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 90%, hh) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 88%; ii) vinylmagnesium bromide, THF, $0{ }^{\circ} \mathrm{C}, 48 \%$; jj) $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), CuCl_{2}, TMTU ($10 \mathrm{~mol} \%$), propylene oxide, $\mathrm{NH}_{4} \mathrm{OAc}(10 \mathrm{~mol} \%)$, $\mathrm{CO}(1 \mathrm{~atm})$, THF, $50{ }^{\circ} \mathrm{C}, 78 \%$; kk) $i \mathrm{Pr}_{2} \mathrm{NLi}$, MeCHO, THF, $-78{ }^{\circ} \mathrm{C}$; 11) $\mathrm{MsCl}, \mathrm{NEt}_{3}$, DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 35^{\circ} \mathrm{C}$; mm) HF (aqueous), MeCN, 90%, nn) DMP, $\mathrm{NaHCO}_{3} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 44% over three steps for pallambin $C(\mathbf{1 6}), 24 \%$ over three steps for pallambin $D(\mathbf{1 0})$.

One year after the publication of our work on the total synthesis of pallambins A and B, BARAN and co-workers reported another approach towards pallambins C and D. ${ }^{17}$ Their retrosynthetic analysis is shown in Scheme 1.7. An aldol condensation with acetaldehyde and a iodomalonation would trace pallambins C and D back to enol ether $\mathbf{6 0}$. The latter was envisioned to be generated by an acetalization between a tertiary alcohol and an aldehyde

[^8]followed by elimination. The remaining cyclopentane in $\mathbf{6 1}$ would be generated by an aldol reaction leading to ketoaldehyde 62.

Scheme 1.7: BARAN's retrosynthetic analysis of pallambin D (10).
The synthesis commenced with an Eschenmoser-Claisen rearrangement between furfuryl alcohol and amine 64, followed by a reduction of the resulting amide to furnish aldehyde $\mathbf{6 5}$ in 75% yield. A Robinson annulation with ethyl vinyl ketone then produced cyclohexenone 66.

Scheme 1.8: BARAN's total synthesis of pallambins C and D. Reagents and conditions: a) 64, toluene, $110{ }^{\circ} \mathrm{C}$, then $\left(\mathrm{Me}_{2} \mathrm{HSi}_{2} \mathrm{O}, \mathrm{Ti}(\mathrm{OiPr})_{4}, 50{ }^{\circ} \mathrm{C}, 75 \%\right.$; b) ethyl vinyl ketone, $\mathrm{Bu}_{4} \mathrm{NBr}(10 \mathrm{~mol} \%)$, KOH (aqueous, 60%), toluene, 68%; c) vinylmagnesium bromide, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ ($20 \mathrm{~mol} \%$), $\mathrm{HMPA}, \mathrm{TMSCl}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 75 \%$; d) O_{2} (bubbling), methylene blue, $\mathrm{h} v, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}$, then thiourea, RT ; e) $\mathrm{TiCl}_{4}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 58 \%$ over two steps; f) $\mathrm{CH}(\mathrm{OMe})_{3}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{MgSO}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ then $\mathrm{AcBr}, 0^{\circ} \mathrm{C}$ to RT 57%; g) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, $110^{\circ} \mathrm{C}$, 90%, h) LiHMDS, PhSeCl , THF, $-78^{\circ} \mathrm{C}$; i) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 60 \%$ over two steps; j) PPTS, pyridine, PhCl, $130{ }^{\circ} \mathrm{C}$; k) dimethyl malonate, $\mathrm{SnCl}_{4}, \mathrm{DBU}, \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 87 \%$ over two steps; l) $\mathrm{NaOH}(2.0 \mathrm{M}$, aqueous), MeOH ; m) $\mathrm{NEt}_{3}, \mathrm{MeCN}, 6{ }^{\circ} \mathrm{C}$; n) LiHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, then MeCHO ; o) $\mathrm{NEt}_{3}, \mathrm{MsCl}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$ over four steps for a 1:2 mixture of pallambins C and D .

Conjugate addition followed by enolate trapping with TMSCl gave silyl enol ether 68 in 75% yield. The furan ring was then cleaved by singlet oxygen followed by a titaniummediated intramolecular Mukaiyama aldol reaction providing aldehyde 69 in 58\% yield over two steps. After extensive experimentation, acetalization could be effected by treatment of the latter with $\mathrm{HC}(\mathrm{OMe})_{3}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. Since the obtained $\mathrm{C}(9)$-methoxy derivative of $\mathbf{7 0}$ could not be converted into reduced acetal 71, methoxide-bromide exchange had to be carried out. Thus, the initial acetalization product was treated with AcBr affording 70 in 57% overall yield. The subsequent radical dehalogenation finally furnished mixed acetal 71. The required enone moiety was introduced next via two-step selenoxide elimination. In order to install the remaining γ-lactone, the methoxide in $\mathbf{7 2}$ was eliminated to produce enol ether $\mathbf{6 0}$. The tin enolate of dimethyl malonate was then added to the corresponding iodonium ion of $\mathbf{6 0}$, leading to iodide $\mathbf{7 3}$ in high yield. The two ester functionalities were subsequently hydrolyzed and the obtained diacid underwent monodecarboxylation and iodide displacement upon heating to $60^{\circ} \mathrm{C}$ in acetonitrile. Finally, the ethylidene side chain was introduced by a two step aldol condensation with acetaldehyde. In conclusion, pallambins C and D have been obtained in 15 steps and 5.6% overall yield.

1.2.3 Conclusion

In summary, both synthetic approaches which appeared before the initiation of our project that are described in the previous chapters 1.2.1 and 1.2.2 rely on the employment of the Wieland-Miescher ketone (19) as entrance point to the targeted Pallavicinia terpenoids. However, the two syntheses differ in the construction of the common γ-lactonetetrahydrofuran bicycle. While a 1,4-conjugate addition of a tertiary alcohol onto a butenolide is used in the course of the synthesis of (\pm)-pallavicinin and (\pm)-neopallavicinin, a palladiumcatalyzed alkoxycarbonylation is employed in the synthesis of (\pm)-pallambins C and D. Importantly, the conjugate addition favors isomer 29, which would lead to the undesired isomer in the pallambins C and D synthesis. Comparing the two methods, the alkoxycarbonylation is to be preferred not only because of the higher yield (78% vs. 53% of the combined isomers 29 and $\mathbf{3 0}$), but also because of the tedious installation and oxidation of the furan moiety.

Additionally, both syntheses described, require 33 (pallavicinin and neopallavicinin), respectively 37 (pallambins C and D) steps. This large number is mainly due to the necessity of exhaustive protections, deprotections and reprotections as well as various oxidation state
adjustments. ${ }^{18}$ Several of these additional steps are necessary because of the use of the Wieland-Miescher ketone (19) as the starting material. While this compound has the advantage of being a cheap and easily accessible advanced bicycle with various sites for functionalization, it must not create laborious steps to force it into the overall synthetic strategy.

While these approaches present a solution for the generation of the γ-lactonetetrahydrofuran bicycle, a more efficient approach to the tricyclic core fragments would be of interest to the synthetic community.

[^9]
2 Synthetic Strategy ${ }^{19}$

2.1 General Considerations

Pallambins A (14) and B(15) were chosen as the primary targets for total synthesis due to the increased structural complexity emanating from the additional cyclopropane. Moreover, the absence of any synthetic method towards the unprecedented tetracyclo[4.4.0 ${ }^{3,5} .0^{2,8}$]decane core allowed for an unbiased analysis.

This core fragment contains a double-gauche pentane-like arrangement of the cyclopropane and the $\mathrm{C}(10)$ methyl group. ${ }^{20}$ Additionally, pallambins $A(14)$ and B (15) comprise ten contiguous stereocenters, two of which are quaternary. At the outset of this project, it appeared reasonable to primarily focus on the construction of the tetracyclic core, before investigating additional methods to generate the γ-lactone-tetrahydrofuran bicycle ($c f$. Chapter 1.2.3).

Among the analytical tools available for developing a synthetic strategy, the retrosynthetic analysis developed by E. J. COREY et al. is the most widely used approach to date and thus regarded as the method of choice. ${ }^{21}$ Therein, the chosen complex target molecule is iteratively disconnected into simpler intermediates, until easily accessible starting materials are reached. Of particular interest to our analysis of pallambins A (14) and B (15) were the aforementioned characteristic stereochemical features, which dictate an optimal synthetic tactic (Figure 2.1).

pallambin A (14)

pallambin $B(15)$

- ten contiguous stereocenters
- two quaternary carbon atoms
- unprecedented tetracyclo[4.4.0 $\left.0^{3,5} .0^{2,8}\right]$ decane
core

Figure 2.1: Structure of targeted pallambins A (14) and B (15).

[^10]
2.2 Retrosynthetic Analysis

Scheme 2.1 illustrates our first generation retrosynthetic analysis. Since the palladiumcatalyzed alkoxycarbonylation proved to be reliable during the total synthesis of pallambins C and D by wONG an co-workers, ${ }^{15}$ we decided to incorporate this method into our strategic plan. Thus, after retrosynthetic scission of the ethylidene side chain and γ-lactonetetrahydrofuran formation, diol 74 evolved as a first simplified intermediate. The tertiary alcohol at $C(8)$ could thereby be derived from the corresponding diketone $\mathbf{7 5}$ by aldol addition of the only enolizable ketone.

Scheme 2.1: First generation retrosynthetic analysis of pallambin A (14).
At this stage, we were optimistic that the cyclopentanone containing $C(4)$ and $C(5)$ would induce sufficient strain on the norbornene system, thereby widening the angle between the olefin in 77 and the $\mathrm{C}(10)$ methyl group and consequently enable a cyclopropanation reaction (Scheme 2.2).

Scheme 2.2: First generation retrosynthetic analysis of key intermediate 76.
The envisioned key-disconnection was a transition metal-catalyzed intramolecular hydroalkylation reaction between the methyl ketone and the exocyclic disubstituted olefin to generate the quaternary center at $\mathrm{C}(10)$. We became aware of recent studies by CHE and coworkers, who reported the $\mathrm{Au}(\mathrm{I})$-catalyzed intramolecular hydroalkylation of alkenes with 1,3-dicarbonyl compounds as well as unactivated ketones. ${ }^{22}$ Additional considerations

[^11]included acid-mediated enol formation with concomitant alkene protonation and trapping of the tertiary carbocation.

While analyzing diketone 78, we became intrigued by the possibility of using pentafulvene (79), the simplest representative of the fulvene class, as a diene in the course of a Diels-Alder cycloaddition. The investigation of pentafulvene in such a transformation is beneficial due to three salient features. Firstly, unlike substituted cyclopentadienes, fulvene is not susceptible to isomerization through thermally allowed 1,5hydrogen shifts (Scheme 2.3, A and ref. 19). Secondly, the $\mathrm{sp}^{2}{ }^{-}$B) hybridized bridge carbon enables a wide variety of possibilities for functionalization. Consequently, the use of fulvene in a [4+2] cycloaddition creates significantly higher strategic flexibility for further elaboration. Thirdly, the successful realization of the cycloaddition would constitute the first use of pentafulvene in complex natural product synthesis.

substituted
cylopentadiene

Scheme 2.3: A) Isomerization in [4+2] cycloadditions with monosubstituted cyclopentadienes; B) Strategic consequences of sp^{3} - vs. sp^{2}-substituted bridge carbons. Picture taken with permission from ref. 19.

2.3 Conclusion

The presented retrosynthetic analysis would provide a short and efficient route towards (\pm)-pallambins A (14) and B (15). The first critical issue to address was the development of a Diels-Alder reaction between pentafulvene (79) and a suitable dienophile, an endeavor, which is described in the following chapter. Additionally, total synthesis marks the gold standard to test the reliability and versatility of any reported methodology, such as the envisioned key hydroalkylation reaction.

3 Results and Discussion

3.1 Fulvene as a Diene in Diels-Alder Reactions

3.1.1 Introduction

Fulvenes are a class of hydrocarbons consisting of a cyclopentadiene equipped with an exo olefin (cf. Scheme 3.1). Pentafulvene (79), an isomer of benzene, has been synthesized for the first time in 1956 by THIEC and WIEMANN via condensation of sodium cyclopentadienide with formaldehyde. ${ }^{23,24}$ Only four years later, ANGUS et al. discovered that this bright yellow oil can also be obtained by irradiation of benzene. ${ }^{25}$ However, it was not possible to obtain pentafulvene (79) in pure form. Due to its challenging physical and chemical properties, including the high volatility and reactivity, the extraordinary Lewis and Brønsted acid sensitivity as well as its tendency to rapidly polymerize at room temperature, the handling and purification of $\mathbf{7 9}$ is highly demanding. ${ }^{26,27}$ In neat form, pentafulvene is only stable for a few weeks, if excluded from air and stored below $-70^{\circ} \mathrm{C}$. Of particular interest is, that only pentafulvene, the simplest representative of its class, and a limited number of exotic derivatives are endowed with these characteristics. For example, dimethylfulvene is a benchstable and commercially available orange oil.

Scheme 3.1: General structure of fulvenes and synthetic strategies for the generation of pentafulvene.
While the condensation between sodium cyclopentadienide (81) and the vast majority of ketones proceeds generally without difficulties and in high yields, pentafulvene could only be

[^12]obtained in 0.6% yield. ${ }^{26,28}$ The demand for a milder and in particular higher yielding route for the synthesis of pentafulvene (79) prompted two research groups to seek for better solutions. In 1965, SCHALTEGGER et al. published the NEt_{3}-mediated elimination of acetoxymethyl-cyclopentadiene (82). ${ }^{29}$ This process provided, after distillation, pentafulvene (79) in 75% yield. Moreover, STURM and HAFNER employed a LiAlH_{4}-mediated reduction, followed by Hofmann degradation of dimethylamino fulvene (83) and obtained pentafulvene (79) in 80% to 90% yield. ${ }^{30}$

Due to its instability, the reactivity profile of pentafulvene (79) is rather unexplored. However, already in 1956, THIEC and WIEMANN trapped pentafulvene with maleic anhydride in a Diels-Alder reaction in order to verify its generation. ${ }^{23}$ Several years later, UEBERSAX et al. investigated the Diels-Alder dimerization of pentafulvene at room temperature. ${ }^{31}$ In the course of a theoretical study, TROST and CORY generated the Diels-Alder adduct of fulvene (79) with diethyl azodicarboxylate (86) (Scheme 3.2). ${ }^{32}$ Therein, pentafulvene was generated according to a modified procedure of STURM and HAFNER. ${ }^{30}$ After reduction, the crude amines (84 and 85) were loaded on an alumina column and pentafulvene (79) was eluted under nitrogen. Refluxing an ethereal solution of 79 in the presence of excess diethyl azodicarboxylate (86) provided adduct $\mathbf{8 7}$ in 95% yield, albeit on small scale.

Scheme 3.2: TROST's Diels-Alder reaction between pentafulvene (79) and diethyl azodicarboxylate (86). Reagents and conditions: a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O},-5{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}, 78 \%$; b) alumina, pentane, 77%; c) 86, $\mathrm{Et}_{2} \mathrm{O}$, reflux, 95\%.

Later, the TROST group optimized the generation of pentafulvene by returning to the original method of STURM and HAFNER ${ }^{30}$, however removing the ammonium salt generated during the Hofmann degradation by simple filtration. ${ }^{33}$ Thereby, the conversion from amines $\mathbf{8 4}$ and $\mathbf{8 5}$ to $\mathbf{7 9}$ was $>99 \%$, as determined by NMR spectroscopy.

[^13]
3.1.2 Fulvene Diels-Alder Reaction for the Total Synthesis of Pallambins A and B

As previously established in our retrosynthetic analysis in Chapter 2.2, diketone 78 emerged as the first key intermediate (Scheme 3.3). This ketone was envisioned to be accessible via a Diels-Alder reaction of pentafulvene (79) and ketene (89). Importantly, a masked equivalent of the latter must be employed, since ketene is known to undergo [2+2] rather than $[4+2]$ cycloadditions with fulvenes. ${ }^{34}$ Additionally, this dienophile must be reactive enough to undergo the cycloaddition under conditions which do not trigger polymerization reactions of fulvene. Thus, strong acids, high temperatures, and prolonged reaction times should be avoided.

Scheme 3.3: Retrosynthetic analysis of intermediate diketone 78.
Due to the availability of the starting materials, the higher overall yield and the facile purification, we chose to employ the method of STURM and HAFNER ${ }^{30}$ for the generation of pentafulvene. Dimethylaminofulvene (83) was prepared according to a literature procedure from cyclopentadiene and DMF and then reduced with LiAlH_{4} (Table 3.1). ${ }^{35}$ After a modified work-up procedure the crude amines $\mathbf{8 4}$ and $\mathbf{8 5}$ were directly dissolved in the given solvent. Hofmann degradation was then effected by addition of methyl iodide and the ammonium salt formed was removed by filtration. The crude pentafulvene (79) was then subjected to various ketene equivalents to mediate a Diels-Alder reaction. We commenced our investigation with 2-chloroacrylonitrile (91) in refluxing toluene (Table 3.1, Entry 1). The desired Diels-Alder adduct could indeed be isolated, albeit 22% yield. At the bottom of the reaction flask, a rubber-like polymeric tar was formed indicating polymerization of pentafulvene. In order to suppress polymerization reactions the temperature was decreased. Hence, diethyl ether was employed to generate the fulvene and after filtration and addition of 91, the desired product was obtained in slightly improved yield (27\%, Entry 2).

[^14]Table 3.1: Initial screening of ketene equivalents in the Diels-Alder reaction with pentafulvene (79). Reagents and conditions: a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O},-17{ }^{\circ} \mathrm{C}, 88 \%$; b) MeI, solvent, $0^{\circ} \mathrm{C}$, quant.

Entry	Dienophile	Additive	Solvent	Temperature	Yield ${ }^{[a]-[c]}$
1		-	toluene	$111{ }^{\circ} \mathrm{C}$	22\%
2		-	$\mathrm{Et}_{2} \mathrm{O}$	$35^{\circ} \mathrm{C}$	27\%
3		$\begin{gathered} \mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2} \\ (0.30 \text { equiv }) \end{gathered}$	THF	$0{ }^{\circ} \mathrm{C}$	19\%
4		$\begin{gathered} \mathrm{ZnI}_{2} \\ (0.30 \text { equiv }) \end{gathered}$	$\mathrm{Et}_{2} \mathrm{O}$	$40^{\circ} \mathrm{C}$	10\%
5		-	$\mathrm{Et}_{2} \mathrm{O}$	$40{ }^{\circ} \mathrm{C}^{[\mathrm{d}]}$	n.d.
6		$\begin{gathered} \mathrm{ZnI}_{2} \\ (0.35 \text { equiv }) \end{gathered}$	$\mathrm{Et}_{2} \mathrm{O}$	$4^{\circ} \mathrm{C}$	8 to 18\%
7		$\begin{gathered} \mathrm{Me}_{2} \mathrm{AlCl} \\ (0.20 \text { equiv }) \end{gathered}$	$\mathrm{Et}_{2} \mathrm{O}$	$4^{\circ} \mathrm{C}$	n.d.
8	${ }_{93} \mathrm{OAC}^{\text {a }}$	-	vinyl acetate$\mathrm{Et}_{2} \mathrm{O}$ (7:1)	$50^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	n.d.
9	$94 \mathrm{NO}_{2}$	-	$\underset{(7: 1)}{\mathrm{Et}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{6}}$	$4^{\circ} \mathrm{C}$	3\%

[a] Yields refer to spectroscopically and chromatographically homogenous materials. [b] Since the d.r. is irrelevant for the C(3) position, it was not determined. [c] n.d. = Product not detected. [d] Reaction performed in a sealed vessel.

In order to allow even lower reaction temperatures, a potent catalyst was needed. In 1971, during their prostaglandin synthesis, COREY and co-workers reported $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}$ to be an efficient catalyst for the Diels-Alder reaction between substituted cyclopentadienes and 2-chloroacrylonitrile (91). ${ }^{36}$ However, performing the cycloaddition under these conditions gave only 19% of product (Entry 3). We next examined the related 2-acetoxyacrylonitrile (92), which has been used by VOGEL and co-workers in combination with ZnI_{2} to catalyze the Diels-Alder reaction with furan. ${ }^{37}$ Applying $30 \mathrm{~mol} \%$ of ZnI_{2} to pentafulvene in refluxing $\mathrm{Et}_{2} \mathrm{O}$ provided the desired cycloadduct, unfortunately in only 10% yield (Entry 4). Lowering the reaction temperature to $4{ }^{\circ} \mathrm{C}$ increased the yield up to 18% (Entry 6), while no product

[^15]could be detected in the absence of a Lewis acid catalyst (Entry 5). Switching to the more reactive Lewis acid $\mathrm{Me}_{2} \mathrm{AlCl}$ did not lead to product formation (Entry 7). An attempt of an inverse electron demand Diels-Alder reaction of pentafulvene in refluxing vinyl acetate did also not yield the corresponding cycloadduct (Entry 8). With nitroethylene (94), a highly reactive dienophile, only traces of product could be obtained (3%, Entry 9). Noteworthy, solely the Diels-Alder adduct of 2-acetoxyacrylonitrile could be converted into targeted ketone 88, while the chloro-equivalent did not undergo any further reaction.

In summary, the results presented in Table 3.1 indicate that decreasing the temperature does indeed abet to decrease polymerization reactions, but that the 2 -substituted acrylonitriles are not reactive enough to permit an efficient reaction. Even under the action of otherwise powerful catalysts, the reaction rate is too slow to entirely outcompete polymerization. A possible solution to prevent pentafulvene side reactions with itself would be to run the reaction in presence of a huge excess of dienophile. However this demands for a cheap and volatile reaction partner.

Having the above findings in mind, we next turned our attention to the use of acrylates. These unsaturated esters served as powerful dienophiles in countless [4+2] cycloadditions. Importantly, while thermal conditions should be avoided, a variety of different Lewis acids can be employed. Hence, pentafulvene was generated directly in methyl acrylate by the addition of methyl iodide. The generated ammonium salt was removed by filtration leaving a bright yellow solution. Then, two equivalents of $\mathrm{Me}_{2} \mathrm{AlCl}$ were added at $-20^{\circ} \mathrm{C}$. Gratifyingly, after stirring overnight, the yellow color vanished without the formation of polymeric tar. Indeed, after workup and purification, the desired adduct $\mathbf{9 5}$ was isolated in excellent yield of 89\% (Scheme 3.4).

Finally, the scalability of the newly established Diels-Alder reaction needed to be investigated. In order to simplify the reaction handling and the work-up procedure, catalytic amounts of $\mathrm{Et}_{2} \mathrm{AlCl}$ (0.3 equiv) were used on a 25 g scale. To our delight 95 was still the only observed product, albeit in slightly lower yield of 62%.

Scheme 3.4: Diels-Alder reaction between pentafulvene (79) and methyl acrylate. Reagents and conditions: a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O},-17{ }^{\circ} \mathrm{C}, 88 \%$; b) MeI, methyl acrylate, $0^{\circ} \mathrm{C}$, then $\mathrm{Me}_{2} \mathrm{AlCl}$ (2.0 equiv), $-20{ }^{\circ} \mathrm{C}, 89 \%$ or MeI, methyl acrylate, then $\mathrm{Et}_{2} \mathrm{AlCl}$ (0.3 equiv), $-20^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}, 62 \%$.

3.2 $\mathbf{C}(3)$-Ketone Formation and α-Functionalization

3.2.1 Oxidative Decarboxylation

Having established a reliable access to diene 95 via Diels-Alder reaction of pentafulvene (79), we next turned our attention to the generation of the $\mathrm{C}(3)$ ketone. Such a transformation requires not only an oxidation, but also a decarboxylation of the methyl ester. A literature survey revealed a few direct methods for the oxidative decarboxylation of different carbonyl groups. In the course of a formal synthesis of platensimycin, Yamamoto employed such a transformation by firstly generating the nitroso-aldol product between ester 96 and nitrosobenzene (Scheme 3.5, A). ${ }^{38}$ The oxidative decarboxylation was then effected by treatment with LiOH to give ketone $\mathbf{9 8}$ in high overall yield of 75%. However, when applying this procedure to our system, only minor amounts of product could be isolated (30% yield, Scheme 3.5, B). A closer reaction survey, in which the nitroso-aldol product $\mathbf{1 0 0}$ was isolated and purified before subjected to lithium hydroxide, revealed that this part of the transformation was very low yielding (32%). Attempts to improve the yield by lowering the temperature or performing an inverse addition were met with failure.

Scheme 3.5: A) YAMAMOTO's oxidative decarboxylation using nitrosobenzene during a formal synthesis of platensimycin; B) Attempted transformation of ester $\mathbf{9 5}$ into ketone $\mathbf{8 8}$ using this method. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}$, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{PhNO},-78{ }^{\circ} \mathrm{C}, 32 \%$ for $\mathbf{1 0 0}$; b) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$-dioxane (7:6), $35^{\circ} \mathrm{C}, \mathbf{7 5 \%}$ for $\mathbf{9 8}, 30 \%$ for $\mathbf{8 8}$ (over two steps).

[^16]A related transformation was reported by TROST and TAMARU in $1975 .{ }^{39}$ Thereby, the dianion of a carboxylic acid is reacted with dimethyl disulfide. Upon treatment with N -chlorosuccinimide and subsequent hydrolysis, the corresponding ketones are isolated in $44-78 \%$ overall yield. Unfortunately, when applied to our system, no product could be detected.

Scheme 3.6: TROST's oxidative decarboxylation using dimethyl disulfide. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}$, THF-HMPA (5:1), $0^{\circ} \mathrm{C}$, then $\mathrm{Me}_{2} \mathrm{~S}_{2}, 0^{\circ} \mathrm{C}$; b) $\mathrm{NaHCO}_{3}, \mathrm{MeOH}$, then NCS, $0^{\circ} \mathrm{C}, 44-78 \%$ over two steps.

Since both established oxidative decarboxylation protocols failed, stepwise α-hydroxylation followed by ester reduction and subsequent diol cleavage was considered as an efficient alternative to this end. While initial oxidation attempts employing Davis oxaziridine ${ }^{40}$ or Rubottom oxidation ${ }^{41}$ of the silyl ketene acetal derived from 95 were met with failure, quenching of the corresponding lithium enolate with molecular oxygen and concomitant peroxide reduction provided alcohol 102 in moderate yield of 59% (Scheme 3.7). ${ }^{42}$

Conditions:
a) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, then $101,-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, 10 \%$.
b) i) $i \mathrm{Pr}_{2} \mathrm{NLi}$, THF, $-40^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, then TMSCI; ii) $m \mathrm{CPBA}, n$-hexane, RT, n.d.
c) $i \mathrm{Pr}_{2} \mathrm{NLi}$, THF, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, then $\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{O}_{2}$ (bubbling), $-78^{\circ} \mathrm{C}, 59 \%$.

Scheme 3.7: α-Hydroxylation of ester $\mathbf{9 5}$ and further transformation into ketone $\mathbf{8 8}$.
Hydroxyester $\mathbf{1 0 2}$ could be smoothly reduced to diol $\mathbf{1 0 3}$ in 90% yield. Subsequent sodium periodate-mediated cleavage gave ketone $\mathbf{8 8}$ in satisfactory yield of 63%. We later discovered that ketone $\mathbf{8 8}$ proved to be extremely volatile and careful evaporation of solvents was necessary.

[^17]
3.2.2 α-Functionalization of Ketone 88

With a reliable route to key intermediate $\mathbf{8 8}$ in hand, the challenge of generating the $\mathrm{C}(4)$ quaternary center by electrophilic α-functionalization was tackled next.

Scheme 3.8: Observed selectivity during the reduction of norbornanone and camphor. Since it dictated the order of events, the question of stereoselectivity needed to be addressed first. As shown in Scheme 3.8, it is well known that LiAlH_{4}-mediated reduction of norbornanone ($\mathrm{R}=\mathrm{H}$) selectively provides the endo alcohol. ${ }^{43}$ For camphor $(\mathrm{R}=\mathrm{Me})$ on the other hand, the exo attack is disfavored due to the steric shielding of the bridge substituents. This finding leads to the conclusion, that nucleophiles, as well as potential electrophiles for the corresponding enolates, favor exo attack. Since ketone $\mathbf{8 8}$ bears an exo methylene moiety at the bridge carbon, we surmised that this compound would behave similar to norbornanone and thus favor exo functionalization. Hence, the first transformation en route to diketone $\mathbf{7 8}$ should be the α-methylation, followed by α-acylation.

In a first experiment, ketone $\mathbf{8 8}$ was deprotonated with $i \mathrm{Pr}_{2} \mathrm{NLi}$, and reacted with MeI to furnish methyl ketone $\mathbf{1 0 4}$ in 86% yield. The product was obtained as a single diastereomer, thus confirming our assumption of selective exo functionalization. Unfortun-

Scheme 3.9: α-Methylation of ketone 88. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$, then MeI, $-78{ }^{\circ} \mathrm{C}$ to RT, 86%. ately, when the experiment was repeated several times, a vast fluctuation of yield was observed. Under identical conditions, 32 to 86% of product were obtained. At this stage, we reasoned, that the volatility of $\mathbf{1 0 4}$ might be the reason for this issue, in combination with undefined side reactions. However, the search for an answer to this problem was postponed, since the envisioned key hydroalkylation of diketone 78 was in reach with the material available.

[^18]The stage was now set to introduce the acyl moiety. Since O- vs. C-acylation is always an issue to address during such transformations, the use of acetyl chloride was avoided and 1-acetylimidazole was chosen as an alternative.

Table 3.2: Functionalization of ketone $\mathbf{1 0 4}$ to obtain a 1,3-dicarbonyl product.

Entry	Electrophile	Base	Solvent	Temperature	Yield ${ }^{[\text {al, [b] }}$
$\mathbf{1}$	$1-$ acetyl- imidazole	$i \mathrm{Pr}_{2} \mathrm{NLi}$	THF	$-78^{\circ} \mathrm{C}$ to RT	6%
$\mathbf{2}^{[\mathrm{cc}]}$	1 acetyl- imidazole	$i \mathrm{Pr}_{2} \mathrm{NLi}$	THF	$-78{ }^{\circ} \mathrm{C}$	22%
$\mathbf{3}$	$(\mathrm{MeO})_{2} \mathrm{CO}$	NaH	THF	$66^{\circ} \mathrm{C}$	n.d.
$\mathbf{4}$	$(\mathrm{MeO})_{2} \mathrm{CO}$	$i \mathrm{Pr}_{2} \mathrm{NLi}$	THF	$-78^{\circ} \mathrm{C}$ to RT	n.d.

[a] Yields refer to spectroscopically and chromatographically homogenous materials. [b] n.d. $=$ Product not detected. [c] Electrophile added fast $(t<1 s)$.

In a first attempt, the desired product could be obtained, although in poor yield of 6% with 40% recovered starting material (Table 3.2, Entry 1). Protonation of the enolate of $\mathbf{1 0 4}$ by 1 -acetylimidazole might be a reason for the observed low conversion. Thus, fast addition of an excess acylating reagent was tested (Table 3.2, Entry 2). Indeed, the yield increased to 22%. The weaker electrophile dimethyl carbonate did not produce any product (Table 3.2, Entries 3 and 4).

Due to the discouraging results obtained with enolates, we switched to silyl enol ethers. A recent report from REIM et al. described the reaction between silyl enol ethers and methyl malonyl chloride in the presence of substoichiometric amounts of TMSOTf. ${ }^{44}$ However, when applied to our system, the expected β, δ-diketoester 106 was not isolated, but diester 107 (Scheme 3.10). One logical explanation for the formation of the latter is the presence of water in the reaction mixture, which hydrolyzed the methyl malonyl chloride and led to the formation of triflic acid from TMSOTf. Subsequent protonation of the exocyclic olefin and trapping of the corresponding tertiary carbocation by methyl malonic acid would then provide 107.

[^19]

Scheme 3.10: Functionalization of ketone 104 via the corresponding silyl enol ether. Reagents and conditions: a) TMSOTf, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to RT , quant; b) Methyl malonyl chloride, TMSOTf, toluene, yield not determined; c) $\mathrm{AcCl}, \mathrm{ZnCl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 58 \%$.

In 1982, TIRPAK and RATHKE reported the acylation of silyl enol ethers with acid chlorides in presence of ZnCl_{2} or $\mathrm{SbCl}_{3} .{ }^{45}$ Gratifyingly, when the trimethylsilyl enol ether of ketone $\mathbf{1 0 4}$ was reacted with acetyl chloride and ZnCl_{2}, the desired diketone $\mathbf{7 8}$ was isolated in 58% yield along with 26% of α-isomerized 104 (Scheme 3.10). Attempts to further increase the conversion by using more stable silyl enol ethers (TES and TBS) were unfruitful.

3.2.3 Conclusion

In summary, an efficient route to diketone $\mathbf{7 8}$ from fulvene Diels-Alder adduct $\mathbf{9 5}$ has been established (Scheme 3.11). The sequence relies on α-hydroxylation of ester 95 with molecular oxygen, followed by reduction and diol cleavage. The thus obtained ketone 88 was selectively exo methylated to give $\mathbf{1 0 4}$ in varying yields.

Scheme 3.11: Synthetic sequence from diene 95 to diketone 78.
While direct enolate acylation failed, the use of the corresponding silyl enol ether provided valuable insights into the chemical behavior of this system. Even though the reaction with methyl malonyl chloride did not provide the desired product, it opened further alternatives for subsequent functionalization of $\mathbf{7 8}$ by olefin protonation and intramolecular enol trapping. Exposure of the trimethylsilyl enol ether of $\mathbf{1 0 4}$ to acetyl chloride in presence of ZnCl_{2} ultimately provided access to diketone 78 in 58% overall yield.

[^20]
3.3 C(9)-C(10) Bond Formation

With sufficient material of diketone 78 in hand, the crucial $\mathrm{C}(9)-\mathrm{C}(10)$ bond formation was approached next. As described during the retrosynthetic analysis (cf. Chapter 2.2), an intramolecular hydroalkylation reaction of $\mathbf{7 8}$ was envisioned as the key step to form the tricyclic core of pallambins A and B (Scheme 3.12).

Scheme 3.12: Envisioned hydroalkylation key step to form the $C(9)-C(10)$ bond.

3.3.1 $\mathrm{Au}(\mathrm{I})$-Mediated Hydroalkylation

In 2001, the WIDENHOEFER group reported the first efficient transition metal-mediated addition of stabilized carbon nucleophiles to unactivated olefins. ${ }^{46}$ When dione $\mathbf{1 0 8}$ was exposed to one equivalent of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ in THF, full conversion was reached after only 15 min to give cyclohexanone 109 in 70% yield (Scheme 3.13).

Scheme 3.13: $\mathrm{Pd}($ II $)$-mediated hydroalkylation developed by wIDENHOFER and co-workers.
Surprisingly, no olefinic bond was present in the obtained product, suggesting that no oxidation occurred. Although alkyl $\mathrm{Pd}(\mathrm{II})$ complexes are typically unstable towards β-hydride elimination, ${ }^{47}$ it has been shown, that in the present case, a protodepalladation occurred instead. ${ }^{48}$ This finding proved to be crucial, since it opened the possibility to perform this reaction under catalytic conditions. Indeed, upon employment of only $10 \mathrm{~mol} \%$ $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ the desired product $\mathbf{1 0 7}$ was obtained in 81% yield. Notably, the 6 -endo-trig cyclized product was the only isolated product, while no 5-exo-trig cyclization occurred.

[^21]Six years later, ZHOU and CHE published a related transformation using cationic gold(I) catalysts for the cyclization of β-ketoamides. ${ }^{22 a}$ Upon exposure of various β-ketoamides to $\left[\mathrm{Au}\left(\mathrm{P}(t \mathrm{Bu})_{2}\right.\right.$-o-biphenyl $] \mathrm{Cl}$ (112) at $50^{\circ} \mathrm{C}$ in toluene, 5-exo-trig cyclized lactams were obtained in high yields ($90-99 \%$). As for the $\mathrm{Pd}($ II $)$-catalyzed hydroalkylation of WIDENHOEFER, the transformation is enabled by the favorable ketone/enol equilibrium of β-dicarbonyls. After initial activation of the alkene by the cationic gold(I) complex, the olefin is

Scheme 3.14: A) $\mathrm{Au}(\mathrm{I})$-catalyzed hydroalkylation of ketoamides by CHE; B) Proposed mechanism. attacked by the enol tautomer and the thus formed C - Au bond undergoes protodeauration to regenerate the catalyst and liberate the cyclized product as a single anti diastereomer (Scheme 3.14).

CHE and co-workers further investigated this transformation with the intention to enable the use of simple aliphatic ketones as carbon nucleophiles. ${ }^{22 b}$) The two main problems which arise are firstly the lower acidity of the α-proton $\left(\mathrm{pK}_{\mathrm{a}} \approx 27\right.$ for aliphatic ketones vs. $\mathrm{pK}_{\mathrm{a}} \approx 13$ for β-dicarbonyls) ${ }^{49}$ and secondly the unfavorable enol/ketone equilibrium. ${ }^{50}$ Nevertheless, these difficulties could be resolved by employing higher reaction temperatures $\left(111^{\circ} \mathrm{C}\right)$ and a different gold(I) catalyst $(\operatorname{IPrAuCl})^{51}$ providing the desired cyclized products in high yields (71-99\%). Noteworthy, even 1,1-disubstituted olefins could be employed.

In order to perform the envisioned intramolecular hydroalkylation reaction of ketone 78, we decided to start our investigation with the conditions described by CHE. Due to the commercial availability of $\mathbf{1 1 2}$ and the reported only slightly diminished yields, this complex was used as $\mathrm{Au}(\mathrm{I})$ source. When diketone $\mathbf{7 8}$ was added to a solution of $\mathbf{1 1 2}$ in toluene, followed by addition of AgClO_{4}, immediate precipitation of AgCl was observed (Scheme 3.15). The heterogeneous mixture was gradually warmed to $90^{\circ} \mathrm{C}$, but no conversion could be detected. Disappointingly, upon refluxing the reaction overnight, only decomposition of the starting material was observed.

[^22]Based on this result and being aware of the higher reactivity of β-ketoesters in hydroalkylation reactions, ketone 78 was transformed into diketoester 113. It should be noted, that an additional carbonyl group in this position could potentially be used later in the synthesis for the generation of the $\mathrm{C}(11)$ oxygen functionality ($c f . \mathbf{7 5}$, Scheme 2.1) Following MANDER's protocol for selective C-acylation, the corresponding lithium enolate was reacted with methyl cyanoformate (Mander's reagent). ${ }^{52}$ Although this reaction proceeded extremely sluggishly and provided the desired product 113 in only $\mathbf{7 \%}$ yield, sufficient material could be produced to test the hydroalkylation reaction. Disappointingly, subjecting β-ketoester 113 to CHE's conditions resulted only in decomposition of the starting material.

Scheme 3.15: Attempts to generate the $\mathrm{C}(9)-\mathrm{C}(10)$ bond by a gold(I)-catalyzed intramolecular hydroalkylation. Reagents and conditions: a) $\mathbf{1 1 2}$ ($15 \mathrm{~mol} \%$), AgClO_{4} ($15 \mathrm{~mol} \%$), toluene, RT to $111{ }^{\circ} \mathrm{C}$, decomposition; b) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{MeO}_{2} \mathrm{C}(\mathrm{CN}),-78^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}, 7 \%$; c) $\mathbf{1 1 2}$ ($15 \mathrm{~mol} \%$), $\mathrm{AgOTs}(15 \mathrm{~mol} \%)$, toluene, RT to $111^{\circ} \mathrm{C}$, decomposition.

3.3.2 Brønsted and Lewis Acid-Mediated Ring Closure

Due to the discouraging results obtained in the gold(I)-catalyzed hydroalkylation, an alternative method for the key $\mathrm{C}-\mathrm{C}$ bond closure was deemed necessary. TRAUNER and coworkers realized the intramolecular attack of the β-ketolactone in $\mathbf{1 1 5}$ onto a tertiary carbocation, generated by olefin protonation with a strong acid (Scheme 3.16, A). ${ }^{53}$ When β-ketoester 113 was subjected to $5 \mathrm{~mol} \%$ of triflic acid in deuterated toluene, no reaction was observed upon gradual heating to $60{ }^{\circ} \mathrm{C}$ (Scheme 3.16, B). However, increasing the temperature to $90^{\circ} \mathrm{C}$ entailed only decomposition of the starting material.

[^23]

Scheme 3.16: A) Cyclization enabled by olefin protonation employed by TRAUNER and co-workers during the total syntheses of shimalactones; B) Attempted protonation and cyclization of β-ketoester $\mathbf{1 1 3}$.

We then turned our attention to the use of Lewis acids, which could potentially coordinate to the β-ketoester, thereby mediate enolization with concomitant formation of $\mathrm{H}-\mathrm{X}$. The thus in situ liberated acid could then protonate the double bond and cyclization might occur. Indeed, a literature survey provided valuable examples by REETZ and co-workers, who undertook a detailed study of this transformation (Scheme 3.17, A). ${ }^{54}$ When β-ketoester 113 was exposed to the reported conditions, a new spot on TLC appeared, indicating the formation of at least one new compound (Scheme 3.17, B). Unfortunately, despite extensive attempts to isolate this product only decomposition was observed upon workup. Hence, it was reasoned that the electron withdrawing effect of the β, γ-tricarbonyl fragment might cause side reactions (i.e. retro Claisen reaction). In order to circumvent such an event, the $\mathrm{C}(3)$ ketone was thus reduced and protected by the following sequence: protection of the $\mathrm{C}(8)$ ketone by conversion into the corresponding silylenol ether followed by selective exo reduction and protection provided 123. Selective desilylation gave ketone $\mathbf{1 2 4}$ in a high overall yield of 57% from $\mathbf{7 8}$. Conversion into β-ketoester 125 again proved to be difficult and proceeded in only 10% yield. Exposure of this material to SnCl_{4} provided a new product, which could be isolated without difficulties. Unfortunately, this new compound was not identified as desired tricycle 126, but as silylenol ether 127. This product is presumed to arise from a retro Diels-Alder reaction of $\mathbf{1 2 5}$ to give 127 and volatile pentafulvene.

[^24]
A)

B)

113

78
123

Scheme 3.17: A) Study by REETZ and co-workers on the cyclization of β-ketoesters and olefins in the presence of strong Lewis acids; B) Attempted cyclization of $\mathbf{1 1 3}$ and 125. Reagents and conditions: a) SnCl_{4} (0.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to RT, decomposition; b) TBSOTf, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT ; c) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O},-42{ }^{\circ} \mathrm{C}, 61 \%$ over two steps; d) TBSOTf, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 94 \%$; e) $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.; g) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{Et}_{2} \mathrm{O},-7{ }^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$, then $\mathrm{MeO}_{2} \mathrm{C}(\mathrm{CN}), 10 \%$; g) SnCl_{4} (0.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{RT}, 68 \%$ of $\mathbf{1 2 7}$.

3.3.3 Radical-Mediated Ring Closure

Due to the failure of mediating the key $\mathrm{C}(9)-\mathrm{C}(10)$ bond formation via ionic pathways, i.e. protonation of the exo double bond, radical reactions were investigated next. In order to generate a radical at the $\mathrm{C}(9)$ carbon, a suitable leaving group is required. Thus, bromination of ketone 78 was performed by reacting the corresponding lithium enolate with NBS (Scheme 3.18, A). Bromide $\mathbf{1 2 8}$ was obtained in only 26% yield, along with various side products including the respective tribromide. In an initial attempt $\mathbf{1 2 8}$ was treated with $n \mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing benzene. ${ }^{55}$ Unfortunately, only decomposition of the starting material was observed and milder conditions were deemed necessary. A report by STEPHENSON and co-workers describes the generation of radicals in the α-position of carbonyl groups from bromides under the influence of photoredox-catalysis. ${ }^{56}$ Therein, the radical is generated by single electron transfer from a $\mathrm{Ru}(\mathrm{III})$ or $\mathrm{Ir}(\mathrm{II})$ complex to the substrate. The thus generated radical subsequently reacts with an olefin or alkyne to give the desired cyclized products in high yields (Scheme 3.18, B). However, applying these conditions to bromide $\mathbf{1 2 8}$ only led to the formation of multiple unidentified products.

[^25]A)

B)

130

Scheme 3.18: A) Attempted radical cyclization to generate the key $\mathrm{C}(9)-\mathrm{C}(10)$ bond. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, then NBS, THF, $-78{ }^{\circ} \mathrm{C}, 22 \%$; b) AIBN ($5 \mathrm{~mol} \%$), $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{C}_{6} \mathrm{H}_{6}$, decomposition; c) 131 ($5 \mathrm{~mol} \%$), $\mathrm{NEt}_{3}, \mathrm{DMF}$, visible light, decomposition; B) Radical cyclization of α-bromoesters by STEPHENSON and co-workers via photoredox-catalysis.

3.3.4 Pd(II)-Mediated Ring Closure

Although gold(I) complexes could not effectively activate the desired exo double bond of ketone 78 (cf. Chapter 3.3.1), switching to another, more suitable metal might enable the desired cyclization reaction. ${ }^{57}$ Due to its affinity to coordinate to olefins, a feature which is exceedingly used in various catalytic processes, palladium was chosen as an adequate replacement. In 1979, the SAEGUSA group reported a novel cyclization upon exposing ω-vinyl silylenol ethers such as $\mathbf{1 3 3}$ to $\mathrm{Pd}(\mathrm{OAc})_{2}$ yielding cyclized enones (cf. 137, Scheme 3.19, A). ${ }^{58,59} \mathrm{~A}$ few years later, KENDE et al. proposed a mechanism involving activation of the ω-olefin followed by nucleophilic attack of the silylenol ether. ${ }^{60}$ The thus formed organopalladium species $\mathbf{1 3 5}$ then suffers from β-hydride elimination to liberate the product and $\operatorname{Pd}(0)$. In most cases, the thermodynamically favored isomerization to α, β-unsaturated ketones occurred. In order to overcome the disadvantageous use of stoichiometric $\operatorname{Pd}(\mathrm{II})$, TOYOTA and co-workers developed a catalytic variant of this transformation (Scheme 3.19, A). ${ }^{61}$

Noteworthy, in contrast to the previously described examples, which are terminated by a β-hydride elimination and are hence of oxidative nature, the transformation of $\mathbf{7 8}$ to $\mathbf{7 7}$ demands a reductive Heck-type cyclization. After olefin coordination and nucleophilic attack,

[^26]an organopalladium species adjacent to a quaternary center would be generated and thus cannot undergo β-hydride elimination ($c f .139$ Scheme 3.19, B). If such a species was longlived enough, an external reductant might be added after cyclization occurred. If successful, a screening of reductants might provide a suitable reagent, which does not interfere with точотA's conditions, developed to reoxidize $\operatorname{Pd}(0)$ to $\mathrm{Pd}(\mathrm{II})$ by molecular oxygen and hence enable a catalytic process.

Scheme 3.19: A) $\operatorname{Pd}($ II $)$-mediated intramolecular cyclization of silylenol ethers and ω-olefins discovered by SAEGUSA and co-workers including the mechanistic proposal by KENDE; B) $\operatorname{Pd}(\mathrm{II})$-mediated cyclization of silylenol ether 138. Reagents and conditions: a) TBSOTf, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT ; b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O},-42{ }^{\circ} \mathrm{C}$, 61% over two steps; c) TBSOTf, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 94 \%$; d) $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.; e) TMSOTf, NEt_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT; f) $\mathrm{Pd}(\mathrm{OAc})_{2}\left(1.05\right.$ equiv), DMSO, $50{ }^{\circ} \mathrm{C}, 9 \mathrm{~h}$, then $\mathrm{HCO}_{2} \mathrm{H}, 68 \%$.

Due to the widespread use of trimethylsilylenol ethers in the $\mathrm{Pd}(\mathrm{II})$-mediated oxidative Heck-type cyclizations, $\mathbf{1 3 8}$ was investigated first. The synthetic sequence for its preparation is in accordance with the preparation of $\mathbf{1 2 3}$ (cf. Scheme 3.17). Upon exposure to $\mathrm{Pd}(\mathrm{OAc})_{2}$ in DMSO at $50{ }^{\circ} \mathrm{C}$ for 9 h disappearance of the starting material was observed, as judged by TLC. The reaction mixture was then quenched by the addition of formic acid, which resulted in immediate precipitation of palladium black. To our delight, only a single novel compound was formed, which proved to be the desired tricyclic diketone $\mathbf{1 4 0}$ obtained in 68% yield. Additionally, the more stable tert-butyldimethylsilylenol ether $\mathbf{1 2 3}$ (cf. Scheme 3.17, B) cyclized in a slightly improved yield of 71%.

3.3.5 Conclusion

During our investigation of the key $\mathrm{C}(9)-\mathrm{C}(10)$ bond formation, several important features of diene 78 have been revealed. Firstly, radical reactions as well as strong Brønsted acids seem to be incompatible with this system and the reactions investigated led only to decomposition of the starting material. A likely explanation for this finding might be the unstable nature of norbornenes due to various rearrangement processes. ${ }^{62}$ Such rearrangements might be even more facilitated by the presence of an additional 1,1-disubstitued double bond, which can lead to relatively stable tertiary radicals and carbocations. Furthermore, gold(I) catalysis did not mediate the desired cyclization. This is rather surprising, since $\mathbf{7 8}$ does not contain any functional groups, which were not tolerated during the screening of CHE and co-workers. Additionally, the methyl ketone is in close spatial proximity to the exo olefin and should therefore easily undergo $\mathrm{C}-\mathrm{C}$ bond formation. ${ }^{63}$ When replacing gold(I) by palladium(II), olefin activation smoothly occurred, providing the desired tricyclic diketone 140 in high yield.

[^27]
3.4 Cyclopropanation of the endo Olefin

With the key $\mathrm{C}(9)-\mathrm{C}(10)$ bond formed, the introduction of the cyclopropane to complete the tetracyclo[4.4.0 $0^{3,5} .0^{2,8}$]decane core of pallambins A and B was tackled next. As indicated in Scheme 3.20 several challenges emerged while planning this transformation. Firstly, the majority of the numerous published methodologies for cyclopropanation employ activated olefins such as styrenes, enol ethers or enamines. Alkene $\mathbf{1 4 0}$ on the other hand is an isolated aliphatic alkene lacking such a beneficial increased reactivity. However, we were hoping that the ring strain associated with norbornene double bonds ($14.4 \mathrm{kcal} / \mathrm{mol}$ for norbornane vs. $19.2 \mathrm{kcal} / \mathrm{mol}$ for norbornene $)^{64}$ would enhance the reactivity of this particular olefin towards electrophilic carbenoid reagents.

Scheme 3.20: Envisioned cyclopropanation to complete the tetracyclic core structure of pallambins A and B.
Secondly, the high steric encumbrance of the olefin has to be considered. While the endo face is shielded by the $\mathrm{C}(4)$ methyl group and the TBS ether, the exo face is covered by the $\mathrm{C}(10)$ methyl group. As mentioned in Chapter 2.1, it was presumed that the newly formed cyclopentanone containing $\mathrm{C}(4)$ and $\mathrm{C}(10)$ might entail an increase of the angle between the $\mathrm{C}(10)$ bridge and the corresponding olefin. This assumption would also provide a positive indication for the third challenge, the question of diastereoselectivity during the cyclopropanation reaction.

A powerful carbenoid for the cyclopropanation of even unactivated olefins was described by SHI and co-workers in 2004. ${ }^{65}$ The researchers hypothesized, that if the nucleophilicity of the double bond cannot be increased, better results could be obtained by employing a more electrophilic carbenoid species. Along these lines, SHI and co-workers discovered that the properties of a (halomethyl)zinc reagent $\left(\mathrm{XZnCH}_{2} \mathrm{Y}\right.$, where X are halogen atoms and Y are either halogens or alkylgroups) can be altered by treatment with protic reagents. A laborious screening revealed that the zinc carbenoid $\left(\mathrm{F}_{3} \mathrm{CCO}_{2}\right) \mathrm{ZnCH}_{2} \mathrm{I}$, generated from equimolar amounts of ZnEt_{2}, trifluoroacetic acid and $\mathrm{CH}_{2} \mathrm{I}_{2}$, is a very powerful cyclopropanation reagent, providing the desired products in significantly shorter reaction times and higher

[^28]yields. Due to the hypothesized decreased reactivity of $\mathbf{1 4 0}$, this protocol was expected to be the most promising method to perform the desired cyclopropanation. ${ }^{66}$

Upon exposure of olefin $\mathbf{1 4 0}$ to the conditions described by SHI no cyclopropanation occurred (Scheme 3.21). Instead, a mixture of starting material and another unidentified side product was obtained. Increasing the equivalents of the added zinc carbenoid species did also not provide any desired tetracycle $\mathbf{1 4 1}$. We assume that the steric environment of the corresponding olefinic bond is too encumbered to be reached by the carbenoid species.

Scheme 3.21: Attempted synthesis of tetracycle 141 from 124 by $\operatorname{Pd}(\mathrm{II})$-mediated cyclization and cyclopropanation. Reagents and conditions: a) TBSOTf, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT ; b) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{DMSO}, 50^{\circ} \mathrm{C}$, then $\mathrm{HCO}_{2} \mathrm{H}, 71 \%$ over two steps; c) $\mathrm{ZnEt}_{2}, \mathrm{~F}_{3} \mathrm{CCO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, then $\mathrm{CH}_{2} \mathrm{I}_{2}, 0{ }^{\circ} \mathrm{C}$, then $\mathbf{1 4 0}, 0^{\circ} \mathrm{C}$ to RT, no reaction; d) $\mathrm{ZnEt}_{2}, \mathrm{~F}_{3} \mathrm{CCO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $30{ }^{\circ} \mathrm{C}$, then $\mathrm{CH}_{2} \mathrm{I}_{2}, 0^{\circ} \mathrm{C}$, then $\mathbf{1 2 4}, 73 \%$ for $\mathbf{1 4 2}, 26 \%$ for 143; e) $\mathrm{Pd}(\mathrm{OAc})_{2}$, $\mathrm{DMSO}, 5{ }^{\circ} \mathrm{C}$ then $\mathrm{HCO}_{2} \mathrm{H}$.

Based on this result, it was decided to reverse the order of events, i.e. first perform the cyclopropanation reaction on diene $\mathbf{1 2 4}$, followed by the previously established palladium(II)mediated ring closure. Accordingly, $\mathbf{1 2 4}$ was treated with two equivalents of SHI's carbenoid. Unfortunately expected cyclopropane $\mathbf{1 4 3}$ was only observed as the minor product (26% yield). In analogy to $\mathbf{1 2 5}$ ($c f$. Scheme 3.17), the predominant reaction was a retro Diels-Alder reaction to give volatile pentafulvene and silyl enol ether $\mathbf{1 4 2}$ in 73% yield. Nevertheless, we had sufficient material in hand to explore the palladium(II)-mediated ring closure. Disappointingly, no reaction occurred under the previously employed conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}\right.$, DMSO, $50^{\circ} \mathrm{C}$). We surmised that the $\mathrm{C}-\mathrm{H}$ bond (highlighted in red in Scheme 3.21) of the cyclopropane provides sufficient shielding of the exo olefin in order to prevent the crucial anti coordination of $\mathrm{Pd}(\mathrm{II})$.

[^29]
3.5 Revision of the Synthetic Strategy

Our initial synthetic strategy presented in the previous chapters revealed several important aspects for the generation of the tetracyclo $\left[4.4 .0^{3,5} .0^{2,8}\right]$ decane core. We started the synthetic sequence with pentafulvene in the course of a Diels-Alder reaction and were able to handle this highly unstable compound as well as render this cycloaddition useful on a preparative scale. During our attempts to introduce the cyclopropane motif, it became apparent that its introduction would have to precede the introduction of the $\mathrm{C}(10)$ quaternary center, since attempts to cyclopropanate $\mathbf{1 4 0}$ were met with failure ($c f$. Chapter 3.4). A direct consequence of this result and the failed cyclization attempt of cyclopropane $\mathbf{1 4 3}$ is that the established palladium(II)-mediated reductive Heck-type cyclization cannot be employed. Thus another reaction for the $\mathrm{C}(9)-\mathrm{C}(10)$ bond formation must be explored. However, a very important consequence of $\mathbf{1 4 3}$ failing to cyclize, which we attributed to the steric shielding of the exo olefin by the cyclopropane, is that diastereoselective functionalization of the $R e$ face of the double bond should be feasible (Scheme 3.22). Our quest for a novel cyclization reaction and a

Scheme 3.22: Selective functionalization of 144. suitable olefin functionalization culminated in a strategy consisting of stereoselective hydrogenation of the exo double bond followed by an intramolecular $\mathrm{C}-\mathrm{H}$ insertion to access the tetracyclic core 76. In order to successfully perform these transformations, a chemo- and stereoselective cyclopropanation of ketone $\mathbf{8 8}$ is absolutely necessary. Scheme 3.23 summarizes the revised strategy that was envisaged to result in an efficient synthesis of the tetracyclic core 76 of pallambins A and B.

Scheme 3.23: Revised strategy for the construction of the tetracyclo[4.4.0 $\left.{ }^{3,5} .0^{2,8}\right]$ decane core 76 based on the results obtained in the previous chapters.

3.6 Selective Cyclopropanation and Hydrogenation

In the hope of increasing the modest overall yield during the generation of the $\mathrm{C}(3)$ ketone after Diels-Alder cycloaddition (cf. Scheme 3.7), we decided to perform the functionalization of the two olefins prior to the α-hydroxylation of ester 95 . Consequently, potential sensitive functional groups such as the strained endo olefin and the 1,1-disubstitued exo olefin would be converted into saturated hydrocarbon groups early in the synthesis.

The cyclopropanation of diene 95 bears several challenges. Firstly, as mentioned previously, both alkenes are not activated by electron donating groups and might thus not be reactive enough for various cyclopropanation methods. Secondly, a chemoselective transformation of the endo olefin must be achieved, since separation of the desired product from other cyclopropanated byproducts is, due to similar physical properties, tedious. Thirdly, if a chemoselective transformation of the desired olefin was achieved, the question of diastereoselectivity would arise. However, as shown in previous experiments, the desired exo attack should be favored ($c f$. Chapter 3.2.2). Our screening for conditions commenced with the already employed SHI modification of the Simmons-Smith reaction (Table 3.3, Entry 1). ${ }^{65}$

Table 3.3: Screening of cyclopropanation conditions of diene 95.

Entry	Reagents (equiv)	Temperature	Solvent	Products ${ }^{[\mathrm{a]}}$	Yield of $148^{[b],[c]}$
1	$\begin{gathered} \mathrm{ZnEt}_{2}(1.1), \mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}(1.1) \\ \mathrm{CH}_{2} \mathrm{I}_{2}(1.1) \end{gathered}$	$0^{\circ} \mathrm{C}$ to RT	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\underset{95^{[d]}}{148,149,}$	44\%
2	$i \mathrm{Bu}_{3} \mathrm{Al}$ (1.0), $\mathrm{CH}_{2} \mathrm{I}_{2}$ (1.05)	$0^{\circ} \mathrm{C}$ to RT	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	95	n.r.
3	ZnEt_{2} (1.05), $\mathrm{CH}_{2} \mathrm{I}_{2}$ (1.1)	$60^{\circ} \mathrm{C}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	148, 95	36\%
4	ZnEt_{2} (5.0), $\mathrm{CH}_{2} \mathrm{I}_{2}$ (5.0)	$60^{\circ} \mathrm{C}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	148, 95	48\%
5	$\begin{gathered} \mathrm{ZnEt}_{2}(1.4), \mathrm{CH}_{2} \mathrm{I}_{2}(1.4) \\ (n \mathrm{BuO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}(1.4) \end{gathered}$	$-15{ }^{\circ} \mathrm{C}$ to RT	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\underset{95^{[d]}}{148,149,}$	34\%
6	ZnEt_{2} (2.0), $\mathrm{ClCH}_{2} \mathrm{I}$ (4.0)	$0^{\circ} \mathrm{C}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	148, 149	78\%

[^30]Although desired product 148 was formed, it was only obtained in a moderate yield of 44% along with dicyclopropanated product 149 , recovered starting material and other unidentified side products. Noteworthy, the laborious isolation of spectroscopically pure $\mathbf{1 4 8}$ would be nearly impossible to perform on large scale. Next, an aluminum based carbenoid, introduced by yamamoto, was investigated (Table 3.3, Entry 2). ${ }^{67}$ However, upon exposure of diene 95 to the reported conditions, we were surprised to observe that no reaction took place and only starting material 95 was recovered. This lack of reactivity led us back to zinc carbenoid reagents. Since the highly reactive Shi carbenoid resulted in the formation of various byproducts including dicyclopropanated 149 , we reasoned that a carbenoid with decreased reactivity is necessary to achieve higher chemoselectivity and thus a higher yield. Indeed, when FURUKAWA's conditions $\left(\mathrm{ZnEt}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{I}_{2}$ in refluxing benzene) were employed, no byproducts were obtained (Table 3.3, Entry 3). ${ }^{68}$ However the isolated yield was only 36% along with 38% of recovered starting material. Encouraged by this result, the equivalents of carbenoid species were increased in the hope to increase the conversion (Table 3.3, Entry 4). Unfortunately, the outcome was disappointing, since the isolated yield remained only moderate. Based on these results, we surmised that we would require a carbenoid which is more reactive than FURUKAWA's but less reactive than SHI's. A recently published method by CHARETTE and co-workers, employing a phosphoric acid, seemed to be promising. ${ }^{69}$ Unfortunately, the yield could not be improved (Entry 5). Upon continuing our survey, we came over a report by DENMARK and EDWARDS describing the remarkable difference in reactivity upon substitution of $\mathrm{CH}_{2} \mathrm{I}_{2}$ in FURUKAWA's method by $\mathrm{ClCH}_{2} \mathrm{I} .{ }^{70} \mathrm{~A}$ comparison of the methods revealed an increase in reactivity of the chloroiodomethane derived zinc carbenoid. Cyclodecene, which does not react with $\mathrm{ZnEt}_{2} / \mathrm{CH}_{2} \mathrm{I}_{2}$ at $0{ }^{\circ} \mathrm{C}$, provides the corresponding cyclopropanated species within 20 min in 87% yield upon exposure to $\mathrm{ZnEt}_{2} / \mathrm{ClCH}_{2} \mathrm{I}$ at this temperature. Much to our delight, applying these conditions to diene $\mathbf{9 5}$ led to full conversion and the isolation of the desired product in 78% yield. The only byproduct formed was minor amounts of dicyclopropanated 149, which could be separated by flash column chromatography. Noteworthy, this reaction proved to be smoothly scalable (14 g of product $\mathbf{1 4 8}$ prepared) with an even increased yield of 85%.

The task approached next was the hydrogenation of the remaining exo olefin to introduce the $\mathrm{C}(10)$ methyl group. Potential issues for this transformation are the chemoselectivity

[^31]between the olefin and the newly installed cyclopropane as well as the desired diastereoselective $R e$ side approach of the reductant. In an initial experiment, olefin $\mathbf{1 4 8}$ was reduced in presence of $5 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}$ and one atmosphere of H_{2} in methanol (Scheme 3.24). Gratifyingly, a single product was obtained with full conversion. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ indicated the presence of a new methyl group, appearing as a doublet and a new a $\mathrm{C}-\mathrm{H}$ quartet with concomitant disappearance of the olefinic protons. In addition, a nuclear Overhauser effect was observed between the cyclopropane $\mathrm{C}-\mathrm{H}$ and the newly formed methyl group thereby securing the structure of desired $\mathbf{1 5 0}$. However, upon increasing the scale of the reaction to 5 g , an inseparable 1:1 mixture of desired product $\mathbf{1 5 0}$ and ring opened derivative 151 was obtained. ${ }^{71}$

Scheme 3.24: Hydrogenation of olefin 148. Reagents and conditions: a) $\mathrm{Pd} / \mathrm{C}(5 \mathrm{~mol} \%), \mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}$, quant. for $\mathbf{1 5 0}$ up to $500 \mathrm{mg}, 50 \%$ of $\mathbf{1 5 0}, 50 \%$ of $\mathbf{1 5 1}$ on 5 g scale; b) $\mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{3}(4 \mathrm{~mol} \%), \mathrm{H}_{2}(1 \mathrm{~atm})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$ for 150 .

This finding is hypothesized to arise from the decreased catalyst surface/volume ratio and the thus prolonged reaction time. Certainly, a more reliable hydrogenation method was deemed necessary. A literature survey indicated no reported reductive cyclopropane opening in the presence of Wilkinson's catalyst under standard hydrogenation conditions. Accordingly, treatment of $\mathbf{1 4 8}$ with $4 \mathrm{~mol} \%$ of $\mathrm{ClRh}\left(\mathrm{PPh}_{3}\right)_{4}$ and one atmosphere of hydrogen provided $\mathbf{1 5 0}$ in 96% yield reliably also on scales up to 15 g .

[^32]
3.7 $\mathbf{C}(3)$-Ketone Generation and Modified α-Functionalization

3.7.1 Oxidative Decarboxylation

With a reliable and scalabe route to cyclopropane $\mathbf{1 5 0}$ established, we turned our attention to the generation of the $\mathrm{C}(3)$ ketone. As described earlier, we were hoping that the presence of the diene was the reason for the failure of $\mathbf{9 5}$ to undergo oxidative decarboxylation upon exposure to Yamamoto's conditions $\left(i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{PhNO}\right.$, then $\mathrm{LiOH} c f$. Chapter 3.2.1). ${ }^{38}$ However, fully saturated $\mathbf{1 5 0}$ also proved to be a delicate substrate for this transformation. Although desired ketone 146 was formed, the isolated yield was merely 17%. Therefore, the already established three-step sequence consisting of α-hydroxylation, reduction and diol cleavage was attempted next. Gratifyingly, compared to diene 95, the overall yield could be improved from 33% to 82% for this sequence.

Scheme 3.25: Generation of the $\mathrm{C}(3)$ ketone. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{P}(\mathrm{OEt})_{3}$, DMPU, O_{2} (bubbling), $-90{ }^{\circ} \mathrm{C}$, 85%, d.r. $=10: 1$; b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; c) NaIO_{4}, THF-phosphate buffer (aqueous, pH 7$)(1: 1), 0^{\circ} \mathrm{C}, 97 \%$ over two steps.

3.7.2 $\mathbf{C}(4)$-Methylation

The seemingly straightforward introduction of the $\mathrm{C}(4)$ methyl group from the corresponding enolate of ketone $\mathbf{1 4 6}$ proved to be extremely cumbersome (Scheme 3.26). In a first attempt on small scale (40 mg), following the procedure in Chapter 3.2.2, ketone 146 was deprotonated with $i \mathrm{Pr}_{2} \mathrm{NLi}$ at $-78{ }^{\circ} \mathrm{C}$ and a precooled solution of MeI in THF was added dropwise at this temperature. To our delight, the desired methyl ketone 154 was isolated in 91% yield. However, all attempts to reproduce this result failed. One problem observed was the widely varying conversion. We assumed that product $\mathbf{1 5 4}$ gets deprotonated by the enolate of $\mathbf{1 4 6}$ and hence inhibits the reaction. This hypothesis is strengthened by the finding that adding additional MeI after a certain time did not influence the conversion. Another, more serious problem was the formation of an inseparable byproduct in varying amounts. Up to 1:1 mixtures of the unknown compound and ketone 154 were obtained. Puzzled by this result, solutions to these problems were absolutely necessary. Varying the reaction temperature, concentration and increasing the amounts of methyl iodide did not lead to improvements. As a consequence, different reagents were emplyoed. At first, various bases and additives were
investigated. However neither the addition of DMPU or HMPA, ${ }^{72}$ reagents known to increase yields in enolate reactions, nor the employment of different bases such as $i \mathrm{Pr}_{2} \mathrm{NK}$ or LiTMP suppressed byproduct formation. The alkylating reagent was exchanged by dimethyl sulfate and methyl trifluoromethanesulfonate. Disappointingly, no improvement could be achieved. Thus we surmised that the byproduct formation might occur during the usually performed aqueous workup using $\mathrm{NH}_{4} \mathrm{Cl}$. Due to the proportional dependence of the excess MeI employed and the byproduct formed, it was further hypothesized that the alkylating reagent might be responsible for byproduct formation. Consequently, two parallel reactions under equal conditions were set up. One reaction was quenched as previously described, whereas the other was quenched by adding equimolar amounts of triethylamine (relative to the MeI employed) to form the corresponding ammonium salt. Indeed, while the standard workup provided a mixture of product $\mathbf{1 5 4}$ and the unidentified byproduct, the triethylamine quenched reaction did not provide any side product. At last, we were able to increase the conversion by rapid addition of an excess of MeI at $0{ }^{\circ} \mathrm{C}$. Applying the thus tediously developed experimental procedure, provided ketone 154 in excellent yield of

Scheme 3.26: Methylation of ketone 146 89\% (Scheme 3.26).

3.7.3 $\quad \alpha$-Acylation of Ketone 154

With a reliable and scalable entry towards methyl ketone 154 in hand, the generation of the $\mathrm{C}(4)$ quaternary center via α-acylation was examined next. To our surprise, only traces of product could be obtained under the previously established conditions from the corresponding TES enol ether $\mathbf{1 5 8}\left(\mathrm{ZnCl}_{2}, \mathrm{AcCl}\right.$, Table 3.4, Entry $1 c f$. Chapter 3.2.2). We then employed the corresponding lithium enolate of $\mathbf{1 5 4}$ and exposed it to acetyl chloride (Entry 2). However, none of the desired product could be detected. Furthermore, the addition of HMPA did also not lead to any improvement (Entry 3).

[^33]Table 3.4: Generation of the $\mathrm{C}(4)$ quaternary center.

Entry	Nucleophile	Electrophile	Additive	Temperature	Yield ${ }^{[a]-[d]}$
1		AcCl	ZnCl_{2}	$0^{\circ} \mathrm{C}$	n.d.
2		AcCl	-	$-78{ }^{\circ} \mathrm{C}$ to RT	n.d.
3		AcCl	HMPA	$-78{ }^{\circ} \mathrm{C}$ to RT	n.d.
4			$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$0^{\circ} \mathrm{C}$	n.d.
5	$\mathrm{Me}_{\text {Lio }}^{\mathrm{Me}} \frac{\mathrm{~T}}{159}$	MeCHO	-	$-78{ }^{\circ} \mathrm{C}$	10-40\%
$6^{[\mathrm{e}]}$		MeCHO	-	$-78{ }^{\circ} \mathrm{C}$	n.dt.
7		MeCHO	-	$-15^{\circ} \mathrm{C}$	n.r.
8		MeCHO	-	$-78{ }^{\circ} \mathrm{C}$	n.r.
9		MeCHO	-	$0{ }^{\circ} \mathrm{C}$	n.dt.
10		MeCHO	-	$-15^{\circ} \mathrm{C}$	n.dt.
11		MeCHO	TiCl_{4}	$-78{ }^{\circ} \mathrm{C}$ to RT	n.d.
12		MeCHO	$\mathrm{Ti}(\mathrm{OiPr})_{4}$	$-78{ }^{\circ} \mathrm{C}$ to RT	n.d.
13		MeCHO	$\mathrm{Me}_{2} \mathrm{AlCl}$	$-78{ }^{\circ} \mathrm{C}$	traces
14		MeCHO	$\mathrm{Gd}(\mathrm{OTf})_{3}$	RT	n.d.
15		MeCHO	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$-90{ }^{\circ} \mathrm{C}$	$70 \%{ }^{[f],[\mathrm{g}]}$

[a] Yields refer to spectroscopically and chromatographically homogenous materials. [b] n.d. $=$ product not detected. [c] n.dt. $=$ yield not determined. [d] n.r. $=$ no reaction observed. [e] Enolate generated from 160 and MeLi. [f] Yield after three cycles. [g] exolendo $=5: 1$, as determined later from the oxidized product.

We hypothesized the failure of these reactions might be due to the following reasons. Firstly, due to the fact that no conversion of the starting material occurred, acetyl chloride might not be a suitable electrophile. ${ }^{73}$ Additionally, deprotonation of the acylating reagent by the enolate of $\mathbf{1 5 4}$ might occur. In order to suppress this reaction, a formal acylating reagent bearing no acidic protons (161) was employed. ${ }^{74}$ However upon exposure of TMS enol ether 160 to orthoester 161 in presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, only methyl ketone 154 was recovered after aqueous workup (Entry 4). ${ }^{75}$ The failure of this transformation might be associated with the sterically encumbered environment at $\mathbf{C}(4)$ and the relatively large electrophile. Interpreting these results, a relatively small, yet highly reactive electrophile was required, which would ultimately lead to targeted diketone $\mathbf{1 5 5}$. Thus, acetaldehyde was chosen as the electrophilic reaction partner. A first attempt, employing the lithium enolate $\mathbf{1 5 9}$ and subsequent reaction with acetaldehyde, led to the desired aldol products $\mathbf{1 5 7}$ as a mixture of diastereomers (Entry 5). Unfortunately, the isolated yields were highly inconsistent and the reaction was accompanied by formation of acetaldehyde oligomers. This was problematic, since the oligomers could not be completely separated from the aldol products via flash column chromatography. Their formation might be effected by either deprotonation of acetaldehyde by enolate $\mathbf{1 5 9}$ or by condensation of acetaldehyde with the in situ generated $i \mathrm{Pr}_{2} \mathrm{NH}$. In order to exclude the latter event, enolate generation was performed under conditions excluding the formation of amine derivatives. Thus, TMS enol ether $\mathbf{1 6 0}$ was first treated with equimolar amounts of MeLi , generating only tetramethylsilane and the desired enolate (Entry 6). Disappointingly, exposure of the thus generated enolate produced only minute quantities of the desired aldol products. $\mathrm{KO} t \mathrm{Bu}$ as well as TBAF have also been shown to enable the formation of enolates from TMS enol ethers. ${ }^{76}$ Unfortunately, exposing TMS enol ether 160 to either of these conditions did not lead to any conversion and only methyl ketone $\mathbf{1 5 4}$ was recovered (Entries 7 and 8). As a consequence of the low conversion, we attempted to minimize proton exchange with acetaldehyde by employing less basic and more nucleophilic enolates such as cerium or zinc species (Entries 9 and 10). ${ }^{77}$ Disappointingly, both zinc enolate 164 (generated from 159 and ZnCl_{2}) and cerium enolate 165 (generated from 159 and CeCl_{3}) provided various different products along with starting material 154 . We thus turned

[^34]our attention to Lewis acid-catalyzed Mukaiyama aldol reactions. ${ }^{78}$ A screening of various Lewis acids revealed the following: While $\mathrm{TiCl}_{4}, \mathrm{Ti}(\mathrm{OiPr})_{4}$ or $\mathrm{Gd}(\mathrm{OTf})_{3}{ }^{79}$ did not lead to any conversion, $\mathrm{Me}_{2} \mathrm{AlCl}$ provided traces of the desired aldol products 157 (Entries 11-14). Gratifyingly, the conversion could be improved, by employing $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and rapid addition of the aldehyde (Entry 15). After three recycles, 70% yield for the generation of aldol products 157 could be achieved.

Having successfully generated the quaternary center at $C(4)$, the task left to do was the oxidation of aldol products 157 to diketone 155. Initial attempts of Dess-Martin oxidation led to diverse ratios of desired diketone $\mathbf{1 5 5}$ and methyl ketone $\mathbf{1 5 4}$ (Scheme 3.27, A).

Scheme 3.27: A) Oxidation of alcohols 157 with Dess-Martin periodinane. B) Mechanistic rationale for the $t \mathrm{BuOH}-\mathrm{accelerated}$ Dess-Martin oxidation (taken from ref. 80 b).

This finding might be associated with the propensity of the aldol products to undergo a retro aldol reaction. We reasoned that the Lewis acidic nature of the Dess-Martin reagent might lead to a competitive scenario between oxidation and retro-aldol reaction. A literature survey revealed an explanation for the diverse product to byproduct ratio. After initial coordination of one equivalent of a hydroxy-substrate to 167, the reagent thus formed only slowly oxidizes to the desired carbonyl product (Scheme 3.27, B). However, upon coordination of a second equivalent of alcohol, a labile compound 169 is formed, which undergoes rapid oxidation. In our case, compound $\mathbf{1 7 0}$ might be activated enough to suffer from competing retro-aldol reaction. In their original report, DESS and MARTIN found that the addition of equimolar amounts of a non-oxidizable alcohol such as $t \mathrm{BuOH}$ entails the

[^35]formation of structures of type 169 and hence increases the overall reaction rate. ${ }^{80}$ Indeed, applying this procedure to aldol products $\mathbf{1 5 7}$ led to rapid and quantitative oxidation without any detectable amounts of retro-aldol product 154.

3.7.4 Conclusion

Scheme 3.28 summarizes the synthetic sequence from cyclopropanated ketone 146 to diketone 155. During our quest for a reliable route towards this key intermediate, several difficulties arose. Firstly, the α-methylation of ketone $\mathbf{1 4 6}$ proved to be highly delicate. The lack of reactivity of the corresponding lithium enolate had to be overcome by employing a relatively high alkylation temperature $\left(0^{\circ} \mathrm{C}\right)$ as well as an excess of methyl iodide (18 equiv). Furthermore, quenching of the residual alkylation reagent with NEt_{3} prior to the aqueous workup proved to be crucial to exclude byproduct formation. Secondly, a direct acylation of the $\mathrm{C}(3)$ ketone failed, a result which was associated with the decreased reactivity of the corresponding enolate equivalent. However, after extensive experimentation, it was found that performing a Mukaiyama aldol reaction with acetaldehyde in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-90^{\circ} \mathrm{C}$ provided the desired aldol products in 70% yield after three cycles. Thirdly, the envisioned oxidation of the aldol products proved to be surprisingly problematic. Inconsistent product yields were accompanied by the formation of retro aldol product 154. Gratifyingly, upon premixing Dess-Martin periodinane with $t \mathrm{BuOH}$ and reacting the thus formed highly reactive oxidizing agent with the aldol products furnished diketone 155 in 70% over three steps from methyl ketone 154.

Scheme 3.28: Conversion of ketone 146 into key intermediate diketone 155. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}$, THF $-78{ }^{\circ} \mathrm{C}$, then MeI (18 equiv), $0{ }^{\circ} \mathrm{C}$, then NEt_{3} (18 equiv), 89%, d.r. $=5: 1$; b) TBSOTf, NEt_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; c) MeCHO, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-90^{\circ} \mathrm{C}, 3 \mathrm{x}$ recycled; d) DMP, $t \mathrm{BuOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$, then $\mathbf{1 5 7}$, $0^{\circ} \mathrm{C}, 70 \%$ over three steps.

[^36]
3.8 $\mathbf{C}(9)-\mathbf{C}(10)$ Bond Formation via $\mathbf{C}-\mathbf{H}$ Insertion

With an efficient route to diketone $\mathbf{1 5 5}$ in hand, the challenging key $\mathrm{C}(9)-\mathrm{C}(10)$ bond formation was approached next. Since a $\mathrm{C}-\mathrm{H}$ insertion reaction into the $\mathrm{C}(10)$ methine group was envisioned to complete the tetracyclo $\left[4.4 .0^{3,5} .0^{2,8}\right]$ decane core, a carbenoid precursor such as a diazo group was required. One of the most common methods to install a diazo group in the α-position of a carbonyl compound is the Regitz diazo-transfer reaction. ${ }^{81}$ In the original publication from 1964, REGITZ depends on the use of active methylene compounds, such as β-dicarbonyls, which react with p-toluenesulfonyl azide under basic conditions (Scheme 3.29). Four years later, REGITZ reported an improvement of his method in which simple aliphatic ketones are firstly formylated with methyl formate. ${ }^{82}$ The then activated ketone undergoes diazo transfer upon exposure to TsN_{3} generating the diazo ketone and tosylformamide. Importantly, removal of the byproducts can be problematic. In order to overcome this issue, TABER et al. replaced TsN_{3} by $\mathrm{MsN}_{3} .{ }^{83}$ The advantage of this substitution lies in the smooth removal of the formed mesylated byproducts during basic aqueous workup. A few years later, DANHEISER and co-workers further improved the diazotation of unactivated ketones. ${ }^{84}$ Instead of performing a rather tedious formylation with methyl formate, 2,2,2trifluoroethyltrifluoroacetate was employed in a Claisen condensation with the desired aliphatic ketone. The then formed diketone undergoes smooth diazotation upon exposure to MsN_{3} and triethylamine. Noteworthy, a comparitive study with the formylation approach by REGITZ has been performed, exemplifying the superiority of this method.

Regitz (1964)

Danheiser (1990)

Scheme 3.29: Developments of the Regitz diazo-transfer reaction.

[^37]Due to the relatively non-activated nature of diketone $\mathbf{1 5 5}$, the procedure reported by DANHEISER et al. was chosen as the starting point. Indeed, a single UV active spot appeared on TLC and a new peak in the crude ${ }^{1} \mathrm{H}$ NMR at 5.74 ppm indicated the formation of a diazo compound. However, upon attempted flash column chromatography, the novel product decomposed. Consequently, it was decided to directly employ crude diazo ketone 147 in the carbenoid C-H insertion step (Scheme 3.30).

Scheme 3.30: Diazotation and $\mathrm{C}-\mathrm{H}$ insertion to generate tetracyle 76. Reagents and conditions: a) LiHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{F}_{3} \mathrm{CCH}_{2} \mathrm{CO}_{2} \mathrm{CF}_{3}$; b) $\mathrm{MsN}_{3}, \mathrm{NEt}_{3}, \mathrm{MeCN}$; c) $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.0 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 76% over three steps.

To our delight, a single new compound could be isolated upon exposure to $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{1} \mathrm{H}$ NMR analysis revealed the disappearance of the $\mathrm{C}(10)$ proton, as well as a new methyl singlet in addition to two diastereotopic methylene protons. Detailed 2DNMR analysis in combination with high resolution mass spectrometry secured the structure of 76. Noteworthy, the overall yield for the transformation of $\mathbf{1 5 5}$ into tetracycle $\mathbf{7 6}$ amounted to 76%.

3.9 Stereoselective Functionalization of $\mathbf{C}(8)$ and $\mathbf{C}(9)$

With a scalable route towards the crucial tetracyclo $\left[4.4 .0^{3,5} .0^{2,8}\right]$ decane core successfully established, the challenge faced next was the stereoselective construction of the tertiary alcohol at $C(8)$ as well as the generation of the $C(9)$ stereocenter to ultimately access diol 74 (Scheme 3.31).

Scheme 3.31: Required stereoselective functionalization of $\mathrm{C}(8)$ and $\mathrm{C}(9)$.
An accurate stereochemical analysis of 76, led us to the conclusion that the addition of organometallic methyl reagents towards the $\mathrm{C}(8)$ ketone would occur from the undesired $R e$ face. However, it was realized that both substituents, the tertiary alcohol and the carbon chain, possess a syn relationship and hence would be advantageously introduced simultaneously. Thus, as indicated in Scheme 3.32 it was planned to generate the $\mathrm{C}(8)$ methyl group from the corresponding ketone. Subsequently, the tertiary alcohol as well as the $\mathrm{C}(9)$ substituent would be concomitantly introduced via a cycloaddition approach.

Scheme 3.32: Synthetic strategy for the simultaneous functionalization of positions $C(8)$ and $C(9)$.
In the event, diketone 76 was treated with $i \mathrm{Pr}_{2} \mathrm{NLi}$ followed by the Hendrickson-McMurry reagent $\left(\mathrm{PhNTf}_{2}\right) .{ }^{85}$ Subsequent Negishi coupling with ZnMe_{2} smoothly provided trisubstituted olefin 172 in 64% overall yield (Scheme 3.33, B). Noteworthy, no reaction occurred upon exposure of the lithium enolate to Comins' reagent. ${ }^{86}$ Even though reactivity problems might arise upon employing a trisubstituted olefin in a cycloaddition reaction, we were hoping that the high ring strain of the newly formed norbornene (cf. Chapter 3.4) and the associated strain release might enable such a transformation. In a first attempt MukaiyamaHoshino conditions were applied, starting from 1-nitropropene with the required olefin

[^38]already incorporated. ${ }^{87}$ However, due to the lack of reactivity, no conversion could be observed. ${ }^{88}$ Consequently, a more reactive nitrile oxide, which would provide a flexible group for further functionalization was deemed necessary. During their synthesis of the diterpenoid natural product vinigrol, BARAN and co-workers needed to formally add the CH_{3} and OH groups of methanol across the trisubstituted olefin in $\mathbf{1 7 4}$ (Scheme 3.33, A). ${ }^{89}$ The problem was solved by performing a cycloaddition with bromonitrile oxide, a highly reactive reagent firstly reported by DEPAOLINI in $1936 .{ }^{90}$

Gratifyingly, olefin 172 smoothly underwent the desired 1,3-dipolar cycloaddition with bromonitrile oxide, generated in situ from dibromoformaldoxime and KHCO_{3} to give isoxazoline $\mathbf{1 7 7}$ in excellent yield of 91% (Scheme 3.33, B). Remarkably, $\mathbf{1 7 7}$ was the only detected regio- and diastereomer. Recrystallization produced crystals suitable for X-ray diffractometry, thereby unambiguously confirming all stereochemical assignments.

Scheme 3.33: A) BARAN's use of bromonitrileoxide during a 1,3-dipolar cycloaddition in the total synthesis of vinigrol (176). B) Synthesis of isoxazoline 177. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$, then PhNTf_{2}, $-78{ }^{\circ} \mathrm{C}$ to $5{ }^{\circ} \mathrm{C}, 64 \%$; b) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{ZnMe} 2, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to RT, quant; c) $\mathrm{Br}_{2} \mathrm{CNOH}, \mathrm{KHCO}_{3}, \mathrm{EtOAc}$, 91%. ORTEP representation of $\mathbf{1 7 7}$. Thermal ellipsoids are shown at 50% probability.

[^39]
3.10 Elaboration of the Bromoisoxazoline

With advanced isoxazoline 177 in hand, functionalization of this intermediate was investigated next. A close literature review however revealed that methods for the functionalization of bromoisoxazolines such as $\mathbf{1 7 7}$ are rare. Most commonly, reduction to the β-hydroxyamines or opening to the β-hydroxynitriles are performed. ${ }^{91}$ In the present case, two general strategies could be employed to ultimately access targeted diol 74 (Scheme 3.34). On the one hand, vinylation via transition metalcatalyzed coupling or nucleophilic displacement could provide alkene 178. The isoxazoline would then be reductively cleaved and the corresponding $\quad \beta$-hydroxyketone selectively reduced under EvansSaksena conditions. ${ }^{92}$ On the other hand, suitable conditions might be

Scheme 3.34: Synthetic strategies to convert bromoisoxazoline 177 into targeted diol 75. identified to both reduce the $\mathrm{N}-\mathrm{O}$ bond as well as the thus formed imidoyl bromide to aldehyde 179. Alternatively, one of the established methods to generate the corresponding β-hydroxynitrile could be employed, followed by DIBAL-mediated reduction to aldehyde 179. A chelation controlled 1,2-addition mediated by the tertiary alcohol would then lead to diol 74.

Due to the lack of literature precedence for the functionalization of 3-bromoisoxazolines in combination with the advanced nature of intermediate 177, it was decided to first investigate novel transformations on model compound $\mathbf{1 8 0}$ (Table 3.5). ${ }^{93}$ At first, vinylation of $\mathbf{1 8 0}$ was attempted via palladium-mediated cross couplings. Unfortunately, under Stille conditions, not the desired vinylisoxazoline $\mathbf{1 8 1}$ was formed, but ring opened β-hydroxynitrile 182 was isolated in 65% yield (Table 3.5, Entry 1). ${ }^{94}$ FÜRSTNER described a modification of the original Stille protocol, allowing the coupling of highly challenging substrates, which

[^40]failed to react under standard conditions. ${ }^{95}$ However, also under these conditions, nitrile $\mathbf{1 8 2}$ was the only isolated product (Table 3.5, Entry 2). Additionally, Negishi cross-coupling with vinylzinc chloride, also produced the β-hydroxynitrile as the sole product (Table 3.5, Entry 3).

With these disappointing results in mind, we explored the direct nucleophilic attack onto the bromoisoxazoline. When only vinylmagnesium bromide was used, decomposition occurred upon prolonged exposure to the reagent at room temperature (Table 3.5, Entry 4). However, when the organocerium reagent, prepared from vinylmagnesium bromide and CeCl_{3}, was employed, 53% of the desired vinylated isoxazoline $\mathbf{1 8 1}$ could be isolated (Table 3.5, Entry 5). Attempts to increase the yield by Lewis acid assistance or generating the organocerium reagent from vinyllithium were met with failure (Table 3.5, Entries 6 and 7).

Table 3.5: Vinylation of model bromoisoxazoline 181.

Entry	Vinyl Source	Additives	Solvent	Temperature	Product	Yield ${ }^{[\text {al }][d]}$
1	$\widehat{S n B u}_{3}$	$\begin{gathered} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \\ \mathrm{CsF} \end{gathered}$	toluene	$111{ }^{\circ} \mathrm{C}$	${ }_{\mathrm{HO}}^{\mathrm{NC}}{\underset{182}{ }}_{\square}$	65\%
2	$\triangle \mathrm{SnBu}_{3}$	$\mathrm{CuTC}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left(\mathrm{O}_{2} \mathrm{PPh}_{2}\right)$,	DMF	RT	${ }_{\mathrm{HO}}^{\mathrm{NC}}{\underset{182}{ }}_{1}^{\mathrm{D}}$	n.dt.
3	$\widehat{Z n C l}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	$0^{\circ} \mathrm{C}$ to RT	${ }_{\mathrm{HO}}^{\mathrm{NC}}{\underset{182}{ }}_{1}$	n.dt.
4	$\widehat{\mathrm{MgBr}}$	-	THF	$-15^{\circ} \mathrm{C}$ to RT	-	n.d.
5	$\widehat{\mathrm{MgBr}}$	CeCl_{3}	THF	$-78{ }^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$	Nos	53\%
6	$\widehat{\mathrm{MgBr}}$	$\mathrm{CeCl}_{3}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	$-78{ }^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$	-	n.r.
7	$\widehat{L i}^{\text {L }}$	CeCl_{3}	THF	$-78{ }^{\circ} \mathrm{C}$ to $-40{ }^{\circ} \mathrm{C}$	${ }_{\mathrm{HO}}^{\mathrm{NC}}{\underset{182}{ }}_{\square}^{\square}$	n.dt.

[a] Yields refer to spectroscopically and chromatographically homogenous materials. [b] n.d. $=$ Product not detected. [c] n.dt. = Yield not determined. [d] n.r. $=$ No reaction occurred.

Even though the addition of the organocerium reagent provided the desired vinyl isoxazoline 181, the second strategy of reductive $\mathrm{N}-\mathrm{O}$ bond cleavage with concomitant aldehyde formation (cf. Scheme 3.34) was also investigated (Table 3.6). Conditions, which

[^41]are well known for the reductive cleavage of the $\mathrm{N}-\mathrm{O}$ bond of isoxazolines are either zinc in protic media or hydrogenolysis mediated by palladium. Hence, bromoisoxazoline $\mathbf{1 8 0}$ was first subjected to these protocols. However in all cases examined, β-hydroxynitrile was the only product isolated (Table 3.6, Entries 1-3). Next, we explored the use of tin based radicals. Upon exposure of $\mathbf{1 8 0}$ to $n \mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing benzene, indeed a novel product containing an aldehyde was formed (Table 3.6, Entry 4).

Table 3.6: Attempted reduction of bromoisoxazoline 180.

Entry	Reagents	Solvent	Temperature	Product	Yield ${ }^{[a]-[c]}$
1	Zn	AcOH	RT	${ }_{\mathrm{HO}}^{\mathrm{NC}}{\underset{182}{ }}^{\square}$	n.dt.
2	$\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}$	THF- $\mathrm{H}_{2} \mathrm{O}$ (4:1)	RT	${ }_{\mathrm{HO}}^{\mathrm{NC}} \bigcup_{182}$	n.dt.
3	$\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$	EtOAc	RT	$\left.{ }_{\text {NO }}\right)_{182}$	n.dt.
$4^{[d]}$	$n \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$80^{\circ} \mathrm{C}$		80\%
5	$t \mathrm{BuLi}$, then MeOH	THF	$-78{ }^{\circ} \mathrm{C}$	${ }_{\text {NO }}{\underset{182}{ }}_{182}$	n.dt.
6	NaBH_{4}	${ }^{\text {PrOH }}$	RT	-	n.r.
7	DIBAL	THF	$-78{ }^{\circ} \mathrm{C}$ to RT	-	n.r.

[a] Yields refer to spectroscopically and chromatographically homogenous materials. [b] n.dt. $=$ Yield not determined. [c] n.r. = No reaction occurred. [d] The relative stereochemistry of 185 was not established, however a single diastereomer was formed.

Unfortunately, NMR analysis revealed that not desired β-hydroxyaldehyde $\mathbf{1 8 3}$ had been generated, but instead ring opening to aldehyde $\mathbf{1 8 5}$ had occurred. This product most probably forms upon radical debromination and subsequent nitrile formation with concomitant $\mathrm{N}-\mathrm{O}$ bond rupture. The thus formed nitrile entails an O-centered radical, which cleaves the norbornane, a reaction facilitated by the release of ring strain. We then set out to explore reductive debromination methods. Disappointingly, while lithium halogen exchange only provided β-hydroxynitrile $\mathbf{1 8 2}$ (Table 3.6, Entry 5), no reaction was observed upon exposure to sodium borohydride or DIBAL (Table 3.6, Entries 6 and 7).

Due to the failure of all of the tested reductive conditions, the only successful method employing the vinylcerium reagent ($c f$. Table 3.5, Entry 5) was tested on bromoisoxazole 177 (Scheme 3.35). Unfortunately, the only isolated product was not the desired vinyl isoxazoline 178, but β-hydroxynitrile 186, obtained in 62% yield.

177

178

Scheme 3.35: Attempted vinylation of bromoisoxazoline 177 with a vinylcerium reagent.
This result in combination with the observed tendency of model substrate $\mathbf{1 8 0}$ to generate β-hydroxynitrile $\mathbf{1 8 2}$ under a variety of conditions prompted us to investigate the conversion of $\mathbf{1 7 7}$ to $\mathbf{1 8 6}$ followed by nitrile reduction to access aldehyde $\mathbf{1 7 9}$ (Table 3.7). Following the reports by SEO and KOCIOLEK, $\mathbf{1 7 7}$ was converted into nitrile $\mathbf{1 8 6}$ either by NaSEt in $\left.\mathrm{MeOH}^{91 a}\right)$ or TMSCl and NaI in acetonitrile ${ }^{91 \mathrm{~b}}$. Even though the yields for both transformations were high, isomerization at $\mathrm{C}(9)$ occurred in presence of basic sodium ethylthiolate.

In an initial experiment, the generated β-hydroxynitrile was treated with diisobutylaluminum hydride at low temperature (Table 3.7, Entry 1). However, no conversion was visible upon TLC analysis. Hence, the reaction was warmed gradually to RT and more reducing agent was added. After stirring overnight, a new product formed, which unfortunately proved to be nitrile 187 , which suffered from $C(3)$ ketone reduction. We surmised that after one equivalent of diisobutylaluminum hydride deprotonates the tertiary alcohol, a highly sterically demanding aluminum complex is formed, thereby shielding the nitrile and inhibiting the desired reduction. Consequently, Red-Al was employed, a reducing agent bearing two hydrides bound to aluminum. ${ }^{96}$ We hypothesized that after deprotonation and ate complex formation the second hydride would be in close spatial proximity to the nitrile group and hence perform the reduction. Disappointingly, only decomposition of the starting material was observed (Table 3.7, Entry 2).

[^42]Table 3.7: Attempted conversion of bromoisoxazole 177 to aldehyde 179 via nitrile 186 . Reagents and conditions: a) NaSEt, $\mathrm{MeOH}, 78 \%$, b) TMSCl, $\mathrm{NaI}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}$ tor RT, 99%.

Entry	Reagents	Solvent	Temperature	Product	Yield ${ }^{\text {[a]-[d] }}$
1	DIBAL	THF	$-78{ }^{\circ} \mathrm{C}$ to RT		n.dt.
2	Red-Al	THF	$-78{ }^{\circ} \mathrm{C}$ to RT	-	n.d.
3	$\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{Ra}-\mathrm{Ni}$	$\begin{gathered} \mathrm{Py}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O} \\ (2: 1: 1) \end{gathered}$	RT to $55^{\circ} \mathrm{C}$	-	n.r.
4	$\mathrm{Li}(i \mathrm{Bu})_{2}(n \mathrm{Bu}) \mathrm{AlH}$	$\mathrm{Et}_{2} \mathrm{O}$	$-40{ }^{\circ} \mathrm{C}$ to RT	-	n.d.
5	DIBAL• SMe_{2}	$\mathrm{Et}_{2} \mathrm{O}$	$0^{\circ} \mathrm{C}$	-	n.d.
6	$\begin{aligned} & \mathrm{VO}(\mathrm{Oi} \operatorname{Pr})_{3} \\ & \left(\mathrm{Me}_{2} \mathrm{SiH}\right)_{2} \mathrm{O} \end{aligned}$	toluene	$60^{\circ} \mathrm{C}$	-	n.r.
7	$\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-	n.d.

[a] Yields refer to spectroscopically and chromatographically homogenous materials. [b] n.dt. = Yield not determined. [c] n.d. $=$ Product not detected. [d] n.r. $=$ No reaction occurred.

Already in 1962, BACKEBARG and STASKUN reported a method for the conversion of nitriles into aldehydes mediated by Raney nickel in the presence of sodium hypophosphite. ${ }^{97}$ However, upon applying this procedure to our system, no reaction was observed, even at elevated temperatures (Table 3.7, Entry 3).

The ate complex between DIBAL and $n \mathrm{BuLi}^{98}$ has been shown to be an efficient reducing agent for the conversion of aliphatic nitriles to aldehydes. ${ }^{99}$ However, applied to $\mathbf{1 8 6}$ only decomposition was observed (Table 3.7, Entry 4). In 1994, CHA et al. reported the beneficial use of DIBAL•SMe ${ }_{2}$, generated from DIBAL and dimethyl sulfide, during the reduction of nitriles. ${ }^{100}$ In the present case, rapid decomposition of 186 was observed (Table 3.7, Entry 5). Also other reported suitable reducing systems such as siloxanes in the presence of a vanadium

[^43]complex ${ }^{101}$ or Schwartz' reagent ${ }^{102}$ did not provide the desired aldehyde 179 (Table 3.7, Entries 6 and 7).

Concluding the described experiments, β-hydroxy nitrile $\mathbf{1 8 6}$ seemed to be a dead end and thus another strategy for the functionalization of bromoisoxazoline $\mathbf{1 7 7}$ was absolutely necessary, in order to maintain the advantage of simultaneous diastereoselective $\mathrm{C}(8)$ and $\mathrm{C}(9)$ functionalization by a 1,3 -dipolar cycloaddition.

In 1986, DE MICHELI and co-workers reported the conversion of bromoisoxazolines into β-hydroxyesters via bromide-methoxide exchange upon exposure to LiOMe and subsequent hydrogenolysis with $\mathrm{Ra}-\mathrm{Ni}$ and $\mathrm{H}_{2} .{ }^{103}$ To our delight, applying these conditions to isoxazoline 177, methoxide 188 could be isolated in excellent 94% yield (Scheme 3.36). The subsequent $\mathrm{N}-\mathrm{O}$ hydrogenolysis smoothly provided β-hydroxyester $\mathbf{1 8 9}$ in 91% yield.

Scheme 3.36: Conversion of bromoisoxazoline 177 into β-hydroxyester 189. Reagents and conditions: a) $\mathrm{LiOMe}, \mathrm{MeOH}$, reflux, 94%; b) $\mathrm{B}(\mathrm{OH})_{3}, \mathrm{Ra}-\mathrm{Ni}, \mathrm{H}_{2}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(5: 1), 91 \%$.

The synthetic sequence to access diol $\mathbf{7 4}$ from $\mathbf{1 8 9}$ was envisioned to comprise of reduction to the aldehyde and nucleophilic vinylation. Due to the sterically highly encumbered nature of the $\mathrm{C}(3)$ ketone, we surmised that selective reduction of the ester functionality should be possible. When ester 189 was exposed to 3.5 equivalents of DIBAL in THF, the conversion ceased at circa 50%. Noteworthy, when additional DIBAL was added and the reaction stirred overnight, decomposition was observed. Thus, it was attempted to expose 189 directly to an excess of reducing agent (6 equiv). Unfortunately, although desired diol 190 was formed, at least two side products were concomitantly produced. We hypothesized that the Lewis acidic nature of diisobutylaluminum hydride might cause side reactions such as retro aldol reaction between the tertiary alcohol and the $\mathrm{C}(3)$ ketone or the adjacent ester. Consequently, the ate complex between DIBAL and $n \mathrm{BuLi}$, which does not possess a vacant coordination site, was tested as an alternative. ${ }^{98}$ Indeed, upon treatment of 189 with three equivalents of freshly prepared $\operatorname{Li}(i \mathrm{Bu})_{2}(n \mathrm{Bu}) \mathrm{AlH}$, diol 190 was isolated in excellent 89% yield (Scheme 3.37). Subsequent oxidation to the aldehyde with the Dess-

[^44]Martin periodinane was troublesome due to byproduct formation and incomplete conversion. However, this problem was easily solved by performing a Swern oxidation instead, furnishing aldehyde $\mathbf{1 7 9}$ in quantitative yield without any detectable byproducts.

Scheme 3.37: Conversion of ester 189 into diol 74. Reagents and conditions: a) DIBAL, $n \mathrm{BuLi}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ then 189, THF, $-60^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}, 89 \%$; b) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ then $\mathbf{1 8 9}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-78{ }^{\circ} \mathrm{C}$, then NEt_{3}, $-78{ }^{\circ} \mathrm{C}$ to RT, quant.; c) CeCl_{3}, vinylmagnesium bromide, THF, $-78^{\circ} \mathrm{C}$, then $\mathbf{1 7 9},-78^{\circ} \mathrm{C}$ to $\mathrm{RT}, 90 \%$, d.r. $=$ 60:40.

To our surprise, the subsequent Grignard addition of vinylmagnesium bromide did not yield the desired product. However, employing the organocerium reagent instead produced diol 74 in 90% yield as a 60:40 mixture of inseparable diastereomers. Attempts to increase the selectivity by prior chelation of the aldehyde and the tertiary alcohol with $n \mathrm{Bu}_{2} \mathrm{BOTf}$, indeed gave an increased diastereomeric ratio of 6:1, but resulted in a poor yield of 18%.

3.11 Alkoxycarbonylation and Completion of the Synthesis

With diol 74 in hand, the final alkoxycarbonylation could be approached next. In 1984, SEMMELHACK et al. reported the synthesis of pyran-lactones such as $\mathbf{1 9 6}$ via palladium(II)mediated alkoxycarbonylation of 191. ${ }^{104}$ While initially carried out with stoichiometric amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$, catalytic protocols have been developed by SEMMELHACK and YOSHIDA using CuCl_{2} as the stoichiometric oxidant. ${ }^{104,105} \mathrm{~A}$ detailed catalytic cycle is shown in Scheme 3.38. ${ }^{16}$ After initial activation of the double bond by $\mathrm{Pd}($ II $)$, pyran formation occurs to yield 193. After subsequent CO coordination, migratory insertion provides acyl palladium intermediate 195. Lactone formation with concomitant generation of $\operatorname{Pd}(0)$ then produces pyran-lactone 196. The final $\mathrm{Cu}(\mathrm{II})$-mediated reoxidation to Pd (II) then completes the catalytic cycle.

Scheme 3.38: Mechanistic hypothesis for the $\mathrm{Pd}(\mathrm{II})$-mediated alkoxycarbonylation for the formation of pyranlactones.

Noteworthy, several byproducts of the parent reaction have been discovered. Firstly, upon initial coordination of $\mathrm{Pd}(\mathrm{II})$ to the olefin, an alternative reaction pathway might occur (path B in Scheme 3.38). Instead of the desired pyran formation (path A), a cationic allylpalladium complex can be formed, which ultimately suffers from nucleophilic attack by chloride or acetate ions. Secondly, after the pyran is formed, the thus obtained alkylpalladium species 193 can undergo a hydride abstraction to ultimately give ketone $\mathbf{2 0 0}$ (path C). In 2008, YaNG and

[^45]co-workers undertook a detailed optimization study for the $\operatorname{Pd}(\mathrm{II})$-catalyzed alkoxycarbonylation in order to overcome these limitations. ${ }^{16}$ Allyl chloride formation ($c f$. Scheme 3.38, 198) becomes problematic when stoichiometric CuCl_{2} is employed. Consequently, in order to trap the chloride ions liberated during the reoxidation process, propylene oxide was added as a scavenger. ${ }^{106}$ Additionally, the researchers hypothesized that the formation of ketone $\mathbf{2 0 0}$ might be affected by the base utilized. Indeed, while NaOAc and CsOAc were found to be inferior, the use of $\mathrm{NH}_{4} \mathrm{OAc}$ completely shut down the formation of 200. Additionally, tetramethylthiourea (TMTU) has been found to serve as a superior ligand for palladium(II) in the parent reaction.

Initially, it was decided to perform the alkoxycarbonylation with stoichiometric amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$ under one atmosphere of carbon monoxide. To our delight, when a 60:40 mixture of diastereomeric diol 74 was treated with the conditions described by SEMMELHACK, ${ }^{104}$ lactones $\mathbf{2 0 1}$ and $\mathbf{2 0 2}$ were isolated in 22% yield for each diastereomer, along with $\mathbf{7 \%}$ of carbonate $\mathbf{2 0 3}$ (Scheme 3.39). Both, $\mathbf{2 0 1}$ and $\mathbf{2 0 3}$ provided crystals suitable for X-ray diffractometry, thereby unambiguously confirming their structural assignments.

Scheme 3.39: Stoichiometric Pd(II)-mediated alkoxycarbonylation of diol 74. ORTEP representations of 201 and 203. Thermal ellipsoids at 50% probability.

While the mechanism of formation of carbonate $\mathbf{2 0 3}$ was not investigated, we surmised that performing the alkoxycarbonylation under catalytic conditions might not only suppress carbonate formation, but also increase the overall yield. Thus, the optimized catalytic conditions described by YANG and co-workers were tested next. ${ }^{16}$ Noteworthy, this catalytic

[^46]system already proved to be efficient during the total synthesis of pallambins C and D ($c f$. Chapter 1.2.2). ${ }^{15}$

Scheme 3.40: Pd(II)-catalyzed alkoxycarbonylation of diol 74 under the conditions described by YaNG and coworkers.

Indeed, as shown in Scheme 3.40, the use of the aforementioned conditions completely suppressed the formation of carbonate 203 and increased the yield of desired $\mathbf{2 0 2}$ to 55%. Noteworthy, the yield calculated based on the desired anti diastereomeric diol 74 constitutes 83%, thereby highlighting the efficiency of this synthetic method.

With a reliable route to lactone $\mathbf{2 0 2}$ in hand, the only remaining task was the introduction of the ethylidene moiety. A literature survey revealed two methods which have been successfully employed with γ-lactones. WIEMER and co-workers reported the reaction of diethyl phosphorochloridate in the presence of DMPU with the corresponding lithium enolates of lactones to ultimately access α-phosphono lactones. ${ }^{107}$ A subsequent Horner-Wadsworth-Emmons reaction with acetaldehyde would then provide pallambins A and B. Furthermore, an aldol reaction with acetaldehyde followed by mesylation and base-mediated elimination would also furnish the natural products.

Scheme 3.41: Aldol condensation of 202 providing pallambins A (14) and B (15).
While attempted generation of the α-phosphono lactone only led to decomposition of the starting material, exposure of the lithium enolate of $\mathbf{2 0 2}$ to acetaldehyde produced the desired aldol product, which was directly subjected to a mixture of MsCl and NEt_{3} (Scheme 3.41). Gratifyingly, this two-step aldol condensation provided a mixture of pallambins A and B,

[^47]which could be separated by preparative thin layer chromatography to yield 87% of pallambin B and 11% of pallambin A. As shown in Tables 3.8 and 3.9 all obtained spectral data were in good agreement with the values of the isolation report. ${ }^{7}$

Table 3.8: Comparison of NMR spectroscopic data in CDCl_{3} for natural vs. synthetic pallambin A .

pallambin A (14)

Carbon	${ }^{1} \mathrm{H}$ natural ${ }^{[a]}$	${ }^{1} \mathrm{H}$ synthetic ${ }^{\text {[b] }}$	${ }^{13} \mathrm{C}$ natural ${ }^{[\mathrm{cc]}}$	${ }^{13} \mathrm{C}$ synthetic ${ }^{[d]}$
1	1.43 (m, 1H)	1.42 (m, 1H)	14.5	14.5
2	2.49 (br, 1H)	2.49 (br, 1H)	58.0	58.0
3	-	-	214.4	214.4
4	-	-	$67.0{ }^{\text {[e] }}$	67.0
5	2.48 (br, 1H)	2.48 (br, 1H)	54.9	54.9
6	0.87 (m, 1H)	0.88 (m, 1H)	15.0	15.0
7α	0.56 (dd, $J=13.8,7.5 \mathrm{~Hz} \mathrm{1H})$	0.56 (m, 1H)	12.0	12.0
7β	1.40 (m, 1H)	1.40 (m, 1H)		
8	-	-	89.8	89.8
9	2.45 (d, J=7.1 Hz, 1H) ${ }^{[f]}$	2.45 (d, J=7.1 Hz, 1H)	60.9	60.8
10	-	-	44.6	44.6
11	4.95 (dd, $J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H})$	4.95 (dd, $J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H})$	84.7	84.7
12	4.75 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$	4.75 (dt, $J=3.5,0.6 \mathrm{~Hz}, 1 \mathrm{H})$	80.1	80.1
13	-	-	126.0	126.0
14	6.69 (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$	6.69 (qd, $J=7.3,0.6 \mathrm{~Hz}, 1 \mathrm{H})$	144.8	144.9
15	2.27 (d, J=7.3 Hz, 3H)	2.27 (d, J=7.3 Hz, 3H)	14.2	14.2
16	-	-	168.3	168.4
17	1.11 (s, 3H)	1.11 (s, 3H)	19.4	19.5
18	1.18 (s, 3H)	1.18 (s, 3H)	7.3	7.3
19	1.34 (s, 3H)	1.34 (s, 3H)	21.5	21.5

[a] According to ref. 7, 600 MHz , referenced chloroform to 7.28 ppm ; [b] 600 MHz , referenced chloroform to 7.26 ppm ; [c] According to ref. $7,150 \mathrm{MHz}$, referenced CDCl_{3} to 77.0 ppm ; [d] 150 MHz , referenced CDCl_{3} to 77.16 ppm; [e] Although Table 1 in ref. 7 states this signal at 70.0 ppm , the reported ${ }^{13} \mathrm{C}$ NMR spectrum clearly shows this signal at 67.0 ppm . Therefore a typing error in the isolation report is assumed; $[f]$ Although Table 1 in ref. 7 states this signal at 2.27 ppm, the reported ${ }^{1} \mathrm{H}$ NMR spectrum clearly shows this signal at 2.45 ppm. Therefore a typing error in the isolation report is assumed.

Table 3.9: Comparison of NMR spectroscopic data in CDCl_{3} for natural vs. synthetic pallambin B.

pallambin B(15)

Carbon	${ }^{\mathbf{1}} \mathbf{H ~ n a t u r a l ~}^{[\mathbf{a b]}}$	${ }^{\mathbf{1}} \mathbf{H}$ synthetic ${ }^{[\mathbf{b}]}$	${ }^{\mathbf{1 3} \mathbf{C}}$ natural $^{[\mathrm{c}]}$	$\mathbf{1 3}^{\mathbf{1 3}} \mathbf{C ~ s y n t h e t i c}^{[\mathrm{d}]}$
1	$1.40(\mathrm{~m}, 1 \mathrm{H})$	$1.44-1.34(\mathrm{~m}, 2 \mathrm{H})$	14.2	14.2
2	$2.50(\mathrm{br}, 1 \mathrm{H})$	$2.50(\mathrm{br}, 1 \mathrm{H})$	58.0	58.1
3	-	-	214.4	214.4
4	-	-	66.8	67.0
5	$2.42(\mathrm{br}, 1 \mathrm{H})$	$2.42(\mathrm{br}, 1 \mathrm{H})$	54.9	54.9
6	$0.87(\mathrm{~m}, 1 \mathrm{H})$	$0.88(\mathrm{~m}, 1 \mathrm{H})$	15.0	15.1
7α	$0.56(\mathrm{dd}, J=13.8,7.5 \mathrm{~Hz}, 1 \mathrm{H})$	$0.55(\mathrm{~m}, 1 \mathrm{H})$	11.9	12.0
7β	$1.42(\mathrm{~m}, 1 \mathrm{H})$	$1.44-1.34(\mathrm{~m}, 2 \mathrm{H})$		
8	-	-	90.1	90.2
9	$2.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$	$2.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$	60.5	60.6
10	-	-	44.6	44.6
11	$4.98(\mathrm{dd}, J=7.1,3.9 \mathrm{~Hz}, 1 \mathrm{H})$	$5.01-4.97(\mathrm{~m}, 2 \mathrm{H})$	85.4	85.4
12	$5.00(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$	$5.01-4.97(\mathrm{~m}, 2 \mathrm{H})$	75.6	75.7
13	-	-	127.5	127.5
14	$7.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$	$7.03(\mathrm{qd}, J=7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H})$	142.0	142.0
15	$2.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$	$2.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$	16.0	16.0
16	-	-	170.3	169.5
17	$1.13(\mathrm{~s}, 3 \mathrm{H})$	$1.13(\mathrm{~s}, 3 \mathrm{H})$	19.4	19.5
18	$1.17(\mathrm{~s}, 3 \mathrm{H})$	$1.17(\mathrm{~s}, 3 \mathrm{H})$	7.2	
19	$1.39(\mathrm{~s}, 3 \mathrm{H})$	$1.34(\mathrm{~s}, 3 \mathrm{H})$	21.6	21.6

[a] According to ref. $7,600 \mathrm{MHz}$, referenced chloroform to 7.28 ppm ; [b] 600 MHz , referenced chloroform to 7.26 ppm ; [c] According to ref. $7,150 \mathrm{MHz}$, referenced CDCl_{3} to 77.0 ppm ; [d] 150 MHz , referenced CDCl_{3} to 77.16 ppm; [e] Although Table 1 in ref. 7 states this signal at 7.8 ppm, the reported ${ }^{13} \mathrm{C} N M R$ spectrum clearly shows this signal at 7.2 ppm . Therefore a typing error in the isolation report is assumed.

4 Conclusion

Pallambins A and B are norditerpenoid natural products, isolated in 2012 from the liverwort Pallavicina ambigua. These natural products possess an unprecedented and highly congested tetracyclo $\left[4.4 .0^{3,5} .0^{2,8}\right]$ decane core, which comprises a cyclopropane in a sterically hindered environment. Furthermore, pallambins A and B are endowed with not less than ten contiguous stereocenters, two of which are quaternary. These challenging structural features prompted us to embark on a total synthesis of these unique norditerpenoids.

The synthetic strategy developed in this thesis is centered around the use of pentafulvene (79) as a diene component in a thus far unprecedented Diels-Alder reaction. After extensive experimentation and optimization, it could indeed be established that despite its high reactivity and tendency to polymerize, pentafulvene can be employed in a [4+2] cycloaddition with methyl acrylate under Lewis acid catalysis (Scheme 4.1).

Scheme 4.1: Generation of pentafulvene and subsequent Diels-Alder reaction with methyl acrylate.
Furthermore, it could be shown that the utilization of this particular transformation entails several advantages as compared to substituted cyclopentadienes. Firstly, the often observed isomerizations of substituted cyclopentadienes under Diels-Alder conditions are excluded in the case of pentafulvene. Secondly, the sp^{2}-hybridized bridge carbon atom enables a wider variety of functionalization methods than sp^{3}-hybridized adducts of a dienophile with cyclopentadienes. Thirdly, we became intrigued to realize such a Diels-Alder reaction with pentafulvene, since it would constitute the first use of such a transformation in complex natural product synthesis. The synthetic strategy developed in this thesis relies on a number of highly chemo-, regio- and diastereoselective functionalizations, as evidenced by the absence of protecting groups.

After discovering that cyclopropanation is not possible with the $\mathrm{C}(10)$ methyl group installed and that a $\mathrm{Pd}(\mathrm{II})$-mediated hydroalkylation reaction with the already introduced cyclopropane failed, the synthetic plan had to be revised. The thereby observed steric shielding of the Si face of the exo olefin by the cyclopropane opened the possibility for highly diastereoselective $R e$ functionalization. Hence, after tedious screening, conditions for an exceedingly chemoselective endo cyclopropanation of $\mathbf{9 5}$ have been identified to provide $\mathbf{1 4 8}$
in 85% yield (Scheme 4.2). Subsequent completely chemo- and diastereoselective hydrogenolysis of the remaining exo olefin with Wilkinson's catalyst gave saturated ester $\mathbf{1 5 0}$ in 96% yield. Next, the $\mathrm{C}(3)$ ketone was generated by an efficient sequence of α-hydroxylation, reduction and subsequent diol cleavage to provide 146 in 82% overall yield.

Scheme 4.2: Chemo- and diastereoselective cyclopropanation and hydrogenolysis and subsequent C (3) ketone generation.

Methylation and subsequent acylation via Mukaiyama aldol reaction followed by $t \mathrm{BuOH}$ accelerated Dess-Martin oxidation provided diketone 155 in 62% overall yield as an inseparable 5:1 mixture of diastereomers (Scheme 4.3). Diazo transfer under the conditions described by DANHEISER et al. ${ }^{84}$ followed by exposure of the crude reaction mixture to $1.0 \mathrm{~mol} \%$ of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ gave $\mathrm{C}-\mathrm{H}$ inserted tetracycle $\mathbf{7 6}$ in $\mathbf{7 6 \%}$ overall yield from $\mathbf{1 5 5}$.

Scheme 4.3: α-Functionalization of ketone 146 and subsequent $\mathrm{C}-\mathrm{H}$ insertion to generate tetracycle 76.
Since addition of organometallic reagents towards the $C(8)$ ketone was considered futile due to the steric shielding of the norbornane system, a 1,3-dipolar cycloaddition approach was pursued. Such a transformation would not only generate the $\mathrm{C}(8)$ - but also the $\mathrm{C}(9)$ stereocenter. Thus, diketone 76 was first transformed into the corresponding triflate, which was further reacted under Negishi conditions to produce olefin 172 (Scheme 4.4). To our delight, 172 smoothly underwent completely regio- and diastereoselective 1,3-dipolar cycloaddition in 91% yield with bromonitrile oxide, generated in situ from dibromoformaldoxime and KHCO_{3}. Due to the failure of various direct functionalizations of bromoisoxazole 177, bromide methoxide exchange was pursued with LiOMe to produce 188 in 94% yield.

Scheme 4.4: Stereoselective simultaneous $\mathrm{C}(8)$ and $\mathrm{C}(9)$ functionalization via 1,3-dipolar cycloaddition.
Isoxazoline $\mathbf{1 8 8}$ was converted into an inseparable 60:40 diastereomeric mixture of diol 74 within four steps in 73% overall yield (Scheme 4.5). The remaining tetrahydrofuran γ-lactone motif was subsequently generated by $\mathrm{Pd}(\mathrm{II})$-catalyzed alkoxycarbonylation employing the conditions described by YANG and co-workers. ${ }^{16}$ Finally, lactone 202 smoothly underwent a two-step aldol condensation providing pallambin A (14) in 11% and pallambin B(15) in 87\% yield respectively.

Scheme 4.5: Completion of the synthesis of pallambins A (14) and B (15) via $\operatorname{Pd}(\mathrm{II})$-catalyzed alkoxycarbonylation. ORTEP representation of pallambin B with thermal ellipsoids at 50% probability.

Part II
 Regioselective Ti(III)Mediated Epoxide Opening

5 Introduction

5.1 Established Methods for Reductive Epoxide Openings

The ease of generation along with reliable methods for their enantioselective introduction rendered epoxides one of the most popular and widely used building blocks in synthetic organic chemistry. Additionally, epoxides can undergo a variety of functional group interconversions and serve thus as valuable intermediates. ${ }^{108}$ Due to the extensive number of methods for the stereoselective introduction of epoxides, reductive opening of such species became an expedient tool for the generation of free hydroxy groups (Scheme 5.1). However, controlling the regioselectivity of the hydride transfer has proven to be a considerable challenge.

Scheme 5.1: Reductive epoxide opening yielding two different regioisomeric alcohols.

5.1.1 Metal Hydrides

Lithium aluminum hydride has become one of the most prominent reductants for the opening of epoxides. ${ }^{109}$ As indicated in Table 5.1, both the reactivity and the regioselectivity are highly dependent on steric factors. Hence, the hydride delivery usually takes place at the more accessible carbon atom.

Table 5.1: Reduction of selected epoxides with lithium aluminum hydride. ${ }^{110}$

Entry	Epoxide	Yield	Products	Ratio
1	$\underset{204}{\stackrel{\circ}{\sim}}$	60\%		100:0
2	$\underset{207}{\mathrm{Ph}_{\mathrm{Ph}, \mathrm{y}} \mathrm{O}}$	97\%		96:4
3		21\%		0:100

[^48]In 1972, HARTMAN and RICKBORN investigated the effect of neighboring alcohol and ether groups in cyclohexene oxides. ${ }^{111}$ However, the results presented in Scheme 5.2 combined with the employment of LiAlD_{4} clearly ruled out any strong directing influence by intramolecular hydride delivery.

Scheme 5.2: Reduction of syn- and anti-cyclohexene oxide derivatives with lithium aluminum hydride.
One decade later, FINAN and KISHI reported the controlled reductive ring openings of 2,3epoxyalcohols. ${ }^{112} \mathrm{~A}$ screening of three aluminum based hydrides, LiAlH_{4}, Red- Al^{113} and DIBAL revealed a remarkably different behavior (Scheme 5.3). While exposure of 212 to LiAlH_{4} provided a $1: 1$ mixture of alcohols 213 and $\mathbf{2 1 4}$, Red-Al gave a selectivity of up to 150:1 favoring 1,3-diol 213. Noteworthy, upon switching to Lewis acidic DIBAL the selectivity was reversed to 1:13 favoring 1,2-diol 214.

Scheme 5.3: Reduction of 2,3-epoxyalcohols with $\mathrm{LiAlH}_{4}, \mathrm{Red}-\mathrm{Al}$ and DIBAL.
The authors surmised that the Red-Al reduction occurs via initial complex formation followed by intramolecular hydride delivery. If DIBAL is employed initial complexation with concomitant H_{2} formation with the hydroxy group also occurs. However, the vacant coordination site might now act as a Lewis acid coordinating to the epoxide and thereby facilitating intermolecular hydride delivery.

[^49]Due to the relatively high reactivity of aluminum-based reductants, borohydrides have also been investigated for the opening of epoxides. SOAI and co-workers reported the use of alkali borohydrides in $t \mathrm{BuOH}-\mathrm{MeOH}$ mixtures. ${ }^{114}$ However, it should be noted that in order to overcome the relatively low reactivity of the reductants, reflux of the reaction mixture was crucial and high yields were only obtained reliably for styrene derivatives.

A powerful boron based hydride, lithium triethylborohydride ("superhydride") has been introduced by H. C. BROWN and co-workers as a reagent especially suitable for hindered triand tetrasubstituted epoxides (Table 5.2). ${ }^{115}$

Table 5.2: Reduction of selected epoxides with $\mathrm{LiEt}_{3} \mathrm{BH} .{ }^{110}$

Entry	Epoxide	Temperature	Yield	Product
1		RT	99\%	
2		RT	100\%	
3		$65^{\circ} \mathrm{C}$	100\%	

5.1.2 Dissolving Metals

Alkali metals in combination with amine solvents also possess the ability to reduce epoxides to the corresponding alcohol derivatives. Despite their relatively high reactivity and the thus associated potential side reactions, alkali metals bear some advantages over metal hydrides.

Table 5.3: Reduction of selected epoxides with alkali metals. ${ }^{110}$
Entry

[^50]Most importantly, as shown in Table 5.3, functional groups such as ketones and esters can be tolerated. Additionally, in contrast to LiAlH_{4}, lithium in ethylenediamine reduces bicyclic epoxides without skeletal rearrangement. Furthermore, calcium, ${ }^{116}$ aluminum 117 and zinc ${ }^{118}$ have been used as safer and more economical alternatives.

5.1.3 Hydrogenolysis

Due to the mostly required high pressure, hydrogenolysis of epoxides, is only of major importance for industrial applications rather than on laboratory scale. However, some mild examples have been reported employing $\mathrm{Ra}-\mathrm{Ni}$ in the presence of 1 atm of hydrogen. ${ }^{119}$ Noteworthy, in contrast to metal hydride and dissolving metal reductions, only the less substituted alcohol is formed.

Scheme 5.4: Hydrogenolysis of 225 in the presence of $\mathrm{Ra}-\mathrm{Ni}$.

[^51]
5.1.4 Low Valent Titanium

In 1994, RAJANBABU and NUGENT reported their investigation of low valent titanium(III) for the generation of radicals from epoxides. ${ }^{120}$ As indicated in Table 5.4, the researchers found that when an epoxide substrate is slowly added to an excess of $\mathrm{Cp}_{2} \mathrm{TiCl}$, readily generated by zinc-mediated reduction of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$, the corresponding olefinic product is obtained in high yields.

Table 5.4: Reduction of epoxides to alkenes mediated by $\mathrm{Cp}_{2} \mathrm{TiCl}$.

Entry

The examination of both (Z)- and (E)-5,6-epoxydecane (233 and 234) in separate experiments provided the exact same Z / E mixture of $73: 27$, thus revealing an intriguing mechanistic detail. RAJANBABU and NUGENT suggest a long-living radical intermediate, generated by a single electron transfer mechanism, in order to explain the complete loss of stereochemistry. The thus derived complete mechanistic proposal is illustrated in Scheme 5.5.

Scheme 5.5: Mechanistic proposal for the Ti(III)-mediated epoxide reduction by RAJANBABU and NUGENT.
A first equivalent of Ti (III) might form a σ-complex with epoxide \mathbf{I}, entailing a ring strain releasing single electron reduction to provide radical intermediate III. A second equivalent of $\mathrm{Ti}($ III) could then perform another single electron reduction to generate $\mathbf{I V}$, which undergoes

[^52]elimination to generate olefin \mathbf{V}. RAJANBABU and NUGENT deliberated about whether intermediate III would be long-living enough to undergo further radical reactions, i.e. if it could be trapped by H . or olefins. Accordingly, for such a scenario to occur, the $\mathrm{Ti}(\mathrm{III})$ concentration must be kept marginal in order to allow a certain life time of species III. Indeed, in a first experiment, slow addition of a solution of $\mathrm{Cp}_{2} \mathrm{TiCl}$ in THF to a mixture of 1,1'-epoxyethylcyclohexane (237) and 1,4-cyclohexadiene as an H -atom donor provided 1-cyclohexanol (238) in 91% yield. Remarkably, the opposite regioselectivity compared to standard metal hydrides is observed (cf. Chapter 5.1.1).

Scheme 5.6: Reductive epoxide opening with $\mathrm{Ti}(\mathrm{III})$ and subsequent H -atom transfer compared to conventional metal hydrides.

Furthermore, as presented in Scheme 5.7, the authors also investigated the intramolecular trapping of the newly formed radical species by alkenes and alkynes. In the event, slow addition of Ti (III) to 1-epoxy-6-heptenes, such as 240,

240

Scheme 5.7: Reductive epoxide opening and subsequent cyclization. provided the corresponding cyclopentanes in good yields. Importantly, the addition of an external hydride source was not necessary, since, as shown by isotope labelling, H -atom abstraction from the solvent occurred.

A few years after the seminal publication of RAJANBABU and NUGENT, GANSÄUER et al. developed a catalytic variant of the $\mathrm{Ti}(\mathrm{III})$-mediated reductive epoxide opening, thus setting the cornerstone for asymmetric versions of this intriguing transformation. ${ }^{121}$ In order to render this reductive process catalytic, several obstacles had to be overcome. Firstly, a suitable and cheap stoichiometric reductant needed to be found, which does not spontaneously react with the starting material. Secondly, an acid additive needed to be identified, in order to effectively cleave the newly formed titanium alkoxide and thus enable turnover of the catalyst. Zinc and manganese quickly imposed as efficient reductants. However, the quest for a suitable acid proved to be more complicated. Firstly, the acid must not oxidize the metal or any titanium species. Secondly, it must be strong enough to break the titanium-oxygen bond, but weak enough to not protonate and thus open the starting epoxide. Thirdly, the corresponding base

[^53]must not coordinate to and thence deactivate any catalytically active titanium species. The therefore required pK_{a} range should be between $5.25-12.5$. Out of a laborious screening, 2,4,6-collidine hydrochloride $\left(\mathrm{pK}_{\mathrm{a}}=7.43\right)$ emerged as a highly efficient acid additive. Table 5.5 displays some of the results obtained with the developed catalytic system. ${ }^{122}$

Table 5.5: Catalytic Ti(III)-mediated reductive epoxide opening developed by GANSÄUER et al.

Entry

Based on the results presented in Table 5.5, GANSÄUER and co-workers investigated the use of a chiral Ti(III) complex. ${ }^{123}$ When epoxide 246 was subjected to $5 \mathrm{~mol} \%$ of $\mathbf{2 4 7}$, alcohol 248 was isolated in 65% yield and $93 \% e e$, thus demonstrating the utility of this method for the desymmetrization of epoxides (Scheme 5.8).

Scheme 5.8: Desymmetrization of meso epoxide 246 with chiral $\mathrm{Ti}(\mathrm{III})$ complex 247.

[^54]
6 Aim of the Project

6.1 Total Synthesis of Microcin SF608

The objective of this project grew on an observation made earlier in our group during the total synthesis of microcin SF608 (249, Figure 6.1). ${ }^{124}$ This Aeruginosin natural product was first isolated in 1999 from the cyanobacterium Microcystis $s p$. and displayed selective inhibition of the serine protease trypsin (IC_{50} $=0.5 \mu \mathrm{~g} / \mathrm{mL}) .{ }^{125}$ Structurally, 249 is characterized by a carboxy hydroxyoctahydroindole (Choi) core, an amino acid and a guanidine side chain.

Figure 6.1: Microcin SF608.

In 2010, CARREIRA and co-workers reported the total synthesis of microcin SF608, which was centered around a Lewis acid-mediated oxabicycle opening (Scheme 6.1). The oxabicyclic system was smoothly generated by a Diels-Alder reaction of furan. However, the endocyclic olefin needed to undergo a regioselective formal addition of water. While initial hydroboration attempts failed, a reductive epoxide opening of $\mathbf{2 5 1}$ was investigated. Remarkably, upon exposure to the conditions reported by RAJANBABU and NUGENT, ${ }^{120}$ alcohol 252 was the sole product observed.

Scheme 6.1: Regioselective reductive epoxide opening of $\mathbf{2 5 1}$ during the total synthesis of microcin SF608 (249).

While the reductive epoxide opening event itself is not unexpected based on the results of RAJANBABU and NUGENT, the regioselectivity of the reaction is exciting. Importantly, the proposed mechanism presented in Chapter 5.1.4 cannot account for the exclusive formation of alcohol $\mathbf{2 5 2}$ and consequently a different reaction pathway must be operating.

[^55]
6.2 Studies on the Origin of Selectivity ${ }^{126}$

In order to gain further insight into the origin of the observed regioselectivity during the reductive epoxide opening of $\mathbf{2 5 1}$ to $\mathbf{2 5 2}$, DIETHELM and CARREIRA undertook a detailed mechanistic study.

In accordance with the proposed mechanism of rajanbabu and nUgent, an initial Ti(III)mediated opening of the epoxide to isomeric radicals $\mathbf{2 5 3}$ and $\mathbf{2 5 4}$ should occur (Scheme 6.2). Since there is no obvious reason for the selective formation of 253, a rapid equilibrium between these two radical species is assumed. Furthermore, a Curtin-Hammett scenario might be operating, in which radical 253 is quenched much faster than its isomer 254. A potential reason for the more rapid quenching of radical 253 might be an intramolecular H -atom transfer from the $\mathrm{N}-\mathrm{H}$ amide group or the electron donor substituted $\mathrm{C}(2)-\mathrm{H}$. Noteworthy, even though $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ moieties are known to be poor hydrogen atom donors due to their relatively high bond strength ($85-110 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{N}-\mathrm{H}$), it has been shown that coordination of a Lewis acid, such as $\mathrm{Cp}_{2} \mathrm{TiCl}$, can convert them into potent donors. ${ }^{127}$

Scheme 6.2: Equilibrium between 253 and 254 proposed by DIETHELM and CARREIRA.
In order to discover the origin of the H -atom, a series of deuteration experiments were performed (Scheme 6.3). When doubly deuterated 256 was employed under the standard reaction conditions, up to 40% deuterium incorporation has been observed. However, in the two other cases shown, in which either deuterated THF or deuterated water were used for the quenching of the reaction mixture, no D-incorporation could be detected. These results suggest that the hydrogen atom is indeed delivered by the carbamate nitrogen.

[^56]

Scheme 6.3: Deuterium experiments of 256 and 258.
Interestingly, when epoxide 251 was subjected to $\mathrm{Cp}_{2} \mathrm{TiCl}$ without the addition of 1,4 -cyclohexadiene, epimerization at $\mathrm{C}(2)$ could be observed (Scheme 6.4).

Scheme 6.4: Epimerization of epoxide 251 at $\mathrm{C}(2)$.
In order to test the reason for this epimerization and also exclude the possibility of the $\mathrm{C}(2)$-position to be the origin of the hydrogen atom transferred, another series of deuteration experiments has been performed. At first, N-D deuterated carbamate was employed, without any additives. The observed product displayed a deuterium incorporation of 35% at $\mathrm{C}(2)$. When the same epoxide was used in the presence of 100 equivalents of $\mathrm{D}_{2} \mathrm{O}, 55 \%$ D-incorporation was observed. These results indicate that the epimerization event might be a consequence of the H -atom donation from the $\mathrm{N}-\mathrm{H}$ carbamate. The thus generated N -centered radical might undergo a [1,2]-hydrogen shift to form a radical species at $\mathrm{C}(2)$. In addition, this would also explain why the use of an external hydrogen atom donor such as 1,4-cyclohexadiene significantly decreases the epimerization event (d.r. $=12: 1, c f$. Scheme 6.1). Accrodingly, the presence of an excess of hydrogen atom donor quenches the N -centered radical before the hydrogen shift occurs.

Based on the results presented in this chapter, the mechanistic hypothesis shown in Scheme 6.5 is proposed. After $\mathrm{Ti}(\mathrm{III})$-mediated epoxide opening to rapidly equilibrating radicals 253 and 254, the former suffers from fast intramolecular hydrogen atom transfer from the $\mathrm{N}-\mathrm{H}$ amide group. If an excess of an external hydrogen atom donor such as 1,4-cyclohexadiene is present, N-centered radical $\mathbf{2 6 0}$ is ultimately quenched to furnish the desired product 252. However, in the absence of an H -donor, $\mathbf{2 6 0}$ undergoes a [1,2]-hydride shift to $\mathrm{C}(2)$-centered radical 261, which then leads, after H-donation from THF or a further single electron reduction and proton quench, to epimerization at $\mathrm{C}(2)$.

Scheme 6.5: Comprehensive mechanistic hypothesis for the regioselective epoxide opening of $\mathbf{2 5 1}$ by DIETHELM and CARREIRA.

In the light of this mechanistic rationale, this transformation might have a more general applicability for the regioselective opening of 1,2-disubstituted epoxides. As the most commonly employed methods for reductive epoxide openings rely on steric influences ($c f$. Chapter 5.1.1) or on the formation of a more stable radical (cf. Chapter 5.1.4), such a transformation would expand the utility of epoxides as precursors for alcohols (Scheme 6.6).

Scheme 6.6: Proposed general regioselective epoxide opening for the generation of alcohols.

$7 \quad$ Results and Discussion

7.1 Substrate Design and Preparation ${ }^{128}$

7.1.1 Acyclic Backbones

In order to design valuable substrates to test the general applicability of this epoxide opening reaction, several requirements needed to be addressed. At first, the $\mathrm{X}-\mathrm{H}$ donor should be able to efficiently approach the epoxide. Secondly, the two C-O bonds of the epoxide substrates should ideally possess similar electronic and steric environments. The regioselectivity should then be determined by the bias of hydrogen atom transfer to one of the two positions.

Scheme 7.1: Synthesis of epoxide substrates 264 and 266. Reagents and conditions: a) diethyl malonate, NaH , THF, $0{ }^{\circ} \mathrm{C}, 51 \%$; b) $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, \mathrm{TsNH}_{2}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 61 \%$; c) $\mathrm{NaH}, \mathrm{CbzCl}, \mathrm{THF}, 65 \%$; d) $\mathrm{Mg}, \mathrm{MeOH}$, ultrasonication, 32%; e) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 87 \%$; f) $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, \mathrm{DBU}$, THF, 61%; g) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 22 \%$.

Due to the ease of synthetic access, epoxides with linear backbones were investigated first. We initially prepared β-diester 264 in order to later exploit the Thorpe-Ingold effect (Scheme 7.1). ${ }^{129}$ Furthermore, to test the hydrogen atom donor ability of hydroxy functionalities, epoxide 266 was synthesized in three steps from crotyl bromide (262).

In order to still benefit from the Thorpe-Ingold effect, but also reduce any other functional group interference, gem-dimethyl epoxides 271 and 273 were synthesized via Horner-Wadsworth-Emmons olefination (Scheme 7.2).

[^57]

Scheme 7.2: Synthesis of epoxide substrates 271 and 273. Reagents and conditions: a) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 97 \%$; b) $\mathrm{SO}_{3} \cdot \mathrm{Py}, \mathrm{NEt}_{3}, \mathrm{DMSO}, 0{ }^{\circ} \mathrm{C}, 76 \%$; c) $\mathrm{LiCl}, 269, \mathrm{DBU}, \mathrm{MeCN}, 81 \%$, d) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}$ to RT, quant; e) 270, NaH , THF, then BnBr , reflux, quant; f) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \%$; g) TBAF, THF, 91%; h) $\mathrm{MsCl}, \mathrm{NEt}_{3}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 68 \%$; i) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 87 \% ;$ j) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 71 \%$; k) TBAF, THF, $0^{\circ} \mathrm{C}, 43 \%$.

7.1.2 Cyclic Backbones

In addition to acyclic substrates, we surmised that a cyclic backbone might entail higher regioselectivities. Not only are these substrates better mimics for epoxide 251, but also possess a more rigid structure, thus reducing the degrees of freedom of the donating $\mathrm{X}-\mathrm{H}$ group. Due to the straightforward synthetic accessibility, we anticipated that a cyclohexane backbone might be a good starting point for further investigation. Noteworthy, the envisioned cyclic epoxides bear the advantage of differentiating between syn- and anti-isomers and testing their potential different behavior in the $\mathrm{Ti}(\mathrm{III})$-mediated reductive epoxide opening.

(274)

Scheme 7.3: Synthesis of epoxide substrates 276, 277, 280 and 281. Reagents and conditions: a) $n \mathrm{BuLi}, \mathrm{KO} t \mathrm{Bu}$, cyclohexene, then $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, 0{ }^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}, 83 \%$; b) TBDPSCl, $\mathrm{NEt}_{3}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$; c) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 21% for the anti-isomer, 20% for the syn-isomer; d) TBAF, THF, 82% for $\mathbf{2 7 6}, 80 \%$ for $\mathbf{2 7 7}$; e) NaH, ethyl malonate, then 278, 42%; f) $\mathrm{LiCl}, \mathrm{H}_{2} \mathrm{O}$, DMSO, $160{ }^{\circ} \mathrm{C}, 51 \%$; i) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 99 \%$; g) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 7 \%$ for 280, 50\% for 281.

Hence, as shown in Scheme 7.3, starting from cyclohexene, syn- and anti-isomers 276 and 277 could be accessed within four simple steps. Since we also wanted to investigate the influence of the distance of the donating X-H group, syn- and anti-isomers $\mathbf{2 8 0}$ and $\mathbf{2 8 1}$ were synthesized within four steps from bromocyclohexene 278.

Scheme 7.4: Synthesis of epoxides 283, 287, 285 and 290. Reagents and conditions: a) $\mathrm{AcOH}, \mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%)$, $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{MeOH}, 62 \%$; b) TBSCl, imidazole, DMAP ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 51 \%$; c) TBAF, THF, $0{ }^{\circ} \mathrm{C}$ to RT, 71%; d) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{PPh}_{3},-78{ }^{\circ} \mathrm{C}$ to RT , then $\mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}, \mathrm{Bn}_{2} \mathrm{NH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to $\mathrm{RT}, 29 \%$; e) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 51 \%$; f) $\mathrm{mCPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT, 80%.

In order to provide a comparison between $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ as hydrogen atom donors, epoxyamine $\mathbf{2 8 3}$ was synthesized from literature known amine $\mathbf{2 8 2}^{130}$ by hydrogenation (Scheme 7.4). Known silyl ether $\mathbf{2 8 4}{ }^{131}$ was deprotected with TBAF to yield hydroxyepoxide 285. Furthermore, known diol $\mathbf{2 8 6}^{132}$ was mono-protected to give 287. Since it would also be of value to investigate tetrasubstituted epoxides, $\mathbf{2 9 0}$ was synthesized via ozonolysis followed by aldol condensation of methyl cyclohexene 288.

Additionally, as shown in Scheme 7.5 both TBS- and Bn-protected oxabicycles 293 and 295 were prepared within a few steps from diol 291. ${ }^{133}$

Scheme 7.5: Synthesis of epoxides 293 and 295. Reagents and conditions: a) $\mathrm{PivCl}, \mathrm{NEt}_{3}, \mathrm{DMAP}^{2}(15 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$; b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ to RT; c) DIBAL, toluene, $-78{ }^{\circ} \mathrm{C}, 74 \%$ over two steps; d) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, yield not determined; e) benzaldehyde dimethyl acetal, $\mathrm{CSA}(2.5 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then NEt_{3} ($3 \mathrm{~mol} \%$), then DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} 76 \%$; f) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$.

[^58]
7.2 Exploration of the Substrate Scope

7.2.1 Acyclic Backbones

We commenced the exploration of the scope of the $\mathrm{Ti}(\mathrm{III})$-mediated epoxide opening via intramolecular hydrogen atom donation with the testing of linear substrates. The screening was performed using the following standard conditions: syringe pump addition of two equivalents of a 0.2 M solution of freshly prepared $\mathrm{Cp}_{2} \mathrm{TiCl}$ solution in THF to a THF solution of the substrate. As shown in Scheme 7.6, subjection of 264 to the standard conditions led to the isolation of alcohols 296 and 297 in a 2:1 ratio and 31\% yield.

Scheme 7.6: Reductive epoxide opening of 264 and 266.
In order to compare $\mathrm{O}-\mathrm{H}$ vs $\mathrm{N}-\mathrm{H}$ donors, hydroxyepoxide 266 was tested next. Much to our delight, diol 298 was isolated with excellent regioselectivity of $>20: 1$. However, the isolated yield was only 12%. We surmised that a higher degree of preorganization of the substrate might lead to a more efficient H -atom transfer and thus increase the overall yield.

7.2.2 Cyclic Backbones

The first epoxide investigated, equipped with a cyclic backbone, was anti-cyclohexene oxide 276. When exposed to $\mathrm{Cp}_{2} \mathrm{TiCl}$, we were excited to isolate diol 299 in $\mathbf{7 3 \%}$ yield along with only 7% of regioisomer $\mathbf{3 0 0}$. We next elongated the distance of the donating $\mathrm{O}-\mathrm{H}$ bond by one CH_{2} unit. Strikingly, when syn-epoxide 281 was used, the regioselectivity dropped drastically to $3: 2$. Even more peculiar is the full recovery of starting material when antiepoxide $\mathbf{2 8 0}$ or syn-epoxide $\mathbf{2 7 7}$ were employed.

Scheme 7.7: Reductive epoxide opening of 276, 277, 280 and 281.
The complete lack of reactivity of these substrates remains thus far unclear. However, the remarkable selectivity of anti-isomer 276 taken together with the absence of selectivity of syn-isomer 281 demands for an elaboration of the mechanistic rationale provided in Chapter 6.2 (cf. Scheme 6.5). ${ }^{134}$ Previous mechanistic investigations of the Ti(III)-mediated epoxide reduction describe the opening as a homolytic substitution at the oxygen atom of the epoxide, in which the incoming titanium reagent displaces a carbon leaving group. ${ }^{135}$ Based on the observation above, we speculate that the reductive epoxide opening with intramolecular hydrogen atom donation takes place via a $\mathrm{S}_{\mathrm{H}} 2$-type mechanism, in which the $\mathrm{C}-\mathrm{O}$ bond is displaced by an incoming H -atom (Scheme 7.8). ${ }^{136}$ Such a mechanistic picture would explain why the reduction of anti-epoxide $\mathbf{2 7 6}$ and also microcin SF608 intermediate $\mathbf{2 5 1}$ proceeds with high regioselectivity. If transition state II is not adoptable due to geometric constraints, unselective intermolecular H -atom donation by another substrate molecule or THF might occur.

Scheme 7.8: Proposed $\mathrm{S}_{\mathrm{H}} 2$ mechanism for the $\mathrm{Ti}(\mathrm{III})$-mediated reductive epoxide opening with intramolecular H -atom donation.

[^59]After the successful reduction of epoxyalcohol 276, its methyl amine derivative 283 was employed next. To our delight, the expected amino alcohol $\mathbf{3 0 3}$ was isolated in 89% yield, indicating that amines serve as excellent intramolecular hydrogen atom donors in this reaction (Scheme 7.9). Furthermore, oxabicycle $\mathbf{2 9 3}$ provided diol $\mathbf{3 0 4}$ in 68% isolated yield. Unfortunately, tetrasubstituted epoxide 290 furnished a mixture of various products and the isolation of any of the expected regioisomeric diols was unsuccesful.

Scheme 7.9: Reductive epoxide opening of 283, 293 and 290.

7.2.3 Catalytic Regioselective Reductive Epoxide Opening

Based on the results of GANSÄUER et al. presented in Chapter 5.1.4, we surmised that performing this newly developed variant of the $\mathrm{Ti}($ III)-mediated epoxide opening under catalytic conditions would entail several advantages. Not only would the use of 5-10 mol\% $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ reduce the overall cost of the reaction, but it would also greatly simplify the reaction setup. Thus far, the air-sensitive $\mathrm{Cp}_{2} \mathrm{TiCl}$ solution had to be freshly prepared and added over 6 h via syringe pump to the substrate. Instead, a catalytic protocol would only require mixing the substrate, zinc or manganese, the acid additive and titanocene dichloride. Furthermore, we suspected that the presence of two equivalents of Lewis acidic titanium species might trigger side reactions of both substrate and product, which might be minimized by using only catalytic amounts of the titanium complex.

Our screening commenced with the conditions established by GANSÄUER and epoxide 293, which provided 68% of the desired diol under stoichiometric conditions. In contrast, when using $5 \mathrm{~mol} \%$ of titanocene dichloride the desired product $\mathbf{3 0 4}$ was isolated in only moderate
yield of 41% (Table 7.1, Entry 1). However, increasing the catalyst loading to $15 \mathrm{~mol} \%$ significantly improved the isolated yield to 83% along with 16% of alkene 305 (Entry 2).

Table 7.1: Catalytic reductive epoxide opening with intramolecular hydrogen atom donation. ${ }^{[a]}$
Entry
[a] Standard conditions: $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ ($15 \mathrm{~mol} \%$), Mn (3 equiv), 2,4,6-collidine $\cdot \mathrm{HCl}$ (3 equiv), THF, RT; [b] Isolated yields refer to spectroscopically homogenous material; [c] $5 \mathrm{~mol} \%$ of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ were employed.

Next, benzyl protected derivative 295 was tested. As indicated in Entry 3, the desired product $\mathbf{3 0 6}$ could be isolated in 60% yield, along with 10% of its regioisomer and 12% of alkene 307. We suspect that the benzyl group competes as an intermolecular hydrogen atom donor with the intramolecular donation by the O-H moiety, thus decreasing the selectivity. As displayed in Entry 4, when epoxide 285 was subjected to the catalytic conditions, diol 308 was isolated in 70% yield. Strikingly, amine 283, which provided 89% of product $\mathbf{3 0 3}$ under stoichiometric conditions, gave only 39% yield under catalytic conditions (Entry 5). It can be hypothesized that coordination of the amino group to any catalytically active titanium species inhibits an efficient catalytic cycle. Silyl ether 287 produced a 1:1 mixture of regioisomeric products $\mathbf{3 0 9}$ and $\mathbf{3 1 0}$. However, we believe that the complete absence of selectivity originates from migration of the TBS group during the course of the reaction.

8 Conclusion

In summary, our investigation of the $\mathrm{Ti}(\mathrm{III})$-mediated regioselective epoxide opening reaction with intramolecular hydrogen atom transfer provided valuable mechanistic insight. The formation of a single regioisomer of the epoxide opening in microcin SF608 (cf. Chapter 6.1) demanded for revision of the mechanistic picture provided by RAJANBABU (Scheme 8.1, A). Employing deuterium labeled epoxide substrates, it could be shown, that an intramolecular hydrogen atom transfer from a neighbouring $\mathrm{N}-\mathrm{H}$ moiety takes place (Scheme 8.1, B). Furthermore, when syn- and anti-substrates 276 and 281 were employed, the mechanistic rationale had to be further altered (Scheme 8.1, C). While anti 276 provided diol 299 with excellent regioselectivity syn 281 showed no significant selectivity. Based on this result, we surmised that the reduction occurs via a $\mathrm{S}_{\mathrm{H}} 2$ mechanism (Scheme 8.1, D). Thus, the first step is proposed to be a displacement of the $\mathrm{C}-\mathrm{O}$ epoxide bond by intramolecular hydrogen atom transfer (XII \rightarrow XIII Scheme 8.1, D), rather than formation of radicals VII and VIII (Scheme 8.1, B).

C)

Scheme 8.1: A) Ti(III)-mediated epoxide opening by RAJANBABU and NUGENT; B) Mechanistic rationale for the regioselectivity observed in the $\mathrm{Ti}(\mathrm{III})$-mediated epoxide opening in the total synthesis of microcin SF 608 ; C) Reductive epoxide opening of $\mathbf{2 7 6}$ and $\mathbf{2 8 1}$; D) $\mathrm{S}_{\mathrm{H}} 2$ mechanism to explain the difference of syn $\mathbf{2 7 6}$ and anti 281.

Furthermore, we were able to apply GANSÄUER's catalytic conditions to our sytem. However, while alcohols underwent the desired reductive epoxide opening without difficulties, it should be noted that free amines seem to interject the catalytic cycle by coordination to any catalytically active titanium species. When we investigated the general applicability of this reaction, we observed several restrictions. Firstly, the substrate must possess some preorganized backbone to ensure a beneficial reaction pathway. Accordingly, the substrates investigated endowed with linear backbones did not produce the desired products in synthetically useful yields. Furthermore, the geometrical requirement of antirelationship between the epoxide and the donating protic $\mathrm{X}-\mathrm{H}(\mathrm{X}=\mathrm{N}, \mathrm{O})$ moiety significantly restricts the substrate selection.

Part III

Synthesis of Raman-Active
Epoxyisoprostane Analogs

9 Introduction ${ }^{137}$

9.1 Investigation of the Role of Oxidized Phospholipids in Inflammatory Diseases

Oxidized phospholipids (OxPLs) are important bioactive compounds, which are produced in humans and other organisms upon exposure of biological membranes to reactive oxygen species. ${ }^{138}$ However, these intriguing human derived natural products do not simply represent mere byproducts of lipid oxidation, but instead have been recognized as active compounds in inflammation. ${ }^{139}$ Intriguingly, while the majority of literature reports suggest proinflammatory effects for several oxidized phospholipids, ${ }^{140}$ conflicting observations establish anti-inflammatory behavior. ${ }^{141}$ A possible explanation for this discrepancy is the experimental design. As it is common practice, a phospholipid precursor is chemically oxidized by various transition metal salts. Cells are then exposed to the thus generated mixture of oxidized phospholipids in vitro and in vivo. However, the composition of this mixture is highly dependent on the oxidant employed. ${ }^{142}$ Hence, a possible circumvention of this problem might be to perform the biological assays with defined pure compounds instead of a composition of oxidized phospholipids. Since the separation and isolation of single compounds from an oxidized mixture of phospholipids is tedious, divergent chemical synthesis might provide an efficient alternative.

9.1.1 Total Syntheses of Epoxyisoprostanes

Recently, our group started a fruitful collaboration with M. KOPF to gain insights into the inflammatory activity of oxidized phospholipids 311-314 (Figure 9.1). ${ }^{143}$ Noteworthy, several previous studies associated mixtures of OxPLs with pro-inflammatory activity in rheumatic arthritis, ${ }^{144}$ emphysema ${ }^{145}$ and atherosclerosis. ${ }^{146}$ Hence, in order to perform a reliable biological assay with single compounds, a flexible synthetic strategy was devised. ${ }^{147}$

[^60]
\[

$$
\begin{array}{ll}
R=H & E C(311) \\
R=P C & P E C P C \\
(\mathbf{3 1 2})
\end{array}
$$
\]

Figure 9.1: Structures of EC (311), PECPC (312), EI (313) and PEIPC (314).
As presented in Scheme 9.1, the epoxide side chain was envisioned to be introduced by a late-stage aldol condensation between cyclopentenone $\mathbf{3 1 6}$ and aldehyde 317. While the latter would be easily accessible in enantiomerically pure form via Jørgensen epoxidation from the corresponding enal, ${ }^{148}$ the cyclopentenone would arise from homoallylic $\mathrm{C}-\mathrm{H}$ insertion and subsequent elimination of β-ketoester 318.

Scheme 9.1: Retrosynthetic analysis of EC (311).
According to this plan, the synthesis commenced with the exposure of (Z)-decenal 319 to ketene and TMS-protected quinidine $\mathbf{3 2 1}$ under the conditions described by NELSON and coworkers to give β-lactone $\mathbf{3 2 0}$ in 62% yield and 92% ee (Scheme 9.2). ${ }^{149}$ Opening of the latter with the lithium enolate of methyl acetate, Regitz diazo transfer and subsequent protection provided diazoketoester $\mathbf{3 2 2}$ in 73% overall yield.

Scheme 9.2: Synthesis of $\mathrm{C}-\mathrm{H}$ insertion precursor 322. Reagents and conditions: a) $\mathrm{LiClO}_{4}, \mathbf{3 2 1}(12 \mathrm{~mol} \%)$, $i \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{AcCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(2: 1),-78{ }^{\circ} \mathrm{C}, 62 \%, 92 \% e e$; b) $i \mathrm{Pr}_{2} \mathrm{NLi}, \mathrm{MeOAc}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, then $\mathbf{3 2 0}, 77 \%$; c) p - $\mathrm{ABSA}, \mathrm{NEt}_{3}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}$ to RT 97%; d) TESCl, imidazole, DMF, $0^{\circ} \mathrm{C}$ to RT, 98%.

[^61]The key homoallylic C-H insertion was tackled next. Importantly, several issues needed to be addressed. At the outset of this project it was not clear, whether the desired $\mathrm{C}-\mathrm{H}$ insertion would have to compete against a potentially possible intramolecular cyclopropanation. Furthermore, the diastereoselectivity of the insertion process needed to be controlled by either the substrate or the catalyst. In an initial attempt, 322 was exposed to $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, providing the cyclization product $\mathbf{3 2 4}$ in 81% yield as a $4: 1$ mixture favoring the desired syn product. The selectivity could be substantially improved by employing bulkier rhodium catalysts. Thus, the use of $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$ gave a ratio of $6: 1$, whereas $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}(\mathbf{3 2 3})$ furnished the desired product in 71% yield with a diastereomeric ratio of 9:1 (Scheme 9.3). Subsequent Krapcho decarboxylation and elimination provided cyclopentenone 316 in 60% yield.

Scheme 9.3: Synthesis of cyclopentenone 316. Reagents and conditions: a) $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}(1.0 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 71%, d.r. $=9: 1$; b) $\mathrm{NaCl}, \mathrm{DMSO}, 140^{\circ} \mathrm{C}, 65 \%$; c) $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 93 \%$.

As presented in Scheme 9.4 the epoxy-sidechain 317 was smoothly generated from cyclopentene (326) via ozonolysis, Wittig olefination and Jørgensen epoxidation in 28\% yield over three steps and $92 \% e e$. The union of the two fragments $\mathbf{3 1 6}$ and $\mathbf{3 1 7}$ by an aldol condensation furnished ester $\mathbf{3 2 8}$ in 64% yield.

Scheme 9.4: Synthesis of ester 328. Reagents and conditions: a) $\mathrm{O}_{3}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(5: 1),-78{ }^{\circ} \mathrm{C}$, then $\mathrm{NEt}_{3}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{6}, 0^{\circ} \mathrm{C}$; b) $\mathrm{Ph}_{3} \mathrm{PCHCHO}$, toluene, $70{ }^{\circ} \mathrm{C}, 55 \%$, d.r. $=5: 1,55 \%$ over two steps; c) $\mathrm{H}_{2} \mathrm{O}_{2},(S)-$ 2-(diphenyl[(trimethylsilyl)oxy]methyl)pyrrolidine ($10 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 51 \%, 92 \% e e$; d) $\mathrm{LiN}(\mathrm{TMS})_{2}, \mathbf{3 1 6}, \mathrm{THF}$, $-78{ }^{\circ} \mathrm{C}$, then 317, THF, $-78^{\circ} \mathrm{C}$; e) $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{RT}, 64 \%$ over two steps.

Finally, ester 328 was enzymatically hydrolyzed to provide EC (311) in 70% yield (Scheme 9.5). EC was then coupled with lyso-PC under Yamaguchi's conditions to furnish PECPC (312). Furthermore, the missing alcohol functionality in EI (313) and PEIPC (314) was introduced via nucleophilic epoxidation followed by SmI_{2}-mediated epoxide opening.

Scheme 9.5: Synthesis of EC, PECPC, EI and PEICP. Reagents and conditions: a) Novozyme, THF-buffer (aqueous, pH 7) (1:4), 70%; b) $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}$, DMAP, lyso-PC, $\mathrm{CHCl}_{3}, 69 \%$; c) $t \mathrm{BuOOH}$, DBU, THF, $0{ }^{\circ} \mathrm{C}, 74 \%$; d) $\mathrm{SmI}_{2}, \mathrm{THF}-\mathrm{MeOH}(4: 1),-9{ }^{\circ} \mathrm{C}, 54 \%$; e) Novozyme, THF-buffer (aqueous, pH 7) (1:4), 60\%; f) Novozyme, THF-buffer (aqueous, pH 7) ($1: 4$), 74%; g) $2,4,6-\mathrm{Cl}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{COCl}$, DMAP, lyso-PC, $\mathrm{CHCl}_{3}, 69 \%$; h) $\mathrm{SmI}_{2}, \mathrm{THF}-\mathrm{MeOH}(4: 1),-90^{\circ} \mathrm{C}, 43 \%$.

Intriguingly, upon prolonged exposure of EC (311) to silica gel varying amounts of a byproduct were observed. Thus, EC was dissolved in CHCl_{3} and silica gel was added (Scheme 9.6). After 3 hours, the conversion was complete and lactone 330 (CycloEC) could be isolated in 65% yield. ${ }^{143 b}$) For the purpose of a complete biological screening (vide infra), lactone $\mathbf{3 3 0}$ was further converted into diol $\mathbf{3 3 1}$.

Scheme 9.6: Silica-mediated lactone formation of EC (311) to CycloEC (330). Reagents and conditions: a) SiO_{2}, $\mathrm{CHCl}_{3}, 65 \%$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH} ;$ c) Novozyme, THF-buffer (aqueous, pH 7) (1:4), 30\% over two steps.

9.1.2 Biological Testing

Next, the inflammatory effects of isoprostanoids $\mathbf{3 1 1}$ and $\mathbf{3 1 3}$ as well as of their phosphatidylcholine derivatives $\mathbf{3 1 2}$ and $\mathbf{3 1 4}$ were investigated. At first, bone-marrow derived dendritic cells (BMDCs) were exposed to 311-314 in Fetal Bovine Serum (FBS)supplemented RPMI (Roswell Park Memorial Institute) medium for one hour. After washing, the cells were stimulated for 18 hours with Toll-like receptor ligand R837 ($5 \mu \mathrm{~g} / \mathrm{mL}$) in order to induce cytokine secretion. Surprisingly, even though previous studies described these compounds as pro-inflammatory, a dose-dependent decrease in the secretion of proinflammatory cytokines IL-6 and IL-12 was observed. In addition, the free acids EC (311) and

EI (313) showed significantly stronger effects than their phosphatidylcholine counterparts PECPC (312) and PEICP (314). The comparison between EC (311), equipped with an enone functionality, and EI (313), possessing a free hydroxy group, indicates a stronger antiinflammatory effect for the enone.

Chart 9.1: IL-6 (left) and IL-12 (right) production by BMDCs exposed to synthetic EC (311), PECPC (312), EI (313) and PEICP (314). For PEICP higher concentrations were used: $0,1.52,3.04$ and $6.07 \mu \mathrm{M}$. Data is normalized to the negative control $(0 \mu \mathrm{M})$. IL-6 and IL-12 levels in the supernatants were determined by ELISA.

Evaluation of lactone $\mathbf{3 3 0}$ (CycloEC) and diol $\mathbf{3 3 1}$ showed a remarkable result. While the diol was considerable less active than EC, $\mathbf{3 3 0}$ exhibits the strongest effect of all compounds investigated to date with regard to inhibition of pro-inflammatory IL-6 and IL-12 secretion (Chart 9.2 and Chart 9.3). Since the large concentration intervals employed in Chart 9.1 only led to three data points until the cytotoxic concentration was reached, a series with smaller intervals was performed.

Chart 9.2: IL-6 production by BMDCs exposed to EC (311) and CycloEC (330).

Chart 9.3: IL-12 production by BMDCs exposed to EC (311) and CycloEC (330).

9.1.3 Conclusion

In summary, a short and divergent total synthesis towards epoxyisoprostanes has been devised. The synthetic strategy relies on an enantioselective formal $[2+2]$ reaction between ketene and aldehyde 319 as well as a chemo- and diastereoselective homoallylic $\mathrm{C}-\mathrm{H}$ insertion reaction to construct the cyclopentane core of this class of human derived natural products. Furthermore, biological assays revealed that these compounds do not act as proinflammatory agents, but possess anti-inflammatory activity with varying efficiency. It could be shown that the free acids EC (311) and EI (313) are more potent than their phosphatidylcholine derivatives PECPC (312) and PEICP (314). While EC possesses a higher anti-inflammatory activity than the hydroxylated EI, it could be shown that the coincidentally synthesized CycloEC ($\mathbf{3 3 0}$) not only displays a remarkably higher activity than EC, but also elicits the strongest effect of all derivatives examined to date.

10 Aim of the Project

10.1 Mode of Action of EC and CycloEC

The recently discovered cyclopentenone prostaglandin 15dPGJ2 (332) has received considerable interest due to its high biological activity in the modulation of inflammatory and apoptotic processes (Figure 10.1). ${ }^{150}$ Biological assays identified 15d-PGJ2 as an anti-inflammatory prostaglandin. ${ }^{151}$ This effect has been reported to be mediated by interaction with the nuclear hormone receptor

15d-PGJ2 (332)

Figure 10.1: Structure of 15d-PGJ2 (332). peroxisome proliferator-activated receptor-gamma (PPAR- γ) as well as with the transcription factor Nrf2. ${ }^{152}$ Due to the structural similarity between 15d-PGJ2 (332) and EC (311), PRETSCHER et al. presumed that both molecules might induce their anti-inflammatory effects by activating similar reaction pathways. Indeed, their detailed study, could not only validate this hypothesis, but also identify Nrf2 as the only mediator of anti-inflammatory response. While removal of PPAR- γ in gene deficient BMDC did not induce any change in the oxidized phospho-lipid-mediated inhibition of IL-12 production, the bioactivity of EC and 15d-PGJ2 was shut down in the absence of Nrf2. ${ }^{152}$ As shown in Figure 10.2, under normal (unstressed) conditions, Nrf2 is kept in the cytoplasm by the protein cluster Kelch-like ECHassociated protein 1 (Keap1). Keap1 anchores Nrf2 and facilitates its ubiquitination and subsequent

Figure 10.2: Keap1/Nrf2 pathway induced by OxPLs under oxidative stress (right) and degradation of Nrf2 under unstressed conditions (left). Taken with permission from reference 153 d). proteolysis. However under stressed conditions, cysteine alkylation leads to liberation of Nrf2, which then translocates in the nucleus to promote the expression of various antioxidative genes and proteins. ${ }^{153}$

[^62]
10.2 Imaging of Alkyne-Tagged Biomolecules in Living Cells by Raman Spectroscopy

Raman as well as infrared spectroscopy are two orthogal spectroscopical methods, which are widely used to analyze structural elements of chemical substrates. ${ }^{154}$ While IR spectroscopy relies on the detection of a change in the dipole moment caused by irradiation, the Raman scattering process, discovered by C. V. RAMAN in 1928, arises from changes in the polarizability of a vibrating molecule. While the majority of the incident photons do not couple with vibrational excitation, the scattered photons possess the same energy as the incident photons (Raleigh scattering). Nevertheless, if an incoming photon triggers a polarization, which couples with vibrational excitation, inelastic scattering occurs (Raman scattering). The Raman scattering requires a change in polarizability of a chemical bond in such a way that there is a distortion in the electron density around the vibrating nuclei. Hence, molecules containing multiple bonds, e.g. alkynes, nitriles, olefins and carbonyls, are highly suitable substrates for Raman spectroscopy. This so-called spontaneous Raman spectroscopy has already been employed in 1990 by puppels et al. for the measurement of living cells and chromosomes. ${ }^{155}$ In the following years, alkynes have gained considerable attention as markers for drugs and active agents in the pharmaceutical and agrochemical field due to several notable advantages. Firstly, alkynes possess a very sharp and intense Raman peak at around $2125 \mathrm{~cm}^{-1}$ (the intensity of an alkyne Raman peak is about $40 \times$ higher than the popular carbon-deuterium peak). Strikingly, the spectroscopic area of $1800-2800 \mathrm{~cm}^{-1}$ does not show any contribution of cellular components, thus no overlapping background signals impair the measurement. Secondly, in contrast to commonly employed bulky fluorescent tags, which often alter the biochemical properties of small molecules, alkynes are small and under physiological conditions relatively inert chemical moieties. However, despite these favorable attributes, major challenges are associated with the imaging of living cells via spontaneous Raman spectroscopy. The process possesses an extremely small scattering cross section ($\sigma=$ $10^{-30} \mathrm{~cm}^{2}$) compared to fluorescence ($\sigma=10^{-16} \mathrm{~cm}^{2}$) and thus limits the speed of acquisition. Additionally, most of the interesting bioactive small molecules accumulate in intracellular concentrations, which are too low for spontaneous Raman spectroscopy. Thus, recording spectra at physiologically and biologically relevant concentrations is often precluded.

[^63]Fortunately, several strategies and advances have been devised to overcome these problems. One of the major achievements was the development of the stimulated Raman spectroscopy (SRS). This method generates the signals by co-alignment of two beams, the Stokes and the pump beam. These beams differ in the energy Ω, which matches the molecular vibration of the chemical moiety (for an alkyne tag $\Omega=2125 \mathrm{~cm}^{-1}$), thus accelerating their vibrational excitation. As a consequence, a stimulated Raman excitation of this vibration occurs, which causes an intensity loss of the pump beam and an intensity gain of the Stokes beam. This change can then be measured and used to generate an image. Importantly, SRS increases the vibrational excitation by seven orders of magnitude over spontaneous Raman spectroscopy. Furthermore, when Ω does not match a modular vibration of the sample, no signal is detected. Thus, no non-resonant background signals are observed. In an impressive study, MIN and co-workers employed the stimulated Raman spectroscopy for the live-cell imaging of various small alkyne-tagged biomolecules. ${ }^{156}$ The authors could image and locate the metabolic uptake of 5-ethynyl uridine during RNA synthesis, of 5-ethynyl-2'deoxyuridine (EdU) during DNA synthesis, of L-homopropargylglycine during protein synthesis, of proparglycholine during phosphoplipid synthesis and of 17-octadecynoic acid during triglyceride synthesis (Figure 10.3).

Figure 10.3: Metabolic incorporation of alkyne-tagged small biomolecules. Taken with permission from reference 156 .

[^64]Figure 10.4 shows the results obtained for the incorporation of EdU in the DNA of living cells. MIN and co-workers were even able to record the cell division by taking time-lapse images.

Figure 10.4: Time-lapse images of a dividing cell incubated with $100 \mu \mathrm{M} \mathrm{EdU}$. Taken with permission from reference 156 .

In 2012, SODEOKA and co-workers reported a detailed study of alkyne-tagged Raman imaging of living cells. ${ }^{157}$ At first, the authors undertook an in depth investigation of the nature of the alkyne tag by synthesizing and analyzing 89 different alkynes. It could be shown, that an additional conjugated diyne moiety could already increase the intensity of the observed Raman signal by a factor of five (Figure 10.5). Also the conjugation of the alkyne to an aromatic ring resulted in a five times higher Raman intensity. Noteworthy, the combination of these two, a phenyl diyne moiety caused a remarkable intensity increase by a factor of 30 .

Figure 10.5: Relative Raman intensities of different alkyne moieties studied by SODEOKA and co-workers.
Recently, CHENG and co-workers reported an important finding during the live cell investigation of alkyne-tagged cholesterol. ${ }^{158}$ While terminal alkyne groups are chemically relatively inert, the researchers found that terminal alkyne-tagged cholesterol showed cytotoxic effects with an IC_{50} value of $16 \mu \mathrm{M}$. Since such a change of biological behavior would lead to falsified results, the alkyne tag was exchanged with a phenyl-diyne moiety. The newly synthesized cholesterol derivative was shown to be biologically inert and did not cause any cytotoxic side effects after 16 hours of incubation.

[^65]
10.3 Conclusion

The recent developments and advances in the field of stimulated Raman spectroscopy of alkyne-tagged small biomolecules in living cells prompted us to devise a synthetic route towards an alkyne-tagged analog of CycloEC (330). With sufficient material in hand, we might be able to observe and provide further proof for the intracellular interaction between CycloEC and the Keap1 protein cluster. Additionally, it has been discovered that 50% of various cyclopentenone prostaglandins are being transported to the cell nucleus. ${ }^{159}$ If such an event does take place in the case of CycloEC could be straightforwardly proven by live cell imaging Raman spectroscopy.

[^66]
11 Synthetic Strategy

Since the general synthetic strategy presented in Chapter 9.1.1 has proven to be both reliable and scalable during the synthesis of various epoxyisoprostanes and analogs thereof, a similar plan was followed for the synthesis of the phenyldiyne derivative of EC (PDEC) and CycloEC (PDCycloEC). ${ }^{160}$ Hence, as shown in Scheme 11.1, an aldol condensation between diyne 334 and aldehyde 317 followed by ester hydrolysis would provide PDEC (333). Furthermore it was decided to introduce the phenyl diyne motif at a late-stage via a $\mathrm{C}(\mathrm{sp})-\mathrm{C}(\mathrm{sp})$ cross coupling between terminal alkyne 335 and (bromo- or iodoethynyl)benzene. We surmised that its generation at this stage of the synthesis bears two tactical advantages. Firstly, if an expensive transition metal or ligand was required, performing the coupling reaction at a late-stage would decrease the overall cost. Secondly, we anticipated that the associated removal of the acidic alkyne proton would prove beneficial for the planned subsequent aldol reaction. Cyclopentanone $\mathbf{3 3 5}$ was then envisioned to arise from β-ketoester 336 by a $\mathrm{C}-\mathrm{H}$ insertion, in accordance with the previously presented route ($c f$. Chapter 9.1.1).

Scheme 11.1: Synthetic strategy for PDEC (333).

[^67]
12 Results and Discussion

12.1 Synthesis of PDEC and PDCycloEC

The synthesis commenced with a Wittig reaction between 5-hexyn-1-al (338) ${ }^{161}$ and triphenylphosphonium bromide $\mathbf{3 3 7}^{162}$ to give (Z)-olefin $\mathbf{3 3 9}$ in $\mathbf{7 6 \%}$ yield (Scheme 12.1).

Scheme 12.1: Asymmetric synthesis of β-lactone 341. Reagents and conditions: a) $\mathrm{KO} t \mathrm{Bu}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, then 338, $-78{ }^{\circ} \mathrm{C}$ to RT, 76%; b) DIBAL, toluene, $-78{ }^{\circ} \mathrm{C}, 87 \%$; c) $\mathrm{LiClO}_{4}, 321$ ($12 \mathrm{~mol} \%$), $i \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{AcCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Et}_{2} \mathrm{O}(3: 1),-7{ }^{\circ} \mathrm{C}, 75 \%$, ee $\geq 94 \%$.

Next, DIBAL reduction to aldehyde $\mathbf{3 4 0}$ proceeded uneventfully in 87% yield. The formal $[2+2]$ cycloaddition between ketene and $\mathbf{3 4 0}$ provided β-lactone $\mathbf{3 4 1}$ in 75% yield and $\geq 94 \%$ $e e .{ }^{163}$

Scheme 12.2: Synthesis of cyclopentenone 335 via homoallylic $\mathrm{C}-\mathrm{H}$ insertion. Reagents and conditions: a) $i \mathrm{Pr}_{2} \mathrm{NLi}$, MeOAc, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathbf{3 4 1}$; b) p-ABSA, $\mathrm{NEt}_{3}, \mathrm{MeCN}$; c) TESCl, imidazole, DMF, 56% over three steps; d) $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTAD})_{4}(\mathbf{3 2 3})(0.2 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; e) $\mathrm{NaCl}, \mathrm{DMSO}, 140^{\circ} \mathrm{C}$; f) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 20% over three steps.

Nucleophilic opening of the β-lactone by the lithium enolate of methyl acetate provided alcohol 342, which smoothly underwent diazo transfer and subsequent TES protection

[^68]furnishing 343 in 56% overall yield (Scheme 12.2). With sufficient quantities of diazo ester 343 in hand, the stage was set for the $\mathrm{Rh}(\mathrm{II})$-mediated homoallylic $\mathrm{C}-\mathrm{H}$ insertion reaction. To our delight, the insertion proceeded smoothly and provided, after Krapcho decarboxylation and elimination, cyclopentenone 335 in 19% yield over three steps.

Having a reliable and scalable synthesis of cyclopentenone 335 established, the introduction of the phenyl diyne motif was explored next. Conjugated diynes are most often generated by copper-catalyzed Glaser or Cadiot-Chodkiewicz couplings. ${ }^{164}$ However, since both reactions suffer from significant homocoupling, palladium-catalyzed reactions have been developed to overcome this selectivity problem. ${ }^{165}$ In 2008, LEI and co-workers published a detailed study for the Pd-catalyzed $\mathrm{C}(\mathrm{sp})-\mathrm{C}(\mathrm{sp})$ coupling reaction between a bromoalkyne and a terminal alkyne. ${ }^{165}$ This study was aiming not only for the improvement of the overall yield but also for a more general applicability. The optimal conditions found required $4 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{dba})_{2}, 4 \mathrm{~mol} \%$ of a phosphine ligand (vide infra) and $2 \mathrm{~mol} \%$ of CuI in the presence of triethylamine in DMF. Under these conditions, a wide range of alkynes underwent the desired coupling reaction in generally high yields (77-99\%). Importantly, only a slight excess of the terminal alkyne was necessary (1.2 equiv).

When cyclopentenone 335 was subjected to slightly modified conditions, phenyl diyne 334 was isolated in 42% yield (Scheme 12.3). ${ }^{166}$ The yield could be improved to 52% by substituting (bromoethynyl)benzene by (iodoethynyl)benzene (345).

Scheme 12.3: Preparation of phenyl diyne substituted cyclopentenone 347. Reagents and conditions: a) 345, CuI ($2 \mathrm{~mol} \%$), $\mathbf{3 4 6}(4 \mathrm{~mol} \%), \mathrm{Pd}(\mathrm{dba})_{2}(4 \mathrm{~mol} \%), \mathrm{NEt}_{3}, \mathrm{DMF}, 52 \%$; b) LiHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathbf{3 1 7}$; c) MsCl , $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; d) $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 49 \%$ over three steps.

The following aldol condensation reaction proved to be highly delicate. Although the aldol addition of the lithium anion of cyclopentenone $\mathbf{3 3 4}$ and aldehyde $\mathbf{3 1 7}$ proceeded without

[^69]difficulties, the elimination and handling of the mesylated derivatives was highly cumbersome. Since no spontaneous elimination during the mesylation could be achieved, we attempted to isolate the mesylated derivatives. However, while purification via flash column chromatography was indeed possible, the subsequent evaporation of the solvent led to rapid decomposition of the material. ${ }^{167}$ Gratifyingly, after extensive experimentation it was found that an aqueoues workup, followed by concentration of the reaction mixture to $1 / 5$ of the volume and subsequent addition of an excess of neutral and freshly activated $\mathrm{Al}_{2} \mathrm{O}_{3}$ provided dienone 347 in 49% overall yield.

Finally, as indicated in Scheme 12.4 ester 347 was hydrolyzed to the corresponding PDEC (333). The obtained material was then dissolved in CHCl_{3} and stirred in the presence of an excess of silica gel. After five days, the targeted PDCycloEC (348) was obtained in 50% yield over two steps.

Scheme 12.4: Synthesis of PDCycloEC (348) from ester 347. Reagents and conditions: a) Novozyme, THFbuffer (aqueous, pH 7) (1:4); b) $\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}, 50 \%$ over two steps.

12.2 Conclusion and Outlook

In Part III of this thesis, an efficient and scalable synthesis of the phenyl diyne-tagged derivative of CycloEC has been developed. The synthetic strategy is mostly based on the results reported by EGGER and CARREIRA in their total syntheses of various epoxyisoprostanes and analogs thereof. While the terminal alkyne component could be carried through the whole synthetic sequence to cyclopentenone $\mathbf{3 4 4}$, we decided to strategically introduce the (ethynyl)benzene motif at a late-stage, prior to the aldol condensation step, by a Pd-catalyzed C (sp)- C (sp) cross coupling.

Targeted PDCycloEC has been submitted to our collaborators for stimulated Raman spectroscopy imaging in order to study its behavior in a living cell. The results of this study will be reported in due course.

[^70]
Part IV

Experimental Section

13 Experimental Procedures

13.1 General Methods

All non-aqueous reactions were performed under an inert atmosphere of dry nitrogen or argon in flame dried glassware sealed with a rubber septum unless otherwise noted. The protecting gas was passed over a column of CaCl_{2} and supplied through a glass manifold. Reactions were stirred magnetically and monitored by thin layer chromatography (TLC). Analytical thin layer chromatography was performed using MERCK SILICA GEL F^{254} TLC glass plates and visualized by ultraviolet light (UV). Additionally, TLC plates were stained with aqueous potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ [1.5 $\mathrm{g} \mathrm{KMnO}_{4}, 200 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$, 2.5 mL 1 M NaOH aq.], cerium ammonium molybdate (CAM) [0.5 g Ce($\left.\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}, 12 \mathrm{~g}$ $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}, 235 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 15 \mathrm{~mL}$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$] or ethanolic p-anisaldehyde [3.7 mL p-anisaldehyde, 135 mL EtOH, 5 mL conc. $\left.\mathrm{H}_{2} \mathrm{SO}_{4}, 1.5 \mathrm{~mL} \mathrm{AcOH}\right]$. Concentration under reduced pressure ($=$ in vacuo) was performed by rotator evaporation at $40{ }^{\circ} \mathrm{C}$ at the appropriate pressure. Chromatographic purification was performed as flash chromatography ${ }^{168}$ on FLUKA silica gel $60 \AA(230-400$ mesh $)$ at $0.3-0.5$ bar over-pressure. Yields refer to the purified compound.

13.2 Chemicals

All chemicals and solvents were purchased from ABCR, ACROS, ALDRICH, COMBI-BLOCKS, FLUOROCHEM, J. T. BAKER, FLUKA, MERCK, FISHER-SCIENTIFIC, TCI, STREM or LANCASTER and were used as received from the commercial supplier without further purification unless mentioned otherwise. THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}$ and toluene were dried on a LC TECHNOLOGY SOLUTIONS $S P-1$ solvent purification system under N_{2}. $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content $<30 \mathrm{ppm}$, Karl-Fischer titration). ${ }^{169}$ Deuterated solvents were obtained from ARMAR CHEMICALS, Döttingen, Switzerland. MeOH was distilled from magnesium turnings under an atmosphere of dry nitrogen. Diisoproylamine and pyridine were distilled from $\mathrm{KOH}, \mathrm{DMPU}, \mathrm{NEt}_{3}, 2,2,2$ trifluoroethyl 2,2,2-trifluoroacetate and TMS-Cl were distilled from calcium hydride under an atmosphere of dry nitrogen or high vacuum. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was purified by a quick, heat gun promoted "bulb-to-bulb" distillation under an atmosphere of nitrogen prior to use. 6-(dimethylamino)fulvene ${ }^{170}$, DESS-MARTIN periodinane (DMP) ${ }^{171}$ and $\mathrm{MsN}_{3}{ }^{172}$ were

[^71]prepared according to literature procedures. Aqueous buffer solutions were prepared according to the Sørensen's phosphate buffer table from 0.067 M aqueous solutions of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}$.

13.3 Analytics

Nuclear Magnetic Resonance (NMR) spectra were recorded on VARIAN MERCURY (300 MHz), BRUKER AV and DRX (400 MHz), BRUKER DRX and DRXII (500 MHz) or BRUKER AVIII (600 MHz with cryoprobe) spectrometers. Measurements were carried out at ambient temperature (ca. $22{ }^{\circ} \mathrm{C}$). Chemical shifts (δ) are reported in ppm with the residual solvent signal as internal standard (chloroform at 7.26 and 77.16 ppm for ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectroscopy, respectively), unless otherwise noted. The data is reported as ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{b}=$ broad signal, app = apparent, coupling constant(s) in Hz, integration). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with broadband ${ }^{1} \mathrm{H}$-decoupling. Service measurements were performed by the NMR service team of the Laboratorium für Organische Chemie at ETH Zürich by Mr. René Arnold, Mr. Rainer Frankenstein and Mr. Philipp Zumbrunnen under direction of Dr. Marc-Olivier Ebert.

Infrared (IR) spectra were recorded on a PERKIN ELMER TWO-FT-IR (UATR) as thin films. Absorptions are given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.

Mass spectrometry (MS) analyses were performed as high resolution EI measurements on a WATERS MICROMASS AUTOSPEC ULTIMA at 70 eV , as high resolution ESI measurements on a BRUKER DALTONICS MAXIS (UHR-TOF) instrument or as MALDI on a BRUKER SOLARIX - MALDI-FTICR-MS instrument by the mass spectrometry service of the Laboratorium für Organische Chemie at ETH Zürich by Mr. Louis Bertschi, Mr. Oswald Greter and Mr. Rolf Häfliger under direction of Dr. Xiangyang Zhang.

X-ray diffraction experiments have been carried out by Dr. Niels Trapp and Mr. Michael Solar on a BRUKER NONIUS APEX-II system equipped with a graphite monochromator at the Laboratorium für Organische Chemie at ETH Zürich. The data obtained was deposited at the Cambridge Crystallographic Data Centre.

13.4 Experimental Procedures

13.4.1 Total Syntheses of Pallambins A and B

(1SR,4RS)-2-chloro-7-methylenebicyclo[2.2.1]hept-5-ene-2-carbonitrile (349) and (1SR,4RS)-2-chloro-7-methylenebicyclo[2.2.1]hept-5-ene-2-carbonitrile (350). ${ }^{173} \mathrm{~A}$ suspension of dimethylaminofulvene $(3.97 \mathrm{~g}, 32.8 \mathrm{mmol})$ in 150 mL Et 2 O was added dropwise with a dropping funnel to $\mathrm{a}-15{ }^{\circ} \mathrm{C}$ cold suspension of $\mathrm{LiAlH}_{4}(1.37 \mathrm{~g}, 36.0 \mathrm{mmol}$) in $50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ over $40 \mathrm{~min} .{ }^{174}$ When the addition was over, the wall of the flask was rinsed down with additional ether to bring all material into the suspension. The reaction was stirred at this temperature for 1.5 h and then quenched at $-35^{\circ} \mathrm{C}$ by the addition of 1.4 mL water, $\mathrm{NaOH}(10 \%$ aqueous, 1.4 mL) and 3.5 mL water. When no gas evolution was visible anymore, the reaction was directly dried by the addition of sufficient MgSO_{4}. After warming to RT, the dark brown slurry was filtered over filter paper. The filter cake was rinsed with 100 mL of ether, to give a bright yellow to orange solution. Careful evaporation of the solvent, gave crude amine ($3.14 \mathrm{~g}, 25.5 \mathrm{mmol}, 78 \%$) as an orange oil and as a mixture of two isomers. To a solution of $0.80 \mathrm{~g}(6.49 \mathrm{mmol})$ of the two isomeric amine products in 5 mL $\mathrm{Et}_{2} \mathrm{O}$ was added $\mathrm{MeI}(0.41 \mathrm{~mL}, 6.49 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 1 h , the ammonium salt was filtered over celite (rinsed with 5 mL ether) and 2 -chloroacrylonitrile ($0.78 \mathrm{~mL}, 9.73 \mathrm{mmol}$) was added. The reaction was refluxed overnight and additional 2-chloroacrylonitrile (1.56 mL , 19.5 mmol) was added. After 24 h , the reaction was poured into a separation funnel containing 25 mL water and 20 mL ether. The phases were separated and the aqueous phase was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated. Purification using flash column chromatography (hexane/EtOAc 3:1) provided a mixture of $\mathbf{3 4 9}$ and $\mathbf{3 5 0}(0.29 \mathrm{~g}, 1.77 \mathrm{mmol}, 27 \%)$.
$\mathrm{R}_{f}=0.37$ (hexane/toluene $\left.1: 1, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ for the major isomer ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58(\mathrm{dd}, J=6.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=6.0,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.67(\mathrm{bs}, 1 \mathrm{H}), 4.60(\mathrm{bs}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ (app. t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$

[^72](dd, $J=13.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClN}^{+}$ $\left[M+\mathrm{H}^{+}\right]$164.0262, found 164.0261 .

(1SR,2RS,4RS)-2-cyano-7-methylenebicyclo[2.2.1]hept-5-en-2-yl acetate (351) and (1SR,2SR,4RS)-2-cyano-7-methylenebicyclo[2.2.1]hept-5-en-2-yl acetate (352). ${ }^{173}$ A suspension of dimethylaminofulvene ($3.97 \mathrm{~g}, 32.8 \mathrm{mmol}$) in 150 mL Et 2 O was added dropwise with a dropping funnel to $\mathrm{a}-15{ }^{\circ} \mathrm{C}$ cold suspension of $\mathrm{LiAlH}_{4}(1.37 \mathrm{~g}, 36.0 \mathrm{mmol})$ in $50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ over $40 \mathrm{~min} .{ }^{174}$ When the addition was over, the wall of the flask was rinsed down with additional ether to bring all material into the suspension. The reaction was stirred at this temperature for 1.5 h and then quenched at $-35^{\circ} \mathrm{C}$ by the addition of 1.4 mL water, $\mathrm{NaOH}(10 \%$ aqueous, 1.4 mL) and 3.5 mL water. When no gas evolution was visible anymore, the reaction was directly dried by the addition of sufficient MgSO_{4}. After warming to RT, the dark brown slurry was filtered over filter paper. The filter cake was rinsed with 100 mL of ether, to give a bright yellow to orange solution. Careful evaporation of the solvent, gave crude amine ($3.14 \mathrm{~g}, 25.5 \mathrm{mmol}, 78 \%$) as an orange oil and as a mixture of two isomers. To a solution of $1.45 \mathrm{~g}(11.8 \mathrm{mmol})$ of this amine in 6 mL ether was added MeI $(0.73 \mathrm{~mL}, 11.8 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After 1 h , the ammonium salt was filtered over celite (rinsed with 6 mL ether). $\mathrm{ZnI}_{2}(1.13 \mathrm{~g}, 3.54 \mathrm{mmol}$), 2-acetoxyacrylonitrile (1.24 mL , 11.8 mmol) and a crystal of BHT were added. After four days, the reaction was poured into a separation funnel containing 25 mL water and 20 mL ether. The phases were separated and the aqueous phase was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated. The unreacted 2-acetoxyacrylonitrile was distilled of at $45{ }^{\circ} \mathrm{C}$ (high vacuum). The crude product was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1$) to yield 351 and $352(0.402 \mathrm{~g}, 2.124 \mathrm{mmol}, 18 \%)$ as a $6: 1$ mixture.
$\mathrm{R}_{f}=0.47$ (hexane/ $\left.\mathrm{Et}_{2} \mathrm{O} 1: 1, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ for the major isomer $6.56(\mathrm{dd}, J=5.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=5.8,3.1 \mathrm{~Hz}), 4.65(\mathrm{app} . \mathrm{s}, 1 \mathrm{H}) 4.58(\mathrm{app} . \mathrm{s}, 1 \mathrm{H})$, 3.95 (app. d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\operatorname{app} . \mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=13.2,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.

(1RS,4SR,5RS)-7-methylene-5-nitrobicyclo[2.2.1]hept-2-ene (353). ${ }^{173}$ A suspension of dimethylaminofulvene ($3.97 \mathrm{~g}, 32.8 \mathrm{mmol}$) in $150 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added dropwise with a dropping funnel to a $-15{ }^{\circ} \mathrm{C}$ cold suspension of $\mathrm{LiAlH}_{4}(1.37 \mathrm{~g}, 36.0 \mathrm{mmol})$ in $50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ over $40 \mathrm{~min} .{ }^{174}$ When the addition was over, the wall of the flask was rinsed down with additional ether to bring all material into the suspension. The reaction was stirred at this temperature for 1.5 h and then quenched at $-35^{\circ} \mathrm{C}$ by the addition of 1.4 mL water, NaOH (10% aqueous, 1.4 mL) and 3.5 mL water. When no gas evolution was visible anymore, the reaction was directly dried by the addition of sufficient MgSO_{4}. After warming to RT, the dark brown slurry was filtered over filter paper. The filter cake was rinsed with 100 mL of ether, to give a bright yellow to orange solution. Careful evaporation of the solvent, gave crude amine ($3.14 \mathrm{~g}, 25.5 \mathrm{mmol}, 78 \%$) as an orange oil and as a mixture of two isomers. To a solution of $0.50 \mathrm{~g}(4.06 \mathrm{mmol})$ of this amine in 5 mL ether was added MeI $(0.25 \mathrm{~mL}$, 4.06 mmol) dropwise at $0^{\circ} \mathrm{C}$. After 1 h , the ammonium salt was filtered over celite (rinsed with 5 mL ether), nitroethene (10% solution in benzene, $14.8 \mathrm{~g}, 20.3 \mathrm{mmol}$) was added and the reaction refluxed for 48 h . Then additional nitroethene solution ($14.8 \mathrm{~g}, 20.3 \mathrm{mmol}$) was added. After another 40 h , the solvents were evaporated and the crude product purified by flash column chromatography (hexane: $\mathrm{Et}_{2} \mathrm{O}$ 20:1) to give $\mathbf{3 5 3}$ and $\mathbf{3 5 4}$ ($16.1 \mathrm{mg}, 0.11 \mathrm{mmol}$, $3 \%)$.
$\mathrm{R}_{f}=0.66$ (hexane: $\mathrm{Et}_{2} \mathrm{O} 9: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.55$ (dd, $J=6.2$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (app. dt, $J=8.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{bs}, 1 \mathrm{H})$, 4.41 (bs, 1H), 3.81 (app. t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (app. t, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (ddd, $J=12.9$, $8.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (dd, $J=12.9,3.2 \mathrm{~Hz}) \mathrm{ppm}$.

(1RS,2RS,4RS)-methyl-7-methylenebicyclo[2.2.1]hept-5-ene-2-carboxylate (95). ${ }^{174} \mathrm{~A}$ suspension of dimethylaminofulvene ($36.80 \mathrm{~g}, 303.7 \mathrm{mmol}$) in $720 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added dropwise with a dropping funnel to $\mathrm{a}-15{ }^{\circ} \mathrm{C}$ cold suspension of $\mathrm{LiAlH}_{4}(11.53 \mathrm{~g}$, 303.8 mmol) in $200 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ over $40 \mathrm{~min} .{ }^{175}$ When the addition was over, the wall of the flask was rinsed down with additional ether to bring all material into the suspension. The reaction was stirred at this temperature for 1.5 h and then quenched at $-35^{\circ} \mathrm{C}$ by the addition of 10 mL water, NaOH (10% aqueous, 10 mL) and 20 mL water. When no gas evolution was visible anymore, the reaction was directly dried by the addition of sufficient MgSO_{4}. After warming to RT, the dark brown slurry was filtered over filter paper. The filter cake was rinsed with 300 mL of ether, to give a bright yellow to orange solution. Careful evaporation of the solvent, gave crude amine ($32.93 \mathrm{~g}, 267.3 \mathrm{mmol}, 88 \%$) as an orange oil and as a mixture of two isomers.

The crude amine was then dissolved in 200 mL methylacrylate, cooled to $0^{\circ} \mathrm{C}$ and MeI ($16.64 \mathrm{~mL}, 267.0 \mathrm{mmol}$) was added dropwise. The formation of the ammonium salt became visible after 5 min . In the meantime, diethylaluminium chloride $(1.0 \mathrm{M}$ in hexanes, $90 \mathrm{~mL}, 90 \mathrm{mmol}$) was added in a separate flask slowly at $-15^{\circ} \mathrm{C}$ to 90 mL methyl acrylate. After 1.5 h , the ammonium salt was filtered over a frit of celite into a 1 L flask. The frit was rinsed with 250 mL methylacrylate until the rinsing solvent did not look bright yellow anymore. The receiving flask was precooled to $0{ }^{\circ} \mathrm{C}$. This mixture was then cannulated to the methylacrylate $/ \mathrm{Et}_{2} \mathrm{AlCl}$ solution and stirred for 17 h at $-20^{\circ} \mathrm{C}$ and then at $5{ }^{\circ} \mathrm{C}$ for further 44 h .

The reaction was then cannulated into a $0{ }^{\circ} \mathrm{C}$ mixture of $150 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and 300 mL HCl (1.0 M , aqueous). The flask and the cannula were rinsed with additional $50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The suspension was transferred into a 2 L separation funnel and shaken, upon which most of the formed precipitate dissolved. The phases were separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 300 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo to give the crude material as a red oil, which was purified by column chromatography (hexane/Et $2 \mathrm{O} 10: 1$ to $6: 1$) to give $\mathbf{9 5}$ as a yellow oil with characteristic smell (27.06 g , $164.8 \mathrm{mmol}, 62 \%$, d.r $=10: 1$).
$\mathrm{R}_{f}=0.33$ (hexane/ $\mathrm{Et}_{2} \mathrm{O} 10: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ for the major diastereomer 6.34 (dd, $J=5.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.09 (dd, $J=5.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{bt}, 1 \mathrm{H}), 3.09(\mathrm{bt}, 1 \mathrm{H}), 2.96(\mathrm{dt}, J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ (ddd, $J=11.6,9.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ for the major diastereomer 174.4, 162.4, 137.8, 132.7, 91.8, 51.7, 48.6, 45.6, 42.4, 29.7 ppm ; FT-IR (neat) $v_{\max }=2992,2951,1737,1435,1326,1203,1040,881,733,632 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}^{+}\left[M+\mathrm{H}^{+}\right]$165.0910, found 165.0915.

(1SR,2SR,4RS)-methyl 2-hydroxy-7-methylenebicyclo[2.2.1]hept-5-ene-2-carboxylate (102). $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $1.14 \mathrm{~mL}, 1.8 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ to $i \operatorname{Pr}_{2} \mathrm{NH}(0.30 \mathrm{~mL}$, 2.11 mmol) in 3 mL THF and stirred for 20 min . The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and 95 ($231 \mathrm{mg}, 1.41 \mathrm{mmol}$) in 2 mL THF was added dropwise. After 15 min the reaction was warmed to $-40^{\circ} \mathrm{C}$, then slowly warmed to $0{ }^{\circ} \mathrm{C}$ over 1.5 h , before being recooled to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{P}(\mathrm{OEt})_{3}(0.24 \mathrm{~mL}, 1.41 \mathrm{mmol})$ was added and oxygen was bubbled through the solution for 1 h 15 min . The reaction was quenched by the addition of $8 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous) and 10 mL water. 50 mL ether were added and the phases separated. The aqueous phase was extracted with ether ($3 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography (hexane/EtOAc 5:1) to give $\mathbf{1 0 2}$ as a $3: 1$ mixture of diastereomers a yellow oil ($149 \mathrm{mg}, 0.83 \mathrm{mmol}, 59 \%$).
$\mathrm{R}_{f}=0.18$ (hexane/EtOAc 5:1, KMnO_{4}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{dd}, J=6.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{bs}, 1 \mathrm{H}), 4.53(\mathrm{bs}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.20$ (bs, 1H), 3.08 (bs, 1H), 2.79 (s, 1H), 2.14 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78 (dd, $J=12.4,3.8 \mathrm{~Hz}$, $1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,161.9,140.1,132.3,95.4,80.0,57.5,52.6$, 45.2, 41.6 ppm ; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NaO}_{3}{ }^{+}\left[M+\mathrm{Na}^{+}\right]$203.0679, found 203.0673.

(1SR,4RS)-7-methylenebicyclo[2.2.1]hept-5-en-2-one (88). To a solution of alcohol 102 $(2.470 \mathrm{~g}, 13.71 \mathrm{mmol})$ in 90 mL Et 2 O was added $\mathrm{LiAlH}_{4}\left(4.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 5.14 \mathrm{~mL}$, 20.6 mmol) dropwise at $0^{\circ} \mathrm{C}$. After 10 min , the reaction mixture was allowed to warm to RT and stirred for another 50 min before being quenched by the addition of 0.8 mL water, then 0.8 mL NaOH (10%, aqueous), followed by 2.4 mL water. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added and the suspension filtered. Evaporation of the solvent provided diol $\mathbf{1 0 3}$ ($1.868 \mathrm{~g}, 12.27 \mathrm{mmol}, 90 \%$), which was used for the next step without further purification. Diol 103 was then dissolved in 120 mL THF- $\mathrm{H}_{2} \mathrm{O}(1: 1)$ and $\mathrm{NaIO}_{4}(3.94 \mathrm{~g}, 18.41 \mathrm{mmol})$ was added in one portion. After 30 min , the reaction was quenched by the addition of $80 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated) and diluted with $100 \mathrm{~mL}_{\mathrm{Et}}^{2} \mathrm{O}$. The phases were separated and the aqueous phase extracted with ether ($3 \times 200 \mathrm{~mL}$). The combined organic phases were washed with 100 mL brine, dried over MgSO_{4} and concentrated in vacuo. ${ }^{175}$ The crude product was purified by flash column chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O} 10: 1$) to give ketone $\mathbf{8 8}(0.933 \mathrm{~g}, 7.765 \mathrm{mmol}, 63 \%)$ as a faint yellow liquid.
$\mathrm{R}_{f}=0.63$ (hexane/Et $\mathrm{O} 1: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{dd}, J=5.9$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=5.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{bs}, 1 \mathrm{H}), 4.57(\mathrm{bs}, 1 \mathrm{H}), 3.49(\mathrm{bs}, 1 \mathrm{H}), 3.38$ (app. d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=16.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,161.8,142.8,130.8,97.6,60.9,45.6,40.8 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3068,2993,2921,1754,1414,1312,1267,1113,1056,889,868,740 \mathrm{~cm}^{-1}$; No satisfying HRMS could be obtained.

(1SR,3SR,4SR)-3-methyl-7-methylenebicyclo[2.2.1]hept-5-en-2-one (104). To a solution of $i \mathrm{Pr}_{2} \mathrm{NLi}$ in 1.0 mL THF was added a solution of $\mathbf{8 8}(25.0 \mathrm{mg}, 0.21 \mathrm{mmol})$ in 0.28 mL THF at $-78{ }^{\circ} \mathrm{C}$. After 45 min , MeI ($59.0 \mathrm{mg}, 0.42 \mathrm{mmol}$) in 0.28 mL THF was added. The cooling bath was removed and the reaction was quenched after 1 h by the addition of $2 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) and 5 mL water. Dilution with $10 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, phase separation and extraction of the aqueous phase with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, drying over MgSO_{4}

[^73]and concentration in vacuo furnished crude 104. Purification via flash column chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 3: 1$) provided $24.2 \mathrm{mg}(0.18 \mathrm{mmol}, 86 \%)$ of a yellow liquid.
$\mathrm{R}_{f}=0.57$ (hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72$ (dd, $J=5.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$ (ddd, $J=5.9,3.3,1.1 \mathrm{~Hz}), 4.75(\mathrm{bs}, 1 \mathrm{H}), 4.68(\mathrm{bs}, 1 \mathrm{H}), 3.34-3.32(\mathrm{~m}, 1 \mathrm{H})$, $3.10(\mathrm{bs}, 1 \mathrm{H}), 2.24(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 212.6,160.4,143.1,131.3,100.0,60.8,52.0,44.2,16.4 \mathrm{ppm}$.

(1SR,3SR,4RS)-3-acetyl-3-methyl-7-methylenebicyclo[2.2.1]hept-5-en-2-one (78). To a solution of $\mathbf{1 0 4}(25 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $1.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}, 0.72 \mathrm{mmol})$ and TMSOTf $(0.10 \mathrm{~mL}, 0.55 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 30 min , the cooling bath was removed and the reaction allowed to warm to RT. After 6 h , the reaction mixture was quenched by the addition of 5 mL pH 7 phosphate buffer. The phases were separated and the aqueous phase was extracted with pentane (3 x 10 mL). The combined organic phases were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated. A suspension of $\mathrm{ZnCl}_{2}(29.1 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $0.5 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ and $30 \mu \mathrm{LEt} 2 \mathrm{O}$ was cooled to $0{ }^{\circ} \mathrm{C}$. Acetyl chloride ($15 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) was added, followed by dropwise addition of the crude silyl enol ether ($44.0 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $0.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 1.5 h , the reaction was quenched by the addition of 3 mL water and diluted with 4 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic phases were dried over MgSO_{4} and concentrated. The crude product was purified by flash column chromatography providing $78(22.0 \mathrm{mg}, 0.13 \mathrm{mmol}$, 59%) along with recovered $104(12.0 \mathrm{mg}, 0.09 \mathrm{mmol}, 42 \%) .{ }^{176}$
$$
\mathrm{R}_{f}=0.61\left(\text { hexane } / \mathrm{Et}_{2} \mathrm{O} 1: 1, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.64(\mathrm{dd}, 5.8,2.9 \mathrm{~Hz},
$$ $1 \mathrm{H}), 6.31$ (ddd, $J=5.8,3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.63(\mathrm{bs}, 1 \mathrm{H}), 3.75-3.74(\mathrm{~m}, 1 \mathrm{H})$, $3.46-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

[^74]
(1SR,4SR,5SR)-5,7-dimethyl-6-oxobicyclo[2.2.1]hept-2-en-7-yl methyl malonate (107). ${ }^{177}$ To a solution of $\mathbf{1 0 4}(64 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $1.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added NEt_{3} $(0.10 \mathrm{~mL}, 0.72 \mathrm{mmol})$ and TMSOTf $(0.10 \mathrm{~mL}, 0.55 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 30 min , the cooling bath was removed and the reaction allowed to warm to RT. After 6 h , the reaction mixture was quenched by the addition of 5 mL pH 7 phosphate buffer. The phases were separated and the aqueous phase was extracted with pentane ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated. To a $-78{ }^{\circ} \mathrm{C}$ cold solution of the crude silyl enol ether ($33.0 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 1.8 mL toluene was added TMSOTf $(0.50 \mathrm{M}$ in toluene, $0.12 \mathrm{~mL}, 0.06 \mathrm{mmol})$ and methoxymalonyl chloride ($24.0 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$). After 15 min , the reaction was warmed to $0^{\circ} \mathrm{C}$, stirred for 1 h and then allowed to warm to RT. After stirring overnight, 5 mL water and 10 mL EtOAc were added, the phases separated and the aqueous phase extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated. The crude product was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 5: 1 \rightarrow 2: 1 \rightarrow 1: 1$) yielding $23 \mathrm{mg}(0.09 \mathrm{mmol}, 57 \%)$ of 107.
$\mathrm{R}_{f}=0.09$ (hexane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.48$ (dd, $J=6.0$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.98(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{bs}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{bs}, 1 \mathrm{H}), 2.49$ $(\mathrm{qd}, J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 213.9,166.8,165.3,140.7,127.9,99.5,63.9,52.7,52.3,42.1,39.5,15.93$, 15.88 ppm ; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{5}{ }^{+}\left[M+\mathrm{Na}^{+}\right] 275.0890$ found 275.0889.

Methyl-3-((1RS,2SR,4SR)-2-methyl-7-methylene-3-oxobicyclo[2.2.1]hept-5-en-2-yl)-3oxopropanoate (106). A solution of $78(44.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ in 2 mL THF was added dropwise to a $-78{ }^{\circ} \mathrm{C}$ cold solution of $i \mathrm{Pr}_{2} \mathrm{NLi}(1.0 \mathrm{M}$ in THF, 0.30 mmol). After 30 min , methyl cyanoformate ($30 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) was added in one portion. The mixture was stirred for 45 min , then warmed to $0{ }^{\circ} \mathrm{C}$ and quenched after an additional hour by the addition of

[^75]$5 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated). The biphasic mixture was diluted with 5 mL EtOAc and the phases separated. The aqueous phase was extracted with EtOAc (3 x 15 mL), the combined organic phases were dried over MgSO_{4} and concentrated. The crude material was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 2:1) to provide $7.10 \mathrm{mg}(0.03 \mathrm{mmol}$, 12%) of ketoester 106.
$\mathrm{R}_{f}=0.37$ (hexane/Et $\left.{ }_{2} \mathrm{O} 2: 1, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.65(\mathrm{dd}, J=5.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ (ddd, $J=5.9,3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.81 (bs, 1H), 4.67 (bs, 1H), 3.82 (bs, 1H), 3.72 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{bs}, 1 \mathrm{H}), 1.35$ (s, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,200.1,167.5,158.6,140.6,132.5,101.2$, 64.8, 60.7, 52.5, 51.9, 45.2, 22.4 ppm .

(1SR,2SR,3RS,4RS)-3-(1-((tert-butyldimethylsilyl)oxy)vinyl)-3-methyl-7-methylene-bicyclo[2.2.1]hept-5-en-2-ol (354). To a solution of 78 ($83.0 \mathrm{mg}, 0.47 \mathrm{mmol}$) in 2.3 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NEt}_{3}(0.1 \mathrm{~mL}, 0.7 \mathrm{mmol})$ and TBSOTf $(0.12 \mathrm{~mL}, 0.54 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction was warmed to RT and stirred for additional 3 h . The reaction was quenched by the addition of 8 mL water. The phases were separated and the aqueous phase extracted with pentane ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated. The resulting crude silyl enol ether ($113 \mathrm{mg}, 0.39 \mathrm{mmol}$) was directly dissolved in 3 mL THF and cooled to $-40^{\circ} \mathrm{C} . \mathrm{LiAlH}_{4}\left(4.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 0.10 \mathrm{~mL}, 0.39 \mathrm{mmol}$) was added dropwise. After 10 min , the reaction was quenched by the addition of 10 mL potassium sodium tartrate (aqueous, saturated). The mixture was diluted with 10 mL ether and stirred vigorously for 30 min . The phases were separated, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 30 \mathrm{~mL})$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration afforded crude 354 which was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 5: 1 \rightarrow 2: 1$) to give $55.4 \mathrm{mg}(0.19 \mathrm{mmol}, 39 \%$ over two steps) of alcohol 354.
$\mathrm{R}_{f}=0.17$ (hexane/Et $\mathrm{O}_{2} 2: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.54$ (ddd, $J=6.2$, $3.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{bs}, 1 \mathrm{H}), 3.17(\mathrm{bs}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

tert-Butyl((1-((1RS,2RS,3SR,4SR)-3-((tert-butyldimethylsilyl)oxy)-2-methyl-7-methylenebicyclo[2.2.1]hept-5-en-2-yl)vinyl)oxy)dimethylsilane (123). To a solution of 354 ($33.0 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added $\mathrm{NEt}_{3}(24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and TBSOTf $(30 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 30 min , the reaction was quenched by the addition of 10 mL water. The phases were separated and the aqueous phase was extracted with pentane (2 x 20 mL) and once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 40 \mathrm{~mL})$. The combined organic phases were washed once with 40 mL brine, dried over MgSO_{4} and concentrated to yield 123 ($36.3 \mathrm{mg}, 0.09 \mathrm{mmol}$, 79%), which did not require further purification.
$\mathrm{R}_{f}=0.89$ (hexane/EtOAc 5:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.37$ (ddd, $J=6.0$, $3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{bs}, 1 \mathrm{H}), 4.27$ (bs, 1H), $4.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (app. d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (app. t, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.17$ (s, 3H), $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

1-((1RS,2RS,3SR,4SR)-3-((tert-butyldimethylsilyl)oxy)-2-methyl-7-methylene-

bicyclo[2.2.1]hept-5-en-2-yl)ethanone (124). To a solution of silyl enol ether $\mathbf{1 2 3}$ (123.1 mg , 0.303 mmol) in $3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{AcOH}(0.02 \mathrm{~mL}, 0.36 \mathrm{mmol})$. After 1 h , additional $\mathrm{AcOH}(0.06 \mathrm{~mL}, 1.08 \mathrm{mmol})$ was added. The reaction was quenched after a total of 4 h by the addition of $5 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated). The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and pentane (2 x 10 mL). The combined organic phases were dried over MgSO_{4} and concentrated. Purification via flash column chromatography (hexane/Et ${ }_{2} \mathrm{O} 10: 1$) provided 89.0 mg (0.30 mmol , quant) of ketone $\mathbf{1 2 4}$.
$\mathrm{R}_{f}=0.43$ (hexane/Et $\mathrm{E}_{2} \mathrm{O} 10: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.38$ (ddd, $J=6.0$, $3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{bs}, 2 \mathrm{H}), 3.26$ (app. d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (app. t, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18 (s, 3 H), 0.97 ($\mathrm{s}, 3 \mathrm{H}$), 0.87 (s, 9 H), 0.11 ($\mathrm{s}, 3 \mathrm{H}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}$) ppm.

Methyl-3-((1RS,2RS,3SR,4SR)-3-((tert-butyldimethylsilyl)oxy)-2-methyl-7-

methylenebicyclo[2.2.1]hept-5-en-2-yl)-3-oxopropanoate (125). To a solution of $i \mathrm{Pr}_{2} \mathrm{NLi}$ (0.39 mmol) in $1.5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added $124(94.0 \mathrm{mg}, 0.32 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ dropwise at $-78{ }^{\circ} \mathrm{C}$ and the solution was stirred for 1 h 10 min before methyl cyanoformate ($51 \mu \mathrm{~L}$, 0.6 mmol) was added dropwise. After 1 h the reaction was warmed to $-40{ }^{\circ} \mathrm{C}$ then after 30 min to $0{ }^{\circ} \mathrm{C}$. Another portion of methyl cyanoformate ($51 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was added. After 3 h , the reaction was quenched by the addition of $5 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated) and the phases separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 10 mL), the combined organic phases dried over MgSO_{4} and concentrated in vacuo. Purification was achieved by flash column chromatography (hexane/Et $\mathrm{t}_{2} \mathrm{O} 10: 1 \rightarrow 5: 1$) to give $11.4 \mathrm{mg}(0.03 \mathrm{mmol}, 10 \%)$ of $\mathbf{1 2 5}$.
$\mathrm{R}_{f}=0.19$ (hexane/Et $\mathrm{E}_{2} 5: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.30$ (ddd, $J=6.2$, $3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=6.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.281(\mathrm{bs}, 1 \mathrm{H})$, $4.284(\mathrm{bs}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.50(\operatorname{app} . \mathrm{d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\operatorname{app~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (app. t, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

(1SR,3RS,4RS)-3-(2-bromoacetyl)-3-methyl-7-methylenebicyclo[2.2.1]hept-5-en-2-one (128). To a solution of $i \operatorname{Pr}_{2} \mathrm{NLi}(1.0 \mathrm{M}$ in THF, $0.06 \mathrm{~mL}, 0.1 \mathrm{mmol})$ was added a solution of $78(13.1 \mathrm{mg}, 0.07 \mathrm{mmol})$ in 0.5 mL THF at $-78^{\circ} \mathrm{C}$. After 30 min , a solution of recrystallized NBS ($26.5 \mathrm{mg}, 0.15 \mathrm{mmol}$) in 1 mL THF was added in one portion. After $5 \mathrm{~min}, 4 \mathrm{~mL} \mathrm{NH} 4 \mathrm{Cl}$ (aqueous, saturated), 10 mL water and $20 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ were added and the phases separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 40 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The crude product was purified by column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) to give bromide $128(4.1 \mathrm{mg}, 0.02 \mathrm{mmol})$ in 22% yield.
$\mathrm{R}_{f}=0.50$ (hexane: $\mathrm{Et}_{2} \mathrm{O} 2: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.66$ (dd, $J=5.8$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.33(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$
(d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{bs}, 1 \mathrm{H}), 3.50(\mathrm{bs}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 207.2,198.4,158.5,140.5,132.5,101.6,64.3,60.7,52.5,32.5,23.0 \mathrm{ppm}$.

7-((tert-butyldimethylsilyl)oxy)-1,3a-dimethyl-1,3a,4,6a-tetrahydro-1,4-methano-

pentalen-2(3H)-one (140). TMSOTf ($0.02 \mathrm{~mL}, 0.10 \mathrm{mmol}$) was added dropwise to a solution of $124(26.3 \mathrm{mg}, 0.09 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.02 \mathrm{~mL}, 0.14 \mathrm{mmol})$ in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. After 1 h the reaction was warmed to RT and stirred for further 2.5 h before being quenched by the addition of 5 mL aqueous pH 7 buffer. The phases were separated and the aqueous phase extracted with pentane. The combined organic phases were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated in vacuo to furnish $32.0 \mathrm{mg}(0.09 \mathrm{mmol}, 98 \%)$ of the corresponding silyl enol ether. 11.0 mg $(0.03 \mathrm{mmol})$ of this material were dissolved in 1 mL DMSO, $\mathrm{Pd}(\mathrm{OAc})_{2}(7.1 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added and the reaction was heated to $50^{\circ} \mathrm{C}$. After $9 \mathrm{~h}, 4$ drops of formic acid were added, causing immediate precipitation of $\operatorname{Pd}(0)$. The suspension was filtered over celite and the excess acid was quenched by the addition of $5 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phases were washed once with 50 mL brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification via flash column chromatography gave 140 (6.0 mg , $0.02 \mathrm{mmol}, 68 \%$).
$\mathrm{R}_{f}=0.40$ (hexane/Et $\mathrm{E}_{2} \mathrm{O}: 1, \mathrm{CAM}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.07$ (bs, 2H), 4.01 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{bs}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{bs}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=18.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.6,136.4,129.6,75.7,61.9,60.8,58.6,44.0,25.8,18.3,16.6,9.8$, $-4.8,-5.0 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=2954,2929,2858,1746,1472,1252,1143,1130,1105$, 1080, 890, 836, $775 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}^{+}\left[M+\mathrm{H}^{+}\right]$293.1931, found 293.1930.

(E)-4-((tert-butyldimethylsilyl)oxy)-3-methylbut-3-en-2-one (142) and 1-((1SR,2RS,5RS,6RS,7SR)-7-((tert-butyldimethylsilyl)oxy)-6-methyl-8-methylenetricyclo[3.2.1.0 ${ }^{\mathbf{2 , 4}}$] octan-6-yl)ethanone (143). $\mathrm{ZnEt}_{2}(1.0 \mathrm{M}$ in hexane, $0.23 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was added to $0.2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. Then TFA (2.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.16 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was added dropwise. After 20 min of stirring, the formed white precipitate was dissolved by warming the reaction in a $30^{\circ} \mathrm{C}$ water bath. Then the reaction was recooled to $0^{\circ} \mathrm{C}$, upon which a fine white suspension forms, $\mathrm{CH}_{2} \mathrm{I}_{2}\left(2.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.16 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was added and the mixture was stirred again for 20 min . Then $\mathbf{1 2 4}(34.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $0.4 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The ice bath was removed and after 30 min TLC analysis showed complete conversion. $5 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) were added. The biphasic mixture was poured into a separation funnel additional 15 mL of brine were added, followed by $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Phase separation, extraction of the aqueous phase $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \times 30 \mathrm{~mL}\right)$, subsequent drying over MgSO_{4} and concentration afforded crude 143. Purification by column chromatography (hexane/Et $\mathrm{O}_{2} \mathrm{O} 2: 1 \rightarrow 5: 1 \rightarrow 2: 1$) provided $9.2 \mathrm{mg}(0.03 \mathrm{mmol}, 26 \%)$ of $\mathbf{1 4 3}$ along with 18.1 mg ($0.08 \mathrm{mmol}, 73 \%$) of enol ether 142.

142:
$\mathrm{R}_{f}=0.13$ (hexane: $\left.\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}), 1.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.

143:

$\mathrm{R}_{f}=0.59$ (hexane/Et ${ }_{2} \mathrm{O} 5: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.63$ (app. d, $J=3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.51$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (bs, 1H), 2.53 (app. d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11 (s, 3H), 1.31 $1.26(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 211.6,145.6,106.0,73.2,60.1,50.3,49.0,26.0,25.8,18.4$, 15.1, 9.2, 7.9, 4.1, $-4.5,-5.0 \mathrm{ppm}$.

(1RS,4RS,5RS,6RS)-methyl-8-methylenetricyclo[3.2.1.0 $\left.{ }^{2,4}\right]$ octane-6-carboxylate
(148). ${ }^{178} \mathrm{ZnEt}_{2}(1.0 \mathrm{M}$ in hexanes, $185 \mathrm{~mL}, 185 \mathrm{mmol})$ was added to a $0{ }^{\circ} \mathrm{C}$ cold solution of diene 95 ($15.17 \mathrm{~g}, 92.39 \mathrm{mmol}$) in $450 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. After $3 \mathrm{~min}, \mathrm{ClCH}_{2} \mathrm{I}(27.6 \mathrm{~mL}$, 370 mmol) was added slowly to the clear solution. The reaction was stirred for 2 h 45 min at this temperature until TLC showed complete conversion of the starting material.

The reaction was quenched with 300 mL saturated sodium potassium tartrate and stirred vigorously for 60 min . The precipitated zinc salts were removed by filtration over a pad of celite, which was rinsed with $400 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ and 200 mL water. The phases were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 150 \mathrm{~mL})$. The combined organic layers were washed with brine (200 mL), then dried over MgSO_{4} and concentrated. The crude product was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 20:1) to give 13.93 g ($78.16 \mathrm{mmol}, 85 \%$) of a colorless oil. ${ }^{179}$
$\mathrm{R}_{f}=0.49$ (hexane/ $\mathrm{Et}_{2} \mathrm{O} 10: 1$, anisaldehyde, green spot); ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (dd, $J=12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.76 (ddd, $J=12.0,10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.82-$ $0.80(\mathrm{~m}, 1 \mathrm{H}), 0.19-0.16(\mathrm{~m}, 1 \mathrm{H}), 0.13-0.09(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,150.0,103.1,51.8,45.5,45.3,42.2,31.5,13.7,9.7,3.1 \mathrm{ppm} ;$ FT-IR (neat) $v_{\max }=3071,2951,2844,1736,1435,1342,1196,1168,1048,887,811,765,718 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}^{+}\left[M+\mathrm{H}^{+}\right]$179.1067, found 179.1069.

(1SR,4RS,5RS,6RS,8SR)-methyl-8-methyltricyclo[3.2.1.0 $\left.{ }^{2,4}\right]$ octane-6-carboxylate
(150). To a solution of $\mathbf{1 4 8}(13.93 \mathrm{~g}, 78.16 \mathrm{mmol})$ in $430 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added WILKINSON's catalyst ($2.89 \mathrm{~g}, 3.13 \mathrm{mmol}$) in one portion. The volume of a standard balloon of H_{2} was

[^76]bubbled through the deep red solution, then it was stirred for 8 h under positive H_{2} pressure (1 atm) until reaction ${ }^{1} \mathrm{H}$ NMR displayed full conversion.

The solvent was evaporated and the residue was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 10: 1$) to yield $13.50 \mathrm{~g}(74.90 \mathrm{mmol}, 96 \%)$ of $\mathbf{1 5 0}$ as a colorless oil with a characteristic smell.
$\mathrm{R}_{f}=0.40$ (hexane/Et $\mathrm{E}_{2} \mathrm{O} 10: 1$, anisaldehyde, blue spot); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66$ (s, 3H), 2.72 (ddd, $J=10.0,4.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.83$ (m, $1 \mathrm{H}), 0.78-0.71(\mathrm{~m}, 2 \mathrm{H}), 0.00--0.05(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3$, $51.5,48.1,45.1,41.9,39.1,33.7,16.6,16.2,12.7,5.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3020,2951$, 2886, 1737, 1435, 1333, 1282, 1197, 1169, 1108, 1036, 811, 764, $720 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}^{+}\left[M+\mathrm{H}^{+}\right]$181.1223, found 181.1223.

(1SR,4RS,5RS,6SR, $8 S R$)-methyl-6-hydroxy-8-methyltricyclo[3.2.1.0 ${ }^{2,4}$]octane-6carboxylate (152). ${ }^{180}$ To a solution of $22.4 \mathrm{~mL} i-\mathrm{Pr}_{2} \mathrm{NH}(157 \mathrm{mmol})$ in 240 mL THF was added $n-\operatorname{BuLi}(1.65 \mathrm{M}$ in hexanes, $91 \mathrm{~mL}, 150 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 15 min , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathbf{1 5 0}(13.50 \mathrm{~g}, 74.90 \mathrm{mmol})$ in 60 mL THF was added dropwise via cannula. After stirring for $1.5 \mathrm{~h}, \mathrm{P}(\mathrm{OEt})_{3}(13.1 \mathrm{~mL}, 74.9 \mathrm{mmol})$ was added, followed by DMPU ($9.0 \mathrm{~mL}, 74.9 \mathrm{mmol}$). Then the reaction was cooled to $-90{ }^{\circ} \mathrm{C}$ and oxygen was bubbled through for 1.5 h .

The reaction was quenched by the addition of $300 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) followed by 100 mL water. The phases were separated and the aqueous phase was extracted with EtOAc ($4 \times 200 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by column chromatography (hexane/EtOAc $4: 1 \rightarrow 3: 1)$ to yield $12.44 \mathrm{~g}(63.39 \mathrm{mmol}, 85 \%)$ of $\mathbf{1 5 2}$ as a yellow viscous oil and a $10: 1$ mixture of diastereomers.
$\mathrm{R}_{f}=0.31$ (hexane/EtOAc 5:1, anisaldehyde, blue spot); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ for the major diastereomer $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{q}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.50(\mathrm{dd}, J=12.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.02-0.88(\mathrm{~m}, 5 \mathrm{H}$, methyl group doublet: $J=7.4 \mathrm{~Hz}$),

[^77]$0.58-0.51(\mathrm{~m}, 1 \mathrm{H}), 0.24-0.17(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.1, 83.7, $53.4,52.4,43.6,41.4,34.9,17.8,15.7,12.3,9.1 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3465,2951,3884$, $1723,1500,1436,1331,1272,1259,1195,1164,1105,1081,1040,989,969,911,868,857$, 814, 799, $754,667 \mathrm{~cm}^{-1}$; HRMS (MALDI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}\left[M+\mathrm{Na}^{+}\right] 219.0992$, found 219.0992.

(1SR,4RS,5RS, $8 S R$)-8-methyltricyclo[3.2.1.0 ${ }^{2,4}$]octan-6-one (146). To a solution of $\mathbf{1 5 2}$ ($6.200 \mathrm{~g}, 31.59 \mathrm{mmol}$) in $300 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added $\mathrm{LiAlH}_{4}\left(4.0 \mathrm{M} \mathrm{in}^{\mathrm{Et}} 2 \mathrm{O}, 5.53 \mathrm{~mL}, 22 \mathrm{mmol}\right.$) dropwise at $0^{\circ} \mathrm{C}$.

After 30 min the reaction was quenched by the addition of 30 mL EtOAc, then 150 mL sodium potassium tartrate (aqueous, saturated) and 50 mL additional water. The mixture was stirred vigorously for 1 h . The phases were separated and the aqueous phase was extracted with EtOAc ($10 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude diol as a yellow wax.

This crude material was directly used for the next step without further purification. To a $0{ }^{\circ} \mathrm{C}$ solution of the diol in 300 mL of a mixture THF:phosphate-buffer (pH 7) (1:1) was added $\mathrm{NaIO}_{4}(9.95 \mathrm{~g}, 46.5 \mathrm{mmol})$ in one portion. The reaction was stirred for 1 h and kept between $0^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$.

The excess NaIO_{4} was quenched by the addition of $100 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated). After 5 min , the biphasic mixture was diluted with 50 mL water, $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ were added and the phases separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 150 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography (pentane/Et $t_{2} \mathrm{O} 5: 1$) gave 4.220 g ($30.8 \mathrm{mmol}, 97 \%$ from S2) of 146 as a faint yellow oil. ${ }^{181}$
$\mathrm{R}_{f}=0.37$ (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 5:1, anisaldehyde, green-blue spot); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.59(\mathrm{~s}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=16.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.72(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.97(\mathrm{~m}$, 1 H), 0.53 (app. q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.1,53.8,47.9$, $40.8,36.1,19.6,16.4,11.7,11.2 \mathrm{ppm} ;$ FT-IR (neat) $v_{\max }=3116,3029,2965,2929,2875$,

[^78]1740, 1452, 1439, 1380, 1206, 1038, 949, 890, 804, $714 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}^{+}$ [$\left.M^{+}\right]$136.0888, found 136.0885.

(1'RS,4'RS,5'SR)-spiro[cyclopropane-1,8'-tricyclo[3.2.1.0 ${ }^{2,4}$]octan]-6'-one (355). This compound was obtained as a byproduct, when a mixture of $\mathbf{1 4 8}$ and $\mathbf{1 4 9}$ was taken through the following sequence: Wilkinson reduction, α-hydroxylation, ester reduction and diol cleavage.
$\mathrm{R}_{f}=0.29$ (hexane:Et $\mathrm{E}_{2} 6: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.30$ (dd, $J=16.6$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{bs}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.42(\mathrm{~m}$, $1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.72-0.66(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.58(\mathrm{~m}, 1 \mathrm{H}), 0.54$ $-0.48(\mathrm{~m}, 1 \mathrm{H}), 0.29-0.20(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.9,54.6,45.8$, $41.8,24.6,19.1,11.8,10.3,7.7,-0.1 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=2954,2918,1746,1413,1310$, 1267, 1131, 1043, 1019, 962, 920, 806, $758 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}^{+}\left[M^{+}\right]$ 148.0883, found 148.0883.

(1SR,4RS,5RS,7SR,8SR)-7,8-dimethyltricyclo[3.2.1.0 ${ }^{2,4}$]octan-6-one (154). ${ }^{182}$ To $i-\mathrm{Pr}_{2} \mathrm{NH}(5.16 \mathrm{~mL}, 36.2 \mathrm{mmol})$ in 130 mL THF was added $n-\mathrm{BuLi}(1.66 \mathrm{M}$ in hexanes, $20.3 \mathrm{~mL}, 33.8 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 20 min , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathbf{1 4 6}$ $(1.85 \mathrm{~g}, 13.6 \mathrm{mmol})$ in 2.5 mL THF was added dropwise. The reaction was stirred for 1 h 15 min at this temperature and then 30 min at $-40^{\circ} \mathrm{C}$. The mixture was then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 5 min , before MeI ($15.1 \mathrm{~mL}, 241 \mathrm{mmol}$) was added rapidly in one shot ($\mathrm{t} \approx 1 \mathrm{~s}$).
$\mathrm{NEt}_{3}(33.6 \mathrm{~mL}, 241 \mathrm{mmol})$ was added after 5 min and stirring was continued for 15 min . Then 80 mL water were added to dissolve the formed ammonium salt, followed by 100 mL

[^79]$\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated). The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic phases were washed with $200 \mathrm{~mL} \mathrm{NH} 4 \mathrm{Cl}^{2}$ (aqueous, saturated), dried over MgSO_{4} and concentrated. The crude oil was purified by flash column chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 15: 1$) to give $\mathbf{1 5 4}$ ($1.81 \mathrm{~g}, 12.1 \mathrm{mmol}$) in 89% yield as a 5:1 mixture of diastereomers. ${ }^{183}$
$\mathrm{R}_{f}=0.57$ (hexane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1$, anisaldehyde, green-blue spot); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ for the major diastereomer $2.54(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06$ - $1.01(\mathrm{~m}, 1 \mathrm{H}), 0.57-0.49(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ for the major diastereomer 217.3, 54.1, 51.4, 46.7, 32.4, 20.2, 16.3, 14.7, 11.8, 11.6 ppm; FT-IR (neat) $v_{\max }=2968,2936,1743,1457,1372,1323,1147,1039,939,816,804,725 \mathrm{~cm}^{-1} ;$ HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}^{+}\left[M^{+}\right]$150.1040, found 150.1037.

(1SR,4RS,5RS,7SR,8SR)-7-acetyl-7,8-dimethyltricyclo[3.2.1.0 ${ }^{2,4}$]octan-6-one (155). To a solution of ketone $154(1.60 \mathrm{~g}, 10.65 \mathrm{mmol})$ in $53 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added triethylamine ($2.2 \mathrm{~mL}, 16 \mathrm{mmol}$). The solution was cooled to $0^{\circ} \mathrm{C}$ and TBSOTf ($2.6 \mathrm{~mL}, 11 \mathrm{mmol}$) was added dropwise. The reaction was stirred at this temperature for 6 h and then quenched by the addition of 20 mL pH 7 buffer. 50 mL pentane were added and the phases separated. The aqueous phase was extracted with pentane ($3 \times 30 \mathrm{~mL}$), dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated in vacuo to yield the crude silyl enol ether.

This crude material was dissolved in $35 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $-90{ }^{\circ} \mathrm{C}$. Freshly distilled acetaldehyde ($6.0 \mathrm{~mL}, 110 \mathrm{mmol}$) was added, followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.7 \mathrm{~mL}$, 21 mmol). After 45 min , the reaction was quenched by the addition of pH 7 buffer (30 mL). The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 80 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 15:1 to eluate 154, then hexane/EtOAc 3:1 to eluate the aldol diastereomers). The recovered starting material was recycled. After three cycles, 1.44 g (7.42 mmol) of the aldol products were obtained.

[^80]To a suspension of DESS-MARTIN periodinane $(6.30 \mathrm{~g}, 14.9 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(2.49 \mathrm{~g}$, $29.7 \mathrm{mmol})$ in $65 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $t \mathrm{BuOH}(1.4 \mathrm{~mL}, 15 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C} .{ }^{184}$ After 5 min , the aldol products were added $(1.44 \mathrm{~g}, 7.42 \mathrm{mmol})$ as a solution in $8.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 35 min , the reaction was quenched by careful addition of sodium thiosulfate (aqueous, saturated, 70 mL) followed by NaHCO_{3} (aqueous, saturated, 50 mL). After the mixture was stirred vigorously for 10 min , the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then poured in a separation funnel containing $50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 50 mL NaHCO_{3} (aqueous, saturated). The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 80 \mathrm{~mL}$). The combined organic phases were washed with NaHCO_{3} (aqueous, saturated, $2 \times 100 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by flash column chromatography (hexane/Et $\mathrm{t}_{2} \mathrm{O} 5: 1$) to yield diketone $\mathbf{1 5 5}(1.424 \mathrm{~g}, 7.41 \mathrm{mmol}, 70 \%$ from $\mathbf{S 3}$) as a $5: 1$ mixture of diastereomers.
$\mathrm{R}_{f}=0.37$ (hexane/EtOAc 4:1, anisaldehyde, yellow spot); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ for the major diastereomer $2.88(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.02(\mathrm{~m}, 4 \mathrm{H}), 0.55-0.47(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ for the major diastereomer 212.2, 207.0, 70.9, 54.2, 46.8, $35.2,26.8,18.7,16.5,14.1,13.5,11.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=2973,2935,1743,1700$, 1450, 1356, 1215, 1142, 1097, 1039, 814, 773, 723, 669, $554 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}^{+}\left[M^{+}\right]$192.1145, found 192.1147.

2,4a-dimethylhexahydro-1H-2,5-methanocyclopropa[a]pentalene-3,6(1aH)-dione

(76). ${ }^{185}$ LiHMDS ($0.282 \mathrm{~g}, 1.685 \mathrm{mmol}$) was dissolved in 3.4 mL THF and cooled to $-78{ }^{\circ} \mathrm{C}$, before a solution of $\mathbf{1 5 5}(0.282 \mathrm{~g}, 1.467 \mathrm{mmol})$ in 3.4 mL THF was added dropwise. After $45 \mathrm{~min}, 2,2,2$-trifluoroethyl $2,2,2$-trifluoroacetate $(0.26 \mathrm{~mL}, 1.94 \mathrm{mmol})$ was added rapidly in one portion. After 15 min , the reaction was poured into a separation funnel containing 5 mL $\mathrm{HCl}(5 \%$, aqueous) and 10 mL ether. The aqueous phase was extracted with ether (2 x 20 mL), the combined organic phases were washed with 15 mL brine and concentrated.

The yellow residue was dissolved in 3 mL MeCN , then water ($26 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), followed by triethylamine ($0.31 \mathrm{~mL}, 2.24 \mathrm{mmol}$) was added. After 2 min , methanesulfonyl azide

[^81](1.0 M in $\mathrm{MeCN}, 2.2 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added dropwise. The reaction was stirred for 3.5 h and then concentrated to a volume of circa 2 mL . The reaction mixture was poured in a separation funnel containing $20 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and 10 mL NaOH (10%, aqueous). The organic phase was washed two additional times with NaOH (10%, aqueous), then once with brine $(10 \mathrm{~mL})$. The solvent was evaporated and the crude yellow oil directly used in the next step, since attempted column chromatography resulted in decomposition of the material.

A solution of the crude diazo compound dissolved in $8 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a refluxing solution of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(6.5 \mathrm{mg}, 1.5 \mathrm{~mol} \%)$ in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 35 min , TLC analysis showed complete consumption of the diazo compound. The reaction was cooled to RT and the solvent evaporated. The crude residue was purified by flash column chromatography to yield 76 as a yellow oil ($0.214 \mathrm{~g}, 1.126 \mathrm{mmol}, 76 \%$).
$\mathrm{R}_{f}=0.37$ (hexane/EtOAc 4:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.44$ (d, $J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.49$ (app. $\mathrm{dt}, J=6.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.69$ (app. q, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.1,205.7,77.3,58.3,56.6,48.4$, 39.4, 21.5, 16.4, 15.3, 12.1, 6.9 ppm ; FT-IR (neat) $v_{\max }=2931,1762,1729,1450,1319$, $1229,1174,1077,1056,903,881,767,719,585 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}{ }^{+}\left[M^{+}\right]$ 190.0989, found 190.0987.

2,4a-dimethyl-6-oxo-1a,1b,2,4a,5,5a-hexahydro-1H-2,5-methanocyclopropa[a]-pentalen-3-yl trifluoromethanesulfonate (367). To $i \operatorname{Pr}_{2} \mathrm{NH}(0.22 \mathrm{~mL}, 1.6 \mathrm{mmol})$ in 6 mL THF was added n - $\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexanes, $0.96 \mathrm{~mL}, 1.5 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 10 min , this solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of $76(0.193 \mathrm{~g}, 1.015 \mathrm{mmol})$ in 2 mL THF was added dropwise. After 45 min , a solution of $\mathrm{PhNTf}_{2}(0.725 \mathrm{~g}, 2.029 \mathrm{mmol})$ in 2 mL THF was added dropwise. The dry ice pieces were removed and the bath was warmed to $-30^{\circ} \mathrm{C}$ by the addition of acetone and then warmed to $0^{\circ} \mathrm{C}$ by itself. After 7.5 h reaction was quenched by the addition of 5 mL NaHCO 3 (aqueous, saturated). The biphasic mixture was poured in a separation funnel containing 20 mL water and 20 mL ether. The phases were separated and the aqueous phase was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification using flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 25: 1 \rightarrow 15: 1$) provided 367 as a yellow oil ($0.208 \mathrm{~g}, 0.645 \mathrm{mmol}, 64 \%$).
$\mathrm{R}_{f}=0.34$ (hexane/EtOAc 15:1, KMnO_{4}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 5.55(\mathrm{~s}, 1 \mathrm{H})$, $2.81(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.59-0.50(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 206.8,147.6,126.2,118.7(\mathrm{q}, J=321.0 \mathrm{~Hz}$), 72.6, $64.4,47.2$, 45.0, 21.0, 17.4, $10.9,10.1,6.1 \mathrm{ppm} ;{ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 73.6 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3032,2977,2936,2881,1754,1630,1425,1210,1137,1059,1045,868,849,834$, $760,612 \mathrm{~cm}^{-1}$; HRMS (MALDI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}\left[M+\mathrm{H}^{+}\right]$323.0559, found 323.0560.

2,3,4a-trimethyl-1a,1b,2,4a,5,5a-hexahydro-1H-2,5-methanocyclopropa[a]pentalen-

 6-one (172).To a solution of $\mathbf{3 6 7}(0.209 \mathrm{~g}, 0.648 \mathrm{mmol})$ in 2.0 mL of degassed THF was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.037 \mathrm{~g}, 0.032 \mathrm{mmol})$ dissolved in 1.0 mL of degassed THF at $0{ }^{\circ} \mathrm{C}$. After 5 min , $\mathrm{ZnMe}_{2}(1.2 \mathrm{M}$ in toluene, $2.70 \mathrm{ml}, 3.2 \mathrm{mmol}$) was added dropwise and after 5 more min, the cooling bath was removed. The mixture was stirred overnight until TLC showed the complete disappearance of the starting material. The reaction was quenched by careful addition of pH 7 buffer (3 mL) at $0{ }^{\circ} \mathrm{C}$. The cooling bath was removed, 20 mL water were added, followed by

50 mL ether. The phases were separated and the aqueous phase was extracted with ether (3 x 50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash column chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O} 8: 1$, buffered with $1 \% \mathrm{NEt}_{3}$) to yield 0.122 g (0.648 mmol , quant) of $\mathbf{1 7 2}$. ${ }^{186}$
$\mathrm{R}_{f}=0.56$ (hexane/EtOAc 10:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 5.40$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.11(\mathrm{~m}, 9 \mathrm{H})$, $0.48-0.41(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 210.9,140.1,139.0,73.2,67.5$, $49.8,46.8,21.4,17.0,12.9,12.3,10.7,8.4 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3028,2964,2929,2875$, 1740, 1452, 1439, 1380, 1248, 1206, 1038, 949, 890, 804, 782, $714 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}^{+}\left[M+\mathrm{H}^{+}\right]$189.1274, found 189.1281.

(3aRS,6aRS)-3-bromo-3b,6,6a-trimethyl-3b,4,4a,5,5a,5b,6,6a-octahydro-3aH-4,6methanocyclopropa $[4,5]$ pentaleno $[1,2-d]$ isoxazol-7-one (177).

To a solution of $172(0.110 \mathrm{~g}, 0.584 \mathrm{mmol})$ in 6 mL EtOAc was added potassium bicarbonate $(0.292 \mathrm{~g}, 2.917 \mathrm{mmol})$, followed by dibromoformaldoxime $(0.296 \mathrm{~g}$, $1.459 \mathrm{mmol})$. After 1 h 15 min , the reaction was diluted with $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched by careful addition of $3 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated). The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification via flash column chromatography yielded 177 as a white amorphous solid $(0.165 \mathrm{~g}, 0.532 \mathrm{mmol}, 91 \%)$. This material could be crystallized via vapor diffusion from hexane $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
$\mathrm{R}_{f}=0.20$ (hexane/EtOAc 5:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.78(\mathrm{~s}, 1 \mathrm{H}), 2.59(\mathrm{~s}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.94-0.90(\mathrm{~m}$, 1H), $0.62-0.57(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.7,138.2,93.9,67.3,65.8$, $56.5,54.4,49.1,19.2,18.5,14.7,14.0,12.3,7.5 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=2972,2934,1748$, 1600, 1505, 1450, 1384, 1277, 1207, 1095, 906, 837, 814, 805, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}_{2}{ }^{+}\left[M+\mathrm{H}^{+}\right]$310.0437, found 310.0442.

[^82]
(3aRS,4RS,7SR,7aRS)-3-vinyl-3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]isoxazole 181. CeCl_{3} ($171 \mathrm{mg}, 0.69 \mathrm{mmol}$) was heated to $140{ }^{\circ} \mathrm{C}$ for 2 h , then cooled to RT and suspended in 1 mL THF for 2 h . The suspension was cooled to $-78^{\circ} \mathrm{C}$ and vinylmagnesium bromide (0.57 M in THF, $1.21 \mathrm{~mL}, 0.69 \mathrm{mmol}$) was added dropwise. After 30 min , a solution of $\mathbf{1 8 0}(50.0 \mathrm{mg}, 0.23 \mathrm{mmol})$ in 0.5 mL THF was added dropwise at $-40^{\circ} \mathrm{C}$. The reaction was then warmed to $5{ }^{\circ} \mathrm{C}$ by itself and quenched after 2 h with water. EtOAc (10 mL) was added, the phases separated and the aqueous phase extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash column chromatography to provide $181(20.0 \mathrm{mg}, 0.12 \mathrm{mmol}$, 53%) as a colorless oil. The spectral data were in accordance to the literature. ${ }^{187}$

(3RS,4SR)-3-hydroxy-2,3,4a-trimethyl-6-oxooctahydro-1H-2,5-methanocyclopropa-[a]pentalene-4-carbonitrile (186). To a $0^{\circ} \mathrm{C}$ solution of $\mathbf{1 7 7}(35.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ in 1 mL MeCN was added $\mathrm{NaI}(101 \mathrm{mg}, 0.68 \mathrm{mmol})$ followed by the dropwise addition of TMSCl $(87 \mu \mathrm{~L}, 0.7 \mathrm{mmol})$. After 5 min , the cooling bath was removed, after 3.5 h , additional NaI $(101 \mathrm{mg}, 0.68 \mathrm{mmol})$ and TMS-Cl $(87 \mu \mathrm{~L}, 0.7 \mathrm{mmol})$ were added. After 4.5 h , the reaction was diluted with 5 mL EtOAc and poured in a separation funnel, containing $10 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated). Phase separation and extraction of the aqueous phase (EtOAc 3 x 10 mL), followed by washing the combined organic phases 50 mL with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration afforded crude nitrile 186. Purification via flash column chromatography (hexane/EtOAc 4:1) furnished $25.8 \mathrm{mg}(0.11 \mathrm{mmol}, 99 \%)$.
$\mathrm{R}_{f}=0.32$ (hexane:EtOAc 3:1, CAM); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.82-2.78(\mathrm{~m}, 2 \mathrm{H})$, $2.54(\mathrm{~s}, 1 \mathrm{H}), 1.98(\mathrm{bs}, 1 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$, $0.95-0.88(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.58(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.2,117.2$, $67.7,58.9,54.9,52.3,44.7,22.8,20.0,14.3,14.0,12.0,7.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3458$,

[^83]3032, 2972, 2928, 2243, 1746, 1453, 1386, 1157, 1071, 915, $730 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}\left[M+\mathrm{NH}_{4}{ }^{+}\right]$249.1598, found 249.1597.

(3aRS,6aRS)-3-methoxy-3b,6,6a-trimethyl-3b,4,4a,5,5a,5b,6,6a-octahydro-3aH-4,6-methanocyclopropa[4,5]pentaleno[1,2- d]isoxazol-7-one (188).

To $177(0.356 \mathrm{~g}, 1.148 \mathrm{mmol})$ was added lithium methanolate (1.5 M in $\mathrm{MeOH}, 15 \mathrm{~mL}$) and the reaction was refluxed for 7 d . The reaction was cooled to RT, concentrated to ca. 5 mL and poured in a separation funnel containing 50 mL water and 50 mL EtOAc. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give crude $\mathbf{1 8 8}$ $(0.282 \mathrm{~g}, 1.08 \mathrm{mmol}, 94 \%)$ which did not require any further purification.
$\mathrm{R}_{f}=0.46$ (hexane/EtOAc 2:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}$, $1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, $0.94-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.59-0.54(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.0,167.5$, 92.2, 67.9, 60.0, 57.3, 56.8, 54.4, 47.6, 18.5, 18.2, 14.8, 13.9, 12.0, 7.2 ppm ; FT-IR (neat) $v_{\max }=3030,2973,2934,2876,1747,1622,1449,1365,1204,1010,940,904,851,693 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}\left[M+\mathrm{H}^{+}\right]$262.1438, found 262.1437.

(3RS,4RS)-methyl-3-hydroxy-2,3,4a-trimethyl-6-oxooctahydro-1H-2,5-methanocyclopropa $[a]$ pentalene-4-carboxylate (189).

To a solution of $188(57.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{B}(\mathrm{OH})_{3}(81 \mathrm{mg}, 1.3 \mathrm{mmol})$ in $\mathrm{MeOH} /$ water ($5: 1,0.2 \mathrm{~mL}$) was added Raney-Nickel (50% slurry in water) (25.6 mg , 0.22 mmol). The atmosphere was replaced with H_{2} (balloon). After 72 h , the catalyst was filtered off over a pad of celite, which was rinsed with 20 mL EtOAc and 10 mL water. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The
combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography (hexane/EtOAc $3: 1$ to $2: 1$) to give $\mathbf{1 8 9}$ (52.0 mg , $0.20 \mathrm{mmol}, 91 \%$) as a white crystalline solid.
$\mathrm{R}_{f}=0.47$ (hexane/EtOAc 2:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.78$ $(\mathrm{s}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{bs}, 6 \mathrm{H})$, $1.09(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.53(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $214.5,173.2,77.8,68.8,63.1,59.5,55.3,52.3,45.2,22.9,19.7,14.7,14.4,12.3,7.4 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3484,3033,2964,2932,2852,1741,1437,1352,1286,1261,1203,1159$, 1104, 1025, $915 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4}{ }^{+}\left[M+\mathrm{Na}^{+}\right]$287.1254, found 287.1257.

(3RS,4SR)-3-hydroxy-4-(hydroxymethyl)-2,3,4a-trimethyloctahydro-1H-2,5-methanocyclopropa[a]pentalen-6-one (190).

To a solution of $\mathbf{1 8 9}(86.4 \mathrm{mg}, 0.327 \mathrm{mmol})$ in 3.3 mL THF was added freshly prepared $\mathrm{Li}(i \mathrm{Bu})_{2}(n \mathrm{Bu}) \mathrm{AlH}(0.50 \mathrm{M}$ in hexanes-THF, $1.96 \mathrm{~mL}, 0.981 \mathrm{mmol})$ dropwise at $-60{ }^{\circ} \mathrm{C} .{ }^{188}$ The reaction was warmed by itself to $0^{\circ} \mathrm{C}$ and kept there. After 3 h in total, the reaction was quenched with 10 mL EtOAc. The solution was poured in a bigger flask containing 40 mL sodium potassium tartrate (aqueous, saturated) and 50 mL EtOAc. After vigorous stirring for 30 min , the phases were separated and the aqueous phase was extracted with EtOAc $(4 \times 50 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification via column chromatography (hexane/EtOAc 1:1) gave 190 as a white amorphous solid ($69.1 \mathrm{mg}, 0.29 \mathrm{mmol}, 89 \%$).
$\mathrm{R}_{f}=0.41$ (hexane/EtOAc 1:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.01$ (dd, $J=11.8$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.8,5.6 \mathrm{~Hz} 1 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=5.6$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.86-0.79(\mathrm{~m}, 1 \mathrm{H})$, $0.59-0.52(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.1,80.5,67.3,60.7,60.1,55.6$, $54.9,44.3,23.8,17.7,15.0,13.7,12.4,7.2 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3409,3026,2964,2933$,

[^84]2880, 2849, 1740, 1452, 1381, 1143, 1105, 1060, 969, 916, 819, $720 \mathrm{~cm}^{-1}$; HRMS (Low-Mass-MALDI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{3}{ }^{+}\left[M+\mathrm{Na}^{+}\right] 259.1305$, found 259.1305.

(3RS,4RS)-3-hydroxy-2,3,4a-trimethyl-6-oxooctahydro-1H-2,5-methanocyclopropa $[a]$ pentalene-4-carbaldehyde (179).

To a solution of $(\mathrm{COCl})_{2}(40 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ in $1.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added DMSO $(56 \mu \mathrm{~L}$, $0.8 \mathrm{mmol})$ dropwise at $-7{ }^{\circ} \mathrm{C}$. After 15 min , a solution of $190(69.1 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $1.9 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over 4 min . After $1 \mathrm{~h}, \mathrm{NEt}_{3}(0.20 \mathrm{~mL}, 1.46 \mathrm{mmol})$ was added. The dry ice was removed and the reaction was slowly allowed to warm to RT over 50 min . The reaction was quenched by the addition of $5 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) and poured in a separation funnel containing 20 mL water and $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 40 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash column chromatography (hexane/EtOAc 2:1) to yield 179 ($68.3 \mathrm{mg}, 0.29 \mathrm{mmol}$, quant.) as a faint yellow oil.
$\mathrm{R}_{f}=0.50$ (hexane/EtOAc 3:2, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{bs}, 1 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 1 \mathrm{H})$, $1.41-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.56$ $(\mathrm{m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.5,203.4,80.2,67.9,66.7,59.1,55.3,43.5$, 23.9, 19.1, 14.6, 13.8, 12.0, $6.8 \mathrm{ppm} ;$ FT-IR (neat) $v_{\max }=3460,3118,3030,2967,2935$, 2876, 2749, 1734, 1715, 1488, 1451, 1383, 1153, 1078, 1043, 952, 930, 915, 810, $717 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{3}\left[M+\mathrm{NH}_{4}{ }^{+}\right]$252.1594, found 252.1593.

(3RS,4SR)-3-hydroxy-4-((SR)-1-hydroxyallyl)-2,3,4a-trimethyloctahydro-1H-2,5-methanocyclopropa[a]pentalen-6-one (74).

Anhydrous $\mathrm{CeCl}_{3}(215 \mathrm{mg}, 0.87 \mathrm{mmol})$ was suspended in 1.3 mL THF for 2 h . The suspension was cooled to $-78{ }^{\circ} \mathrm{C}$ and vinylmagnesium bromide (1.01 M in THF, 0.86 mL , $0.87 \mathrm{mmol})$ was added. After 30 min , $179(68.3 \mathrm{mg}, 0.29 \mathrm{mmol})$ in 1.6 mL THF was added dropwise. The reaction was stirred at this temperature for 45 min . Then the dry ice was removed and the reaction warmed to RT by itself. ${ }^{189}$ The reaction was then quenched with 5 mL NH 44 (saturated, aqueous). 10 mL water and 10 mL EtOAc were added. The mixture was filtered over a short plug of celite (rinsed with additional 50 mL EtOAc) and poured in a separation funnel. The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude diol was purified by flash column chromatography (hexane/EtOAc $3: 1 \rightarrow 2: 1$) to give $74(68 \mathrm{mg}, 0.26 \mathrm{mmol})$ as a faint yellow oil in 90% yield as an inseparable 60:40 mixture of diastereomers.
$\mathrm{R}_{f}=0.40$ (hexane/EtOAc 2:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{190,191} \delta 6.19$ (ddd, $J=17.3,10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.03^{*}(\mathrm{ddd}, J=17.3,10.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.11(\mathrm{~m}, 2 \mathrm{H}){ }^{\ddagger}$, $4.69(\mathrm{bs}, 1 \mathrm{H}), 4.49(\mathrm{bs}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 2.61^{*}(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 2.42 *(\mathrm{~s}, 1 \mathrm{H}), 1.74(\mathrm{bs}$, $1 \mathrm{H}), 1.66^{*}(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 2 \mathrm{H})^{\ddagger}, 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.27^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$, 1.12* (app. s, 6H, $2 \times$ Me from minor), $1.08(\mathrm{~s}, 3 \mathrm{H}), 0.81-0.76(\mathrm{~m}, 1 \mathrm{H})^{\ddagger}, 0.60-0.47(\mathrm{~m}$, $1 \mathrm{H})^{\ddagger} \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{191} \delta 216.10,216.08^{*}, 142.0^{*}, 141.5,114.4,113.9^{*}$, 81.6, 80.5*, 73.4, 71.1*, 67.7, 66.8*, 61.4*, 60.1, 58.3*, 57.4, 55.6*, 55.3, 45.7*, 45.1, 24.4, 22.6*, 18.9*, 18.0, 15.2, 15.1*, 13.7, 13.3*, 12.7, 12.6*, 7.3*, 7.0 ppm ; FT-IR (neat) $v_{\max }$ for the diastereomeric mixture $=3373$, 3027, 2965, 2935, 2877, 1739, 1729, 1451, 1425, 1381, 1314, 1256, 1145, 1098, 1024, 910, 808, $730 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{3}{ }^{+}$ $\left[M+\mathrm{Na}^{+}\right] 285.1461$, found 285.1467.

[^85]
(3aRS,4aRS,7bSR,7cRS)-4a,5,7a-trimethyldecahydro-2H-5,7-methanocyclopropa-[4,5]pentaleno[2,1-b]furo[2,3- d]furan- $\mathbf{2 , 8}(\mathbf{4 a H}, 5 \mathrm{bH})$-dione (202)
and (3aSR,4aRS,7bSR,7cSR)-4a,5,7a-trimethyldecahydro-2H-5,7-methanocyclo-propa[4,5]pentaleno[2,1-b]furo[2,3- d]furan-2,8(4aH,5bH)-dione (201).

To a suspension of tetramethylthiourea ($1.00 \mathrm{mg}, 7.62 \mu \mathrm{~mol}$), $\mathrm{CuCl}_{2}(26.1 \mathrm{mg}$, $0.19 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{OAc}(0.6 \mathrm{mg}, 8 \mu \mathrm{~mol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(1.7 \mathrm{mg}, 7.6 \mu \mathrm{~mol})$ in 0.3 mL THF was added propylene oxide ($27 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The flask was purged with CO (3 cycles) and $74(20.0 \mathrm{mg}, 0.076 \mathrm{mmol})$ was added as a 3:2 mixture of diastereomers in 0.5 mL THF. Then the mixture was heated to $50{ }^{\circ} \mathrm{C}$. After 20 h , the CO was removed and replaced by N_{2} (3 cycles). The reaction mixture was filtered over a pad of celite, which was rinsed with 50 mL EtOAc. $20 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) were added, the phases were separated and the aqueous phase extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash column chromatography (hexane/EtOAc $2: 1 \rightarrow 1: 1$) to give 202 ($12 \mathrm{mg}, 0.042 \mathrm{mmol}, 55 \%, 83 \%$ based on the desired diastereomer) along with undesired diastereomer 201 (6 mg , $0.019 \mathrm{mmol}, 26 \%)$.

202:
$\mathrm{R}_{f}=0.20$ (hexane/EtOAc 1:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.03$ (dd, $J=6.9$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.58(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.40(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.57-$ $0.51(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.3,175.3,89.6,87.3,77.4,67.0,60.9$, $58.1,55.0,44.7,34.8,21.6,19.3,15.2,14.4,12.1,7.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3032,2967$, 2934, 2875, 1765, 1739, 1453, 1384, 1264, 1203, 1155, 1101, 1051, 989, 947, 922, 888, 863, 816, 799, $743 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}\left[M+\mathrm{NH}_{4}{ }^{+}\right] 306.1700$, found 106.1697.

201:
$\mathrm{R}_{f}=0.22$ (hexane/EtOAc 1:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.05$ (app. d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (app. dt, $J=3.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}$, $1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}$, $3 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.57(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.3$, 174.7, 91.1, 88.0, 80.0, 68.7, 60.4, 57.9, 55.0, 42.6, 38.4, 21.1, 19.4, 14.2, 14.0, 12.0, 7.3 ppm ; FT-IR (neat) $v_{\max }=3034,2972,2934,2878,1780,1740,1452,1383,1264,1188$, 1152, 1095, 1063 1039, 996, $959,890,861,740 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}$ $\left[M+\mathrm{NH}_{4}{ }^{+}\right]$306.1700, found 306.1698.

(4SR,7aRS)-4b,7,7a-trimethyl-4-vinyldecahydro-5,7-methanocyclopropa[4,5]penta-leno[2,1-d][1,3]dioxine-2,8-dione (203). This compound was obtained as a side product when diol 74 was subjected to stoichiometric alkoxycarbonylation conditions. $\operatorname{Pd}(\mathrm{OAc})_{2}$ ($29.1 \mathrm{mg}, 0.13 \mathrm{mmol}$) was suspended in 0.2 mL THF. The nitrogen atmosphere was replaced by 1 atm of CO and a solution of $74(20.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ in 0.6 mL THF was added. After 48 h , the CO was replaced by nitrogen, the reaction mixture filtered over a pad of celite and the solvent evaporated. The crude residue was purified by flash column chromatography yielding 201, 202 and 203 ($1.6 \mathrm{mg}, 5.6 \mu \mathrm{~mol}, 7 \%$).
$\mathrm{R}_{f}=0.40$ (hexane/EtOAc 2:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90$ (ddd, $J=17.2,10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.36(\mathrm{~m}, 2 \mathrm{H}), 5.07-5.04(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{bs}, 1 \mathrm{H}), 2.41(\mathrm{bs}$, $1 \mathrm{H}), 1.96(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $0.91-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.60(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.0,149.6$, $134.7,118.3,89.6,77.0,68.4,59.0,54.3,51.4,44.8,21.4,17.9,14.6,13.4,12.2,6.8 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3462,3031,2932,1729,1454,1374,1321,1235,1191,1042,998,803$, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}\left[M+\mathrm{NH}_{4}{ }^{+}\right] 306.1700$, found 306.1704.

pallambin A (14)

pallambin $B(15)$

Pallambin A (14) and Pallambin B (15).

To a solution of $\mathbf{2 0 2}(4.0 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 0.2 mL THF was added freshly prepared $i \mathrm{Pr}_{2} \mathrm{NLi}\left(0.5 \mathrm{M}\right.$ in THF, $50 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After 55 min , MeCHO (2.0 M in THF, $42 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$) was added dropwise. After 1 h , the dry ice was removed and the reaction was warmed to $-40^{\circ} \mathrm{C}$ and quenched after further 10 min by the addition of 3 mL NH 4 Cl (aqueous, saturated). The mixture was poured in a separation funnel containing 5 mLEtOAc and 2 mL water. The phases were separated and the aqueous phase was extracted with EtOAc ($5 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude aldol products were dissolved in $0.14 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{NEt}_{3}(30 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) and one crystal of DMAP were added. Then $\mathrm{MsCl}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 69 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added dropwise. After 20 h , the reaction was diluted with $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then quenched by the addition of 2 mL NH 4 Cl (aqueous, saturated). The biphasic mixture was poured in a separation funnel containing $5 \mathrm{mLCH} \mathrm{Cl}_{2}$ and 5 mL water. The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography (hexane/EtOAc 3:1 \rightarrow 1:1) to give pallambin A (1) and B (2) (1:5, 4.6 mg$)$. The natural products were then separated from each other by preparative thin layer chromatography (hexane/EtOAc 3:1, developed 5 times) to yield 3.8 mg of pallambin $\mathrm{B}(\mathbf{1 5)}(0.012 \mathrm{mmol}, 87 \%)$ and 0.5 mg pallambin $\mathrm{A}(\mathbf{1 4})$ ($2 \mu \mathrm{~mol}, 11 \%$) as white solids.

Pallambin A (14):
$\mathrm{R}_{f}=0.51$ (hexane/EtOAc 1:1, CAM), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{192} \delta 6.67$ (qd, $J=7.3$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dt}, J=3.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.46(\mathrm{~m}, 2 \mathrm{H})$, $2.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})^{193}, 2.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}$, $3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 1 \mathrm{H}), 0.55-0.52(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right)^{194} \delta 214.6,168.5,145.0,126.1,90.0,84.9,80.3,67.1^{195}, 61.0,58.2,55.1,44.8,21.7$,

[^86]19.6, 15.2, 14.6, 14.4, 12.1, 7.4 ppm ; FT-IR (neat) $v_{\max }=2963,2923,2851,1742,1685$, $1444,1382,1362,1260,1217,1127,1103,1046,1021,986,965,923,862,796,736 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}{ }^{+}\left[M+\mathrm{H}^{+}\right]$315.1591, found 315.1590.

Pallambin B (15):
$\mathrm{R}_{f}=0.51$ (hexane/EtOAc 1:1, CAM), ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{192} \delta 7.01(\mathrm{qd}, J=7,2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.42-, 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.56-0.50$ $(\mathrm{m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{194} \delta 214.6,169.6,142.1,127.7,90.3,85.6,75.8$, 67.2, 60.8, 58.3, 55.1, 44.8, 21.8, 19.6, 16.1, 15.2, 14.4, 12.2, 7.4 ppm ; FT-IR (neat) $v_{\max }=3031,2967,2934,2872,1745,1690,1447,1384,1302,1259,1216,1106,1047,978$, 922, 862, 812, 735, $616 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4}{ }^{+}\left[M+\mathrm{H}^{+}\right] 315.1591$, found 315.1592 .

13.4.2 Ti(III)-Mediated Epoxide Opening

(\boldsymbol{E})-diethyl 2-(but-2-en-1-yl)malonate (356). Diethyl malonate ($15.06 \mathrm{~g}, 94.03 \mathrm{mmol}$) was added to a suspension of $\mathrm{NaH}(0.544 \mathrm{~g}, 22.67 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in 150 mL THF and stirred for 15 min . Then the mixture was cooled to $0^{\circ} \mathrm{C}$ and 1 -bromobut-2ene ($70: 30$ trans/cis, $3.00 \mathrm{~g}, 18.9 \mathrm{mmol}$) was added. After 30 min the reaction was quenched by the addition of 50 mL water and $50 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated). The organic phase was separated and the aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated. The colorless oil was purified by flash column chromatography (hexane/EtOAc $80: 1 \rightarrow 40: 1$) to yield $\mathbf{3 5 6}(2.06 \mathrm{~g}, 9.63 \mathrm{mmol}$, 51%). The spectra were in agreement with the literature. ${ }^{196}$

(E)-diethyl-2-(but-2-en-1-yl)-2-((4-methylphenylsulfonamido)methyl)malonate (263). Paraformaldehyde ($3.31 \mathrm{~g}, 110 \mathrm{mmol}$) and tosylamide ($22.6 \mathrm{~g}, 131 \mathrm{mmol}$) were dissolved in $120 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 10 min . In a separate flask $356(4.72 \mathrm{~g}, 22.0 \mathrm{mmol})$ and DBU ($16.6 \mathrm{~mL}, 111 \mathrm{mmol}$) were dissolved in $120 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The sulfonimine solution was added and the mixture was stirred overnight. After quenching of the reaction with 50 mL water and 50 mL NaHCO 3 (aqueous, saturated) the phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, concentrated and the crude material purified by flash column chromatography (hexane/EtOAc $10: 1 \rightarrow 0: 1)$ to furnish tosylamide $263(2.34 \mathrm{~g}, 13.4 \mathrm{mmol}, 61 \%)$.
$\mathrm{R}_{f}=0.61$ (hexane/EtOAc 3:2, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.51-5.37(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,143.1$, 136.5, 130.3, 129.4, 126.7, 123.4, 61.5, 57.8, 44.9, 34.8, 21.3, 17.8, 13.9 ppm; FT-IR (neat) $v_{\max }=3282,2983,2938,2360,1732,1599,1446,1369,1334,1304,1221,1164,1093$, $1041 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{~S}\left[M^{+}\right] 398.1632,398.1620$ found.

[^87]
(E)-diethyl 2-((N-((benzyloxy)carbonyl)-4-methylphenylsulfonamido)methyl)-2-(but-2-en-1-yl)malonate (357). A solution of $263(2.13 \mathrm{~g}, 5.36 \mathrm{mmol})$ in 30 mL THF was added to a suspension of sodium hydride ($0.32 \mathrm{~g}, 13.4 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in 20 mL THF. The mixture was stirred for 30 min and $\mathrm{CbzCl}(2.29 \mathrm{~g}, 13.4 \mathrm{mmol})$ was added. The suspension was stirred overnight and quenched with $30 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated). The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated. Purification was achieved by flash column chromatography (hexane/EtOAc $10: 1 \rightarrow 2: 1$) in order to yield $357(1.86 \mathrm{~g}$, $3.50 \mathrm{mmol}, 65 \%)$.
$\mathrm{R}_{f}=0.69$ (hexane/EtOAc 3:2, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.51-5.39(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.01(\mathrm{~m}$, $4 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 2 \mathrm{H}) 2.63-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,143.1,136.5,130.3,129.4,126.7$, $123.4,61.5,57.8,44.9,34.8,21.3,17.8,13.9 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=2982,1732,1597$, 1446, 1359, 1275, 1173, 1088, $1031 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{8} \mathrm{~S}[M+\mathrm{H}]^{+}$ 532.2000, 532.1997 found.

(E)-dimethyl-2-((((benzyloxy)carbonyl)amino)methyl)-2-(but-2-en-1-yl)malonate

 (358). A suspension of $263(1.00 \mathrm{~g}, 1.88 \mathrm{mmol})$ and $\mathrm{Mg}(0.46 \mathrm{~g}, 18.8 \mathrm{mmol})$ in 80 mL methanol was sonicated in an ultrasound bath for 16 h . The solvent was evaporated and the crude product was purified by flash column chromatography (hexane/EtOAc 20:1) to yield 358 ($0.21 \mathrm{~g}, 0.60 \mathrm{mmol}, 32 \%$).${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.61-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.22(\mathrm{~m}$, 2H), 5.07 (s, 2H), $3.69-3.63(\mathrm{~m}, 8 \mathrm{H}), 2.70-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

Dimethyl-2-((((benzyloxy)carbonyl)amino)methyl)-2-((3-methyloxiran-2-yl)methyl)malonate (264). m CPBA ($693 \mathrm{mg}, 3.09 \mathrm{mmol}, 77 \%$) was added to a solution of $\mathbf{3 5 8}$ (360 mg , 1.03 mmol) in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 5.5 h . The reaction mixture was quenched with $3 \mathrm{~mL} \mathrm{Na} \mathrm{N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated) and 3 mL NaHCO 3 (aqueous, saturated). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{ml}$). The combined organic layers were dried over MgSO_{4}, evaporated and purified via flash column chromatography (hexane/EtOAc 10:1) to yield 264 ($327 \mathrm{mg}, 0.90 \mathrm{mmol}, 87 \%$) as a white crystalline solid.
$\mathrm{R}_{f}=0.29($ hexane $/ E t O A c ~ 2: 1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.36-$ $5.31(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 7 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 2 \mathrm{H})$, $2.31(\mathrm{dd}, J=14.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1,156.2,136.3,128.3,128.0,66.8,57.2,55.4,54.7,52.9,43.9$, 34.9, 17.4, ppm; FT-IR (neat) $v_{\max }=3383,2955,1733,1538,1520,1456,1436,1382,1227$, 1144, 1117, $1011 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{7}[M+\mathrm{H}]^{+} 366.1547,366,1548$ found.

(\boldsymbol{E})-diethyl 2-(but-2-en-1-yl)-2-(hydroxymethyl)malonate (265). DBU (4.90 mL, 32.2 mmol) and paraformaldehyde ($0.97 \mathrm{~g}, 32.3 \mathrm{mmol}$) were added to a solution of 356 $(1.39 \mathrm{~g}, 6.46 \mathrm{mmol})$ in 40 mL THF and stirred for 30 min . The solvent was removed in vacuo and the crude product was purified by flash column chromatography (hexane/EtOAc 10:1 \rightarrow 3:2) to give $265(0.96 \mathrm{~g}, 3.93 \mathrm{mmol}, 61 \%)$.
$\mathrm{R}_{f}=0.26$ (hexane/EtOAc 4:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.62-5.51(\mathrm{~m}$, $1 \mathrm{H}), 5.38-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.94-3.91(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.56(\mathrm{~m}, 3 \mathrm{H})$, $1.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3$, 129.8, 124.4, 64.0, 61.3, 59.5, 34.5, 17.9, 14.0 ppm ; FT-IR (neat) $v_{\max }=3522$, 2983, 2940, 1732, 1465, 1446, 1368, 1300, 1215, 1095, $1036 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{5}$ $[M+\mathrm{Na}]^{+} 267.1203,267.1204$ found.

Diethyl 2-(hydroxymethyl)-2-((3-methyloxiran-2-yl)methyl)malonate (266). mCPBA $(1.32 \mathrm{~g}, 5.89 \mathrm{mmol}, 77 \%)$ was added to a solution of $265(0.96 \mathrm{~g}, 3.93 \mathrm{mmol})$ in 30 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 3 h . The reaction mixture was quenched with $12 \mathrm{~mL} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated) and 15 mL NaHCO 3 (aqueous, saturated). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 50 mL). The combined organic layers were dried over MgSO_{4}, concentrated and the crude product purified via flash column chromatography (hexane/EtOAc 5:1 $\rightarrow 0: 1$) to yield $\mathbf{1 8}(0.22 \mathrm{~g}, 0.86 \mathrm{mmol}, 22 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.24-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.74(\mathrm{~m}$, $3 \mathrm{H}), 2.31-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.21(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.2,64.5,61.8,58.6,55.9,55.1,34.3,17.4,14.1 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3516$, 2986, 1732, 1467, 1447, 1368, 1300, 1221, 1097, $1034 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{6}$ $[M+\mathrm{H}]^{+} 261.1333,261.1327$ found.

(\boldsymbol{E})-5-((tert-butyldimethylsilyl)oxy)-4,4-dimethylpent-2-en-1-ol (270). To а $-78{ }^{\circ} \mathrm{C}$ solution of (E)-ethyl 5-((tert-butyldimethylsilyl)oxy)-4,4-dimethylpent-2-enoate (3.88 g , $13.6 \mathrm{mmol})^{197}$ in $70 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added DIBAL ($1.0 \mathrm{M} \mathrm{in}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}, 27.1 \mathrm{~mL}, 27.1 \mathrm{mmol}$) dropwise. After 2.5 h , additional DIBAL (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.6 \mathrm{~mL}, 13.6 \mathrm{mmol}$) was added and after additional 1.5 h , the cooling bath was removed. The reaction was quenched by the addition of 10 mL EtOAc and 10 mL potassium sodium tartrate (aqueous, saturated) were added. After vigorous stirring for 30 min , the phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with 100 mL brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated. The crude product was purified by flash column chromatography (hexane/EtOAc 10:1) to furnish 270 ($3.30 \mathrm{~g}, 13.5 \mathrm{mmol}$, quant).
$\mathrm{R}_{f}=0.22$ (hexane/EtOAc 10:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.70(\mathrm{dt}, J=15.8$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=15.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{td}, J=5.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 0.98$ $(\mathrm{s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.6,126.2,71.9$, $64.4,38.3,26.1,24.0,18.5,-5.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3315,2956,2939,2857,1472$,

[^88]1390, 1361, 1252, 1091, 973, 834, $773 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$ 267.1751, 267.1755 found.

(\boldsymbol{E})-((5-(benzyloxy)-2,2-dimethylpent-3-en-1-yl)oxy)(tert-butyl)dimethylsilane (359).
To a supsenison of $\mathrm{NaH}(0.27 \mathrm{~g}, 6.75 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) in 15 mL THF was added a solution of $270(1.50 \mathrm{~g}, 6.14 \mathrm{mmol})$ in 10 mL THF dropwise. After $20 \mathrm{~min}, \mathrm{BnBr}$ $(0.84 \mathrm{~mL}, 7.1 \mathrm{mmol})$ was added and the reaction heated to reflux overnight. After cooling to RT, 25 mL of water were added and the phases separated. The aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phases washed with 100 mL brine and dried over MgSO_{4}. Evaporation of the solvents gave the crude product which was purified by flash column chromatography (hexane/EtOAc 30:1) to give 359 ($2.05 \mathrm{~g}, 6.14 \mathrm{mmol}$, quant) as a faint yellow oil.
$\mathrm{R}_{f}=0.71$ (hexane/EtOAc 10:1, KMnO_{4}, UV); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28$ (m, 5H), 5.72 (dt, $J=15.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dt}, J=15.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.99$ (dd, $J=6.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.0,138.7,128.5,128.0,127.7,123.5,71.94,71.93,71.5,38.4,26.1$, $24.0,18.5,-5.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=2956,2929,2856,1472,1361,1253,1100,1006$, 837, 775, 734, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 357.2220,357.2219$ found.

(2-(3-((benzyloxy)methyl)oxiran-2-yl)-2-methylpropoxy)(tert-butyl)dimethylsilane

 (360). To a solution of $\mathbf{3 5 9}(0.515 \mathrm{~g}, 1.539 \mathrm{mmol})$ in $6 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added m CPBA $(0.569 \mathrm{~g}, 2.308 \mathrm{mmol}, 70 \%)$ in one portion. After 1.5 h , the reaction was quenched carefully with $15 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated) and then with 15 mL NaHCO 3 (aqueous, saturated). The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic phases were washed with $50 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated) and dried over MgSO_{4}. Evaporation of the solvent provided the crude epoxide, which was purified by column chromatography (hexane/EtOAc 20:1) to furnish $\mathbf{3 6 0}$ ($0.465 \mathrm{~g}, 1.326 \mathrm{mmol}, 86 \%$).$\mathrm{R}_{f}=0.45$ (hexane/EtOAc 10:1, $\mathrm{KMnO}_{4}, \mathrm{UV}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.6,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43-3.32$ (m, 2H), 3.13 (app. dt, $J=6.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.86(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2,128.5$, 127.9, 127.8, 73.3, 71.0, 69.8, 60.9, 54.2, 36.0, 26.0, 20., 20.2, 18.4, -5.40, -5.45 ppm; FT-IR (neat) $v_{\max }=2955,2929,2856,1472,1455,1362,1252,1216,1096,901,836,775,734$, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}\left[M+\mathrm{NH}_{4}\right]^{+} 368.2615,268.2608$ found.

2-(3-((benzyloxy)methyl)oxiran-2-yl)-2-methylpropan-1-ol (271). To a $0{ }^{\circ} \mathrm{C}$ cold solution of $\mathbf{3 6 0}(0.317 \mathrm{~g}, 0.904 \mathrm{mmol})$ in 4.3 mL THF was added TBAF (1.0 M in THF, $1.8 \mathrm{~mL}, 1.8 \mathrm{mmol})$. After $1.5 \mathrm{~h}, 10 \mathrm{~mL}$ hexane were added and the resulting suspension filtered over a pad of silica (rinsed with 20 mL hexane-EtOAc 1:1). The solvents were evaporated and the crude product azeotropically dried by evaporation with benzene ($5 \times 1.5 \mathrm{~mL}$). The crude product was purified by column chromatography (hexane/EtOAc 1:1) to furnish 271 in $91 \%(0.194 \mathrm{~g}, 0.821 \mathrm{mmol})$ yield.
$\mathrm{R}_{f}=0.35$ (hexane/EtOAc 1:1, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.30-7.27(\mathrm{~m}$, 2H), $7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42(\mathrm{dd}, J=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=11.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=10.7,4.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=10.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (ddd, $J=5.6,3.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.59(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)^{198} \delta 138.9,128.6,127.9,73.2,71.0,69.8,61.6,53.7,35.4,21.0,20.6 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3458,2871,1455,1364,1200,1051,896,739,699 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}[M]^{+} 236.1407,236.1413$ found.

[^89]
(E)-5-((tert-butyldimethylsilyl)oxy)-4,4-dimethylpent-2-en-1-yl-methanesulfonate
(361). To a solution of $270(1.00 \mathrm{~g}, 4.09 \mathrm{mmol})$ in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NEt}_{3}(1.4 \mathrm{~mL}$, $10.2 \mathrm{mmol})$, DMAP ($50 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{MsCl}(0.78 \mathrm{~mL}, 10.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction was quenched by the addition of $10 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) and 10 mL water. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 50 mL). The combined organoc phases were washed with 50 mL brine, dried over MgSO_{4} and the solvents evaporated. Purification via flash column chromatography yielded $\mathbf{3 6 1}$ (0.894 g , $2.77 \mathrm{mmol}, 68 \%$) along with minor amounts of chlorination side product.
$\mathrm{R}_{f}=0.72$ (hexane/EtOAc 2:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95-5.89(\mathrm{~m}$, $1 \mathrm{H}), 5.57(\mathrm{dt}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=6.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H})$, $1.00(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8,119.6$, $71.6,71.4,38.8,38.5,26.0,23.8,18.5,-5.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=2956,2930,2857$, 1473, 1355, 1252, 1174, 1096, 973, 929, 836, 775, $528 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SSi}[M+\mathrm{Na}]^{+} 345.1526,345.1528$ found.

2-methyl-2-(3-methyloxiran-2-yl)propan-1-ol (273). To a solution of 361 (1.272 g, 3.944 mmol) in 40 mL THF was added $\mathrm{LiAlH}_{4}\left(4.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 1.5 \mathrm{~mL}, 5.9 \mathrm{mmol}\right)$ dropwise. After 1 h , the reaction was quenched by the addition of 4 mL EtOAc, followed by 30 mL water and 50 mL potassium sodium tartrate (aqueous, saturated). The reaction was stirred vigorously for 20 min , the phases were separated and the aqueous phase extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic phases were washed with 150 mL brine and dried over MgSO_{4}. Evaporation of the solvents provided 0.787 g ($3.445 \mathrm{mmol}, 87 \%$) of the crude demesylated product, which was directly dissolved in $14 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $m \mathrm{CPBA}(1.27 \mathrm{~g}$, $5.17 \mathrm{mmol}, 77 \%$) was added. After 1 h 15 min , the reaction was quenched by the addition of $20 \mathrm{~mL} \mathrm{Na} \mathrm{S}_{2} \mathrm{O}_{3}$ (saturated, aqueous) and $20 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (saturated, aqueous). The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with 100 mL NaHCO 3 (saturated, aqueous), dried over MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography provided the corresponding alcohol $(0.600 \mathrm{~g}, 2.546 \mathrm{mmol})$, which was dissolved in 12 mL THF and cooled
to $0^{\circ} \mathrm{C}$. TBAF (1.0 M in THF, $7.4 \mathrm{~mL}, 7.4 \mathrm{mmol}$) was added. After 1 h , additional TBAF (1.0 M in THF, $2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added and after 40 additional minutes, 10 mL hexane were added. The resulting suspension was filtered over a pad of silica (rinsed with 50 mL hexane-EtOAc 1:1). The solvents were evaporated and the crude residue purified by column chromatography (hexane/EtOAc 2:1) to yield 273 ($0.137 \mathrm{~g}, 1.052 \mathrm{mmol}, 27 \%$ over three steps).
$\mathrm{R}_{f}=0.36$ (hexane/EtOAc 2:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.45(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{qd}, J=5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (bs, 1 H), $1.31(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 70.3,66.5,51.3,35.4,21.9,20.7,17.9 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3433,3964,1466$, 1381, 1047, 902, $854 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}[M+\mathrm{Na}]^{+}$153.0886, 153.0883 found.

Cyclohex-2-en-1-ylmethanol (362). $n \mathrm{BuLi}$ (1.6 M in hexanes, $2.7 \mathrm{~mL}, 4.3 \mathrm{mmol}$) was added to a degassed suspension of $\mathrm{KOtBu}(0.46 \mathrm{~g}, 4.08 \mathrm{mmol})$ in 10 mL cyclohexene. The reaction mixture was stirred overnight, then cooled to $0{ }^{\circ} \mathrm{C}$ and paraformaldehyde $(0.14 \mathrm{~g}$, $4.49 \mathrm{mmol})$ was added carefully. The mixture was heated to $60^{\circ} \mathrm{C}$ for 3 h , then cooled to $0{ }^{\circ} \mathrm{C}$, quenched with NaHCO_{3} (aqueous, saturated) and the organic phase was separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated. Purification was performed by flash column chromatography (hexane/EtOAc 10:1 \rightarrow 1:10) to give 362 as a yellow oil ($0.42 \mathrm{~g}, 3.73 \mathrm{mmol}$, 83%), whose spectra were in accordance to the literature. ${ }^{199}$
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.56(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.49$ $(\mathrm{m}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

[^90]
((1RS,2RS,6SR)-7-oxabicyclo[4.1.0]heptan-2-ylmethoxy)(tert-butyl)diphenylsilane (363). Triethylamine ($5.1 \mathrm{~mL}, 36 \mathrm{mmol}$) was added to a solution of $362(2.70 \mathrm{~g}, 24.1 \mathrm{mmol})$ in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then TBDPSCl ($7.42 \mathrm{~mL}, 28.9 \mathrm{mmol}$) and a one crystal of DMAP were added after 5 min . After stirring overnight, the reaction mixture was concentrated in vacuo and purified by flash column chromatography (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 20: 1 \rightarrow 10: 1$) yielding 275 ($7.93 \mathrm{~g}, 22.6 \mathrm{mmol}, 94 \%$). This material was dissolved in $70 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and m CPBA (4.75 g , $21.2 \mathrm{mmol}, 77 \%$) was added. After 3 h . The reaction mixture was quenched with 10 mL $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated) and $15 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated to yield the crude product which was purified by flash column chromatography (toluene/hexane $2: 1 \rightarrow 1: 0$). Anti diastereoisomer $363(0.83 \mathrm{~g}, 2.27 \mathrm{mmol})$ was obtained in 21% yield.
$\mathrm{R}_{f}=0.68$ (toluene, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.71(\mathrm{~m}, 5 \mathrm{H}), 7.49$ $-7.39(\mathrm{~m}, 7 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.13-1.09(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.69,135.67,133.72,133.67,129.78,129.76,127.8,66.2$, 54.5, 52.7, 37.4, 27.0, 25.0, 24.0, 19.4, 17.2 ppm ; HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}$ $\left[M-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$309.1306, 309.1309 found.

(1RS,2RS,6SR)-7-oxabicyclo[4.1.0]heptan-2-ylmethanol (276). 363 ($0.83 \mathrm{~g}, 2.27 \mathrm{mmol}$) was dissolved in 15 mL of THF. Then TBAF (1.0 M in THF, $2.7 \mathrm{~mL}, 2.7 \mathrm{mmol}$) was added and the mixture was stirred overnight. The solvent was removed in vacuo and the crude product was purified by flash column chromatography (hexane/EtOAc 2:1) to give 22 ($239 \mathrm{mg}, 1.87 \mathrm{mmol}, 82 \%$).
$\mathrm{R}_{f}=0.41$ (hexane/EtOAc 1:3, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75-3.60(\mathrm{~m}$, $2 \mathrm{H}), 3.19-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.50(\mathrm{~m}, 4 \mathrm{H})$, $1.43-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.92(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 64.8,54.2,52.9$,
37.4, 24.7, 23.8, 17.1 ppm ; FT-IR (neat) $v_{\max }=3409,2937,1652,1445,1353,1269,1126$, 1087, 1069, 1049, 1022, $995 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}[M-\mathrm{H}]^{+}$127.0754, 127.0754 found.

Diethyl 2-(cyclohex-2-en-1-yl)malonate (364). Sodium hydride ($0.82 \mathrm{~g}, 20.6 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) was suspended in 75 mL THF. Ethyl malonate (4.74 mL , 31.2 mmol) was slowly added and the mixture was stirred for 10 min . Then 3-bromocyclohexene ($3.64 \mathrm{~mL}, 31.2 \mathrm{mmol}$) was added and the solution was stirred overnight. The reaction mixture was quenched with $50 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with 50 mL brine and dried over MgSO_{4}. Purification via flash column chromatography (hexane/EtOAc 20:1) provided $364(4.96 \mathrm{~g}, 20.7 \mathrm{mmol}, 42 \%)$, whose spectra were in accordance to the literature. ${ }^{200}$
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.62-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.

Ethyl 2-(cyclohex-2-en-1-yl)acetate (279). $364(4.964 \mathrm{~g}, 20.66 \mathrm{mmol})$ was dissolved in 150 mL DMSO. Water ($1.5 \mathrm{~mL}, 83 \mathrm{mmol}$) and $\mathrm{LiCl}(1.93 \mathrm{~g}, 45.4 \mathrm{mmol})$ were added, the mixture was heated to $140{ }^{\circ} \mathrm{C}$ and stirred overnight. After one day no conversion was observed. Hence water ($1.5 \mathrm{~mL}, 83 \mathrm{mmol}$) and $\mathrm{LiCl}(1.93 \mathrm{~g}, 45.4 \mathrm{mmol})$ were added, the mixture was heated to $160{ }^{\circ} \mathrm{C}$ and stirred for further 24 h .50 mL of water and 50 mL EtOAc were added, the organic phase was separated and the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Flash column chromatography (hexane/EtOAc 10:1) provided 279 (1.78 g, $10.6 \mathrm{mmol}, 51 \%)$.

[^91]$\mathrm{R}_{f}=0.44$ (hexane/EtOAc 10:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75-5.68$ (m, $1 \mathrm{H}), 5.56-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 2 \mathrm{H})$, $2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,130.3,128.2,60.3,41.0,32.4,28.9,25.2,21.1$, 14.4 ppm ; FT-IR (neat) $v_{\max }=3020,2982,2931,2863,1738,1448,1371,1336,1279,1255$, 1209, 1161, 1134, 1096; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}$191.1043, 191,1042 found.

2-(cyclohex-2-en-1-yl)ethanol (365). A solution of 279 ($1.78 \mathrm{~g}, 10.6 \mathrm{mmol}$) in 20 mL THF was added dropwise to a solution of $\mathrm{LiAlH}_{4}\left(4.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 5.3 \mathrm{~mL}, 84.8 \mathrm{mmol}\right)$ in 40 mL THF at room temperature. After 20 min water was carefully added until gas evolution ceased. Then 50 mL HCl (aqueous, 1.0 M) was added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. Purification via flash column chromatography (hexane/EtOAc 5:1 $\rightarrow 3: 1$) provided alcohol 279 ($1.32 \mathrm{~g}, 10.5 \mathrm{mmol}, 99 \%$).
$\mathrm{R}_{f}=0.31$ (hexane/EtOAc 3:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71-5.66(\mathrm{~m}$, $1 \mathrm{H}), 5.60-5.56(\mathrm{~m}, 1 \mathrm{H}), 3.73$, (t, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.27-2.21$ (m, 1H), $2.01-1.94$ (m, 2H), $1.83-1.49(\mathrm{~m}, 5 \mathrm{H}), 1,31-1.21(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.4,126.9$, $60.3,39.0,31.8,29.0,25.3,21.4 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3326,3017,2928,2859,2360$, 1648, 1447, 1139, 1067, 1050, $1010 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}[M]^{+}$126.1039, 126.1038 found.

280

281

2-((1RS,2RS,6SR)-7-oxabicyclo[4.1.0]heptan-2-yl)ethanol (280) and 2-((1RS,2SR, 6SR)-7-oxabicyclo[4.1.0]heptan-2-yl)ethanol (281). m CPBA ($5.10 \mathrm{~g}, 22.8 \mathrm{mmol}, 77 \%$) was added to a solution of $\mathbf{3 6 5}(1.44 \mathrm{~g}, 11.4 \mathrm{mmol})$ in $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 3 h . The reaction mixture was quenched with $5 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated) and 10 mL NaHCO 3
(aqueous, saturated). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 80 mL). The combined organic layers were dried over MgSO_{4} and evaporated to yield the crude products which were purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 4: 1 \rightarrow 2: 1\right)$ to yield $280(116 \mathrm{mg}, 0.82 \mathrm{mmol} 7 \%)$ and $281(803 \mathrm{mg}$, $5.65 \mathrm{mmol}, 50 \%)$.

280:
$\mathrm{R}_{f}=0.18\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 1, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.02-3.83(\mathrm{~m}$, $2 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.32(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 83.3,69.3,66.2,37.2,30.2,29.8,25.6,19.0 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3418,2933$, 2876, 1721, 1455, 1260, 1144, 1084, $1034 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}[M]^{+}$ 142.0989, 142.0988 found.

281:

$\mathrm{R}_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.84-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.23-$ $3.20(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.33(\mathrm{~m}$, $1 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 1 \mathrm{H})$ ppm; HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}[M]^{+}$142.0989, 142.0991 found.

1-((1RS,2RS,6SR)-7-oxabicyclo[4.1.0]heptan-2-yl)- N-methylmethanamine (283). To a solution of N-((1RS,2RS,6SR)-7-oxabicyclo[4.1.0]heptan-2-ylmethyl)- N-methyl-1-phenylmethanamine ($\mathbf{2 8 2})^{201}(0.556 \mathrm{~g}, 2.403 \mathrm{mmol})$ and $\mathrm{AcOH}(0.41 \mathrm{~mL}, 7.21 \mathrm{mmol})$ in 12 mL MeOH was added $\mathrm{Pd} / \mathrm{C}(0.256 \mathrm{~g}, 46 \mathrm{wt} . \%$. The atmosphere was replaced by hydrogen (1 atm) and the reaction stirred for 3 h . Filtration over celite and evaporation of the solvent provided the crude product, which was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 10: 1: 0.1\right)$ to give $283(0.325 \mathrm{~g}, 2.302 \mathrm{mmol}, 96 \%)$.
$\mathrm{R}_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 10: 1: 0.2, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.16$ (dt, $J=3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ (app. d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.70-2.58$ (m, 2H), 2.46 (s, 3H), 2.13 $-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.81(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 55.8,55.2,52.9,36.9,34.9,25.8,25.1,17.3 \mathrm{ppm} ;$ FT-IR (neat)

[^92]$v_{\max }=3319,2932,2851,2796,1689,1447,1253,1150,823,769 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}[M+\mathrm{H}]^{+} 142.1226,142.1230$ found.

(1RS,2SR,4RS,5RS,6SR)-3-oxatricyclo[3.2.1.02,4]octan-6-ylmethanol (285). To a solution of $((1 R S, 2 S R, 4 R S, 5 R S, 6 S R)$-3-oxatricyclo[3.2.1.02,4]octan-6-ylmethoxy)(tertbutyl)dimethylsilane ($\mathbf{2 8 4}$) ($0.170 \mathrm{~g}, 0.668 \mathrm{mmol}$) in 4.5 mL THF was added TBAF (1.0 M in THF, $1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 10 min , the cooling bath was removed and the reaction allowed to warm to RT. After 2.5 h , the reaction was quenched by the addition of 2 mL NaHCO_{3} (saturated, aqueous) and 2 mL water. The phases were separated an the aqeuous phase extracted withj EtOAc (3 x 15 mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents evaporated. Purification by flash column chromatography (hexane/EtOAc 1:1) furnished alcohol 285 ($66.4 \mathrm{mg}, 0.47 \mathrm{mmol}, 71 \%$), which showed 12% contamination of epoxide opening product (5-exo-tet cyclization of the primary alcohol).
$\mathrm{R}_{f}=0.16$ (hexane:EtOAc 1:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.63(\mathrm{bs}, 1 \mathrm{H}), 3.61$ (bs, 1H), 3.22 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (dd, $J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{dd}, J=4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J=12.6,10.0,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.40(\mathrm{dd}, J=10.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.83-0.78(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 63.9, 51.4, 49.6, 43.8, 38.0, 37.3, 28.7, 27.3 ppm .

((1RS,2RS,4SR,5SR)-4-(((tert-butyldimethylsilyl)oxy)methyl)-6-oxabicyclo[3.1.0]-hexan-2-yl)methanol (287). To a solution of (1RS,2RS,4SR,5SR)-6-oxabicyclo[3.1.0]hexane-2,4-diyldimethanol ($\mathbf{2 8 6})^{202}(0.100 \mathrm{~g}, 0.694 \mathrm{mmol})$ in $3.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added imidazole ($71.0 \mathrm{mg}, 1.04 \mathrm{mmol}$), DMAP $(8.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\operatorname{TBSCl}(0.110 \mathrm{~g}, 0.728 \mathrm{mmol})$. After 35 min , the reaction was quenched by the addition of $2 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) and 2 mL water. The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated.

[^93]Purification via flash column chromatography (hexane:EtOAc 3:1) furnished alcohol 287 ($0.092 \mathrm{~g}, 0.36 \mathrm{mmol}, 51 \%$).
$\mathrm{R}_{f}=0.42$ (hexane/EtOAc 2:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67-3.55(\mathrm{~m}$, $4 \mathrm{H}), 3.52(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.80(\mathrm{~m}$, 2 H), 1.28 (app. dt, $J=14.3,2.3 \mathrm{hz}, 1 \mathrm{H}$), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 65.0,64.8,61.0,60.7,42.4,42.2,27.6,26.1,18.6,-5.2,-5.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3426,2954,2929,2885,2858,1472,1391,1362,1255,1095,1045,1022,834$, $776 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}[M+\mathrm{H}]^{+} 259.1724,259.1721$ found.

((1SR,5SR)-5-methyl-6-oxabicyclo[3.1.0]hexan-1-yl)methanol (290). To a solution of (2-methylcyclopent-1-en-1-yl)methanol (289) ${ }^{203}(1.92 \mathrm{~g}, 17.1 \mathrm{mmol})$ in $60 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added m CPBA ($6.33 \mathrm{~g}, 25.7 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The ice bath was removed and the reaction stirred for 40 min at RT before being quenched by the addition of $10 \mathrm{~mL} \mathrm{Na} \mathrm{N}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aqueous, saturated) and 10 mL NaHCO 3 (aqueous, saturated). The phases were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. the combined organic phases were washed with 100 mL brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent and purification by flash column chromatography (hexane/EtOAc 2:1) provided 290 ($1.756 \mathrm{~g}, 13.70 \mathrm{mmol}$, 80\%).
$\mathrm{R}_{f}=0.39$ (hexane/EtOAc 1:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.87$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.7(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=13.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=13.8$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 71.0,69.2,62.3,33.3,28.9,18.5,15.6 \mathrm{ppm}$.

General Procedure A: Stoichiometric Ti(III)-Mediated Reductive Epoxide Opening.

 An oven dried flask was evacuated and purged with argon. $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(1.07 \mathrm{~g}, 4.30 \mathrm{mmol})$ and activated zinc powder ($380 \mathrm{mg}, 5.81 \mathrm{mmol}$) were added and the flask was evacuated again. After 5 min the flask was carefully purged with argon. Freshly distilled and degassed THF $(20 \mathrm{ml})$ was added. ${ }^{204}$ The mixture was stirred for 1 h resulting in a dark green solution of $\mathrm{Cp}_{2} \mathrm{TiCl}(\mathrm{c}=0.2 \mathrm{M})$. Then 2.0 equivalents of this solution were added via syringe pump over 6 h to a solution of the epoxide in degassed THF ($\mathrm{c}=0.05 \mathrm{M}$). After completion of the[^94]addition, the reaction was stirred overnight, the solvent evaporated and the residue purified by flash column chromatography.

297

Diethyl-2-((((benzyloxy)carbonyl)amino)methyl)-2-(3-hydroxybutyl)malonate (296) and diethyl-2-((((benzyloxy)carbonyl)amino)methyl)-2-(2-hydroxybutyl)malonate (297). Prepared according to genaral procedure A from $\mathbf{2 6 4}$ ($100 \mathrm{mg}, 0.27 \mathrm{mmol}$). After flash column chromatography (hexane/EtOAc 10:1 $\rightarrow 0: 1$) a mixture of $296(14.0 \mathrm{mg}, 0.04 \mathrm{mmol}$, $15 \%)$ and $297(7.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 7 \%)$ was obtained.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.32(\mathrm{~m}, 13 \mathrm{H}), 5.40(\mathrm{bs}, 1 \mathrm{H}), 5.29(\mathrm{~b}, 1 \mathrm{H}), 5.16-$ $5.09(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{bs}, 1 \mathrm{H}), 3.83-3.71(\mathrm{~m}, 19 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.36$ (bs, 1H), $2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 35), 1.48-1.40(\mathrm{~m}, 3 \mathrm{H})$, $1.30-1.19(\mathrm{~m}, 7 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,169.7,157.2,156.7,136.5$, 136.3, 128.70, 128.66, 128.4, 128.3, 67.8, 67.4, 67.1, 67.0, 58.4, 56.7, 53.6, 52.91, 52.87, $43.5,43.3,33.6,29.5,27.9,23.6,18.0 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3390,3066,2957,2360$, 1771, 1738, 1538, 1520, 1456, 1436, 1254, 1150, $1013 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{7}[M+\mathrm{H}]^{+} 368.1704,368,1705$ found.

Diethyl-2-(3-hydroxybutyl)-2-(hydroxymethyl)malonate (298). Prepared according to genaral procedure A from 266 ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$). After flash column chromatography (hexane/EtOAc 10:1 $\rightarrow 0: 1$) $\mathbf{2 9 8}$ ($12.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 12 \%$) was obtained.
$\mathrm{R}_{f}=0.18$ (hexane/EtOAc 2:3, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.23$ (q , $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{bs}, 1 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{bs}, 1 \mathrm{H}) 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,68.1,64.4,61.7,59.5,33.8,27.5,23.6$, 14.2 ppm ; FT-IR (neat) $v_{\max }=3392,2978,1728,1448,1369,1218,1096,1033 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{6}[M+\mathrm{H}]^{+} 263.1489,263,1475$ found.

299

300
(1SR,3SR)-3-(hydroxymethyl)cyclohexanol (299) and (1SR,2RS)-2-(hydroxymethyl)cyclohexanol (300). Prepared according to general procedure A from 276 (239 mg, $1.87 \mathrm{mmol})$. After flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0 \rightarrow 10: 1\right) 299(176 \mathrm{mg}$, $1.35 \mathrm{mmol}, 73 \%)$ and $\mathbf{3 0 0}(18.0 \mathrm{mg}, 0.14 \mathrm{mmol}, 7 \%)$ were obtained.

299:
$\mathrm{R}_{f}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.98-3.96(\mathrm{~m}$, $1 \mathrm{H}), 3.34-3.32(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.24$ (ddd, $J=13.7,11.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.06-0.96(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $68.0,67.0,36.6,35.4,33.8,29.6,20.6 \mathrm{ppm}$; ; FT-IR (neat) $v_{\max }=3448,2934,2360,1630$, 1450, 1400, 1257, 1126, 1086, 1015, $981 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}\left[M-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ $112.0883,112.0882$ found.

300
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.74-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.33(\mathrm{~m}$, $1 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.29$ $-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 73.7,66.2,48.1$, 36.4, 28.9, 26.4, 25.8 ppm ; FT-IR (neat) $v_{\max }=3340,2937,2864,1448,1347,1296,1262$, 1144, 1088, 1026, $991 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}\left[M-\mathrm{H}_{2} \mathrm{O}\right]^{+}$112.0883, 112,0883 found.

301

302
(1SR,3SR)-3-(2-hydroxyethyl)cyclohexanol (301) and (1SR,2SR)-2-(2-hydroxyethyl)cyclohexanol (302). Prepared according to genaral procedure A from 281 (205 mg , 1.44 mmol). After flash column chromatography (hexane/EtOAc $4: 1 \rightarrow 0: 1) \mathbf{3 0 1}(124 \mathrm{mg}$, $0.86 \mathrm{mmol}, 60 \%$) and $\mathbf{3 0 2}(70.0 \mathrm{mg}, 0.49 \mathrm{mmol}, 34 \%)$ were obtained.

301:
$\mathrm{R}_{f}=0.21$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 3 \mathrm{H})$, $1.31-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.73(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 71.3,60.6,43.2,40.7,36.3,34.1,33.2,25.1 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3515,2935$, 2856, 1626, 1464, 1451, 1403, 1367, 1099, 1042, $1008 \mathrm{~cm}^{-1}$.

302:
$\mathrm{R}_{f}=0.32(\mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.77-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}$, $2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 70.1,60.9,39.2,35.5,33.8,27.8,26.0,21.8 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3501,2935,2360,2340,1704,1652,1634,1538,1446,1398,1010 \mathrm{~cm}^{-1}$.

(1SR,3SR)-3-((methylamino)methyl)cyclohexanol (303). Prepared according to genaral procedure A from 283 ($129 \mathrm{mg}, 0.91 \mathrm{mmol}$). After flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 3: 1: 0.1 \rightarrow\right.$ 1:1:0.1) $\mathbf{3 0 3}(117 \mathrm{mg}, 0.82 \mathrm{mmol}, 89 \%)$ was obtained.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.41$ (bs, 1H), $4.06(\mathrm{bs}, 1 \mathrm{H}), 2.88$ (app. d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (app. d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.59-$ $1.46(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta$ $66.3,56.0,37.5,34.2,33.3,30.7,30.6,20.4 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3117,3016,2805$, 1392, 1260, $988 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}[M+\mathrm{H}]^{+} 144.1383,144.1385$ found.

(1SR,2RS,4SR,5SR)-5-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)-7-oxabicyclo-[2.2.1]heptan-2-ol (304). Prepared according to genaral procedure A from 293 (50.0 mg , $0.18 \mathrm{mmol})$. After flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1\right) \mathbf{3 0 4}$ (34.0 mg , $0.12 \mathrm{mmol}, 68 \%$) was obtained.
$\mathrm{R}_{f}=0.23$ (hexane/EtOAc 1:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.39(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{app} . \mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=11.2,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46(\mathrm{dd}, J=11.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.09,1.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ (ddd, $J=13.9,6.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{dddd}, J=14.4,6.0,2.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 84.4,82.5,82.0,73.9$,
67.5, 38.7, 37.1, 26.1, 18.4, $-2.6,-3.3 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3401,1953,1928,2856$, 1472, 1389, 1360, 1252, 1120, 1041, 1018, 995, 971, 835, $776 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$297.1493, 297.1488 found.

General Procedure B: Catalytic Ti(III)-Mediated Reductive Epoxide Opening.

 $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ ($15 \mathrm{~mol} \%$), manganese powder (3.0 equiv) and 2,4,6-collidine $\cdot \mathrm{HCl}$ (3.0 equiv) were weighted into a round bottom flask, which was evacuated for 5 min and subsequently backfilled with argon. Degassed $\mathrm{THF}^{204}\left(\mathrm{c}_{\text {total }}=0.05 \mathrm{M}\right)$ was added, followed by a solution of the epoxide in THF (approximately $1 / 3$ of the total volume of THF). The reaction was stirred vigorously overnight under argon upon which a metallic blue color was visible. The mixture was filtered over a pad of celite (rinsed with EtOAc), the solvents evaporated and the crude residue purified by flash column chromatography.

304

305
(1SR,2RS,4SR,5SR)-5-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)-7-oxabicyclo-[2.2.1]heptan-2-ol (304) and ((1SR,2SR,4SR)-2-((tert-butyldimethylsilyl)oxy)-7-oxabi-cyclo[2.2.1]hept-5-en-2-yl)methanol (305). Prepared according to general procedure B from 293 ($60.0 \mathrm{mg}, 0.22 \mathrm{mmol}$). After flash column chromatography (hexane/EtOAc 3:1 \rightarrow 1:1) $\mathbf{3 0 4}$ ($48.2 \mathrm{mg}, 0.18 \mathrm{mmol}, 80 \%$) and $\mathbf{3 0 5 ~ (1 1 . 0 \mathrm { mg } , ~} 0.04 \mathrm{mmol}, 19 \%$) were obtained.

305:
$\mathrm{R}_{f}=0.73$ (hexane/EtOAc 1:1, CAM); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40$ (bs, 2H), 5.01 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{bs}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (bs, 1H), $1.87(\mathrm{dd}, J=12.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}$, $6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.7, 133.6, 85.1, 84.3, 78.2, 69.6, 37.7, 26.1, 18.4, $-2.6,-3.2 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3478,2953,2929,2885,2856,1472,1313,1249$, 1097, 1003, 833, 776, $709 \mathrm{~cm}^{-1}$; HRMS (MALDI) calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}[M+\mathrm{H}]^{+}$257.1567, 257.1568 found.

306

366

307
(1SR,2RS,4SR,5SR)-5-(benzyloxy)-5-(hydroxymethyl)-7-oxabicyclo[2.2.1]heptan-2-ol (306), (1SR,2SR,4RS,6SR)-6-(benzyloxy)-6-(hydroxymethyl)-7-oxabicyclo[2.2.1]heptan-2-ol (366) and ((1SR,2SR,4SR)-2-(benzyloxy)-7-oxabicyclo[2.2.1]hept-5-en-2-yl)methanol (307). Prepared according to general procedure B from 295 ($30.0 \mathrm{mg}, 0.12 \mathrm{mmol}$). After flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 306(18.00 \mathrm{mg}, 0.072 \mathrm{mmol}, 60 \%), 366$ ($3.00 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \%$) and $307(3.30 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \%)$ were obtained.

306:

$\mathrm{R}_{f}=0.24$ (toluene/acetone $\left.1: 1, \mathrm{CAM}, \mathrm{UV}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.42-7.23(\mathrm{~m}$, $5 \mathrm{H}), 4.62-4.52(\mathrm{~m}, 3 \mathrm{H}), 4.38(\mathrm{dd}, J=6.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}$, $J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (ddd, $J=13.5,6.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dddd}, J=13.5,6.2,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}, \mathrm{MeOD}) \delta 140.7,129.2,129.2,128.6,128.2,88.3,84.3,82.5,74.1,66.3,64.2$, $37.4,36.8 \mathrm{ppm} ;$ FT-IR (neat) $v_{\max }=3390,2927,2872,1569,1454,1312,1201,1106,1039$, 973, $922 \mathrm{~cm}^{-1}$.

366:
$\mathrm{R}_{f}=0.24$ (toluene/acetone 1:1, CAM, UV); ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD) $\delta 7.42-7.23(\mathrm{~m}$, $5 \mathrm{H}), 4.69(\mathrm{app} . \mathrm{td}, J=5.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{dd}, J=6.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 140.7,129.2,128.6,128.2,89.7,87.1,77.1,70.5,66.0,64.4,41.9,40.8 \mathrm{ppm} ;$ FT-IR (neat) $v_{\max }=3392,2926,2856,1454,1289,1246,1201,1117,1086,1049,975,738$, $698 \mathrm{~cm}^{-1}$.

307:
$\mathrm{R}_{f}=0.67$ (toluene/acetone 1:1, CAM, UV); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.29(\mathrm{~m}$, $5 \mathrm{H}), 6.50(\mathrm{dd}, J=5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=5.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{app} . \mathrm{dt}, J=4.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{bs}, 1 \mathrm{H}), 4.64-4.57(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}$, $J=11.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.21 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,138.7,134.2,128.7,128.6,127.7,127.5,87.5,83.8,78.4,66.9$, $66.4,33.3 \mathrm{ppm} ;$ FT-IR (neat) $v_{\max }=3431,2944,2874,1497,1454,1383,1315,1244,1209$, 1095, 1028, 914, $738 \mathrm{~cm}^{-1}$.

13.4.3 Synthesis of Raman-Active Epoxyisoprostane Analogs

(Z)-ethyl dec-4-en-9-ynoate (339). To a solution of ethyl butanoate-4-triphenylphosphonium bromide ($31.9 \mathrm{~g}, 69.7 \mathrm{mmol}$) in 270 mL THF was added $\mathrm{KOtBu}(9.39 \mathrm{~g}$, $83.7 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After 1 h , hex- 5 -ynal ($6.70 \mathrm{~g}, 52.7 \mathrm{mmol}$) in 50 mL THF was added dropwise. After 1 h , the cooling bath was removed and the reaction stirred for one additional hour. The orange suspenion was quenched by the addition of 50 mL NH 44 (saturated, aqueous) and 30 mL water. The phases were separated and the aqueous phase extraced with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification via flash column chromatography (hexane/E $\mathrm{t}_{2} \mathrm{O} 30: 1 \rightarrow 20: 1 \rightarrow 10: 1$) gave 339 $(10.24 \mathrm{~g}, 52.71 \mathrm{mmol}, 76 \%)$ as a colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.43-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.32$ $(\mathrm{m}, 4 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 173.3,130.1,128.8,84.5,68.6,60.5,34.5,28.5,26.3,23.0,18.0$, 14.4 ppm ; FT-IR (neat) $v_{\max }=2981,2938,2865,1733,1447,1372,1349,1178,1153,1096$, $1040 \mathrm{~cm}^{-1} ;$ HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}\left[M-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$165.0910, 165.0910 found.

(Z)-dec-4-en-9-ynal (340). To a solution of $\mathbf{3 3 9}$ ($10.24 \mathrm{~g}, 52.71 \mathrm{mmol}$) in 100 mL toluene was added DIBAL (1.0 M in toluene, $52.7 \mathrm{~mL}, 53 \mathrm{mmol}$) dropwise over 1 h at $-78^{\circ} \mathrm{C}$. After 2 h of stirring at this temperature, the reaction was quenched by the addition of EtOAc (50 mL), then 200 mL potassium sodium tartrate (aqueous, saturated) and 100 mL water. After vigorous stirring for 3 h , the phases were separated and the aqueous phase extracted with EtOAc (3 x 100 mL). The combined organic phases were dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 10: 1$) to give 87% of $\mathbf{3 4 0}(6.87 \mathrm{~g}, 45.7 \mathrm{mmol})$.
$\mathrm{R}_{f}=0.18$ (hexane/Et $\mathrm{E}_{2} \mathrm{O} 20: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{t}, J=1.6 \mathrm{~Hz}$, 1H), $5.46-5.35$ (m, 2H), $2.52-2.48$ (m, 2H), $2.42-2.37$ (m, 2H), $2.22-2.16$ (m, 4H), 1.95 (t, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.63-1.55(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,130.3$, 128.5, 84.4, 68.6, 43.9, 28.3, 26.2, 20.2, 18.0 ppm ; FT-IR (neat) $v_{\max }=3010$, 2936, 2863,

2724, 1722, 1433, 1409, 1390, 1348, $1056 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}[M-\mathrm{H}]^{+}$ 149.0961, 149.0958 found.

($\boldsymbol{R}, \mathbf{Z}$)-4-(non-3-en-8-yn-1-yl)oxetan-2-one (341). LiClO_{4} (15.1 g, 142 mmol , dried overnight at $180^{\circ} \mathrm{C}$ under high vacuum) was suspended in $120 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and TMS-quinidine $321(2.18 \mathrm{~g}, 5.49 \mathrm{mmol})$ was added. The mixture was stirred at RT until all solids dissolved. Then $280 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ were added and the reaction cooled to $-78^{\circ} \mathrm{C}$. $i \mathrm{Pr}_{2} \mathrm{NEt}(20.8 \mathrm{~mL}$, $119 \mathrm{mmol})$ followed by a solution of $\mathbf{3 4 0}(6.87 \mathrm{~g}, 45.7 \mathrm{mmol})$ in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. $\mathrm{AcCl}(8.13 \mathrm{ml}, 114 \mathrm{mmol})$ was dissolved in $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise over 4 h via syringe pump. After stirring at $-78{ }^{\circ} \mathrm{C}$ overnight, 200 mL ether were added and the suspension filtered over a pad of silica (rinsed with 100 mL ether) and concentrated. The crude material was purified by flash column chromatography (hexane/Et ${ }_{2} \mathrm{O} 4: 1 \rightarrow 3: 1 \rightarrow 2: 1$) to yield 341 ($6.62 \mathrm{~g}, 34.4 \mathrm{mmol}, 75 \%$).
$\mathrm{R}_{f}=0.44$ (hexane/Et $\mathrm{E}_{2} 2: 1, \mathrm{KMnO}_{4}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.46-5.36(\mathrm{~m}, 2 \mathrm{H})$, $4.55-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=16.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-$ $2.14(\mathrm{~m}, 6 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.3,130.6,128.5,84.4,70.9,68.7,43.1,34.8,28.3,26.1,23.0$, 17.9 ppm ; FT-IR (neat) $v_{\max }=3009,2936,2864,1823,1455,1433,1280,1136,1117,861$, $825 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{2}[M+\mathrm{Na}]^{+} 215.1043$, 215.1041 found; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}=$ $+27.12\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

($\boldsymbol{R}, \mathbf{Z}$)-methyl 5-hydroxy-3-oxotetradec-8-en-13-ynoate (342). $n \mathrm{BuLi}$ (1.6 M in hexane, $82 \mathrm{~mL}, 131 \mathrm{mmol})$ was added to a solution of $i \operatorname{Pr}_{2} \mathrm{NH}(19 \mathrm{~mL}, 134 \mathrm{mmol})$ in 120 mL THF at $0{ }^{\circ} \mathrm{C}$. After 15 min , the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{MeOAc}(10.4 \mathrm{~mL}, 131 \mathrm{mmol})$ in 20 mL THF was added. After 20 min , a solution of 341 ($6.62 \mathrm{~g}, 34.4 \mathrm{mmol}$) in 16 mL THF was added. After 3 h , the reaction was warmed to RT and then quenched by the addition of $150 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ (saturated, aqueous). Phase separation, extraction of the aqueous phase with EtOAc ($3 \times 100 \mathrm{~mL}$) and subsequent drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ furnished after concentration the
crude product. Purification via flash column chromatography (hexane/EtOAc 3:1 $\rightarrow 2: 1 \rightarrow$ 1:1) gave 342 ($7.01 \mathrm{~g}, 26.3 \mathrm{mmol}, 77 \%$) as a faint yellow oil.
$\mathrm{R}_{f}=0.25$ (hexane/EtOAc 2:1, KMnO_{4}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) contains 10% enol tautomer $\delta 5.43-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.79-2.69$ (m, 2H), $2.21-2.15(\mathrm{~m}, 6 \mathrm{H}), 1.96(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62$, $-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.41(\mathrm{~m}$, $1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) contains 10% enol tautomer $\delta 203.6,167.5,130.0$, 129.6, 84.6, 68.6, 67.2, 52.6, 49.8, 49.8, 36.4, 28.5, 26.2, 23.4, 18.0 ppm; FT-IR (neat) $v_{\max }=$ 3507, 3290, 2006, 2934, 2863, 2116, 1741, 1714, 1434, 1406, 1323, 1267, 1205, 1155, $859 \mathrm{~cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{4}[M+\mathrm{Na}]^{+} 289.1410,289.1411$ found; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}=$ $-21.23\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

(R, Z)-methyl 2-diazo-5-hydroxy-3-oxotetradec-8-en-13-ynoate (343). To a solution of $342(7.01 \mathrm{~g}, 26.3 \mathrm{mmol})$ in 230 mL MeCN was added $\mathrm{NEt}_{3}(7.34 \mathrm{~mL}, 52.7 \mathrm{mmol})$ and p-ABSA ($8.22 \mathrm{~g}, 34.2 \mathrm{mmol}$). After stirring overnight, the reaction was filtered over a pad of celite and concentrated. Purification by flash column chromatography (hexane/EtOAc 3:1 \rightarrow 2:1 gave the corresponding diazo alcohol ($6.62 \mathrm{~g}, 22.7 \mathrm{mmol}, 86 \%$) as a yellow oil. This material was dissolved in 45 mL DMF and imidazole ($3.08 \mathrm{~g}, 45.2 \mathrm{mmol}$) and TESCl $(5.7 \mathrm{~mL}, 34 \mathrm{mmol})$ were added. After $3 \mathrm{~h}, 150 \mathrm{~mL}$ ether were added and the mixture was washed with water ($2 \times 200 \mathrm{~mL}$). The organic phase was dried over MgSO_{4} and concentrated. Purification via flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) gave 343 (7.83 g , $19.3 \mathrm{mmol}, 85 \%, 73 \%$ over two steps, $94 \% e e^{205}$).
$\mathrm{R}_{f}=0.30\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 10: 1, \mathrm{KMnO}_{4}, \mathrm{UV}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.44-5.30(\mathrm{~m}$, $2 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=15.6$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.06(\mathrm{~m}, 6 \mathrm{H}), 1.95 \mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,161.8$, $130.5,129.0,84.6,68.8,68.5,52.4,47.4,38.1,28.6,26.2,23.2,18.0,7.0,5.1 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3007,2954,2913,2877,2134,1723,1656,1437,1200,1005,743 \mathrm{~cm}^{-1} ;$ HRMS

[^95](ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{Si}[M+\mathrm{Na}]^{+} 401.2119,401.2127$ found; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}=-16.46$ (c $=1.0$, CHCl_{3}).

SFC ($\left.\mathrm{CO}_{2}-\mathrm{MeOH} 98: 2,2.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$, racemic

\#	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V}$-sec]	Height [$\mu \mathrm{V}]$	Area\%	Heighr\%	Quantity	NTP	Resolution	Symmetry Factor
1 Unknown	10	5.733	1788741	188248	56.104	58.130	$\mathrm{~N} / \mathrm{A}$	8861	2.084	1.531	
2 Unknown	10	6.260	1399540	135593	43.896	41.870	$\mathrm{~N} / \mathrm{A}$	9048	$\mathrm{~N} / \mathrm{A}$		1.485

$\mathbf{S F C}\left(\mathrm{CO}_{2}-\mathrm{MeOH} 98: 2,2.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}\right)$, enantioenriched

\#	Peak Name	CH	tR [min]	Area [$\mu \mathrm{V}$ - sec]	Height [$\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
	Unknown	1	6.583	88842	7972	2.861	3.094	N/A.	7354	1.808	1.332	
	Unknown	1	7.150	3015957	249655	97.139	96.906	N/A.	7914	N/A	1.449	

(R, Z)-4-(oct-2-en-7-yn-1-yl)cyclopent-2-enone (335).

To a refluxing solution of $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}(55.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $380 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added a solution of $\mathbf{3 4 3}(7.83 \mathrm{~g}, 19.3 \mathrm{mmol})$ in $50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise over 30 min . After additional 30 min , the reaction was allowed to cool to RT and the solvent evaporated. The crude material was purified by flash column chromatohgraphy (hexane/Et ${ }_{2} \mathrm{O} 4: 1$) to yield a diastereomeric mixture of the $\mathrm{C}-\mathrm{H}$ inserted products (6.85 g). This material was then dissolved in 200 mL DMSO and $\mathrm{NaCl}(33.8 \mathrm{~g}, 578 \mathrm{mmol})$ was added. The mixture was degassed and placed in a $140^{\circ} \mathrm{C}$ preheated oil bath. ${ }^{206}$ After 2.5 h , the reaction was allowed to cool to RT, befor 300 mL of water were added. This solution was then extracted with EtOAc ($4 \times 200 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated. Purification via flash column chromatography (hexane/EtOAc 7:1 \rightarrow 6:1) allowed for the separation of the diastereomers. The obtained $2.20 \mathrm{~g}(6.86 \mathrm{mmol})$ of the syn isomer were dissolved in $60 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. DBU ($10.4 \mathrm{~mL}, 68.8 \mathrm{mmol}$) was added and the reaction stirred for 17 h at $4^{\circ} \mathrm{C}$. The solution was quenched by the addition of 150 mL $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) and the phases separated. The aqueous phase was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$) and the combined organic phases dried over MgSO_{4}. The crude material was purified by flash column chromatography providing 335 ($0.73 \mathrm{~g}, 3.88 \mathrm{~mol}, 20 \%$ over three steps) as a yellow oil.
$\mathrm{R}_{f}=0.29$ (hexane/EtOAc 4:1, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (dd, $J=5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.37(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H})$, 2.52 (dd, $J=18.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.13(\mathrm{~m}, 7 \mathrm{H}), 2.03(\mathrm{dd}, J=18.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{t}$, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,168.0$, 134.3, 131.5, 126.8, 84.3, 68.7, 41.5, 40.6, 32.1, 28.3, 26.3, 18.0 ppm ; FT-IR (neat) $v_{\max }=$ 3294, 3009, 2934, 1711, 1587, 1435, 1407, 1348, 1184, 835, $784 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}[M+\mathrm{H}]^{+}$187.1117, 187.1127 found; $[\alpha]_{\mathrm{D}}^{23^{\circ} \mathrm{C}}=+97.73\left(\mathrm{c}=0.67, \mathrm{CHCl}_{3}\right)$.

[^96]
(R, Z)-4-(10-phenyldeca-2-en-7,9-diyn-1-yl)cyclopent-2-enone (334). 335 (300 mg, 1.59 mmol) and (iodoethynyl)benzene ($0.545 \mathrm{~g}, 2.39 \mathrm{mmol}$) were dissolved in 4.5 mL DMF. $\mathrm{CuI} \quad(6.0 \mathrm{mg}, \quad 0.03 \mathrm{mmol}), \quad \operatorname{Pd}(\mathrm{dba})_{2} \quad(37.0 \mathrm{mg}, \quad 0.06 \mathrm{mmol}), \quad(E)-3-(2-$ (diphenylphosphino)phenyl)-1-phenylprop-2-en-1-one (346) ($25.0 \mathrm{mg}, 0.06 \mathrm{mmol}$) and NEt_{3} ($0.44 \mathrm{~mL}, 3.2 \mathrm{mmol}$) were added. After 6 h , the 5 mL water and 5 mL EtOAc were added. The phases were separated and the aqueous phase extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4} and concentrated. Purification by flash column chromatography (hexane/EtOAc $10: 1 \rightarrow 4: 1 \rightarrow 3: 1$) provided 334 (240 mg , $0.83 \mathrm{mmol}, 52 \%)$
$\mathrm{R}_{f}=0.33$ (hexane/EtOAc 3:1, CAM, UV); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (dd, $J=5.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.18(\mathrm{dd}, J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.52-5.39(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=18.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}) 2.39-2.33(\mathrm{~m}, 3 \mathrm{H})$, $2.29-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{dd}, J=18.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.9,167.9,134.3,132.6,131.2,129.0,128.5,127.1,122.1,84.3,75.1$, $74.4,65.7,41.6,40.7,32.1,28.0,26.4,19.1 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3009,2929,2862$, 2243, 1711, 1587, 1490, 1407, 1348, 1183, $756 \mathrm{~cm}^{-1}$; HRMS (MALDI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}$ $\left[M+\mathrm{NH}_{4}\right]^{+} 306.1852,306.1854$ found; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}=+120.90\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)$.

Methyl-4-((2R,3R)-3-((E)-((S)-2-oxo-5-((Z)-10-phenyldeca-2-en-7,9-diyn-1-yl)cyclo-pent-3-en-1-ylidene)methyl)oxiran-2-yl)butanoate (347). To a solution of LiHMDS ($26.4 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 0.6 mL THF was added $334(35.0 \mathrm{mg}, 0.12 \mathrm{mmol}$) in 0.4 mL THF at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 30 min , before $\mathbf{3 1 7}(52.2 \mathrm{mg}, 0.30 \mathrm{mmol})$ in 0.3 mL THF was added dropwise at $-78^{\circ} \mathrm{C}$. After 2 h , the reaction was quenched by the addition of 5 mL $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous, saturated) and 3 mL water. Then, 5 mLEtOAc were added, the phases were separated and the aqueous phase extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic
phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash column chromatography (hexane/EtOAc 2:1 \rightarrow 1:1) separated the aldol products from residual aldehyde 317. The crude material was disolved in $0.6 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and cooled to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{NEt}_{3}(0.17 \mathrm{~mL}$, $1.21 \mathrm{mmol})$ and $\mathrm{MsCl}(57 \mu \mathrm{~L}, 0.7 \mathrm{mmol})$ were added. After stirring at this temperature for 1 h , the cooling bath was removed and the reaction allowed to warm to RT. The reaction was quenched by the addition of $2 \mathrm{~mL} \mathrm{NaHCO}_{3}$ (aqueous, saturated) and the phases separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered over a short pad of silica. The pad was rinsed with 15 mL EtOAc and the residue carefully concentrated to 0.5 mL (concentrated at RT since decomposition was observed at $40{ }^{\circ} \mathrm{C}$). Additional $0.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, followed by $\mathrm{Al}_{2} \mathrm{O}_{3}(124 \mathrm{mg}, 1.21 \mathrm{mmol}) .{ }^{207}$ After 12 h , additional 100 mg of $\mathrm{Al}_{2} \mathrm{O}_{3}$ was added. If the reaction was not done, additional 100 mg were added (this process was repeated until full conversion was achieved). The material was directly loaded on a column and purified (hexane/EtOAc 3:1 $\rightarrow 2: 1 \rightarrow 1: 1$) to give 347 ($25.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 49 \%$)
$\mathrm{R}_{f}=0.76$ (hexane/EtOAc 1:1, $\mathrm{KMnO}_{4}, \mathrm{UV}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55$ (dd, $J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.38-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.22-$ $6.19(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.37(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.40(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-$ $2.95(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 5 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.76(\mathrm{~m}$, $3 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8,173.6,161.8,141.0$, 134.8, 132.7, 131.7, 131.1, 129.1, 128.5, 126.1, 122.0, 84.2, 75.2, 74.3, 68.9, 60.1, 55.1, 51.8, $43.3,33.6,31.9,31.4,28.0,26.4,21.5,19.1 \mathrm{ppm}$; FT-IR (neat) $v_{\max }=3009,2936,2861$, 2244, 1736, 1703, 1656, 1490, 1438, 1204, 1171, 758, $692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 443.2217,443.2216$ found; $[\alpha]_{\mathrm{D}}{ }^{23^{\circ} \mathrm{C}}=+91.87\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

[^97]

(S)-6-((R,E)-1-hydroxy-2-((S)-2-oxo-5-((Z)-10-phenyldeca-2-en-7,9-diyn-1-

yl)cyclopent-3-en-1-ylidene)ethyl)tetrahydro-2H-pyran-2-one (PDCycloEC, 348). To a solution of ester 347 ($35.0 \mathrm{mg}, 0.08 \mathrm{mmol}$) in 2.6 mL pH 7 buffer-THF (4:1) was added Novozyme (30 mg). After 1 h , the reaction was filtered over cotton and concentrated. The crude material was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$. The obtained carboxylic acid was then dissolved in $2 \mathrm{mLCHCl}_{3}$ and 300 mg of silica was added. After 5 d , the reaction was filtered over celite and purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40: 1\right)$ to yield PDCycloEC (348) ($17.0 \mathrm{mg}, 0.04 \mathrm{mmol}, 50 \%$ over two steps).
$\mathrm{R}_{f}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1, \mathrm{KMnO}_{4}, \mathrm{UV}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (dd, $J=6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.48-6.35(\mathrm{~m}, 2 \mathrm{H}), 5.50-$ $5.44(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.78(\mathrm{~m}$, $1 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.19$ $-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 196.7,171.3,163.2,140.8,134.4,132.7,131.6,129.1,128.7$, 128.5, 126.2, 122.0, 84.4, 82.6, 75.1, 74.4, 70.8, 65.7, 43.6, 31.3, 29.8, 27.9, 26.4, 21.6, 19.1, 18.5 ppm ; FT-IR (neat) $v_{\max }=3406,3010,2927,2244,1732,1704,1656,1580,1490,1443$, 1350, 1240, 1208, 1186, 1051, 975, 933, 842, 809, $758 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{4}\left[M+\mathrm{NH}_{4}\right]^{+} 446.2326,446.2319$ found; $[\alpha]_{\mathrm{D}}{ }^{22^{\circ} \mathrm{C}}=+69.12\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

13.5 X-Ray Chrystallographic Data

13.5.1 Compound 177

Table 13.1: Crystal data and structure refinement for 177.

Identification code	mo_ca260814_0ma
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{2}$
Formula weight	310.19
Temperature/K	100.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	7.5003(9)
b/Å	8.1284(14)
c/Å	10.6703(12)
$\alpha /{ }^{\circ}$	99.451(4)
$\beta /{ }^{\circ}$	95.875(3)
γ^{\prime}	100.128(2)
Volume/A ${ }^{\text {3 }}$	625.89(15)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.646
μ / mm^{-1}	3.277
$\mathrm{F}(000)$	316.0
Crystal size/mm ${ }^{3}$	$0.3 \times 0.21 \times 0.19$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.906 to 61.05
Index ranges	$-10 \leq \mathrm{h} \leq 8,-11 \leq \mathrm{k} \leq 11,-15 \leq 1 \leq 14$
Reflections collected	26831
Independent reflections	$3738\left[\mathrm{R}_{\text {int }}=0.0195, \mathrm{R}_{\text {sigma }}=0.0116\right]$
Data/restraints/parameters	3738/0/166
Goodness-of-fit on F^{2}	1.057
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0167, \mathrm{wR}_{2}=0.0432$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0176, \mathrm{wR}_{2}=0.0436$
Largest diff. peak/hole / e \AA^{-3}	0.48/-0.21

Table 13.2: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 7 7} . \mathrm{U}_{\mathrm{eq}}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

	Atom	\boldsymbol{x}	\boldsymbol{y}
Br1	$13698.4(2)$	$11082.2(2)$	\boldsymbol{z}
O1	$10342.6(10)$	$7093.4(9)$	$3816.8(2)$

Table 15.3: Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 177. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+2 \mathrm{hka} \mathrm{b}^{*} * \mathrm{U}_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
Br1	$15.49(6)$	$13.30(5)$	$17.23(5)$	$1.10(3)$	$0.37(4)$	$-4.55(3)$
O1	$14.7(3)$	$12.4(3)$	$8.5(3)$	$1.7(2)$	$1.2(3)$	$-1.3(3)$
O2	$13.5(3)$	$12.0(3)$	$15.7(3)$	$-2.2(3)$	$0.8(3)$	$1.8(3)$
N1	$13.0(4)$	$12.5(4)$	$12.8(4)$	$-0.1(3)$	$0.0(3)$	$-0.4(3)$
C1	$10.9(4)$	$10.0(4)$	$13.0(4)$	$0.4(3)$	$0.1(3)$	$0.3(3)$
C2	$9.9(4)$	$8.9(4)$	$9.2(4)$	$1.5(3)$	$1.4(3)$	$0.5(3)$
C3	$10.8(4)$	$9.2(4)$	$8.8(4)$	$2.2(3)$	$1.6(3)$	$1.3(3)$
C4	$11.4(4)$	$11.5(4)$	$8.7(4)$	$2.2(3)$	$1.4(3)$	$1.5(3)$
C5	$12.2(4)$	$14.2(4)$	$12.0(4)$	$3.5(3)$	$0.2(3)$	$2.3(3)$
C6	$14.4(5)$	$16.6(4)$	$17.7(5)$	$7.0(4)$	$1.7(4)$	$5.7(4)$
C7	$10.9(4)$	$9.3(4)$	$8.1(4)$	$1.5(3)$	$1.0(3)$	$1.3(3)$
C8	$17.0(5)$	$9.8(4)$	$17.1(4)$	$4.9(3)$	$1.5(4)$	$1.3(3)$
C9	$11.5(4)$	$10.0(4)$	$9.6(4)$	$2.5(3)$	$3.1(3)$	$2.5(3)$
C10	$10.1(4)$	$9.2(4)$	$9.6(4)$	$2.3(3)$	$1.8(3)$	$1.3(3)$

C11	$13.3(5)$	$13.4(4)$	$17.6(4)$	$7.1(3)$	$3.0(4)$	$-0.2(3)$
C 12	$7.4(4)$	$11.4(4)$	$11.0(4)$	$1.5(3)$	$0.6(3)$	$1.1(3)$
C 13	$11.1(4)$	$13.8(4)$	$13.9(4)$	$4.5(3)$	$2.9(3)$	$3.6(3)$
C 14	$13.8(5)$	$12.0(4)$	$16.0(4)$	$3.6(3)$	$1.2(4)$	$4.3(3)$

Table 13.4: Bond Lengths for 177.

Atom	om	Le	Ato	Atom	
	C1	1.8	C 4	C5	
	N1	1.	C 4	C12	1.5313(13)
	C7	1.47	C5	C6	
	C12	1.2136(12)	C5	C13	$1.5376(14)$
	C1	$1.2789(13)$	C6	C13	1.4971(14
	C2	$1.5046(13)$	C7	C10	1.5373
C2	C3	$1.5625(14)$	C 7	C14	,
	C7	1.5423 (13)	C9	C10	1.5632
	C4	1.5494(13)	C9	C13	1.5198(14)
	C8	1.5316(13)	10	C11	.5180(13)
3	C9	.5692(10	C12	

Table 13.5: Bond Angles for 177.

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
N1	O1	C7	108.82(7)	O1	C7	C2	103.95(7)
C1	N1	O1	107.92(8)	O 1	C7	C10	108.08(7)
N1	C1	Br1	118.53(8)	O 1	C7	C14	106.84(8)
N1	C1	C2	116.28(9)	C 10	C7	C2	102.84(7)
C2	C1	Br1	125.03(7)	C14	C7	C2	116.23(8)
C1	C2	C3	115.58(8)	C14	C7	C10	117.86(8)
C1	C2	C7	98.70(7)	C10	C9	C3	95.13(7)
C7	C2	C3	105.12(8)	C13	C9	C3	107.44(8)
C2	C3	C9	103.80(7)	C 13	C9	C10	106.86(8)
C4	C3	C2	109.07(7)	C7	C10	C9	102.17(7)
C4	C3	C9	94.01(7)	C7	C10	C12	103.09(7)
C8	C3	C2	110.69(8)	C 11	C10	C7	115.72(8)
C8	C3	C4	115.18(8)	C 11	C10	C9	118.84(8)
C8	C3	C9	122.39(8)	C 11	C10	C12	115.03(8)
C5	C4	C3	105.04(7)	C 12	C10	C9	99.49(7)

C12	C4	C3	$100.74(7)$	O2	C12	C4	$127.58(9)$
C12	C4	C5	$97.61(7)$	O2	C12	C10	$126.43(9)$
C4	C5	C13	$104.06(8)$	C4	C12	C10	$105.86(7)$
C6	C5	C4	$124.60(9)$	C6	C13	C5	$60.25(7)$
C6	C5	C13	$58.56(6)$	C6	C13	C9	$119.28(9)$
C13	C6	C5	$61.19(6)$	C9	C13	C5	$103.88(8)$

Table 13.6: Torsion Angles for 177.

A	B C	D	Angle ${ }^{\circ}$	A		C D	Angle ${ }^{\circ}$
Br	C2	C3	-85.87(10)		C9	C13 C6	-38.00(11)
Br	C1 C2	C7	162.68(7)	C4	C3	C9	7)
O1	N1 C1	Br1	-175.28(6)	C4	C3	C9	(02)
O1	N1 C1	C2	0.40(12)	C4	C5	C6 C13	-85.65(10)
O1	C7 C	C9	67.35(8)	C4	C5	C13 C6	122
O1	C	C11	-63.30(10)	C4	C5	C13 C9)
O1	C7	C12	2 170.26(7)	C5	C4	C 12 O 2	90.44(11)
N1	O1 C7	C2	-20.58(9)	C5	C4	C12	85.60(8)
N1	O1 C7		-129.37(8)	C5	C6	C13 C9	8.7())
N1	O1 C7	C1	102.86(8)	C6	C5	C13 C9	-116.04(9)
N1	C1 C2	C3	98.76(10)	C7	O1	N1 C1	13.19(10)
N1	C1 C2	C7	-12.69(11)	C7	C2	C3 C4	-76.69(9)
C1	C2 C3	C4	175.67(8)	C7	C2	C3 C8	155.60(8)
C1	C2 C3	C8	47.96(11)	C7	C2	C3 C9	22.58(9)
C1	C2 C3	C9	-85.07(9)	C7		2 O 2	97.93(11)
C1	C2 C7	O	18.66(9)	C7		C4	-85.97(8)
C1	C2 C7	C10	0 131.28(7)	C8	C3	C4 C5	-80.50(10)
C1	C2 C7		-98.42(9)	C8	C3	C 4 C	178.52(8)
C2	C3 C4	C5	154.36(7)	C8	C3	C9 C	2.22 (9)
C2	C3 C4		2 53.38(9)	C8	C3	C9 C	8.31(11)
C2	C3 C9	C10	-46.31(8)	C9	C3	C4 C5	48.27(8)
C2	C3 C9		3-155.78(7)	C9	C3	C4 C12	-52.71(8)
C2	C7		-42.19(8)	C9		2 O 2	-157.10(10)
C2	C7	C11	1-172.85(8)	C9		C12 C4	19.00(9)
C2	C7	C12	2 60.71(8)	C1	C9	C13 C5	-75.72(9)
C3	C2 C7	O1	-100.92(8)	C10	C9	C13 C6	-139.14(9)
C3	C2 C7	C10	0 11.70(9)			C12 O2	-28.95(14)
C3	C2 C7	C14	4141.99 (8)			C12 C4	147.15(8)
C3	C4 C5	C6	25.21(12)	C12		C5 C6	128.53(9)
C3	C4 C5		$3-36.07$ (9)			C5 C13	67.25(8)
C3	C 4 C 1	O2	-162.60(10)	C13	C9	C10 C7	164.37(7)

```
C3 C4 C12 C10 21.36(9) C13 C9 C10 C11-66.91(11)
C3 C9 C10 C7 54.39(8) C13 C9 C10 C12 58.66(9)
C3 C9 C10 C11-176.89(8) C14 C7 C10 C9 -171.49(8)
C3 C9 C10 C12 -51.32(8) C14 C7 C10 C11 57.85(11)
C3 C9 C13 C5 25.42(9) C14 C7 C10 C12-68.59(10)
```

Table 13.7: Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 177

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q})$
H2	11789	7689	1921	11
H4	9120	7343	-80	13
H5	5593	6339	-217	15
H6A	6343	9871	1254	19
H6B	4264	8737	665	19
H8A	9432	11039	2650	22
H8B	8724	10538	1146	22
H8C	10836	10670	1655	22
H9	7669	8312	3576	12
H11A	7484	3465	2907	22
H11C	5763	4360	2719	22
H11B	7119	4868	4040	22
H13	4758	6632	1987	15
H14A	12610	5475	3403	21
H14B	11272	4472	2141	21
H14C	10834	4123	3521	21

Experimental

Single crystals of $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{2} 177$ were obtained by vapor diffusion from hexane \rightarrow $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A suitable crystal was selected and measured on a 'ETH_LOC_ApexIID8_Mo' diffractometer. The crystal was kept at $100.0(2) \mathrm{K}$ during data collection. Using Olex2 ${ }^{\mathbf{I}}$, the structure was solved with the $\mathrm{XS}^{\text {II }}$ structure solution program using Direct Methods and refined with the $\mathrm{XL}^{\text {III }}$ refinement package using Least Squares minimisation.

I: Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

II: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
III: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
Crystal Data for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{2}(M=310.19 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=$ $7.5003(9) \AA, b=8.1284(14) \AA, c=10.6703(12) \AA, \alpha=99.451(4)^{\circ}, \beta=95.875(3)^{\circ}, \gamma=$
$100.128(2)^{\circ}, V=625.89(15) \AA^{3}, Z=2, T=100.0(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=3.277 \mathrm{~mm}^{-1}$, Dcalc $=$ $1.646 \mathrm{~g} / \mathrm{cm}^{3}, 26831$ reflections measured $\left(3.906^{\circ} \leq 2 \Theta \leq 61.05^{\circ}\right.$), 3738 unique ($R_{\text {int }}=0.0195$, $\mathrm{R}_{\text {sigma }}=0.0116$) which were used in all calculations. The final R_{1} was $0.0167(\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0436 (all data).

13.5.2 Compound 201

Table 13.8: Crystal data and structure refinement for 201.

Identification code	mo_ca180415_1_1_0m
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$
Formula weight	288.33
Temperature/K	100.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.6729(13)
b/Å	8.7400 (12)
c/Å	10.0843(16)
$\alpha /{ }^{\circ}$	96.793(4)
$\beta /{ }^{\circ}$	100.510(4)
$\gamma /{ }^{\circ}$	109.424(5)
Volume/A ${ }^{3}$	695.48(18)
Z	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.377
μ / mm^{-1}	0.097
$\mathrm{F}(000)$	308.0
Crystal size/mm ${ }^{3}$	$0.08 \times 0.04 \times 0.02$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.186 to 55.05
Index ranges	$-11 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 9,-13 \leq 1 \leq 13$
Reflections collected	4884
Independent reflections	$3186\left[\mathrm{R}_{\text {int }}=0.0530, \mathrm{R}_{\text {sigma }}=0.1269\right]$
Data/restraints/parameters	3186/0/193
Goodness-of-fit on F^{2}	1.008
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0613, \mathrm{wR}_{2}=0.1001$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1401, \mathrm{wR}_{2}=0.1233$
Largest diff. peak/hole /e \AA^{-3}	0.28/-0.31

Table 13.9: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 201. $U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
O1	$11093(2)$	$1275(2)$	$7565.1(18)$	$19.4(5)$
O2	$6171(2)$	$4363(2)$	$11954.2(18)$	$19.4(5)$
O0AA	$6209(2)$	$1018(2)$	$8764.9(18)$	$14.3(4)$
O4	$7207(2)$	$4598(2)$	$10084.6(17)$	$15.3(4)$
C5	$6026(3)$	$3846(3)$	$10768(3)$	$13.9(6)$
C6	$6705(3)$	$3803(3)$	$8632(3)$	$12.7(6)$
C7	$8085(3)$	$3140(3)$	$6659(3)$	$13.5(6)$
C8	$8158(3)$	$3412(3)$	$8232(3)$	$12.0(6)$
C9	$9869(3)$	$1629(3)$	$7184(3)$	$12.8(6)$
C10	$7064(3)$	$1249(3)$	$6134(2)$	$12.4(6)$
C11	$8070(3)$	$697(3)$	$7308(3)$	$11.4(6)$
C12	$7527(3)$	$735(3)$	$4818(3)$	$14.9(6)$
C13	$4631(3)$	$2410(3)$	$9796(3)$	$14.5(6)$
C14	$7925(3)$	$1703(3)$	$8621(3)$	$12.1(6)$
C15	$9082(3)$	$1718(3)$	$9950(3)$	$15.8(6)$
C16	$5339(3)$	$2147(3)$	$8568(3)$	$13.2(6)$
C17	$7594(3)$	$-1150(3)$	$7274(3)$	$17.0(6)$
C1	$9751(3)$	$3008(3)$	$6420(3)$	$15.8(6)$
C2	$9303(3)$	$1990(3)$	$4959(3)$	$17.0(6)$
C3	$7831(3)$	$1868(3)$	$3814(3)$	$19.8(6)$
C0AA	$7604(4)$	$4467(3)$	$6014(3)$	$19.5(6)$

Table 13.10: Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 201. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$15.9(10)$	$23.7(11)$	$18.0(11)$	$0.7(8)$	$1.1(8)$	$9.1(8)$
O2	$20.7(11)$	$22.6(10)$	$14.4(11)$	$1.1(9)$	$5.1(8)$	$7.7(8)$
O0AA	$11.4(9)$	$11.7(9)$	$23.0(11)$	$5.5(8)$	$8.0(8)$	$5.3(7)$
O4	$15.6(10)$	$13.1(9)$	$15.8(10)$	$1.0(8)$	$6.0(8)$	$2.9(8)$
C5	$16.5(15)$	$13.1(13)$	$15.5(15)$	$5.5(11)$	$4.4(12)$	$8.6(11)$
C6	$17.5(14)$	$12.5(13)$	$8.6(14)$	$1.0(11)$	$1.8(11)$	$6.9(11)$
C7	$14.8(14)$	$12.6(13)$	$13.7(14)$	$4.7(11)$	$2.5(11)$	$5.6(11)$
C8	$9.1(13)$	$11.4(12)$	$14.4(14)$	$1.3(11)$	$2.9(11)$	$2.6(10)$
C9	$13.0(14)$	$15.9(13)$	$6.8(13)$	$-1.8(11)$	$0.0(11)$	$4.4(11)$
C10	$11.3(13)$	$14.3(13)$	$11.5(14)$	$2.7(11)$	$1.9(11)$	$4.9(10)$
C11	$11.6(13)$	$10.9(12)$	$12.6(14)$	$2.9(11)$	$2.3(11)$	$5(1)$

C12	$13.4(14)$	$16.1(13)$	$15.4(15)$	$4.4(11)$	$2.3(11)$	$5.8(11)$
C13	$13.7(14)$	$12.5(12)$	$17.3(15)$	$1.6(11)$	$3.9(11)$	$5(1)$
C14	$11.1(13)$	$13.3(12)$	$12.7(14)$	$3.5(10)$	$2.2(11)$	$5.6(10)$
C15	$17.0(14)$	$16.5(14)$	$15.5(15)$	$4.7(12)$	$4.2(12)$	$7.2(11)$
C16	$12.0(13)$	$13.8(13)$	$14.0(14)$	$2.9(11)$	$0.6(11)$	$6.4(10)$
C17	$22.4(15)$	$15.0(13)$	$15.1(15)$	$3.2(11)$	$3.9(12)$	$8.9(12)$
C1	$13.4(14)$	$13.6(13)$	$18.7(15)$	$2.3(11)$	$5.0(11)$	$2.5(11)$
C2	$18.1(15)$	$17.8(13)$	$15.9(15)$	$2.0(12)$	$4.7(12)$	$7.6(11)$
C3	$23.5(16)$	$22.6(15)$	$13.7(15)$	$4.1(12)$	$2.6(12)$	$9.7(12)$
C0AA	$26.6(16)$	$19.3(14)$	$17.6(15)$	$9.9(12)$	$8.8(13)$	$10.8(12)$

Table 13.11: Bond Lengths for 201.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C9	1.212(3)	C8	C14	1.547(3)
O2	C5	1.195(3)	C9	C11	1.537(3)
O0AA	C14	1.449(3)	C9	C1	1.526(4)
O0AA	C16	1.439(3)	C10	C11	1.560(3)
O4	C5	1.369(3)	C10	C12	1.516(4)
O4	C6	1.464(3)	C11	C14	1.550(3)
C5	C13	1.506(3)	C11	C17	1.522(3)
C6	C8	1.519(3)	C12	C2	1.534(3)
C6	C16	1.521(3)	C12	C3	$1.495(4)$
C7	C8	1.562(4)	C13	C16	1.505(4)
C7	C10	1.564(3)	C14	C15	1.516(3)
C7	C1	1.547(4)	C1	C2	$1.538(4)$
C7	C0AA	1.530(3)	C2	C3	$1.523(4)$

Table 13.12: Bond Angles for 201.

Atom	Atom	Atom	Angle ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
C16	O0AA	C14	111.86(18)	C14	C11	C10	102.58(19)
C5	O4	C6	110.92(19)	C 17	C11	C9	116.0(2)
O2	C5	O4	121.0(2)	C17	C11	C10	117.6(2)
O2	C5	C13	129.4(3)	C17	C11	C14	115.2(2)
O4	C5	C13	109.6(2)	C10	C12	C2	104.0(2)
O4	C6	C8	109.23(19)	C3	C12	C10	120.5(2)
O	C6	C16	104.4(2)	C3	C12	C2	60.32(17)
C8	C6	C16	106.2(2)	C16	C13	C5	104.0(2)
C8	C7	C10	104.12(19)	O0A	14	C8	106.56(19)

C1	C7	C8	$109.7(2)$	O0AA C14	C11	$108.26(19)$	
C1	C7	C10	$93.7(2)$	O0AA C14	C15	$107.7(2)$	
C0AA C7	C8	$110.7(2)$	C8	C14	C11	$102.5(2)$	
C0AA C7	C10	$122.7(2)$	C15	C14	C8	$115.7(2)$	
C0AA C7	C1	$114.4(2)$	C15	C14	C11	$115.6(2)$	
C6	C8	C7	$115.4(2)$	O0AA C16	C6	$105.2(2)$	
C6	C8	C14	$103.3(2)$	O0AA C16	C13	$109.2(2)$	
C14	C8	C7	$105.01(19)$	C13	C16	C6	$104.8(2)$
O1	C9	C11	$126.3(2)$	C9	C1	C7	$101.3(2)$
O1	C9	C1	$128.0(2)$	C9	C1	C2	$96.7(2)$
C1	C9	C11	$105.6(2)$	C2	C1	C7	$105.4(2)$
C11	C10	C7	$95.01(18)$	C12	C2	C1	$103.7(2)$
C12	C10	C7	$107.5(2)$	C3	C2	C12	$58.57(16)$
C12	C10	C11	$107.1(2)$	C3	C2	C1	$124.8(2)$
C9	C11	C10	$99.5(2)$	C12	C3	C2	$61.11(17)$
C9	C11	C14	$103.63(19)$				

Table 13.13: Torsion Angles for 201.

A	B	C D	Angle ${ }^{\circ}$	A	B	C D	Angle ${ }^{\circ}$
O1	C9	C11 C10	-156.7(2)	C10	C7	C8 C14	24.0(2)
O1	C9	C11 C14	97.7(3)	C10	C7	C1 C9	-52.1(2)
O1	C9	C11 C17	-29.5(4)	C10	C7	C1 C2	48.2(2)
O1	C9	C1 C7	-162.9(2)	C10	C11	C14 O0	71.4(2)
O1	C9	C1 C2	89.8(3)	C10	C11	C14 C8	-40.9(2)
O2	C5	C13 C16	-167.7(3)	C10	C11	C14 C15	-167.7(2)
O4	C5	C13 C16	13.8(3)	C10	C12	C2 C1	5.3(3)
O4	C6	C8 C7	-159.71(19)	C10	C12	C2 C3	-117.4(2)
O4	C6	C8 C14	86.3(2)	C10	C12	C3 C2	89.3(3)
O4	C6	C16 O0A	-90.7(2)	C11	C9	C1 C7	20.2(2)
O4	C6	C16 C13	24.5(2)	C11	C9	C1 C2	-87.0(2)
C5	O4	C6 C8	-130.0(2)	C11	C10	C12 C2	-74.8(2)
C5	O4	C6 C16	-16.8(3)	C11	C10	C12 C3	-138.3(2)
C5	C13	C16 O0A	89.1(2)	C12	C10	C11 C9	57.7(2)
C5	C13	C16 C6	-23.2(3)	C12	C10	C11 C14	164.1(2)
C6	O4	C5 O2	-176.7(2)	C12	C10	C11 C17	-68.4(3)
C6	O4	C5 C13	2.0(3)	C14	O0A	C16 C6	-13.6(3)
C6	C8	C14 O0AA	17.7(2)	C14	O0A	C16 C13	-125.7(2)
C6	C8	C14 C11	131.3(2)	C16	O0A	C14 C8	-2.6(3)
C6	C8	C14 C15	-102.0(2)	C16	O0A	C14 C11	-112.3(2)
C7	C8	C14 O0AA	-103.6(2)	C16	O0AA	C14 C15	122.1(2)

C7	C8 C14 C11	10.0(2)	C16	C6	C8 C7	88.2(3)
C7	C8 C14 C15	136.7(2)	C16	C6	C8 C14	-25.7(2)
C7	C10 C11 C9	-52.4(2)	C17	C11	C14 O0A	-57.6(3)
C7	C 10 C 11 C 14	54.0(2)	C17	C11	C14 C8	-170.0(2)
C7	C10 C11 C17	-178.4(2)	C17	C11	C14 C15	63.3(3)
C7	C10 C12 C2	26.4(3)	C1	C7	C8 C6	171.8(2)
C7	C10 C12 C3	-37.2(3)	C1	C7	C8 C14	-75.2(2)
C7	$\begin{array}{llll}\text { C1 } & \mathrm{C} 2 & \mathrm{C} 12\end{array}$	-35.5(3)	C1	C7	C10 C11	64.3(2)
C7	C1 C2 C3	25.5(3)	C1	C7	C10 C12	-45.5(2)
C8	C6 C16 O0A	24.7(3)	C1	C9	C11 C10	20.2(2)
C8	C6 C16 C13	139.9(2)	C1	C9	C11 C14	-85.3(2)
C8	C7 C10 C11	-47.1(2)	C1	C9	C11 C17	147.4(2)
C8	C7 C10 C12	-156.9(2)	C1	C2	C3 C12	-85.0(3)
C8	C7 C1 C9	54.3(2)	C3	C12	C2 C1	122.7(2)
C8	C7 C1 C2	154.7(2)	C0A	C7	C8 C6	44.7(3)
C9	C11 C14 O0AA	174.67(19)	C0A	C7	C8 C14	157.7(2)
C9	C11 C14 C8	62.3(2)	C0A	C7	C10 C11	-173.6(2)
C9	C11 C14 C15	-64.5(3)	C0A	C7	C10 C12	76.7(3)
C9	$\begin{array}{llll}\text { C1 } & \mathrm{C} 12\end{array}$	68.2(2)	C0A	C7	C1 C9	179.4(2)
C9	C1 C2 C3	129.2(3)	C0A	C7	C1 C2	-80.3(3)
C10	C7 C8 C6	-89.0(2)				

Table 13.14: Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 201.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U}(\mathbf{e q})$
H6	6296	4483	8024	15
H8	9263	4259	8763	14
H10	5828	900	6076	15
H12	7300	-463	4498	18
H13A	4349	1414	10215	17
H13B	3607	2678	9535	17
H15A	8943	2432	10709	24
H15B	10252	2141	9870	24
H15C	8798	592	10129	24
H16	4460	1776	7685	16
H17A	7537	-1708	6354	26
H17B	6496	-1592	7495	26
H17C	8445	-1338	7951	26
H1	10759	4056	6657	19
H2	10152	1547	4695	20
H3A	7385	2774	3878	24

H3B	7803	1383	2867	24
H0AA	6378	4087	5693	29
H0AB	8122	4673	5234	29
H0AC	8005	5491	6701	29

Experimental

Single crystals of $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} 201$ were obtained by vapor diffusion from hexane $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A suitable crystal was selected and measured on a 'ETH_LOC_ApexIID8_Mo' diffractometer. The crystal was kept at $100.0(2) \mathrm{K}$ during data collection. Using Olex2 ${ }^{\text {I }}$, the structure was solved with the $\mathrm{XS}^{\text {II }}$ structure solution program using Direct Methods and refined with the XL ${ }^{\text {III }}$ refinement package using Least Squares minimisation.

I: Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

II: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
III: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}(M=288.33 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=$ $8.6729(13) \AA, b=8.7400(12) \AA, c=10.0843(16) \AA, \alpha=96.793(4)^{\circ}, \beta=100.510(4)^{\circ}, \gamma=$ $109.424(5)^{\circ}, V=695.48(18) \AA^{3}, Z=2, T=100.0(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.097 \mathrm{~mm}^{-1}$, Dcalc $=$ $1.377 \mathrm{~g} / \mathrm{cm}^{3}, 4884$ reflections measured $\left(4.186^{\circ} \leq 2 \Theta \leq 55.05^{\circ}\right), 3186$ unique ($R_{\text {int }}=0.0530$, $\mathrm{R}_{\text {sigma }}=0.1269$) which were used in all calculations. The final R_{1} was $0.0613(\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1233 (all data).

13.5.3 Compound 203

Table 13.15: Crystal data and structure refinement for 203.
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/A ${ }^{3}$
Z
$\rho_{\text {calc }} g / \mathrm{cm}^{3}$ 1.353
μ / mm^{-1}
0.096

F(000)
616.0

Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0361, \mathrm{wR}_{2}=0.0898$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0447, \mathrm{wR}_{2}=0.0944$
Largest diff. peak/hole / e $\AA^{-3} 0.38 /-0.23$

Table 13.16: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 203. $U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}(\mathbf{e q})$
O1	$2558.0(13)$	$3598.7(5)$	$6516.6(8)$	$14.57(19)$
O2	$1023.7(15)$	$3290.3(5)$	$4432.7(9)$	$22.3(2)$
O3	$281.7(13)$	$2599.7(5)$	$5617.3(8)$	$17.2(2)$
O4	$2607.0(13)$	$4734.7(5)$	$9844.1(8)$	$19.5(2)$
C5	$959.5(18)$	$2366.4(7)$	$6939.3(12)$	$15.3(2)$
C6	$2550.0(17)$	$3667.7(6)$	$7714.0(11)$	$11.6(2)$
C7	$1448.3(17)$	$4427.9(6)$	$7573.0(11)$	$11.2(2)$
C8	$-533.6(17)$	$4004.3(7)$	$8431.0(11)$	$13.4(2)$
C9	$-1984.2(18)$	$4689.9(7)$	$7814.7(12)$	$15.5(2)$
C10	$4766.0(17)$	$3637.6(7)$	$8826.5(12)$	$15.8(2)$
C11	$1272.3(18)$	$3173.0(7)$	$5476.9(12)$	$15.2(2)$
C12	$1391.8(17)$	$4428.8(6)$	$8812.7(11)$	$12.7(2)$
C13	$-861.0(17)$	$3510.5(7)$	$7272.1(11)$	$12.3(2)$
C14	$1155.5(17)$	$3069.1(7)$	$7740.4(11)$	$12.2(2)$
C15	$2347.1(18)$	$5147.0(7)$	$7400.6(12)$	$15.9(2)$
C16	$2863(2)$	$1894.4(7)$	$7572.0(13)$	$19.0(3)$
C17	$-3962.3(18)$	$4666.7(8)$	$6482.1(12)$	$18.5(3)$
C18	$-809.1(17)$	$4225.7(6)$	$6515.5(11)$	$11.7(2)$
C19	$-2067.4(18)$	$4861.7(7)$	$6564.3(12)$	$14.7(2)$
C20	$3859(2)$	$1704.4(7)$	$7043.0(14)$	$23.8(3)$
C21	$-2663.5(18)$	$2964.6(7)$	$6683.9(13)$	$18.6(3)$

Table 13.17: Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 203. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$18.2(4)$	$15.8(4)$	$15.7(4)$	$-1.9(3)$	$13.1(4)$	$-1.9(3)$
O2	$35.1(5)$	$20.4(5)$	$17.8(5)$	$0.1(4)$	$18.7(4)$	$3.2(4)$
O3	$22.6(4)$	$15.3(4)$	$14.9(4)$	$-3.6(3)$	$11.3(4)$	$-3.3(3)$
O4	$20.3(4)$	$22.3(5)$	$14.8(4)$	$-7.2(4)$	$9.1(4)$	$-3.7(4)$
C5	$20.6(6)$	$11.9(5)$	$16.8(6)$	$-1.3(5)$	$12.7(5)$	$-2.8(5)$
C6	$14.6(5)$	$11.6(5)$	$11.3(5)$	$-0.4(4)$	$8.9(5)$	$-0.7(4)$
C7	$11.8(5)$	$11.1(5)$	$11.8(5)$	$0.7(4)$	$7.3(5)$	$-0.2(4)$
C8	$14.9(5)$	$15.5(5)$	$13.2(5)$	$-0.2(4)$	$9.9(5)$	$-1.0(4)$
C9	$16.5(6)$	$17.5(6)$	$16.3(6)$	$0.6(5)$	$11.5(5)$	$2.1(5)$
C10	$13.1(5)$	$15.1(6)$	$17.9(6)$	$-0.3(5)$	$7.8(5)$	$-0.4(4)$

C11	$19.8(6)$	$12.4(5)$	$16.9(6)$	$-0.6(4)$	$12.4(5)$	$3.3(4)$
C12	$14.3(5)$	$11.2(5)$	$13.3(6)$	$0.2(4)$	$8.1(5)$	$2.1(4)$
C13	$13.6(5)$	$12.9(5)$	$12.4(5)$	$-0.2(4)$	$8.5(5)$	$-0.7(4)$
C14	$14.0(5)$	$11.5(5)$	$12.6(5)$	$0.2(4)$	$8.3(5)$	$-1.0(4)$
C15	$17.6(6)$	$12.0(5)$	$20.6(6)$	$1.1(5)$	$12.1(5)$	$-0.9(4)$
C16	$25.9(6)$	$10.2(5)$	$23.2(6)$	$1.0(5)$	$15.1(6)$	$0.2(5)$
C17	$14.7(6)$	$23.5(6)$	$19.9(6)$	$3.4(5)$	$11.3(5)$	$3.4(5)$
C18	$12.6(5)$	$13.4(5)$	$10.4(5)$	$-0.1(4)$	$7.2(5)$	$-0.7(4)$
C19	$15.2(5)$	$16.1(6)$	$15.0(6)$	$2.0(5)$	$9.7(5)$	$2.4(4)$
C20	$29.3(7)$	$15.9(6)$	$30.7(8)$	$0.3(5)$	$19.5(6)$	$3.4(5)$
C21	$16.3(6)$	$17.8(6)$	$23.0(6)$	$-3.1(5)$	$11.6(5)$	$-4.8(5)$

Table 13.18: Bond Lengths 203.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C6	1.4817(13)	C7	C18	1.5624(16)
O1	C11	$1.3305(15)$	C8	C9	1.5345(16)
O2	C11	1.2029(15)	C8	C12	1.5226(16)
O3	C5	1.4561(14)	C8	C13	1.5564(16)
O3	C11	1.3419(15)	C9	C17	1.5129(17)
O4	C12	1.2076(15)	C9	C19	1.5318(16)
C5	C14	1.5219(16)	C 13	C14	1.5727(16)
C5	C16	1.5051(17)	C 13	C18	1.5676(15)
C6	C7	1.5425(15)	C 13	C21	1.5262(16)
C6	C10	1.5157(16)	C16	C20	1.3193(18)
C6	C14	1.5370(15)	C17	C19	1.4964(16)
C7	C12	1.5511(15)	C18	C19	1.5170(16)
C7	C15	1.5140(15)			

Table 13.19: Bond Angles for 203.

Atom	Atom	tom	Angle	Atom	Atom	tom	Angl
C11	O1	C6	124.88(9)	O1	C11	O3	118.85(10)
	O3	C5	118.23(9)	O2	C11	O	,
	C5	C14	109.85(9)	O2	C11	O3	20.3
O3	C5	C16	111.55(10)	O4	C12	C7	125.91 (11)
6	C5	C14	113.20(10)	O4	C12	C8	128.08(
	C6	C7	106.04(9)	C8	C12	C 7	55.95(9)
	C6	C10	104.14(9)	C8	C13	C14	108.66(9)
1	C6	C14	111.80(9)	C8	C13	C18	93.44(8)

C10	C6	C7	$115.78(10)$	C18	C13	C14	$104.11(8)$
C10	C6	C14	$116.76(10)$	C21	C13	C8	$114.13(9)$
C14	C6	C7	$102.07(9)$	C21	C13	C14	$111.72(9)$
C6	C7	C12	$102.60(9)$	C21	C13	C18	$122.83(10)$
C6	C7	C18	$102.71(9)$	C5	C14	C6	$110.10(9)$
C12	C7	C18	$99.55(8)$	C5	C14	C13	$116.14(10)$
C15	C7	C6	$116.02(9)$	C6	C14	C13	$105.43(9)$
C15	C7	C12	$114.41(10)$	C20	C16	C5	$126.36(13)$
C15	C7	C18	$119.00(10)$	C19	C17	C9	$61.20(8)$
C9	C8	C13	$106.36(9)$	C7	C18	C13	$94.85(8)$
C12	C8	C9	$97.36(9)$	C19	C18	C7	$106.46(9)$
C12	C8	C13	$100.02(8)$	C19	C18	C13	$108.48(9)$
C17	C9	C8	$123.84(11)$	C17	C19	C9	$59.93(8)$
C17	C9	C19	$58.87(8)$	C17	C19	C18	$119.87(10)$
C19	C9	C8	$104.20(9)$	C18	C19	C9	$103.85(9)$

Table 13.20: Torsion Angles for 203.

A	B	C D Angle ${ }^{\circ}$		C D Angle ${ }^{\circ}$
O1	C6	C7 C12 176.64(8)	C11 O1	C6 C10 138.18(11)
O1	C6	C7 C15-57.89(12)	C11 O1	C6 C14 11.25(14)
O1	C6	C7 C18 73.66(10)	C11 O3	C5 C14 50.39(13)
O	C6	C14 C5 26.46(13)	C11 O3	C5 C16-75.96(12)
O	C6	C14 C13-99.53(10)	C 12 C 7	C18 C13-50.72(9)
O3	C5	C14 C6 -54.93(12)	C12 C7	C18 C19 60.19(10)
O3	C5	C14 C13 64.75(12)	C12 C8	C9 C17 130.72(11)
O	C5	C16 C20 0.44(18)	C12 C8	C9 C19 68.91(10)
C5	O3	C11 O1-12.64(15)	C12 C8	C13 C14 51.48(11)
C5	O3	C11 O2 166.15(11)	C12 C8	C13 C18-54.66(9)
C6	O1	C11 O2 160.90(11)	C12 C8	C13 C21 176.87(10)
C6	O1	C11 O3-20.32(16)	C13 C8	C9 C17 27.97(14)
C6	C7	C12 O4 94.27(13)	C13 C8	C9 C19-33.84(11)
C6	C7	C12 C8 -88.32(10)	C13 C8	C12 O4 -159.00(12)
C6	C7	C18 C13 54.63(9)	C13 C8	C12 C7 23.67(11)
C6	C7	C18 C19 165.54(9)	C13 C	C19 C9 26.20(12)
C7	C6	C14 C5 139.40(10)	C13 C	C19 C17-36.83(14)
C7	C6	C14 C13 13.41(11)	C14 C5	C16 C20-124.06(14)
C7	C1	C19 C9 -74.85(11)	C14 C6	C7 C12 59.47(10)
C7	C18	C19 C17-137.89(11)	C14 C6	C7 C15-175.06(10)
C8	C9	C17 C19-86.57(12)	C14 C6	C7 C18-43.51(10)
C8	C9	C19 C17 121.21(11)	C14 C13	C18 C7 -45.03(10)

C8	C9	C19 C18	$4.47(12)$		C14 C13 C18 C19	$-154.19(9)$	
C8	C13	C14	C5	$159.97(9)$		C15 C7	C12 O4

Table 13.21: Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 203.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
H5	-97	2038	6868	18
H8	-517	3729	9132	16
H9	-1761	5125	8388	19
H10A	5490	4030	8702	24
H10B	5309	3143	8838	24
H10C	4903	3721	9644	24
H14	1768	2907	8650	15
H15A	2398	5091	6643	24
H15B	3689	5223	8163	24
H15C	1523	5583	7286	24
H16	3390	1720	8419	23
H17A	-4566	4167	6131	22
H17B	-4923	5078	6265	22
H18	-1115	4115	5641	14
H19	-1863	5392	6391	18
H20A	3391	1866	6198	29
H20B	5027	1409	7515	29
H21A	-3725	3201	6714	28
H21B	-2256	2495	7177	28
H21C	-3143	2855	5790	28

Experimental

Single crystals of $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} 203$ were obtained by vapor diffusion from hexane $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A suitable crystal was selected and measured on a 'ETH_LOC_ApexIID8_Mo' diffractometer. The crystal was kept at $100.0(2) \mathrm{K}$ during data collection. Using Olex2 ${ }^{\text {I }}$, the structure was solved with the XS ${ }^{\text {II }}$ structure solution program using Direct Methods and refined with the XL ${ }^{\text {III }}$ refinement package using Least Squares minimisation.

I: Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

II: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
III: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}(M=288.33 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}$ (no. 14), $a=$ $7.9776(3) \AA, b=17.3871(7) \AA, c=12.3045(4) \AA, \beta=123.970(2)^{\circ}, V=1415.44(9) \AA^{3}, Z=4$, $T=100.0(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.096 \mathrm{~mm}^{-1}$, Dcalc $=1.353 \mathrm{~g} / \mathrm{cm}^{3}, 12636$ reflections measured $\left(4.628^{\circ} \leq 2 \Theta \leq 55.006^{\circ}\right), 3254$ unique $\left(R_{\text {int }}=0.0239, \mathrm{R}_{\text {sigma }}=0.0221\right)$ which were used in all calculations. The final R_{1} was 0.0361 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0944 (all data).

13.5.4 Pallambin B (15)

Table 13.22: Crystal data and structure refinement for pallambin B (15).

Identification code	ca170415_1_1_0m
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$
Formula weight	314.36
Temperature/K	100.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	6.0847(11)
b/Å	10.6892(19)
c/Å	12.022(2)
$\alpha /{ }^{\circ}$	95.308(5)
$\beta /{ }^{\circ}$	91.245(5)
γ°	91.125(5)
Volume/A ${ }^{3}$	778.2(2)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.342
μ / mm^{-1}	0.093
$\mathrm{F}(000)$	336.0
Crystal size/mm ${ }^{3}$	$0.22 \times 0.18 \times 0.04$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.404 to 55.076
Index ranges	$-7 \leq \mathrm{h} \leq 7,-13 \leq \mathrm{k} \leq 13,-15 \leq 1 \leq 15$
Reflections collected	13280
Independent reflections	$3536\left[\mathrm{R}_{\text {int }}=0.0386, \mathrm{R}_{\text {sigma }}=0.0351\right]$
Data/restraints/parameters	3536/0/212
Goodness-of-fit on F^{2}	1.035
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0454, \mathrm{wR}_{2}=0.1206$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0559, \mathrm{wR}_{2}=0.1301$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.31

Table 13.23: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for pallambin $B\left(\mathbf{1 5)} . \mathrm{U}_{\mathrm{eq}}\right.$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U (e q)}$
O1	$-301.5(15)$	$5903.7(9)$	$1830.1(8)$	$13.7(2)$
O2	$591.6(16)$	$6752.6(10)$	$4240.2(8)$	$16.6(2)$
O3	$3598.7(17)$	$8626.7(10)$	$-47.7(9)$	$18.6(2)$
O4	$-2617.2(18)$	$6414.0(11)$	$5054.2(9)$	$22.6(3)$
C5	$4006(2)$	$9120.1(13)$	$1997.2(12)$	$13.7(3)$
C6	$803(2)$	$7915.5(13)$	$1216.2(11)$	$11.7(3)$
C7	$1593(2)$	$6613.4(13)$	$1498.7(11)$	$12.4(3)$
C8	$2958(2)$	$8554.3(13)$	$896.0(12)$	$13.2(3)$
C9	$425(2)$	$5184.0(13)$	$2717.2(12)$	$14.7(3)$
C10	$467(2)$	$8647.8(13)$	$2391.3(11)$	$11.8(3)$
C11	$-1314(2)$	$6091.9(14)$	$4339.2(12)$	$16.4(3)$
C12	$2811(2)$	$8371.6(13)$	$2866.8(11)$	$12.6(3)$
C13	$3003(2)$	$6934.1(13)$	$2584.2(11)$	$12.8(3)$
C14	$-1450(2)$	$5015.3(13)$	$3474.8(12)$	$14.9(3)$
C15	$1634(3)$	$10959.6(14)$	$3051.6(14)$	$21.2(3)$
C16	$2754(2)$	$5826.4(14)$	$574.3(13)$	$18.0(3)$
C17	$2008(2)$	$6086.1(14)$	$3421.1(12)$	$15.1(3)$
C18	$-1034(2)$	$7893.1(14)$	$343.9(12)$	$16.8(3)$
C19	$-2985(2)$	$4110.5(14)$	$3454.5(13)$	$17.4(3)$
C20	$2835(2)$	$10386.7(14)$	$2039.2(13)$	$16.8(3)$
C21	$3596(3)$	$8770.1(15)$	$4076.0(12)$	$19.5(3)$
C22	$-3240(3)$	$3010.6(15)$	$2604.5(15)$	$25.2(4)$
C23	$420(2)$	$10044.1(13)$	$2223.1(12)$	$15.7(3)$

Table 13.24: Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for pallambin B (15). The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
O1	$12.9(5)$	$16.5(5)$	$12.1(5)$	$3.1(4)$	$4.3(4)$	$-3.8(4)$
O2	$17.2(5)$	$20.5(5)$	$12.3(5)$	$2.1(4)$	$6.6(4)$	$-2.6(4)$
O3	$19.4(5)$	$24.5(6)$	$12.5(5)$	$3.0(4)$	$8.1(4)$	$-2.6(4)$
O4	$25.0(6)$	$25.9(6)$	$17.4(6)$	$1.7(5)$	$12.6(4)$	$-0.2(4)$
C5	$11.6(6)$	$16.9(7)$	$12.8(7)$	$1.7(5)$	$2.7(5)$	$-3.0(5)$
C6	$10.9(6)$	$15.5(7)$	$9.0(6)$	$1.3(5)$	$4.1(5)$	$-1.5(5)$
C7	$11.3(6)$	$14.0(7)$	$12.0(7)$	$0.5(5)$	$5.2(5)$	$-2.9(5)$
C8	$12.4(6)$	$14.0(7)$	$13.5(7)$	$2.2(5)$	$3.7(5)$	$0.3(5)$

C 9	$14.7(6)$	$14.1(7)$	$15.9(7)$	$3.7(5)$	$5.6(5)$	$1.0(5)$
C10	$11.8(6)$	$13.7(7)$	$9.9(6)$	$-0.2(5)$	$3.8(5)$	$-0.5(5)$
C11	$17.7(7)$	$19.0(7)$	$13.6(7)$	$6.9(6)$	$3.8(5)$	$0.2(5)$
C12	$12.7(6)$	$14.9(7)$	$10.1(7)$	$0.8(5)$	$2.4(5)$	$-1.8(5)$
C13	$10.8(6)$	$14.8(7)$	$13.3(7)$	$2.3(5)$	$3.5(5)$	$0.3(5)$
C14	$15.1(7)$	$16.9(7)$	$14.0(7)$	$5.9(5)$	$6.2(5)$	$3.1(5)$
C15	$25.1(8)$	$14.9(7)$	$23.1(8)$	$-2.5(6)$	$5.5(6)$	$-0.4(6)$
C16	$19.0(7)$	$17.4(7)$	$17.3(7)$	$-2.1(6)$	$9.5(6)$	$-1.0(5)$
C17	$13.5(6)$	$17.7(7)$	$14.8(7)$	$4.1(6)$	$4.6(5)$	$2.5(5)$
C18	$14.6(7)$	$22.5(8)$	$13.2(7)$	$1.8(6)$	$0.1(5)$	$-2.0(5)$
C19	$16.1(7)$	$18.9(7)$	$18.2(7)$	$5.9(6)$	$6.2(5)$	$1.7(5)$
C20	$16.3(7)$	$16.0(7)$	$18.2(7)$	$2.1(6)$	$3.2(5)$	$-3.0(5)$
C21	$22.4(7)$	$22.8(8)$	$13.1(7)$	$1.5(6)$	$-1.1(6)$	$-4.1(6)$
C22	$24.5(8)$	$20.1(8)$	$30.7(9)$	$-0.3(7)$	$9.0(7)$	$-4.7(6)$
C23	$15.4(7)$	$14.6(7)$	$17.3(7)$	$1.4(6)$	$5.0(5)$	$0.7(5)$

Table 13.25: Bond Lengths for pallambin B (15).

Atom	Atom	Length/Å	Atom	Atom	Length/A
O1	C7	1.4506(15)	C7	C16	1.5254(19)
O1	C9	$1.4385(17)$	C9	C14	1.4936(19)
O2	C11	$1.3589(17)$	C 9	C17	1.533(2)
O2	C17	1.4666(16)	C 10	C12	1.5684(19)
O3	C8	$1.2162(17)$	C 10	C23	1.525(2)
O4	C11	$1.2133(18)$	C 11	C14	1.477(2)
C5	C8	$1.5248(19)$	C12	C13	1.5499(
C5	C12	1.5579(19)	C 12	C21	1.540(2)
C5	C20	1.540(2)	C 13	C17	1.5409(19)
C6	C7	$1.5460(19)$	C14	C19	1.330(2)
C6	C8	$1.5393(18)$	C 15	C20	1.519(2)
C6	C10	$1.5698(18)$	C 15	C23	1.501(2)
C6	C18	1.5146(19)	C19	C22	1.488(2)
C7	C13	$1.5539(19)$	C 20	C 23	1.5333(19)

Table 13.26: Bond Angles for pallambin B (15).

```
Atom Atom Atom Angle/ }\mp@subsup{}{}{\circ}\mathrm{ Atom Atom Atom Angle/ 
C9 O1 C7 107.12(10) O2 C11 C14 109.70(12)
C11 O2 C17 110.59(11) O4 C11 O2 121.10(14)
C8 C5 C12 102.17(11) O4 C11 C14 129.21(14)
```

C8	C5	C20	$96.70(11)$	C5	C12	C10	$93.23(10)$
C20	C5	C12	$104.83(11)$	C13	C12	C5	$111.48(11)$
C7	C6	C10	$103.75(11)$	C13	C12	C10	$103.11(11)$
C8	C6	C7	$102.09(10)$	C21	C12	C5	$112.64(12)$
C8	C6	C10	$99.49(10)$	C21	C12	C10	$123.82(11)$
C18	C6	C7	$115.43(12)$	C21	C12	C13	$111.09(12)$
C18	C6	C8	$114.78(11)$	C12	C13	C7	$105.53(11)$
C18	C6	C10	$118.81(11)$	C17	C13	C7	$103.96(11)$
O1	C7	C6	$107.99(10)$	C17	C13	C12	$116.65(11)$
O1	C7	C13	$105.56(10)$	C11	C14	C9	$106.19(12)$
O1	C7	C16	$108.68(11)$	C19	C14	C9	$130.58(14)$
C6	C7	C13	$102.89(11)$	C19	C14	C11	$123.23(13)$
C16	C7	C6	$116.44(12)$	C23	C15	C20	$61.00(9)$
C16	C7	C13	$114.56(11)$	O2	C17	C9	$104.02(11)$
O3	C8	C5	$128.47(13)$	O2	C17	C13	$113.69(11)$
O3	C8	C6	$126.11(13)$	C9	C17	C13	$104.87(11)$
C5	C8	C6	$105.34(11)$	C14	C19	C22	$126.16(14)$
O1	C9	C14	$108.75(11)$	C15	C20	C5	$123.87(13)$
O1	C9	C17	$103.83(11)$	C15	C20	C23	$58.92(9)$
C14	C9	C17	$103.69(12)$	C23	C20	C5	$104.12(11)$
C12	C10	C6	$95.07(10)$	C10	C23	C20	$103.59(11)$
C23	C10	C6	$107.36(11)$	C15	C23	C10	$118.75(13)$
C23	C10	C12	$107.44(11)$	C15	C23	C20	$60.08(9)$

Table 13.27: Torsion Angles for pallambin B (15).

```
A
O1 C7 C13 C12-110.30(11) C10 C6 C7 C16-161.07(11)
O1 C7 C13 C17 12.99(13) C10 C6 C8 O3 -155.74(14)
O1 C9 C14 C11-90.26(13) C10 C6 C8 C5 21.29(13)
O1 C9 C14 C19 90.62(18) C10 C12 C13 C7 30.09(12)
O1 C9 C17 O2 89.72(11) C10 C12 C13 C17-84.73(14)
O1 C9 C17 C13-29.94(13) C11 O2 C17 C9 20.21(14)
O2 C11 C14 C9 -8.18(16) C11 O2 C17 C13 133.69(12)
O2 C11 C14 C19 171.01(13) C11 C14 C19 C22 179.16(15)
O4 C11 C14 C9 171.42(15) C12 C5 C8 O3 -163.99(14)
O4 C11 C14 C19-9.4(3) C12 C5 C8 C6 19.08(13)
C5 C12 C13 C7 -68.77(13) C12 C5 C20 C15 25.43(17)
C5 C12 C13 C17 176.42(11) C12 C5 C20 C23 -36.39(14)
C5 C20 C23 C10 5.72(14) C12 C10 C23 C15 -36.39(16)
C5 C20 C23 C15 121.29(13) C12 C10 C23 C20 26.70(14)
```

```
C6 C7 C13 C12 2.82(12) C12 C13 C17 O2 12.81(17)
C6 C7 C13 C17 126.11(11) C12 C13 C17 C9 125.78(12)
C6 C10 C12 C5 63.76(11) C14 C9 C17 O2 -23.90(14)
C6 C10 C12 C13-49.18(12) C14 C9 C17 C13-143.56(11)
C6 C10 C12 C21-176.11(13) C15 C20 C23 C10-115.58(13)
C6 C10 C23 C15-137.65(12) C16 C7 C13 C12 130.18(12)
C6 C10 C23 C20 -74.57(13) C16 C7 C13 C17-106.53(13)
C7 O1 C9 C14 149.62(11) C17 O2 C11 O4 172.43(13)
C7 O1 C9 C17 39.69(12) C17 O2 C11 C14-7.93(15)
C7 C6 C8 O3 97.86(16) C17 C9 C14 C11 19.77(14)
C7 C6 C8 C5 -85.11(12) C17 C9 C14 C19-159.35(15)
C7 C6 C10 C12 51.85(12) C18 C6 C7 O1 -55.32(15)
C7 C6 C10 C23 161.91(10) C18 C6 C7 C13-166.64(11)
C7 C13 C17 O2 -102.88(13) C18 C6 C7 C16 67.20(15)
C7 C13 C17 C9 10.09(13) C18 C6 C8 O3 -27.8(2)
C8 C5 C12 C10-51.34(11) C18 C6 C8 C5 149.26(12)
C8 C5 C12 C13 54.11(14) C18 C6 C10 C12-178.43(12)
C8 C5 C12 C21 179.79(11) C18 C6 C10 C23 -68.37(15)
C8 C5 C20 C15 129.95(14) C20 C5 C8 O3 89.21(16)
C8 C5 C20 C23 68.13(12) C20 C5 C8 C6 -87.72(12)
C8 C6 C7 O1 179.48(10) C20 C5 C12 C10 49.07(12)
C8 C6 C7 C13 68.15(12) C20 C5 C12 C13 154.52(11)
C8 C6 C7 C16-58.01(15) C20 C5 C12 C21-79.81(14)
C8 C6 C10 C12-53.19(11) C20 C15 C23 C10 89.64(13)
C8 C6 C10 C23 56.87(13) C21 C12 C13 C7 164.71(11)
C9 O1 C7 C6 -142.77(11) C21 C12 C13 C17 49.89(16)
C9 O1 C7 C13-33.27(13) C23 C10 C12 C5 -46.24(12)
C9 O1 C7 C16 90.08(13) C23 C10 C12 C13-159.18(11)
C9 C14 C19 C22-1.9(3) C23 C10 C12 C21 73.89(16)
C10 C6 C7 O1 76.42(12) C23 C15 C20 C5 -86.47(15)
C10 C6 C7 C13-34.91(12)
```

Table 13.28: Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for pallambin B (15).

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}			U(eq)
H5	5649	9155	2045	16		
H9	1113	4375	2443	18		
H10	-786	8332	2820	14		
H13	4572	6715	2449	15		
H15A	2032	10674	3788	25		

H15B	1247	11856	3069	25
H16A	1776	5689	-86	27
H16B	3135	5014	835	27
H16C	4097	6270	381	27
H17	3175	5618	3797	18
H18A	-2253	7360	558	25
H18B	-489	7556	-382	25
H18C	-1549	8749	291	25
H19	-4017	4172	4038	21
H20	3154	10942	1434	20
H21A	4480	9549	4095	29
H21B	4490	8106	4351	29
H21C	2319	8909	4551	29
H22A	-3156	2233	2974	38
H22B	-2063	3035	2063	38
H22C	-4669	3040	2217	38
H23	-747	10357	1726	19

Experimental

Single crystals of $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}$ pallambin B (15) were obtained by vapor diffusion from hexane $\rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A suitable crystal was selected and measured on a 'ETH_LOC_ApexIID8_Mo' diffractometer. The crystal was kept at 100.0(2) K during data collection. Using Olex2 ${ }^{\mathbf{I}}$, the structure was solved with the $\mathrm{XS}^{\mathbf{I I}}$ structure solution program using Direct Methods and refined with the XL ${ }^{\text {III }}$ refinement package using Least Squares minimisation.

I: Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

II: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
III: Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
Crystal Data for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}(M=314.36 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=$ 6.0847(11) $\AA, b=10.6892(19) \AA, c=12.022(2) \AA, \alpha=95.308(5)^{\circ}, \beta=91.245(5)^{\circ}, \gamma=$ $91.125(5)^{\circ}, \quad V=778.2(2) \AA^{3}, Z=2, T=100.0(2) \mathrm{K}, \mu(\mathrm{MoK} \alpha)=0.093 \mathrm{~mm}^{-1}$, Dcalc $=$ $1.342 \mathrm{~g} / \mathrm{cm}^{3}, 13280$ reflections measured $\left(3.404^{\circ} \leq 2 \Theta \leq 55.076^{\circ}\right), 3536$ unique ($R_{\text {int }}=$ $0.0386, \mathrm{R}_{\text {sigma }}=0.0351$) which were used in all calculations. The final R_{1} was 0.0454 (I > $2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1301 (all data).

13.6 NMR Spectra

															$\underset{\sim}{\text { W }}$								
0.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5		3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

 	$\mathfrak{i n}_{\substack{8 \\ 7}}$						$\frac{\square}{4}$

$351+352$

[^98]

148

$\stackrel{m}{\stackrel{m}{1}}$

146

早男 班

154

-217.31

1

																	$\begin{aligned} & \text { T} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { T } \\ & \text { ô } \end{aligned}$	\%+		$\begin{aligned} & \top \\ & \stackrel{\oplus}{\circ} \\ & \hline \end{aligned}$		
1	1	1	1	1	1	1	1	1	1	1		1	1	1	1		1		1	1	1	1	
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0		2.5	2.0	1.5	1.0	0.5	0.0	-0.5

														1	1							
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

177

$\stackrel{8}{7}$
-138.19

188

																$\begin{gathered} \text { ST } \\ \substack{\text { en } \\ \hline} \end{gathered}$				$\begin{aligned} & \text { TT} \\ & \hat{O} \end{aligned}$		
				15	1	7.5													10			-1
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

-214.52

-173.24

品

202

$\underset{\sim}{\tilde{I}}$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	20	10	0	-10

(
263

266

4 4
-

[^99]

[^100]

363

273

279

365

| $\stackrel{m}{m}$ |
| :---: | :---: |
| $\stackrel{y}{m}$ |
| $\stackrel{\sim}{1}$ |

i

283

ฝ゙
Me
290

䜤谷

\%	

													$\begin{gathered} \text { TM } \\ \substack{0 \\ \hline} \end{gathered}$		$\frac{1}{N}$		'ST'	${ }^{-1} T$				
	1	${ }^{1}$	1		1	7.5		${ }^{1} 5$					1	15			1	15		15		
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

300

301

210	200	190	180	170	160	150	140	130	120	${ }^{110}{ }_{f 1}$	$1(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0	

[^101]

4 筑
解
${ }^{5}$

																							1
220	210	200	190	180	170	160	150	140	130	120			90	80	70	60	50	40	30	20	10	0	-10

		$\begin{aligned} & \text { Qig } \\ & \stackrel{\circ}{\circ} \dot{0} \end{aligned}$

$\xrightarrow[\sim]{\infty}$

든

335

210	200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	0	-10

-167.94

|

Curriculum Vitae

Born May 5, 1988 in Bad Säckingen, Germany

Education

$09 / 1994-05 / 1998$	Grundschule Obersäckingen, Germany
$09 / 1998-05 / 2007$	Abitur, Scheffel-Gymnasium Bad Säckingen, Germany
$09 / 2007-06 / 2010$	B. Sc. in Chemistry, ETH Zurich, Switzerland
$11 / 2010-05 / 2012-04 / 2012$	M. Sc. in Chemistry, ETH Zurich, Switzerland
	Master Thesis in the Group of Prof. K. C. NICOLAOU
	The Scripps Research Institute, La Jolla, USA
	"Synthesis of Novel Macroheterocycles Through Intra-
	molecular Oxidative Coupling of Furanoid β-Ketoesters
	Ph.D. Studies in the Group of Prof. ERICK M. CARREIRA
	ETH Zurich, Switzerland
	"I. Total Synthesis of Pallambins A and B II. Ti(III)-
	Mediated Regioselective Epoxide Opening III. Synthesis
	of Raman-Active Epoxyisoprostane Analogs"

Teaching Experience	
$09 / 2010-12 / 2010$	Teaching assistant for introductory-level organic chemistry course, ETH Zurich, Switzerland
$09 / 2013-02 / 2016$	Teaching assistant for and advanced-level organic chemistry course, ETH Zurich, Switzerland
$07 / 2015-06 / 2016$	Head teaching assistant for an advanced-level organic chemistry course, ETH Zurich, Switzerland
$11 / 2013-06 / 2016$	Training of a laboratory technician apprentice, ETH Zurich, Switzerland
$09 / 2012-06 / 2016$	Supervision of two undergraduate students in the course of their semester projects, ETH Zurich, Switzerland

Fellowships

$09 / 2011-04 / 2012$	Otto-Bayer Fellowship, Bayer Science and Education
Foundation, Leverkusen, Germany	
$10 / 2012-10 / 2015$	Scholarship of the Swiss Chemical Industry, Zurich,
	Switzerland

Further Experience

06/2013 - 03/2015
11/2014-03/2015
Author of Synfacts (Thieme Publishing Group)
Head of the Carreira-Group Synfacts team

[^0]: ${ }^{1}$ a) Y. Asakawa, A. Ludwiczuk, F. Nagashima, M. Toyota, T. Hashimoto, M. Tori, Y. Fukuyama, L. Harinantenaina, Heterocycles 2009, 77, 99-150; b) Y. Asakawa, Pure Appl. Chem. 2007, 79, 557-580.
 ${ }^{2}$ Y. Asakawa, Phytochemistry 2004, 65, 623-669.
 ${ }^{3}$ Picture a) taken with permission from http://bryophytes.plant.siu.edu/imPallaviciniaSubciliata.html, downloaded on 07.05.2015, photographed by Dr. LI ZHANG.
 Picture b) taken from https://de.wikipedia.org/wiki/Laubmoose\#/media/File:Sphagnum_moos.jpg, downloaded on 07.05.2015. Picture c) taken from: https://en.wikipedia.org/wiki/Phaeoceros_laevis\#/media/File:Phaeoceros_laevis.jpg, downloaded on 07.05.2015.

[^1]: ${ }^{4}$ a) Y. Asakawa in Progress in the Chemistry of Organic Natural Products (Eds.: W. Herz, H. Grisebach, G. W. Kirby), Springer-Verlag, Vienna, 1982, pp. 1-285; b) Y. Asakawa, M. Toyota, R. Takeda, C. Suire, T. Takemoto, Phytochemistry 1981, 20, 725-728; c) Y. Asakawa, R. Matsuda, T. Takemoto, S. Hattori, M. Mizutani, H. Inoue, C. Suire, S. Huneck, J. Hattori Bot. Lab. 1981, 50, 107; d) M. Toyota, T. Saito, Y. Asakawa, Chem. Pharm. Bull. 1998, 46, 178-180.
 ${ }^{5}$ C. L. Wu, H. J. Liu, H. L. Uang, Phytochemistry 1994, 35, 822-824.
 ${ }^{6}$ H. J. Liu, C. L. Wu, J. Asian Nat. Prod. Res. 1999, 1, 177-182.
 ${ }^{7}$ L. N. Wang, J. Z. Zhang, X. Li, X. N. Wang, C. F. Xie, J. C. Zhou, H. X. Lou, Org. Lett. 2012, 14, 1102-1105.

[^2]: ${ }^{8}$ Z. J. Li, H. X. Lou, W. T. Yu, P. H. Fan, D. M. Ren, B. Ma, M. Ji, Helv. Chim. Acta 2005, 88, 2637-2640.

[^3]: ${ }^{9}$ X. S. Peng, H. N. C. Wong, Chem. Asian J. 2006, 1, 111-120.
 ${ }^{10}$ P. Wieland, K. Miescher, Helv. Chim. Acta 1950, 33, 2215-2228.

[^4]: ${ }^{11}$ B. Huang, L. Guo, Y. Jia, Angew. Chem. Int. Ed. 2015, 54, 13599-13603.

[^5]: ${ }^{12}$ S. R. Levine, M. R. Krout, B. M. Stoltz, Org. Lett. 2009, 11, 289-292.
 ${ }^{13}$ B. M. Trost, R. N. Bream, J. Xu, Angew. Chem. Int. Ed. 2006, 45, 3109-3112.
 ${ }^{14}$ For a mechanistic hypothesis see ref. 11.

[^6]: ${ }^{15}$ X.-S. Xu, Z.-W. Li, Y.-J. Zhang, X.-S. Peng, H. N. C. Wong, Chem. Commun. 2012, 48, 8517-8519.

[^7]: ${ }^{16}$ a) Z. Li, Y. Gao, Y. Tang, M. Dai, G. Wang, Z. Wang, Z. Yang, Org. Lett. 2008, 10, 3017-3020; b) Z. Li, Y. Gao, Z. Jiao, N. Wu, D. Z. Wang, Z. Yang, Org. Lett. 2008, 10, 5163-5166.

[^8]: ${ }^{17}$ L. R. Martinez, S. Umemiya, S. E. Wengryniuk, P. S. Baran J. Am. Chem. Soc. 2016, 138, 7536-7539.

[^9]: ${ }^{18}$ Although the author of this thesis (C. E.) does not agree that syntheses can be simply judged by the following concepts, they nevertheless can serve as indicators. a) For the concept of step economy see: P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, Acc. Chem. Res. 2008, 41, 40-49; b) For the concept of atom economy see: B. M. Trost, Science 1991, 254, 1471-1477; c) For the concept of redox economy see: N. Z. Burns, P. S. Baran, R. W. Hoffmann, Angew. Chem. Int. Ed. 2009, 48, 2854-2867; d) For a review see: T. Newhouse, P. S. Baran, R. W. Hoffmann, Chem. Soc. Rev. 2009, 38, 3010-3021.

[^10]: ${ }^{19}$ Parts of this work have been published: C. Ebner, E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 11227-11230.
 ${ }^{20}$ Throughout this thesis, pallambin A and B numbering is used ($c f$. ref. 7).
 ${ }^{21}$ a) E. J. Corey, X.-M. Cheng, in The Logic of Chemical Synthesis, John Wiley: New York, 1989; b) S. Hanessian, in Total Synthesis of Natural Products, the "Chiron" Approach, 1", Organic Chemistry series, 3, Pergamon Press: Oxford Oxfordshire, New York, 1983; c) D. A. Evans in An Organizational Format for the Classification of Functional Groups. Application to the Construction of Difunctional Relationships (Chemistry 206: Advanced Organic Chemistry, Handout 27A), Harvard University, 2001.

[^11]: ${ }^{22}$ a) C.-Y. Zhou, C.-M. Che, J. Am. Chem. Soc. 2007, 129, 5828-5829; b) Y.-P. Xiao, X.-Y. Liu, C.-M. Che, Angew. Chem. Int. Ed. 2011, 50, 4937-4941.

[^12]: ${ }^{23}$ a) J. Thiec, J. Wiemann, Bull. Soc. Chim. Fr. 1956, 177-180; b) J. Thiec, J. Wiemann, Bull. Soc. Chim. Fr. 1960, 1066-1067.
 ${ }^{24}$ a) J. Thiele, H. Balhorn, Liebigs Ann. Chem. 1906, 348, 1-15; b) J. Thiele, Ber. Dtsch. Chem. Ges. 1900, 33, 666-673.
 ${ }_{25}^{25}$ H. J. F. Angus, J. M. Blair, D. Brycesmith, J. Chem. Soc. 1960, 2003-2016.
 ${ }^{26}$ D. Meuche, M. Neuenschwander, H. Schaltegger, H. U. Schlunegger, Helv. Chim. Acta 1964, 47, 1211-1215.
 ${ }^{27}$ C. Rentsch, M. Slongo, S. Schonholzer, M. Neuenschwander, Makromol. Chem. 1980, 181, 19-29.

[^13]: ${ }^{28}$ E. D. Bergmann, Chem. Rev. 1968, 68, 41-84.
 ${ }^{29}$ H. Schaltegger, M. Neuenschwander, M, D. Meuche, Helv. Chim. Acta 1965, 48, 955-961.
 ${ }^{30}$ E. Sturm, K. Hafner, Angew. Chem. 1964, 76, 862-863.
 ${ }^{31}$ B. Uebersax, M. Neuenschwander, H. P. Kellerhals, Helv. Chim. Acta 1982, 65, 74-88.
 ${ }_{33}^{32}$ B. M. Trost, R. M. Cory, J. Org. Chem. 1972, 37, 1106-1110.
 ${ }^{33}$ R. D. J. Froese, M. G. Organ, J. D. Goddard, T. D. P. Stack, B. M. Trost, J. Am. Chem. Soc. 1995, 117, 10931-10938.

[^14]: ${ }^{34}$ H. Stadler, M. Rey, A. S. Dreiding, Helv. Chim. Acta 1984, 67, 1854-1858.
 ${ }^{35}$ K. Hafner, K. H. Vöpel, G. Ploss, C. König, Org. Syn. Coll. Vol. 5, 1973, 431.

[^15]: ${ }^{36}$ E. J. Corey, U. Koellike, J. Neuffer, J. Am. Chem. Soc. 1971, 93, 1489-1490.
 ${ }^{37}$ K. A. Black, P. Vogel, Helv. Chim. Acta 1984, 67, 1612-1615.

[^16]: ${ }^{38}$ P. F. Li, J. N. Payette, H. Yamamoto, J. Am. Chem. Soc. 2007, 129, 9534-9535.

[^17]: ${ }^{39}$ B. M. Trost, Y. Tamaru, J. Am. Chem. Soc. 1975, 97, 3528-3530.
 ${ }^{40}$ F. A. Davis, L. C. Vishwakarma, J. M. Billmers, J. Finn, J. Org. Chem. 1984, 49, 3241-3243.
 ${ }^{41}$ G. M. Rubottom, M. A. Vazquez, Pelegrin.Dr, Tetrahedron. Lett. 1974, 4319-4322.
 ${ }^{42}$ J. L. Belletire, D. F. Fry, J. Org. Chem. 1988, 53, 4724-4729.

[^18]: ${ }^{43}$ For an overview, see for example: J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford University Press, 2001, p. 862 .

[^19]: ${ }^{44}$ S. Reim, D. Michalik, K. Weisz, Z. Xiao, P. Langer, Org. Biomol. Chem. 2008, 6, 3079-3084.

[^20]: ${ }^{45}$ R. E. Tirpak, M. W. Rathke, J. Org. Chem. 1982, 47, 5099-5102.

[^21]: ${ }^{46}$ T. Pei, R. A. Widenhoefer, J. Am. Chem. Soc. 2001, 123, 11290-11291.
 ${ }^{47}$ a) L. S. Hegedus Transition Metals in the Synthesis of Complex Organic Molecules, University Science Books, Mill Valley, CA, 1999, pp. 188-204; b) L. S. Hegedus in Organometallics in Synthesis (Ed: M. Schlosser), John Wiley \& Sons, Chichester, UK, 1994, pp. 388-397.
 ${ }^{48}$ For a detailed mechanistic study, see H. Qian, R. A. Widenhoefer, J. Am. Chem. Soc. 2003, 125, 2056-2057.

[^22]: ${ }^{49}$ Values measured in DMSO, taken from the Evans pK_{a} table: http://evans.harvard.edu/pdf/evans_pKa_table.pdf
 ${ }^{50}$ Reported values of $\mathrm{K}_{\text {enol/ketone }}$ for representative compounds: a) J. P. Guthrie, P. A. Cullimore, Can. J. Chem. 1979, 57, 240-248; b) J. P. Guthrie Can. J. Chem. 1979, 57,1177-1185; c) M. Bassetti, G. Cerichelli, B. Floris, Tetrahedron 1988, 44, 2997-3004.
 ${ }^{51} \mathrm{IPr}=N, N$ '-bis(2,6-diisopropylphenyl)-imidazol-2-ylidiene

[^23]: ${ }^{52}$ S. R. Crabtree, W. L. A. Chu, L. N. Mander, Synlett 1990, 169-170.
 ${ }^{53}$ V. Sofiyev, G. Navarro, D. Trauner, Org. Lett. 2008, 10, 149-152.

[^24]: ${ }^{54}$ M. T. Reetz, I. Chatziiosifidis, K. Schwellnus, Angew. Chem. Int. Ed. 1981, 20, 687-689.

[^25]: ${ }^{55}$ For an excellent review, see C. P. Jasperse, D. P. Curran, T. L. Fevig, Chem. Rev. 1991, 91, 1237-1286.
 ${ }^{56}$ J. W. Tucker, J. D. Nguyen, J. M. R. Narayanam, S. W. Krabbe, C. R. J. Stephenson, Chem. Commun. 2010, 46, 4985-4987.

[^26]: ${ }^{57}$ F. Dénès, A. Pérez-Luna, F. Chemla, Chem. Rev. 2010, 110, 2366-2447.
 ${ }_{58}^{58}$ Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011-1013.
 ${ }^{59}$ Y. Ito, H. Aoyama, T. Hirao, A. Mochizuki, T. Saegusa, J. Am. Chem. Soc. 1979, 101, 494-496.
 ${ }^{60}$ a) A. S. Kende, B. Roth, P. J. Sanfilippo, J. Am. Chem. Soc. 1982, 104, 1784-1785; b) A. S. Kende, B. Roth, P. J. Sanfilippo, T. J. Blacklock, J. Am. Chem. Soc. 1982, 104, 5808-5810.
 ${ }^{61}$ a) M. Toyota, T. Wada, K. Fukumoto, M. Ihara, J. Am. Chem. Soc. 1998, 120, 4916-4925; b) M. Toyota, M. Ihara, Synlett 2002, 12111222; c) See also: O. F. Jeker, Diss. ETH No. 21437.

[^27]: ${ }^{62}$ For examples see: a) J. K. Crandall, J. Org. Chem. 1964, 29, 2830-2833; b) H. C. Brown, Acc. Chem. Res. 1973, 6, 377-386; c) H. C. Brown, Acc. Chem. Res. 1983, 16, 432-440.
 ${ }^{63}$ It should be noted, that even when exposing silylenol ether $\mathbf{1 2 3}$ to gold(I) catalyst $\left[\mathrm{P}\left(t \mathrm{Bu}_{2}-2\right.\right.$-biphenyl $\left.) \mathrm{Au}(\mathrm{MeCN})\right] \mathrm{PF}_{6}$ no cyclization occurred, indicating, that no effective exo olefin activation by $\mathrm{Au}(\mathrm{I})$ was achieved.

[^28]: ${ }^{64}$ K. B. Wiberg, Angew. Chem. Int. Ed. 1986, 25, 312-322.
 ${ }^{65}$ J. C. Lorenz, J. Long, Z. Q. Yang, S. Xue, Y. Xie, Y. Shi, J. Org. Chem. 2004, 69, 327-334.

[^29]: ${ }^{66}$ Dr. SÉBASTIEN GOUDREAU is gratefully acknowledged for helpful discussions about cyclopropanation reactions.

[^30]: [a] Only products which could be identified are shown. [b] Yields refer to spectroscopically and chromatographically homogeneous materials. [c] n.r. = no reaction. [d] Other unidentified byproducts obtained.

[^31]: ${ }^{67}$ K. Maruoka, Y. Fukutani, H. Yamamoto, J. Org. Chem. 1985, 50, 4412-4414.
 ${ }^{68}$ a) J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron Letters 1966, 7, 3353-3354; b) J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53-58.
 ${ }^{69}$ A. Voituriez, L. E. Zimmer, A. B. Charette, J. Org. Chem. 2010, 75, 1244-1250.
 ${ }^{70}$ S. E. Denmark, J. P. Edwards, J. Org, Chem. 1991, 56, 6974-6981.

[^32]: ${ }^{71}$ Separation via flash column chromatography was possible after taking the mixture through the following two steps. See Chapter 3.7.1, intermediate 153.

[^33]: ${ }^{72}$ a) J. C. Stowell, Carbanions in Organic Synthesis; Wiley, New York, 1979; b) H. O. House, Modern Synthetic Reaction, $2^{\text {nd }}$ edition, Benjamin, New York, 1972; c) T. Mukhopadhyay, D. Seebach, Helv. Chim. Acta 1982, 65, 385-391.

[^34]: ${ }^{73}$ Noteworthy, AcCl might have led to O-acylation, generating a labile enol acetate, which might be transformed back into $\mathbf{1 5 4}$ upon exposure to water or SiO_{2}.
 ${ }_{75}^{74}$ E. Akgun, M. Tunali, U. Pindur, Monatsh. Chem. 1987, 118, 363-367.
 ${ }^{75}$ It should be noted that ketone 154 was always recovered as a mixture of diastereomers due to competing endo/exo protonation.
 ${ }^{76}$ a) P. Duhamel, D. Cahard, J. M. Poirier, J. Chem. Soc. Perkin Trans. 1 1993, 2509-2511; b) I. Kuwajima, E. Nakamura, J. Am. Chem. Soc. 1975, 97, 3257-3258.
 ${ }^{77}$ a) T. Imamoto, T. Kusumoto, M. Yokoyama, Tetrahedron. Lett. 1983, 24, 5233-5236; b) I. L. Jones, F. K. Moore, C. L. L. Chai, Org. Lett. 2009, 11, 5526-5529.

[^35]: ${ }^{78}$ For an excellent review on directed aldol reaction see: T. Mukaiyama, Org. React. 1982, 28, 203-331.
 ${ }^{79}$ S. Kobayashi, I. Hachiya, Tetrahedron. Lett. 1992, 33, 1625-1628.

[^36]: ${ }^{80}$ a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156; b) for an excellent overview see: M. Fernandez, G. Tojo in Oxidation of Alcohols and Ketones: A Guide to Current Common Practice (Ed.: E. Tojo), Springer, New York, 2006, p. 194; c) S. D. Meyer, S. L. Schreiber, J. Org. Chem. 1994, 59, 7549-7552.

[^37]: ${ }^{81}$ M. Regitz, Justus Liebigs Ann. Chem. 1964, 676, 101-109.
 ${ }^{82}$ M. Regitz, F. Menz, Chem. Ber. 1968, 101, 2622-2632.
 ${ }^{83}$ D. F. Taber, R. E. Ruckle, M. J. Hennessy, J. Org. Chem. 1986, 51, 4077-4078.
 ${ }^{84}$ R. L. Danheiser, R. F. Miller, R. G. Brisbois, S. Z. Park, J. Org. Chem. 1990, 55, 1959-1964.

[^38]: ${ }^{85}$ J. B. Hendrickson, R. Bergeron, Tetrahedron. Lett. 1973, 4607-4610.; b) W. J. Scott, J. E. McMurry, Acc. Chem. Res. 1988, 21, 47-54.
 ${ }^{86} N, N$-Bis(trifluoromethylsulfonyl)-5-chloro-2-pyridylamine, see: D. L. Comins, A. Dehghani, Tetrahedron. Lett. 1992, 33, 6299-6302.

[^39]: ${ }^{87}$ T. Mukaiyama, T. Hoshino, J. Am. Chem. Soc. 1960, 82, 5339-5342.
 ${ }^{88}$ A control experiment with norbornene provided the corresponding cycloadduct.
 ${ }^{89}$ T. J. Maimone, J. Shi, S. Ashida, P. S. Baran, J. Am. Chem. Soc. 2009, 131, 17066-17067.
 ${ }^{90}$ I. DePaolini, Gazz. Chim. Ital. 1930, 60, 700-704.

[^40]: ${ }^{91}$ a) M. H. Seo, Y. Y. Lee, Y. M. Goo, Synth. Commun. 1994, 24, 1433-1439; b) M. G. Kociolek, K. P. Kalbarczyk, Synth. Commun. 2004, 34, 4387-4394.
 ${ }_{92}$ a) A. K. Saksena, P. Mangiaracina, Tetrahedron Lett. 1983, 24, 273-276; b) D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc. 1988, 110, 3560-3578.
 ${ }_{93}$ Although the author of this thesis (C. E.) agrees with the opinion that novel reactions should be performed on the real system, since suitable model compounds are usually difficult to prepare and the transfer of such a reaction to the real system is often problematic, $\mathbf{1 8 0}$ was chosen as a starting point of this investigation. $\mathbf{1 8 0}$ is easily prepared in a single step from norbornene and enables the investigation of novel transformations.
 ${ }^{94}$ Nitrile 182 is known in the literature: F. De Sarlo, A. Brandi, A. Goti, A. Guarna, P. Rovero, Heterocycles, 1983, 20, 511-518.

[^41]: ${ }^{95}$ A. Fürstner, J. A. Funel, M. Tremblay, L. C. Bouchez, C. Nevado, M. Waser, J. Ackerstaff, C. C. Stimson, Chem. Commun. 2008, 28732875.

[^42]: ${ }^{96}$ It should be noted, that protection of the tertiray alcohol with TMSCl and subsequent attempted reduction wit DIBAL only led to slow decomposition of the starting material.

[^43]: ${ }^{97}$ O. G. Backeberg, B. Staskun, J. Chem. Soc. 1962, 3961-3962; for a review see: B. Staskun, T. van Es, S. Afr. J. Chem. 2008, 61, 144-156.
 ${ }^{98}$ S. Kim, K. H. Ahn, J. Org. Chem. 1984, 49, 1717-1724.
 ${ }^{99}$ T. Ritter, P. Zarotti, E. M. Carreira, Org. Lett. 2004, 6, 4371-4374
 ${ }^{100}$ J. S. Cha, O. O. Kwon, M. K. Jeoung, E. J. Kim, Bull. Kor. Chem. Soc. 1994, 15, 1021-1023.

[^44]: ${ }^{101}$ S. Laval, W. Dayoub, L. Pehlivan, E. Metay, D. Delbrayelle, G. Mignani, M. Lemaire, Tetrahedron. Lett. 2014, 55, 23-26.
 ${ }^{102}$ V. Girjavallabhan, G. F. Njoroge, S. Bogen, V. Verma, F. Bennett, A. Kerekes, A. Arasappan, D. Pissarnitski, Q. Dan, I. Davies, D. B. Olsen, A. Stamford, J. P. Vacca EP2696681 (A1), 2012.
 ${ }^{103}$ P. Caldirola, M. Ciancaglione, M. De Amici, C. De Micheli, Tetrahedron. Lett. 1986, 27, 4647-4650.

[^45]: ${ }^{104}$ M. F. Semmelhack, C. Bodurow, M. Baum, Tetrahedron Lett. 1984, 25, 3171-3174.
 ${ }^{105}$ Y. Tamaru, T. Kobayashi, S. Kawamura, H. Ochiai, M. Hojo, Z. Yoshida, Tetrahedron. Lett. 1985, 26, 3207-3210.

[^46]: ${ }^{106}$ The beneficial addition of propylene oxide has been previously reported by TAMARU and walkup: a) Y. Tamaru, M. Hojo, Z. Yoshida, J. Org. Chem. 1991, 56, 1099-1105; b) R. D. Walkup, M. D. Mosher, Tetrahedron 1993, 49, 9285-9294.

[^47]: ${ }^{107}$ J. A. Jackson, G. B. Hammond, D. F. Wiemer, J. Org. Chem. 1989, 54, 4750-4754.

[^48]: ${ }^{108}$ For an excellent overview of epoxides in complex molecule synthesis, see: P. Crotti, M. Pineschi in Aziridines and Epoxides in Organic Synthesis (Ed. A. K. Yudin), Wiley-VCH, Weinheim, 2006, pp. 271-313.
 ${ }^{109}$ The collection of methods for the reductive opening of epoxides is mainly taken from: S. Murai, T. Murai, S. Kato in Comprehensive Organic Synthesis, Vol. 8 (Eds. B. M. Trost, I. Flemming), Pergamon Press, Oxford, 1991, pp. 871-893.
 ${ }^{110}$ Taken from ref. 109.

[^49]: ${ }^{111}$ B. C. Hartman, B. Rickborn, J. Org. Chem. 1972, 37, 4246-4249.
 ${ }^{112}$ J. M. Finan, Y. Kishi, Tetrahedron. Lett. 1982, 23, 2719-2722.
 ${ }^{113}$ Red-Al ${ }^{\circledR}$ is used for sodium bis(2-methoxy)aluminum hydride.

[^50]: ${ }^{114}$ A. Ookawa, H. Hiratsuka, K. Soai, Bull. Chem. Soc. Jpn. 1987, 60, 1813-1817.
 ${ }^{115}$ S. Krishnamurthy, R. M. Schubert, H. C. Brown, J. Am. Chem. Soc. 1973, 95, 8486-8487.

[^51]: ${ }^{116}$ R. A. Benkeser, A. Rappa, L. A. Wolsieffer, J. Org. Chem. 1986, 51, 3391-3393.
 ${ }^{117}$ a) E. J. Corey, E. J. Trybulski, L. S. Melvin, K. C. Nicolaou, J. A. Secrist, R. Lett, P. W. Sheldrake, J. R. Falck, D. J. Brunelle, M. F. Haslanger, S. Kim, S. E. Yoo, J. Am. Chem. Soc. 1978, 100, 4618-4620; b) A. E. Greene, M. A. Teixeira, E. Barreiro, A. Cruz, P. Crabbé, J. Org. Chem. 1982, 47, 2553-2564.
 118 a) D. Bittler, H. Hofmeister, H. Laurent, K. Nickisch, R. Nickolson, K. Petzoldt, R. Wiechert, Angew. Chem. Int. Ed. 1982, 21, 696-697; b) Y. D. Vankar, P. S. Arya, C. T. Rao, Synth. Commun. 1983, 13, 869-872.
 ${ }^{119}$ S. Mitsui, Y. Sugi, M. Fujimoto, K. Yokoō, Tetrahedron 1974, 30, 31-37.

[^52]: ${ }^{120}$ T. V. Rajanbabu, W. A. Nugent, J. Am. Chem. Soc. 1994, 116, 986-997.

[^53]: ${ }^{121}$ A. Gansäuer, H. Bluhm, M. Pierobon, J. Am. Chem. Soc. 1998, 120, 12849-12859.

[^54]: ${ }^{122}$ For a recent review of the use of $\mathrm{Cp}_{2} \mathrm{TiCl}$ in natural product synthesis see: S. P. Morcillo, D. Miguel, A. G. Campana, L. A. de Cienfuegos, J. Justicia, J. M. Cuerva, Org. Chem. Front. 2014, 1, 15-33.
 ${ }^{123}$ A. Gansäuer, T. Lauterbach, H. Bluhm, M. Noltemeyer, Angew. Chem. Int. Ed. 1999, 38, 2909-2910.

[^55]: ${ }^{124}$ S. Diethelm, C. S. Schindler, E. M. Carreira, Org. Lett. 2010, 12, 3950-3953
 ${ }^{125}$ R. Banker, S. Carmeli, Tetrahedron 1999, 55, 10835.

[^56]: ${ }^{126}$ In order to provide a full picture of the investigation of this transformation, the experiments performed and designed by STEFAN DIETHELM during his PhD thesis are shown here. The author of this thesis (C. E.) did not contribute to the results presented in Chapter 6.2. Taken from: S. Diethelm, Diss. ETH No. 21575, pp. 31-47.
 ${ }^{127}$ a) J. M. Cuerva, A. G. Campana, J. Justicia, A. Rosales, J. L. Oller-Lopez, R. Robles, D. J. Cardenas, E. Bunuel, J. E. Oltra, Angew. Chem. Int. Ed. 2006, 45, 5522-5526; b) R. E. Estevez, M. Paradas, A. Millan, T. Jimenez, R. Robles, J. M. Cuerva, J. E. Oltra, J. Org. Chem. 2008, 73, 1616-1619; c) J. Jin, M. Newcomb, J. Org. Chem. 2008, 73, 7901-7905.

[^57]: ${ }^{128}$ Some of the reactions presented in this chapter, were executed by the laboratory-technician trainee ALEXANDRA EBERLE under the supervision of the author of this thesis (C. E.) during her three year apprenticeship.
 ${ }^{129}$ a) R. M. Beesley, C. K. Ingold, J. F. Thorpe, J. Chem. Soc. 1915, 107, 1080-1106; b) C. K. Ingold, J. Chem. Soc. 1921, 119, 305-329.

[^58]: ${ }^{130}$ C. W. Bond, A. J. Cresswell, S. G. Davies, A. M. Fletcher, W. Kurosawa, J. A. Lee, P. M. Roberts, A. J. Russell, A. D. Smith, J. E. Thomson, J. Org. Chem. 2009, 74, 6735-6748.
 ${ }^{131}$ P. Mayo, G. Orlova, J. D. Goddard, W. Tam, J. Org. Chem. 2001, 66, 5182-5191.
 ${ }^{132}$ M. H. Wu, K. B. Hansen, E. N. Jacobsen, Angew. Chem. Int. Ed. 1999, 38, 2012-2014.
 ${ }^{133}$ Substrates 293 and 295 were prepared by HANNES F. ZIPFEL in the course of his PhD thesis. The author of this thesis (C. E.) gratefully acknowledges the generous donation of these samples. For the preparation, see: a) H. F. Zipfel, E. M. Carreira, Org. Lett. 2014, 16, 28542857; b) H. F. Zipfel, E. M. Carreira, Chem. Eur. J. 2015, 21, 12475-12480; c) H. F. Zipfel, Diss. ETH. No. 23528.

[^59]: ${ }^{134}$ Rationalized in collaboration with STEFAN DIETHELM, see also ref. 126.
 ${ }^{135}$ a) See ref. 126; b) A. Gansäuer, A. Fleckhaus, M. A. Lafont, A. Okkel, K. Kotsis, A. Anoop, F. Neese, J. Am. Chem. Soc. 2009, 131, 16989-16999.
 ${ }^{136}$ For reviews, see: a) K. U. Ingold, B. P. Roberts, in Free Radical Substitution Reactions, Wiley-Interscience, New York, 1971; b) C. H. Schiesser, L. M. Wild, Tetrahedron, 1996, 52, 13265-13314; c) J. C. Walton, Acc. Chem. Res. 1998, 31, 99-107; For examples of $\mathrm{S}_{\mathrm{H}} 2$ reaction at cyclopropanes see: d) J. M. Tedder, J. C. Walton, Free-Radical Chem. 1980, 6, 155; e) M. Anpo, C. Chatgilialoglu, K. U. Ingold, J. Org. Chem. 1983, 48, 4104-4106.

[^60]: ${ }_{138}^{137}$ For an excellent introduction into prostaglandins and isoprostanes see J. Egger, Diss. ETH No. 21363.
 ${ }^{138}$ a) N. Leitinger et al., J. Immunol. 2005, 175, 501-508; b) U. Jahn, J.-M. Galano, T. Durand, Angew. Chem. Int. Ed. 2008, 47, 5894-5955.
 ${ }^{139}$ a) J. A. Berliner, A. D. Watson, N. Engl. J. Med. 2005, 353, 9-11; b) V. N. Bochkov, A. Kadl, J. Huber, F. Gruber, B. R. Binder, N. Leitinger, Nature 2002, 419, 77-81; c) S. Lee, K. G. Birukov, C. E. Romanoski, J. R. Springstead, A. J. Lusis, J. A Berliner, Circ. Res. 2012, 111, 778-799.
 ${ }^{140}$ a) Y. Imai et al., Cell 2008, 133, 235-249; b) T. A. Seimon et al., Cell Metab. 2010, 12, 467-482; c) C. R. Stewart et al., Nat. Immunol. 2010, 11, 155-161.
 ${ }^{141}$ a) V. N. Bochkov, O. V. Oskolkova, K. G. Birukov, A.-L. Levonen, C. J. Binder, J. Söck1, Antioxid. Redox Signal. 2010, 12, 1009-1059; b) S. Knapp, U. Matt, N. Leitinger, T. van der Poll, J. Immunol. 2007, 178, 993-1001.
 ${ }_{142}$ P. Bretscher, J. Egger, A. Shamshiev, M. Trotzmuller, H. Kofeler, E. M. Carreira, M. Kopf, S. Freigang, Embo Mol. Med. 2015, 7, 593607.
 ${ }^{143}$ a) J. Egger, P. Bretscher, S. Freigang, M. Kopf, E. M. Carreira, Angew. Chem. Int. Ed. 2013, 52, 5382-5385; b) J. Egger, P. Bretscher, S. Freigang, M. Kopf, E. M. Carreira, J. Am. Chem. Soc. 2014, 136, 17382-17385; c) J. Egger, S. Fischer, P. Bretscher, S. Freigang, M. Kopf, E. M. Carreira, Org. Lett. 2015, 17, 4340-4343; d) see also ref. 142.
 ${ }_{144}$ a) N. Leitinger, Subcell Biochem. 2008, 49, 325-350; b) I. Levitan, S. Volkov, P. V. Subbaiah, Antioxid. Redox Signal. 2010, 13, 39-75.
 ${ }^{145}$ J. C. Ullery, L. J. Marnett, Biochim. Biophys. Acta Biomembr. 2012, 181, 2424-2435.

[^61]: ${ }^{146}$ a) N. Leitinger, Mol. Nutr. Food Res. 2005, 49, 1063-1071; b) M. Navab et al., J. Lipid Res. 2004, 45, 993-1007; c) J. A. Berliner, N. Leitinger, S. Tsimikas, J. Lipid Res. 2009, 50, 207-212; d) J. A. Berliner, A. D. Watson, N. Engl. J. Med. 2005, 353, 8-11; e) N. Leitinger et al., Arterioscler. Thromb. Vasc. Biol. 2005, 25, 633-638; f) A. D. Watson, N. Leitinger, M. Fogelman, J. A. Berliner, J. Biol. Chem. 1997, $272,13597-13607 ;$ g) A. D. Watson, G. Subbanagounder, D. S. Welsbie, K. F. Faull, N. Navab, M . E. Jung, A. Fogelman, J. A. Berliner, J. Biol. Chem. 1999, 274, 24787-24798.
 ${ }^{147}$ For a detailed description and previous total syntheses see ref. 137 and ref. 143a)
 ${ }^{148}$ M. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964-6965.
 ${ }^{149}$ C. Zhu, X. Shen, S. G. Nelson, J. Am. Chem. Soc. 2004, 126, 5352-5253.

[^62]: ${ }^{150}$ a) See J. Egger, Diss. ETH No. 21363, p.7; b) F. A. Fitzpatrick, M. A. Wynalda, J. Biol. Chem. 1983, 258, 11713-11718.
 ${ }^{151}$ J. U. Scher, M. H. Pilliger, Clin. Immunol. 2005, 114, 100-109.
 ${ }^{152}$ See ref. 142.
 ${ }^{153}$ a) T. Yamamoto, T. Suzuki, A. Kobayashi, J. Wakabayashi, J. Maher, H. Motohashi, M. Yamamoto, Mol. Cell. Biol. 2008, 28, 27582770; b) K. R. Sekhar, G. Rachakonda, M. L. Freeman, Toxicol. Appl. Pharmacol. 2010, 244, 21-26; c) K. Itoh, T. Chiba, S. Takahashi, T.

[^63]: Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, Y. Nabeshima, Biochem. Biophys. Res. Commun. 1997, 236, 313-322; d) V. N. Bochkov, O. V. Oskolkova, K. G. Birukov, A. L. Levonen, C. J. Binder, J. Stockl, Antiox. Redox. Signal. 2010, 12, 1009-1059
 ${ }^{154}$ For an excellent review of Raman spectroscopy in drug discovery see: W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, A. N. Hulme, Chem. Soc. Rev. 2016, 45, 2075-2089.
 ${ }^{155}$ G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, T. M. Jovin, Nature 1990, 347, 301-303.

[^64]: ${ }^{156}$ L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, W. Min, Nat. Methods 2014, 11, 410-414.

[^65]: ${ }^{157}$ H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, M. Sodeoka, J. Am. Chem. Soc. 2012, 134, 20681-20689.
 ${ }^{158}$ H. J. Lee, W. D. Zhang, D. L. Zhang, Y. Yang, B. Liu, E. L. Barker, K. K. Buhman, L. V. Slipchenko, M. J. Dai, J. X. Cheng, Sci. Rep. 2015, 5, 7930.

[^66]: ${ }^{159}$ S. Narumiya, K. Ohno, M. Fukushima, M. Fujiwara, J. Pharmacol. Exp. Ther. 1987, 242, 306-311.

[^67]: ${ }^{160}$ a) See ref. 143.

[^68]: ${ }^{161}$ Available from 5-hexyn-1-ol via Swern oxidation: J. W. Amoroso, L. S. Borketey, G. Prasad, N. A. Schnarr, Org. Lett. 2010, 12, 23302333.
 ${ }^{162}$ Available from 4-bromobutyricacid ethyl ester in one step: D. C. Braddock, G. Cansell, S. A. Hermitage, Chem. Commun. 2006, 24832485.
 ${ }^{163}$ The enantiomeric excess of $\mathbf{3 4 1}$ was determined later by measuring the $e e$ of UV-active intermediate $\mathbf{3 4 3}$ by chiral SFC.

[^69]: ${ }^{164}$ a) F. Diederich, P. J. Stang, R.R. Tykwinski, Acetylene Chemistry: Chemistry, Biology and Material Science, Wiley-VCH Verlag GmbH \& Co KGaA, Weinheim, Germany, 2005; b) A. L. K. S. Shun, R. R. Tykwinski, Angew. Chem. Int. Ed. 2006, 45, 1034-1057; c) E.-I. Negishi, L. Anastasia, Chem. Rev. 2003, 102, 1979-2017.
 ${ }^{165}$ For an overview see: W. Shi, Y. Luo, X. Luo, L. Chao, H. Zhang, J. Wang, A. Lei, J. Am. Chem. Soc. 2008, 130, 14713-14720.
 ${ }^{166} 2.0$ equivalents of the haloalkyne were used. The yield refers to cyclopentenone $\mathbf{3 3 5}$.

[^70]: ${ }^{167}$ A column or an aqueous workup was neccesary, since the formed ammonium salts seem to hamper the elimination process mediated by $\mathrm{Al}_{2} \mathrm{O}_{3}$.

[^71]: ${ }^{168}$ W. C. Still, M. Kahn, A. J. Mitra, J. Org. Chem. 1978, 43, 2923-2925.
 ${ }_{169}$ A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518-1520.
 ${ }^{170}$ K. Hafner, K. H. Vöpel, G. Ploss, C. König, Org. Syn. Coll. Vol. 5, 1973, 431.
 ${ }^{171}$ M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999, 64, 4537-4538.
 ${ }^{172}$ J. Waser, B. Gaspar, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2006, 128, 11693-11712.

[^72]: ${ }^{173}$ Fulvene was generated according to a modified literature procedure: B. M. Trost, R. M. Cory, J. Org. Chem. 1972, 37, 1106-1110.
 ${ }^{174}$ The dimethylaminofulvene does not completely dissolve, therefore a Chemglass ${ }^{\mathrm{TM}}$ addition funnel with threaded valve (Chemglass ${ }^{\mathrm{TM}}$ catalog number: CG-1714-16) was used for the addition. The valve sometimes clocks, is then opened more to release the solids and closed again.

[^73]: ${ }^{175}$ Ketone $\mathbf{8 8}$ proved to be highly volatile. Therefore care should be taken during distillation of the solvents.

[^74]: ${ }^{176}$ The starting ketone $\mathbf{1 0 4}$ was recovered as its α methyl epimer

[^75]: ${ }^{177}$ The stereochemistry at the bridge position was not established.

[^76]: ${ }^{178}$ S. E. Denmark, J. P. Edwards, J. Org. Chem. 1991, 56, 6974-6981.
 ${ }^{179}$ Dicyclopropananted byproduct almost coeluates with the desired product 148. Using anisaldehyde as TLC stain, a color difference is visible (byproduct appears blue, $\mathbf{1 4 8}$ green). 148 is slightly less polar. The mixed fraction was resubjected to flash column chromatography, until separation was complete.

[^77]: ${ }^{180}$ G. Helmchen, A. Krotz, H. P. Neumann, M. L. Ziegler, Liebigs Ann. Chem. 1993, 1313-1317.

[^78]: ${ }^{181} \mathbf{1 4 6}$ proved to be highly volatile, therefore extreme care has to be taken during the distillation of the solvents.

[^79]: ${ }^{182}$ The conditions described here where found best after excessive experimentation. The formation of a byproduct was observed when the reaction was not first quenched with NEt_{3} but directly with aqueous solutions. Lower temperature during the alkylation step led to poor and irreproducible conversions.

[^80]: ${ }^{183} \mathbf{1 5 4}$ proved to be volatile. Therefore care should be taken during the distillation of solvents.

[^81]: ${ }^{184}$ See ref. 80 a) and b).
 ${ }^{185}$ R. L. Danheiser, R. F. Miller, R. G. Brisbois, S. Z. Park, J. Org. Chem. 1990, 55, 1959-1964.

[^82]: ${ }^{186}$ Olefin $\mathbf{1 7 2}$ proved to be unstable upon prolonged exposure to silica gel.

[^83]: ${ }^{187}$ P. W. Ambler, R. M. Paton, J. M. Tout, Chem. Commun. 1994, 2661-2662.

[^84]: ${ }^{188} \mathrm{Li}(i \mathrm{Bu})_{2}(n \mathrm{Bu}) \mathrm{AlH}$ was prepared by the addition of $n-\mathrm{BuLi}(1.58 \mathrm{M}$ in hexanes, $2.53 \mathrm{~mL}, 4.00 \mathrm{mmol})$ to a solution of DIBAL (1.0 M in hexanes, $4.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$) diluted with 1.45 mL THF at $0^{\circ} \mathrm{C}$. See also S. Kim, K. H. Ahn, J. Org. Chem. 1984, 49, 1717-1724.

[^85]: ${ }^{189}$ The product $\mathbf{7 4}$ and the starting material $\mathbf{1 7 9}$ coeluate and are not separable on TLC. However, reaction monitoring is performed best using anisaldehyde as TLC stain. $\mathbf{7 4}$ appears bright green, $\mathbf{1 7 9}$ blue.
 ${ }^{190}$ Overlapping signals are labeled with ${ }^{\ddagger}$
 ${ }^{191}$ The minor diastereomeric peaks are labeled with *.

[^86]: ${ }^{192}$ As it is common practice, the ${ }^{1} \mathrm{H}$ NMR is referenced to 7.26 ppm . Therefore a shift difference of 0.02 ppm between the isolation report and this communication arises (isolation referenced to 7.28 ppm).
 ${ }^{193}$ Although table 1 in the isolation report states this signal at 2.27 ppm , the reported spectra (${ }^{1} \mathrm{H}$ NMR and HSCQ) clearly show this signal at 2.44 ppm , as observed by us. Therefore a typing error in the isolation report is assumed.
 ${ }^{194}$ As for all ${ }^{13} \mathrm{C}$ NMR in this communication, also this spectrum is referenced to CDCl_{3} as 77.16 ppm . Since the isolation report is referenced to 77.00 ppm , a shift difference of 0.2 ppm arises.

[^87]: ${ }^{196}$ R. Takeuchi, M. Kashio, J. Am. Chem. Soc. 1998, 120, 8647-8655.

[^88]: ${ }^{197}$ P. Mohan, K. Koushik, M. J. Fuertes, Tetrahedron Lett. 2015, 56, 61-65.

[^89]: ${ }^{198}$ One aromatic peak lies underneath the solvent signal $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

[^90]: ${ }^{199}$ M. B. Brennan, T. D. W. Claridge, R. G. Compton, S. G. Davies, A. M. Fletcher, M. C. Henstridge, D. S. Hewings, W. Kurosawa, J. A. Lee, P. M. Roberts, A. K. Schoonen, J. E. Thomson, J. Org. Chem. 2012, 77, 7241-7261.

[^91]: ${ }^{200}$ F. A. Hicks, N. M. Kablaoui, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 5881-5898.

[^92]: ${ }^{201}$ For the preparation of $\mathbf{2 8 2}$, see: ref. 199.

[^93]: ${ }^{202}$ Prepared according to: M. H. Wu, E. N. Jacobsen, Angew. Chem. Int. Ed. 1999, 38, 2012-2014.

[^94]: ${ }^{203}$ Prepared according to: R. P. Short, J. M. Revol, B. C. Ranu, T. Hudlicky, J. Org. Chem. 1983, 48, 4453-4461.
 ${ }^{204}$ THF was degassed by three freeze-pump-thaw cycles.

[^95]: ${ }^{205}$ The racemic sample was prepared by mixing equimolar amounts of both enantiomers. The other enantiomer and the mixture were prepared and measured by MICHAEL SCHNEIDER and ANDREJ SHEMET. The author of this thesis (C.E) gratefully acknowledges the supply of the racemic spectra.

[^96]: ${ }^{206}$ DMSO was degassed by bubbling nitrogen through the solution for 10 min .

[^97]: ${ }^{207}$ The $\mathrm{Al}_{2} \mathrm{O}_{3}$ was activated by heating to $180^{\circ} \mathrm{C}$ under high vacuum for 3 h .

[^98]:

[^99]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

[^100]:

[^101]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array}$

