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Abstract

Due to the complexity of modern hardware, computer programs often cause com-
plicated interactions when scheduled together. Users therefore frequently turn to
specialized tools such as Performance Monitoring Units (PMUs) for diagnosing
system issues. However, PMUs themselves are complex, so they require domain
knowledge and a good understanding of the underlying hardware to use. Such
obstacles prevent PMUs from seeing more widespread use.

In this thesis, a survey of PMUs investigates the various intricacies involved in
selecting performance events and configuring performance counters. Major prob-
lems include the limited number of performance counters relative to the number
of measurable performance events, abstruse definitions of performance events,
and the processor-specific nature of PMUs.

Numerous grouping techniques which associate similar objects are explored
with a view of reducing the event space. We also experiment with classification
algorithms to automatically detect interference and remove the need for human
interpretation of events and counter measurements. Moreover, proposals in this
thesis are designed with portability, i.e., the applicability of methods to different
machines, in mind.

All in all, we show the complexity of PMUs is a manageable problem and
select procedures can be automated, which opens up the possibility of abstracting
away PMU details from users.
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1 Introduction

This thesis explores PMUs and presents an automated process for selecting per-
formance events and assessing the validity of selected events in the context of
interference detection. The proposed methods are intended to be applicable to
any given machine.

1.1 Motivation

There is no doubt computer systems have become increasingly complex in recent
years. We have witnessed the advent of multicore processors, and multiprocessor
machines are now commonplace. To complicate matters, the ever-widening gap
between processor and memory speeds has resulted in intricate memory hierar-
chies.

Since one fundamental goal of users and programmers is to fully utilize avail-
able hardware resources, these changes have inevitably increased their burden,
for the underlying hardware has become more difficult to understand. Never-
theless, this problem is manageable as vendor documentation is widely available,
and there are tools such as hwloc [6] which provide information pertaining to
processor topologies including cache levels and sizes and NUMA nodes.

Thus the real challenge is not understanding the hardware itself, but the inter-
actions between applications running on top of the hardware. One contributing
factor to this problem is the aforementioned intricacies of hardware; another is the
complexity of modern workloads themselves. First, modern workloads consist of
heterogeneous tasks. For instance, enterprises often run a mix of batch jobs and
latency-sensitive applications in data centers. Second, the additional parallelism
in multicore processors has given rise to the number of multithreaded programs.
Needless to say, understanding the interactions caused by a mix of heterogeneous,
parallel applications within a complex system is not a trivial task.

While there are various categories of interactions, each with its own character-
istics, we are primarily concerned with interactions of a specific nature, namely,
those that cause performance degradations. There are many shared resources
within systems (e.g., CPU caches, processor interconnects, and memory buses),
and these frequently become points of contention. Due to the power wall, CPU
manufacturers are using extra transistors gained from Moore’s law to introduce
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1.1 Motivation 1 Introduction

more parallelism in the form of additional cores instead of increasing clock speeds.
Parallel applications have therefore gained popularity, but this trend has aggra-
vated resource contention.

How to mitigate resource contention to limit the impact on performance is now
an important question. Although it is possible to monitor applications and observe
the consequences of their interactions, devising a method which is applicable to
all applications and scenarios is nontrivial. An alternative approach is to monitor
components in hardware, and others have shown PMUs can be employed to avoid
resource contention. However, the usage of PMUs presents a whole new set of
challenges.
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Figure 1.1: Number of counters and events of Intel microarchitectures.

Figure 1.1 shows the number of events and counters of Intel microarchitectures
over time. The following observations can be made:

1. The number of available counters has remained relatively constant.
2. The number of countable events greatly exceeds the number of available

counters.
3. Each microarchitecture supports different events.

The first observation necessitates the careful selection of events since we can
only collect a handful of data points. However, there are typically hundreds of
events, and users rarely possess the domain knowledge required to understand
event definitions. As a result, the problem is not caused merely by the scarcity
of counters, but also a consequence of the multitude of events. Furthermore, a
good understanding of the underlying hardware is often essential for interpreting
event counts, which raises the entry bar even higher. Another issue is performance
events are processor-specific, which prevents the use of performance counters on
a large scale.

In summary, we view PMUs as an invaluable tool, but significant hurdles must
be cleared for them to become accessible to users. Specifically, the number of
events which need to be measured must be small, but the selection of events is
presently too cumbersome. In addition, portability is an unsolved problem despite
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1.2 Objectives 1 Introduction

the development of various libraries. We aim to address these issues so that details
of PMUs can be hidden from users.

1.2 Objectives

Survey of PMUs: Previous work has shown PMUs are invaluable tools with
applications ranging from scheduling improvements to problem troubleshooting.
However, they focus solely on the applications of PMUs and do not provide suffi-
cient insight into PMUs themselves. Therefore, we begin by conducting a detailed
survey of PMUs to uncover issues which hinder their adoption by users. This
includes case studies of how PMUs are used in practice.

Event Space Reduction: It is important to note PMUs vary from processor to
processor. Regardless, they all share one common trait: the number of measurable
performance events greatly exceeds the number of available performance counters.
As such, we apply grouping techniques which prune redundant events. This is to
address the problem of having a limited number of counters.

Interference Detection: While PMUs have been shown to be useful in a number
of contexts, we evaluate selected events based on their ability to detect interference.
Event values are collected into samples which are supplied to a binary classifier.
The accuracy of the classifier enables us to determine the effectiveness of the var-
ious grouping methods. This approach opens up the possibility of automatically
selecting events for users.

Portability: Previous applications of PMUs are mostly machine-dependent. How-
ever, this must change if PMUs are to see more widespread use. Although the
grouping methods and evaluation of event groupings in this thesis were applied
on a specific machine, the process can be reproduced on another machine with-
out any prior knowledge of performance events other than the list of supported
events.

1.3 Outline

The remainder of this thesis explores PMUs and presents a framework for auto-
matically selecting and evaluating events. Chapter 2 contains a brief overview of
PMUs and examines related work. Chapter 3 presents a survey of PMUs. Chap-
ter 4 explores methods for grouping performance events. Chapter 5 applies a clas-
sification technique to detect interference with samples consisting of event counts.
The results are used to evaluate the effectiveness of different event groupings.
Chapter 6 discusses possible directions for future work. Chapter 7 concludes.
Benchmark configurations are documented in Appendix A, and the list of events
considered for selection can be found in Appendix B.
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2 Background

This chapter is dedicated to the background information required to understand
subsequent chapters. We begin by introducing Performance Monitoring Units.
The purpose of this section is to provide insight to the centerpiece of this thesis.
Next, a detailed study of related work is presented to understand the possible
applications of Performance Monitoring Units.

2.1 Preliminaries

Here we give an overview of Performance Monitoring Units and introduce associ-
ated terminology. Although Performance Monitoring Units are processor-specific,
we primarily focus on abstract concepts applicable to all processors in this section.
Related tools are also mentioned as they will be relevant in later chapters.

2.1.1 Performance Monitoring Units

A Performance Monitoring Unit (PMU) is a component present in virtually all
modern processors. As the name suggests, PMUs can be used to obtain perfor-
mance measurements within computers. Each PMU contains two main compo-
nents:

• Performance events
• Performance counters

Performance Events

A performance event is a hardware event within the processor which can be
measured by the PMU. Examples of events include the number of clock cycles,
instructions executed, and last-level cache misses. Some events have subevents
which allow fine-grained control. For instance, cache misses may be classified as
data reads, data writes, instruction fetches, and hardware prefetches. Depending
on the PMU, it may or may not be possible to select multiple subevents when mea-
suring an event. Moreover, there are three categories of events: core events, off-
core events, and uncore events. Core events are measured within cores whereas
uncore events are measured outside of cores. Offcore events are in the middle,
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2.1 Preliminaries 2 Background

and they often measure requests sent to processor components outside of cores.
In this thesis, we consider offcore events to be a special type of core events.

Since PMUs are processor-specific, the supported events vary from processor
to processor. Different vendors provide completely distinct events. The difference
between microarchitectures from the same vendor is not as pronounced, but there
are still minor variations. Generally, each PMU supports several hundred events.

Performance Counters

A performance counter is a special-purpose register which is capable of mea-
suring a single event.1 For example, we could have two counters which mea-
sure the number of cache misses and references and then derive the cache miss
rate. Counter values are always integers. Each core has its own set of counters.
Moreover, there are two types of counters: fixed counters and general-purpose
counters. Fixed counters can only measure specific events while general-purpose
registers are capable of measuring any supported event (with a few exceptions).

It is important to note the number of counters is PMU-dependent, and not all
PMUs have fixed counters. Generally, each core has less than a dozen counters.
If simultaneous multithreading (SMT) is enabled, general-purpose counters in a
core are normally evenly divided among SMT threads whereas each SMT thread
has its own set of fixed counters.

Instrumentation

Despite the processor-dependent nature of PMUs, the instrumentation is more or
less the same for all machines. The following information is therefore applicable to
all CPUs. Every event is represented by an event code, and subevents are selected
by applying unit masks (umasks). Counters are managed through a set of model
specific registers (MSRs). Typically, each general-purpose counter is associated
with two MSRs:

• Event select MSR: This register controls the counter.
• Event counter MSR: This register stores the count of the selected event.

The bits of the event select MSR are used to configure the corresponding event
counter MSR:2

• Counters are enabled or disabled by toggling a bit.
• Events are selected using event codes and umasks.
• Counters can be restricted to count only when the core is executing in kernel

mode or user mode.

On x86 processors, the WRMSR instruction is used to write to event select MSRs
while RDMSR is used to read event counter MSRs. Some vendors have special

1Since the use of a performance counter implies the measurement of an event, we will use the
terms PMU and performance counters interchangeably.

2While event select MSRs provide additional functionality, the details have been omitted for
brevity.
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2.1 Preliminaries 2 Background

instructions for accessing PMU MSRs (e.g., counters can be read with RDPMC on
Intel CPUs).

There may be additional restrictions on events and counters, e.g., some events
can only be measured with specific counters. As the rules are PMU-specific, it is
not possible to present a generalization here.

Instrumentation of fixed counters is essentially the same as general-purpose
ones, except event select MSRs are replaced by fixed counter control MSRs, which
lack the capability to select events.

2.1.2 Tools

Given that instrumenting counters by reading and writing to MSRs is rather cum-
bersome, a number of tools have appeared which facilitate the use of PMUs by
providing high-level abstractions. These include operating system support and
user libraries with advanced features. In addition, vendors have also created tools
for performance analysis which utilize PMUs.

Operating System Support

Linux has supported PMUs with perf_event through the perf_event_open sys-
tem call (syscall) since version 2.6.3.1 [41].3 Each measured event is represented
as a file descriptor, and it is possible to group events. There are various options
such as only monitoring specific processes or cores. It is also possible to peri-
odically sample counters and write the values into a ring buffer. Furthermore,
the syscall provides “generic” events for portability across different machines al-
though this requires events to be hardcoded for each supported microarchitecture.
Other events are accessible by supplying event codes and umasks. Control of
counters is performed through ioctl calls.

On FreeBSD, pmc provides an interface to performance counters through the
hwpmc kernel module [25, 26]. FreeBSD has event name aliases which are similar
to generic events on Linux. Both counting and sampling events are also possible.

User Libraries

Two common libraries with PMU are support are libpfm [20] and PAPI [7, 23].
The former mainly aids users in the selection of events while the latter is a more
comprehensive suite with extra functionality.

The libpfm library is normally coupled with perf_event. Instead of requiring
users to pass in “raw” event codes and umasks to access events not in the limited
set of predefined generic events, libpfm supplies a list of events compiled from
vendor documentation. Hence most events have a self-evident name which sim-
plifies event selection for users. Support for each new microarchitecture must still
be added to libpfm, but end users need not be concerned with this process.

On the other hand, PAPI is more akin to an all-in-one package. The library was
designed as a cross-platform interface, and users configure and access counters

3It was originally named perf_counter_open
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2.2 Related Work 2 Background

through its API. It provides generic events under the name “standard events” and
supports microarchitecture-specific events as “native events.” Unlike perf_event
and libpfm, it possesses the capacity to multiplex counters. Moreover, PAPI has
low-level and high-level APIs. The latter only includes basic functionality.

Vendor Tools

CPU vendors have released PMU tools such as Intel PCM (Performance Counter
Monitor) [12] and Intel VTune Amplifier [13]. Although Intel PCM’s support is
limited to Intel CPUs, it is capable of producing detailed performance metrics for
various CPU components. Furthermore, Intel PCM has good support for multiple
microarchitectures, and its source code is available online under the 3-clause BSD
license.

2.2 Related Work

Previous work has demonstrated that PMUs have numerous applications ranging
from performance modeling to power efficiency. It is possible to divide the use
cases into those which improve performance of programs online and other appli-
cations (here performance refers to either throughput or latency). Both categories
are discussed in detail although we are mainly concerned with the former.

2.2.1 Performance Applications of PMUs

Resource Contention

One way of dealing with resource contention in multicore systems is contention-
aware scheduling. Another method is to employ cache partitioning to avoid inter-
ference. In both cases, previous work has shown good heuristics can be obtained
from performance counter measurements.

Azimi et al. reduced cache contention and cache thrashing with cache parti-
tioning [2]. Both objectives were achieved by using the cache miss rate as a heuris-
tic. For the former, it helped determine the cache partition sizes, and in the latter,
it provided an estimate of the reuse distance so that cache lines which “polluted”
the cache by evicting useful cache lines were restricted to a special partition.

Knauerhase et al. made scheduling improvements by employing the number
of cache misses per cycle as a heuristic [24]. In a nutshell, the scheduler dis-
tributed tasks evenly among caches using the heuristic to reduce interference.
Zhuravlev et al. evaluated a similar scheduling policy, but used the cache miss
rate as the heuristic instead [45]. A scheme was also devised to quantify factors
causing performance degradation, and they concluded that factors such as mem-
ory controller contention and hardware prefetching were more dominant than
cache contention. However, they noted the cache miss rate is highly correlated
with the number of memory controller and prefetch requests, which explains its
effectiveness as a heuristic.

7



2.2 Related Work 2 Background

Saini et al. assessed the performance benefits of enabling SMT by quantifying
processor resource utilization using PMU measurements [39]. They concluded
SMT is generally beneficial, but contention in the memory hierarchy can reduce
its advantages.

Application Latency

Coscheduling batch jobs and latency-sensitive applications is desirable to maxi-
mize resource utilization, but this must not come at the cost of increased latency.
While interference is a consequence of resource contention, we need not be con-
cerned with the root cause in contrast to the previous use case. In other words, the
contended resource is not important so long as the latency is kept under control.

Zhang et al. collected the cycles-per-instruction (CPI) metric from applications
and used historical data to detect anomalies [44]. They identified “antagonists”
which caused interference and throttled them. Lo et al. applied resource utilization
to determine whether batch jobs and latency-sensitive applications can be sched-
uled together, for interference occurs when shared resources are saturated [28].
They relied on performance counters to calculate memory bandwidth usage for
their resource utilization estimations.

2.2.2 Other Applications of PMUs

Compiler Optimizations

Techniques such as profile-guided optimization (PGO) attempt to find an optimal
combination of compiler flags, and they have been applied to real-world programs
such as Mozilla Firefox [34]. Cavazos et al. proposed an alternative approach using
performance counters [8].

Debugging and Troubleshooting

Bare et al. made measurements of a small set of events and used support vec-
tor machines (SVMs), a machine learning technique, to detect anomalies in an
e-commerce system [3]. In addition, Bhatia et al. developed a tool which collects
system information including counter measurements [5]. The data can then be
used for debugging by finding irregularities.

Performance Modeling

Ofenbeck et al. showed performance counter measurements can be used for the
roofline model [43] when analyzing application performance by counting the
number of FLOPS, memory operations, and clock cycles with performance events
on Intel processors [38].

Power Consumption

Singh et al. estimated power consumption of a computer system with data gath-
ered from performance counters [40]. Merkel et al. took the concept a step fur-
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2.3 Discussion 2 Background

ther and developed a power-aware scheduler in addition to estimating power con-
sumption [32].

2.3 Discussion

We can formulate a number of conclusions from the examination of PMUs and
related work. This includes not only benefits but also limitations of performance
counters.

First, there is no question concerning the usefulness of PMUs. In particular,
counter measurements are good indicators of performance [2, 24, 45, 46]. De-
termining the root cause of interference is relevant in cases where scheduling is
employed to avoid resource contention. However, it is not necessary when provid-
ing latency guarantees for programs [28, 44]. Moreover, the storage of historical
data aids the detection of performance degradation [44].

Second, applications in previous work target a specific processor, which demon-
strates a drawback in terms of portability—moving to a new machine would re-
quire reselecting the performance events. In cases where the same events exist on
the new platform, one must still verify the validity of the events. The presented
PMU tools are aware of this limitation, and in response attempt to support a lim-
ited set of generic events across all platforms [7]. This is one step to solving the
problem even though it is not a complete solution.

Third, most studies make the assumption contention occurs either in caches
or the memory bus and measure corresponding performance events such as the
number of cache misses or memory accesses. Yet there is no proof such events are
the best indicators; it is plausible there are other more suitable candidates.

Fourth, the number of performance counters limits the data obtainable by
users. Recent Intel and AMD processors have 11 and 4 counters per core, re-
spectively. In contrast, there are hundreds of measurable events. PAPI supports
multiplexing of events, and there are proposals exploring different approaches.
Azimi et al. utilized statistical sampling to multiplex counters to get values within
15% of non-multiplexed counts [1]. A similar study was undertaken by May [31].
Consequently, multiplexing is a valid solution, but we will investigate other al-
ternatives which do not rely on statistical sampling to reduce the probability of
error.
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3 Survey of PMUs

In this chapter, we present a survey of PMUs and discuss their limitations in de-
tail. Topics include the portability of performance events and the scarcity of per-
formance counters. In contrast to the previous chapter, we mention architecture-
specific details of PMUs. Case studies of PMUs are also conducted to understand
typical workflows of users.

3.1 Vendor Documentation

Priority is given to the x86 architecture, so we only consider Intel and AMD proces-
sors in this thesis. Documentation of PMUs for Intel microarchitectures is located
in the Intel 64 and IA-32 Architectures Software Developer’s Manual (SDM) Vol-
ume 3 [11]. Each microarchitecture has its own section with a list of supported
performance events. To illustrate, Figure 3.1 contains a truncated list of events for
the Ivy Bridge microarchitecture obtained from the SDM. Each event has an event
code, umasks for subevents, and a description. Certain events have additional
restrictions or notes. Note that high-end CPU models often support extra events
compared to basic models within the same microarchitecture.

Event

Num.

Umask

Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD Loads blocked by overlapping with store buffer that 
cannot be forwarded.

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are 
temporarily blocked because all resources for 
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

Figure 3.1: Snippet of event list for the Ivy Bridge microarchitecture.

Event select and fixed counter control MSRs are also documented although
there is less variation between generations. A sample event select MSR from the
SDM is shown in Figure 3.2. The various bits control the corresponding counter
MSR. Bits 0–7 are for the event code, and bits 8–15 are for the subevent. Bits 16 and
17 specify whether execution in kernel mode and user mode should be measured,
respectively. Bit 22 determines whether the counter is enabled or disabled.
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31
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Figure 3.2: Layout of an Intel event select MSR.

In addition to the SDM, Intel also provides event data as JSON and TSV files
for each microarchitecture [14].

Documentation for AMD is similar. Whereas Intel covers all microarchitectures
in a single volume, AMD releases a separate BIOS and Kernel Developer’s Guide
(BKDG) for each processor family [18].1 For instance, there is a dedicated docu-
ment for family 10h processors [17]. The specification of events and PMUs MSRs
is more or the less the same, so details have been omitted for brevity.

3.2 Tools

In this section, we study the actual use of some tools listed in Section 2.1.2, namely,
perf_event in the Linux kernel and the libpfm and PAPI libraries.

3.2.1 perf_event

The function prototype of perf_event_open is as follows:

int perf_event_open(struct perf_event_attr *attr,
pid_t pid, int cpu, int group_fd,
unsigned long flags);

The syscall sets up an event to be measured by a counter and returns a file
descriptor which references the event. We will cover the parameters beginning
with attr.

Event selection: The selection of events is completed through the type and
config fields in attr. We are primarily concerned with 3 types:

• PERF_TYPE_HARDWARE
• PERF_TYPE_HW_CACHE
• PERF_TYPE_RAW

The types PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE provide “generic”
events across different platforms. The latter contains events concerning caches
(e.g., cache accesses, DTLB misses, etc.) while the remaining events belong to the

1Intel and AMD use different terminology. A microarchitecture is roughly equivalent to a family.
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former (e.g., instructions executed, clock cycles, etc.). Other events not available
as generalized events can be selected using PERF_TYPE_RAW. The event is set in
config.

Reading counter values: There are two methods of reading event counts: count-
ing and sampling.

• Counting reads event counts through the read syscall. The format is based
on the read_format field. Events in the same group can be read with a
single invocation using PERF_FORMAT_GROUP.

• Sampling writes event counts to an mmap ring buffer, and either the sampling
frequency or period must be specified. The sample_type field defines the
sample format. Values for events in the same group can also be read into a
single sample using PERF_SAMPLE_READ.

Counter control and scope: Various other attributes are specified in attr. For
instance, the disabled field determines if the counter is to be enabled immedi-
ately. Counters may be configured to exclude counting of events while executing
in user mode and kernel mode using exclude_user and exclude_kernel,
respectively. Monitored processes which are forked or spawn threads have the
option of having children inherit their counters with the inherit field.

Monitored processes/threads and cores: The counter can be restricted to moni-
tor a specific process/thread by passing in the PID/TID in pid. A value of 0 mon-
itors the calling process/thread while a value of -1 monitors all processes/threads.
Similarly, the counter only monitors a given CPU if its identifier is passed in as
cpu.2 A value of -1 monitors the specified process/thread on any core. If a
PID/TID is passed in, the counter value follows the process/thread wherever it is
scheduled to run (subject to CPU restrictions), i.e., the counter value is saved and
restored if the process/thread migrates to a different core. Hence the returned file
descriptor only references a logical counter as the underlying hardware counter
may change. If a CPU ID is specified, a counter is allocated on the core to measure
the event (subject to process/thread restrictions).

Grouping counters: Counters may be grouped together. Counters in the same
group can be collectively enabled/disabled, and their values can also be read with
a single function call. The only restriction is counters belonging to the same group
must be on the same core, and they are to be scheduled together. Passing in
group_fd = -1 creates a new group with the returned file descriptor as the group
leader. Specifying the group leader of an existing group adds the new counter to
that group.

2Here CPU is defined as a logical core. Each logical core has its own unique identifier.
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Miscellaneous options: The parameters attr and flags contain many other
options. However, the remaining functionality is not relevant for this thesis, so
they have been omitted. Refer to the man page for more details.

Counter operations: Operations are performed with the ioctl syscall on file
descriptors. The following are used to enable, disable, and reset counter values to
zero:

• PERF_EVENT_IOC_ENABLE
• PERF_EVENT_IOC_DISABLE
• PERF_EVENT_IOC_RESET

If PERF_IOC_FLAG_GROUP is set, then the operations above are applied to all
counters in the same group.

Limitations: The perf_event_open syscall has a number of limitations.

• The configuration pid = -1 and cpu = -1 is an invalid combination. The
syscall sets up exactly one logical counter to measure the specified event, and
it maps to at most one hardware counter at any given time. Monitoring all
processes on all cores would violate this.

• The inherit bit has no effect on existing children, for it would be impossi-
ble to apply this change retroactively.

• The options PERF_FORMAT_GROUP and PERF_SAMPLE_READ are incompat-
ible with inherit since reading counter values of children could potentially
require reading counters on different cores, causing synchronization prob-
lems.

• Ring buffers for sampling must pinned to memory, so users may have to
increase RLIMIT_MEMLOCK.

• The syscall is an abstraction layer, so users cannot select the underlying hard-
ware counter. This restricts the control users have over multiplexing coun-
ters.

3.2.2 libpfm

The purpose of libpfm to is allow users to select events using self-evident names
instead of event codes and subevent umasks, so it is not responsible for configur-
ing PMU MSRs. In practice, libpfm is most commonly used to prepare the attr
argument for perf_event_open by setting type to PERF_TYPE_RAW and fill-
ing in the appropriate value in config according to the given event name. The
function prototype is shown below:

int pfm_get_os_event_encoding(const char *event, int dfl_plm,
pfm_os_t os, void *attr)

The first argument is reserved for the event name string. The function can
limit the scope of counters in attr to specific protection rings with dfl_plm.
Although there are multiple levels, only PFM_PLM0 and PFM_PLM3 are used. The
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former corresponds to kernel mode while the latter is normally user mode. For
use with perf_event, os is set to PFM_OS_PERF_EVENT. In this case, users may
ignore dfl_plm and set the appropriate flags in attr before passing it to the
syscall.

The library provides a list of event names which it translates to event codes for
each microarchitecture. While the lists are not complete, they are comprehensive
enough to cover frequently used events.

3.2.3 PAPI

PAPI is another library dedicated to cross-platform support of PMUs. Whereas
perf_event provides the functionality to access PMUs and libpfm allows users to
select events, PAPI covers both domains.

PAPI groups events into event sets which are similar to groups in perf_event.
The following functions are responsible for event set management:

int PAPI_create_eventset(int *EventSet)
int PAPI_cleanup_eventset(int *EventSet)
int PAPI_destroy_eventset(int *EventSet)
int PAPI_add_named_event(int EventSet, char *EventName)
int PAPI_set_multiplex(int EventSet)

PAPI supports both generic and microarchitecture-specific events under the names
standardized and native events, respectively, and it is possible to select events with
names instead of event codes and umasks. Event sets may also be multiplexed.

Performance counters are managed with the following functions:

int PAPI_reset(int EventSet)
int PAPI_start(int EventSet)
int PAPI_stop(int EventSet)
int PAPI_read(int EventSet, long long *values)

3.3 Portability

The issue of portability is clearly visible since both perf_event and PAPI attempt
to address the problem by introducing generic events. However, we note this
approach has three shortcomings:

1. The set of generic events is very limited. For instance, perf_event only de-
fines 17 generic events as of Linux 4.7 while each PMU typically supports
hundreds of events.

2. Not all generic events are available on all platforms, i.e., there are generic
events which cannot be mapped to suitable events on some processors. If
users are restricted to generic events which are always available, they are
presented with an even smaller set, further limiting the usefulness of PMUs.

3. Although PMUs may have events with identical or similar names, it does
not mean they are equivalent. For example, Intel does not include prefetches
in last-level cache misses or references, but other vendors may. Therefore,
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generic events give users some degree of convenience, but do not completely
solve the problem.

3.4 Performance Overhead

The low performance overhead has been mentioned as an incentive for using
PMUs to obtain system diagnostics [1, 24, 44]. We perform microbenchmarks to
verify such claims and to provide concrete numbers on the cost of reading counter
values.

The benchmarks were performed on Babybel. For all benchmarks in this the-
sis, refer to Appendix A for details such as the hardware configuration, operating
system, etc. Event values of event groups were read with bulk operations for
perf_event and PAPI 5.4.3, and the group size was varied. Each benchmark per-
formed a total of 10,000,000 read operations, and we calculated the average time.
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Figure 3.3: Cost of counter reads.

From Figure 3.3, we observe reads for larger group sizes take longer although
the increase is not linear with respect to the number of events. Therefore, it is
possible to reduce the overhead by leveraging event groups. Even if each event
were read individually, the cost to read a single event is approximately 0.4 µs,
which is negligible. This corroborates earlier claims.

Finally, we also experimented with different events to determine the effect of
selected events on read times. However, there was no observable variance, so the
choice of events should be irrelevant.

3.5 Case Study: Scheduling

Now that we have examined various aspects of PMUs, we turn to case studies to
understand how they are used in practice. The remainder of this chapter consists
of two case studies. The objective of the first case study is to characterize system
behaviour. The second case study looks at different types of interference on two
separate machines.
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Apart from the underlying hardware, thread placements are another major
factor which influence application performance. Therefore, it is imperative for
us to investigate how they are determined by schedulers and the ramifications of
different thread placements.

3.5.1 Preliminaries

We performed benchmarks using the applications PR, HD, and SSSP on Gottardo
with the following partitioning schemes:

• shared cores
• whole sockets
• default

Every application was configured to spawn 32 threads (the machine has 64 logical
cores). Refer to Appendix A for more details concerning benchmarks.

The logical cores of the 4 processors are numbered 1–16, 17–32, 33–48, and
49–64. Logical cores 1 and 9 are SMT threads on the same physical core. The
same holds for 2 and 10, 3 and 11, etc. The numbering for remaining processors is
analogous.

For shared cores, the first application was assigned cores 1–8, 17–24, 33–40, and
49–56 while the second application received the remaining cores. For whole sockets,
the first application was allocated cores 1–32 while the second application received
cores 33–64.

First, we ran each application alone, i.e., the cores reserved for the second
application were idle. Next, they were run pairwise to observe the effects of inter-
ference, e.g., PR and PR, PR and HD, PR and SSSP, etc. This process was repeated
for every partitioning scheme.

3.5.2 Results

We define the interference factor of a given application and partitioning scheme
to be the execution time of the interference case divided by the execution time
of the base case. As mentioned in Appendix A.4, if an application was run for
multiple iterations, we use the execution time of the first iteration only. E.g., if the
execution times with and without interference are 60 s and 30 s, respectively, the
interference factor is 60/30 = 2. Clearly, lower factors are desirable, and a factor
of 1 is optimal as it signals the absence of performance degradation.

Observe that whole sockets exhibits the least interference while shared cores has
the most in Figure 3.4. Default is somewhere in between. This reflects our choice of
thread placements. The applications do not share any resources within individual
CPUs with the whole sockets scheme. In contrast, shared cores results in applications
sharing memory controllers, L1 to L3 caches, physical cores, etc. Since we selected
two extremes, default naturally lies in the middle.

Determining the optimal thread placement for a given set of constraints is dif-
ficult. To illustrate, if we assume SSSP is a latency-sensitive task running alongside
PR, then whole sockets is the best strategy as it causes the least interference for SSSP.
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However, if we want to attain the highest throughput possible for PR, the other
two schemes are preferable.3
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Figure 3.4: Interference heatmaps for each partitioning scheme.

Scheduling History Reconstruction

As part of this thesis, we developed a novel algorithm which reconstructs the
thread placement history with performance counter samples. This is useful for
understanding how the Linux scheduler allocates cores. In cases where there is
perceived interference, we can see which resources are shared between applica-
tions. Obviously, this is only meaningful for default as other schemes pin threads
to cores. The instrumentation of PMUs is described in Appendix A.4. Since we
only make use of sample metadata and not event counts, we are not concerned
with which events are actually measured.

Each sample contains the PID, TID, and CPU ID4 in addition to the event and
event count. Therefore, it is possible to track threads as they migrate between
cores. The reconstruction algorithm is presented in Algorithm 1. The input is
a list of samples sorted by timestamp in ascending order; the output is a list of
periods. The general idea is to keep track of a set of active periods with an invariant:
each thread or core has at most one active period at any point in time. We apply
the following rules to generate the list of periods:

1. If the current core has an active period belonging to another thread, it is
terminated, and a new one is created for the current thread.

2. If the current thread is continuing execution execution on the same core, the
active period is extended.

3. If the current thread was migrated from another core, the previous active
period is terminated, and a new one is created.

We display the scheduling histories of the benchmark involving PR and SSSP as
an example in Figure 3.5. Each thread is shown in a distinct colour, and we use the
numbering of CPU cores described above. Clearly, the Linux scheduler attempts
to group threads belonging to the same process on the same processor. However,

3A lower interference factor is not indicative of a shorter execution time. It is possible for a
scheme to experience more interference, but still have a shorter execution time.

4CPU IDs reference logical cores instead of whole processors.
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Algorithm 1 Scheduling history reconstruction
1: function Reconstruct-Scheduling-History(samples)
2: periods = list()
3: active_periods = dict() // Key = TID, value = period
4: last_tids = dict() // Key = CPU, value = TID
5: for all sample ∈ samples
6: // If another thread was running on current CPU, end its active period.
7: prev_tid = get(last_tids, sample.cpu)
8: if prev_tid 6= null and prev_tid 6= sample.tid
9: add(periods, get(active_periods, prev_tid))

10: remove(active_periods, prev_tid)

11: // Get active period of current thread if it exists.
12: period = get(active_periods, sample.tid)
13: if period 6= null and period.cpu = = sample.cpu
14: // Thread was running on same CPU, so extend period.
15: period.end = sample.time
16: else
17: // If the active period is on another CPU, end it and clear CPU state.
18: if period 6= null // Condition period.cpu = = sample.cpu implied
19: add(periods, period)
20: remove(last_tids, period.cpu)

21: // Create new active period.
22: new_period = Create-Period(sample.cpu, sample.tid, sample.time)
23: set(active_periods, (sample.tid, new_period))

24: set(last_tids, (sample.cpu, sample.tid))

25: return periods

there is some unnecessary overhead as threads from the same task are frequently
migrated between cores. In this particular case, default behaves similarly to whole
sockets. However, we have also seen scenarios where it is not as clear cut and
threads belonging to different processes are scheduled on the same socket. The
cost of thread migration is not merely limited to context switches. For example,
machines having multiple NUMA nodes may initially allocate memory on the first
NUMA node a thread is scheduled on. Then subsequent migrations run the risk
of introducing additional memory latency.
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Figure 3.5: Scheduling histories of PR and SSSP.
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Basically, the Linux scheduler tries to strike a balance between latency and
throughput, yet it is still difficult to impose specific constraints users may need.
This is complicated by the fact that finding an optimal thread placement is non-
trivial. As it has been shown scheduler bugs can lead to severe performance
issues [29], the reconstruction of scheduling histories using performance counters
has potential use cases since users can gain additional insight into the system.

Algorithm 2 Scheduling history reconstruction (auxiliary function)
1: function Create-Period(cpu, tid, time)
2: period.cpu = cpu
3: period.tid = tid
4: period.begin = time
5: period.end = time
6: return period

3.6 Case Study: Interference

Now that it has been shown applications can have complex interactions, we want
to establish that PMUs are capable of diagnosing performance issues. In this
section, we present case studies involving cache and memory interference.

3.6.1 Cache Interference

In this case study we paired an application with good locality of reference and
an application with poor locality to demonstrate contention on the last-level cache
(LLC).

We ran MM with PR on Babybel (in this case study MM refers to MM1). PR was
configured to use 8 threads. The PR threads and the MM process were pinned to
separate cores on the same processor. Babybel has 2 processors with 10 cores each,
so one processor had 9 cores in use while the remaining core and all cores on the
other processor were idle. The following two events were used to calculate the L3
cache miss rate [11]:

• LONGEST_LAT_CACHE.REFERENCE
• LONGEST_LAT_CACHE.MISS

The L3 cache miss rates of the applications running alone are shown in Fig-
ure 3.6a. MM and PR have average cache miss rates of 0.0008 and 0.57, respec-
tively. The low miss rate for the former can be explained by the fact the input and
output matrices are both approximately 2 MB each and fit into the processor’s L3
cache (25 MB). In contrast, PR has a much higher cache miss rate which explains
consumption of memory bandwidth in the previous case study.

The results of the applications running side by side are presented in Fig-
ure 3.6b. The cache miss rate of MM dramatically increases to 0.57 whereas the
rate for PR remains steady at 0.58. However, the elevated cache miss rate resulted
only in an 8.9% increase in execution time for MM. Because the overall execution
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(a) PR and MM running alone.
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(b) PR and MM running simultaneously.

Figure 3.6: L3 cache miss rates of PR and MM instances.

time of MM is shorter than PR, we restarted MM after the program finished in
Figure 3.6b. The continued execution is indicated by the grey line.

At a glance, the increases in the cache miss rate and execution time appear
to be disproportionate; however, examination of the L2 cache miss rate clarifies
this—it is relatively low at 0.07. As only a small number of requests reach L3
cache, an increase in L3 cache misses has limited effect on the execution time.

Unlike the L3 cache, there is no event which counts all the different types of
L2 references and misses collectively, so they had to be measured separately. The
following events were required to calculate the L2 cache miss rate [11]:

• L2_RQSTS.ALL_DEMAND_DATA_RD
• L2_RQSTS.DEMAND_DATA_RD_HIT
• L2_RQSTS.ALL_RFO
• L2_RQSTS.RFO_MISS
• L2_RQSTS.ALL_CODE_RD
• L2_RQSTS.CODE_RD_MISS

As mentioned before, Intel processors only have 8 general-purpose perfor-
mance counters per core. Consequently, the data for the L2 cache was collected in
a separate run with identical configuration.

3.6.2 Memory Interference

Memory interference is caused by applications with working sets unable to fit
inside the CPU cache and/or poor locality of reference. Typically, such applica-
tions have higher L2 and L3 miss rates which result in an increased number of
main memory accesses. This in turn can lead to contention on memory controllers
and/or interconnect paths.

To show the effects of memory interference, we measured the memory band-
width of PR on Appenzeller. Memory bandwidth was calculated using a formula
obtained from an AMD white paper [19]. The event “DRAM Accesses” was used
to count memory accesses [18].
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Figure 3.7: Thread placement strategies 1 (left) and 2 (right).

We ran two benchmarks: (1) one instance of PR running alone and (2) two
instances of PR running simultaneously. Each instance of PR was configured to
use 24 threads (the machine has 48 cores). The threads were pinned to cores dur-
ing execution to allocate memory controllers and avoid interference by the Linux
scheduler. We ran each benchmark with two different thread placement strate-
gies. The first strategy assigned 2 entire processors to each PR instance, which
translates to 4 whole NUMA nodes. For the second strategy, each PR instance was
allocated half of every NUMA node. A graphical depiction is given in Figure 3.7
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Figure 3.8: Memory bandwidth of PR instances distributed on 4 NUMA nodes.

In the benchmarks for the first strategy, the execution time for a single PR
instance running alone is around 162 seconds, and the measured memory band-
width is approximately 51 GB/s (c.f. Figure 3.8a). If two PR instances are executed
together, the execution time and memory bandwidth remain roughly constant.
The two instances do not interfere with each other since the threads of instances
are assigned to separate sockets.

For the second strategy, each PR instance received half of every NUMA node,
i.e., each instance gets 3 out of 6 cores on all NUMA nodes. We observe the exe-
cution time of a single PR instance is nearly halved (c.f. Figure 3.9a). We attribute
this to the fact that we now have the ability to make use of twice the number of
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Figure 3.9: Memory bandwidth of PR instances distributed on 8 NUMA nodes.

memory controllers in the system. We see that the memory bandwidth is roughly
21 GB/s higher than in Figure 3.8a. However, once we execute two PR instances
simultaneously on the machine, we see that the execution time goes up to approx-
imately 176 seconds and the memory bandwidth decreases to around 52 GB/s.
Assuming the two instances share memory controllers fairly, each instance re-
ceives the equivalent of 0.5× 8 = 4 memory controllers. The execution time and
memory bandwidth attained by instances therefore appears to be dependent on
the number of available memory controllers.

3.7 Discussion

From the scheduling case study, we verify the claim that running tasks on modern
systems result in complex interactions, and finding an optimal thread placement
for a given set of constraints is a difficult problem. The case study on interference
then goes on to show PMUs are able to make inroads to a solution by gathering
data on hardware components.

It should be noted both case studies are representative of typical use cases of
performance counters. One normally proceeds with the following steps:

1. Formulate an objective.
2. Observe the behaviour of the system.
3. Experiment with various events.
4. Adjust the system.

Using the memory interference case study as an example, the objective was to
determine the reason why the two thread placement strategies resulted in different
performance characteristics. Shared resources in the memory hierarchy are often
contended, so we might hypothesize either CPU caches or memory controllers are
the bottleneck. Then trial and error is required to find a suitable event capable
of diagnosing the problem. The conclusion is to allocate the highest number of
NUMA nodes possible without having to coschedule PR instances on the same
NUMA nodes.
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While this approach is valid and feasible, it suffers from two limitations: (1) the
selected events are specific to this machine, and (2) the selection of events is a man-
ual process which is labour-intensive and requires domain knowledge. The first
limitation is evident in all applications of performance counters. Previous appli-
cations of performance counters also experienced this very same problem. Porta-
bility itself is not a showstopper, but the second limitation makes it impossible
for this approach to scale. The requirement to understand both the hardware and
implications of various events also raises the entry bar. Moreover, event selection
is inherently time-consuming, so it causes users to automatically turn to a small
set of candidate events such as cache misses or memory accesses. While these may
be relevant events for performance issues, they are not necessarily the best events.
The failure to consider a wider range of events opens up the possibility of passing
over more suitable candidates.

We therefore propose a new framework which is required to be (1) portable
across all architectures and (2) capable of automatically selecting relevant events for
users. Although we have seen numerous applications of PMUs, we will restrict
ourselves to detecting and classifying interference for now. The steps for our
proposal are as follows:

1. Define list of performance events.
2. Run set of applications and collect measurements for each event.
3. Determine which events are indicative of interference.
4. Classify the types of interference indicated by the selected events.

Step 1 is straightforward as vendors provide a list of events for each CPU.
We select as many events as possible, but uncore events are excluded since all
processes on the same socket share the same count for an uncore event. Therefore,
it is impossible to tie event counts to a specific process.

Step 2 requires an application set containing a mix of programs which covering
common workloads of the majority of users. This is difficult as the applications
must also exhibit contention of various shared resources when run together. We
begin with a small set with the future plans to expand it.

Step 3 will involve a binary classifier which determines whether certain event
sets serve as effective heuristics for detecting performance degradation.

Step 4 is reserved for future work.
However, since CPUs possess a limited number of performance counters with

respect to the number of measurable events, we must first group similar events
before proceeding to interference detection. Consequently, we will discuss our
application set and possible approaches for event grouping in the next chapter.
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4 Event Space Reduction

Recall the wide gap between the number of countable events and available coun-
ters in Figure 1.1. The ability to only measure a limited number events leads to
two immediate questions:

1. How many events are needed to detect interference?
2. Which events are needed to measure to detect interference?

Ideally, we would like to see a change in event counts in the presence of inter-
ference, and previous studies which used performance counter measurements as
heuristics prove this is possible. However, the minimum number of events neces-
sary to detect interference is an open question. Our first step is then to find the
intrinsic dimensionality of the event space. Next, we must reduce the event space
to allow users to gather information without measuring every single event. This
involves grouping correlated events together, and we evaluate several grouping
schemes.

4.1 Preliminaries

As our solution is designed with a view to solve portability issues, we do not
give answers specific to any platform. Instead, we present a framework which
is capable of reducing the event space on any machine by running a predefined
set of applications known as the application set. We will begin by describing it in
detail.

4.1.1 Applications

The selection of applications must be sufficiently diverse to cover most workloads
end users run. Furthermore, it must be capable of causing various types of in-
terference. In other words, it moves the burden of experimenting with various
events under different workloads away from end users. Due to these reasons, it
is a challenge to add new applications. We begin with a small set of applications
with plans to expand it at a later date. Currently, the application set consists of
the following applications:

• PR
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• MM
• SORT

PR instances are configured to spawn 8 threads, and all three variations of MM
are used, i.e., MM1, MM2, and MM3.

4.1.2 Benchmarks

A variety of benchmarks were run with the selected applications on Babybel. The
complete list is shown in Table 4.1. First, each application was run independently.
Next, applications were paired together to generate interference. Benchmarks in-
volving paired applications were run with three different partitioning schemes:

• shared cores
• shared sockets
• whole sockets

The table explicitly documents the cores assigned to each application as a set, e.g.,
for the benchmark MM + PR (shared sockets), MM and PR are assigned the core
sets {1} and {2–9}, respectively. Hence MM runs on core 1 whereas PR is allocated
cores 2–9. Recall Babybel has 2 processors with 10 cores each. We label the cores in
the first processor 1–10 and the cores in the second 11–20.

Notice that PR is run independently twice. This is because the partitioning
of cores for shared sockets is different from the other two schemes, so a different
baseline is necessary. Normally, the scheme column is left empty if applications
are running alone. In addition, MM should be expanded into MM1, MM2, and
MM3, e.g., the row MM + SORT (shared cores) should be read as three rows:

• MM1 + SORT (shared cores)
• MM2 + SORT (shared cores)
• MM3 + SORT (shared cores)

Application(s) Scheme Core Set(s)
MM {1}

SORT {1}
PR {1–8}
PR shared cores {1–4, 11–14}

MM + SORT shared cores ({1}, {1})
MM + SORT shared sockets ({1}, {2})
MM + SORT whole sockets ({1}, {11})

MM + PR shared cores ({1}, {1–8})
MM + PR shared sockets ({1}, {2–9})
MM + PR whole sockets ({1}, {11–18})

SORT + PR shared cores ({1}, {1–8})
SORT + PR shared sockets ({1}, {2–9})
SORT + PR whole sockets ({1}, {11–18})

PR + PR shared cores ({1–8}, {1–8})
PR + PR shared sockets ({1–4, 11–14}, {5–8, 15–18})
PR + PR whole sockets ({1–8}, {11–18})

Table 4.1: List of benchmarks.
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4.1.3 Event Selection and Measurement

The libpfm library provides events for the Intel Xeon E5-2670 v2 processor through
the PMU module ivb_ep, and as many events as possible were selected. The list of
190 selected events can be found in Appendix B.

Uncore events were excluded since their counts cannot be traced back to a
specific process/thread. In more concrete terms, suppose there is an uncore event
measuring the number of memory bus transactions. The event count includes
transactions for all processes running on the socket as we cannot restrict it to a
specific process or core.

The processors in Babybel only have 8 general-purpose counters per core, so
it is impossible to measure 190 events simultaneously. As a result, each bench-
mark was run multiple times to collect measurements for all events. Iterations for
the same benchmark had identical configuration, with the exception of monitored
events. The sample standard deviation of execution times was calculated for each
execution. We define the relative standard deviation to be σ/µ, where σ denotes the
standard deviation and µ is the mean. The maximum maximum standard devia-
tion across all executions is 0.96%. Hence all the iterations of the same benchmark
were similar in terms of execution time.

4.1.4 Data Representation

Data mining techniques frequently require input to be represented as matrices.
This part describes how we represent sample counts for events as a matrix. Each
application is understood to be a single process which may contain multiple
threads, and we always use a time slice of 1 second in this thesis.

Suppose we measured n events e1, . . . , en for a process p on a machine with m
cores (note that the threads of p may execute on multiple cores simultaneously),
and the execution time was t seconds. The execution time can be divided into time
slices of equal length. The delta of an event is defined to be the increase in the
event count during a specific time slice (deltas are always nonnegative integers).
Since we have separate counters for each core, they must be aggregated for every
time slice. Let cijk denote the increase of ei’s event count during the jth time slice
on core k. Thus the delta of ei for the jth time slice is

cij =
m

∑
k=1

cijk.

Then the deltas of all events for the jth time slice can be represented as a column
vector

xj =

c1,j
...

cn,j

 .

By defining column j of matrix X to be the vector of deltas for time slice j, we
obtain

X =
[
x1 . . . xt

]
.
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In other words, row i of X is simply a vector containing ei’s deltas in chronological
order.

In addition, data from several processes may be concatenated together. As-
sume we have matrices Xp and Xq for processes p and q, respectively. Then define

Xpq =
[
Xp Xq

]
to be the combined matrix. Clearly, this can be done for an arbitrary number of
processes.

For the remainder of this chapter, matrix X is defined to contain data for all
executions of applications, i.e.,

X =
[
Xp1 . . . XpN

]
,

where N is the number of executions. We also exclude rows which only contain
0, i.e., events whose deltas are all 0. There are a number of possible explanations
for this phenomenon. There may be a software or hardware bug affecting specific
events, or the events were simply not triggered.

There are 164 remaining events out of 190, and hence X ∈ Z164×N
≥0 , where

Z≥0 denotes the set of nonnegative integers. The excluded events are listed in
Appendix B. Note that any conclusions obtained from operations on X should be
valid for all applications as X contains data from every execution in the application
set.

We take the sum of counts of all threads for each application because we are
primarily concerned with the overall performance and not the progress of indi-
vidual threads. For example, in cases where only a few threads are affected by
interference, we need not be overly concerned. However, carrying out aggregation
of event counts implies we lose fine-grained control, so there are also disadvan-
tages of this approach. An alternative is to analyze each thread on its own.

4.2 Dimensionality Analysis

In this section, we apply principal component analysis (PCA) to find the intrinsic
dimensionality, i.e., the number of variables determining the data points. PCA
projects each column xi ∈ RD of X ∈ RD×N onto a subspace to obtain x̃i ∈ RK,
and the objective is to select the smallest possible K ≤ D such that each column
retains its “features” [22]. Here D = 164 since there are 164 events in X.

Recall we have multiple runs of each application. Suppose p′ and p are execu-
tions of an application with and without interference, respectively. Define

Xpp′ =
[
Xp Xp′

]
.

After reducing the event space, we need to be able to differentiate whether vectors
originate from p or p′ to detect interference, and selecting a higher K obviously
increases this probability. However, if K is small, then not all 164 events need to
be measured to obtain sufficient data. Moreover, K may be used to determine the
number of groups when performing event grouping.
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4.2.1 Subspace Dimensionality and Approximation Error
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Figure 4.1: Eigenvalues and approximation error of PCA.

As usual, matrix X was mean-centered before applying PCA by obtaining the
eigendecomposition of the covariance matrix with functions from NumPy [35, 36,
37]. The results are shown in Figure 4.1. We are primarily concerned with how the
approximation error changes according to K. There is a visible “knee” between
K = 1 and K = 10 since the error decreased dramatically in this range, which
implies the data points (i.e., the columns of X) can be orthogonally projected
onto a low-dimensionality subspace. Assuming we get the maximum error when
K = 1, further inspection reveals selecting K = 4 returns an error of less than 10%
(8.16%). Increasing K to 7 reduces the error to below 1% (0.95%).

4.2.2 Projection of Data Points onto Subspaces

In order to visualize the data, the points are projected onto R2 and R3 in Figure 4.2.
We see the points retain their “structure” when K is reduced from 3 to 2. This
suggests K = 3 may be a valid choice for the intrinsic dimensionality of the event
space.
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x
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z

(b) R3

Figure 4.2: Projection of data points onto subspaces.
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However, we need to verify two additional conditions. First, points originating
from the same execution should be clustered together. All of the applications in
the application set only have one phase, so in theory the event deltas should be
similar for all time slices. One minor exception is be SORT as it may behave differ-
ently as it makes progress. Second, different executions should be distinguishable.
Executions exhibiting interference normally have irregular counter values. Next,
we plot each application in a separate graph.

x

y

z
SORT
SORT + MM1 (shared cores)
SORT + MM2 (shared cores)
SORT + MM3 (shared cores)
SORT + PR (shared cores)

SORT + MM1 (shared sockets)
SORT + MM2 (shared sockets)
SORT + MM3 (shared sockets)
SORT + PR (shared sockets)

SORT + MM1 (whole sockets)
SORT + MM2 (whole sockets)
SORT + MM3 (whole sockets)
SORT + PR (whole sockets)

Figure 4.3: Data points of SORT.

Figure 4.3 exclusively contains data points belonging to executions of SORT.
Each execution can be identified by a unique shape and colour. For instance, blue
circles denote an execution of SORT without interference, and red squares denote
an execution of with MM2 causing interference with the shared sockets partitioning
scheme. Observe that data points from the same execution are frequently close to
each other although there are some outliers, and certain executions exhibit more
variance. In addition, executions experiencing more severe degradations are easily
distinguishable—executions with the shared cores scheme form a cluster which is
further removed from other executions.

x

y

z

MM1
MM1 + PR (shared cores)
MM1 + SORT (shared cores)
MM2 + PR (shared cores)
MM2 + SORT (shared cores)
MM3 + PR (shared cores)
MM3 + SORT (shared cores)

MM2
MM1 + PR (shared sockets)
MM1 + SORT (shared sockets)
MM2 + PR (shared sockets)
MM2 + SORT (shared sockets)
MM3 + PR (shared sockets)
MM3 + SORT (shared sockets)

MM3
MM1 + PR (whole sockets)
MM1 + SORT (whole sockets)
MM2 + PR (whole sockets)
MM2 + SORT (whole sockets)
MM3 + PR (whole sockets)
MM3 + SORT (whole sockets)

Figure 4.4: Data points of MM.

The same process is done for MM and PR in Figures 4.4 and 4.5, respectively.
The MM application is also a single-threaded process like SORT. However, we
experimented with three input matrices of different sizes as they act on the LLC
differently. Smaller matrices which fit inside the cache have very low miss rates
while larger ones have higher miss rates. Regardless of MM’s effect on the LLC,
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we can draw similar conclusions to SORT since executions experiencing more in-
terference form an distinct cluster.

In contrast, the reaction of PR to interference is a bit more varied since it is
a multithreaded program. When PR experiences interference caused by a single-
threaded program (e.g., SORT and MM), the performance degradation is not as
pronounced. We also see a serious slowdown when two PR instances are cosched-
uled with the shared cores scheme. Therefore, it is possible to conclude there are
varying degrees of interference—some severe and others less so—which can be
detected and visualized through performance counter measurements.

x

y

z

PR
PR + MM1 (shared cores)
PR + MM2 (shared cores)
PR + MM3 (shared cores)
PR + PR (shared cores)
PR + SORT (shared cores)

PR (shared sockets)
PR + MM1 (shared sockets)
PR + MM2 (shared sockets)
PR + MM3 (shared sockets)
PR + PR (shared sockets)
PR + SORT (shared sockets)

PR + MM1 (whole sockets)
PR + MM2 (whole sockets)
PR + MM3 (whole sockets)
PR + PR (whole sockets)
PR + SORT (whole sockets)

Figure 4.5: Data points of PR.

Clearly, if these results can be obtained from a 3D subspace, then all of the
above (and possibly more) should be achievable with subspaces containing more
dimensions. It is important to note the chosen value for K, i.e., the intrinsic di-
mensionality or number of principal components, does not directly translate to
the number of events which should be measured. However, it does suggest only
a fraction of events are required to preserve information from the complete set of
events. Finally, we wish to emphasize the generality of the dimensionality analy-
sis again. PCA was performed on data points originating from all applications in
the application set as well as executions with and without interference. Thus the
selected K is not specific to any application, nor is it limited to a specific type of
interference. This generality will continue to apply to all following results.

4.3 Event Similarity

By applying PCA, it is possible to show the intrinsic dimensionality of the event
space is less than 10. However, PCA only tries to preserve information when
mapping data points to a subspace and does not suggest the dimensions which are
important, i.e., PCA does not determine the events which should be measured. In
other words, K provides an estimate of how much the event space may be reduced,
but we still need to explore how to perform the reduction.

Naturally, clustering is one way of proceeding, and there is certainly no short-
age of clustering algorithms; one classic example is k-means clustering. The core
of such algorithms involves defining similarity between objects, e.g., the Euclidean
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distance between points is often used with k-means. In this section, we will dis-
cuss (1) how similarity is formally applied to the matrix X, (2) different notions of
similarity, and (3) evaluate their suitability for X.

Recall each row in X maps to an event. More specifically, the deltas of an event
form a row, where each delta corresponds to one time slice. Thus, every event can
be represented by the entire row, which is simply a vector in RN . Suppose there
are two events ei and ej, and their corresponding vectors are x and y, respectively.
Then we define ei and ej to be similar if and only if x and y are “close.” Since
similarity is defined as the “distance” between two vectors, there are numerous
mathematical tools at our disposal.

4.3.1 Euclidean Distance

The Euclidean distance is one of the most commonly used definitions of distance.
Let x, y ∈ Rn. Write x = (x1, . . . , xn) and y = (y1, . . . , yn). The Euclidean distance
is defined as

d(x, y) =

√
n

∑
i=1

(xi − yi)2.

A smaller value indicates the vectors are “closer.”
Application of the Euclidean distance to events is straightforward as x and y

are simply replaced by event vectors, and d reflects the “closeness” of the corre-
sponding events. However, there are two caveats. First, the curse of dimensionality
comes into play as the dimension increases [4]. In short, a high dimensionality
causes points to become sparse, making finding similar events problematic. Sec-
ond, the Euclidean distance does not take the magnitude of deltas into account. To
illustrate, there may be two different events where one event vector is a constant
multiple of the other. Some would consider them to be similar, but if the constant
is too large, the Euclidean distance would not be able to discover this.

4.3.2 Correlation Coefficient

The correlation coefficient expresses the correlation between two variables. Let X
and Y be variables. Suppose {x1, . . . , xn} and {y1, . . . , yn} are samples of X and Y,
respectively. The correlation coefficient is defined as

r(X, Y) =

n
∑

i=1
(xi − x̄)(yi − ȳ)√

n
∑

i=1
(xi − x̄)2

√
n
∑

i=1
(yi − ȳ)2

,

where x̄ = 1
n

n
∑

i=1
xi and ȳ = 1

n

n
∑

i=1
yi. The value always lies in [−1, 1], and r > 0

indicates positive correlation while r < 0 signifies negative correlation. We are not
currently concerned with orientation, so a value further away from 0 indicates the
variables are more similar.
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The correlation coefficient is applied by substituting events for variables and
the corresponding event vectors for samples. The closer |r| and 1 are, the “closer”
the variables. In contrast to the Euclidean distance, the correlation coefficient is
oblivious to the magnitude of deltas. Thus if the cache miss rate is stable, the
cache accesses and cache misses will be correlated. Since there may also be cases
where the magnitude is relevant, this particular characteristic can be both an asset
and a handicap.

Figure 4.6 is a heatmap displaying the correlation between events in a matrix.
The majority of correlated events have positive correlation. Those with negative
correlation are often only weakly correlated. Furthermore, the white strips show
there are a number of events which are mostly uncorrelated with others. Also
notice the heatmap is symmetric across the diagonal since the order of the events
is irrelevant when calculating the correlation coefficient. An interesting aspect
which will be explored later is the orientation of correlations, but take note most
negative correlations are weak, i.e., the absolute values of the coefficients are close
to 0.
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Figure 4.6: Heatmap of events displaying correlation.

4.4 Event Correlation

One possible application of correlation coefficients is the formulation of an equiv-
alence relation. We define correlation to be a binary relation over the set of events.
Events ei and ej are correlated if and only if r(ei, ej) ≥ c, where c ∈ [−1, 1] is a con-
stant named the correlation cutoff. Correlated events may be denoted by ei ∼ ej.
For now, assume c = 0.9.

The next logical step would be to test whether correlation satisfies the three
conditions of an equivalence relation: reflexivity, symmetry, and transitivity. Cor-
relation is reflexive since r(ei, ei) = 1 ≥ c, and r(ei, ej) = r(ej, ei) implies it is also
symmetric. Unfortunately, transitivity does not hold. There exist events ei, ej, and
ek such that ei ∼ ej andej ∼ ek but ei 6∼ ek. The unordered pair {ei, ek} is termed a
transitivity violation. For c = 0.9, there are 540 violations. The number of viola-
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tions is dependent on c; higher values lead to fewer violations while lower values
have more.

4.4.1 Graph Representation

Observe the correlation relation has a graph representation. Let V be the set of
events and {ei, ej} ∈ E if and only if ei ∼ ej. Then G = (V, E) is an undirected
graph. This opens up the possibility of applying graph algorithms.

The structure of the graph itself is also worth examining, especially the degree
of nodes. Given an event ei, the number of events correlated with ei is simply the
degree of the corresponding node in G and is denoted by deg(ei).

Table 4.2 lists the degree of each event. The size refers to the number of events
with the given degree. Refer to Appendix B to translate the event numbers in
groups into event names. It is quite noticeable there are 40 events which are
completely uncorrelated with other events. It remains to be seen whether these
events are predictive of interference although they appear to be less commonly
used events. On the other hand, a sizeable proportion of the remaining events are
correlated with a few dozen events.

Degree Size Events
40 1 166
39 1 158
37 1 87
36 7 7, 8, 11, 23, 77, 83, 135

35 19
3, 28, 29, 30, 31, 65, 84, 90, 94, 107, 153, 154, 155, 157, 159, 172, 174,
182, 185

34 4 16, 18, 86, 108
33 1 187
24 1 32
19 1 13
18 8 64, 75, 93, 97, 99, 103, 104, 105
17 2 95, 131
16 4 98, 129, 145, 165
15 3 27, 124, 147
14 4 26, 96, 149, 152
13 2 1, 22
12 7 2, 17, 33, 34, 35, 148, 150
11 1 91
10 1 113
9 1 156
8 3 63, 68, 73
7 6 49, 67, 69, 70, 74, 120
6 6 50, 52, 56, 58, 118, 179
5 5 5, 114, 115, 130, 177
4 3 100, 101, 128
3 11 6, 21, 71, 72, 76, 79, 82, 85, 102, 106, 171
2 7 9, 12, 20, 37, 38, 39, 117
1 14 4, 10, 14, 15, 78, 126, 127, 132, 141, 142, 146, 160, 178, 186

0 40
19, 24, 25, 36, 40, 41, 42, 43, 44, 51, 57, 80, 81, 88, 89, 92, 109, 110, 111,
112, 116, 119, 121, 125, 144, 151, 161, 162, 163, 164, 169, 170, 173, 175,
176, 180, 181, 184, 188, 190
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Degree Size Events

Table 4.2: Degree of events.

4.5 Event Grouping

In this section, we present applications of well-known algorithms which utilize
previous notions of similarity to group events together. Both the Euclidean dis-
tance and the correlation coefficient are used. The first three grouping methods
apply graph algorithms to the graph representation whereas the remaining two
methods are based on k-means clustering.

4.5.1 Connected Components

A good starting point is to associate correlated events, i.e., if ei ∼ ej, then they may
be placed in the same group. Now the question is whether we require transitivity
to hold in the same group. Let S be an event group, and fix ei ∈ S. Do we require
ei ∼ ej for all ej ∈ S? Or is it sufficient if there exists ej ∈ S such that ei ∼ ej? Both
are plausible methods which will be surveyed.

We relax the transitivity requirement within groups for now and stipulate if
ei ∼ ej, then ei and ej belong in the same group. Using the graph representation,
the problem can be solved with the connected components algorithm. The groups
are shown in Table 4.3. Each group is assigned a group number and displayed as
a set. In addition, groups of the same size are shown in the same row. For event
names, see Appendix B.

Uncorrelated events are underlined in the table, so it is evident all 40 of them
each form a singleton. There are only 10 non-singleton groups which cover the
remainder of the 122 events, which is a good reduction. However, selecting a
representative event for each group is not straightforward as transitivity within
groups is not guaranteed. We could select the event with the largest degree in
every group, or the event whose sum of correlation coefficients with elements in
the same group is greatest.

We have also experimented with ignoring the orientation of correlations, i.e.,
taking the absolute value of correlation coefficients. However, negative correla-
tions are generally weak, so this made little or no difference in the resulting
groups. This holds for other grouping methods which employ the correlation
coefficient.

Group No(s). Size Group(s)

1 56

{1, 2, 3, 4, 7, 8, 11, 13, 16, 18, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35,
65, 76, 77, 83, 84, 86, 87, 90, 91, 94, 96, 107, 108, 113, 114, 115, 135, 148,
149, 150, 152, 153, 154, 155, 157, 158, 159, 160, 166, 172, 174, 182, 185,
187}

2 30
{5, 12, 17, 26, 27, 64, 75, 93, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105,
106, 124, 129, 130, 131, 145, 147, 165, 177, 178, 179, 186}

3 13 {63, 67, 68, 69, 70, 71, 72, 73, 74, 78, 79, 82, 156}
4 8 {49, 50, 52, 56, 58, 117, 118, 120}
5 5 {6, 85, 126, 128, 171}
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Group No(s). Size Group(s)
6–7 3 {9, 10, 14}, {37, 38, 39}

8–10 2 {15, 127}, {132, 146}, {141, 142}

11–50 1

{19}, {24}, {25}, {36}, {40}, {41}, {42}, {43}, {44}, {51}, {57}, {80}, {81}, {88},
{89}, {92}, {109}, {110}, {111}, {112}, {116}, {119}, {121}, {125}, {144}, {151},
{161}, {162}, {163}, {164}, {169}, {170}, {173}, {175}, {176}, {180}, {181},
{184}, {188}, {190}

Table 4.3: Event groups generated by CC.

Figure 4.7 shows the event heatmap, but the events are rearranged so that event
groups appear as clusters. Each group is denoted by a grey bounding box, and the
largest group is in the top left corner. The clusters are generally blue thus showing
events in the same group are mostly correlated. There are a few lighter patches
in clusters caused by not enforcing the transitivity of correlation in groups. The
singletons are also visible in the bottom right corner.
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Figure 4.7: Event heatmap with CC groups.

4.5.2 Minimum Clique Cover

Now consider imposing the restriction that any two events in the same group
must be correlated. Then the problem is essentially partitioning the vertices into
cliques. Contrary to CC, any event in a group should be representative of all
remaining events in the group, which implies the number of events which need
to be measured to infer information about the entire event space is equivalent to
the number of groups. Finding a minimum clique cover minimizes the number of
groups.

Table 4.4 presents a Min-Clique grouping. Unlike CC, this method does not
have a unique solution. Groups are smaller in comparison due to a stronger con-
straint. There are now 30 non-singleton groups instead of 10. The main benefit
of this method is any event is characteristic of the entire group it belongs to.
However, we still have an insufficient number of counters to measure all groups
simultaneously (recall recent Intel processors have 3 fixed counters and 8 general-
purpose counters). We must also take into account the clique cover problem is
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NP-complete, but there are approximation algorithms available. One such exam-
ple is to perform greedy vertex colouring of the complement graph.

Group No(s). Size Group(s)
1 18 {3, 7, 8, 11, 13, 84, 87, 90, 107, 135, 153, 154, 155, 157, 159, 172, 182, 185}
2 12 {17, 26, 27, 64, 75, 93, 97, 99, 103, 104, 105, 124}

3–4 7 {16, 18, 23, 32, 83, 86, 187}, {28, 29, 30, 31, 65, 108, 174}
5 6 {33, 34, 35, 114, 115, 148}

6–7 5 {50, 52, 56, 58, 118}, {98, 129, 145, 165, 179}

8–12 4
{63, 68, 71, 73}, {1, 21, 22, 91}, {2, 150, 158, 166}, {67, 69, 70, 74}, {100,
101, 102, 106}

13–19 3
{6, 85, 171}, {20, 149, 152}, {37, 38, 39}, {72, 79, 156}, {49, 117, 120}, {76,
94, 113}, {95, 131, 147}

20–30 2
{9, 10}, {4, 96}, {78, 82}, {15, 127}, {126, 128}, {12, 130}, {132, 146}, {141,
142}, {77, 160}, {177, 178}, {5, 186}

31–71 1

{14}, {19}, {24}, {25}, {36}, {40}, {41}, {42}, {43}, {44}, {51}, {57}, {80}, {81},
{88}, {89}, {92}, {109}, {110}, {111}, {112}, {116}, {119}, {121}, {125}, {144},
{151}, {161}, {162}, {163}, {164}, {169}, {170}, {173}, {175}, {176}, {180},
{181}, {184}, {188}, {190}

Table 4.4: Event groups generated by Min-Clique.

The rearranged heatmap can be found in Figure 4.8. Apart from the noticeable
decrease in cluster sizes and increased number of clusters, the colours of clusters
are more consistent compared to CC.
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Figure 4.8: Event heatmap with Min-Clique groups.

4.5.3 Greedy Maximum Clique Cover

Instead of minimizing the number of groups, an alternative approach is to maxi-
mize the number of events covered without multiplexing counters. In other words,
we would like to maximize the size of the n largest groups, where n is the number
of counters. Assuming we continue to require any two events in the same group
be correlated, then a greedy algorithm would be to find a maximum clique (i.e., a
clique with maximum size), remove it from the graph, and repeat until there are
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no remaining vertices.
The result is shown in Table 4.5. With 8 general-purpose counters, we are able

to cover 86 out of 164 events without multiplexing. This is a 34% increase from
64 events compared to Min-Clique. The number of groups, however, is similar.
The events have been shuffled so that more are placed in larger groups. Since
maximum cliques are not always unique, there may be other valid groupings.
Furthermore, finding a maximum clique is also NP-complete, but approximation
algorithms exist.

Group No(s). Size Group(s)

1 33
{3, 7, 8, 11, 16, 18, 23, 28, 29, 30, 31, 65, 77, 83, 84, 86, 87, 90, 94, 107,
135, 153, 154, 155, 157, 158, 159, 166, 172, 174, 182, 185, 187}

2 15 {64, 75, 93, 95, 97, 98, 99, 103, 104, 105, 129, 131, 145, 147, 165}
3 11 {1, 2, 22, 33, 34, 35, 91, 148, 149, 150, 152}
4 8 {63, 67, 68, 69, 70, 73, 74, 156}
5 7 {49, 50, 52, 56, 58, 118, 120}

6–8 4 {5, 27, 124, 130}, {6, 85, 128, 171}, {100, 101, 102, 106}
9–10 3 {37, 38, 39}, {72, 79, 82}

11–19 2
{4, 96}, {9, 10}, {15, 127}, {17, 26}, {76, 113}, {114, 115}, {132, 146}, {141,
142}, {177, 178}

20–73 1

{12}, {13}, {14}, {19}, {20}, {21}, {24}, {25}, {32}, {36}, {40}, {41}, {42}, {43},
{44}, {51}, {57}, {71}, {78}, {80}, {81}, {88}, {89}, {92}, {108}, {109}, {110},
{111}, {112}, {116}, {117}, {119}, {121}, {125}, {126}, {144}, {151}, {160},
{161}, {162}, {163}, {164}, {169}, {170}, {173}, {175}, {176}, {179}, {180},
{181}, {184}, {186}, {188}, {190}

Table 4.5: Event groups generated by Greedy-Max-Clique.

Figure 4.9 is the corresponding heatmap for this method. The colours of clus-
ters are similar to Min-Clique as the same condition is enforced for Greedy-Max-
Clique.
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Figure 4.9: Event heatmap with Greedy-Max-Clique groups.
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4.5.4 k-means Clustering with Euclidean Distance

The number of groups generated by previous graph algorithms cannot be prede-
termined even though a higher c generally leads to more groups while a lower
value results in fewer groups. In cases where we wish to specify an exact number,
k-means clustering is an established way of grouping objects [30] into k sets. We
implemented the standard k-means algorithm with the following specifications:

• Initialization: We choose k points randomly to serve as the initial centroids.
• Termination: There is no threshold for termination. The process stops only

when assignments are stable.
• Distance function: A custom distance function may be used.

Random initialization runs the risk of having a poor selection of initial centroids.
Consequently, k-means is repeated 50 times, and we keep the best result. Opti-
mality evaluated with the same function which computes the distance between
points and centroids. We aim to minimize the sum of distances from every point
to the centroid it is assigned. Obviously, the randomness of initialization implies
k-means does not have a unique solution.

The value of k greatly influences the grouping outcome. While the purpose of
this section is not to decide on the ideal value of k, we experiment with k = 10 and
k = 75 to assess k-means itself. A value of 10 was chosen since it is approximately
equal to the number of available counters whereas 75 is similar to number of
groups returned by methods based on graph algorithms.

The results of k-means with the Euclidean distance for k = 10 and 75 are in
Tables 4.6 and 4.6, respectively. For k = 10, the largest group contains over two-
thirds of all events, including the majority of uncorrelated events. Such a presence
indicates that the Euclidean distance and the correlation coefficient have very dis-
tinct notions of similarity. The remaining groups are relatively small. In fact, the
difference is an order of magnitude, so k = 10 may be too small.

Group No(s). Size Group(s)

1 115

{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 23, 24, 25, 26, 27, 28,
29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 56,
57, 58, 65, 77, 80, 81, 83, 84, 85, 86, 92, 94, 95, 96, 97, 98, 99, 103, 104,
107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
124, 125, 126, 127, 128, 129, 130, 135, 141, 142, 144, 145, 146, 148, 157,
159, 160, 161, 162, 163, 164, 165, 169, 170, 171, 173, 174, 175, 176, 177,
178, 179, 180, 181, 182, 184, 185, 188, 190}

2 13 {64, 75, 76, 93, 100, 101, 102, 105, 106, 131, 147, 151, 186}
3–4 7 {63, 67, 68, 69, 70, 82, 156}, {71, 72, 73, 74, 78, 79, 132}
5 6 {1, 2, 20, 21, 22, 91}
6 5 {89, 153, 154, 155, 172}
7 4 {18, 30, 166, 187}

8–9 3 {87, 90, 158}, {149, 150, 152}
10 1 {88}

Table 4.6: Event groups generated by k-means (k = 10, dist = Euclid).
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For k = 75, the sizes of groups are closer to methods derived from graph
algorithms. This includes a long “tail” of many singleton groups although only
approximately half are uncorrelated events. A large value of k does not appear to
be effective either as group sizes are rather small.

Group No(s). Size Group(s)
1 17 {41, 42, 43, 44, 50, 51, 52, 56, 57, 58, 121, 141, 142, 173, 175, 181, 182}
2 7 {7, 8, 36, 84, 159, 174, 185}

3–4 6 {63, 68, 69, 70, 82, 156}, {71, 72, 73, 74, 78, 79}
5–6 5 {10, 15, 80, 127, 160}, {94, 97, 99, 103, 104}
7–8 4 {3, 11, 135, 157}, {153, 154, 155, 172}

9–19 3
{2, 21, 91}, {4, 9, 14}, {5, 12, 130}, {17, 27, 124}, {25, 125, 169}, {28, 29,
31}, {75, 102, 106}, {93, 105, 147}, {98, 145, 163}, {111, 164, 184}, {129,
177, 178}

20–40 2
{1, 22}, {6, 85}, {16, 86}, {18, 187}, {23, 83}, {24, 108}, {30, 166}, {33, 34},
{37, 38}, {49, 119}, {64, 131}, {96, 179}, {107, 161}, {109, 165}, {112, 170},
{114, 115}, {118, 120}, {144, 180}, {150, 152}, {151, 186}, {171, 188}

41–75 1
{13}, {19}, {20}, {26}, {32}, {35}, {39}, {40}, {65}, {67}, {76}, {77}, {81}, {87},
{88}, {89}, {90}, {92}, {95}, {100}, {101}, {110}, {113}, {116}, {117}, {126},
{128}, {132}, {146}, {148}, {149}, {158}, {162}, {176}, {190}

Table 4.7: Event groups generated by k-means (k = 75, dist = Euclid).

The heatmaps for both values of k are displayed in Figure 4.10. The largest
group for k = 10 gives visual confirmation that the Euclidean distance is a very
different metric compared to correlation. Interestingly, events in smaller groups
are somewhat correlated. Common to all methods so far is the “tail” of small
groups. This suggests there are a number of events which cannot be grouped.
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Figure 4.10: Event heatmaps with k-means (dist = Euclid) groups.

4.5.5 k-means Clustering with Correlation

The disadvantages of the Euclidean distance were previously discussed, and it is
evident such a notion of similarity is not always desirable. Therefore, we sug-
gest an alternative application of k-means with the correlation coefficient as the
distance function.

39



4.5 Event Grouping 4 Event Space Reduction

First, if the distance function returns a smaller value, then it indicates the ob-
jects are closer. On the other hand, variables which are more positively correlated
have a greater correlation coefficient. Consequently, we define the distance be-
tween two events to be the additive inverse of the correlation coefficient. Second,
events cannot be “averaged” to obtain a centroid, so it is necessary to select a rep-
resentative event from each group. Technically, such events are medoids instead of
centroids, but we will continue to use the term centroid. The centroid is the event
whose total distance to other events in the same cluster is minimized.

We perform clustering with k = 10 and k = 75. The groupings are shown in Ta-
bles 4.8 and 4.8, respectively. For k = 10, the largest group is considerably smaller
compared to k-means with the Euclidean distance while the remaining groups are
also larger. This signifies the groups are more balanced. The uncorrelated events
are more evenly distributed among groups.

Group No(s). Size Group(s)

1 73

{1, 2, 3, 4, 7, 8, 11, 13, 16, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34,
35, 65, 77, 80, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 96, 107, 108, 110, 113,
114, 115, 135, 144, 148, 149, 150, 152, 153, 154, 155, 157, 158, 159, 160,
161, 162, 166, 169, 172, 173, 174, 175, 176, 180, 181, 182, 184, 185, 187,
188, 190}

2 34
{5, 12, 15, 17, 26, 27, 40, 64, 75, 93, 95, 97, 98, 99, 103, 104, 105, 111, 112,
124, 127, 129, 130, 131, 145, 147, 151, 163, 165, 170, 177, 178, 179, 186}

3 14 {9, 14, 25, 36, 63, 67, 68, 69, 70, 71, 73, 74, 81, 156}
4 11 {42, 49, 50, 52, 56, 58, 117, 120, 121, 141, 142}
5 10 {10, 24, 76, 100, 101, 102, 106, 109, 116, 164}
6 7 {72, 78, 79, 82, 125, 132, 146}
7 5 {6, 85, 126, 128, 171}
8 4 {41, 43, 44, 57}

9–10 3 {37, 38, 39}, {51, 118, 119}

Table 4.8: Event groups generated by k-means (k = 10, dist = corr).

Group No(s). Size Group(s)
1 14 {7, 8, 84, 87, 90, 107, 153, 154, 155, 158, 159, 172, 180, 182}

2–3 7 {1, 2, 20, 22, 149, 150, 152}, {98, 129, 145, 165, 177, 178, 179}
4–5 5 {63, 69, 70, 73, 74}, {64, 93, 97, 99, 131}

6–11 4
{9, 10, 14, 25}, {28, 29, 30, 31}, {33, 34, 35, 148}, {49, 50, 56, 120}, {67, 68,
71, 156}, {72, 78, 79, 82}

12–22 3
{3, 11, 157}, {5, 130, 186}, {23, 32, 83}, {24, 76, 102}, {37, 38, 39}, {65, 96,
174}, {77, 108, 113}, {94, 187, 188}, {125, 132, 146}, {126, 128, 171}, {135,
166, 185}

23–38 2
{6, 85}, {15, 127}, {16, 86}, {17, 124}, {18, 88}, {21, 91}, {43, 57}, {51, 121},
{75, 163}, {80, 81}, {100, 101}, {105, 170}, {109, 116}, {114, 115}, {118, 119},
{162, 164}

39–75 1
{4}, {12}, {13}, {19}, {26}, {27}, {36}, {40}, {41}, {42}, {44}, {52}, {58}, {89},
{92}, {95}, {103}, {104}, {106}, {110}, {111}, {112}, {117}, {141}, {142}, {144},
{147}, {151}, {160}, {161}, {169}, {173}, {175}, {176}, {181}, {184}, {190}

Table 4.9: Event groups generated by k-means (k = 75, dist = corr).

For k = 75, we see a distribution of group sizes akin to that of k-means with
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the Euclidean distance. However, it is evident the uncorrelated events are mainly
in singleton groups or groups of size 2.

Figure 4.11 shows events within groups are more correlated with each other,
and the intensity increases with k. It appears that the k-means algorithm has
similar tendencies with respect to group sizes regardless of the chosen distance
function. Therefore, an suitable value of k must be selected to obtain desired
group sizes.
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Figure 4.11: Event heatmaps with k-means (dist = corr) groups.

4.6 Comparison of Grouping Methods

Up to now, we have not discussed the events themselves in different groupings
since a side by side comparison would present a better view than discussing them
individually. Groupings serve two purposes: (1) they reduce the number of events
which need to be measured, and (2) they allow users without domain knowledge
to have a better understanding of events.

4.6.1 Validity and Effectiveness

For the first objective, we need to confirm the groupings are both valid and effective.
By valid, we mean the events in each group must be related to each other according
to the notion of similarity adopted by the grouping method. We examine the
following set of four events in the groupings:

• L2_LINES_IN:ALL (event 22)
• LLC_REFERENCES (event 1)
• LLC_MISSES (event 2)
• OFFCORE_RESPONSE_0:ANY_REQUEST:LLC_MISS_LOCAL (event 91)

L2_LINES_IN:ALL counts the number of filled L2 lines, so it should be repre-
sentative of L2 cache misses. Each L2 cache miss becomes an L3 cache reference,
which is counted by LLC_REFERENCES.1 Thus the two event counts should be

1For this particular processor, the last-level cache is the L3 cache.
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similar. In all our applications, the L3 cache miss rate is relatively stable, so the
number of references is proportional to the number of misses. By definition of
the correlation coefficient, they are correlated with each other. However, the same
cannot be said of the Euclidean distance since it is affected by the magnitude
of counts. Finally, the last event counts the number of memory accesses, which
should also be close to the number of L3 cache misses. In summary, we expect the
following to hold for event counts:

• L2_LINES_IN:ALL ≈ LLC_REFERENCES
• LLC_REFERENCES ∝ LLC_MISSES
• LLC_MISSES ≈ OFFCORE_RESPONSE_0:ANY_REQUEST:LLC_MISS_LOCAL

With Greedy-Max-Clique, all four are placed in the same group along with
several additional events (c.f. Table 4.5). In contrast, Min-Clique put LLC_MISSES
in a group different from the other three (c.f. Table 4.4). CC is a generalization of
clique-based methods, so naturally all were placed in the same group (c.f. Ta-
ble 4.3).

From this particular example, we see the graph-based methods generate valid
groupings, for correlated events are associated with each other. In particular, it is
not affected by the magnitude of event counts as long as they are correlated. How-
ever, Min-Clique did “misplace” one event—while the grouping is valid, we ex-
pected all four to be put together. This can be attributed to the fact the implemen-
tation simply enumerated all possible groupings, and selected one with the lowest
number of groups. Namely, it tries to find fewer groups and not larger groups. On
the other hand, Greedy-Max-Clique tries to find the maximum clique, so there
is a higher possibility of correlated events actually being placed together in larger
groups.

For k-means with k = 10, the four events were grouped together for both Eu-
clidean distance and correlation. For k = 75, it is unable to associate LLC_MISSES
and LLC_REFERENCES using the Euclidean distance, which is affected by the mag-
nitude of events. In addition, correlation places the last event in a separate cluster,
but this appears to be the result of specifying a higher number of clusters and
selection of centroids.

4.6.2 Inference of Similar Events

While our final goal is to move toward automation and remove the need for expert
knowledge, groupings still help users form useful conclusions regarding events.
There are often similar events with minor differences, and users may not be privy
to all the details. Consider the following events:

• UOPS_ISSUED:ANY (event 63)
• UOPS_RETIRED:ALL (event 67)
• UOPS_EXECUTED:THREAD (event 69)
• INSTRUCTIONS_RETIRED (event 156)

Suppose we want to count the number of instructions executed by the CPU. Then
which event do we measure? Are instructions or micro-operations (also known
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as micro-ops or µops) better candidates? And what are the differences between
issued, retired, and executed micro-operations? The answers are not apparent
for anyone without a deep understanding of processor internals. This is not an
isolated case as there are more examples such as the following:

• ITLB_MISSES:MISS_CAUSES_A_WALK (event 37)
• ITLB_MISSES:WALK_COMPLETED (event 38)
• ITLB_MISSES:WALK_DURATION (event 39)
• ITLB_MISSES:STLB_HIT (event 40)

If we simply want to count the number of instruction TLB (ITLB) misses, which
event should be monitored? Are four events actually necessary?

All methods except Min-Clique and k-means with k = 75 (both distance func-
tions) confirm all events in the first set are similar. For the second set, the first
three events are similar since every method apart from k-means with k = 75 and
correlation place them in the same group. We have already discussed the conse-
quences of Min-Clique not attempting to find larger groups, and it is applicable
here. Similarly, k = 75 may be too large.

4.6.3 Summary

We have seen two categories of grouping methods; ones which rely on graph al-
gorithms and others which use k-means clustering. Different notions of similarity
were also investigated.

The main different between the categories is the latter allows the resulting
number of groups to be specified. The correlation cutoff, denoted by c, may be ad-
justed for the former, but it does not provide fine-grained control. The Euclidean
distance is unable to associate events having counts where are not of the same
magnitude. Thus, it is advisable to use the correlation coefficient.

For the graph-based algorithms, Greedy-Max-Clique appears to be superior
due to its tendency to form larger groups. It is possible to have alternative imple-
mentations Min-Clique, but more computation is required to try to find larger
groups. CC is useful for exploiting weaker correlations.

To overcome the shortcomings of Min-Clique, we present an approximation
algorithm for the minimum clique cover problem. It is based on the greedy vertex
colouring algorithm shown in Algorithm 3. Colours are represented by nonnega-
tive integers. Vertex colouring is done on the complement of the correlation graph,
and nodes with the same colour form a group.

The resulting grouping is in Table 4.10. Approx-Min-Clique is like Greedy-
Max-Clique in the sense it attempts to generate larger groups since we colour
vertices with larger degrees first. In fact, the groupings are quite similar (c.f.
Table 4.10). We omit the heatmap for brevity as no further conclusions can be
drawn from it.

Group No(s). Size Group(s)

1 33
{3, 7, 8, 11, 16, 18, 23, 28, 29, 30, 31, 65, 77, 83, 84, 86, 87, 90, 94, 107,
108, 135, 153, 154, 155, 157, 158, 159, 166, 172, 174, 182, 185}
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Group No(s). Size Group(s)
2 15 {64, 75, 93, 95, 97, 98, 99, 103, 104, 105, 129, 131, 145, 147, 165}
3 11 {1, 2, 22, 33, 34, 35, 91, 148, 149, 150, 152}
4 8 {63, 67, 68, 69, 70, 73, 74, 156}
5 7 {49, 50, 52, 56, 58, 118, 120}

6–7 4 {6, 85, 128, 171}, {17, 26, 27, 124}
8–11 3 {5, 12, 130}, {37, 38, 39}, {72, 79, 82}, {100, 101, 179}

12–21 2
{4, 96}, {9, 10}, {15, 127}, {32, 187}, {76, 113}, {102, 106}, {114, 115}, {132,
146}, {141, 142}, {177, 178}

22–71 1

{13}, {14}, {19}, {20}, {21}, {24}, {25}, {36}, {40}, {41}, {42}, {43}, {44}, {51},
{57}, {71}, {78}, {80}, {81}, {88}, {89}, {92}, {109}, {110}, {111}, {112}, {116},
{117}, {119}, {121}, {125}, {126}, {144}, {151}, {160}, {161}, {162}, {163},
{164}, {169}, {170}, {173}, {175}, {176}, {180}, {181}, {184}, {186}, {188},
{190}

Table 4.10: Event groups generated by Approx-Min-Clique.

The k-means algorithm is difficult to use because of the challenges involved
in determining k. One possibility is to exclude the uncorrelated events before
performing clustering. We leave this as future work. Moreover, k-means is also
affected by the random selection of initial centroids. Restarting is one option, but
we see some variation in the results. Furthermore, the effectiveness is heavily
contingent on selecting an appropriate value of k. In contrast, the graph-based
algorithms exhibit more stability when c is changed.

Algorithm 3 Greedy Vertex Colouring
1: function Greedy-Vertex-Colouring(G)
2: Sort V by vertex degree in descending order
3: for all v ∈ V
4: S = Numbers assigned to neighbours of v
5: Assign smallest nonnegative integer not in S to v

4.7 Discussion

The application of PCA showed the intrinsic dimensionality of the event space
is less than 10 thus suggesting only a subset of events need to be monitored.
However, the dimensionality is not a reflection of the actual number of events to be
measured, nor does it provide recommendations. This necessitated the exploration
of various grouping methods. We conclude Max-Greedy-Clique or Approx-Min-
Clique are most suitable for associating similar events. If fine-grained control
of the number of groups is desired, then k-means with correlation is a viable
alternative. Finally, CC is good if weaker correlations can be tolerated.

So far no discussion of the appropriate number of groups has taken place. This
same applies to an actual validation of the effectiveness of generated event groups
in detecting interference. In the next chapter, we will investigate strategies for
detecting interference and evaluate the usefulness of groups in such a scenario.
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5 Interference Detection

Previously, we proposed various methods for grouping performance events and
compared their characteristics. In this chapter, objective evaluations are made con-
cerning the suitability of methods for detecting interference in computer systems.
Our analysis relies on a set of machine learning techniques named support vector
machines (SVMs) [15]. All the SVM functions in this chapter are provided by the
LIBSVM machine learning library [9, 10].

5.1 SVM

Select SVM models are capable of performing binary classification with super-
vised learning. Given a sample, i.e., a set of performance counter measurements,
we want to determine whether there is interference. There are many possible ex-
tensions, e.g., determining the severeness or cause of interference, but a binary
decision, i.e., yes/no, will be sufficient for now. We use the integers 1 and -1 to
represent the two classes—a sample is labeled 1 if there is interference and -1 oth-
erwise. Supervised learning involves providing the classifier with a training set of
labeled samples it can “learn” from. The accuracy of the classifier is evaluated
with a distinct test set. There are different variations of SVMs and numerous
tunable parameters. A kernel function which evaluates the similarity of samples
must also be defined.

LIBSVM has two SVM implementations which perform support vector classi-
fication (SVC): C-SVC and ν-SVC. In addition, four different kernel functions are
made available to users:

• Linear kernel
• Polynomial kernel
• Radial basis function (RBF) kernel
• Sigmoid kernel

We evaluated all eight combinations with the default parameters. Only the linear
kernel produced usable results. In most cases, ν-SVC outperforms C-SVC, so only
the results of ν-SVC with the linear kernel are shown in this chapter.
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5.1.1 Training and Classification

Both C-SVC and ν-SVC have a training function and a classifier function. The
input for the training function is the training set while the classifier takes the test
set. Let E = {e1, . . . , en} be a set of n events (bear in mind E does not necessarily
span the entire event space). Then the training set is a 2-tuple (x, y). Vector x =

(x1, . . . , xt) contains t samples, where each sample xi = (d1, . . . , dn) ∈ Rn is a vector
of deltas. Delta dj is the delta for event ej in the time slice corresponding to the
sample. Alternatively, a sample can be thought of as a column of the previously
defined matrix X, albeit only deltas corresponding to events in E are included.
Vector y = (y1, . . . , yt) contains labels, where each label yi ∈ {−1, 1} indicates
the class of sample xi. The test set (x′, y′) is analogous, but with t′ samples. The
classifier outputs a vector of labels ỹ′ consisting of the predicted labels for samples
in x′ and compares ỹ′ with y′ to determine its accuracy.

5.1.2 Classification of Interference

The list of benchmarks was given in Table 4.1. Every application execution must
be classified depending on whether the execution experienced interference. Nat-
urally, all base cases, i.e., benchmarks of applications executing alone, are labeled
-1 (technically, we label samples of executions and not the executions). For any
benchmark involving two applications, we compute each application’s interfer-
ence factor by comparing its execution time with its base case execution time. To
illustrate, for the benchmark SORT + PR (shared cores), the base case of SORT is
simply SORT running alone. Recall PR has two baselines since the shared sockets
scheme requires a special base case. We label the execution 1 if the interference
factor is greater than or equal to 1.05 and -1 otherwise. In other words, we say an
application experiences interference if its execution time increased by at least 5%
compared to its baseline.

Note that we use the average execution time when calculating the interference
factor (recall multiple iterations of each benchmark were required to measure all
events). Table 5.1 shows the results of the labeling. Execution times are also
provided for reference. If a benchmark contains two applications, then the labels
are expressed as a 2-tuple with the first application corresponding to the first label.
The format for execution times is analogous.

Application(s) Scheme Label(s) Execution time(s) [s]
MM1 -1 28.69
MM2 -1 33.53
MM3 -1 27.28
SORT -1 35.53

PR -1 49.67
PR shared sockets -1 54.50

MM1 + SORT shared cores (1, 1) (57.68, 71.12)
MM1 + SORT shared sockets (-1, -1) (28.78, 35.53)
MM1 + SORT whole sockets (-1, -1) (28.69, 35.06)

MM1 + PR shared cores (1, 1) (60.89, 52.78)
MM1 + PR shared sockets (1, -1) (31.10, 50.05)
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Application(s) Scheme Label(s) Execution time(s) [s]
MM1 + PR whole sockets (-1, -1) (28.70, 49.25)

MM2 + SORT shared cores (1, 1) (67.42, 71.17)
MM2 + SORT shared sockets (-1, -1) (33.66, 35.61)
MM2 + SORT whole sockets (-1, -1) (33.49, 35.08)

MM2 + PR shared cores (1, 1) (70.10, 52.76)
MM2 + PR shared sockets (1, -1) (35.66, 50.16)
MM2 + PR whole sockets (-1, -1) (33.48, 49.23)

MM3 + SORT shared cores (1, 1) (54.06, 71.14)
MM3 + SORT shared sockets (-1, -1) (26.99, 35.62)
MM3 + SORT whole sockets (-1, -1) (26.97, 35.06)

MM3 + PR shared cores (1, 1) (55.87, 52.77)
MM3 + PR shared sockets (-1, -1) (28.38, 50.10)
MM3 + PR whole sockets (-1, -1) (26.98, 49.26)
SORT + PR shared cores (1, 1) (76.34, 53.10)
SORT + PR shared sockets (1, -1) (38.04, 51.17)
SORT + PR whole sockets (-1, -1) (35.09, 49.22)

PR + PR shared cores (1, 1) (104.34, 104.38)
PR + PR shared sockets (1, 1) (68.52, 68.48)
PR + PR whole sockets (-1, -1) (49.48, 49.50)

Table 5.1: Labels and execution times of executions.

Observe the executions of applications with the shared cores scheme typically
result in severe performance degradations while interference is absent with whole
sockets. The shared sockets scheme is somewhere in between as executions occasion-
ally experience mild interference. This reflects the choice of thread placements,
and will be useful in analyzing the classifier later on.

We acknowledge 5% is an arbitrarily chosen number. However, it is robust
against variations in executions. The maximum relative standard deviation of
the execution time across all executions is 0.96%. Assuming the distribution of
execution times is normal, approximately 99.7% of data points are expected to lie
within three standard deviations. Three standard deviations is only 2.88% of the
mean, so it is statistically unlikely that executions are erroneously classified due
to outliers skewing the average execution time.

5.2 Classification with Events

In this section, we evaluate the effectiveness of detecting interference with samples
containing the complete set of events. Then we will investigate how subsets of
correlated and uncorrelated events fare under the same conditions.

5.2.1 Training and Test Sets

Suppose we have t samples x1, . . . , xt from the execution of an application in a
benchmark. Then all the odd-numbered samples {x1, x3, x5, . . .} belong to the
training set, and the even-numbered samples {x2, x4, x6, . . .} belong to the test set.
Hence the training and test sets both have samples from every execution, and they
contain approximately the same number of samples. To be precise, the training
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and test sets have 1283 and 1255 samples, respectively. However, the intersection
of the two sets is always an empty set, so the classifier is never tested on samples
it has “seen” before.

5.2.2 Complete Event Set

We first perform classification using all usable events. In other words, the event
set E contains 164 events, so the samples are simply columns of the matrix X.

The results are shown in Table 5.2. Executions are categorized according to
application and partitioning scheme. Applications running alone are assigned the
scheme base, and the applications MM1, MM2, and MM3 are shown collectively
as MM. For instance, the cell (SORT, whole sockets) contains samples of SORT from
the benchmarks MM + SORT (whole sockets) and SORT + PR (whole sockets). The
fraction 67/68 denotes 67 samples out of a total of 68 were labeled correctly by the
classifier. The accuracy is calculated using the fraction, i.e., 67/68 ≈ 0.9853.

Samples are also aggregated across applications and partitioning schemes. For
example, the classifier performs relatively poorly on PR samples since it only has
an accuracy of 82.59%. The accuracy rates for MM and SORT are 15% higher.
Similarly, the classifier is least accurate for whole sockets, and we see the accuracy
is skewed by PR.

In summary, the overall accuracy rate is 91.79%, which is considerably good.
The majority of errors occurred when labeling PR samples with the partitioning
schemes whole sockets and shared cores. In contrast, MM and SORT samples posed
no problem.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 95.51% 100.00% 98.99%
(43/43) (178/178) (85/89) (86/86) (392/396)

SORT
100.00% 100.00% 100.00% 98.53% 99.66%
(17/17) (142/142) (69/69) (67/68) (295/296)

PR
98.00% 83.01% 93.87% 63.89% 82.59%
(49/50) (171/206) (153/163) (92/144) (465/563)

All
99.09% 93.35% 95.64% 82.21% 91.79%

(109/110) (491/526) (307/321) (245/298) (1152/1255)

Table 5.2: Classification with all events.

5.2.3 Correlated Event Set

We have established the full set of events provides sufficiently many data points
to detect interference. Now we want to find out if there is a simple method of
determining relevant events. Recall analysis of the correlation graph revealed there
are 40 uncorrelated events (c.f. Table 4.2). A naive method is to partition the event
space into correlated events, i.e., events with nonzero degrees, and uncorrelated
events, i.e., events with degree zero.

Classification with the set of correlated events is shown in Table 5.3. The over-
all accuracy is slightly lower. We see significant drops in accuracy for MM and

48



5.3 Classification with Groupings 5 Interference Detection

SORT with shared sockets. As this particular scheme often only causes mild inter-
ference, a reduction in the number of data points may make classification more
difficult, or some excluded uncorrelated events may be important for these cate-
gories. The same holds for PR with shared cores. On the other hand, the classifier
showed improvements in labeling PR samples with shared sockets and whole sockets,
especially for the latter. One possibility is the uncorrelated events generated noise
for those two cases.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 64.04% 100.00% 91.92%
(43/43) (178/178) (57/89) (86/86) (364/396)

SORT
100.00% 100.00% 73.91% 100.00% 93.92%
(17/17) (142/142) (51/69) (68/68) (278/296)

PR
96.00% 57.28% 85.89% 97.92% 79.40%
(48/50) (118/206) (140/163) (141/144) (447/563)

All
98.18% 83.27% 77.26% 98.99% 86.77%

(108/110) (438/526) (248/321) (295/298) (1089/1255)

Table 5.3: Classification with correlated events.

5.2.4 Uncorrelated Event Set

In Table 5.4, we see a similar phenomenon when MM and SORT are executed with
shared sockets. It is plausible both correlated and uncorrelated events are important
in boundary cases. Classification of PR samples is very erratic—those with shared
cores were labeled correctly 98.54% of the time, but results for the other schemes
are unusable. This creates an interesting scenario where different types of events
are required for different partitioning schemes, even for the same application.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 73.03% 100.00% 93.94%
(43/43) (178/178) (65/89) (86/86) (372/396)

SORT
100.00% 95.77% 75.36% 100.00% 92.23%
(17/17) (136/142) (52/69) (68/68) (273/296)

PR
28.00% 98.54% 58.90% 38.89% 65.54%
(14/50) (203/206) (96/163) (56/144) (369/563)

All
67.27% 98.29% 66.36% 70.47% 80.80%

(74/110) (517/526) (213/321) (210/298) (1014/1255)

Table 5.4: Classification with uncorrelated events.

5.3 Classification with Groupings

The main focus of Chapter 4 was to address the limited number of performance
counters by grouping similar events. However, no studies on the validity of the
grouping results were carried out. In this section, we classify samples using the
groupings produced by the various proposed methods.
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5.3.1 Training and Test Sets

The training and test sets in this section are identical to the ones described in
Section 5.2.1. This allows us to identify grouping methods which are not suitable
for reducing the event space.

5.3.2 Group Leaders

We now define a process for reducing the number of events which need to be
measured by taking advantage of groups. The basic idea is to select a group leader
from each group which is representative of remaining events. Since every group
is reduced to a single event, the number of events we need to measure is equal to
the number of groups.

The group leaders for each grouping are presented in Table 5.5. The group
leaders are listed in the same order as the groups they were derived from. The
first four groupings were obtained by applying graph algorithms to the graph
representation of event correlations. Therefore, we define the group leader to be
event with the largest degree. If there is a tie, then the event with the smallest
event number is selected.

For k-means, group leader selection is dependent on the distance function. For
the Euclidean distance, the centroid of each cluster is the mean of all points in
the cluster. Therefore, we choose the event closest to the centroid to be the group
leader. Use of the correlation coefficient as the distance dictates that centroids are
actual events, so we define the centroids to be groups leaders.

Grouping Group Leaders

CC

166, 64, 156, 49, 128, 9, 37, 15, 132, 141, 19, 24, 25, 36, 40, 41,
42, 43, 44, 51, 57, 80, 81, 88, 89, 92, 109, 110, 111, 112, 116,
119, 121, 125, 144, 151, 161, 162, 163, 164, 169, 170, 173, 175,
176, 180, 181, 184, 188, 190

Min-Clique

3, 17, 16, 28, 33, 50, 98, 63, 1, 2, 67, 100, 6, 20, 37, 72, 49, 76,
95, 9, 4, 78, 15, 126, 12, 132, 141, 77, 177, 5, 14, 19, 24, 25, 36,
40, 41, 42, 43, 44, 51, 57, 80, 81, 88, 89, 92, 109, 110, 111, 112,
116, 119, 121, 125, 144, 151, 161, 162, 163, 164, 169, 170, 173,
175, 176, 180, 181, 184, 188, 190

Approx-Min-Clique

3, 64, 1, 63, 49, 6, 17, 5, 37, 72, 100, 4, 9, 15, 32, 76, 102, 114,
132, 141, 177, 13, 14, 19, 20, 21, 24, 25, 36, 40, 41, 42, 43, 44,
51, 57, 71, 78, 80, 81, 88, 89, 92, 109, 110, 111, 112, 116, 117,
119, 121, 125, 126, 144, 151, 160, 161, 162, 163, 164, 169, 170,
173, 175, 176, 180, 181, 184, 186, 188, 190

Greedy-Max-Clique

3, 64, 1, 63, 49, 5, 6, 100, 37, 72, 4, 9, 15, 17, 76, 114, 132, 141,
177, 12, 13, 14, 19, 20, 21, 24, 25, 32, 36, 40, 41, 42, 43, 44, 51,
57, 71, 78, 80, 81, 88, 89, 92, 108, 109, 110, 111, 112, 116, 117,
119, 121, 125, 126, 144, 151, 160, 161, 162, 163, 164, 169, 170,
173, 175, 176, 179, 180, 181, 184, 186, 188, 190

k-means (k = 10, dist = Euclid) 15, 102, 68, 72, 91, 154, 30, 87, 150, 88

k-means (k = 75, dist = Euclid)

58, 8, 68, 79, 127, 99, 11, 155, 91, 9, 130, 124, 169, 29, 106, 105,
98, 184, 177, 1, 6, 86, 18, 23, 24, 30, 34, 37, 49, 64, 96, 161, 109,
112, 114, 118, 144, 150, 151, 188, 13, 19, 20, 26, 32, 35, 39, 40,
65, 67, 76, 77, 81, 87, 88, 89, 90, 92, 95, 100, 101, 110, 113, 116,
117, 126, 128, 132, 146, 148, 149, 158, 162, 176, 190
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Grouping Group Leaders
k-means (k = 10, dist = corr) 166, 75, 68, 120, 102, 79, 128, 43, 37, 118

k-means (k = 75, dist = corr)

155, 152, 98, 63, 97, 9, 28, 33, 49, 68, 82, 157, 5, 23, 102, 37, 65,
108, 187, 132, 128, 166, 6, 15, 16, 17, 18, 21, 43, 51, 75, 80, 100,
105, 109, 114, 118, 162, 4, 12, 13, 19, 26, 27, 36, 40, 41, 42, 44,
52, 58, 89, 92, 95, 103, 104, 106, 110, 111, 112, 117, 141, 142,
144, 147, 151, 160, 161, 169, 173, 175, 176, 181, 184, 190

Table 5.5: Group leaders of groupings.

5.3.3 Connected Components

The accuracy rates for CC in Table 5.6 are very close to those of the complete event
space. MM with shared sockets is the only exception as the accuracy plummeted by
a little over 30%. Nevertheless, this reduction is considered effective since samples
with the shared sockets scheme are difficult to label.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 64.04% 100.00% 91.92%
(43/43) (178/178) (57/89) (86/86) (364/396)

SORT
100.00% 100.00% 100.00% 98.53% 99.66%
(17/17) (142/142) (69/69) (67/68) (295/296)

PR
96.00% 83.01% 90.18% 63.19% 81.17%
(48/50) (171/206) (147/163) (91/144) (457/563)

All
98.18% 93.35% 85.05% 81.88% 88.92%

(108/110) (491/526) (273/321) (244/298) (1116/1255)

Table 5.6: Classification with CC.

5.3.4 Minimum Clique Cover

The results for classification with Min-Clique-Cover are shown in Table 5.7. De-
spite the stronger condition on the correlation of events and more data points,
the accuracy rate for SORT with shared sockets dropped by nearly 30%. This alone
would not be a problem, but half of the samples for PR with shared cores were
incorrectly labeled.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 64.04% 100.00% 91.92%
(43/43) (178/178) (57/89) (86/86) (364/396)

SORT
100.00% 100.00% 72.46% 100.00% 93.58%
(17/17) (142/142) (50/69) (68/68) (277/296)

PR
100.00% 49.51% 90.80% 66.67% 70.34%
(50/50) (102/206) (148/163) (96/144) (396/563)

All
100.00% 80.23% 79.44% 83.89% 82.63%

(110/110) (422/526) (255/321) (250/298) (1037/1255)

Table 5.7: Classification with Min-Clique.
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5.3.5 Minimum Clique Cover Approximation

We presented Approx-Min-Clique as an alternative for Min-Clique which at-
tempts to generate larger groups. However, there is little change in Table 5.8.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 64.04% 100.00% 91.92%
(43/43) (178/178) (57/89) (86/86) (364/396)

SORT
100.00% 100.00% 72.46% 100.00% 93.58%
(17/17) (142/142) (50/69) (68/68) (277/296)

PR
100.00% 49.51% 96.93% 66.67% 72.11%
(50/50) (102/206) (158/163) (96/144) (406/563)

All
100.00% 80.23% 82.55% 83.89% 83.43%

(110/110) (422/526) (265/321) (250/298) (1047/1255)

Table 5.8: Classification with Approx-Min-Clique.

5.3.6 Greedy Maximum Clique Cover

Greedy-Max-Clique finds the largest clique possible in every iteration, but we
also see no improvement in Table 5.9. Therefore, we must conclude grouping
methods which return clique covers generally are not better than CC even though
CC produces significantly fewer data points.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 64.04% 100.00% 91.92%
(43/43) (178/178) (57/89) (86/86) (364/396)

SORT
100.00% 100.00% 72.46% 100.00% 93.58%
(17/17) (142/142) (50/69) (68/68) (277/296)

PR
100.00% 49.51% 94.48% 66.67% 71.40%
(50/50) (102/206) (154/163) (96/144) (402/563)

All
100.00% 80.23% 81.31% 83.89% 83.11%

(110/110) (422/526) (261/321) (250/298) (1043/1255)

Table 5.9: Classification with Greedy-Max-Clique.

5.3.7 k-means Clustering with Euclidean Distance

Tables 5.10 and 5.10 show the results of k-means with the Euclidean distance for
k = 10 and 75, respectively. In all cases but one, increasing the number of clusters
improves the likelihood of correctly labeling samples. In particular, the accuracy
rate for PR with shared cores improved from 50% to 83.98%. However, many sam-
ples for PR with whole sockets were incorrectly classified as having interference.
The numbers for k = 75 are comparable to those of the complete event set.

5.3.8 k-means Clustering with Correlation

As shown in Table 5.12, using the correlation coefficient as the distance function
with k = 10 resulted in a noticeable regression for MM and SORT with shared
sockets, implying it is not as capable of establishing the boundary between weak
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base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 79.78% 100.00% 95.45%
(43/43) (178/178) (71/89) (86/86) (378/396)

SORT
100.00% 100.00% 100.00% 92.65% 98.31%
(17/17) (142/142) (69/69) (63/68) (291/296)

PR
100.00% 50.00% 84.05% 98.61% 76.73%
(50/50) (103/206) (137/163) (142/144) (432/563)

All
100.00% 80.42% 86.29% 97.65% 87.73%

(110/110) (423/526) (277/321) (291/298) (1101/1255)

Table 5.10: Classification with k-means (k = 10, dist = Euclid).

base shared cores shared sockets whole sockets all

MM
97.67% 100.00% 91.01% 97.67% 97.22%
(42/43) (178/178) (81/89) (84/86) (385/396)

SORT
100.00% 100.00% 100.00% 95.59% 98.99%
(17/17) (142/142) (69/69) (65/68) (293/296)

PR
96.00% 83.98% 92.02% 62.50% 81.88%
(48/50) (173/206) (150/163) (90/144) (461/563)

All
97.27% 93.73% 93.46% 80.20% 90.76%

(107/110) (493/526) (300/321) (239/298) (1139/1255)

Table 5.11: Classification with k-means (k = 75, dist = Euclid).

interference and no interference. Additionally, it also erroneously labeled a con-
siderable number of samples of PR with whole sockets as having interference.

The results of for k = 75 are presented in Table 5.12. Aside from being able
to somewhat reliably detect when PR suffers from interference with shared cores,
there are no significant changes. For both values of k, the correlation coefficient
showed no advantages over the Euclidean distance.

base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 64.04% 100.00% 91.92%
(43/43) (178/178) (57/89) (86/86) (364/396)

SORT
100.00% 100.00% 71.01% 100.00% 93.24%
(17/17) (142/142) (49/69) (68/68) (276/296)

PR
100.00% 49.51% 90.80% 66.67% 70.34%
(50/50) (102/206) (148/163) (96/144) (396/563)

All
100.00% 80.23% 79.13% 83.89% 82.55%

(110/110) (422/526) (254/321) (250/298) (1036/1255)

Table 5.12: Classification with k-means (k = 10, dist = corr).

5.4 Classification of Unknown Applications

The previous training and test sets were designed so that the classifier labels sam-
ples from applications it has encountered before. Unfortunately, this will not be
true for the majority of samples, for there are too many different applications out
in the wild. In this section, we devise a scheme which emulates this scenario to
test the robustness of the classifier. We use the complete event set since it has been
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base shared cores shared sockets whole sockets all

MM
100.00% 100.00% 64.04% 100.00% 91.92%
(43/43) (178/178) (57/89) (86/86) (364/396)

SORT
100.00% 100.00% 72.46% 100.00% 93.58%
(17/17) (142/142) (50/69) (68/68) (277/296)

PR
84.00% 81.07% 92.64% 63.19% 80.11%
(42/50) (167/206) (151/163) (91/144) (451/563)

All
92.73% 92.59% 80.37% 82.21% 87.01%

(102/110) (487/526) (258/321) (245/298) (1092/1255)

Table 5.13: Classification with k-means (k = 75, dist = corr).

shown accuracy rates are still acceptable after applying grouping methods.

5.4.1 Training and Test Sets

First we selected an application, e.g., SORT. Next, a list of benchmarks was com-
piled with benchmarks involving SORT removed. This applies to both benchmarks
only containing SORT and those where SORT is paired with another application,
e.g., SORT + PR (shared cores). The training set is the aggregation of all samples
from the compiled list, and the test set contains all samples from executions of
SORT.

This process was repeated for every application, i.e., MM1, MM2, MM3, SORT,
and PR. In addition, we also did it for for all MM variants collectively. That is,
MM1, MM2, and MM3 are all considered the same application under the name
MM. Note that every application has different training and test sets. The training
set sizes for MM1, MM2, MM3, MM, SORT, and PR are 1991, 1947, 2008, 870, 1439,
and 891, respectively. The test set sizes can be found below.

5.4.2 Classification of Unknown Applications

Table 5.14 shows the classification results for each application. Each row is dedi-
cated to a single application. For instance, the last row presents the statistics for
classifying PR samples, i.e., only executions of PR were included in the test set
whereas all benchmarks involving PR were excluded from the training set.

Observe that all the classifier has accuracy rates of above 95% for every case
except PR. In particular, it is able to classify executions with the shared sockets
scheme. In contrast, PR samples are incorrectly labeled over 50% of the time. This
is consistent with previous classifications in the sense that results for PR are often
below average.

5.5 Discussion

In summary, the classifier is able to label samples according to our definition of
interference with good accuracy rates. The schemes shared cores, shared sockets, and
whole sockets were designed so that they represent cases with severe, mild, and no
interference. Since shared sockets is a grey area, the accuracy rates of this scheme

54



5.5 Discussion 5 Interference Detection

base shared cores shared sockets whole sockets all

MM1
100.00% 100.00% 86.21% 100.00% 96.91%
(28/28) (117/117) (50/58) (56/56) (251/259)

MM2
100.00% 100.00% 92.65% 100.00% 98.35%
(33/33) (136/136) (63/68) (66/66) (298/303)

MM3
100.00% 100.00% 88.89% 100.00% 97.51%
(27/27) (108/108) (48/54) (52/52) (235/241)

MM
98.86% 100.00% 88.89% 98.28% 97.01%
(87/88) (361/361) (160/180) (171/174) (779/803)

SORT
100.00% 100.00% 100.00% 96.32% 99.16%
(35/35) (285/285) (142/142) (131/136) (593/598)

PR
100.00% 0.00% 59.70% 66.32% 43.27%

(102/102) (0/414) (197/330) (193/291) (492/1137)

Table 5.14: Classification of unknown applications.

for MM and SORT are often lower. The classifier is also reasonably robust as it was
able to classify MM and SORT samples without having seen them before. How-
ever, it struggles with PR samples, and this is applicable to other evaluations we
performed. One plausible explanation is that PR is a multithreaded application,
and aggregation of counter values across threads causes problems. As discussed
before, an alternative is to analyze each thread separately. Finally, the grouping
methods are able to reduce the number of events which need to be measured. Of
all the graph-based methods, CC produced the best results while the Euclidean
distance is better than the correlation coefficient for k-means. In many cases, re-
quiring all events in the same group to be correlated did not improve accuracy. It
remains to be seen if there are specific groups are more suitable for classification
than others.
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In this chapter, we describe possible directions for future work. Most of the items
listed are improvements or extensions of results presented in this thesis.

Expansion of the application set: Given the diverse range of applications today,
the application set presents a rather narrow view of the world. The application set
can be easily expanded beyond the current applications with the inclusion of more
algorithms. Furthermore, multithreaded programs should be well-represented as
they are becoming increasingly important.

Classification with event groups: We focused on reducing the event space by
nominating group leaders, so only one event per group is measured. However,
certain groups may be better than others at classifying samples, so it is desirable
to verify whether individual groups are capable of labeling samples accurately.

Tuning of SVM parameters: SVM has adjustable parameters such as the kernel
function which evaluates similarity and other implementation-dependent options
(e.g., the value of ν for ν-SVC). Tuning these parameters may improve accuracy as
there were specific cases where classification did not work well. Replacing the ker-
nel function is also a possibility. Furthermore, additional SVM implementations
should be explored.

Multiclass interference classification: Samples were labeled with yes/no, but
in reality binary classification cannot sufficiently describe the severity or types of
interference. There are machine learning techniques designed to classify samples
into multiple classes, and we may be able to apply these to obtain more descriptive
classifications.

Alternative classification techniques: There are many other machine learning
techniques commonly used for classification such as Bayesian networks and neural
networks. It is plausible alternative techniques may be superior to SVMs. One-
class classification techniques may also complement binary classification.
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6 Future Work

Recommendation of thread placements: The detection of interference alone is
useful, but does not directly result in tangible benefits. A scheme for recommend-
ing improved thread placements must be devised to mitigate interference. Analy-
sis of the benchmarks has shown that placement strategies similar to shared cores,
shared sockets, and whole sockets are good candidates. While whole sockets typically
causes the least interference, it also decreases resource utilization, so the other two
should be preferred if interference is within an acceptable range.

Phase detection: Applications in the application do not have distinct phases un-
like other programs. However, phase detection is relatively straightforward as we
only need to periodically reevaluate thread placements. We only need to deter-
mine the frequency at which it is carried out.
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7 Conclusion

The first contribution of this thesis is a survey of PMUs. In contrast to previous
work which focused on applications of PMUs, we investigate properties of PMUs
themselves with a view of addressing inherent shortcomings of performance coun-
ters. Of all the limitations, the limited availability of performance counters, the
intricacies of performance events, and the portability of events are the primary
concerns.

We proposed various grouping methods to reduce the event space by associ-
ating similar events. Two different definitions of similarity were considered: the
Euclidean distance and correlation coefficients. We also derived a graph represen-
tation of the similarity of events using the latter. Graph algorithms and k-means
clustering were applied to produce events groupings.

Since end users rarely possess domain knowledge about hardware and perfor-
mance events, this presents a barrier to an otherwise useful tool. We applied an
SVM model to detect interference by classifying event samples. This approach has
the benefit of not requiring knowledge of performance events, and classification is
accurate even for a reduced set of events such as the event groupings.

Furthermore, all the techniques in this thesis are not constrained to a particular
machine. This is a departure from previous approaches which targeted specific
processors. Consequently, our approach has the potential of solving the issue of
portability.

As progress is made towards the removal of these obstacles, PMUs will be
more easily accessible to users. This would be greatly beneficial as numerous
applications of PMUs have been demonstrated.
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A Benchmark Configurations

We document all the machines and applications used in this thesis here. In ad-
dition, the partitioning schemes employed to allocate processor cores for applica-
tions and the method for instrumenting PMUs are also discussed.

A.1 Machines

Appenzeller

Appenzeller has 4 AMD Opteron 6174 processors. Each processor comprises 2 six-
core NUMA nodes, and each NUMA node has its own memory controller and L3
cache of 6 MB. Every core has 512 KB of L2 cache. Appenzeller runs Linux 4.1.

Babybel

Babybel has 2 Intel Xeon E5-2670 v2 processors. Each processor has 10 physical
cores and 25 MB of L3 cache. Every core has 256 KB of L2 cache. SMT is disabled,
and the machine has 256 GB of RAM. Babybel runs Linux 4.4.

There are actually 4 machines with this configuration, but since they are iden-
tical, we refer to them as if they were a single machine.

Gottardo

Gottardo has 4 Intel Xeon L7555 processors. Each processor has 8 physical cores
and 24 MB of L3 cache. Every core has 256 KB of L2 cache. SMT is enabled, and
the machine has 128 GB of RAM. Gottardo runs Linux 4.2.

A.2 Applications

Green-Marl

Green-Marl provides implementations of several graph algorithms [21]. We use
the following three:

• PageRank (PR)
• Hop distance (HD)
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A.3 Partitioning Schemes A Benchmark Configurations

• Single-source shortest path (SSSP)

They are all parallel implementations capable of spawning any given number of
threads. Since the programs were compiled with libgomp, an implementation of
OpenMP, threads may be pinned to specific cores using the environment variable
GOMP_CPU_AFFINITY. The input for these applications is a graph based on the
Twitter social network [27].

Matrix Multiplication

Matrix multiplication (MM) was written using the ATLAS library, which provides
an implementation of BLAS for C [42]. It is single-threaded. We use various matri-
ces from the University of Florida Sparse Matrix Collection (UFSMC) as input [16]:

• MM1: Multiply MathWorks/tomography by itself for 1000 iterations.
• MM2: Multiply Bai/tub1000 by itself for 150 iterations.
• MM3: Multiply Hamm/add32 by itself for 1 iteration.

MM1 and MM2 perform matrix multiplication multiple times to prolong the exe-
cution time.

Sort

Sort (SORT) was implemented using qsort from glibc [33]. It is single-threaded.
The input for SORT is an array consisting of the elements of the matrix Schenk/nlp-
kkt200 from UFSMC [16].

A.3 Partitioning Schemes

We run at most two applications simultaneously. When two applications are
run together, there are four possible partitioning schemes for allocating proces-
sor cores:

• shared cores: Applications share processor cores. If SMT is available and
enabled, then each application is allocated 1 SMT thread in each physical
core, assuming every physical core has 2 SMT threads. If SMT is disabled or
not available, then applications share every physical core.

• shared sockets: Applications share processors, i.e., cores in the same CPU are
allocated to different applications, but each core can only be used by one
application.

• whole sockets: Each application receives whole processors, i.e., each CPU is
assigned to only one application.

• default: Thread placement is delegated to the Linux scheduler.
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A.4 PMU Instrumentation A Benchmark Configurations

A.4 PMU Instrumentation

Performance counters are read with perf_event_open in sampling mode. The
target frequency is 100 samples per second, and counters are configured to mon-
itor children, i.e., the inherit flag is set. For any measured event, each process
opens a separate file descriptor for every core in the system. For example, if there
are x measured events and y cores, then each application has xy file descriptors.
Samples are only read at the end of execution, and the mmap ring buffers are large
enough to hold all samples. A wrapper was written to allow event names to be
passed in through an environment variable. Each application was modified at the
beginning to monitor the specified events and at the end to read all samples.

Note that the execution time for each application varies. Therefore, when ap-
plications are paired together, short-running ones are run for multiple iterations
to guarantee the total execution time of an application is no less than the paired
application’s first iteration execution time. For instance, if the execution times of
PR and MM are t1 and t2, respectively, and t1 > t2, then MM is run n times so
that t1 ≤ n× t2. While we collect data for all iterations, we typically only consider
samples from the first iteration of each application. Analogously, the execution
time of an application is understood to be the execution time of the first iteration
unless specified otherwise.

Applications obtained from Green-Marl required further changes:

• Thread initialization was deferred until after the configuration of perfor-
mance counters to allow children to be monitored as well.

• A command line parameter was added to allow applications to be run for
multiple iterations.

• SSSP originally randomly assigned edge weights sequentially. The loop was
parallelized and made deterministic using edge IDs.
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B Event Space

Table B.1 presents the list of events which were selected in Chapter 4. The events
are shown with libpfm event names instead of Intel event names. Apart from a
few exceptions, the names are identical or similar.

The following events were excluded from the matrix X since they only had
zero deltas: 45, 46, 47, 48, 53, 54, 55, 59, 60, 61, 62, 66, 122, 123, 133, 134, 136, 137,
138, 139, 140, 143, 167, 168, 183, 189.

Event No. Event Name
1 LLC_REFERENCES

2 LLC_MISSES

3 L2_RQSTS:ALL_DEMAND_DATA_RD

4 L2_RQSTS:DEMAND_DATA_RD_HIT

5 L2_RQSTS:ALL_RFO

6 L2_RQSTS:RFO_MISS

7 L2_RQSTS:ALL_CODE_RD

8 L2_RQSTS:CODE_RD_MISS

9 L2_RQSTS:ALL_PF

10 L2_RQSTS:PF_MISS

11 L2_TRANS:DMND_DATA_RD

12 L2_TRANS:RFO

13 L2_TRANS:CODE_RD

14 L2_TRANS:ALL_PF

15 L2_TRANS:L1D_WB

16 L2_TRANS:L2_FILL

17 L2_TRANS:L2_WB

18 L2_TRANS:ALL

19 L2_LINES_IN:I

20 L2_LINES_IN:S

21 L2_LINES_IN:E

22 L2_LINES_IN:ALL

23 L2_LINES_OUT:DEMAND_CLEAN

24 L2_LINES_OUT:DEMAND_DIRTY

25 L2_LINES_OUT:PF_CLEAN

26 L2_LINES_OUT:PF_DIRTY

27 L2_LINES_OUT:DIRTY_ALL

28 DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK

29 DTLB_LOAD_MISSES:WALK_COMPLETED

30 DTLB_LOAD_MISSES:WALK_DURATION

31 DTLB_LOAD_MISSES:LARGE_WALK_COMPLETED
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B Event Space

Event No. Event Name
32 DTLB_LOAD_MISSES:STLB_HIT

33 DTLB_STORE_MISSES:MISS_CAUSES_A_WALK

34 DTLB_STORE_MISSES:WALK_COMPLETED

35 DTLB_STORE_MISSES:WALK_DURATION

36 DTLB_STORE_MISSES:STLB_HIT

37 ITLB_MISSES:MISS_CAUSES_A_WALK

38 ITLB_MISSES:WALK_COMPLETED

39 ITLB_MISSES:WALK_DURATION

40 ITLB_MISSES:STLB_HIT

41 MEM_LOAD_UOPS_LLC_HIT_RETIRED:XSNP_MISS

42 MEM_LOAD_UOPS_LLC_HIT_RETIRED:XSNP_HIT

43 MEM_LOAD_UOPS_LLC_HIT_RETIRED:XSNP_HITM

44 MEM_LOAD_UOPS_LLC_HIT_RETIRED:XSNP_NONE

45 MEM_LOAD_UOPS_LLC_MISS_RETIRED:LOCAL_DRAM

46 MEM_LOAD_UOPS_LLC_MISS_RETIRED:REMOTE_DRAM

47 MEM_LOAD_UOPS_LLC_MISS_RETIRED:REMOTE_HITM

48 MEM_LOAD_UOPS_LLC_MISS_RETIRED:REMOTE_FWD

49 MEM_LOAD_UOPS_RETIRED:L1_HIT

50 MEM_LOAD_UOPS_RETIRED:L2_HIT

51 MEM_LOAD_UOPS_RETIRED:L3_HIT

52 MEM_LOAD_UOPS_RETIRED:L1_MISS

53 MEM_LOAD_UOPS_RETIRED:L2_MISS

54 MEM_LOAD_UOPS_RETIRED:L3_MISS

55 MEM_LOAD_UOPS_RETIRED:HIT_LFB

56 MEM_UOPS_RETIRED:STLB_MISS_LOADS

57 MEM_UOPS_RETIRED:STLB_MISS_STORES

58 MEM_UOPS_RETIRED:LOCK_LOADS

59 MEM_UOPS_RETIRED:SPLIT_LOADS

60 MEM_UOPS_RETIRED:SPLIT_STORES

61 MEM_UOPS_RETIRED:ALL_LOADS

62 MEM_UOPS_RETIRED:ALL_STORES

63 UOPS_ISSUED:ANY

64 UOPS_ISSUED:FLAGS_MERGE

65 UOPS_ISSUED:SLOW_LEA

66 UOPS_ISSUED:SINGLE_MUL

67 UOPS_RETIRED:ALL

68 UOPS_RETIRED:RETIRE_SLOTS

69 UOPS_EXECUTED:THREAD

70 UOPS_EXECUTED:CORE

71 UOPS_DISPATCHED_PORT:PORT_0

72 UOPS_DISPATCHED_PORT:PORT_1

73 UOPS_DISPATCHED_PORT:PORT_2

74 UOPS_DISPATCHED_PORT:PORT_3

75 UOPS_DISPATCHED_PORT:PORT_4

76 UOPS_DISPATCHED_PORT:PORT_5

77 IDQ:EMPTY

78 IDQ:ALL_DSB_CYCLES

79 IDQ:ALL_DSB_CYCLES_4_UOPS

80 IDQ:ALL_MITE_CYCLES

81 IDQ:ALL_MITE_CYCLES_4_UOPS

82 IDQ:ANY_UOPS

83 OFFCORE_REQUESTS:DEMAND_DATA_RD
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Event No. Event Name
84 OFFCORE_REQUESTS:DEMAND_CODE_RD

85 OFFCORE_REQUESTS:DEMAND_RFO

86 OFFCORE_REQUESTS:ALL_DATA_RD

87 OFFCORE_REQUESTS_OUTSTANDING:DEMAND_DATA_RD

88 OFFCORE_REQUESTS_OUTSTANDING:DEMAND_CODE_RD

89 OFFCORE_REQUESTS_OUTSTANDING:DEMAND_RFO

90 OFFCORE_REQUESTS_OUTSTANDING:ALL_DATA_RD

91 OFFCORE_RESPONSE_0:ANY_REQUEST:LLC_MISS_LOCAL

92 OFFCORE_RESPONSE_1:ANY_REQUEST:LLC_MISS_REMOTE

93 BR_INST_EXEC:NONTAKEN_COND

94 BR_INST_EXEC:TAKEN_COND

95 BR_INST_EXEC:TAKEN_DIRECT_JUMP

96 BR_INST_EXEC:TAKEN_INDIRECT_JUMP_NON_CALL_RET

97 BR_INST_EXEC:TAKEN_NEAR_RETURN

98 BR_INST_EXEC:TAKEN_DIRECT_NEAR_CALL

99 BR_INST_EXEC:TAKEN_INDIRECT_NEAR_CALL

100 BR_INST_EXEC:ALL_BRANCHES

101 BR_INST_RETIRED:ALL_BRANCHES

102 BR_INST_RETIRED:COND

103 BR_INST_RETIRED:NEAR_CALL

104 BR_INST_RETIRED:NEAR_RETURN

105 BR_INST_RETIRED:NOT_TAKEN

106 BR_INST_RETIRED:NEAR_TAKEN

107 BR_INST_RETIRED:FAR_BRANCH

108 BR_MISP_EXEC:NONTAKEN_COND

109 BR_MISP_EXEC:TAKEN_COND

110 BR_MISP_EXEC:TAKEN_INDIRECT_JUMP_NON_CALL_RET

111 BR_MISP_EXEC:TAKEN_NEAR_RETURN

112 BR_MISP_EXEC:TAKEN_INDIRECT_NEAR_CALL

113 BR_MISP_EXEC:ALL_BRANCHES

114 BR_MISP_RETIRED:ALL_BRANCHES

115 BR_MISP_RETIRED:CONDITIONAL

116 BR_MISP_RETIRED:NEAR_TAKEN

117 CYCLE_ACTIVITY:CYCLES_L2_PENDING

118 CYCLE_ACTIVITY:CYCLES_LDM_PENDING

119 CYCLE_ACTIVITY:CYCLES_L1D_PENDING

120 CYCLE_ACTIVITY:CYCLES_NO_EXECUTE

121 CYCLE_ACTIVITY:STALLS_L2_PENDING

122 CYCLE_ACTIVITY:STALLS_L1D_PENDING

123 CYCLE_ACTIVITY:STALLS_LDM_PENDING

124 L2_L1D_WB_RQSTS:HIT_E

125 L2_L1D_WB_RQSTS:HIT_M

126 L2_L1D_WB_RQSTS:MISS

127 L2_L1D_WB_RQSTS:ALL

128 L2_STORE_LOCK_RQSTS:MISS

129 L2_STORE_LOCK_RQSTS:HIT_M

130 L2_STORE_LOCK_RQSTS:ALL

131 FP_COMP_OPS_EXE:X87

132 FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE

133 FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE

134 FP_COMP_OPS_EXE:SSE_PACKED_SINGLE

135 FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE
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Event No. Event Name
136 FP_ASSIST:ANY

137 FP_ASSIST:SIMD_INPUT

138 FP_ASSIST:SIMD_OUTPUT

139 FP_ASSIST:X87_INPUT

140 FP_ASSIST:X87_OUTPUT

141 OTHER_ASSISTS:AVX_TO_SSE

142 OTHER_ASSISTS:SSE_TO_AVX

143 OTHER_ASSISTS:AVX_STORE

144 OTHER_ASSISTS:WB

145 MOVE_ELIMINATION:INT_NOT_ELIMINATED

146 MOVE_ELIMINATION:SIMD_NOT_ELIMINATED

147 MOVE_ELIMINATION:INT_ELIMINATED

148 MOVE_ELIMINATION:SIMD_ELIMINATED

149 RESOURCE_STALLS:ANY

150 RESOURCE_STALLS:RS

151 RESOURCE_STALLS:SB

152 RESOURCE_STALLS:ROB

153 UNHALTED_CORE_CYCLES

154 UNHALTED_REFERENCE_CYCLES

155 CPU_CLK_UNHALTED:THREAD_P

156 INSTRUCTIONS_RETIRED

157 L1D:REPLACEMENT

158 L1D_PEND_MISS:PENDING

159 ICACHE:MISSES

160 ICACHE:IFETCH_STALL

161 LD_BLOCKS:STORE_FORWARD

162 LD_BLOCKS:NO_SR

163 LD_BLOCKS_PARTIAL:ADDRESS_ALIAS

164 MISALIGN_MEM_REF:LOADS

165 MISALIGN_MEM_REF:STORES

166 ARITH:FPU_DIV_ACTIVE

167 SIMD_FP_256:PACKED_SINGLE

168 SIMD_FP_256:PACKED_DOUBLE

169 LOAD_HIT_PRE:HW_PF

170 LOAD_HIT_PRE:SW_PF

171 CPL_CYCLES:RING0

172 CPL_CYCLES:RING123

173 LOCK_CYCLES:SPLIT_LOCK_UC_LOCK_DURATION

174 LOCK_CYCLES:CACHE_LOCK_DURATION

175 ILD_STALL:LCP

176 ILD_STALL:IQ_FULL

177 DSB2MITE_SWITCHES:COUNT

178 DSB2MITE_SWITCHES:PENALTY_CYCLES

179 DSB_FILL:EXCEED_DSB_LINES

180 TLB_FLUSH:STLB_ANY

181 TLB_FLUSH:DTLB_THREAD

182 ITLB:ITLB_FLUSH

183 MACHINE_CLEARS:MASKMOV

184 MACHINE_CLEARS:MEMORY_ORDERING

185 MACHINE_CLEARS:SMC

186 RS_EVENTS:EMPTY_CYCLES

187 LSD:UOPS
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Event No. Event Name
188 OFFCORE_REQUESTS_BUFFER:SQ_FULL

189 ROB_MISC_EVENTS:LBR_INSERTS

190 BACLEARS:ANY

Table B.1: List of selected events.
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