
ETH Library

Congestion-aware Simulation of
Large-scale HPC Networks

Bachelor Thesis

Author(s):
Maag, Daniel

Publication date:
2016

Permanent link:
https://doi.org/10.3929/ethz-a-010740182

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010740182
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Bachelor Thesis

Congestion-aware Simulation of
Large-scale HPC Networks

Student: Daniel Maag
Student ID: 12-920-740
Supervisor: Timo Schneider

Professor: Dr. Torsten Hoefler
Submission date: 16.09.2016

Abstract

The goal of this work is to combine the two well established net-
work simulation frameworks LogGOPSim and Omnet++. We com-
bine them into one simulator by embedding the Omnet++ simulation
kernel into LogGOPSim. This way LogGOPSim simulates the appli-
cation layer but delegates the network simulation to Omnet++. We
show how this cooperation can work, i.e., how LogGOPSim sends and
receives messages over Omnet++ and how Omnet++ can reliably es-
timate the time of arrival for a message sent thought the network.

We then try to determine the influence of congestion on HPC appli-
cations by extracting application traces from the NAS Parallel Bench-
marks and then simulating them. We run these traces on two simula-
tors: on the LogGP model in LogGOPSim and on the new simulator
we built. We see that for most tested application traces congestion
has a minor influence on the finish time of hosts in the network.

Contents

1 Introduction 2
1.1 Organization . 2
1.2 Contribution . 3

2 Background 4
2.1 LogGOPSim . 4
2.2 Initialization . 4
2.3 Simulation Loop . 5

2.3.1 Network . 5
2.4 Omnet++ . 7

2.4.1 Inet . 8

3 Implementation 9
3.1 Algorithm . 9

3.1.1 Initialization of the Network 10
3.1.2 Sending Messages . 11
3.1.3 Query the Message Progress 11

3.2 Installation . 12
3.2.1 Prerequisites . 13
3.2.2 Compilation . 14
3.2.3 Example Run . 14

3.3 Testing . 15

4 Results 18
4.1 Configuration . 18
4.2 Simulation Measurements . 20
4.3 Performance . 21

5 Related Work 22

6 Conclusion 23

References 24

1

1 Introduction

High performance computing (HPC) plays an increasingly important role
in computer science and various other areas. HPC helps drive new science
and is therefore an active field of research that aims to steadily improve
the performance of HPC clusters. Each year outstanding achievements in
high-performance computing are awarded the Gordon Bell Award.

A HPC network connects a cluster of many processors that perform dis-
tributed tasks in parallel. Since such a cluster performs tasks in cooperation,
the nodes need to communicate frequently in order to synchronize, for exam-
ple to distribute the task or to share results. But because connecting all the
nodes directly to each other is not feasible for larger HPC clusters, building
a network capable of handling the traffic is important. We want the commu-
nication between nodes to be as fast as possible, since the communication
is the performance and scaling bottleneck. To minimize the communication
time, various kinds of network communication standards are used. Examples
of these include Infiniband or Gigabit Ethernet.

In order to obtain quantifiable and comparative figures testing and bench-
marking needs to be employed. However this is hard to do with different
network topologies and different communication protocols within a physical
system. Because many deciding factors differ depending on the hardware
used, for testing different networks one would need to exchange many phys-
ical components of the corresponding networks. This implies a big effort for
every possible configuration one might want to test. To avoid this effort,
a simulation of the HPC network is a possible solution. When simulating,
parameters like the used communication standard can be chosen freely with-
out requiring any additional big effort. This concludes the main motivation
behind and the importance of HPC network simulations, allowing the sim-
ple testing of existing and new communication protocols in different network
topologies.

1.1 Organization

In this work, we build a new simulator by combining the Omnet++ and
LogGOPSim frameworks. In Section 2 we first introduce LogGOPSim
and after that Omnet++, followed by Inet. We also show roughly how
the existing LogGOPSim implementation simulates a network and what
assumptions and simplifications are being made. Next, Section 3 describes
how Omnet++ is embedded into LogGOPSim and how we can send a
message through the network and estimate the time at which it will reach
its destination. Further in Section 3.2 we demonstrate the installation of the

2

simulator on a Ubuntu system and denote how to run a simple example sim-
ulation. Subsequently Section 3.3 shows that the simulation is indeed exact
by comparing simulated transmission times to actual calculated transmission
times. After that in Section 4 we will compare our simulator with the already
existing LogGP model in LogGOPSim. This will be achieved by running real
parallel application traces in both simulators and comparing the results. We
produce the application traces with the NAS Parallel Benchmarks [1, 7]. In
Section 5 we shortly introduce a Master thesis that is comparable to this
work. The author V. Zorin also combined LogGOPSim and Omnet++,
but instead of embedding one into the other, both are being run as separate
processes communicating over IPC. Finally, in Section 6 we summarize our
results and discuss the benefit of this work and its simulator.

1.2 Contribution

We embed the Omnet++ [8] simulation kernel into LogGOPSim [4]. This
allows LogGOPSim to delegate the network simulation to Omnet++. In-
stead of approximating transmission times, the new simulation calculates
exact transmission times by simulating the actual Ethernet network. Ad-
ditionally the new simulator simulates queues in modules and packet drop
when such queues get flooded.

This more accurate performance model for Ethernet comes at a cost.
The new simulator is much slower than the existing LogGOPSim. We only
run application traces for networks with 64 nodes or less reliably and in
reasonable time.

3

2 Background

In this section we briefly explain the functionality and features of LogGOP-
Sim [4] and Omnet++ [8].

2.1 LogGOPSim

LogGOPSim is a simulator framework to simulate large-scale networks that
perform parallel algorithms. It utilizes the LogGOPS [4] model, which is an
extension of the LogGPS model [2]. While LogGOPS allows accurate mod-
eling of parallel algorithms in a congestion free network, LogGOPSim even
goes a step further and additionally allows to simulate a simplified network
with fixed routing and congestion. LogGOPSim has two models regard-
ing the network, LogP and SimpleNetwork. LogP assumes a fully connected
bidirectional network without any congestion. SimpleNetwork on the other
hand uses hosts and switches to build and simulate a network. A more in
depth view of SimpleNetwork is provided in Subsection 2.3.1.

2.2 Initialization

Here we are mainly concerned with a simulation in LogGOPSim in which
a simple network is provided. In order to simulate an algorithm with Log-
GOPSim, we therefore need to specify the overall network topology and the
operations of each respective node.

Chapter 2 in the paper on LogGOPSim [4] tells us that every parallel
application can be modeled as a succession of tasks. These tasks are: send,
receive, and calculate, the last of which can be modeled as a delay. The oper-
ation of each computing node in the network can therefore be characterized
by a directed acyclic graph of tasks it has to perform. This graph defines
a happens-before relation on all operations in a node. All these graphs of
all the nodes combined are expressed in a single Group Operation Assembly
Language (GOAL) file.

Listing 1: Example of DOT file

digraph Network {
H0 −> S0 [comment=”∗”] ;
S0 −> H0 [comment=”H0 ”] ;
S0 −> H1 [comment=”H1 ”] ;
H1 −> S0 [comment=”∗”] ;

}

4

Meanwhile the network topology is defined by a file in the graph descrip-
tion language DOT. With each direction of a connection between a pair of
nodes, a simple routing table is included. For example for two nodes H0

and H1 that are connected with a switch S0, we have the dot file shown in
Listing 1.

Instantiated with both of those files, LogGOPSim first builds the net-
work based on the DOT file and then starts to simulate the application trace
described in the binary GOAL file.

2.3 Simulation Loop

The simulation works with a priority queue that contains all executable oper-
ations in the order of their earliest starting time. An operation is executable
if it is not dependent on any other operation that is not already finished. In
each step of the simulation, we take the next operation from the queue and
execute it if and only if the resources are not currently used by another oper-
ation. Otherwise, the operation is reinserted in the queue with a new earliest
starting time. The new starting time being the earliest time the resources
become available. Here by resources we mean the CPU and the NIC.

Arrivals of messages at their destinations are receive operations. When
a message is sent, a receive operation is inserted with the expected time of
arrival at its destination. A message can be delayed by congestion. In this
case, the arrival operation of this message has an outdated arrival time and
has to be updated. When this operation is taken from the queue, we reinsert
it with an updated time of arrival.

2.3.1 Network

LogGOPSim implements the network and its usage in the header file
Network.hpp. There, the parsing and construction of the network as well
as the sending and traveling of messages in the network are implemented.
Network is a dispatcher class with two possible kinds of networks;
SimpleNetwork, which builds the network from a DOT file and LogGP, which
simulates a fully connected, congestion free network. The simulation core
interacts with the Network class via two functions, insert and query. We
are mainly interested in the SimpleNetwork for the implementation, but we
will use the LogGP model later in Section 4 to compare the congestion free
implementation to our new model. More information about the LogGP model
can be found in the paper about LogGOPSim [4].

SimpleNetwork builds the network with the hosts, switches, and the rout-
ing information included in the DOT file. When a message gets sent though

5

the network it does not make one hop at a time, but rather occupies the whole
path until it is fully received. The bandwidth of this link is then shared with
all other messages on this link.

Insert The simulation core calls this function for every send operation. It
generates a database entry that represents the new message to inject into the
network. First, the path of this message is determined. Then, the algorithm
checks along the path for the highest congestion, i.e., the most messages using
a particular link. With this highest congestion along the way we can calculate
the time the message needs to reach the destination. The Insert returns this
estimated time of arrival for the simulation core to insert a receive operation
into the queue of future events. When traversing the path, the algorithm
updates the database entry for every message using a link of the path. Ever
since the last update of a particular message, the congestion for this message
did not change. Therefore, the remaining bytes can easily be calculated.
After that, the maximum congestion is increased if necessary.

Query The simulation core calls this function for every receive operation
from the queue. It checks the status of a message; If it has just arrived, the
simulation core is notified of the arrival by returning the current time. If
the message is still on the way, query calculates and returns the estimated
time at which the message will reach its destination. The query should not
overestimate the arrival time, i.e., the current time can never be smaller than
the time at which the message arrived.

For every arriving message we also have to free any congestion caused by
it. The algorithm does this by once again traversing the path and updating
all the entries for messages using a link on the path. For every message it
calculates the remaining bytes to transfer and the new maximum congestion.

6

Figure 1: Insert and Query

2.4 Omnet++

Omnet++ [8] is a simulation library and framework, primarily for build-
ing network simulators. Omnet++ has different components such as the
simulation kernel and the NED language. With these and some of the util-
ity classes provided by Omnet++, the user can define simple modules in
the higher-level language NED. These simple modules are the basic building
block of any simulation and are the only modules with C++ code behind
them. They describe the inner working of a part of the network, e.g., the
exact functioning of a MAC protocol; How it handles an incoming message or
packet etc. Modules have gates, which allow them to be connected to other
modules and communicate with them by message passing. Besides the sim-
ple module there is a second kind of module, the compound module. They
describe modules consisting of other modules. Compound modules are solely
described in the NED language and have no C++ code by themselves. They
are fully described by the code from the simple modules they contain. For
example a compound module could describe a host computer with a gate for
the Ethernet cable plug, a compound module describing the functioning of
the NIC and a compound module describing the CPU.

This structure where everything is a module lets us describe an entire
network as a compound module like the listing 2 shows. Channels are the
connecting object between two gates. They allow to model parameters like
transmission rates, propagation delays and other properties of physical links.

7

Listing 2: Sample of NED network definition

// imports omitted
network OmnetNetwork {

types :
channel C extends DatarateChannel {

delay = 1ns ;
datarate = 100Mbps ;
per = 0 . 0 0 0 1 ; // packet e r r o r ra t e (PER)

}
submodules :

H0 : LogGOPSimEthHost { }
H1 : LogGOPSimEthHost { }
S0 : LogGOPSimEtherSwitch {

gate s :
ethg [1 6] ; // number o f por t s o f switch

}
connec t i ons al lowunconnected :

H0 . ethg <−−> C <−−> S0 . ethg [0] ;
S0 . ethg [1] <−−> C <−−> H1 . ethg ;

}

For the traditional use of Omnet++ one only needs to define the used
modules in the NED language, the corresponding C++ code for all simple
modules, and an initialization file (.ini). Another possibility is to embed the
Omnet++ simulation kernel into another application.

2.4.1 Inet

The Inet Framework [5] is the protocol model library of Omnet++. It
defines modules for various protocols and network components, including
the wired link layer protocols for Ethernet that are important for this work.
Inet encourages the use and modification of the existing modules in Inet
to build the desired network.

8

3 Implementation

The goal of this part is to simulate the network traffic with Omnet++ but
let LogGOPSim simulate the application layer of each calculating node in
the network. To achieve this separation, we embed the simulation kernel
of Omnet++ into the existing simulation of LogGOPSim. A newly in-
troduced class named OmnetSimulation serves simultaneously as the new
simulation core of Omnet++, and as the interface between LogGOPSim
and the network in Omnet++.

We use communication over Ethernet as basis for the simulation, since
Inet offers implementations for most of the modules in an Ethernet network.
Moreover, we implement an application for the hosts and change the existing
implementation for the MAC layer protocol for both the switches and hosts.

3.1 Algorithm

As seen in Section 2.3.1, LogGOPSim already has a network implementa-
tion. We extend Network.hpp for our needs by adding a new class
OmnetNetwork which works similar to the existing SimpleNetwork class.
More precisely, OmnetNetwork also defines an insert and query to send
and receive messages to and from the network. In order to let Omnet++
simulate the network and all the traffic in it, we need three basic functional-
ities:

• initialization of the network in Omnet++

• sending messages from and to specific host

• keeping track of sent messages until they arrive at their destination

The last of these is needed to accurately predict the time at which a message
will arrive at its destination. In this section we look at each of the three
functionalities in more detail.

Data Structure We introduce a class PktInfo (definition in listing 3) that
stores all relevant data for a single message. LogGOPSim could send far
larger messages than the maximal Ethernet packet size allows. Therefore,
a message is potentially split up into multiple packets, each identified by a
sequence number. All the sent messages are then saved into two maps, one
for the fully received messages and one for the messages currently in the
network. The code snipped in listing 3 defines part of PktInfo and gives
access to the two maps, which are defined in omnetinterface.cc. This code
can be found in the header file PacketList.hpp.

9

Listing 3: Class PktInfo

using namespace std ;
class PktInfo {

public :
// . . .

// f o l l ow i n g maps have the sequence number as key
// <seqNo , map<modulename , t> >
// where t = e a r l i e s t depar ture at t h i s module
map<long , map<s t r i ng , simtime t> > t r a v e l i n g p k t s ;
// <seqNo , TimeofArrival>
map<long , simtime t> a r r i v edpacke t s ;

// maximal e ta re turned to LogGOPSim
simtime t e a r l i e s t a r r i v a l ;

// #segments LogGOPSim message go t s p l i t up in to
int numberofsegments ;
// message ID from LogGOPSim
const uint32 t logmsghandle ;

// . . .
} ;

// t r a v e l i n g and f i n i s h e d packe t s
// in both maps LogGOPSim ID as key
extern map<uint32 t , PktInfo∗> pktmap ;
// LogGOPSim s imu la t i on time message f i n i s h e d
extern map<uint32 t , uint64 t> f in i shedpktmap ;

3.1.1 Initialization of the Network

During the start-up of LogGOPSim the supplied DOT file will be parsed
and stored to a graph. We use the existing parser in the class TopoGraph

in Network.hpp and extend it the following way: We assume this graph
to be connected but otherwise arbitrary, e.g., the graph could have multi-
ple edges between two nodes or other types of loops. In Ethernet routing
loops can introduce broadcast storms. For that reason we remove any po-
tential loops from the graph by using Kruskals algorithm [6]. The resulting
spanning tree needs to be parsed to a module definition in NED. As an ex-
ample the DOT file in listing 1 would get parsed to the NED file in listing 2.
This file then serves as input to the function initialize simulation in

10

OmnetSimulation.
Even though Inet supports spanning tree protocols during simulation,

we choose to pre-compute a spanning tree because this way we know the
exact hop count for every node pair. This allows us to estimate the time
needed for the remaining path of a packet more accurately.

After the network is parsed to a NED file type, OmnetNetwork invokes
the function initialize simulation of the class OmnetSimulation. This
function builds the simulation based on the network provided by the previous
step. Additionally, this function gathers the information needed about the
hosts, i.e., the MAC addresses and Omnet++ identification numbers of
each host.

3.1.2 Sending Messages

As described earlier, LogGOPSim invokes insert to send a message.
OmnetNetwork then invokes send from to from the class OmnetSimulation.
This function is responsible to find the correct host module in the simulation.
Each host module has an application layer module that lets OmnetSimulation
invoke a function to send a message to the intended destination. This func-
tion also generates and saves the relevant information into pktmap, as seen
in the Listing 3.

3.1.3 Query the Message Progress

As described in Section 2.3.1, we need to be able to estimate the remain-
ing time until a message arrives at its destination whenever this message
gets delayed by congestion. To achieve this, we need to keep track of every
message and where each segment of this message currently is located in the
network. We extend the implementation of the MAC protocol for this. In
our Omnet++ simulation, time only passes for a message in two locations:
either the message is in a queue in a MAC module, or it is currently being
transmitted to the next node. Both these scenarios happen in or directly
after the MAC module. Therefore, by monitoring the sending and receiving
in the MAC modules, we know at any point in time where each packet is.
Thus, regardless whether the packet gets put at the end of the queue or it
gets sent through the channel, we can predict the time at which it will reach
the next module. We store this information into the PktInfo object of the
current message as a pair of the name of the next module and the earliest
time the packet will reach this module. As soon as this information is saved,
the current module is deleted in the data structure. This works since all
the MAC modules of a single node process a packet at the same simulation

11

time. Therefore a query command cannot occur between the deletion of the
current module and the insertion of the next module.

Figure 2 serves as an example. Suppose the message m1 is inserted into
the network and after some time query gets called for this message. m1 is
between the green and orange nodes, either on the wire or in the queue of the
green node. In this situation the orange nodes are stored with an estimation
of the time m1 will reach them. To calculate the time until m1 reaches its
destination, we take the shortest path among the orange nodes to estimate
the remaining time.

Figure 2: Omnet Network with a Message being transmitted

When query is invoked, update eta is called which has to determine the
shortest time until all packets that belong to the current message have arrived
at their destination. When the message is already in finishedpktmap, we
can return the current time to LogGOPSim to signal that the message has
fully arrived. If that is not the case, we iterate over every packet of the
message and find the packet that has jet the longest path to its destination.
We return the time needed by this packet for its shortest path as the finish
time of the message to LogGOPSim.

3.2 Installation

This section provides instructions for the installation of LogGOPSim [4],
Omnet++ [8] and Inet [5] on a Ubuntu distribution. For other sys-
tems, please consult the installation instructions of the respective program.

12

These are included in the archives of each program and can be found at
LogGOPSim/README, omnet-5.0/doc/InstallGuide.pdf and inet/INSTALL.
The folder structure depicted in Figure 3 is needed for LogGOPSim to work
properly. In this section we assume /home/<user>/ to be the desired instal-
lation folder.

/home/<user>/

LogGOPSim/

omnetnetwork/

omnetinterface source files

omnetpp-5.0/

installation of Omnet++

inet/

installation of Inet

src/

inet/

LogGOPSim/

LogGOPSim source files

Figure 3: Desired directory tree

3.2.1 Prerequisites

LogGOPSim, Omnet++ and Inet need several packages to be installed
beforehand. Run this command to install them:

sudo apt-get install re2c graphviz-dev build-essential

gcc g++ bison flex perl tcl-dev tk-dev libxml2-dev

zlib1g-dev default-jre doxygen graphviz libwebkitgtk-1.0-0

qt4-qmake libqt4-dev libqt4-opengl-dev openscenegraph

libopenscenegraph-dev openscenegraph-plugin-osgearth osgearth

osgearth-data libosgearth-dev

Furthermore, LogGOPSim needs the package gengetopt, which can
be found and downloaded at: http://www.gnu.org/software/gengetopt/

gengetopt.html. Download Omnet++ and Inet from their official web-
sites, http://omnetpp.org and http://inet.omnetpp.org respectively. In
this guide, we will use the distributions omnet-5.0-src.tgz and
inet-3.4.0-src.tgz. Choose a directory for the installation, e.g.,
/home/<user>/, and unpack the archives such that the structure shown in
Figure 4 is created.

13

http://www.gnu.org/software/gengetopt/gengetopt.html
http://www.gnu.org/software/gengetopt/gengetopt.html
http://omnetpp.org
http://inet.omnetpp.org

/home/<user>/

LogGOPSim/

omnetnetwork/

omnetpp-5.0/

inet/

Figure 4: Desired directory tree

3.2.2 Compilation

In this section we omit the leading /home/<user>/ for convenience.
Next, open a console, navigate to the Omnet++ root directory
LogGOPSim/omnetpp-5.0/ and add the Omnet++ folder to the Path. The
directory can either be temporarily added with the command ./setenv,
or permanently by adding export PATH=$PATH:$HOME/omnetpp-5.0/bin to
∼/.bashrc. Hereafter, in the top Omnet++ directory type ./configure

and when this script has terminated, type make. Use make -j4 to compile
Omnet++ using multiple cores. The Omnet++ installation can now be
verified by running a sample simulation. To do this type cd samples/dyna

and then run ./dyna. If any problems occur, or additional information is
needed, please refer to the installation manual in the Omnet++ distribu-
tion. These can be found in /omnetpp-5.0/doc/.

To compile Inet, move the folder LogGOPSim/omnetnetwork/LogGOPSim
to LogGOPSim/omnet-5.0/inet/src/inet. Then change the active directory
to Inets main directory which is LogGOPSim/omnetpp-5.0/inet. Then type
the command make makefiles and as soon as the makefiles generation is
done, type make to compile the Inet library.

To finish the installation, return to /home/<user>/LogGOPSim/ and run
make. Now LogGOPSim should be in the root folder of LogGOPSim and the
simulation can be started by running ./LogGOPSim.

3.2.3 Example Run

To run a test for the simulator or to see a concrete example, a sample is
provided in the distribution. In the root directory of LogGOPSim type:
./txt2bin -i SharedLink.goal -o SharedLink.bin

This will generate a binary GOAL schedule for LogGOPSim. After that
type:
./LogGOPSim --network-file="SharedLink.dot" -f SharedLink.bin -n

omnet -L 0

14

This will start a small simulation with 4 hosts and two switches. A figure of
the network can be seen in the Figure 5.

3.3 Testing

In this section we present test cases that verify that the interface and the
two combined simulations indeed yield realistic results. We compare the
times measured in the simulation with a calculated reference time. The
reference time is calculated manually and only considers the time consumed
by Omnet++, i.e., the network. To reliably compare these two times, we
use LogGOPSim with the parameters o, g, G, L, and O set to 0. These
parameters stand for the CPU overhead per message, the time gap between
the sending of two messages, the cost per byte of message, and the overhead
per byte of message respectively. This ensures that time only passes during
the transport of a message. This way the only delay in the simulation stems
from the network in Omnet++.

For all the calculations a propagation delay of 1ns and a bandwidth of
1000Mbit/s were used, unless stated otherwise. Furthermore we use the
following notations:

Message length [bytes] = m
Hops for message = h
Datarate [Mbit/s] = b
Delay [ns] = d

In the following Tables, the column Send denotes the time at which the
message was sent at the originating host and the column Receive denotes the
time at which the message reached its destination. In other words, Send is
the time at which insert was called and Receive is the time query was called
the last time for the message.

2 Hosts 1 Switch For this test we use the DOT file from Listing 1 and a
goal file that first sends some bytes from H0 to H1 and after that the same
amount of byte from H1 to H0. We first test with two different bandwidths
of the network and after that for two message sizes, 1 byte and 40’000 bytes.
Ethernet does not allow to send very short or very long messages. A message
is therefore potentially split up and on each fragment padding and the header
is added before sending it. The message sizes in the tables below are the
actual sizes of the messages after these steps.

15

100Mbit/s m [bytes] h Send [ns] Receive [ns] Time [ns] tref [ns]

H0 to H1 72 2 0 11522 11522 11522
H1 to H0 72 2 11522 23044 11522 11522

Round trip 72 2 0 23044 23044 23044

Table 1: Round Trip with 100Mbit/s channels

1000Mbit/s m [bytes] h Send [ns] Receive [ns] Time [ns] tref [ns]

H0 to H1 72 2 0 1154 1154 1154
H1 to H0 72 2 1154 2308 1154 1154

Round trip 72 2 0 2308 2308 2308
H0 to H1 40783 2 0 340970 340970 340970
H1 to H0 40783 2 340970 681940 340970 340970

Round trip 40783 2 0 340970 340970 340970

Table 2: Round Trip with 1000Mbit/s channels

The reference time for the small messages can be calculated by the formula
tref = h ∗ (m

b
+ d). In the case of the message with 40000bytes, the message

gets split up into 27 frames, 26 with length 1526bytes and one with length
1107bytes. These numbers are after padding is applied and the header is
pretended. Let m1 = 1526 bytes and let n denote the number of message
parts. Now for this transmission we get the formula tref = m

b
+ m1

b
+ h ∗

d + (n− 1) ∗ p
b

where p = 96bit. p
b

is added for every packet except the first
because after a frame transmission the MAC module cannot immediately
send the next frame, instead it waits for a short time and then starts the
transmission of the next frame.
From Table 1 and Table 2 we can see that for this particular example the
simulation is exact with variable channel speeds.

Shared Link In this test we look at the topology depicted in Figure 5.
We look at the two following scenarios. In the first, message m0 is sent from
H0 to H2 and m1 from H1 to H3. In the second scenario m1 travels in the
other direction. Since we use Ethernet connection in full-duplex mode, we
expect scenario 1 to be slower than scenario 2. Like in the earlier test case,
the actual size of the message after padding and with the header added is
denoted by the number in parenthesis.

16

S0

H0

H1

S1

H2

H3

1 and 2

1

2

Figure 5: Shared Link Network

Scenario 1 m [bytes] h Send [ns] Receive [ns] Time [ns] tref [ns]

H0 to H2 1 (72) 3 0 17283 17283 17283
H1 to H3 1 (72) 3 0 24003 24003 24004

Table 3: Shared Link - Same Direction

Scenario 2 m [bytes] h Send [ns] Receive [ns] Time [ns] tref [ns]

H0 to H2 1 (72) 3 0 18242 18242 18243
H3 to H1 1 (72) 3 0 18242 18242 18243

Table 4: Shared Link - Opposite Direction

Reference time calculations: tref = h ∗ (m
b

+ d) + p
b

where p = 96 bit.
Like before, p

b
is added because the MAC module cannot send immediatly

the next frame after the previous got finished.
In Table 3 and Table 4 we see as expected, that scenario 1 introduces more
congestion to the network and is therefore slower as scenario 2.

17

4 Results

The goal of this section is to investigate the influence of congestion on HPC
applications. We examine this by simulating different traces of the NAS
Parallel Benchmark [1, 7] in LogGOPSim with and without congestion. To
achieve this, we simulate one time with a Omnet++ network and the second
time with the LogGP model. Since LogGP does not simulate any network
but instead assumes all hosts to be connected directly, we need to find the
suitable value for the input parameters of LogGP, such that a send from one
host to another takes approximately the same time in the LogGP model as it
would take traveling through the network in OmnetSimulation. Assuming we
have such parameters, we can then compare the results obtained by the two
simulations, and can estimate the influence of congestion on the application
traces.

These are the parameters we need to specify when running LogGOPSim
with LogGP:

• L, the maximal latency among two processors in the Network
• o, the CPU overhead per message
• g, the time between two message injections into the network
• G, the cost per byte of messages

4.1 Configuration

We run the simulations on two different network topologies. An example
for both is depicted in Figure 6. Note that after the initialization of the
simulation, the network as shown in Figure 6a will have a similar structure
to the network shown in Figure 6b, with the difference that switches in the
second layer have only 8 hosts attached to them instead of 15.

(a) Two-layered Network (b) Tree Network

Figure 6: Caption

Parameters We compare the simulations on a network with 64 hosts and
an according number of switches. This results in a longest path of 4 hops

18

for both networks. To find suiting parameters we calculate an estimation of
each parameter and adjust them such that the times with the LogGP model
match the times obtained with OmnetNetwork as close as possible in a con-
gestion free network. The problem herein lies in the fact that for message
sizes shorter than the maximal Ethernet frame length, the bandwidth gets
approximately divided by the number of hops this message has to travel. In
contrast to this, the bandwidth for very large messages remains roughly the
same for different paths. Since an overestimation of the bandwidth would
lead to a linear increase of the difference between the transmission times in
LogGP and OmnetNetwork, we choose the bandwidth to model large messages
accurately. G describes the cost per byte of message. Therefore G is equal
to 1/bandwidth. This choice for G leads to an inaccurate modeling of short
messages. We can compensate this partly by increasing the latency parame-
ter L of the network. Since the latency is constant per message, an increase
affects smaller messages more, relatively to their size. We therefore test with
both the actual maximal latency L1 and an increased latency L2. We find
the actual maximal latency L1 by calculating the time needed for the first bit
of the shortest message possible to reach its destination. The second latency
L2 is chosen such that a message half the maximal Ethernet frame length is
accurately modeled.

The parameter o is calculated into every send and receive of
OmnetSimulation. Therefore this parameter has to be the same in both
simulations but can be chosen freely. We set the parameter g to the stan-
dard defined by the Inet MAC module, the MAC module pauses after a
transmission of a frame for the time 96bit/bandwidth.

L1 = 1732
L2 = 20440
o = 1500
g = 960
G = 8

Table 5: Parameters for LogGP

Further parameters for our implementations are the size of the queue in
every MAC module and the packet error rate of channels (PER ∈ [0, 1]).
They are fixed at 1000 frames per queue and 0 respectively for these eval-
uations. The effects of these parameters can be explored in future work.
Furthermore, all the simulations were run on a machine with a Intel Core
i7-3520M with 2.90GHz and two physical cores, and 7.5GB RAM.

19

4.2 Simulation Measurements

Maximal host finish time [s] = th
Simulation time [s] = ts
Simulation speed [ev/s] = vs
Average query per message = Q

The following table shows the measured results of our simulations. The
first column shows witch benchmark out of the NAS Parallel Benchmarks
packet was used. All NAS Parallel Benchmarks were compiled with the size
class C and after that liballprof-1.0 was used to collect the application
traces. In the second column we see whether the OmnetSimulation or the
LogGP model was used. For simulations in OmnetSimulation we state the
used network topology by N1 or N2, for the two-layered network (Figure 6a)
and the tree network topology (Figure 6b) respectively. For simulations in
LogGP, we denote whether L1 or L2 was used.

Benchmark Simulation th [s] ts [s] vs [ev/s] Q

BT

Omnet N1 1432.926 7914 667.64 2.60
Omnet N2 1432.994 6550 806.67 2.57
LogGP L1 1433.185 24 220153.80 -
LogGP L2 1433.238 24 220153.80 -

EP

Omnet N1 1063.496 1 6781.00 1.13
Omnet N2 1063.496 1 6781.00 1.90
LogGP L1 1063.496 0 inf -
LogGP L2 1063.497 0 inf -

LU

Omnet N1 6429.736 4414 10284.70 1.17
Omnet N2 6428.939 3920 11580.88 1.11
LogGP L1 6425.537 171 265479.81 -
LogGP L2 6428.592 224 186053.47 -

MG

Omnet N1 982.942 664 2305.36 1.89
Omnet N2 983.946 654 2340.61 2.02
LogGP L1 981.759 5 306152.00 -
LogGP L2 981.814 6 218680.00 -

SP

Omnet N1 1211.946 13916 601.85 3.65
Omnet N2 1213.26 11618 720.89 3.26
LogGP L1 1182.028 28 299117.19 -
LogGP L2 1182.343 26 322126.19 -

Table 6: Comparison on a 64 node network

From the results in Table 6 we can see that first and foremost, the times

20

obtained by LogGP and OmnetSimulation are very similar with one excep-
tion. Other than the SP application trace, all the in-simulation times differs
less than 0.2%. For the SP application trace, the time differs roughly 2.5%.
Furthermore, the running time of the simulator dramatically increased, in
the case of SP by a factor of over 500.

When inspecting the results a bit closer, we see that the two different
networks do not have a big influence on the maximal finish time and the
simulation time of OmnetSimulation. This is most likely due to the fact that
the two networks N1 and N2 have a similar structure after the initialization
and therefore similar traveling times for the packets. The Table 7 shows us
what the average message size in each application trace is.

In the benchmark SP we have a difference of more than 2.5% in the sim-
ulated time. This is most likely due to heavy congestion in the network, that
delays the completion of send operations. The other benchmark with about
the same average mesage size is BT and this benchmark got similar simulated
times as LogGP, i.e., within 0.02% from each other. This not uncorrelated is
the fact that SP has also the worst running time compered to LogGP.

Benchmark Avg. Message size

BT 82554
EP 20
LU 2442
MG 19072
SP 73442

Table 7: Average Message Size for NSA Benchmarks

4.3 Performance

We can see in Table 6 that OmnetSimulation increases the running time of
LogGOPSim roughly by a factor between 15 and 550. With the current
implementation simulating more than 64 calculating nodes for a application
as large as some of the NAS benchmarks seems not possible on a single
processor in reasonable time. We can see in Table 6, that the most time-
consuming simulation took about 4 hours to complete. We can also see that
generally LogGOPSim calls the query function under 4 times per message,
in the best case only 1.11 times. In other words, we cannot gain a big speed
up by improving the predictions of arrival times. We can safely say that the
bottleneck is definitely the Omnet++ network, but to determine how to
improve running times one would have to investigate more.

21

5 Related Work

LogGOPSim [4] is the large-scale network simulator we use as a basis for
this work. Using the tools provided with the distribution of LogGOPSim,
one can generate inputs for LogGOPSim out of an MPI traces. This allows
to simulate real world application traces on the LogGOPSim simulator.
LogGOPSim was previously used to show the effect of system noise on
large-scale applications in a paper [3].

Omnet++ [8] is a simulation library and framework that allows to build
simulations with relative ease. It was originally developed Andrs Varga and
is now maintained by OpenSim Ltd.. It allows the user to build a wide variety
of network simulations.

Inet [5] is maintained by a small part of the team behind Omnet++,
but heavily leans on contributions of the community. Inet provides modules
for many protocols, applications, and other components. These protocols can
be used in combination with Omnet++ to build sophisticated simulations.

The objective of the master thesis ”Packet Tracing in Simulation En-
vironments” [9] of Vladimir Zorin is to simulate real world program traces
on an Infiband network in Omnet++. To simulate the real world traces,
his work uses LogGOPSim. To connect LogGOPSim and Omnet++ he
takes a different approach. In his implementation both LogGOPSim and
Omnet++ run as separate processes and communicate via inter process
communication (IPC). He states in his thesis that his simulator only uses
about 10% more time than a simulation solely in Omnet++. Furthermore
he states that the simulation time grows proportional to the increase in num-
ber of nodes in the network and to the increase of the simulated time.

22

6 Conclusion

We built a network simulator by combining LogGOPSim [4] and Om-
net++ [8]. The goal was to let LogGOPSim simulate the application
of each node in a HPC cluster but delegate the simulation of the network to
Omnet++. We achieved this by embedding the Omnet++ simulation ker-
nel into LogGOPSim. Therefore we extended the existing implementation
of a network structure in LogGOPSim such that no change to the Log-
GOPSim simulation kernel was necessary. The simulation builds Ethernet
networks out of the network topologies defined by the input files to Log-
GOPSim. Furthermore, we extended some Ethernet modules from Inet [5]
in such a way that allows us to track packets sent thought the network and
estimate their arrival at their destination.

The previously existing network models implemented in LogGOPSim
either assume a fully connected network or model message transmission in
the following way: Instead of simulating each hop individually, a message
transmission occupies the whole path at once and shares the bandwidth with
all the packets using any part of this path. In contrast to this, the combi-
nation of LogGOPSim and Omnet++ is capable of simulating every hop
of a Ethernet network individually. Furthermore, this simulation can model
packet loss due to too much congestion or packet corruption. We imple-
mented a direct resend mechanism in oracle like fashion to recover from such
packet losses.

We showed with the NAS Parallel Benchmarks [1] that this implementa-
tion yields results that are comparable to the existing LogGP model. Only in
one benchmark did we see a significant increase in the simulated time due to
congestion in the network.

This implementation can be further improved by implementing more com-
munication standards like Ethernet, such as Infiband.

23

References

[1] Bailey, David H., et al. The NAS parallel benchmarks. In nternational
Journal of High Performance, pages 63–73. Computing Applications 5.3,
1991.

[2] N. F. F. Ino and K. Hagihara. LogGPS: A Parallel Computational Model
for Synchronization Analysis. In Symposium on Principles and Practices
of Parallel Progr., pages 133–142. ACM, 06 2001.

[3] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence
of System Noise on Large-Scale Applications by Simulation. In Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC’10), 11 2010.

[4] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model. In Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, pages 597–604. ACM, 06 2010.

[5] Inet Framework. https://inet.omnetpp.org/, 2016. [Online; accessed
29-August-2016].

[6] Joseph B. Kruskal, Jr. On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem. In Proceedings of the American
Mathematical Society, pages 48–50. American Mathematical Society, 02
1956.

[7] NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/

npb.html, 2016. [Online; accessed 8-September-2016].

[8] OpenSim Ltd. Omnet++ Discrete Event Simulator. https://omnetpp.
org/, 2016. [Online; accessed 29-August-2016].

[9] V. Zorin. Packet Tracing in Simulation Environments. Master’s thesis,
University of Oslo, 2011. [Online; accessed 7-September-2016].

24

https://inet.omnetpp.org/
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
https://omnetpp.org/
https://omnetpp.org/

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Congestion-aware Simulation of Large-scale HPC Networks

Maag Daniel

Zürich, 16.09.2016

