DISS. ETH NO. 23670

NON-PARAMETRIC MODELS FOR
STRUCTURED DATA AND APPLICATIONS TO
HUMAN BODIES AND NATURAL SCENES

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by
ANDREAS M. LEHRMANN

Dipl.-Inform., University of Tuebingen

born on 16.02.1984

citizen of Germany

accepted on the recommendation of

Prof. Dr. Luc van Gool
Dr. Peter V. Gehler
Prof. Dr. Jirgen Gall

2016






To my father,
in loving memory






Zusammenfassung

Die vorliegende Arbeit untersucht nicht-parametrische Modelle fiir strukturierte Da-
ten und deren Anwendungsgebiete in der Computervision. Ziel ist die Entwicklung
von kontext-sensitiven Architekturen, die zugleich expressiv und effizient sind. Unser
Fokus liegt hierbei auf gerichteten graphischen Modellen, speziell Bayes’schen Net-
zen, in denen wir die Flexibilitat nicht-parametrischer Verteilungen mit der Effizienz
von Topologien mit beschrankter Baumweite kombinieren. Beschrinkte Baumweiten
werden entweder durch Limitierung des maximalen Eingangsgrads der unterliegen-
den Graphstruktur oder durch Einfithrung von Determinismus erzielt. Die nicht-
parametrischen Verteilungen in den Knoten des Graphen sind durch Entscheidungs-
bédume oder Kerndichteschéatzer gegeben.

Der durch spezifische Netztopologien implizierte Informationsfluss zwischen den
Variablen, insbesondere die resultierenden Unabhéngigkeiten, erlaubt eine natiirliche
Integration und Kontrolle von Kontextinformationen. Wir unterscheiden zwischen
drei verschiedenen Arten von Kontext: Statisch, dynamisch und semantisch. In vier
Ansétzen schlagen wir Modelle vor, die verschiedene Kombinationen dieser Kon-
textformen aufweisen und je nach Auspragung die Modellierung von strukturierten
Daten in Raum, Zeit und davon abgeleiteten Hierarchien erlauben. Der genera-
tive Charakter der vorgestellten Modelle ermoglicht die direkte Synthese plausibler
Hypothesen.

Umfassende Experimente validieren die entwickelten Modelle in zwei Anwen-
dungsszenarien, die in der Computervision von besonderer Bedeutung sind: Men-
schliche Kérper und natiirliche Szenen. In den praktischen Teilen dieser Arbeit
behandeln wir diese beiden Grofibereiche unter verschiedenen Gesichtspunkten und
zeigen Anwendungen bei der Modellierung menschlicher Posen, Bewegungen und Seg-
mentierungen sowie bei Objektkategorisierung und -lokalisierung. Wir profitieren
dabei von der Verfiigharkeit moderner Datensatze mit bislang unerreichter Grofe
und Diversitat. Der Vergleich mit klassischen Ansétzen und aktuellen Entwicklungen
auf Basis etablierter Bewertungskriterien erlaubt die objektive Einordnung unserer
Beitrage.
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Abstract

The purpose of this thesis is the study of non-parametric models for structured data
and their fields of application in computer vision. We aim at the development of
context-sensitive architectures which are both expressive and efficient. Our focus is
on directed graphical models, in particular Bayesian networks, where we combine
the flexibility of non-parametric local distributions with the efficiency of a global
topology with bounded treewidth. A bound on the treewidth is obtained by either
constraining the maximum indegree of the underlying graph structure or by intro-
ducing determinism. The non-parametric distributions in the nodes of the graph are
given by decision trees or kernel density estimators.

The information flow implied by specific network topologies, especially the re-
sultant (conditional) independencies, allows for a natural integration and control
of contextual information. We distinguish between three different types of context:
static, dynamic, and semantic. In four different approaches we propose models which
exhibit varying combinations of these contextual properties and allow modeling of
structured data in space, time, and hierarchies derived thereof. The generative char-
acter of the presented models enables a direct synthesis of plausible hypotheses.

Extensive experiments validate the developed models in two application scenarios
which are of particular interest in computer vision: human bodies and natural scenes.
In the practical sections of this work we discuss both areas from different angles and
show applications of our models to human pose, motion, and segmentation as well
as object categorization and localization. Here, we benefit from the availability of
modern datasets of unprecedented size and diversity. Comparisons to traditional
approaches and state-of-the-art research on the basis of well-established evaluation
criteria allows the objective assessment of our contributions.
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Chapter 1

Introduction

In recent years, many domains in computer vision have reached a stage of practical
applicability, a development that can be attributed to the availability of powerful
image features based on convolutional neural networks (CNNs) [87] and large-scale
datasets with hundreds of thousands of training data points (Human 3.6M [71],
Microsoft COCO [99]). While these advancements continue to push the envelope
on performance of local classifiers in multi-class detection tasks (e.g., pose estima-
tion, scene understanding), it has been a long-held belief in the computer vision
and machine learning community that contextual information in the form of label
consistency, structural dependencies or, more generally, priors remains important.
First, because it is unlikely that independent classifiers can achieve perfect perfor-
mance with local evidence only; and second, because generative models can produce
image- and context-conditioned hypotheses and likelihoods, which enables reasoning
in scenarios with partial evidence or incomplete data.

In addition to context awareness, most modern applications require models that
also feature other desirable properties, such as high flexibility, fast runtime, and good
generalization. It is clear that these cannot all be achieved at the same time and,
while universal statements are difficult, different paradigms exhibit different tenden-
cies: Unstructured approaches often lead to high-dimensional learning and inference
problems and, for that reason, tend to suffer from overfitting and computational
intractabilities, especially in case of flexible non-parametric approaches with high
variance. Parametric models, on the other hand, are typically more robust and ef-
ficient but may not be able to represent the true generating distribution, leading to
high bias. Structured approaches like graphical models make conditional indepen-
dence assumptions to alleviate some of these issues. In particular, they can simplify
learning and allow for tractable inference, but the best-researched cases focus on
either discret(iz)e(d) distributions or unimodal Gaussian models, which often results
in false modeling assumptions when considering tasks with continuous domain.
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1.1 Approach

The aforementioned progress in terms of features and datasets allows for new types
of data-driven models with a more balanced set of properties. In this thesis, we
investigate the use of structured non-parametric models to achieve such a compromise
between context awareness, flexibility, and efficiency.

Context Awareness. A context-aware model is able to incorporate surrounding
evidence to reduce local uncertainty. We take a probabilistic perspective and model
context as a conditional distribution or, in the more general setting of dependencies
between multiple variables, as a directed graphical model. We distinguish between
two fundamental model classes: Static models, which operate on single images, and
dynamic models, which additionally condition their actions on other images, for
instance related frames in a video or motion capture sequence. In both cases, con-
sideration of contextual information has proven to be beneficial in terms of predictive
performance: While static context can exploit spatial dependencies, dynamic models
are given access to differential or even global information that can be incorporated
into discriminative features as well. Beyond this well-known form of spatio-temporal
context on the feature level, there is an orthogonal type of semantic context on the
model level, which in turn can be either static or dynamic. One instance of such
semantic interactions between models is given by a hierarchical, i.e., chain-like, se-
quence of models that relate to each other through an either intrinsic (‘auto-’) or
extrinsic (‘allo-”) type of model context. Figure 1.1 summarizes these relationships
and provides an overview of the concepts developed in this thesis.

Flexibility. Independent of the specific form of context, the flexibility of a directed
graphical model, such as a (dynamic) Bayesian network, depends on two factors: Its
global topology and its local distributions. We argue that tractable topologies with
bounded treewidth but optimized structure can be the foundation of powerful mod-
els when combined with the flexibility of non-parametric local distributions. While
enforcing conditional independencies through topological constraints introduces a
global estimation bias, reliable non-parametric estimation of the low-dimensional
local models becomes feasible and modeling of spurious interactions is avoided. To-
gether with a large corpus of training data, this implicit form of regularization can
effectively counter the susceptibility of global non-parametric models to overfitting.

Efficiency. Since treewidth is directly related to the complexity of common in-
ference tasks, e.g., the computation of (max-)marginals or filtering/smoothing dis-
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Figure 1.1: Thesis Overview. Contextual information can be static, dynamic, or seman-
tic. We develop four structured non-parametric models that exploit different combinations
of these types of context and show applications to human body and natural scene modeling.

tributions, we obtain efficient inference procedures. Further speed-ups are possible
by combining message-based inference schemes like belief propagation with efficient
non-parametric local models like decision trees or fast approximations for typically
expensive operations like the evaluation of kernel density estimates.

1.2 Overview

We make technical contributions to all four principled model classes shown in Fig-
ure 1.1. While the presented tools are agnostic with regard to the particular appli-
cation, our guiding examples will be

e human bodies, where the co-location of joints or foreground pixels defines a
pose or segmentation in Euclidean space and the movement of limbs describes
a trajectory in time.

e natural scenes, where the co-occurrence of object categories defines a setting
and the co-location of object instances describes a layout in Euclidean space.
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Both application scenarios are of great relevance in computer vision and unique
targets due to the specific challenges involved, including the high articulation, mul-
timodal dependencies, and non-linear motions of human bodies and the diverse ap-
pearance, flexible layout and dynamic object dependencies of natural scenes. We
describe our approaches in some more detail:

Chapter 3 — Spatial Context.

Having a sensible prior of human . .
pose is a vital ingredient in many

computer vision applications, in- 1
cluding 2D pose estimation from 5
images and 3D pose tracking from

videos. In this chapter, we intro-

duce a structured pI‘iOI‘ of static pose Optimal tree topology Non-parametric local distributions
whose generative principles allow for
an easy integration of spatial con-
text. A high-dimensional density es-
timation problem at its heart, we factor the parameterization of a human pose into
a Bayesian network with low treewidth to achieve compositionality, avoid overfit-
ting, and ensure the properties established in section 1.1. Our approach makes two
novel contributions concerning the global topology and local distributions of con-
tinuous Bayesian networks: First, we learn an optimal arborescence by conditioning
the local distributions on the most informative joints given the topological constraint
(Figure 1.2, left), leveraging non-parametric mutual information estimators on con-
tinuous joint data. Second, we augment the expressiveness of Bayesian networks by
proposing Bayesian networks with non-parametric local distributions in the form of
conditional kernel density estimates (Figure 1.2, right). Our framework can serve as
a regularization term or hypothesis generator for any pose-related system and over-
comes typical disadvantages of both unstructured non-parametric methods, which
lack compositionality, and parametric networks, which are limited in their expres-
siveness. Despite its non-parametric nature, we achieve real-time performance for up
to 10° training data points.

Figure 1.2: Non-parametric Priors of
Human Pose.

Chapter 4 — Temporal Context. A natural extension of the static frame-by-
frame setting is to condition a model on previous observations. Traditional ap-
proaches for this type of task include latent variable models following the state-
space equations, i.e., time-homogeneous first-order Markov chains on a hidden state
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sequence that generate the ob-
servable variables via some condi-
tional emission distribution. While
the use of hidden variables makes
them flexible models, inference
tasks like the computation of
marginal observation likelihoods be-
come in general intractable, be-
cause the marginalized model is
non-Markovian. Tractable but computationally expensive special cases include Hid-
den Markov Models (HMMs), where the state space is discrete, and the Kéalmén
filter, where both hidden and observable distributions are linear functions with addi-
tive Gaussian noise. Instead, we investigate a non-parametric model without a latent
space that can be understood as an efficient d-approximation to the latent distribu-
tion of an HMM. In particular, we propose dynamic forests, a temporal extension
of random forests in which we condition the model at time ¢ on features of multiple
previous frames t — 1,...,t — K. The conditional models stored at the leaf nodes of
each tree correspond to latent states in an HMM (Figure 1.3). As a result of this
deterministic selection of a ‘latent state’, dynamic forests decouple in time, leading to
very efficient inference. Applications of dynamic forests to high-dimensional action
recognition and motion infilling tasks on human motion capture data confirm their
remarkable performance.

Figure 1.3: Non-parametric Markov
Models for Human Motion.

Chapter 5 — Extrinsic Semantic Features Occurrences Locations
Context. In this chapter, we el
move from human poses to natu-

ral scenes. We observe that com-
mon tasks in this area, such as
the recognition of objects as well as
their spatial extent and global lay-

out in an image, relate to ea(.:h other 7 Bo — (Go.po) | Bu — (Griep) S
through a coarse-to-fine hierarchy

following information enclosure, i.e.,  Figure 1.4: Non-parametric Scene Prior
fine-grained tasks comprise, either Hierarchies.

explicitly or implicitly, coarser tasks. We mimic these natural dependencies and
propose a novel first-order hierarchy of conditional Bayesian networks to support
inference tasks with such a rich structure. Information enclosure ensures that each
hierarchical layer can be conditioned on its predecessor and thus needs to encode
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differential information only. Specifically, we propose a bilayered architecture with
task-dependent parametric and non-parametric structure, where the first layer mod-
els the occurrence of objects in a scene and the second layer the spatial layout of those
objects conditioned on the first layer (Figure 1.4). One key advantage of our model
is its ability to utilize a dynamic graph topology and flexible non-parametric local
models in the spatial layout layer. Our architecture has a number of appealing prop-
erties, including the ability to synthesize plausible sets and layouts of co-occurring
objects and the ability to efficiently reason about a scene at different levels of gran-
ularity. We also show how to integrate the proposed prior with rich CNN-based
likelihoods to achieve improved performance in object categorization, quantification,
and detection tasks. Large-scale experiments on the recently introduced Microsoft
COCO dataset illustrate the benefits of our proposed model.

Chapter 6 — Intrinsic Semantic
Context. In our last project, we
consider an intrinsic form of seman-
tic context based on autocontext
features. Autocontext is a multi-
stage approach that iteratively im-
proves the semantic labeling of an s
arbitrary base classifier by condi- ' —
tioning on the output of previous
stages, thereby abstracting away ir-
relevant variation of the original in-
put image. In contrast to image context, where temporal dependencies are well-
studied, causal versions of semantic context have not been looked into so far. We
are therefore proposing a non-parametric dynamic autocontext model for semantic
labeling tasks in videos. In particular, we investigate the benefits of such a model
for the challenging task of human video segmentation. Our dynamic autocontext
model represents temporal dependencies by conditioning on the predictions made by
a static autocontext model, both for the current frame as well as the previous frame
(Figure 1.5). At this stage, appearance variation that is not relevant to the task has
already been largely removed. Hence, the dynamic autocontext can now model tem-
poral dependencies among the semantic labels; for example, it can learn an implicit
motion model and shape prior between frames, independent of the image appearance.

Figure 1.5: Non-parametric Semantic
Video Segmentation.



Chapter 2

Non-parametric Learning and
Inference with Structured Data

In this chapter, we introduce the notation and structure of a non-parametric learning
and inference framework that constitutes the foundation of all methods we discuss
in later chapters.

After the definition of some fundamental statistical concepts (section 2.1) and a
brief review of graphical models (section 2.2), we turn to non-parametric graphical
models and describe two particularly useful approaches that will be essential elements
in chapters 3-6. We also draw connections to ensemble methods (section 2.3) and
highlight some of their (meta-level) properties. We proceed with a description of the
semantics underlying our models (section 2.4), especially parameterizations of human
poses and natural scenes, and show how we can use our framework to incorporate
different types of contextual information frequently encountered in various computer
vision tasks (section 2.5). We conclude with a review of the complexity of learning
and inference, which motivates the topological and distributional structure of our
models (section 2.6).

The presentation in this chapter focuses on basic concepts; extensions and appli-
cations will be discussed directly in the respective chapters.
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2.1 Basic Framework

In this work, we discuss both models with discrete and continuous random vari-
ables X. To be able to treat them in a common framework, we assume that the
X-associated push-forward measure X,p is absolutely continuous with respect to a
base measure p and refer to the Radon-Nikodym derivative fx = %}f” as density.
Special cases include probability mass functions (X discrete, p counting measure)
and traditional probability density functions (X continuous, p Lebesgue measure).

Let X(%), e ,X(].V) ~ Fx be an i.i.d. sample of d-dimensional random vectors
X0 = (X XIT and

Dy = (X(l), . ,X(N)) = <$§i)>j=17._7d e RN (2.1)
i=1,..N

the corresponding random variates.! We refer to Dy as a training set and to x¥) as
a training point. We can think of a training point either directly as an element of a
feature space ® or, alternatively, as an element of an input space X that is related
to ® through a feature mapping ¢ : X — ®.

In a supervised setting, we are additionally given a set of corresponding response
variables Y ~ FY|X<i> with realizations Dy, which lie either in ZJI\([ (classification
with K target classes) or RY*"N (regression with d’ output dimensions). We will
sometimes refer to the codomain of Y as the output space and to the tuple (D, Dy)
as a supervised training set.

Learning. Fx (or Fyx) is the true (conditional) cumulative distribution function
and typically unknown. Our goal is thus to learn Fy = fx from Dy (density esti-
mation) or fyx from (Dx,Dy) (classification, regression). In a supervised task, to
make an actual prediction, we will usually consider the conditional expectation,

g(x) —E[Y | X = x] — f . W dy. (2.2)

In this fractional form, it is obvious that we can always view supervised tasks as
an instance of density estimation in which we condition the joint density on the
input /feature space. Estimates will sometimes be denoted by a hat, @, but we will
also frequently omit this designation when clear from the context.

'We will sometimes interpret X as an unordered set and use |X| to refer to the length d of X.
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Inference. Given a learned probabilistic model ]?X (or fY‘X), we are interested in
solving a number of inference tasks which allow us to assess an existing observation,
generate a new hypothesis, or determine the most likely configuration:

1. Compute the log-likelihood log fx (x) of an observation x.

2. Draw a sample x from X ~ fx.

MAP 2

3. Estimate the maximum a-posteriori configuration x = arg max, fx(x)
Analogous concepts exist for the supervised cases. Sometimes, we are also interested
in solving these tasks given evidence, marginals, or both. For instance, given a subset
W < X, we might be interested in either the marginal log-likelihood

log fav(w) = log | () d(x\w), (23)
x\w
the conditional log-likelihood

log fxow(x\w | W = w) = log fx(x) — log fw(w), (2.4)

or a combination of both. Similar tasks exist for sampling and MAP estimation.

2.2 Probabilistic Graphical Models

Most of the inference tasks introduced in the previous section are computationally
intractable for all but the simplest probabilistic models, either due to the sheer
number of discrete states or the lack of analytical solutions for the involved continuous
integrals and optimizations. Probabilistic graphical models can alleviate some of
these issues by introducing additional modeling assumptions that allow for easier
learning and inference. Since their popularization in the 1970’s and 1980’s, they have
been the statistical foundation in countless areas of computer science, including major
impacts in areas like bioinformatics, finance, and computer vision. The literature on
graphical models is rich and we refer to [81] as an excellent source with an emphasis
on discrete and parametric graphical models. Here, we concentrate on the absolute
essentials and pave the way for the following section, which introduces continuous
and non-parametric graphical models.

2We use the term ‘maximum a-posteriori’ interchangeably with ‘mode of a density’, even though
its precise meaning refers to the mode of a posterior density.
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(a) Bayesian Network. (b) Markov Network.

Figure 2.1: Probabilistic Graphical Models. Bayesian networks and Markov net-
works are the two most common classes of graphical models. (a) Polytrees are a subclass
of Bayesian networks that allow for efficient inference. (b) Grid networks are a subclass of
Markov networks that mimic the topological structure of an image.

A graphical model over a random vector X = (X;)"_, consists of two fundamental
components, a graph structure G = (X, ) and a joint distribution fx(x). The graph
structure induces a factorization of the joint distribution and can be either directed
or undirected, which leads to different factorizations and, eventually, to the two

primary classes of graphical models: Bayesian networks and Markov networks.

Bayesian networks. Bayesian networks are rooted in the area of influence di-
agrams [67] and were first described in the 1980’s by Pearl [118, 117] as an eco-
nomical description of a joint distribution that is based on the representation of
(in)dependencies in the human brain. A simple and intuitive motivation for their
use is to consider the chain rule of probability, which allows us to write any joint
density fx(x) as a product of conditional densities,

fx(x) = ﬁsz(% | X1:i-1)- (2.5)

=1

A Bayesian network introduces conditional independence assumptions into this fac-
torization by restricting the set of conditioning variables with the help of a graph
structure. Formally, a Bayesian network is a tuple B = (G, fx) consisting of a joint
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density fx and a directed, acyclic graph G = (V, E) with vertex set V := X and
edge set £ < X x X. We say that fx factorizes over G, if

fx(x) = H Fx (s | pag(e). (2.6

where pag(e) returns the parents of a node w.r.t. G. For E = ¢J, fx is an inde-
pendent product of marginal densities, for £ = {(X;, X;) |1 <i < j < n}, Eq. (2.6)
reduces to Eq. (2.5). We refer to the individual factors of such a factorization as
local distributions or local models. 1t is easy to verify that

fx factorizes over G <= {(X' L X" | E) | d-seps((X',X"),E)} < Z(fx). (2.7)

Here, d-sep; refers to d-separation [53] of X’ € X and X” < X given E € X in G
and Z( fx) is the set of all conditional independencies that hold in fx. See [81] for a
proof.

Markov networks. The history of Markov networks can be traced back to the
works of Lenz [97] and Ising [72]. Generalizations of those early approaches by
Spitzer [149] and Preston [120] as well as a comprehensive and more accessible treat-
ment by Kindermann and Snell [79] have lead to the modern notion of a Markov
network and numerous applications in many areas of science. Briefly, a Markov net-
work is a graphical model with an undirected graph structure G, such that each

factor of a Gibbs distribution fx(x) with partition function Z is a (maximal) clique
in G,

fxx) =271 ] eelxo), (2.8)

cecl(@)
where cl(e) returns the cliques of a graph and ¢, is a non-negative factor.

Markov networks will not play a prominent role in this work and are included
for the sake of completeness only. Instead, we focus on directed graphical mod-
els as introduced in Eq. (2.6), mainly because their generative principles allow for
a probabilistic treatment of conditional queries and an easy synthesis of plausible
hypotheses.

2.3 Non-parametric Local Models

Estimating a Bayesian network B = (CAJ, fx) from a training set Dy requires the
specification of a directed acyclic graph G and a set of local probabilistic models
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Spherical knee data non-parametric parametric

Elevation

Figure 2.2: Parametric vs. Non-parametric Local Models. We show spherical
coordinates of locations of the left knee (black points) and compare a non-parametric
density estimate (left) with a parametric density estimate (right) [red = high density;
blue = low density]. The non-parametric model is more flexible and able to capture the
multimodality in the data.

Azimuth Azimuth

{fxi ?_, that form a joint density fx. Given G , learning fx is a model selection task
in the model space

M(G) = {fx(x; 0) ‘ €0, fx factorizes over CAJ}, (2.9)

where © is the parameter space. Parametric models, where the dimensionality of ©
is finite, make assumptions about the shape of a distribution, such as the number of
modes, which may not hold in practice. We can thus not be sure that any fx(x;0) €
M(@), 0 € ©, is close to the true generating distribution fx(x).

In this work, we therefore focus on non-parametric graphical models, that is,
graphical models with non-parametric local distributions. A rigorous definition of a
non-parametric model is subtle. Following [168], we define a non-parametric model
as one that makes as few assumptions about the generating distribution as possible.
Fig. 2.2 highlights a common use case: While the non-parametric approach (left)
is able to capture most of the structure in the generating distribution, the para-
metric maximum-likelihood estimate (right) results in a poor fit due to its limited
expressiveness. In the remainder of this section, we review two widely used non-
parametric methods that will play central roles as local models of Bayesian networks
in all subsequent chapters: kernel density estimation and decision trees.
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2.3.1 Kernel Density Estimation

Kernel density estimation [114, 128] is a non-parametric density estimation tech-
nique that places a scaled kernel over each training point. For our purpose, a
kernel r is a symmetric density of a zero-mean random variable with positive vari-
ance, cf. [168]. Examples include the Gaussian, Epanechnikov, tricube, and uniform
kernel (Fig. 2.3a). Every 1-dimensional kernel s can be turned into a d-dimensional
product kernel k4(x) = ]_[;l:l K(xj).

Formally, a kernel density estimate is defined as

fRx(x) = N\1B| Z; ka(B7'(x —x1)), (2.10)

where B = (b;;);.j=1...a € R? is a positive-definite bandwidth matrix that controls
the smoothness of f5* (x).3 Equivalently, we can express Fox (x) as a convolution
between the empirical density and a product kernel,

F(00) = (fomp = Ka) () = | Jemp((x =) - a(®) dlt, (2.11)

where femp(x) =% V. §(x —x@) and § is the Dirac delta function.

In contrast to the kernel k4, which is not of great importance [168], the bandwidth
matrix B is crucial. We discuss two popular ways for its selection: plug-in estimation
and least-squares cross-validation.

Plug-in Estimation [141]. Plug-in estimation gives good results if the true den-
sity can be assumed to be smooth. In this case, one can use a bandwidth matrix pro-
portional to the square root of the sample covariance matrix 3 = (3%)14:1,...@ e R¥xd,

B = N&iVS, (2.12)

which is a (not necessarily optimal) generalization of Scott’s rule b; = N d;+1462-2-

for diagonal bandwidth matrices. The latter is, in turn, a simplification of the
_1

normal reference rule b; = <ﬁ) o 04, which is asymptotically optimal under

the assumption of a Gaussian density and a Gaussian kernel.

3We will often drop the reference to the training set Dy or the bandwidth B.
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Figure 2.3: Overview: Kernel Density Estimation. (a) Four popular unscaled
kernels, i.e., proper densities. Note that the Gaussian kernel is the only one with infinite
support. (b) Superposition of scaled kernels over each training point generates high density
regions in densely sampled areas. [red = high density; blue/white = low/negligible density]

Least-squares Cross-validation [129, 133]. Cross-validation is an effective band-
width selection method for diagonal bandwidth matrices B = diag(b),b € RZ. In a

nutshell, we minimize the mean integrated squared error with respect to b by means

of a leave-one-out cross-validation estimator,

b = argmin E J (fg;‘g(b/)(x) _ f(x)>2 dx

b’eR? L
i L (2.13)
. PDx D \x® (i
= arg min £ deiag(b’)(x)2 dx — N Z fdiag\(b’) (X( ))] ’
b’e]Ri | i=1

and approximate the cross-validation score CV(b’) inside the last expectation by

1 N . 2K (O)
covib) ~ - *(di b1 () _ (k) _2rd\) 2.14
(b) N ding () jkzzzl rj (diag(b) M (xV) — xW)) + Nidiag(b)] (2.14)

where k%(x) = (kg*ka)(x)—2k4(x) [168]. Under the assumption that the minimizer of
Eq. (2.14) is close to the minimizer of Eq. (2.13), an FFT-based grid search [146, 147]
will return a good bandwidth matrix.

While the two approaches above work well in many scenarios that are of practical
relevance, we note that the literature on optimal bandwidth selection is extensive and
refer to [76, 163, 141] as excellent starting points for further details.
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Figure 2.4: Overview: Decision Trees. (a) At training time, a candidate split s at leaf
node v induces child nodes v, v! and a split-dependent partition of the data D, at v. We
evaluate a collection of such splits by means of a model-dependent score function Z, split v
according to the split s, with maximum score and proceed recursively. (b) At test time,
we inject a feature vector ¢(x) into the tree and, guided by a series of split evaluations,
select a particular leaf node for prediction.

2.3.2 Decision Trees

Decision trees are a distributed approach to statistical modeling that partitions a
feature space ® into disjoint regions and associates each region with a probabilistic
model. Since the development of algorithms for their automatic generation in the
early works of Breiman (CART [16]) and Quinlan (ID3 [121], C4.5 [122]), they have
been used for a broad range of tasks, including classification, regression, and density
estimation, with applications to various computer vision domains [143, 35].

Formally, a decision tree models a conditional output distribution fy(y | ¢(x))
through a directed rooted binary tree 7 = (V| E), where V = V; vV} is a disjoint
union of inner nodes V; and leaf nodes V;, that are connected by a directed edge
set £ < V x V. Each inner node v € V; is associated with a binary split function
Sy 1 @ x ® — {0, 1} with parameter space © and each leaf node ¢ € V, is associated
with a density f;.

The role of the split functions is to guide a feature vector ¢(x) € ¢ from a
designated root node v,00r € V7 to a leaf node ¢(¢p(x)) € Vi. At each inner node
v with children v and v', we send ¢(x) to v** (™) ) until we reach a leaf node.
This is illustrated in Fig. 2.4b. The split functions can, in principle, be any binary
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(a) Classification Tree. (b) Regression Tree.

Figure 2.5: Decision Tree Classes. Depending on the type of leaf model, we ob-
tain either a classification tree or a regression tree. (a) A two-dimensional feature space
with color-coded MAP predictions of a classification tree (orange, blue) and a non-linear
ground truth class boundary (dashed line). Hue encodes uncertainty, which is larger near
the border. (b) Noisy samples from a ground truth spline (orange) and regression tree
predictions (blue). The blue bands indicate three standard deviations.

classifier. In practice, axis-aligned hyperplane splits

s((x); 0 = (¢, 7)) = I[o(x)c > 7] (2.15)

are predominant due to their simplicity and efficiency; we use them throughout
this work. Mapping features to leaves effectively partitions the input space into
connected, disjoint regions @, = {$(x) € ® | £(¢(x)) = £}, such that & = [+),.;. Py
and

(v | o(x) = fupmn(¥)- (2.16)

If the leaf densities are discrete, we refer to T as a classification tree, whereas
in the continuous case we speak of a regression tree. A collection of decision trees
together with an aggregate function (e.g., the arithmetic mean) is called a decision
forest. Fig. 2.5 illustrates the partition of the feature space by means of two examples
that highlight the non-parametric nature of decision trees, one classification example
and one regression example. Deep trees correspond to a fine-grained partition, which
allows modeling of arbitrary class boundaries and non-linear regression functions.
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Training. In order to learn a decision tree 7, we use a supervised training set D to
estimate a split for each inner node and a density for each leaf node. Starting with
a single leaf node v,y € V7, with leaf model f, ., and associated data D, ., := D,
we grow a tree by recursively splitting leaf nodes. To split a node v, we introduce
child nodes v°, v! and draw a candidate split s from a (possibly data-dependent) split
distribution p,. Using s, we obtain a data partition D, = Dyo(s)*) D,1(s) that we
use to fit new leaf models fig), quf) We repeat this process for a set S of candidate
splits and select

s, = argmax Z(f,, 1), f), (2.17)
seS

where Z is a split objective, such as information gain (classiﬁcation trees) or residual
error (regression trees). We assign s, to v, fyo = f( to 00, fn = f(S“) to vl
and proceed with the next leaf node until we meet a stopping crlterlon such as a
maximum tree depth or a minimum leaf sample size.

2.3.3 Ensemble Models

Kernel density estimation and decision forests are both examples of ensemble mod-
els. More generally, an ensemble model comprises a collection of base models and
a method to form a consensus prediction from the set of base predictions. It is
typically much more flexible than any of the underlying base models, which can be
learned either independently (e.g., bootstrap aggregation [15]) or sequentially (e.g.,
AdaBoost [48]).

For our purpose, it is sufficient to think of an ensemble model as an instance of
a mizture distribution. A mixture distribution fx(x) with mixture weights {c;}",
is a convex combination of m component distributions {fxa }i*,

= 3" aufo (). (2.18)

Example. A kernel density estimate fg *(x) with a Gaussian kernel is a Gaussian
mixture with |Dy| components and a uniform weight distribution a; = |Dy|™t.

Example. A decision forest with C trees is a conditional mixture distribution
consisting of the C' selected leaf models.

From a statistical point of view, it is interesting to look at the variance of a
mixture model as a measure of uncertainty. To keep the notation uncluttered, we
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focus on the 1-dimensional case; generalizations to multiple dimensions are straight-
forward. Denoting the means and variances of the m component distributions with
w; and o2, respectively, and assuming that X has a mixture distribution as defined
in Eq. (2.18), we have

2
V[X] = 2 a; (,ui — 2 ajuj> + 0?2 |, (2.19)
i—1 j=1

that is, a weighted sum of intra-model variances and squared inter-model variances.
Important special cases include the variance of a Gaussian mixture, which follows
directly from Eq. (2.19), and that of a categorical mixture, which evaluates to

V[[X =J]] = Z a; (p;* — 2P;pij + Dij) (2.20)
=1
where p;; == p(X = j) and pj := D" | onpg-

2.4 Semantics

In the previous sections, we discussed graphical models and their associated distribu-
tions without assigning any semantic meaning to them. In a typical computer vision
task, the semantics of a training point x € R? is given by the type of object we are
modeling. We give two examples that will be relevant throughout this work:

1. A human pose is a collection of two- or three-dimensional points that corre-
spond to joint locations, see Fig. 2.6a. If there are n’ joints in total, we can
parameterize a pose as a point in a 2n’- or 3n’-dimensional Euclidean space. In
chapters 3 and 4 of this work, we use a three-dimensional pose model consisting
of n' = 20 joints.

2. A natural scene is a collection of four-dimensional bounding boxes that corre-
spond to object locations and associated object categories, see Fig. 2.6b. Note
that, in constrast to a human pose, a natural scene has no a-priori fixed di-
mensionality, because the number of objects is unbounded. In chapter 5 of this
work, we address this challenge with a hierarchical approach.

The factorization of a pose or scene into a graphical model requires two important
choices, parameterization and granularity.
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Figure 2.6: Parameterizations of Human Poses and Natural Scenes. (a) The
three-dimensional locations of n’ = 20 joints in the human body allow to model a hu-
man pose in a Euclidean space with d = 60 dimensions. (b) A natural scene with
n’ object instances and K possible object categories can be thought of as a point in a
(4n’ + K)-dimensional Euclidean space.

Parameterization. We can model a d-dimensional training point in Euclidean
space using a variety of relative or absolute coordinate systems: For poses, these
include collections and combinations of polar, spherical, cylindrical, or Cartesian
coordinates for each joint. For scenes, we can represent the individual bounding
boxes in terms of two diagonally opposing corners, one corner and their spatial
extent, or their center, scale and aspect ratio. Although these coordinate spaces are
all equivalent in the sense that, with some care, they can uniquely identify a training
point, the chosen parameterization can affect the identifiability of the model, the
weight of a coordinate axis and, ultimately, the training procedure itself.

Granularity. Given a d-dimensional parameterization, the number of nodes in a
Bayesian network is given by a partition of the coordinates. Typically, this assign-
ment will be clear from the context: A pose network will usually consist of n = n’
two- or three-dimensional nodes, one for each joint, but we could also choose to
model all d dimensions separately or to collapse all joints belonging to the same limb
into one node. If the dimensionality of a node is larger than 1, we make the implicit
assumption that there are no conditional independencies between those coordinates.
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Figure 2.7: Types of Context. Context can be static, dynamic, and semantic. In all
three cases, the flow of information is determined by the conditional independence assump-
tions of the underlying factorization. Some specific instances: (a) Spatial context between
variables (e.g., object instances) influences their locations in space. (b) Temporal con-
text between objects (e.g., human poses) influences their trajectory in time. (c¢) Extrinsic
semantic context between models (e.g., object categorization, object detection) influences
their behavior across tasks.

2.5 Context

We can think of a parameterized object X, such as a pose or a scene, as a collection
of variables whose semantics are given according to section 2.4. If we obtain evidence
for one of those variables, i.e., if we move from the joint distribution to a conditional
distribution, this context information will affect our beliefs about the states of the
remaining variables [65]. Graphical models provide a natural framework to incorpo-
rate such information in a sparse and tractable way: In a Bayesian network, where
each variable is represented by a node, introduction of evidence into the model affects
the flow of information along the edges of the graph according to the d-separation
criterium, as discussed in Eq. (2.7).

In this work, we distinguish between three different types of context information:
Static context, dynamic context, and semantic context.

Static context. A single and independent parameterized object is said to be static
and context between its variables is referred to as static context. Examples include
human poses (chapter 3) and natural scenes (chapter 5), where we have spatial con-
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text as a specific type of static context. For instance, persons and hats provide strong
cues about each other and knowing the location of one reduces the uncertainty about
the other (Fig. 2.7a). Static context can take on many forms beyond spatial context,
e.g., expression levels of genes or character traits of people, but they will not play a
role in this work.

Dynamic context. If a collection of parameterized objects can be written as an
ordered sequence of dependent random variables, they provide dynamic context for
each other. This definition implies that dynamic context typically relies on a static
type of context that is being extended across objects. The predominant manifesta-
tion of dynamic context is temporal context, which is available, inter alia, in video
and motion capture sequences (chapter 4). As an example, knowing the pose of a
person at previous points in time limits the possible poses in the present (Fig. 2.7b).
Other types of dynamic context, e.g., serial dilutions in a pharmaceutical setting,
are possible but much less common.

Semantic context. Just like variables and objects, models can influence each
other, too. We refer to this type of interaction as semantic context. A simple instance
of semantic context is a chain-like sequence of conditional models (Fig. 2.7¢). The
elements along such a chain can be homogenous and solve the same task (chapter 6)
or heterogenous and solve different tasks (chapter 5). In the former case, we speak
of intrinsic semantic context, whereas the latter case is referred to as extrinsic se-
mantic context. The distribution of a dependent model can be conditioned based on
arbitrary information derived from the model it is depending on, such as its MAP
state, its marginals, or a sample. Furthermore, a parent model can affect not just
the local models but the entire structure of a child model, including its topology and
even the semantics of its random variables.

Different types of context are not mutually exclusive and a probabilistic model
can feature more than one type: A hierarchical model exploiting semantic context
can contain individual models that make use of both static and dynamic information.

2.6 Complexity

Solving density estimation, classification, or regression tasks with a Bayesian net-
work involves learning of and inference in distributions that factorize over a graph.
From a theoretical point of view, we would want to perform these tasks in a set-
ting that makes no structural assumptions, which implies a fully-connected graph
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(= no topological independence assumptions) with non-parametric local models
(= no distributional shape assumptions). Such a model would be ideal in the sense
that it could return (max-)marginals corresponding to those in the true density [150].
In practice, this is not feasible due to insufficient training data and intractable in-
ference procedures. The following two sections make this statement more rigorous by
summarizing some fundamental complexity results for Bayesian networks from both
a learning and an inference perspective. The insights obtained will then motivate
the class of models we use in the remainder of this work.

2.6.1 Learning

Learning a Bayesian network B involves the selection of a global topology G = (X, E )
and local models fXZ. (x; | pa(z;)) from a dataset Dy so that the joint distribution
fx(x) =11, ]?Xi (z; | pag(z;)) is close to the generating distribution fx(x) w.r.t.
some measure of distance.

If we use KL-divergence as a measure of distance, the estimation error KL ( fx H fx>

is composed of a topological error and a distributional error,
() - 5| 5) (| ) (| ). e

where f)"‘( is the projection of fx onto the set of distributions that are representable
in the network structure G (Fig. 2.9).

For categorical local models with C' categories, the distributional error evaluates to

KL(fx | fx) - KL(fx | ) = ZKL (x| pag(e)) | Fr. (i [pag(a) ).

(2.22)
which is the sum of errors in the local models [81]. A PAC-bound analysis of this
case provides a lower bound on the number of samples that are required to achieve
a desired accuracy e with probability ¢ [64]: If N > ;5 /\g%;;)jx 1 log "Cpa?‘“ L the
distributional error of a maximum-likelihood (ML) estimate can be bound by

p(KL(fX H fx) _ KL(fX H f;;) < ne) >1-, (2.23)

where A is the minimum conditional probability in the true graph G and pa

max IS
the maximum indegree in the estimated graph G. A visualization of this situation is
shown in Fig. 2.8a. It is easy to see that the dependence of N on small conditional

probabilities or large indegrees is dramatic.
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(a) PAC-bound analysis of a categorical network. (b) AMIAE analysis of a KDE network.

Figure 2.8: Learning Bayesian Networks. (a) Visualization of Eq. (2.23) for a cat-
egorical variable (blue) and a tree-structured categorical network with 80 nodes (red).
Settings: 0 := 0.05, C' := 10, and 0.5 < € < 5 (step size: 0.5). (b) Number of required
samples in dimensions 2 — 8 to obtain the same optimal AMIAE of 0.5987 as with 50 sam-
ples in dimension 1 [142]. We also restate two local criteria, the root coefficient of variation
(RCV) and the relative root mean squared error (RRMSE).

For KDE-based local models, which grow with and depend on the training set Dy,
one can analyze an asymptotic version of the mean integrated absolute error

MIAB(EE) - & [ |78:00 - )] x| (2.24)

called AMIAE [141], to get an impression of the distributional error. Scott and
Wand [142] conduct a rigorous investigation of this case and find a strong depen-
dence of N on the dimensionality. A summary of those results is provided in Ta-
ble 2.8b. When learning a Bayesian network, we incur this type of error for each
local model fx, (mz } pa@(xi)), meaning that the error increases with the indegree of

A

the corresponding node in G.

2.6.2 Inference

The complexity of exact inference in a Bayesian network B = (G, fx) by means of
variable elimination or message passing is determined by the treewidth of G = (X, E),
[127], which is defined as

tw(G) := minw(G) — 1, (2.25)
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Figure 2.9: Topological and Distributional Error. The topology ,\é limits the set
of distributions that can be represented by a Bayesian Network B = (G, fx) (gray circle).
As N — o, the distributional error (red line) can converge to 0, but the total error (blue
line) can never fall below the topological error (green line).

where G is a chordal completion of G and w(e) returns the clique number of a
graph [10]. From an inference point of view, we are therefore interested in graphical
models with low treewidth. While the treewidth decision problem for general graphs
is known to be NP-complete [5], closed-form solutions do exist for some topological
classes, including

e graphs without edges: tw(G) = 0.

e directed polytrees [31]: tw(G) = maxxex|pag(X)|.
e undirected square grids [126]: tw(G) = 1/|X].

e fully-connected graphs: tw(G) = |X]| — 1.

Given a suitable graph structure, we can use one of the available variants of belief
propagation [116, 78, 94] to compute (max-)marginals. If the local models belong to
the exponential family, the messages can be computed in closed-form [7]. For KDE-
based local models, we can choose from a pool of non-parametric belief propagation

methods [151, 70, 112].

2.6.3 Consensus Models

The preceding sections have shown that accurate learning and tractable inference are
difficult to achieve, even with large training sets and powerful computing resources.
Taking those results into account, we take another look at the global topology and
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local distributions of a graphical model and propose a class of Bayesian networks
that offers a compromise in terms of representability and applicability.

Topology. Tractable topologies have low treewidth, which means that we need to
identify the optimal topology in G(k) := {G | G graph with tw(G) < k}. Although it
is known that G(k) coincides with the class of partial k-trees [9], this task turned out
to be challenging and, without further constraints, depends on heuristics [38, 108].

For static models with a polytree-structured topology, treewidth coincides with
the maximum number of parents, a parameter that is more accessible and, more-
over, directly related to the dimensionality of a local model. A conceptually simple
way to do justice to both learning and inference is thus to enforce a strict upper
bound & on the indegree of a polytree. Learning an optimal polytree is NP-complete
unless k£ = 1 [32], in which case we obtain the efficient subclass of arborescences (or
directed rooted trees) that we will use extensively. In order to select an arbores-
cence, it is sufficient to choose an undirected tree, because all n arborescences with
the same undirected skeleton are equivalent in terms of their conditional indepen-
dence assumptions, as can be easily seen using d-separation. However, this is still a
non-trivial problem, because there are n"~2 undirected trees according to Cayley’s
formula [1]. We leverage ideas from [26] to address different flavors of this problem
in our applications to human poses (chapter 3) and natural scenes (chapter 5).

For dynamic context models with an a-priori fixed topology, hidden Markov mod-
els (HMMs) have been very popular due to their expressive architecture and tractable
inference [21]. They are essentially arborescences whose root is the first hidden vari-
able, albeit with different semantics than in the static case. However, computing the
likelihood of an observed sequence requires a full forward pass of message passing.
If non-Markovian dependencies between the observed variables can be well approx-
imated with an order-L Markov assumption, we can employ a more efficient hybrid
approach between a latent variable model and a Markov model. To this end, we com-
bine ideas from switching auto-regressive models [7] and HMMs with deterministic
hidden transitions [6] with the non-parametric power of decision forests. As a result,
we obtain a dynamic context model with low treewidth that can be interpreted either
as an L-th order Markov model with non-parametric conditional distributions or as
a latent variable model with time-decoupled state sequence. We pursue this approch
to model human motion (chapter 4).

Local models. In many cases, models with low treewidth are the only viable
option, for instance due to small training sets, high-dimensional nodes, or limited
computing resources. On the other hand, it is to be expected that some of the
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imposed conditional independence assumptions do not hold in the true generating
distribution. While this introduces a type of bias into the model that cannot —
and with regard to generalization performance quite possibly should not [84, 38|
— be avoided, we can eliminate additional bias by employing flexible local models,
i.e., categorical models in the discrete case and non-parametric approaches, such as
decision forests or kernel density estimates, in the continuous case.

The reasoning above is the motivation behind the architecture of our models in
the subsequent chapters: We combine low-treewidth topologies with non-parametric
local models to obtain an efficient and flexible bias-variance trade-off.



Chapter 3

Non-parametric Priors of
Human Pose

The previous chapter has given a brief introduction to theoretical concepts and prac-
tical considerations that relate to non-parametric models for structured data. In this
chapter, we present a first application of those techniques to the modeling of human
poses as introduced in section 2.4. Assessing the likelihood of a parameterized pose
x € R? is a task that carries strong spatial dependencies. Motivated by our exposi-
tion in section 2.6, we encode this static context information by means of a Bayesian
network with low treewidth and high flexibility. Unlike previous works, we do not
make any parametric assumptions and learn both an optimal arborescence and all
local models in a fully data-driven way.
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Figure 3.1: Key Message: Static Context. Non-parametric density estimates can
be used as local models of a tree-structured Bayesian network with optimal topology to
obtain efficient and flexible priors of human pose.
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3.1 Introduction

Reasoning about human pose is a key ingredient in recent successful applications of
computer vision systems [143]. Accurately capturing the variability of human pose
is challenging because there is both a variation between different persons as well
as a combinatorial number of possible poses a single person can assume. In this
chapter we propose a pose prior, a generative probabilistic model of static human
pose. Such a general purpose prior model is useful in at least two ways; first, it can
synthesize realistic poses that can be used for rendering or for generating plausible
pose hypotheses, and second, in the context of a larger pose estimation or tracking
system it can score any given pose by how a-priori likely it is, serving as a more
specific regularization term. A good pose prior must generalize to unseen poses
and persons. If it was merely reproducing poses seen in a training dataset it could
never span the full variability of human pose. In order to generalize the prior must
be compositional: it must represent the variations of parts that frequently occur
together and produce a pose by combining these parts.

We achieve compositionality by factorizing the pose representation into a Bayesian
network [81] with low treewidth. The sparse hierarchical structure of the network
enables efficient computation of likelihoods and exact sampling. To apply a Bayesian
network on human pose data we need to specify the network structure and condi-
tional probability distributions along the network and it is here that we make two
novel technical contributions. First, we enhance the representative power of Bayesian
networks by proposing non-parametric Bayesian networks in which the conditional
distributions are represented by conditional kernel density estimates. Second, we
use structure learning to obtain the network structure by finding parts of the pose
that strongly depend on each other, leveraging non-parametric mutual information
estimators on continuous joint data.

Our data-driven approach is made possible by the recent availability of a large-
scale dataset of human pose, the Human 3.6M dataset [71], which captures a large
variety of poses and persons. We use this dataset to assess the generalization per-
formance of our approach and demonstrate its good adaption to unseen test poses.
Although our learned system is efficient, some applications require direct control of
the runtime. For such scenarios we propose an approximation trade-off. With this
approximation we demonstrate real-time scoring of Kinect tracker output.
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3.1.1 Related Work

Pose priors are most often used within pose estimation systems and therefore some
of the related works we discuss below incorporate a likelihood term that is computed
from an observed image. Incorporating such an observation likelihood is possible in
our model as well, but in the present work our focus is on a generative model. A
natural idea to build a pose prior is to use the tree structure of the human skeleton as
a starting point. Models that follow the skeletal structure are called kinematic chain
models [14] and they allow us to incorporate prior beliefs about joint angles. In [96]
the authors used a multivariate Normal distribution along the kinematic chain and
estimate the parameters from motion capture data. The different choices of possible
parametrizations in terms of joint angles or relative world coordinates in a kinematic
tree model give rise to qualitatively different behaviours [60]. Despite this flexibility
a kinematic tree model has clear limitations, as sharply argued in [93]; it is unable
to express the coordination of different limbs and fails to represent global balance
and gravity constraints. We will demonstrate that we can avoid these limitations
by using a tree model that does not correspond to the kinematic chain but instead
is chosen to optimally approximate the true distribution of poses. The resulting
tree no longer corresponds to a skeleton (Fig. 3.2c and Fig. 3.4b) but retains all
computational advantages of a tree-structured model.

Previous works have attempted to overcome the limitations of the kinematic
tree model in different ways. In [18] the authors have used a global kernel density
model on human pose. This model is global and does not reflect the combinatorial
nature of human pose hence it is suitable only for modeling specific poses. Another
approach proposed in [145] has been to add further interactions to the kinematic tree
so that limb-limb coordination and penetration constraints are modelled. This is
satisfying as a model but because the model now has cycles, exact inference becomes
intractable and the authors have to resort to an expensive approximate particle
belief propagation. Likewise in [174] a structure learning heuristic is used to learn
a compositional model of pose; exact inference is again intractable and a heuristic
based on likely hypotheses is used.

Another popular way to improve over the kinematic tree model is to add latent
variables to the model. In [93] the authors augment the kinematic tree model by a few
latent variables that are identified by factor analysis. The Gaussian Process latent
variable model (GPLVM) [95] has been applied as a pose model [36]. In the GPLVM
model a low-dimensional latent space is transformed to pose space by means of a
Gaussian Process regression function. The GPLVM model has also been extended to
incorporate a temporal model (GPDM) [164, 159]. The Laplacian eigenmap latent
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variable model (LELVM) [101] improves on the GPLVM by modeling the manifold
of poses using a graph Laplacian and by providing tractable posterior inference in
the latent space. An interesting recent model based on a large number of latent
binary variables is the implicit mixture of conditional restricted Boltzmann machines
(imCRBM) [154]; both estimation and inference are again approximate. While the
global latent variable models (GPLVM and LELVM) are flexible they do not provide
compositionality. In fact, each training pose is represented as one latent vector and
they are not combined in an intelligent way.

3.2 Non-parametric Networks of Human Pose

In this section we introduce our non-parametric Bayesian network model of human
pose and show its tractability.

In accordance with section 2.4, we represent a human pose by a d-dimensional
vector whose components correspond either to angular (polar, spherical, cylindri-
cal) or Cartesian coordinates of n joints. Each pose decomposes on the joint level,
X = [x1,... ,xn]T e R? and we model the angle/position of joint j by a possibly
multi-dimensional random variable X;. This setup fully specifies parameterization
and granularity as discussed in section 2.4. The random vector X = (X;),_,  is
assumed to have a high-dimensional pose density ¢x(x) whose samples we denote by
Dy = {X(i)}i=1,..., n- In principle, we could use any global density estimation tech-
nique to learn ¢x, but as discussed in section 2.6, such approaches are either prone
to overfitting, lack flexibility or are computationally intractable.

In this work, we therefore take another approach and learn a non-parametric
Bayesian network B = (G, px) with low treewidth. Following section 2.2, we as-
sume that the joint distribution px(x) factorizes over the directed acyclic graph
G = (Xv E )7 n
px(x) = | [ px,(2; | pag(xy)), (3.1)

j=1
where, as before, the operator pag(e) maps a node to its parents w.r.t. G, [81, 7].!

Hence, a complete specification of B requires the definition of a global topology
G and the definition of local models px, (z; | pag(z;)),1 < j < n. In the next two
sections, we will introduce a fully non-parametric approach for both these elements.

Our model is different from an earlier type of non-parametric Bayesian net-
work [69], which is based on a mixture distribution over all possible networks and
therefore cannot compute exact likelihoods efficiently.

'We sometimes use px to refer to a density but note that px(x) is not a probability.
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3.2.1 Learning the Graph Structure

The graph structure of a Bayesian network models the local and global (in)depen-
dencies of a distribution (Eq. 2.7). In most cases, the object to be modeled carries
some apparent structure and many approaches define G in a way that reflects the
objects intuitive dependencies. In case of the human body, an obvious structure
is the kinematic chain, i.e., a tree-structured network with one parent per variable
that follows the adjacency of joints in the body (Fig. 3.2a). However, such a canonic
representation does not necessarily lead to optimal conditional distributions in an
information-theoretic sense.

Therefore, we take another approach and learn G from Dy. Since our goal is to
learn a topology with low treewidth, we keep the constraint of at most one parent
per variable and search for a Bayesian network B = (G, px) with arborescence G and
minimal Kullback-Leibler divergence to gx(x) [81],

prj( i | mpa(j))>- (3.2)

j=1

G := argmin KL (qx(x)
pa

The network minimizing this distance is known as a Chow-Liu tree and was intro-
duced in [26] for discrete distributions. Given a complete graph G over X with
edge weights w(X;, X;) between X; and X}, set equal to their mutual information
MI(X;, X&),

w(Xj, Xi) = MI(X;, Xi.) = KL(p(x,.x,) (25, 20) | px, (25)px, (21)), (3.3)

the globally optimal solution to Eq. (3.2) can be shown to be the maximum spanning
tree of G (with edges directed away from an arbitrary root node) [7].2 In contrast
to the kinematic chain, a Chow-Liu tree is thus guaranteed to model those pairs of
joints that exhibit a high flow of information, independent of their adjacency in the
human body.

Here, we use a continuous variant of the Chow-Liu tree, where reliable estimation
of mutual information is a hard problem [167]. An ad-hoc resolution is to either dis-
cretize the variables or to make simple parametric assumptions. Instead, we employ
a fully non-parametric approach based on nearest neighbor distances: We first use
the non-parametric entropy estimator [85] in d; := dim(X;) dimensions and calculate

- i<y o
H(X;) ::N]ZIHHSC;)_UJO + ¢, (3.4)
=1

2We omit arrows from our network visualizations and implicitly assume all edges to be directed
away from the hip node.
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(a) Kinematic Chain. (b) Pairwise Mutual Information.

O _ o0

(c) Optimal Topology. (d) Entropies.

Figure 3.2: Optimal Graph Structure. (a) Graph structure of the commonly used
kinematic chain together with non-parametric estimates of its mutual informations (high
MI in green, low MI in red). (b) Complete graph of all pairwise mutual informations.
(¢) The maximum spanning tree of the graph shown in (b), i.e., the globally optimal
Chow-Liu tree. Note how the uninformative edges present in (a) are circumvented. (d) Vi-
sualization of estimated joint entropies by means of a Hinton diagram.

with the constant ¢ = In(N — 1) + In Va, + 7. In the equation above, nﬁi) is the
nearest neighbor of xg-i), Vy, = w42/ T'(d;/2 + 1) is the volume of the d;-dimensional
unit ball, and v ~ 0.5772 is the Euler-Mascheroni constant. A more general class of
entropy estimators including the one above was shown to be asymptotically unbiased
and consistent as N — oo in [57]. Using the entropy estimates, we can then estimate
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all pairwise mutual information values by using the relation, [167],
W(X;, Xg) MI(X Xk)
—H(X;) + H(X},) — H(X;, X).
Finally, we obtain the optimal topology G (Fig. 3.2¢) b}i calculating the maximum

(3.5)

spanning tree [28] of the full mutual information graph G (Fig. 3.2b).

3.2.2 Learning the Local Models

Once the network structure G is fixed, we can learn the local densities px, (2; | Zpa())
from the training set Dy. We estimate them independently and focus on a specific
node X with parent Y := pa,(X) to keep the notation uncluttered:

Let px(z|y) be a local model and D, = {(z®,y®)};_; _n observations of
the corresponding joint distribution pyy(z,y). Our approach will be to compute
the conditional density of a kernel density estimate (CKDE), so that we can use
non-parametric KDE’s as local models of the Bayesian network B. For two variables
(X,Y), the general form of an unconditional kernel density estimate (Eq. (2.10))
reduces to

pxy (7, y) N|B| 2 _ (x(i)w(i)))). (3.6)

We use plug-in estimation as 1ntroduced in Eq. (2.12) to estimate B from the sample
covariance and an isotropic Gaussian kernel K = N (6, I), in which case Eq. (3.6)

simplifies to

pxv(@,y) ZN z,y) | (29,4, B?). (3.6a)
The conditional density for a given value Y =yis
pXY(iU y)
z|Y = 3.7

where the evidence term in the denomlnator requires integration over all non-evident
dimensions. For a Gaussian kernel, this marginal density has the analytic solution

JPXY(I y) dx ZN vy Bf,), (3.7a)

where B|yy denotes the part of B? describing the covariance of Y. In summary,
we can compute the CKDE px(z | Y = y) efficiently and at the same asymptotic
complexity as the joint KDE pxy (z,y).
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3.2.3 Exact Log-likelihoods and Sampling

There are two important operations to perform in applications of our model as a
pose prior: computing the likelihood of a given pose and sampling a new pose. Both
operations are efficient as we now show.

Exact Log-likelihoods. Given a Bayesian network with Chow-Liu structure and
CKDE models, the log-likelihood log px (x) of a new observation x € R? is

Z (logp(:cjm(j)) — logf p(azjm(j)) d:cj>, (3.8)

= J

where we use the shorthand notation z; := (z;, z;). Both parts of the j'th summand
have a closed-form solution. Note that the global log-likelihood is composed of many
local log-likelihoods, so that we can distinguish likely from unlikely angles/positions
on the joint level. This allows a detailed analysis of a pose not possible in global
methods.

Sampling. Thanks to the closed-form solution for a conditional Gaussian, we can
employ standard ancestral sampling [81], i.e., we find a topological ordering 7 for the
network structure G and draw samples from Px, ) () [ Tpar(iy)), for § = 1,.

The only technicality we need to take care of is a condltlonal reweighting opera—
tion of the Gaussian components: A standard kernel density estimate in the form
of Eq. (3.6a) can be interpreted as a Gaussian mixture with uniform weights and
sampling boils down to sampling from a uniformly selected component. In ancestral
sampling, on the other hand, we have to deal with conditional distributions. Split-
ting up the enumerator in Eq. (3.7) shows that we get again a Gaussian mixture
model,

x(x|Y =y) = Zal <x’u‘(é),2|y ), (3.9)

but this time with non-uniform Welghts

(y’yz B‘yy) (3.10)
Z% 1./\f<y‘y’ B\yy)

Here, uf;) and X, are the mean and covariance of the ’th Gaussian conditioned on

y. Sampling from a local distribution thus consists of two steps: We first select a
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Figure 3.3: Samples from Human Pose Prior. Our non-parametric prior of human
pose is completely generative and allows for simple and efficient sampling. We show a
collection of samples that were generated from a single model with Chow-Liu topology and
CKDE models; the assignment to different categories was done manually.

Gaussian component according to the discrete distribution induced by the weights
and then draw a sample from the selected Gaussian conditioned on .

We see that, despite its flexibility, computations in our model are efficient, exact,
and simple to implement. We now validate our model experimentally.

3.3 Experiments

Our experiments are based on two different datasets: the Human 3.6M (H36M)
dataset [71] for large-scale experiments and our own Kinect recordings to showcase
more specific aspects of our model. For the H36M experiments we use all 7 actors
for whom pose data are available and employ a leave-one-person-out scheme: We
use all 30 categories of actors 5,6,7,8,9,11 and randomly subsample 15% of all
frames without replacement to obtain more independent samples; this constitutes
our training set (~ 7.0 - 10* poses). We use all frames of actor 1 to construct the
test set (~ 6.2 - 10" poses). The H36M skeleton includes some spurious joints that
we delete, which results in the same 20 joints present in the Kinect skeleton [143]
(see also Fig. 2.6a). All frames are given in relative Cartesian coordinates centered
at the hip node, unless otherwise stated.

3.3.1 Pose Model

We start by learning a pose model on the H36M training set according to the tech-
niques introduced in section 3.2. The resulting network structure is displayed in
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Fig. 3.2c and it is worth noting some of its properties: 1. Three edges connect
the left half of the body with the right half, thereby enforcing coherent positions
for the feet, hips and shoulders. Note that this does not apply to the kinematic
chain. 2. The uninformative pairs of nodes present in the kinematic chain (red
edges in Fig. 3.2a) are circumvented in the Chow-Liu tree, thus guaranteeing, from
an information-theoretic point of view, optimal conditional distributions under the
given constraint of a sparse structure. 3. Subgraphs containing joints with high
entropies (Fig. 3.2d), such as the arms and legs, largely follow the kinematic chain.
This confirms the intuitive belief that joints with high uncertainty should be con-
ditioned on nearby joints, as they provide the maximum information about a joints
position in this case.

One of the advantages of a generative model is its ability to produce new hypothe-
ses, e.g., by drawing samples from the model. Using our Matlab implementation of
the sampling scheme introduced in section 3.2.3, we are able to generate approxi-
mately 10 samples/second. Fig. 3.3 shows a selection of them. Note the variety of
poses and their natural appearance, confirming that our model can indeed capture,
represent and generate many of the characteristics unique to a human pose.

3.3.2 Comparison of Hold-out Log-likelihoods

In this experiment, we evaluate how well our model fits to unseen test poses and
how it compares to competing methods. One way to do this in an unsupervised
setting is to compute expected hold-out log-likelihoods (ELLs) on the H36M test
set. As described in section 3.2, our model consists of two components: estimation
of the graph structure (non-parametric Chow-Liu tree) and estimation of the local
distributions (conditional kernel density estimation).

We compare this approach to combinations of different topologies/local models
and evaluate ELLs on both training and test data. Specifically, we consider two
different ways of estimating the local models and six different graph structures. The
options for the conditional distributions are our CKDE approach and a Gaussian
linear (GL-) network [81]. Cases of badly conditioned covariance matrices are handled
by enforcing a lower bound on the eigenvalues.

For the graph structures, we consider a global graph with only a single node, a
fully independent graph with n nodes but no edges, the kinematic chain, a higher-
order kinematic chain, and two variants of the Chow-Liu tree, one with parametric
and one with non-parametric estimation of mutual information. In the higher-order
kinematic chain each joint is additionally conditioned on its parents’ parents. Para-
metric MI-estimation is based on the entropy of fitted Gaussians. We use parametric
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Table 3.1: Expected Log-likelihoods. Results for GL- and CKDE-networks with
different graph structures and a comparison to global methods.

Method Graph structure Training  Testing
Gaussian Global —266.84 —271.15
KDE Global —239.61 —263.77
GPLVM~ Global —327.85 —341.89

Independent —352.80 —345.94

Kinematic chain (order 1) —311.54  —310.98

GL-network Kinematic chain (order 2) —305.54 —307.88
Chow-Liu tree —283.82  —284.03
Independent —322.64 —322.25

Kinematic chain (order 1) —260.04 —270.52
Kinematic chain (order 2) —247.35 —263.83
Chow-Liu tree (ours) —242.24 —254.98

*25% subsampling; FITC

CKDE-network

MI-estimation for the parametric GL-network and non-parametric MI-estimation
(Egs. 3.4-3.5) for the non-parametric CKDE-network.

The network approaches are complemented by a comparison to the global GPLVM
[95], where we employ the popular FITC approximation [148] together with sub-
sampling to achieve tractability. We use a reference implementation® and consider
embeddings in 1, 3, and 5 latent dimensions, reporting the best ELL.

Results. Our results are shown in Table 3.1. Among the global methods, the test
ELL of a KDE (—264) outperforms both a global Gaussian (—271) and a GPLVM
(—342; 5 latent dimensions), despite a spread between training and testing due to
overfitting. Although the GPLVM performance could probably be further improved,
either by developing better approximations or by fine-tuning the parameters, the
application of a GPLVM to such a large dataset is an inherently approximate proce-
dure involving a non-convex optimization problem prone to initialization and local
minima, which is presumably the cause for its poor performance.

Let us now turn to the network approaches and analyze their graph structures.
Not surprisingly, a network modeling the joints independently performs worst, with
test ELLs of —346 (GL) and —322 (CKDE). Using graph structures based on the
kinematic chain increases the test performance to —311 (GL) and —271 (CKDE).
Higher-order kinematic chains improve on the results by another +6.7 (CKDE) and
+3.1 (GL) nats. The best graph structure in this comparison are Chow-Liu trees.

Shttp://staffuww.dcs.sheffield.ac.uk/people/N.Lawrence/fgplvm/
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(a) Pose Classes during Training and Testing. (b) Topology.

Figure 3.4: Compositionality. (a) Samples from the “wave” training set (left, 2 pose
classes) and samples drawn from the learned model (right, 4 pose classes). Our model
has learned two pose classes not available in the training set: “wave both” and “neutral”.
(b) The inferred network structure. Note that the arms are conditionally independent and
can thus be freely combined, whereas the legs are dependent on each other.

Their usage results in a big leap in performance, increasing the results again by
+8.9 nats in case of the CKDE-network and +23.9 nats in case of the GL-network.
The direct comparison of CKDE- to GL-networks is unambiguous: CKDE networks
perform consistently better, independent of the graph structure. The combination
of a Chow-Liu topology and CKDE models also performs better than all 3 global
methods, making it the best performing approach in this comparison.

3.3.3 Compositionality

One of the major disadvantages of global non-parametric models is their susceptibil-
ity to overfitting; they basically represent and reproduce the training samples. On
the other hand, parametric networks based on the kinematic chain are too flexible in
the sense that they allow arbitrary combinations of the positions of different limbs.
This is because different limbs are conditionally independent once their lowest com-
mon ancestor w.r.t. the hierarchical tree structure is observed. This is the case, for
example, when performing ancestral sampling. At the same time, Gaussian linear
networks are not flexible enough in the sense that their local distributions cannot
cope with multimodality, which is essential when modeling human pose.

Ideally, we would like to have flexibility and compositionality only where it is
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adequate and needed. In order to check this property under controlled conditions,
we record two different gestures in front of a Kinect: either waving with the left
hand only or waving with the right hand only (1000 frames each; Figure 3.4a (left)).
We then learn a pose model according to section 3.2, draw 5000 samples from it and
cluster them into 4 clusters using k-means.

Results. The non-parametric Chow-Liu tree of the model is shown in Fig. 3.4b.
Since the arms do not share much information in our training sequences, they are
automatically modeled conditionally independent of each other, i.e., we can freely
combine their positions. In contrast to that, the position of the right leg tells us a lot
about the position of the left leg, since both are parallel to one another throughout the
sequences. Consequently, the joint positions of the latter are all modeled conditional
on the corresponding joint positions of the former.

The samples generated by this model (Fig. 3.4a (right)) fall into 4 distinct pose
classes. Two of the four clusters (coloured in purple and red) correspond to poses
also present in the training set. The other two clusters (coloured in blue and green)
represent newly learned poses that do not appear in the training data: a neutral pose
(both hands lowered) and a pose with both hands raised. The key here is that we
do have samples with the left and right hand raised, just never in the same frame.
During the sampling process, our model combines the available data to form a new
sample that possibly does not resemble any training sample.

In summary, our formulation allows to freely combine substructures, but only if
they do not share a lot of information. Joint positions that heavily depend on each
other, for instance due to physical constraints, will always be modeled conditional on
each other. Examples include positions of the feet (gravity) and the hips (rigidity),
i.e., we get compositionality exactly where we need it.

3.4 Real-time Scoring

Time is a critical factor in applications such as tracking or pose estimation. Our
presentation in section 3.2 has shown that the computation of exact log-likelihoods
in our model is tractable, i.e., we do not have to resort to MCMC or similar meth-
ods. However, for large datasets the number N of terms in the summations (3.6a)
and (3.7a) will also become large, resulting in longer runtime. We can speed up in-
ference by considering approximate log-likelihoods. There exist many fast methods
for the evaluation of kernel density estimates, but the popular approaches are either
not suited for high-dimensional data [37], do not lead to a speed-up for sequential
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Figure 3.5: Approximate Log-likelihoods. Training points (light blue) that belong to
a cluster whose center (dark blue) is close to the test point (red) are evaluated individually.
Those farther away are approximated by their respective cluster centers.

data [172] or are hard to implement due to their complexity [58]. Here, we want
to propose a simple alternative to these complex methods that will be sufficient for
our purpose. Our experiments will show that the additional decrease in runtime is
sufficient to allow the application of our approach in real-time, without having to
sacrifice accuracy.

At training time, we cluster all training points into clusters Ci, ..., C}y using k-
means and build a kd-tree for the cluster centers. At test time, we partition the
clusters into a set of core clusters C¢ and a set of approximate clusters C* based
on the following scheme: Given a test point x, we use the kd-tree to determine the
k' « k clusters whose centers lie closest to x. These make up the core clusters.
All remaining clusters are considered approximate clusters. We then evaluate all
training points within the core clusters exactly. All the other clusters are evaluated
by multiplying the log-likelihood w.r.t. the center by the size of the cluster (Fig. 3.5).
The sum in Eq. (3.6) thus decomposes into an exact and an approximate sum,

_ Se+ S,

px(x) = “NB| (3.11)
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Figure 3.6: Approximation Trade-off and Real-time Inference. (a) Mean accuracy
and mean runtime of approximate local log-likelihoods as a function of the number of
core clusters. For comparison we also include the runtime for the computation of exact
local log-likelihoods. The black line illustrates the situation for a tolerable e-error of 1072,
corresponding to 4 core clusters. The reduction in computational cost of 82% is big enough
to allow real-time applications, shown in (b).

with

Se = Z Z k(B (x — x(j))), (3.12)
CeC,. jeC
Sa= Y. |CIk(B™ (x - C)), (3.13)

CeC,,

where C' and |C| denote the center and size of cluster C, respectively. In this for-
mulation, those training points contributing most to the log-likelihood are evaluated
exactly and those farther away are approximated by their corresponding cluster cen-
ters. As the number of core clusters approaches the total number of clusters (or as
the number of total clusters approaches the total number of training points), our
approximate method converges to the exact log-likelihood.

Since the contribution of a training point to the log-likelihood decreases expo-
nentially with its distance from the test point, a few core clusters should suffice to
achieve a high level of accuracy. In order to prove this point, we cluster the entire
Human 3.6M training set into 50 clusters, evaluate approximate log-likelihoods for
100 randomly sampled points from the Human 3.6M test set and compare them to
their exact counterparts. Fig. 3.6a shows the results in terms of accuracy and speed
for a local log-likelihood: If an absolute error of 1072 nats is acceptable, we need as
few as 4 core clusters and the runtime is 1.5ms per frame. This compares to 8.4ms for
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the computation of an exact local log-likelihood. Adding more core clusters further
decreases the error, while the runtime increases sublinearly. As the evaluation of a
log-likelihood for a Bayesian network in our case requires computation of 2n = 40
local log-likelihoods (see Eq. (3.8)), we achieve a total speed of approx. 61lms per
frame (16 fps) on a dataset containing about 70,000 training points.

This work is accompanied by an open source Matlab suite for Kinect data. Our
framework supports training and real-time scoring of motion capture and Kinect
poses (Fig. 3.6b), making the integration of the proposed model as part of a larger
pipeline very easy.



Chapter 4

Non-parametric Markov Models for
Human Motion

Tree-structured non-parametric Bayesian networks are good priors for static tasks,
e.g., human pose estimation in images. However, they are not well-suited to assess
the likelihood of a time series, such as Kinect or motion capture data, because they
lack temporal coherence and consistency. Such dynamic context is typically modeled
using the hidden state sequence of a state-space model. An efficient and flexible
alternative to these traditional models is a non-parametric Markov model without
explicit latent space but the possibility to choose from different conditional models
in a deterministic way.
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Figure 4.1: Key Message: Dynamic Context. A temporal extension of decision
forests can be used as a non-parametric d-approximation of a state-space representation
like a hidden Markov model to encode dynamic dependencies in human motion data.
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4.1 Introduction

Statistical models for human motion are important in many areas of computer vision
and graphics. In addition to being interesting in their own right [164, 153, 115], their
applications include areas as diverse as animation, robotics, tracking [144, 159], and
activity recognition [13]. While great progress has been made in the past decade, the
problem remains challenging because of the high dimensionality, nonlinearity and
multimodality of natural human motion. Ideally, a good probabilistic model should
account for all of those challenges, but unfortunately expressive models often result
in intractable estimation and inference problems (see chapter 2). We now review the
most popular approaches.

4.1.1 Dynamic Bayesian Networks

In recent years, modelling of human motion has been tackled from several differ-
ent perspectives. Among the most popular methods are time-homogeneous latent
variable models following the state-space equations (see Fig. 4.3a),

7®) — f(z(t_l), Gz) Dz (Z(t) ‘ Z(t—l))7

x® = g(29, &) px (x| 20), (4.1)
where x(®) are observable variables, such as joint positions or joint angles, z() are hid-
den variables, and €4, €, are random perturbations. Although filtering and smoothing
distributions for z(¥) are within this framework, they are only tractable for either a
discrete state space (forward(-backward) algorithm) or linear functions f, g and ad-
ditive Gaussian noise (Kalman filter/smoother) [47]. Efficient and exact solutions
for the general nonlinear and/or non-Gaussian cases do not exist [21]. In order to
perform inference, one therefore needs to resort to approximate methods, such as the
extended Kalman filter and its derivates [77, 73], or to sequential Monte Carlo (SMC)
methods like particle filters [56, 21, 20]. Augmenting the state-space model with dis-
crete switching variables leads to a switching linear dynamical system (SLDS). Exact
inference in this model is intractable even for the Gaussian-linear case [7] and learning
has turned out to be a challenge in itself [46].

Eq. (4.1) and its extensions form the basis for a number of statistical models for
human motion: Wang et al. [164] assume a linear combination of nonlinear basis
functions for f, g and additive Gaussian noise for €y, €,. Marginalization over f,g
leads to a Gaussian process dynamical model (GPDM), whose latent trajectories
have to be learned by a combination of scaled conjugate gradient and a version of
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EM using hybrid Monte Carlo techniques. Urtasun et al. [160] extend the GPDM
framework by introducing a prior for latent positions that preserves local topolog-
ical structure. Pavlovié¢ et al. [115] use approximate variational inference to learn
an SLDS and perform inference in it. Taylor et al. [153] consider a latent space
consisting of binary variables and use a conditional RBM to model human motion.
While inference tasks are easy in this model, learning relies on approximations like
contrastive divergence [62]. Models inspired by physics and biology include [165]
and [166].

4.1.2 Contributions

In this work, we propose to leave out the latent space altogether. Instead, we follow
the principles introduced in chapter 2 and model the dynamic context in human
motion data by means of an expressive Markov model that is both simple enough
to allow for efficient and exact inference yet flexible enough to accurately model
real human motion data. Due to our non-parametric representation, we achieve a
high level of realism. Specifically, our work makes the following four contributions:
1. We introduce dynamic forest models (DFMs) and describe their training and
regularization, building upon work on autoregressive trees [103]; 2. We present a
formulation of our approach in terms of latent variables, thereby allowing a direct
comparison to hidden Markov models (HMMs); 3. We show how DFMs can be used
as accurate and efficient models of human motion data; 4. We empirically validate
DFMs on challenging action recognition and motion completion tasks, outperforming
both HMMs and GPDMs.

4.2 Nonlinear Markov Models

In this section we present our model and discuss its training. A Markov model
describes a conditional distribution of the present state x(*) given a limited number
of past observations pa(x®) := x¢=K):¢=1) ¢ at each time step ¢ a fixed number
of K previous observations are combined to form a prediction x®. The prediction
is then an order- K’ Markov process,

([ pa(x%)) = p{x | xR0, (42)

If the mean of this distribution can be written as a fixed linear combination of the
previous observations, the Markov model is said to be linear [39]. When this is not
the case, the model is a nonlinear Markov model.
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Figure 4.2: Autoregressive Tree. A decision tree 7 = (V;wV, E) is evaluated on a set
of features extracted from K previously observed frames gb(pa (X(t)) ) At each leaf ¢ € V7, of
the tree a linear autoregressive model (Ay, 3/) is stored and the predictive filtering distribu-

tion for £() := ¢(p(pa(x1))) is defined as py) (x(t) | pa(x(t))) = N(A@<z)¢(pa(x(t))) X))

4.2.1 Autoregressive Trees

Autoregressive (AR-) trees [103] are a type of probabilistic AR-model for time-series
data [39] in which the regression function is given by a regression tree T = (V; v Vp, E)
(see section 2.3.2).

In order to represent the distribution in Eq. (4.2), the regression tree evaluates
features gzﬁ(pa (x(t))) e ® extracted from the previous K frames and, using this in-
formation, decides among a set of simpler distributions stored at its leaf nodes. We
store in each leaf ¢ one multivariate normal distribution with linearly regressed mean
but fixed covariance matrix. This is illustrated in Fig. 4.2. In this case, the predictive
expectation can be obtained by the linear dynamics

E[XY | pa(x)] = Agpaiony@(pa(x)). (4.3)

Although this is a simple linear prediction, the selection of a matrix Ay, is gov-
erned by the decision tree’s leaf function ¢(e) : & — V, and thus a function of
(b(pa(x(t))).1Autoregressive trees are therefore not only nonlinear but also non-
parametric Markov models. For instance, by testing for statistics such as average
joint velocities in the past K frames, the tree may easily distinguish a running from
a walking motion, and hence is able to select the appropriate linear dynamics.

In general one can use different features for linear prediction and leaf node selection.
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(a) Hidden Markov Model.  (b) Marginalized Hidden  (c) Latent Space View of
Markov Model. Dynamic Forest.

Figure 4.3: Dynamic Forest Model. (a) Discrete-time hidden Markov models repre-
sent a probability distribution of a sequence of observations (x(*)); by a Markov model on a
sequence of hidden variables (z(*)); and a conditional observation distribution p(x(t) | z(t)).
(b) Marginalization over the hidden variables yields a joint distribution p(x(*)) over the
observed variables, effectively coupling all variables. (c) Latent space formulation of our
proposed non-parametric Markov model for order K = 2: A decision tree implicitly selects
a latent state. We can view this non-parametric Markov model as an order-K approxima-
tion to (b) in which filtering inference and computation of marginal observation likelihoods
is very efficient.

In the original work on autoregressive trees, a single tree is learned by greedily
optimizing a penalized likelihood objective [103]. The authors show applications
to short-term forecasting of univariate economic data but note that 95% of their
trees do not contain any splits, i.e., they are common AR-models. Here, we propose
extensions to AR-trees that enable us to take advantage of deeper trees and to
cope with high-dimensional inputs, eventually allowing their use for classification,
synthesis and upscaling of complex human motion data.

4.2.2 Dynamic Forests

Because a single tree is prone to overfitting and limited in its expressiveness due to
its unimodal predictive distribution, we will instead learn an ensemble of C' > 1 trees,
{Tc}._, - Each tree is trained separately using bagging [15], that is, resampling the
traininé; set framewise with replacement. The predictions of the individual trees are
then averaged to produce the prediction of the forest. Since each tree has a Gaussian
posterior, the forest posterior is given by a multimodal mixture of Gaussians,

1 C
e [pa(e) = & DN |, By (44
c=1

Here, (1) := (9 (p(pa(x®))) denotes the leaf node that is selected by the c’th tree
at the t'th time step and each mixture component has the mean vector pry.c =
Ao ¢(pa(x®)). We call this new approach dynamic forest model (DFM) and
continue with a description of its training.
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4.2.3 Training

We provide a bottom-up description of the training procedure, i.e., we start with the
estimation of a leaf model and then consider the task of learning the tree structure.
The general setup is as follows: At training time, we are given a set of M training

sequences Diay = (X("i))i:1 v Each training sequence x(* ig a concatenation of

T; frames, hence x(*9 := (x(t7) . The t’th frame in the i’th sequence is repre-

t=1,....,T;
sented by a fixed-length vector x(#? € R?. In contrast to chapter 3, we are now deal-
ing with a supervised task, i.e., we need to define a supervised training set (Dx, Dy)

based on the raw data D,.,. To this end, we set Dy = (¢(pa(x(t’i))))K+1gt<Ti and
1<i<M

i<

Dy = (x(m)) K+1<t<T;- We will often drop the sequence index 7 to keep the notation
1<i<M
uncluttered.

Training the Leaf Model

Learning a model for a leaf node ¢ amounts to estimating a regression matrix A, and
a covariance matrix 3,. Each leaf accommodates a subset (Dg, D§) of the training
data, namely those feature vectors and regression targets that reach it. We use the
available data points to estimate A, using ridge regression [63]. To this end, let ¢
denote all column-wise concatenated feature vectors ¢(pa(x®)) that are assigned to
the leaf. Likewise, and in the same order, we concatenate all the desired predictions
column-wise into a matrix U. The matrix A, now has the closed-form solution

Ay =Ug (pgp" +~1) ", (4.5)

where v > 0 is the ridge regularization parameter.

To determine the covariance matrix 3,, we first use the ground truth to compute
the residual matrix Ry := U—A,¢. The set of all the residual vectors is then used to
estimate a matrix 3, by means of the sample covariance. While the estimate of A,
is generally quite accurate, we observed that the covariance estimate 3, may become
inaccurate for high dimensions and small sample sizes. In some cases the estimated
matrices are even singular. We therefore regularize our initial estimate by projecting
3, to an isotropic target with full rank,

¥, i=d? tr(flg>l, (4.6)

a measure that proved to be important for the success of our approach. We also
experimented with a convex combination of the sample covariance matrix and a
diagonal shrinkage target [136], but it did not improve the results.
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Training the Tree Structure

To determine the tree structure, we use a greedy training procedure, as is commonly
used in the literature [16, 29]. We start with a single node and recursively split
leaf nodes by selecting the best among a set of hyperplane splits (see section 2.3.2).
Each candidate split is sampled from a proposal distribution p, e.g., by uniformly
sampling a data point and a coordinate. A candidate split s at leaf ¢ introduces
child nodes u and v, each of which receives a subset of the data present at . After
estimating a leaf model for v and v according to section 4.2.3, we determine the
quality of the proposed split by measuring the resulting reduction in residual error,

Zs:=FE,— (E, + E,), (4.7)
where F, is given as the squared Frobenius norm of the residual matrix,
B, := |Ra[[ (4.8)

The split that achieves the largest score Z, is selected and the training proceeds
recursively.

Implementation of DFMs is easy and analytical solutions for the score function
and the least squares regressor make learning very efficient. The required training
time can be controlled by the number of trees, their depth and the number of tested
splits. Algorithm 1 summarizes DFM training.

4.3 Latent Space View

In this section, we compare the class of dynamic forest models with the class of
hidden Markov models. In order to facilitate a direct comparison, we reformulate
DFMs as (pseudo) latent variable models and draw connections between leaf nodes
in a DFM and latent states in an LVM.

Consider a tree 7. with [ leaf nodes. By introducing latent variables 2z with I
states we arrive at the latent variable model depicted in Fig. 4.3¢ for order K = 2. In
this formulation, the joint distribution of an observed sequence x(*) := (x®),_;
and their corresponding latent variables z(*) := (z(t))t:L_“?T is given by

p(x®, =) = [T px®|pa(x®))-p(z" | pa(=®)). (4.9)

t=K+1

Identifying latent variable states with decision tree leaves, the distribution of z® is
a deterministic prediction from previous observations and can thus be understood as
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Algorithm 1 Probabilistic DFM Training

1: input: time-series data (D, Dy)

2: input: number of ensemble trees C' > 1

3: input: number of split tests M > 1

4: input: split proposal distribution p,

5: output: dynamic forest {7.}._; o

6: procedure TRAINDFM((Dx, Dy,), C, M, p;)

7 forc=1,...,C do

8: Bootstrap resample the supervised training set (Dx, Dy)
9: T. < a growable root node p
10: while there is a growable leaf ¢ in 7. do
11: 7% «— —0
12: form=1,...,M do
13: Sample split s ~ p;
14: Partition data at ¢ w.r.t. s
15: Z, < Compute score for s
16: if Z, > Z* then
17: (s*,2%) «— (s,Zs)
18: end if
19: end for
20: Split leaf ¢ using split s*
21: end while
22: for leaf ¢ in tree 7. do
23: (Ay, Xy) < Build least squares regressor at ¢
24: end for
25: end for
26: return Ensemble {7.}._, o

27: end procedure

a delta function,

P () = P [pa(x)) = 50 - €9). (w1o)

In DFMs the information between the latent variables flows through the observed
variables, whereas in HMMSs the latent variables have direct interactions. Because
the latent states are determined from observations only, they are conditionally in-
dependent given the observed sequence. This is different to hidden Markov models.
More precisely, DFMs encode the following conditional independence statements for



4.4. EXPERIMENTS 51

allt > K + 1:
O {Z(l),..., Ay pa(Z(t))

4.11
t)J_{X(l)P”’XtKl}’pa( )) ( )

It is this factorization that allows us to compute the marginal observation likelihood
in a single summation,

logp = log Z Z

Z(K+l) 2(T)

2 logp x(t=K) ...,X(t_l),f(t’c)).

t=K+1

(4.12)

Under the assumption of balanced trees, the cost for the computation of log-
likelihoods in DFMs is O(log(1)T"), which is sublinear in the number of latent states.
The time complexity of hidden Markov models for the same task scales according to
O(I?T), which is quadratic.

The additional efficiency in our model relies on two implicit assumptions: 1. We
assume that we can identify the correct latent state. At time ¢, we put the entire
probability mass on a single latent state that we select based on the feature vector
gb(pa (X(t)) ) Our approach thus stands and falls with the design of this feature vector
and the information it encodes. A hidden Markov model, on the other hand, can
incorporate prior knowledge from the application domain (e.g., occlusion reasoning,
object-object interactions, or compositionality [12]) by refining the model used for
the hidden state sequence; 2. We assume that long-range dependencies are negligible.
Whereas we do not model interactions beyond order K, hidden Markov models do
have a long-term memory due to the Markov process on the hidden state sequence,
thereby rendering the observation sequence non-Markov ([47], section 1.3.3).

4.4 Experiments

We demonstrate the usefulness of DFMs on three different tasks: action recognition,
motion completion and prediction of 3D motion from 2D inputs. Our experiments
are based on the MSRC-12 dataset [45] and a modified version of the CMU dataset?
as used by Wang et al. [164].

As before, we represent a human motion sequence of length T as a temporal
sequence of d-dimensional body poses. This yields a matrix x(*) = (x®) e R>T

2Dataset obtained from mocap.cs.cmu. edu.
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which can be used as part of an ensemble training according to section 4.2. Depending
on the dataset, the individual poses x® in the columns of x(*) are given in either joint
angles or world coordinates. In our experiments, the feature mapping ¢(pa (x(t)))
concatenates all vectors in the subsequence pa (x(t)) and adds a constant that models
an intercept and allows for affine regression functions.

4.4.1 Human Action Recognition

The MSRC-12 dataset comprises sequences of people performing a total of 12 iconic
and metaphoric gestures. Every sequence is the output of the Kinect’s human body
tracker, which gives a noisy estimate of 20 joints (see Fig. 2.6a). All joints are defined
in terms of xyz-world coordinates, resulting in a d = 60 dimensional vector x*) per
frame.

We use the iconic gestures from this dataset, which amounts to 296 sequences of
about 1000 frames length each. The task is to assign those sequences to one of the
six iconic gesture classes

G := {Duck, Goggles, Shoot, Throw, Change Weapon, Kick}. (4.13)

Each class comprises approximately 50 sequences coming from 30 different persons.
In order to assess the generalization capabilities of our approach across persons, we
employ 5-fold leave-person-out cross-validation, i.e., each fold consists of 24 persons
for training and 6 persons for testing. We train |G| different DFMs {7} _; per fold,
one for each gesture, according to Algorithm 1. We report classification accuracies
obtained with dynamic forests consisting of 12 trees, all of which were trained with
210 tested splits. We use a fixed ridge regularization parameter v := 10~° but vary
the tree depth and Markov order.

In order to assign an unseen test sequence x(*) to its corresponding class ¢*, we
compute the log-likelihood of the sequence under each gesture model and assign it
to the class maximizing this quantity,

*

g" = arg max logp(x(')
g'eg

Ty), (4.14)
where the log-likelihoods are given according to Eq. (4.12).

Baseline Methods. We compare DFMs to four different baseline methods. Two
of them, k-nearest neighbours (k-NN) and support vector machines (SVM), are stan-
dard classification methods, the other two, hidden Markov models (HMM) and dy-
namic time warping (DTW), are more specialized dynamic models and tailored to
time-series data.



4.4. EXPERIMENTS 53

Table 4.1: Action Classification. (a) Accuracies and runtimes of DFMs and four base-
line models. DFMs outperform all other evaluated methods. (b) Classification accuracies
of DFMs as a function of depth, order, and number of trees. The result in bold is shown
in more detail in (a).

Gesture kNN SVM HMM DTW DFM

+PCA (ours)
Duck 88.0 8.0 940 98.0 98.0  96.0 - Dol Moo omd
Goggles 70.0 84.0 540 70.0 88.0 88.0 rees  Dept arkov order
Shoot 714 796 367 735 469  85.7 1 2 3
Throw 840 760 640 90.0 860  90.0 1 1 696 696 625
Change weapon 60.4 81.3 354 77.1 79.2 87.5
Kick 959 89.8 98.0 98.0 87.8  98.0 1 865 832 878
A 784 831 63.6 844 811  90.9 12 2 764 885 8l
ceuracy : : : : : : 3 878 90.2 89.2
Runtime (sec./seq) 9.24 189.23 050 0.45 107.55 0.23 4 872 90.9 905

(a) Comparison to Baselines. (b) DFM Results.

For the k-NN and SVM approaches, we classify all length-four subsequences in a
given test sequence. The class label of the entire sequence is determined by taking the
majority vote over all of those subsequences. In order to classify a subsequence using
k-NN, we compare it to all ~ 256,000 subsequences of the training set and find the k-
nearest neighbours with respect to the Euclidean distance. The parameter k is set to
6, which yields best performance on the test set in the range k = 1,...,8. The SVM
classifier is also trained on all ~ 256,000 subsequences. We use the implementation
[22] with a one-vs.-rest classifier and a Gaussian RBF kernel.

DTW is a powerful time-series classifier that aligns two sequences by computing a
possibly nonlinear warping path between them, thereby ignoring variations in dura-
tion and speed. We use the reference implementation of the FastDTW authors [135]
and vary the search radius between 2% and 28. A test sequence is classified by calcu-
lating the warp distance to all training sequences (normalized by path length) and
assigning it to the class of the training sequence with minimal warp distance.

For the HMM experiments, we use the implementation of [110] and train one
HMM per gesture class. The original authors tuned their implementation for the
same type of Kinect skeletal data we use. The implementation supports the use
of raw features and PCA-reduced features (+PCA) and we report results for both
options. The PCA features are obtained by constructing subsequences of length four
and using the coefficients of the first 12 principal components. This is a powerful
preprocessing step that is necessary for the HMM to work. To find the number of
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hidden states, we perform model selection, testing 5, 10, 20, and 40 hidden states, and
report the best test performance. At test-time we classify a sequence by evaluating
the marginal observation log-likelihood for each HMM and assign the sequence to
the class of highest likelihood.

Results. Table 4.1a shows the quantitative results of our DFM and a comparison
to the baseline methods. The worst performance was delivered by the k-NN approach
(78.4%), which is not surprising given its naive exhaustive search. Overall the time-
series models tend to perform better than the simple classification baselines. That
said, DTW (81.1%) still falls short of the SVM accuracy (83.1%), but mostly due
to its weak performance on the “Shoot” class (46.9%). Varying the search radius
does not eliminate this problem and the maximum is already attained for 2*. For
the HMM the best result is obtained with 10 hidden states. Note that the HMM
requires strong preprocessing: Using raw data the performance is inferior at 63.6%
and only the PCA features make the HMM perform at 84.4%. Our DFM achieves
an accuracy of 90.9% and outperforms all other evaluated methods, notably without
relying on any form of preprocessing. This indicates that DFMs are very robust with
respect to the features used. In Table 4.1b we show DFM results for different tree
depths and Markov orders. For comparison, we also include accuracies for a single
tree of depth 4. The results of the DFM are both better and more stable, proving
the point that our approach reduces overfitting and increases predictive power.

4.4.2 Motion Completion

In this experiment, we apply the DFM to a motion completion task on walking
sequences and compare our results to a recent Gaussian process dynamical model
(GPDM). Furthermore, we demonstrate the suitability of the presented framework
for more complex actions and provide some general insights into training of DFMs.
All of our motion completion experiments use the CMU motion capture database, a
rich and noiseless data source of people performing different activities. All sequences
are given by 56 joint angles and an additional 6 parameters governing the global
translation and orientation.

Motion completion refers to the task of recovering consecutively missing frames
from a motion sequence. More specifically, given a complete motion sequence

X(o) _ (X(lz) X(i+1:i+j) X(i+j+1:T)) c RdXT, (415)

we remove the subsequence xU+%+7) of length j in the middle and compute an
estimate X+ from the remaining frames based on our model.
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Table 4.2: Motion Completion. (a) Walking: Joint angle RMSE of our DFM approach
and two baseline models. LI = linear interpolation; GPDM = Gaussian process dynamical
model. (b) Jump forward and golf swing: World coordinate RMSE of our DFM approach
as a function of tree depth and Markov order. Note the decrease of the error with increasing
tree depth and/or Markov order.

Seq. no. LI GPDM DFM Gesture Depth Order
B-GPDM 2-MAP (ours) 1 2 3 4
07-01 88.72  65.38 68.69 28.94 1 10.93 744 7.06 6.89
07-02 90.13 6447 64.43 33.87 Golf 2 9.15 9.62 6.19 5.96
08-01 113.71  70.05 72.61 30.47 swing 3 482 516 579 4.35
08-02 112.26  72.11  90.80 28.59 4 4.58 4.17 475 431
12-02 62.02 37.06 26.60 35.83
1 17.28 17.07 18.45 16.38
ﬁgi’ gg'fg g‘gég ?)}g 22%% Forward 2 39.59 12.01 1170 10.61
35_03 61.07 12'1 20'74 16.45 jump 3 12.94 11.47 10.53 10.44
i} : 15 : : 4 11.08 11.27 11.41 9.19

Mean 81.86  49.31  52.52 28.49

(a) Joint Angle Representation. RMSE (b) World Coordinate Representation.

for 8 walking sequences and different mod- RMSE for two more complex gestures. Re-

els. The best results are highlighted in bold.  sults are shown for different tree depths and
Markov orders.

As in [164], we use the following three preprocessing steps for all CMU sequences:
1. A modified skeleton (reducing d from 62 to 50); 2. Temporal downsampling by a
factor of four; 3. Centering of all variables. After that, we take the first T = 50 frames
of the 8 test sequences listed in Table 4.2a and consider 12 different starting positions
i€ S =1{4,...,15} for the removal of j = 31 frames. The sequences come from 5
different subjects walking at different speeds and with different styles. Infilling of the
missing frames involves training of a DFM {7}, . with a total of 29 sequences,
all of them preprocessed in the same way as described above and none of them part
of the test set. The estimate for missing frame j' € {1,...,31} in run 7 is then given
by the conditional expectation

()

1 ¢ S(itg i
s Z Af(i+j’,6)¢<pa (X( I )>>
c=1

)i e S, of all 12 runs are subsequently combined to give an

QUHT) . E[X(z‘ﬂ",z‘)

(4.16)

The estimates X145
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(b) Output: Stick model visualization of predicted 3D trajectory.

HORARAS F AR

(c) Output: SCAPE model visualization of predicted 3D trajectory.

Figure 4.4: Visualization of a 2D—3D Task. (a) Every third frame of a 2D input
sequence for which we want to reconstruct the red subsequence in 3D. (b,c) Two animations
of the output from our model: A stick model (center) and a SCAPE model (bottom) that
was fitted based on our reconstruction. Ground truth data is shown in blue/light skin,
reconstructions in red/dark skin.

average RMSE per frame

J
RMSE(x®) := ﬂ |Z D[R+ — x| (4.17)
€S \ j/'=1

as a measure of reconstruction quality.

Although a direct comparison to the GPDM is illustrative, our model is not
limited to simple actions such as walking. In fact, complex actions benefit more
from our nonlinear and non-parametric approach. To fortify this claim, we train
two additional DFMs on more challenging gestures: forward jump and golf swing.
In particular, we use the same set of preprocessing steps as before and train DFMs
on 7 (forward jump) and 8 (golf swing) training sequences, with 1 sequence in each
category reserved for testing. Both test sequences are missing 31 frames and the
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RMSE is again averaged over 12 runs.

While our experiments on walking sequences use a representation in joint angles
to allow a comparison with the results in [164], our experience has shown that DFMs
perform better when trained on a representation in xyz-world coordinates. In par-
ticular, the ability to benefit from deep trees and to map distinct parts of a motion
sequence to distinct linear systems works well in the xyz-domain. We therefore con-
vert the involved sequences to zyz-coordinates and use this new representation for
our two additional motion completion experiments.

Results. Table 4.2a summarizes the quantitative results of the experiments on
walking sequences and compares our findings with simple linear interpolation (LI)
and the Gaussian process dynamical model (GPDM). As expected, linear interpola-
tion performs worst, with an average RMSE of 81.86. The original authors of the
GPDM [164] consider four different learning procedures and we restate the numbers
for the two best performing approaches: B-GPDM, which adds a balancing term to
MAP estimation, and 2-MAP, which is a two-stage process involving a hybrid Monte
Carlo version of EM and scaled conjugate gradient. The former performs slightly
better (49.31 vs. 52.52). We compare these results with a DFM consisting of 12
trees. Our method achieves a lower RMSE on 5 out of 8 test sequences.

Table 4.2b shows our results for the actions ‘forward jump’ and ‘golf swing’.
DFMs are suited for these more complex actions just as well. Both gestures take
full advantage of our distributed approach and the minimum error is reached for a
tree depth of 4. The table also suggests that depth is more important than order:
While we do see some improvement with increasing Markov order, the error decreases
much more substantially with increasing tree depth. Our assumption that long-range
dependencies are only of minor importance thus seems to hold.

4.4.3 Predicting 3D from 2D

For our last demonstration, we consider the task of predicting 3D motion from 2D
inputs. In combination with the output of a pose estimation pipeline, we see potential
applications like automatic character animation from videos.

In particular, we use the same walking sequences and preprocessing steps as we
did in section 4.4.2 but train our model with pairs of 2D inputs and 3D outputs,
where we obtain the 2D data from orthographic projections to the xz-plane (top
view) and the yz-plane (side view).

Our results are summarized in Table 4.3. When using 2D views from the top,
our findings are in accordance with those in the previous section, i.e., the RMSE
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Table 4.3: 3D from 2D. RMSE of predicted 3D trajectory given a 2D input. Deeper
trees perform consistently better, while the effect of the Markov order varies.

2D Input Depth Markov order
1 2 3 4

1 6.08 6.18 8.17 7.72
Top 2 3.55 3.53 344 3.71
3 219 192 1.71 1.55
4 1.87 1.37 124 1.23
1 731 803 896 9.37
Side 2 411 423 462 5.30
3 3.13 323 3.35 3.76
4 2.97 319 339 3.65

decreases considerably when using deeper trees and higher Markov orders, although
the former seems to have a higher influence. Note, for instance, the decrease in error
of 84% between the best performing model, a tree of depth 4 and Markov order
4, and its counterpart of depth 1. For 2D views from the side, the test sequences
cannot take advantage of higher orders, but the benefit from deep trees still leads to
a substantial improvement of 59% compared to trees of depth 1.

Finally, we want to complement our numerical evaluation with a visual inspec-
tion of the reconstructed sequences: Fig. 4.4a shows a stickman visualization of the
available 2D input data (projections to zz-plane). Based on the predicted 3D motion
trajectories from our model (Fig. 4.4b), we can produce a realistic looking animation
of a SCAPE model [4] (Fig. 4.4c).

4.5 Computational Aspects

One of the major benefits in using DFMs instead of latent variable models lies in
their combination of being both flexible and tractable. The calculation of an exact
log-likelihood for our action classification experiment takes only 0.04 sec. when using
a dynamic forest with 12 trees of depth 4. We can thus classify a sequence in around
0.23 sec. Likewise, one synthesis step in our motion completion experiment takes
0.05 sec. All numbers refer to our Matlab implementation. Table 4.1a shows how
that compares to the other methods. The DFM is almost twice as fast as an HMM
and magnitudes faster than the remaining methods.



Chapter 5

Non-parametric Scene Prior
Hierarchies

So far, we have presented non-parametric models for single tasks: human pose in
chapter 3 and human motion in chapter 4. However, related tasks depend on and
provide semantic context for each other. A special case occurs if the considered tasks
constitute a coarse-to-fine hierarchy with respect to the information they comprise,
in which case we can order them in a linear chain. The individual models along such a
chain can be conditioned on the information provided by earlier models. We present
and discuss an incarnation of such a hierarchical system for object quantification and
detection and show how to incorporate powerful CNN-based image likelihoods.

model context

» depth

yes

no

intrinsic semantic context

(non-parametric semantic
video segmentation)

extrinsic semantic context

(non-parametric scene
prior hierarchies)

temporal context

(non-parametric Markov
models for human motion)

spatial context

(non-parametric priors
of human pose)

> time

dynami

“feature context
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Figure 5.1: Key Message: Extrinsic Semantic Context. A first-order hierarchy of
conditional Bayesian networks with dynamic topology can be used to model coarse-to-fine
dependencies in natural scenes, e.g., between object occurrences and object locations.

59
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5.1 Introduction

Scene understanding frameworks use image features comprising a visual scene to
categorize, quantify, detect, and segment objects in an image. While the advance-
ment of feature learning methodologies (e.g., convolutional neural networks [87])
and availability of large-scale datasets (e.g., Microsoft COCO [99]) have lead to a
tremendous increase in performance of local classifiers in multi-class categorization
and detection tasks [55, 23], structured approaches like graphical models will con-
tinue to play major roles in computer vision to encode dependencies and enforce
consistency between those independent predictions. First, because independent pre-
dictions based on local evidence, e.g., SVM predictions based on CNN features de-
rived from bounding box proposals, are unlikely to ever surpass a certain level of
accuracy; and second, because generative priors can produce image- and context-
conditioned hypotheses and likelihoods, which enables reasoning in scenarios with
partial evidence or incomplete data.

The importance of a generative prior for scene understanding can be motivated in
many ways: Without any evidence, it can serve as a regularization term or hypothesis
generator for any probabilistic model of natural scenes. Given partial evidence in the
form of context information, it can answer “what if?” questions, e.g., about likely
quantities, positions and scales of an object category given occurrence or location
information of other object categories or instances (“Where is the cutlery given the
location of the table and the information that there are two plates?”). Applications
for this type of queries range from artificial image composition [91] to making infer-
ences about an object’s role, its interaction with other objects or the atypicality of
its use in a given context [25]. Finally, given image evidence, a scene prior can de-
tect and correct inconsistent scene layouts produced by independent classifiers (e.g.,
detections of persons or cars above the ground [65]).

We argue that a good scene prior should have the following properties: (1) First
and foremost, it should be able to represent the true generating distribution and an-
swer (conditional) queries about it. Most importantly, it should be able to evaluate
the (context- or image-conditioned) likelihood of a specific configuration of objects
in a scene; (2) It should allow for efficient sampling of plausible scenes, either con-
ditioned on evidence or fully generative; (3) It should be able to take any and all
available information into account when performing (1) and (2), which suggests a
set of interrelated priors specializing in dedicated tasks, so that extrinsic information
provided by one can steer intrinsic behaviour of another; (4) It should allow inference
at different levels of granularity, so that less granular tasks (e.g., object occurrence)
do not require inference over more granular variables (e.g., object location).
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Figure 5.2: Scene Prior Hierarchy. A first-order hierarchy of conditional Bayesian
networks encodes information from coarse to fine. Global topology and local models are
dynamically estimated based on preceding hierarchical layers.

5.1.1 Approach

Guided by the motivation above, we propose a scene prior architecture consisting of
a novel first-order hierarchy of conditional Bayesian networks with structured global
topology and parametric as well as non-parametric local models at the individual
layers (Fig. 5.2).

Global Architecture. Our choice of a first-order hierarchy is lead by the observa-
tion that the prototypical challenges in scene understanding form a matryoshka-like
system of nested dependencies,

categorization — quantification — detection — segmentation, (5.1)

i.e., each level comprises a superset of the information present at the previous level.
Our approach mimics those natural dependencies and allows their joint modeling in
a causal framework, so that fine-grained tasks can benefit from coarse evidence. In
this work, we illustrate this idea by building a bilayered hierarchy over object oc-
currence (quantification) and object location (detection). Both layers can optionally
be conditioned on an observed image, effectively resulting in a prior-based rescoring
of independent image likelihoods. To make a prediction, we run a forward-pass of
level-dependent inference schemes, from coarse to fine, and stop as soon as we reach
a desired level of granularity. Each task along the chain is modeled by a separate
(conditional) Bayesian network whose dynamic global structure and local models de-
pend on the previous output. The choice for Bayesian networks in favor of undirected
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graphical models is motivated by the former’s generative principles, which allow for
efficient sampling and a simple encoding of conditional independencies.

Local Architecture. At its statistical core, a generative scene prior is a high-
dimensional density that maps parameterizations of scenes to likelihoods. Ideally,
we would therefore like to model the individual Bayesian networks along our hier-
archical chain using a fully-connected graph structure (= no topological indepen-
dence assumptions) and non-parametric local models (= no distributional shape
assumptions), as discussed in section 2.6. Unfortunately, this is not possible due
to insufficient training data (as indicated by discrete PAC bounds [49] and con-
tinuous AMIAE analyses [141]) and intractable inference procedures (due to high
treewidth [127]). Instead, we follow our design principles and let the topological and
distributional structure of each network be a trade-off between high flexibility and
high efficiency, i.e., a compromise between an unstructured non-parametric model
with high variance and intractable inference (e.g., a kernel density estimate) and a
structured parametric model with high bias and low expressiveness (e.g., a Gaussian
linear network). More specifically, we obtain a bias-variance trade-off by combining
the efficiency of low-treewidth topologies with the flexibility of non-parametric local
models. The former are given by conditional arborescences, which we learn from
Microsoft COCO [99] by generalizing our previous approach based on [26] to con-
tinuous data in dynamic settings. The latter are given by conditional kernel density
estimates whose bandwidths we estimate according to Scott’s rule [141].

Our large-scale experiments aim at showing two things: (1) A structured non-
parametric scene prior hierarchy is superior to both independent non-parametric
priors and structured parametric priors; (2) It improves the predictive performance
of a generative object detection framework based on state-of-the-art convolutional
neural network features (fast/er R-CNN [54, 124]).

5.1.2 Related Work

Over the years, there have been numerous attempts to build contextual and hierar-
chical scene models of various forms for recognition:

Contextual Scene Models. Conceptually simple approaches focus on the co-
occurrence [123] or mutual exclusion [33] of object categories in a given image. Oth-
ers look at the enhancement or inhibition of detections using contextual relations
based on both co-occurrence and co-location, e.g., through the use of structured
image labels [34], visual phrases [132], or discovered object groups [92, 98]. Sequen-
tial detection, such that weaker detectors (e.g., keyboard) can benefit from stronger
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ones (e.g., monitor), was investigated in [52, 155]. Some models look at context
across granularities, for instance, by using texture patches (e.g., trees or sky) to
enhance the performance of object detectors with fixed extent [61]. We take inspira-
tion from [52, 61, 155] in that we also believe that certain recognition tasks are easier
than others and can provide context for more complex tasks. However, instead of
modeling such contextual relationships only at the object(—texture patch) level, we
model them across recognition tasks (quantification — detection).

Hierarchical Scene Models. Hierarchical models attempt to model scenes at dif-
ferent levels of granularity. Well-known examples include the discriminative joint
scene model of [175], which encodes consistency of scene classification, object detec-
tion, and object segmentation through a structured output space, and the generative
scene—object—part model of [152]. Our model is inherently generative, hence closer
to [152], though we employ MAP inference in order to predict object locations. Un-
like [175] and [152], we perform inference only over the variables that are of interest
for a specific task; [175] can only return a MAP solution over all variables. In con-
trast to [152], we are not limited to pure MCMC schemes, because inference over
object occurrences can be done efficiently using standard BP in our model. As such,
our model is most similar to [25], where a hierarchical context model over object
occurrences and locations is proposed. However, our model has two notable distinc-
tions: First, we use non-parametric densities to model pairwise location relationships,
as opposed to unimodal Gaussian distributions in [25], which allows us to capture
much more complex spatial relationships. Second, and more importantly, we do not
assume that the graph topology of object occurrences and object locations is one
and the same. Instead, we generate the latter dynamically from continuous mutual
information tables. This is an important distinction: For instance, cars and people
may co-occur very often, but they do not have strong spatial relations with respect
to one another; our model can encode such task-dependent differences.

5.2 Non-parametric Scene Priors

In this section, we introduce our non-parametric scene prior, describe its training,
and provide a simple formulation for its integration with a general-purpose object
detection framework. We follow a top-down description, first describing the gen-
eral hierarchical architecture and then discussing the details of each layer in the
subsequent sections.
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Prior Hierarchies. A Bayesian network B = (G, px) is fully specified in terms
of two components: A directed, acyclic graph G = (X, E), where X = {X;}I' , is a
node set of random variables and £ < X x X is an edge set, and a joint probability
distribution px that factorizes over G,

IX|
px(x) = | [ px (| pag (), (5.2)
i=1
where pag maps a variable to its parent variables with respect to G, i.e., (X;, X;) € E
if and only if X; € pag(X;).

In this work, we consider a first-order hierarchy of conditional Bayesian net-
works, that is, a linear chain of Bayesian networks BY, ..., B%) in which each net—
work B = (G, px ) along the chain is conditioned on its parent network Bt
and (optionally) an observed RGB image /. Writing X : U X® and settlng
X© = & we have

pa(xUH | T) = prm C=0.1), (5.3)

where px ) factorizes over G and both may depend on x*~1). The hierarchical chain
XM — . — X encodes information from coarse to fine, which means that B®
encodes a superset of the information encoded by B~ Intuitively, each network
is thus only responsible for the differential information between its parent and itself.
We can use this property of information enclosure to reason about an image at
different levels of granularity, because each intermediate level L' < L constitutes a
proper joint distribution over U@L:/1 X®,

Scene Prior Hierarchies: Occurrence Bo — Location By. As a specific in-
stantiation of the general prior hierarchies formulation above, we build a bilayered
scene prior hierarchy over object occurrence and object location. As such, our scene
prior consists of a parametric occurrence network Bo = (Go,po) over occurrence
variables O and a non-parametric location network By, = (Gy,, pr) over location vari-
ables L. O models each category’s quantity and L models each instance’s position.
Following Eq. (5.3), both networks are not only conditioned on an image I but also
exhibit a structural dependency on each other,

por(0,1| 1) =po(o| ) -pr(l]o,I). (5.4)

We will sometimes write G|, Or prjo to highlight this dependence of By, on Bo. Note
that the second layer py, is based on more granular information than the first layer
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po: If we know the locations of the object instances across all classes, we also know
their occurrences. Extensions in both directions (finer and coarser) are possible! but
beyond the scope of this work. Fig. 5.2 depicts a graphical model of this high-level
structure and the following two sections describe both layers in more detail.

5.2.1 Occurrence Model

The occurrence network Bo = (Go, po) is a parametric, image-conditioned Bayesian
network that models both the presence/absence of object categories as well as the
number of their instances. Formally, we introduce one occurrence variable Oy per
category k, i.e., O ={O}&;, where K is the total number of categories. To guarantee
maximum flexibility, we assume categorical marginal distributions O, ~ Cat(p =
(pi)iez,,, ) With probability mass function po, (or;p) = [1; pl[o’“:ﬂ? The maximum
number of instances my — 1 varies across categories k£ and is determined at training
time. The joint distribution is assumed to factorize over G according to Eq. (5.2),

po(o|I) =] [po, (or | Page (0x), 1) (5.5)

k=1

An examplary instantiation o of O is illustrated in Fig. 5.5a. We incorporate image
evidence by factoring the conditional distributions into log-convex combinations with
[B-weighted contributions of prior and likelihood,

Po,, (Ok ‘ PaGO(Ok), I) X POy (Ok ’ paGO(Ok))B * Po,, (Ok | I)(l_ﬁ)- (5-6)

For § = 1, we obtain a generative, image-independent occurrence prior and for g = 0,
we get back the original, priorless occurrence likelihoods that operate independently
on each object category k.* The likelihood can be modeled in a very general way
as the function composition of a global image feature ¢, : Z — ® with a category-
specific classifier c®) : & — P,

po, (0] 1) = [(c? 0 d0) (1)] (0n), (5.7)

where 7 is the set of all images, ® is a feature space and P is the set of probability
mass functions on Z,,, .

LA binary presence/absence class categorization network is coarser than Bo, an instance seg-
mentation network is finer than Bi,.

2[-] is the Iverson bracket and Z, = {0,...,n — 1}.

3The distribution in Eq. (5.6) is not normalized, but the local partition function can be readily
obtained as the (weighted) inner product of the two parameter vectors.
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Global Topology Go = (O, Eg) of Bo. Egs. (5.5) and (5.6) reference the global
topology Go. There are many reasonable ways to define an edge set Eg over the
node set O, e.g., based on our intuitive understanding of the semantic relationships
between object categories, their distances in well-established semantic object hier-
archies like WordNet [41], or their attributes. However, they might not lead to an
optimal graph structure in an information-theoretic sense, which is given by the
projection of the true generating distribution p§ onto a target class that allows for
reliable learning and tractable inference. We project pg onto the set of distributions
that factorize over the robust and efficient class of arborescences T, so that our
objective function is

Go = argmin KL | p§
G/OGTO

f[po,c <0k ’ pag, (ok)>> . (5.8)

As discussed in chapter 3, this seemingly complex optimization problem has a closed-
form solution in terms of the maximum spanning tree (MST) of a complete graph over
O whose edge weights w(Og, O,) are given by the mutual informations MI(Oy, O;)
between the corresponding random variables [26]. The MST is undirected, but since
any two arborescences with the same undirected skeleton encode the same set of
conditional independence assumptions, we can choose an arbitrary root node and
direct all edges away from it to obtain an arborescence.

Now that the local models and global topology are fully specified, we can turn to
the question of how to estimate them from a training set.

Learning

Let D, = (o,(:))ki e NN be a training set of occurrences, where N is the number of
annotated training images, K is the number of object classes and o,(f) is the number of
occurrences of category k in image i. Learning Bo from D,, consists of learning (1) the
graph topology Go; (2) the local occurrence priors po, (ox | 01), with o := pag_ (0);
and (3) the local occurrence likelihoods po, (o | I).

(1) Learning the Global Topology C:‘o. We estimate all pairwise marginal dis-
tributions po,o,(0k,01), k # [, and compute the mutual information between the
variables in question using

MI(Ox, O) = H(Oy) + H(O)) — H(Oy, 0)), (5.9)
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where H (e) = E[—Inp,| denotes entropy. These give rise to an estimate of the full
mutual information graph whose maximum spanning tree (Fig. 5.4a) specifies an
optimal topology Go = (O, Eo).

(2) Learning the Local Priors po, (o | 0;). Given Go, we can reuse the pairwise
marginals to define the local models

00,0, (0%, 01)

o P00, (0%, 01)

]/?\Ok (O]€ | Ol) = Z V(Ol, Ok) € Eo. (510)

In theory, estimating the required conditional distributions is straightforward, but
a simple maximum likelihood estimator, which would just count the conditional
occurrences, might suffer from high variance and overfitting due to limited training
data. In practice, we therefore employ the following smoothing scheme: Let p =
(pi); be the unknown parameter vector of some conditional occurrence distribution
po,(or | Oy = 1') and Dy, (o1 = {0,(3) | oli) = [I'}. We assume a Dirichlet conjugate
prior p ~ Dir(a = («;);) and compute an estimate p of p by minimizing the Bayes
risk with respect to a mean squared error loss, which has the closed-form solution

ZOEDok\ol:l’ [0 = Z] + Oéz
|D0k|01=l/| + HaH1

pi = (5.11)
Note that this is just an asymmetric form of additive smoothing. We incorporate
the prior belief of an exponential decline of occurrence probabilities by letting the
relative pseudocounts =i follow a truncated geometric distribution whose single

lee]x
parameter we set based on maximum likelihood estimation.

(3) Learning the Local Likelihoods po, (0% | I). Possible choices for ¢, include
standard image features like HoG [30] or SIFT [100] as well as the fully-connected
layers of a CNN [87, 54]. The only requirement concerning the classifiers ¢*) is that
they return scores that can be (re-)interpreted in a probabilistic sense, e.g., logistic
regression, a calibrated SVM [177], or a softmax layer.

5.2.2 Location Model

A principled architecture for the location network By, = (Gp,pr) is a challenging
task due to a number of reasons, including high-dimensional and continuous data,
dynamic dependencies on the occurrence network, and complex image dependencies;
its design is among the core contributions of this work.
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Figure 5.3: Location Network Architecture. We produce a fixed number of object
proposals and obtain for each proposal a normalized distribution over its class membership
using a calibrated classifier. In parallel, we create a dynamic location topology based on
the output of the occurrence model. The local models consist of a weighted product of
two densities: an image density that we fit based on the classifier scores and a conditional
prior density that we learn from data. A final result is obtained through non-parametric
max-product inference.
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Due to the continuous domain of bounding box parameterizations, our task has
shifted from discrete parameter estimation to the notoriously difficult problem of
multivariate density estimation. As noted throughout the statistics literature, there
is little hope to reliably estimate an unstructured density over locations of multi-
ple 4-dimensional bounding boxes, even for a moderate number of object instances.
For instance, Scott [142] estimates that approximately 5.0 x 10° training samples
are needed to learn a density over 2 object instances that is comparable in asymp-
totic mean integrated absolute error (AMIAE) to a single-instance density estimated
from just 5.6 x 10? training samples. We therefore take an approach similar to the
previous section and factor pr, into an arborescence. While enforcing conditional
independencies through topological constraints inevitably introduces a global esti-
mation bias, density estimation of the low-dimensional local models becomes feasible
and modeling of spurious interactions is avoided. Following the hierarchical scene
prior architecture of Eq. (5.4), the location network By, depends on both the image I
and the occurrence network Bg. We make use of those dependencies to dynamically
adjust the location network with respect to the number of active object instances
as well as their categories, distributions, and optimal dependencies. At a high level,
we use a formulation that bears some resemblance to the one used in the occurrence
network,

K mkfl

p .
prlo.1) o [T TT b, (s | pacy, () pr, i | 1), (5.12)
k=1 j=1

where L;; € L models the 4-dim. bounding box of the j-th instance of the k-th
class in the image I and L = {Ly; | 1 < k < K,1 < j < my — 1}. Our approach
reflects the intuition that a good location model should balance prior assumptions
about spatial dependencies between object classes on the one hand and likelihoods
based on image evidence on the other hand in a coherent way. Although similar in
spirit to Eq. (5.6), the underlying characteristics are very different. Most notably,
we incorporate occurrence information o to obtain a dynamic global topology Gy,jo

and dynamic local models py, <lkj ‘ paGLlo(lkj)>. Fig. 5.3 provides an overview of
this process and the following sections discuss the necessary details.

Dynamic Global Topology

Even though differential entropy differs in fundamental aspects from the classic Shan-
non entropy, Eq. (5.9) carries over to the continuous case. At training time, we can
therefore use a non-parametric entropy estimator [85] to estimate the continuous
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Figure 5.4: Object Category Topologies. We compare (a) occurrence MI and (b) lo-
cation MI [red = high MI; blue = low MI|. The observed differences fortify the need for
different topologies in Bo and By,. Note that, while (a) shows the actual occurrence topol-
ogy, the values in (b) are used to generate a dynamic topology on demand.

mutual information between all categories, including self-information. Our training
set for the joint entropy estimation of categories k, k' consists of pairs that we find
via bipartite matching [66] between the object instances of both classes, where the
edge weights are given by Euclidean distance. We collect all MI estimates in a ma-

trix M = (1\//I\I(Lk1, Lk/1)> e REXK Note that the entries of M consist of mutual
k!

informations between bounding box parameterizations, which are different from the
closed-form mutual informations in Eq. (5.9) for the parametric occurrence graph.
For instance, even though ‘dining table’ and ‘fork’ frequently co-occur, their relative
locations are largely unstructured, which results in a high occurrence MI and low
location MI. See Figure 5.4 for an overview.

Instead of learning a full location model over all possible combinations of cate-
gories and instances, we construct a dynamic location topology that is optimal with
respect to the available occurrence information. Specifically, given an occurrence
vector o = (ox)E_,, we split the location variables into an active set L4 and an
inactive set L; := L\L,4. For each category k, we add the oy location variables
{Lk1, ..., Lio,} to the active set, i.e., if the occurrence model identifies three per-
sons, we activate the first three person location variables. We can now efficiently
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Figure 5.5: Dynamic Location Topology. (a) The occurrence vector o contains
quantities for all K categories. (b,c) After locating the MI values between classes with
non-zero occurrences in M, we compute an MST over the active variables Ls. (d) The
active variables L4 form a dynamic location topology Gyo.

construct a non-parametric, occurrence-dependent topology Gy, by computing a
maximum spanning tree over L only. The required MI values are readily available
in M. Note that this is not equivalent to computing a maximum spanning tree of M
(Fig. 5.4b) and connecting the active location variables based on such a tree’s edges.
Since the occurrence network is image-conditioned, the dynamic location topology
depends on the image as well. Fig. 5.5 shows an illustration of this process.

Dynamic Local Models

Instead of fitting unimodal Gaussian distributions to the active location variables,
which, despite their limitations, are still a quasi-standard for estimating continuous
Bayesian networks [25], we account for the rich and multimodal dependencies in
natural scenes by adapting the non-parametric Bayesian network of chapter 3 to our
problem.

Structured Non-parametric Density Estimation. As a reminder, a non-para-
metric Bayesian network describes a factorization of a density into a product of
conditional kernel density estimates, i.e., it is a special case of Eq. (5.2) in which the
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local models are continuous and non-parametric. To account for the non-uniform
structure of location likelihoods and to pave the way for kernel reduction approaches
(section 5.3), we use a slighlty more general version of a conditional KDE than
previously. .

More specifically, given a training set Dy = (x)Y, = (.I§-z)>ji e RN and an
ensemble of bandwidth matrices # = {H®}Y | we extend our original definition of

an unconditional kernel density estimate to

Z |H( M ( (HD) " (x - X(i))>7 (5.13)

where kg is a d-dimensional kernel and w = (w;)Y, is a non-negative weight vector
such that |[wl||; = 1. In case of an isotropic Gaussian kernel k; = N(0,1;), we can
interpret Eq. (5.13) as a Gaussian mixture model with w-weighted components. The
i-th Gaussian is then centered at x(¥ and has covariance (H®)2. As before, we can
use such a KDE as a local model by conditioning Eq. (5.13) on an observed value y,

Py e (x|y) sz (x ‘ /L|(;,), Zg}), (5.14)

where “I(;')’ 2|(;,) are the mean and covariance of the i-th Gaussian component in the

joint KDE pﬁxw (x,y) conditioned on y and
wi(y) o w; - N (y ( v, (Hf;‘)yf) (5.15)

are the conditional weights (Hf;,)y denotes the y-part of H®).

With these prerequisites at hand, we are ready to describe the factors of Eq. (5.12)
in more detail. To keep the notation uncluttered, we fix a node L € L 4 with category
k and its parent node L' := Pag,,, (L) € L4 with category k'

Local Priors. Due to its non-parametric nature, a training set specifies Eq. (5.14)
up to the weights and bandwidth matrices. We create a training set D(; ;) by accumu-
lating, over all images but for each image separately, all pairs of instances belonging
to categories k and &’. Using Dy, we set the prior term in Eq. (5.12) to*

D(l )

pr(l| L =1)=

4In practice, one should also consider conditioning Eq. (5.16) on the space of bounding boxes to
ensure a finite support region.

(L =1 (5.16)
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If there is no reason to favor one training point over the other, we use a uniform
weight vector w but note that the conditional weights in Eq. (5.16) are nonethe-
less non-uniform due to the reweighting operation in Eq. (5.15). Furthermore, we
set H® := H and estimate the shared bandwidth matrix H according to Scott’s
rule [141], that is, proportional to the square root of the sample covariance matrix.

Local Likelihoods. The density p.(l | I) at a particular point should reflect the
likelihood that the corresponding bounding box contains an object of category k in
image I. We obtain a training set representing this density by following a path similar
to Eq. (5.7), the only difference being that we account for the sample space B of L
by extracting and scoring bounding box features instead of global image features.
Since a sliding window evaluation of the entire space is computationally intractable,
we use selective search proposals [158] to cover high-density regions as efficiently as
possible. This allows us to approximate the likelihood over the image with a kernel
density estimate with relatively few components centered on likely object locations.

Formally, we extract a fixed number P of object proposals D¢ g = {¢? € B}
using selective search, compute features ¢,(¢ (i)) € ® for them, and classify each
feature with a pre-trained and calibrated multi-class classifier ¢, : ® — R¥. This
results in a set of P normalized score vectors s@ := [¢; 0 ¢,](¢?) € RX that we

collect in a score matrix S = (s®)P, e RE*P e, st is the probability that ¢
contains an object of class k. To approximate the likelihood over the image, we
consider each object proposal ¢ as a training point with weight w; := s,j) and
bandwidth H® := Area(¢”))H, where Area(e) denotes normalized bounding box
area and H is set as above, leading to

pr| 1) = p 2 (| @). (5.17)

5.3 Inference

Given a trained scene prior hierarchy &, we obtain a prediction by conditioning &
on a test image [ and running level-dependent inference schemes.

Parametric Sum-Product Inference in Bg. Due to our tree-structured topol-
ogy and the fact that most images do not contain a given object class, many condi-
tional distributions in Bg are peaked at 0. As a consequence, we would need strong
image evidence to avoid an empty scene as MAP solution. An approach that proved
to perform better in practice is therefore a run of standard sum-product inference
followed by a computation of the expected marginals for each node O.
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Non-parametric Max-Product Inference in By. The true generating distri-
bution pj is inherently multimodal, a fact that not only causes the need for non-
parametric local models but also drives the way we perform inference. In particular,
we employ a recent version of non-parametric max-product BP [112] that is designed
to preserve modes, which makes it ideally suited for our purpose. Note that our gen-
erative approach allows for very effective proposals in the form of likelihood samples
from pr, (Ix; | I). In all our experiments, we use 40 particles and run the algorithm
for 40 iterations at a smoothing temperature of 10.

Speed-Accuracy Trade-Off. MAP inference in non-parametric Bayesian net-
works is computationally expensive, because particle-based inference schemes need
to evaluate the complex model potentials (i.e., the conditional kernel density es-
timates) millions of times. To perform those evaluations as efficiently as possible,
we could use an approach similar to section 3.4. Another possibility, which we em-
ploy in this chapter, is to approximate the original KDE with a mixture consisting
of fewer components. A popular way to achieve this is to successively replace two
similar kernels by their moment-preserving merge, either by minimizing the change
in intra-component variance (Eq. 2.19) [134] or by minimizing an upper bound of
the KL-discrimination before and after the merge [130]. The quality of such an ap-
proximation can be ensured by keeping track of the MSE between the reduced and
reference density.

5.4 Experiments

Our approach is made possible by the recent availability of the large-scale Microsoft
COCO dataset [99], which contains, inter alia, bounding box annotations for 80
semantic object classes of common everyday objects. The full dataset comprises a
total of 9.1 x 10° instances in 1.2 x 10° images, which have been officially split into a
training set and a validation set at a ratio of 2:1. COCO exhibits a large variability
with respect to both annotations per object class (1.1 x 10* £ 3.0 x 10*) and per
image (7.39 £+ 7.40), which poses a serious challenge and requires a flexible approach.

We use COCO to illustrate the benefits of the proposed non-parametric scene
prior hierarchy in two large-scale experiments: (1) Expected log-likelihoods and (2)
precision in object quantification and detection tasks. All experiments are based
on the same universal model that we train on the COCO training set and test on
a subset of the COCO validation set proposed by the fast-RCNN author [54]. We
make use of recent advances in the area of deep architectures and instantiate ¢,, ¢y
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Figure 5.6: Distribution of Test Log-likelihoods. We show the distribution of test
log-likelihoods in (a) the occurrence network Bo and (b) the location network By,. Models
with moderate weights up to 5 = 0.3 achieve a better expected test log-likelihood (vertical
lines) than the baseline with 5 = 0.0.

as rectified FC-7 features from a state-of-the-art CNN [54]. The classifiers ¢, ¢,
are obtained using logistic regression [40] and the CNN’s softmax layer, respectively.
In case of the location network, we will therefore sometimes refer to the pure image

likelihoods Eq. 5.17 (8 = 0.0) as generative fast-RCNN (gfRCNN).

5.4.1 Expected Log-likelihood

A standard way to compare f-parameterized density models p?) is to measure their
closeness in terms of KL-divergence to the unknown generating distribution p*. In
the specific case of our scene prior hierarchy (Eq. (5.4)), this leads to

KL (pOL H pOL) = —Epx [log pOL(O L)] + const. (5.18)
Since we do not have direct access to pgy,, we estimate

A~

Eng[log 72 (0, ] N- Zlog o, 10), (5.19)

which is just the negative empirical risk with respect to a log-loss. In our experiments,
we evaluate Eq. (5.19) for a number of different weightings between $ = 0.0 (no prior)
and § = 1.0 (no image evidence). Figs. 5.6a and 5.6b summarize this quantitative
evaluation: Moderate contributions of the prior up to a weighting of 5 = 0.3 perform
better than the baseline without a prior in both layers. In particular, we accumu-
late substantially more mass around the modes of the likelihoods at approximately
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—5 nats (Bo) and +2.5 nats (By,), suggesting that our scene prior hierarchy pushes
the underlying CNN architectures for object quantification and detection closer to
the ground truth density. For higher values of 3, the model moves towards a genera-
tive, image-independent prior and it is no surprise that the performance falls below
that of a baseline incorporating more image evidence.

5.4.2 Occurrence and Location Accuracy

In addition to the theoretical validation in the preceding section, we also analyze
the predictive performance gains when using our scene prior. We look at both layers
independently and compare their ground truth occurrences and locations to our
model’s expected marginals and MAP predictions.

Occurrence network Bg.

A~

For evaluation purposes, we employ a standard £;-loss, £1(0®,8®) = o — 8|,
and report the expected test loss (ETL) across all test images and categories in
Fig. 5.7a. The results confirm our previous findings: We achieve a minimal ETL of
0.0656 at B = 0.2, after which the performance decreases as expected and falls below
the baseline score of 0.0682 at § = 0.5 due to the lack of strong image evidence. In
Fig. 5.7b, we take a closer look at the performance gains across categories for the
optimal weighting: Using our prior with § = 0.2 improves the performance in 56/80
categories (green dots). The performance decline in the remaining categories (red
dots) is small, with the ‘person’ category being the only exception. We attribute this
observation to the high variance (15.98) and high average number (4.04) of persons
in the COCO images in which this class is present.

Location network B;,.

We report average precision (AP) at an intersection-over-union threshold of 0.5.
Guided by our findings in the occurrence network, we evaluate this metric in the
critical range between 5 = 0.0 — 0.3. Fig. 5.7c shows our results across COCO
categories. The average improvement over the priorless baseline (mean AP: 41.85%)
varies with 5 and can be up to 3.1% (max. mean AP: 43.13%). Overall, we achieve
performance benefits in 49/80 categories.

The ability to take advantage of the prior naturally varies from category to cate-
gory, depending on the predictive power of a category’s likelihoods and the strength
of the contextual information provided by co-occurring objects. In practice, it can
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Figure 5.7: Quantitative Evaluation on COCO. (a) Expected £;-loss in the occur-
rence network over all COCO categories and test images. Moderate weightings of the prior
up to 8 = 0.2 improve the overall performance. (b) Category-by-category comparison of
a prior with 8 = 0.2 to a system without a prior. Negative values indicate a relative im-
provement over the priorless baseline. (c) Average precision in the location network across
COCO categories. (d) We report the same content as in (c), but using a custom weight
By per category. (note) Categories are ordered according to their baseline precision. A
green dot indicates categories for which a positive weight (Fig. 5.7¢)/the variable weight
(Fig. 5.7d) outperforms the priorless baseline. A blue dot indicates an upper bound on
the average precision if the optimal variable weights were known. Lower is better in (a-b),
higher is better in (c-d).
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therefore be advisable to use a custom weight per category. Simple ways of achiev-
ing this include selecting the weights based on the edge weights in Gy, or cross-
validation. The next section discusses variable weights in some more detail.

Variable Weights. The scalar weight 5 € [0, 1] controls and balances the contri-
butions of prior and likelihood (see Egs. (5.6) and (5.12)); the larger S the higher
the contribution of the prior. However, with a single parameter 3, the improvement
due to our scene prior hierarchy varies from object category to object category, as
mentioned in the previous section. This observation motivates choosing an individual
weight [, for each object category: For object categories k that are visually discrim-
inant and have peaked likelihoods, [, should intuitively be smaller. On the other
hand, for object categories k that often appear small, non-discriminant, or occluded
but have high location MI with other object categories that are more discriminant,
Bk should intuitively be larger.

We illustrate the potential that lies in variable weights by considering an oracle
setting: We employ a greedy two-stage approach that selects an optimal local weight
By for each category k by running the standard model with different global weights.
More specifically, we fix a set 8 = {3®}; of global weights and select, for each cate-
gory k independently, the weight 8y that maximizes the average precision of category
k over all g € B. Subsequently, we rerun max-product inference in the location net-
work with those optimal values. Using this weighting strategy with the results shown
in Fig. 5.7c, we obtain the precision scores shown in Fig. 5.7d. Separate weights for
each object category can increase the baseline performance by up to 3.7% (mean AP:
43.40%). It is important to note that this analysis is a theoretical upper bound. In
practice, we do not know those optimal weights and have to estimate them using
cross-validation, in which case the performance gain is 2.4% (mean AP: 42.86%).

Comparison to Alternative Topologies and Local Models. The previous
paragraphs have shown that our scene prior can improve the performance of a gen-
erative approach based on fast-RCNN predictions. We will now show that this could
not have been accomplished with less flexible topologies and /or local models. In par-
ticular, we compare our approach to scene priors with an edgeless topology (‘indepen-
dent’) and/or normally distributed local models (‘Gaussian’). For all 4 combinations,
we run MAP inference with 4 global (8 = 0.0 — 0.3) and 2 local (cross-validation
and oracle) weighting schemes. Table 5.1 summarizes our results on the test set.
With global weights, an independent Gaussian prior performs worst, followed by a
tree-structured Gaussian prior and an independent KDE prior. Our proposed com-
bination of a tree-structured topology and non-parametric local models (last row)
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Model Global Weighting 3 Local Weighting [

0.0 0.1 0.2 0.3 cv Oracle

Parametric Network 41.85 40.95 39.42 37.37 41.62 41.60
(Gaussian, independent) (£0.00%) (—2.15%) (—5.81%) (—10.70%) (—0.55%) (—0.60%)

Parametric Network 41.85 41.21 39.82 37.03 42.15 42.21
(Gaussian, tree-structured) (£0.00%) (—1.53%) (—4.85%) (—11.52%) (+0.72%) (+0.86%)

Non-parametric Network 41.85 41.38 40.23 38.51 41.64 42.03
(KDE, independent) (£0.00%) (~1.12%) (~3.87%) (~7.98%) (=0.50%) (+0.43%)

/g Non-parametric Network 41.85 43.13 42.31 41.48 42.86 43.40
2 (KDE, tree-structured) (£0.00%) (+3.06%) (+1.10%) (—0.88%) (42.41%) (+3.70%)

Table 5.1: Comparison to Baseline Priors. Mean AP for two types of topolo-
gies (independent, tree-structured) and two types of local models (parametric Gaussian,
non-parametric KDE). We run MAP inference on the test set for all 4 possible combinations
and 6 different weighting schemes, 4 global ones (§ = 0.0 — 0.3) and 2 local ones (cross-
validation, oracle). The last row (ours) is shown in more detail in Figs. 5.7c and 5.7d.

is the only setup which is able to improve the baseline precision. The other priors
are inferior due to their lack of context information (independent topology) or their
limited expressiveness (Gaussian local models). With local weights, tree-structured
topologies have an edge over the independent priors, but the non-parametric ap-
proach is again superior to the parametric model.
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5.5 Qualitative Results

We will now support our quantitative evaluation with some qualitative impressions
from our scene prior hierarchy.

5.5.1 Scene Layout Synthesis

One of the advantages of our fully generative prior is its ability to synthesize plau-
sible scene layouts by drawing samples from the unconditional joint distribution
por(0,1| &). In order to give an impression of sample quality, we show some un-
conditional samples that we draw, layer-by-layer, from the hierarchy. In particular,
we draw an unconditional sample o from the occurrence distribution po(o | &),
generate a dynamic location topology Gy, based on o, and draw an unconditional
(in the sense of ‘not image-conditioned’) sample 1 from pr,(1 | O = o, &¥).

5.5.2 Occurrence Network Predictions

Given a trained scene prior hierarchy & and a test image I, we run parametric
sum-product inference in Bo to obtain all K marginal distributions po, (or | I)
and make a prediction o = (0)5 , with o, = E[Oy | I]. Fig. 5.9 illustrates our
model’s ability to infer object occurrences even in complex images containing several
categories (a) and to ‘count’ multiple instances of the same class (b,c). Also note
how the strong image evidence for ‘doughnut’ (b) increases the likelihood for other
foods (e.g., ‘pizza’,‘cake’) and a ‘dining table’, but the lack of further image evidence
keeps these classes below the radar. The difficult class ‘baseball glove’ is detected
successfully due to the presence of ‘baseball bat’ (d).

5.5.3 Location Network Predictions

Given a trained scene prior hierarchy S and a test image I, we generate a dynamic
network topology according to the procedure introduced in section 5.2.2 and run
non-parametric max-product inference [112]° in By, to obtain a prediction for all
active location variables L4. Fig. 5.10 shows some of those predictions.

SInference parameters: smoothing temperature = 10, particles = 40, iterations = 40.
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Figure 5.8: Scene Layout Synthesis. 6 unconditional samples from our prior. All

scene layouts were drawn from the same universal model, illustrating that our approach
can cover a wide variety of domains, produce sensible combinations of objects that are
specific to a particular environment, and place them in appropriate positions (pizza on
dining table; toothbrush next to cup; remote on sofa). In scene (d), we may even perceive
a vanishing point. The naming of the scenes was done manually for illustrative purposes.
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Occurrences

Occurrences

Occurrences

Figure 5.9: Occurrence Network Predictions. 6 test images together with the ex-
pected marginals of all 80 COCO categories (in practice, we would round these to the
nearest integer). Filled gray circles mark ground truth values of all categories with non-
zero occurrences. Note how the presence of a category with strong image evidence supports
the presence of semantically related categories with less image evidence.
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Figure 5.10: Location Network Predictions. 6 test images together with their ground
truth annotations (solid boxes), our predictions (dashed boxes), and the corresponding
intersection-over-union (IOU) scores. Hue encodes categories, saturation encodes accuracy.
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Chapter 6

Non-parametric Semantic Video
Segmentation

Semantic context can be extrinsic (‘allocontext’), as in the previous chapter, or
intrinsic (‘autocontext’), which we will investigate in the present chapter to model the
foreground shape of people in video sequences. We employ a three-layered approach
in which each layer models a different type of contextual information: Spatial context
in the first layer, static autocontext in the second layer, and dynamic autocontext in
the third layer. Each layer contains the same type of non-parametric base classifier
but is trained on a dedicated set of features that may comprise information derived
in previous layers, possibly at previous points in time, such as their labeling or their

confidence.

model context

Figure 6.1: Key Message:

» depth

yes

no

intrinsic semantic context

(non-parametric semantic
video segmentation)

extrinsic semantic context

(non-parametric scene
prior hierarchies)
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models for human motion)
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of human pose)
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“feature context
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Intrinsic Semantic Context.

> time

The output of a non-

parametric base classifier for a previous frame can be used as an additional feature in a
semantic segmentation task to train a non-parametric base classifier for the present frame.
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6.1 Introduction

The treatment of objects in computer vision comprises a coarse-to-fine hierarchy
of principled tasks: categorization — quantification — detection — segmentation.
We already encountered this hierarchy in the previous chapter, where we used coarse
occurrence information to prime a finer location model. Although the individual links
in this hierarchical chain are all useful in their own right, they should generally be
understood as adjuvants for subsequent high-level tasks. In this chapter, we focus on
segmentation, which is on the finest hierarchical level and therefore an effective tool
for ensuing tasks requiring the actual outline of an object, such as the identification
of object-object interactions (e.g., between two people), the recognition of an object’s
state (e.g., a person’s activity), or the reconstruction of an object’s 3D shape.

We are particularly interested in the semantic segmentation of video sequences,
a task with a rich history that has been approached by both static models, which
operate independently on single frames of a video sequence, and dynamic models,
which condition their actions on other frames. While static models can exploit spa-
tial dependencies, dynamic models have access to higher-order motion information.
In contrast to feature context, where dynamic context in the form of temporal de-
pendencies between pixels is well-studied, model context has been limited to static
types of intrinsic semantic context between labels. We are therefore proposing a
general-purpose dynamic autocontext model for semantic video segmentation, turning
the three-dimensional spatio-temporal grid of common dynamic models into a four-
dimensional tensor grid encoding spatio-temporal as well as semantic dependencies.

The integration of a temporal component for semantic cues into a segmentation
model is beneficial from an information-theoretic perspective but challenging from a
modeling point of view, especially with regard to memory, runtime, and inference:

Memory. Dynamic approaches are often non-causal offline methods, i.e., they re-
quire that the entire video is available at processing time. This not only limits the
maximum number of processable video frames due to memory constraints but also
excludes their application from all real-world systems in which an online analysis of
a video stream is necessary (e.g., surveillance cameras).

Runtime. A related challenge in the online setting is the requirement to process
the incoming video with low latency. This is especially relevant for high-level tasks,
where segmentation serves as a preprocessing step for subsequent components, which
come with computational costs of their own.
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Inference. Many approaches for semantic video segmentation operate on the level
of individual pixels or small superpixels, so that the corresponding graphical mod-
els can easily contain millions of random variables. Ensuring adequate conditional
independencies is therefore key to guaranteeing efficient training and inference.

6.1.1 Contribution

In this chapter, we propose a causal extension to static autocontext [156]. Our
contribution is a dynamic context model for semantic video segmentation which
addresses the aforementioned challenges and has the following desirable properties:

1. General: We do not rely on application-specific features or priors.
2. Comprehensive: We integrate intrinsic semantic context in space and time.
3. Efficient: Our CPU implementation runs at multiple frames per second.

4. Effective: We achieve decent performance on multiple benchmark datasets.

6.1.2 Related Work

In recent years, semantic video segmentation has been tackled from several different
perspectives. The available methods can be roughly classified by the type of input
data they rely on, whether they fulfil their task in isolation or jointly with other
tasks, and their processing time for unseen test frames.

Unsupervised approaches have the appealing property that they can operate on
unlabeled RGB data. This is a big advantage considering the high cost for an-
notating even short video sequences. A clear downside is the unavailability of a
likelihood function as an objective evaluation criterion. Furthermore, the semantic
regions resulting from such approaches can be controlled only implicitly, e.g., based
on color or motion: Grundmann et al. [59] build upon the work of Felzenszwalb
and Huttenlocher [43] and construct a hierarchy of 3D spatio-temporal graphs with
varying granularity by successively merging graph regions based on their Lab his-
togram difference. Corso et al. [171] pursue a conceptually similar method but fo-
cus on a streaming mode consisting of hierarchies for non-overlapping chunks of k
frames. Region merging as in [43, 59] can be allowed or forbidden based on a semi-
supervised evaluation scheme depending on hierarchical layers in the previous and
current frame. Motion-based approaches include a popular method due to Brox and
Malik [17], who use a flow-based tracker to generate dense point trajectories that
can be clustered using spectral clustering [107]. Recently, Papazoglou et al. [113]
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proposed an efficient approach to general object segmentation by first computing a
rough inside-outside-map of the foreground object based on motion and then refin-
ing the initial estimate by enforcing temporal smoothness and building a dynamic
appearance model. Schlesinger [137] proposed an unsupervised real-time video seg-
mentation method for tracking foreground object segmentation masks. The model
includes a spatial prior which needs to be initialized and is of a restrictive form in
order to permit real-time inference.

Conditional random fields (CRFs) are flexible models in the sense that they pro-
vide a natural framework to process different types of input data (e.g., RGB, depth
and disparity), allow the inclusion of arbitrary features and can be optimized jointly
for multiple tasks (e.g., pose, segmentation and depth): The detector-CRF [89] uni-
fies detection and segmentation in a common and principled framework. Vineet et
al. [161] use an instance of this approach for human segmentation in which the detec-
tor potentials are supplied with body and face detections. In addition to that, video
potentials in form of a Potts model [119, 170] on 3D mean-shift [27, 50] regions en-
force interframe consistency and histogram matching ensures consistency over scale
and pose. Alahari et al. [2] consider the task of jointly optimizing for segmentation,
pose and disparity of humans in 3D movies. Their CRF contains spatial as well
as temporal pairwise terms and is solved in a three-step approach: After running
disparity-augmented versions of the person detector in [42] and the pose estimation
proposed in [173], they fix the pose and first optimize for the disparity and finally
for the segmentation using a-expansion [11]. The obvious drawback of supervised
video segmentation approaches is their need for labeled data. At the moment, only
very few datasets exist for this task, among them the Buffy dataset [44], the FBMS
dataset [111], the J-HMDB dataset [75] and the more recent VSB100 dataset [51].

From a technical point of view, semantic video segmentation has been success-
fully addressed using spatio-temporal Markov random fields (MRFs, Eq. 2.8). In the
early work of Luthon et al. [102], the authors use an MRF-prior on a spatio-temporal
grid and propose a multi-resolution inference method based on iterative conditional
modes [8] in a temporal sliding window. Although the type of dependencies express-
ible in this model is limited, the authors report an impressive runtime of 13 FPS
for 256 x 256 images with their custom CPU implementation. More recently, Yin
and Collins [176] used a similar model for segmenting moving objects in videos; their
key improvements are in terms of inference, where they use loopy belief propagation,
and in terms of incorporating a motion likelihood term into their model. While the
spatio-temporal MRF model is principled, the dependencies expressible in a rigid
spatio-temporal graph are clearly limited. Huang et al. [68] address this deficiency
by using a flexible graph structure build from local motion information and by incor-
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porating a global shape prior into the model. Although this complicates inference,
they suggest an efficient expectation maximization method.

While the above successes demonstrate that spatio-temporal MRFs can be effi-
cient, they are a joint model for the entire video sequence and therefore not suited for
a causal estimation of segmentation masks. In contrast, our approach uses a directed
model for the temporal dependencies and as such also supports online inference.

6.2 Autocontext

Tu [156, 157] proposed a static autocontext model for semantic image segmentation.
The method works by iteratively improving a semantic labeling using a sequence of
base classifiers learned from training data. In the first iteration, only the input image
is used to predict, for each pixel, a distribution over semantic classes. In the following
iterations, each model is provided as input not only the original input image but also
the output of earlier models. Later models can therfore condition on intrinsic seman-
tic context (“autocontext”) that abstracts away irrelevant variation of the original
input image. Conceptually, autocontext is generally applicable in the sense that any
probabilistic model can be used as base classifier to predict the class distribution.

Because of its generality, the idea has been improved in many ways and incor-
porated into a broad range of models and applications. In the case of entanglement
forests [105], a random forest is used to condition on context which characterizes the
set of nodes in a random forest that have been traversed when classifying nearby
pixels in the image. This idea has been improved in [83] by conditioning on features
derived from smoothed probability maps. The original autocontext model [156] faces
the problem of overfitting in later stages; Munoz et al. [106] address this problem
using stacking [169] for their hierarchical model. Autocontext has also been adapted
to continuous labeling tasks, for instance in the recent work of Schmidt et al. [138],
where it was used for image deblurring. Overall, the idea of autocontext has been
useful to enhance many basic machine learning models for semantic image labeling.

For video sequences, Burgos-Artizzu et al. [19] propose an extension of autocon-
text that takes temporal information into account. We base our method on this
idea but are different in the following two aspects: (1) Burgos-Artizzu et al. use a
context window centered around the current frame, i.e., their model relies on fu-
ture observation and works only in the offline setting. Instead, we exploit causal
dependencies to enable online inference. (2) Whereas they predict one class label
per frame, our model labels each pixel in each frame, integrating both spatial and
temporal dependencies between semantic labels into one model.
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6.3 Dynamic Autocontext

Our dynamic autocontext model incorporates intrinsic semantic context by condi-
tioning on the predictions made by the static autocontext model, both for the cur-
rent frame as well as the previous frame. At this stage, appearance variation that
is not relevant to the semantic segmentation task has already been largely removed
by the static autocontext model. As a result, the dynamic autocontext model can
learn temporal dependencies between semantic labels; it can, for instance, learn an
implicit motion model and shape prior between frames, independent of the image
appearance. We will show in our experiments that this temporal model improves the
predictive performance compared to a static autocontext model with access to the
same features.

Next, we present our model and describe its training and inference. We follow
a top-down presentation, first giving a high-level overview and then filling in the
missing details.

A video stream x(*) = (x),_; 7 with spatial resolution (w, h) € N? and current
length T is a temporally ordered sequence of images x*) := (xét)) j=1,...w-h, Where we
assume w.l.o.g. that the pixels are enumerated by a linear index j. We will frequently
drop the frame index ¢ if the reference to a specific point in time is not necessary.
The actual representation P of a pixel xgt) (e.g., its color space or depth) is not
relevant; even sophisticated data structures are possible, as long as the used feature
map operates on P.

A dynamic autocontext classifier c¢(*) = (c¢*));<.<3 is a hierarchical model with
three sequential layers: Base classification (k = 1), static autocontext (k = 2), and
dynamic autocontext (k = 3). At each layer k we predict a semantic label y](k) e L
for each pixel z; € P in the current frame using a base classifier. We consider this to
be any function ¢¥) : & — P, in which ® := X ; ®; is a product feature space with
associated feature map ¢ : P — ® and P is a probability measure on a discrete
probability space with sample space L. Our prediction is then simply

y](-k) = arglelzlax[(c(k) o ¢)(z;)](1). (6.1)

If all layers used the same features ®;, the predictions y®) := ( j(k)) j=1,....w-n Would
be the same for all k.! However, the features do change in our dynamic autocontext
model and this is the key to our approach: Each new layer gains access not only to a
new set of features, but to a whole new class of features. We distinguish three ordered

1Strictly speaking, this is only true for deterministically trained classifiers.
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Layer 1
(base classification)

Layer 2
(static autocontext)

Layer 3
(dynamic autocontext)

time t

Figure 6.2: Dynamic Autocontext. Our approach consists of 3 conceptually different
layers: Base classification (layer 1), static autocontext (layer 2), and dynamic autocontext
(layer 3). Black lines indicate static autocontext [156], our contribution is displayed in blue.

and mutually exclusive feature classes, hereafter referred to as image features, static
autocontext features, and dynamic autocontext features. Writing y** for the output
of layer k£ at time ¢, we define:

e Tmage features are class 1 features and conditioned on the current input x®.

e Static autocontext features are class 2 features and conditioned on the
current outputs y(lvt) and y(2,t)‘

e Dynamic autocontext features are class 3 features and conditioned on the
previous outputs yt—1 and y@+=b,

The base classifier of layer k can access features whose class is at most k, i.e., layer 1
can only use image features, layer 2 can additionally use static autocontext features,
and layer 3 can additionally use dynamic autocontext features. Fig. 6.2 gives an
overview of our method. Note that, theoretically, the base classifier could also differ
from layer to layer, but for the purpose of this work we consider it to be fixed.

6.3.1 Instantiation

Up to this point, we have presented our approach in fairly general terms. In this
section, we describe the specific instance of this framework, i.e., the base classifier and
the features, that we use for our experimental evaluation. All elements of our system
are designed so as to give an optimal speed-accuracy trade-off, eventually allowing
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Image Features:
e Location

e
e Moment )
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e Color ’6(:%&
o Gradient Q’%
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Autocontext
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e Static Labeling
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Dynamic AC Features:
e Dynamic Labeling

e Dynamic Confidence

Figure 6.3: Feature Hierarchy. Visualization of the three feature classes, their mem-
bers, and how they relate to the three layers of our dynamic autocontext model.

the application of our approach in time-constrained environments. We make frequent
use of the mean response 7 inside a rectangular image region R with |R| pixels,

r(x) = |R|™" Z xj, (6.2)

JER

which we note can be computed efficiently using integral images [162].

Base classifier. We train a random forest with 12 trees using a training procedure
similar to chapter 4, i.e., we bootstrap resample the training data and recursively
split leaf nodes by selecting the best among a set of hyperplane splits. Candidate
splits are generated by sampling binary tests for random feature instances and scored
based on the information gain of the resulting split. Note that this randomized train-
ing leads to the output y**) being a random variable itself. See [29] for more details.

The following paragraphs list only the features themselves; binary tests can be
obtained by data-dependent thresholding of their values. For multi-dimensional fea-
tures one dimension is selected uniformly at random.

Image Features. We use 4 simple but highly efficient image features based on
the location, moments, color, and gradients of a single pixel z; or some associated
rectangular image region(s) R(z;):
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1. Location feature: We encode the relative location of the input pixel z; on the
x-axis and y-axis, as well as its distance from the center of the image.

2. Moment feature: Given two image regions (R;(x;), Ra(z;)), we record the dif-
ference in variance between those regions within an RGB channel and the
difference in mean between those regions across RGB channels.

3. Color feature: We compute the inner product (c, z;) between a color vector ¢
and the input pixel z;.

4. Gradient feature: We use the oriented gradient mean response in an image
region R(z;). [space-continuous histogram of gradients]

Static Autocontext Features. We employ two static autocontext features, a
labeling feature and a confidence feature. In particular, the static labeling feature
f,gk) in layer £k > 1 is defined as the mean prediction within a rectangular image

region R(.ﬁﬁgt)) in layer k' < k,

k
e

y(k/’t)> = Th(a) (y(k/’t)> e [0,1]. (6.3)

J

The static confidence feature fék) in layer k£ > 1 assesses the uncertainty associated
with a prediction in layer £’ < k. We use a variance-based measure of the forest
posterior spread,

(k) (.(t)
c (x j

which allows us to condition the actions of the classifier on its own (un)certainty in
previous layers.

y“‘””) —1_4. 0_2 (y;k/7t)> c [07 1]7 (6.4)

Dynamic Autocontext Features. We can easily turn the two static autocontext
features into dynamic autocontext features by conditioning them on y**=1 instead
of y*') . By using the same fundamental type of features as both static and dynamic
features, we move the focus of the evaluation from the predictive capabilities of the
features to the effects of dynamic context. Fig. 6.3 summarizes all feature classes
and illustrates their accessibility.
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6.3.2 Hierarchical Training

The training of a dynamic autocontext hierarchy is simple and efficient. Without loss

of generality, we assume that the supervised training set is given by a single video

sequence Dy = (l‘ﬁ*”)j ,w-n With ground truth segmentation D, = (y](-gt’t))j:h,_,w.h.
t t

=1,..
=1, =

weey =1,...

Furthermore, let Y**) be the k’th layer. Consider again Fig. 6.2 and note that Y*:)
is only dependent on variables in previous layers. By d-separation, we therefore have

k—1
<Y(k,t) J_ vy ko) _ y(kit) U Y(@-)) ’ (6.5)

i.e., the variables in layer £ are conditionally independent given the previous layers.
Consequently, we can train the base classifier layer by layer on the supervised train-
ing set (Dx,Dy), in each layer adding the now accessible additional features. The
asymptotic complexity for the training of a dynamic autocontext hierarchy is thus
the same as that of the base classifier.

6.4 Experiments

People are among the most important objects in our lifes. Their analysis comprises
all scales and touches virtually every scientific discipline. In computer vision, we are
interested in where they are, what they do and who or what they interact with.

6.4.1 Datasets

We demonstrate the usefulness of our dynamic autocontext model for semantic la-
beling tasks on three challenging video datasets containing people, namely the Buffy
dataset [44], the FBMS dataset [111], and the J-HMDB dataset [75]. The datasets
vary greatly with regard to the number of training sequences, the number of instances
per training sequence, and the type of annotation masks.

J-HMDB. The joint-annotated human motion database (J-HMDB) [75] is a large
action recognition dataset containing extended annotations for the older HMDB51
dataset [88], which it is based on. The full dataset comprises a total of 928 short
video clips taken from movies and YouTube. Each video clip is tagged with one out
of 21 action classes and has an average length of approximately 34 frames, resulting
in a total number of ~ 3.2 - 10* frames. The authors provide dense ground truth
puppet annotations for all frames.
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(a) Ground Truth (b) Prediction (c) Confidence

Figure 6.4: Comparison of Static and Dynamic Autocontext (J-HMDB).

(a) Hand-labeled ground truth puppet annotations. (b) Illustration of the differences in
the predictions of static and dynamic autocontext. Pixels classified correctly when using
dynamic autocontext but incorrectly when using static autocontext are marked in green,
the vice versa case is depicted in red. (c¢) Visualization of the second layer’s confidence
feature fg) [blue = high confidence; red = low confidence|. Note that dynamic autocontext
preferably acts in regions with low-confidence predictions in the second layer.

We select a representative subset of video frames in the following way: First, we
randomly pick 7 categories and split the videos in each category evenly into training
and testing. Next, each video sequence is subsampled by selecting 3 non-overlapping
chunks of 4 consecutive frames, amounting to a total number of 1240 frames for
training and another 1208 frames for testing.

FBMS. The Freiburg-Berkeley motion segmentation dataset (FBMS) consists of
720 annotated frames in 59 video sequences. We use the official split of a class con-
taining video clips from Miss Marple (“marple”), consisting of 69 annotated frames
for training and another 69 for testing. Some ground truth annotations in this class
contain foreground objects other than people, which we manually reassign to back-
ground.
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ESE g

(a) Ground Truth (b) Prediction (c) Confidence

Figure 6.5: Comparison of Static and Dynamic Autocontext (FBMS). We show
the same type of content as in Fig. 6.4. Dynamic autocontext does not alter correct high-
confidence predictions made in previous layers but can improve on fine details or pick up
new cues.

Buffy. The Buffy dataset contains a total of 748 fully annotated frames from
the TV series “Buffy — The Vampire Slayer”. The frames are taken from 5 dif-
ferent episodes and include pixel-accurate segmentation masks for all people in the
scene [90]. Most frames belong to local chunks of 4 non-consecutive but related
frames. Since the original dataset does not include information about a frame’s
predecessor, we add this information based on a temporal threshold ¢, i.e.,

predq(x(t)) = argmin ¢t—t. (6.6)
{xt) |o<(t—t)<q}

For our experiments, we choose ¢ = 12, which assigns a predecessor to roughly
50% of the frames. Note that this allows for large gaps of almost half a second
between neighbouring frames, posing a serious challenge to any approach exploiting
temporal information. We train our models on episodes 2 — 4 (452 frames) and test
on the remaining two episodes 5 — 6 (160 frames).



6.4. EXPERIMENTS 97

6.4.2 Quantitative Analysis

We evaluate the quantitative performance on those datasets by calculating the aver-
age pixelwise accuracy, F score, and intersection over union (IoU) score, which are
defined as follows:

Accos oy = TP + TN P —2. precision - recall ol = |[FG n FGgl
pre #Pixel ’ precision + recall’ IFG U FGgy|’

(6.7)

where TP are the true positives, TN are the true negatives, FG are the predicted
foreground pixels, and FGg; are the ground truth foreground pixels.

We compare our results to three popular baselines, namely random forests [143],
approximate MAP inference in a fully-connected CRF with random forest unar-
ies [86], and Tu’s static autocontext with a random forest base classifier [156]. Ta-
ble 6.1 shows our results. All evaluated methods exhibit the tendency to perform
better when using deeper trees, independent of the dataset. At the same time, we
observe small increases in runtime.

The pixelwise accuracies are on similar levels for all evaluated methods. While
dynamic autocontext has an advantage on the Buffy dataset (79.99) and the J-HMDB
dataset (90.00), static autocontext performs best on the FBMS dataset (71.61). How-
ever, we noticed only little correlation between pixelwise accuracy and visual quality,
so that the actual predictions differ substantially.

The Fy score is the harmonic mean of precision and recall, that is, it aggregates
both and penalizes differences between them. This may be a partial explanation for
the weak performance of the dense CRF model, which suffers from oversmoothing
effects resulting in a high precision and low recall. Our proposed model achieves
the highest F score on all three datasets. The margin to the runner-up, the static
autocontext model, is small on the J-HMDB dataset (+0.03%) but bigger on the
other two (Buffy: +1.42%, FBMS: +2.09%).

The intersection over union score is not only the strictest among the three evalu-
ation criteria but also the most relevant one in terms of correlation with visual qual-
ity. In comparison to the other baselines, our dynamic autocontext model performs
well again, outperforming its strongest competitor, the static autocontext model, by
1.51% (Bufty), 1.64% (FBMS), and 0.48% (J-HMDB).

We note that specialized models integrating multiple modalities and application-
specific knowledge can achieve higher numbers on those datasets [161]. In case of
human segmentation, they usually include person detections, pose estimation, shape
priors, etc., as discussed in section 6.1.2. This is outside the scope of this work,
which is to propose a general and efficient dynamic autocontext model and compare
its performance to static alternatives.
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(a) Input  (b) GT (¢) RF (d) SAC  (e) DAC (£)(:"y) (g) fg>(z;t>\y<mj

Figure 6.6: Positive Examples on the Buffy Dataset. From left to right we show:
(a) The RGB input frames. (b) The associated ground truth segmentations. (c-e) The
predicted outputs when using random forests (RF), static autocontext (SAC) and dynamic
autocontext (DAC). (f-g) Confidence maps for the predictions (c) and (d). [blue = high
confidence; red = low confidence].

i
I
o

L : ; A : 4

(a) Input  (b) GT (c) R (d) SAC  (e) DAC (£) s y) (8) s («ye)

Figure 6.7: Failure Cases on the Buffy Dataset. We display the same type of content
as above. First row: The foreground uncertainty is too high, so that the person in the
scene is falsely being removed by our approach. Second row: Our approach interprets
the straw man as a person.
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(a) Buffy Test Set.

Method Tree Performance Runtime
Depth
AcCpixer F ToU (ms)
16 77.71 59.17 42.43 101
Random Forest [109) 20 77.64 59.37 42.63 131
24 78.20 59.59 42.91 152
. 16 78.28 59.26 42.68 183
iagfzf; g(ﬁe;t[%] 20 7842 5992  43.52 215
o 24 79.10 60.29 43.89 232
16 79.23 61.02 44.57 189
Static Autocontext [156] 20 78.98 61.92 45.67 246
24 79.40 62.60 46.50 288
Dvnamic Autocontext 16 79.93 63.12 47.00 227
(gurs) ' ‘ 20 79.99  64.02  48.01 290
24 79.75 63.70 47.62 339
(b) FBMS Test Set.
Method Tree Performance Runtime
Depth
AcCpixel F ToU (ms)
16 70.29 40.39 24.17 157
Random Forest [109] 20 70.53 43.28 26.81 178
24 70.43 42.16 25.73 192
Random Forest 16 70.93 37.29 21.22 292
+(Dense CR}‘; [86] 20 71.14 40.83 24.57 321
’ 24 70.96 39.42 23.14 330
16 69.45 48.79 29.91 306
Static Autocontext [156] 20 70.20 52.57 34.27 342
24 71.61 53.60 34.36 362
. 16 69.10 54.58 34.95 337
Dynamic Autocontext 20 69.58 5419 3560 387
(ours) 24 7007  55.69  36.00 408
(c) J-HMDB Test Set.
Method Tree Performance Runtime
Depth
Accpixel I ToU (ms)
16 88.00 44.28 21.77 106
Random Forest [109] 20 88.80 52.60 28.78 127
24 89.39 57.33 33.10 145
16 87.90 39.78 17.18 188
liagigi gﬁ%s‘t[s . 20 80.05 4977 2374 210
24 89.73 55.23 27.70 239
16 88.48 54.80 28.99 179
Static Autocontext [156] 20 89.12 62.82 38.96 235
24 89.58 66.22 43.42 269
Dynamic Autocontext ;g Zggg Zggg ig?i i;?
(ours) 24 90.00 66.25 43.90 376

Table 6.1: Quantitative Evaluation of Dynamic Autocontext. We compare dy-
namic autocontext on 3 datasets against 3 baseline methods using 3 performance measures.
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6.4.3 Qualitative Analysis

We support the numerical benefits of our dynamic autocontext model with some
visual impressions. Fig. 6.4 and Fig. 6.5 contrast the predictions from the static and
the dynamic autocontext model on the J-HMDB and FBMS dataset, respectively.
Both figures show ground truth annotations (Fig. 6.4a, Fig. 6.5a) together with a
visualization that highlights the differences between the two forms of autocontext
(Fig. 6.4b, Fig. 6.5b). Different colors represent classifications that flip from being
incorrect to being correct (green pixels) or vice versa (red pixels) when moving from
the static to the dynamic framework.

Fig. 6.4 depicts two challenging images from the J-HMDB dataset in which the
static autocontext result is noisy (top) or misses part of the foreground object (bot-
tom). Dynamic autocontext can improve on some of those undesired effects, as
indicated by the green pixels. Note that the dynamic autocontext layer revisits
preferably those image regions that the static autocontext classifier is still uncertain
about (Fig. 6.4c, Fig. 6.5¢).

If the results obtained from the static autocontext classifier are already satisfying,
there is only little room for improvement. In those cases, dynamic autocontext can
still work out some fine details in the uncertain border regions, while leaving the
remaining parts of the segmentation untouched. This is illustrated in Fig. 6.5 for
two images from the FBMS dataset.

In Fig. 6.6, we show comprehensive visualizations of the proposed autocontext
features for 4 images from the Buffy dataset. They may serve to illustrate progressive
effects on the overall accuracy and confidence of the base classifier. We focus on
complex scenes with multiple people and cluttered background. As supported by
the images, our approach can deal well with these challenges. Note that, unlike
the typical smoothing effects that can be observed in CRF-based models, dynamic
autocontext can discover and eliminate new regions originally misclassified by the
base classifier. Also note the general tendency of the base classifier to become more
certain about its own predictions in later layers.

Finally, we complement our positive findings with an impression of some repre-
sentative failure cases, which we show in Fig. 6.7. Typical causes of failure include
a low-density foreground segmentation during base classification or ambiguous fore-
ground objects.



Chapter 7

Conclusions and Directions

In this thesis, we investigated the use of non-parametric models for structured data.
We made use of topological constraints, such as bounds on the indegree of a local
node or the Markov order of the global network, to develop directed graphical models
with low treewidth that allow for reliable learning and efficient inference. In order to
compensate for inaccurate conditional independence assumptions, we used flexible
yet efficient non-parametric local models like kernel density estimates and decision
forests. Both techniques benefit greatly from our training on large-scale datasets,
including Human 3.6M, CMU Motion Capture, and Microsoft COCO. The resulting
priors can be easily integrated with rich, CNN-based image likelihoods.

In total, we introduced four such models to address challenging tasks in computer
vision. In particular, we showed how to use non-parametric graphical models in ap-
plications related to the human body (e.g., human pose, motion, and segmentation)
and natural scenes (e.g., object categorization, quantification, and detection). We
classified our models according to the type(s) of context that they can exploit and
distinguished between static, dynamic, and semantic context information (Fig. 1.1).
Our static models exploit spatial context (chapter 3) and, additionally, extrinsic se-
mantic context between recognition tasks (chapter 5). Our dynamic models take ad-
vantage of temporal context (chapter 4) as well as intrinsic semantic context between
label sequences (chapter 6). Comprehensive experimental evaluations showed that
our models compare favorably with both traditional approaches and state-of-the-art
research. On the other hand, it also became clear that especially the integration of
semantic context poses many challenges. Further research on the efficient propaga-
tion of information between multiple interacting modalities is required to unlock the
full potential of such systems.

The remainder of this chapter is organized as follows: We begin by reviewing
the theoretical aspects and practical results of our projects in some more detail. In
the second part of the chapter, we outline possible modifications, extensions, and
generalizations of the models presented in this thesis, which we hope will inspire
future research in their respective areas.
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7.1 Conclusions

In this section, we want to summarize contributions, outcomes, and open challenges
that are specific to the individual projects and thus go beyond the general principles
just mentioned.

Non-parametric Priors of Human Pose. We introduced a non-parametric
Bayesian network serving as a prior of human pose. In order to learn the network
structure, we used an extension of Chow-Liu trees to the continuous domain. The
required pairwise mutual information values between the variables were obtained by
means of a non-parametric estimator of differential entropy based on nearest-neighbor
distances. We showed that our model admits the efficient calculation of exact log-
likelihoods. Samples from our generative model can be obtained at a rate of multiple
frames per second, which enables an easy generation of new pose hypotheses. In case
of a large training set, our simple, fast, and accurate method for the computation of
approximate log-likelihoods still allows the application of our approach in real-time.

In our experiments, we demonstrated that the proposed model achieves a better
expected log-likelihood on the Human 3.6M test set than three global baselines and
a Gaussian linear network. The comparison of different graph structures showed
that our non-parametric approach to structure learning outperforms both the widely
used kinematic chain and a higher-order variant thereof by a significant margin. We
further illustrated the capabilities of our model to generalize to new poses not present
in the training data (compositionality). We see widespread applicability in domains
such as tracking, pose estimation, and pose denoising.

Non-parametric Markov Models for Human Motion. We presented Dy-
namic Forest Models (DFMs) as a novel approach to human motion modeling, gener-
alizing autoregressive trees and introducing new training and regularization schemes.
The use of bagging turned out to be an essential means against overfitting and com-
plements other techniques like ridge regression and isotropic covariance estimation.
Instead of relying on a latent space, we used a non-parametric and non-linear Markov
model that allows exact and efficient inference, while at the same time being able
to represent complex conditional mixture distributions. Our presentation of DFMs
in terms of a pseudo latent variable model highlighted similarities and differences to
HMMs. An analysis of the underlying conditional independence assumptions showed
that DFMs decouple in time, which is the main reason for their computational ad-
vantage over HMMs.

The effectiveness of our approach was demonstrated in three different application
scenarios: Action recognition, motion completion, and prediction of 3D trajectories
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from 2D inputs. The comparison with popular baselines and state-of-the-art latent
variable models like HMMs and GPDMs showed that DFMs perform well in those
areas, while still being computationally efficient. Given the positive findings, we
believe that human motion models based on DFMs could be useful in many areas
beyond the ones explored in this thesis, e.g., character animation from videos.

Non-parametric Scene Prior Hierarchies. We transferred the basic ideas de-
veloped for human pose models to the domain of scene understanding and combined
them with a flexible hierarchy and powerful image likelihoods. Our hierarchy con-
sisted of a coarse-to-fine sequence of task-specific layers following information enclo-
sure. We showed how this matryoshka-like approach can be used to build a first-order
chain of conditional Bayesian networks in which each layer is conditioned on the in-
formation of its predecessor. In the special case of a bilayered occurrence—location
hierarchy, this resulted in a dynamic topology for the non-parametric location net-
work. Similar to ancestral sampling in traditional Bayesian networks, we can easily
synthesize full scenes by sampling the hierarchy layer by layer and conditioning each
layer on the previous sample.

Our large-scale experiments on Microsoft COCO validated the benefits of our
approach for modeling high-dimensional densities and showed improvements in object
categorization, quantification, and detection tasks. Possible extensions comprise the
inclusion of amorphous background classes (e.g., trees, sky), temporal information,
and additional layers, such as a coarser class presence network and/or a finer instance
segmentation network. Furthermore, we believe that the principles introduced in
this work can be combined with orthogonal ideas [61, 131] to build a single, wholistic
approach to scene understanding.

Non-parametric Semantic Video Segmentation. We proposed a dynamic au-
tocontext model that integrates both spatial and temporal dependencies between
semantic labels into a causal framework. After an initial base classification, two ad-
ditional layers exploit intrinsic semantic context by considering (functions of) ouput
labels of previous layers, both in the current frame as well as in the previous frame,
as additional features.

Our experiments validated dynamic autocontext on three different datatsets:
Bufty, FBMS, and J-HMDB. A comparison with widely used baselines showed that
dynamic autocontext is on par with or slightly better than its static competitors.
We think that dynamic autocontext is a useful extension of its static counterpart
and that its value and performance will increase over time as better regularization
techniques and larger training sets for semantic video segmentation become available.
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7.2 Directions

The line of research discussed in this thesis may serve as a starting point for new
projects. We want to mention a few promising ideas and hope that they will be
picked up by the research community.

Unification with CNNs. Recently, there has been a growing research interest
in common principles and possible unifications of probabilistic graphical models and
convolutional neural networks [178, 140, 24]. It seems promising to extend this line of
work and transfer those insights to non-parametric graphical models. For instance,
a recent work by Kontschieder et al. [82] uses backpropagation through a decision
tree to combine a standard CNN with a non-parametric layer. Similar concepts
could be applied to kernel density networks as used in chapters 3 and 5, which are
easily differentiable. Ideas from deep variational methods [80] and deep generative
models [125] could possibly be used to mimic the expensive inference process in non-
parametric graphical models and build a true end-to-end system acting as a deep
non-parametric network.

Alternative Topological Objectives. Our adaptation of Chow-Liu trees to non-
parametric Bayesian networks computes an optimal topology with respect to KL-
divergence to the true underlying distribution. However, this is only one out of
many structure learning objectives that can be pursued. An interesting counterpart
to such a KL-tree is an efficiency-tree, i.e., a tree whose topology is computed so as
to allow for fast approximate inference. Moreover, we can form convex combinations
of both types of trees, which effectively leads to a continuous spectrum (with discrete
jumps) of trees with varying degrees of influence from each objective function. We
briefly describe the principles of such a framework.

Let 7(x) be the runtime to compute the approximate likelihood of a point x € R?
in the joint density fx(x). The expected runtime

E[(X)] =f (%) fx (x) dx (7.1)

Rd
can in general not be calculated analytically, because 7 is a deterministic but complex
function with no closed-form expression. However, we can easily draw a sample
S := {sW}; from fx and use Monte-Carlo integration,

Blr(X)] = |51| > (). (7.2)



7.2. DIRECTIONS 105

In order to obtain a runtime estimate for a non-parametric arborescence B = (G, fx)
with topology G = (X, E) and root X,., we can apply Eq. (7.2) to its local models,

R X|

BLr(X)] = B ()] + 3 (B (X X)) + B (Gu)]). (73)

=1

A possible edge-symmetric objective function is thus

Xl ~ ~
Te = argpgninz [E[T(Xi, Xpai))] + ;(E[T(Xz)] + E[T(Xpa(i))]ﬂ? (7.4)
i

in which case the optimal efficiency-tree T is given by the maximum spanning tree
of a complete graph with nodes X and edge weights w(X;, Xx) := E[7(X;, Xi)] +

(E[r(X;)] + E[r(X))])/2.

The KL-tree Tk, and the efficiency-tree Tr pursue orthogonal objectives. In
practice, applications would benefit from a smooth trade-off. An ad-hoc solution to
this problem is to choose a € [0, 1] and consider a convex combination of both trees,

To=a Ta+(1-a) T, (7.5)

where we assume that the trees are given in terms of a linear, undirected, and
weighted edge list 7, = (e;)izlm(pzq). Here, e; is the i-th edge w.r.t. an arbitrary
but consistent order across all trees and e} is its weight in 7,. We refer to the
maximum spanning tree 7T, of such a tree T, as an intermediate spanning tree (IST).
Although we can easily optimize the spanning tree objective for a single tree 7, this
approach has serious drawbacks. In particular, we know neither the total number
of ISTs nor the values of a for which they are valid. While it is easy to see that
each IST is valid in exactly one interval, a simple rescaling of either Tk, or 7 shifts
the transition points nonlinearly either to the left or to the right. In order to make
a good choice, e.g., the spanning tree that is halfway between Tgi, and Tg, it is
necessary to enumerate all intermediate trees and determine their valid intervals.
We are thus interested in the quotient set [0, 1]/~ with respect to the equivalence
relation & ~7 o/ <= T, = To.} The smallest elements in each equivalence class
form a sorted representative system (a(i))i and, excluding border cases, T is valid
in the half open interval [a® a(+1],

LAt a transition point & the IST is not unique and we set 75 := T5,., where € is infinitely small.
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The transition points a? can be computed in an efficient way. Our approach relies
on a property of Kruskal’s algorithm, which, in a nutshell, computes the maximum
spanning tree of a graph by first sorting the edges according to their weights and
then, from largest to smallest, iteratively adds one edge at a time to the spanning
tree if the addition does not lead to a cycle. Changing the edge weights does therefore
not change the spanning tree, as long as the order of the edge weights is preserved.

For any fixed « € [0, 1], let 7, be the unique permutation with 7, (i) = k if and
only if e is the k-largest edge in 7,. With the explanation above, we have

Ty = oy = Too = Tor- (7.6)

The equivalence relation o ~, o' < 7, = 7wy is finer than ~r, ie., a ~, o is
sufficient but not necessary for 7, = To. However, merging of adjacent equivalence
classes that lead to the same IST can be done in a single linear sweep, as explained
below. To compute the equivalence classes of ~, first note that each edge weight in
7., is a convex combination e = a - el + (1 — ) - €Y of the corresponding weights in
Tk, = T1 and T = Ty. Given two edges e;,e; with ey — e? # e} — ejl- (i.e., they are
not parallel), we can solve for the unique value y;; at which their weights cross,

AL
Xij = AT

with A}, := ef —e5. The two edges will swap within the valid range [0, 1] if and only
if I[e) < 9] A I[e} > e}] or vice versa. By definition, those are exactly the points
that separate the equivalence classes w.r.t. ~.

A valid approach to compute all intermediate spanning trees is thus to sort all
candidate transitions y;; € [0, 1] in ascending order and check sequentially if the new
order 7, leads to a new IST by running Kruskal’s algorithm. Since most candidate
transitions will not result in a new solution, this is still a lot of computational over-
head. Indeed, we need to run Kruskal’s algorithm only in those cases that actually
lead to a new intermediate spanning tree. To see this, let x;; be the k-smallest edge
swap and x;; its predecessor (or 0, if a predecessor does not exist). A swap can only
occur between two edges with neighbouring weights and we assume w.l.o.g. that the
weight of e; is smaller than that of e; before the swap. There are now four scenarios,
three of which do not result in a new intermediate spanning tree:

1. e,e5€ 7;(2; = 7;(1‘;‘ = 7;(_‘

ij

2. 6iaej¢7;(i7 :>7;<ij = 7;(H'

)



7.2. DIRECTIONS 107

3. €i¢7;<§>6j 67;(2 = Ty :7;@7'
The last case is different. If we have e; € ’7;7 and e; ¢ 7;1_7, e; was rejected in 7;1_7,
because it took part in ¢ > 1 cycles. We run Kruskal’s algorithm to compute the
new IST 7T, if all of those cycles include e;.

Kernelization. The non-parametric Bayesian network priors in our static models
(chapters 3 and 5) use conditional kernel density estimates with a Gaussian kernel
to model the objects in question, such as poses or scenes. A different type of kernel,
called Mercer kernel, is used as a similarity measure in machine learning to allow
the implicit computation of inner products in feature spaces [104, 139]. A particular
instance of such a kernel is a Fisher kernel [74], which has been used to combine
generative and discriminative models for information retrieval purposes. We can
derive this kernel for non-parametric Bayesian networks as well to obtain a model-
driven similarity measure for poses and scenes.

Given two inputs x and x', the Fisher kernel rg(x,x’) := S]/Z(0)7'Syw of a
generative model with parameter vector @ = ()2, is an inner product between the
Fisher scores Sy and Sy, where

0logp(e; 0 dlogp(e;0)\ "
S, := Vglog p(s; 0) = < gape(l ) %’L )) (7.7)

and the inverse of the Fisher information matrix Z(€) performs a form of directional
scaling. Since our model is non-parametric, its score depends directly on the data,
i.e., @ = Dy and 6, = x*). As justified in [74], Z(0) can be taken to be the identity
matrix, so that the problem reduces to deriving S,. Writing p(z; ;) as shorthand for
p(x;, x;), we have

ox(F)

alog p an (alog P(Tipa)  Olog p(xpa(i))). 78)

The local derivatives are given by

e BD)),(79)

0 log p(xi,pa(i)) 0 1 S
xF  ax® 8N ;N (f”

that is, they are partial derivatives of the log-likelihoods of a Gaussian mixture model

. . . . . . al 1 Z
with respect to its component means. The individual entries 7092 (gfk’)pa( ) are zero
X
l



108 CHAPTER 7. CONCLUSIONS AND DIRECTIONS

Instructions

"Il

STANDING OBLIQUE CRUNI STANDING OBLIQUE CRUNCHES. z STANDING OBLIQUE CRUNCHES

. (EX]

Figure 7.1: Online Annotation Tool. Javascript front-end of our human video pose
annotation tool for Amazon Mechanical Turk. Features include a magnifying glass, sup-
port for occluded/truncated joints, and previews of surrounding frames. Annotations are
propagated from frame to frame to encourage consistency over time.

unless [ = ¢ or [ = pa(i), in which case we obtain

(k) i
0log p(2; pagi) B N (@i pagiy | L; pa(i)’ (B1)?) B0 -2 (k)
i,pa(i) k=1 i,pa(i) | Y4 pa(i) (7 10)

We believe that such a data-driven similarity measure could be more precise than
the Euclidean distance between two parameterizations and useful in applications.

Dynamic Autocontext for Human Video Pose Estimation. Using dynamic
autocontext for human video segmentation (chapter 6) turned out to be a challenging
task. Possible reasons for the marginal improvement over static autocontext include
complex interactions between thousands of class variables, high annotation uncer-
tainty, and small training sets. Taking those challenges into account, human video
pose estimation is a related field that might benefit more from dynamic autocontext.

As a starting point, we designed a Django-based online annotation tool with
Javascript front-end and PostgreSQL back-end that encourages spatially accurate
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and temporally consistent annotations of human poses in video sequences (Fig. 7.1).
Using this tool on Amazon Mechanical Turk, one can supplement existing image
pose datasets (e.g., the popular MPI-Inf dataset [3]) with annotations of surrounding
frames, effectively turning them into video pose datasets that can be used to learn
temporal dependencies between semantic pose labels.

Temporal Dynamic Topologies. Our dynamic forest model (chapter 4) uses
information available in the previous K frames to select a conditional motion model
and, using this model, to make a prediction for the current frame. It seems promis-
ing to combine this temporal context model with the spatial model introduced in
chapter 3 and the dynamic topology developed in chapter 5 to obtain a dynamic
pose topology that is determined by temporal context.

As a practical example, consider the following situation: Over the course of
an activity (e.g., swimming), there might be certain phases in which it is most
informative to use a tree-structure connecting the arms and other phases in which it
is more appropriate to connect the legs. Such a time-dependent tree-structure could
be predicted from previous frames.
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Appendix A

Acronyms

(A)MIAE (Asymptotic) Mean Integrated Absolute Error.

CDF Cumulative Distribution Function.

(C)KDE (Conditional) Kernel Density Estimation.
CNN Convolutional Neural Network.

CRF Conditional Random Field.

DAC Dynamic Autocontext.
DAG Directed Acyclic Graph.
DFM Dynamic Forest Model.
DTW Dynamic Time Warping.

ELL Expected Log-likelihood.
EM Expectation Maximization.
ETL Expected Test Loss.

FFT Fast Fourier Transform.
FPS Frames per Second.

GPDM Gaussian Process Dynamical Model.
GPLVM Gaussian Process Latent Variable Model.

HMC Hybrid Monte Carlo.
HMM Hidden Markov Model.
HOG Histogram of Oriented Gradients.

10U Intersection over Union.
IST Intermediate Spanning Tree.

k-NN k-Nearest Neighbor.
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LELVM Laplacian Eigenmap Latent Variable Model.

LOOCYV Leave-One-Out Cross-Validation.

MAP Maximum A-posteriori.
MCMC Markov Chain Monte Carlo.
MI Mutual Information.

ML Maximum Likelihood.

MRF Markov Random Field.

MSE Mean Squared Error.

MST Maximum Spanning Tree.

PAC Probabilistically Approximately Correct.
(P)BP (Particle) Belief Propagation.

PCA Principal Component Analysis.

PDF Probability Density Function.

PMF Probability Mass Function.

RBF Radial Basis Function.
RCYV Root Coefficient of Variation.
(R)RMSE (Relative) Root Mean Squared Error.

SCG Scaled Conjugate Gradient.

SIFT Scale Invariant Feature Transform.
(S)LDS (Switching) Linear Dynamical System.
SMC Sequential Monte Carlo.

SVM Support Vector Machine.

Acronyms
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