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THE EFFECT OF ADVANCE-DRAINAGE ON THE SHORT-TERM 
BEHAVIOUR OF SQUEEZING ROCKS IN TUNNELING 

G. Anagnostou 
ETH Zurich, Switzerland 

ABSTRACT: Experience shows that high pore water pressures favor the development of 
squeezing pressures or deformations, while drainage ahead of the working face considerably 
reduces the intensity of squeezing. The present paper aims to improve understanding of the 
effects of drainage and to provide a simple computational model for assessing these effects 
quantitatively. Attention is given to the short-term behavior of the ground, i.e. to its behavior 
in the vicinity of the working face during excavation. The favorable effects of advance
drainage are studied within the ji-amework of the ground response curve. In order to 
understand the effects of advance-drainage on the short-term behavior of the opening it is 
necessary to understand the factors governing this behavior. For this reason we revisit the 
problem of the instantaneous response of the ground for the reference case without advance 
drainage. The closed-form equations derived for this case show that the short-term 
deformations depend strongly on the initial effective stress. The higher the latter, the higher 
also will be the shear resistance of the ground and the smaller will be the deformations. 
Advance-drainage improves the ground response to tunnel excavation as it causes 
consolidation of the ground and increases the effective stresses ahead oftheface. 

1 INTRODUCTION 

The term "squeezing" refers to the phenomenon of large deformations in tunneling. 
Experience and theoretical considerations show that high pore water pressures favor the 
development of squeezing. On the other hand, repeated obse1vations indicate that drainage 
considerably reduces the intensity of squeezing (Steiner, 1996; Kovari, 1998; Barla, 2001; 
Vogelhuber et a!., 2004 ). The present paper aims to improve understanding of the effects of 
drainage and to provide a simple computational model for assessing this effect quantitatively. 

The Simplon twin railway tunnel - an engineering landmark - provides an example of the 
favorable effects of drainage. The fust tube of this 20 km long tunnel (as well as a small pilot 
adit ofthe second tube) was excavated in the period 1898 - 1906. Over a 42 m long stretch, 
heavily squeezing rock was encountered that looked like a "dough, mainly consisting of soft 
micaceous limestones" (Pressel, 1906). Tunnel constmction over this sh01t section took seven 
months. In the second tube, however, which crossed the same fonnation, relevant 
deformations did not occun. The second tube was excavated about ten years later than the 
first (due to the World War I). It is believed that the improvement of the behavior of the 
ground was caused by its lengthy drainage and consolidation (Steiner, 1996). This hypothesis 



is supp01ted by the considerable reduction of the water inflows during this period. Steiner 
(1996) draws sin1ilar conclusions from the excavation of the Vereina railway tunnel. 
Drainage was a pa1ticularly effective measure for coping with squeezing ground in this tunnel 
as well. Another interesting example is the Gotthard mototway tunnel (Lombardi, 1976). In 
addition to the main road tunnel, this underground stmcture includes a safety adit of smaller 
cross-section. The axial distance between the safety adit and the main tunnel amounts to 30 
m. In a short stretch consisting of soft clayey shales, the safety adit, which was excavated 
first, experienced ve1y large defonnations which necessitated extensive re-profiling works. It 
is interesting to note that pore pressures of up to 3 MPa have been monitored at a distance of 
only 5 - 10 m from the adit wall. The excavation of the main tunnel followed that of the 
safety adit with a delay of about one year. The squeezing phenomena in the main Immel have 
been far less serious in spite of the same geology and of the larger cross-section. This 
observation can be explained only by the positive effect of the drainage which took place in 
the period elapsing since the excavation of the safety adit. 

Squeezing nonnally develops slowly, although cases have also been known where rapid 
defotmations occur vety close to the working face (Ramoni & Anagnostou, 2007). The time
dependency of squeezing can be traced back to the rheological behavior of the rock (creep) 
and, in the case of saturated, low-permeability rocks, also to consolidation processes that are 
triggered by the tunnel excavation and develop slowly over the com·se of time: The long-tenn 
defotmations of the grom1d include, in general, changes to its pore volun1e and water content. 
The latter needs more or less time, depending on the seepage flow velocity and thus on the 
petmeability of the ground. In a low-penneability ground, the water content remains constant 
in the short tetm. Tunnel excavation generates excess pore pressures, however. As these are 
higher in the vicinity of the tunnel than they are ftuther away, seepage flow statts to develop. 
So the excess pore pressm·es dissipate over the course of time, thereby changing the effective 
stresses and leading to additional time-dependent deformations, i.e. consolidation. 

The present paper focuses on the shott-term behavior of the ground, i.e. to its behavior in 
the vicinity of the working face during continuous excavation. The sh01t-tenn behavior is of 
paramount impottance from a constructional point of view: Depending on the intensity of 
squeezing, it may be necessa1y to apply large amounts of suppott close to the working face in 
order to control the ground. This slows down tunnel advance considerably, as suppott 
installation close to the face greatly interferes with the excavation works. The sh01t-tenn 
behavior is, furthermore, decisive conceming the risk of shield jamming in mechanized 
tunneling (Ramoni & Anagnostou, 2007). 

The favorable effect of advance-drainage will be illustrated by considering the classic, 
rotationally symmetric, plane-strain problem of a deep, cylindrical tunnel (Figure 1). The 
assumptions underlying rotational symmetty are: unifonn pressure aa, homogeneous and 
isotropic ground, homogeneous and isotropic initial stt"ess and pore pressure fields (witl1 ao, 
ao' and p o denoting the initial values of total stress, effective stress and pore pressure, 
respectively). Under these conditions, t11e ground response to the tunneling operation can be 
represented by a single cmve, the so-called characteristic line (also refened to as "ground 
response cmve"), which expresses the relationship between the support pressure aa and the 
radial displacement Ua of the excavation bounda1y (i.e. at r = a, where r and a denote the 
distance from the Immel centre and the tunnel radius, respectively). This relationship is in 
general non-linear due to the plastification of the ground around the tunnel up to a radius p 
(Figm·e 1 ) . 

In order to understand the effect of advance-drainage on tile short-te1111 behavior of the 
opening it is necessaty to understand the factors goveming tl1is behavior. For this reason we 
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will first revisit the problem of the instantaneous response of the ground for the reference 
case without advance drainage (Section 2). More specifically, we will see that the effective 
stress prevailing before excavation is decisive for the sh01t-tem1 behavior. Aftetwards we 
will show how much the drainage increases the effective stress field ahead of the working 
face and how much this improves the ground response to tunnel excavation (Section 3). 

2 SHORT TERM GROUND RESPONSE WITHOUT PRE-CONSOLIDATION 

Labiouse & Giraud (1998) and Giraud eta!. (2002) have presented closed fonn equations for 
the instantaneous response of a saturated, porous medium with compressible constituents 
(pore water and solid grains). In the present paper closed-form solutions will be derived for 
the ground response curve under the sin1plifying assumption of incompressible ground 
constituents. In this case, the condition of constant water content, which characterizes the 
sh01t-tem1 response, becomes equivalent to the condition of zero volumetric strain. As a 
consequence of this simplification (which is reasonable for soft ground or weak rock) the 
mathematical derivation of the ground response cmve is much more straightfOiward than in 
the general case of compressible constituents. We will see, ftuthennore, that the resulting 
equation is considerably simpler than the existing solutions, thus illustrating clearly the 
factors goveming short-term response. 

In order to model the short-term behavior of the ground, two basic possibilities exist 
(Lambe and Whitman, 1969; Labiouse & Giraud, 1998): either to consider the ground as a 
single-phase, frictionless medium (so-called "1/1 = 0" - concept) and cany-out an analysis in 
terms of total stress; or to take it as a saturated porous medium obeying the principle of 
effective stresses and to cany out an effective stress analysis. A total stress analysis is simpler 
but unsuitable for the pm·poses of this paper as it does not take into account the pore 
pressures and their alteration by drainage. The analysis will be canied out therefore in tenns 
of effective stresses. 

The mechanical behavior of the ground is assumed to be linearly-elastic and perfectly
plastic according to the Mohr-Coulomb yield ctiterion and is characterized by the following 
material constants: the Young's modulus E, the Poisson's number v, the cohesion c' and the 
fi'iction angle 1/1'. For the sake of simplifying the mathematical derivations (and without loss 
of generality in tetms of the most relevant conclusions) we will assume non-dilatant plastic 
behavior (i.e., the dilatancy angle '1/J = 0). 

For understanding the instantaneous pore pressure changes caused by the excavation, it 
helps to discuss first what would happen in the case of d,.y ground. The well-known c!osed
fOim solutions existing for the stress field show that both the radial and the tangential stJ·esses 
decrease within the plastic zone and this leads (according to Hooke's law, which 
interconnects the elastic sb'ain increments with the stress-changes) to elastic volumeb'ic 
strains. These in general, together with a plastic dilatancy accompanying yielding, lead to an 
increase of the pore volume within the plastic zone. In the outer, elastic zone, however, the 
excavation does not produce any change of the mean stress or any volumetric strain. 
According to Kirsch's solution, the ground there experiences pure shearing: it contracts 
tangentially by the same amount as it extends in the radial direction. Consequently, the pore 
volume remains constant. 

In the case of water bearing ground, the changes of the pore volmne mentioned above go 
together with changes of water content. The latter need more or less time depending on the 
seepage flow rate and thus on the permeability of the grotmd. The augmentation of the pore 
volume within the plastic zone cannot take place immediately in a low-permeability ground. 
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Instead negative excess pore pressures develop, i.e. the pore pressure drops. (The 
instantaneous pressm·e drop has been observed also in situ, e.g. in the Mont Teni laborato1y; 
Bossart, 2008.) This happens of course only within the plastic zone. In the smTounding elastic 
zone the pore water does not impose any constraint on the pure shearing defo1mations. The 
pore pressure remains therefore equal to its initial value Po eve1ywhere within the elastic zone 
and, since the pore pressure gradient is equal to zero, all equations underlying Kirsch's 
solution apply to the case of saturated ground as well, the only difference being that the total 
stresses should be replaced by the effective stresses. Thus, the radial displacement uP at r = p 
is given by the equation 

(1) 

where aP' denotes the effective radial stress at r = p; Furthe1more, the radial stress decreases 
by the same amount as the tangential stress decreases and, consequently, their average value 
remains equal to the initial sb"ess: 

This equation together with the yield condition 

0 = 1+sinQb + 2croosrr 
r 1 r sin n..; Fl 1 r sin rL' 

(2) 

(3) 

which has to be satisfied specifically for r = p, yields the effective radial stress aP' as well as 
the tangential stress at the elasto-plastic inte1face: 

(4) 

where the constant 

~ = q )l sinLJ+ ciO:osLf. (5) 

The system remains within the elastic domain as long as the suppo1t pressure aa is higher 
than aP = a0 - s,. At lower support pressures, plastification takes place. Within the plastic 
zone, the volumetric strain 

n _ r,EL + r,PL - Q 
" Vol - Vol Vol- > (6) 

where the two tenns of the sum denote the elastic and the plastic pa1t. Since the latter is equal 
to zero for the assumed non-dilatant plastic behavior, the elastic volumetric strain must be 
zero as well: 

(7) 
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Fig. 1. Problem layout and short-term distribution of the pore pressure, of the effective stresses and of the 

total stresses without pre-consolidation of the grotmd (parameters values: see Table l) 

Table 1. Parameters of the muuerical example 

Parameter Value 

Tunnel radius a 4m 

JnitiaJ total Str<!SS Co 7.5 MPa 

Initial pore pressure Po 3MPa 

Yow1g's modulus E 400MPa 

Poisson's mmber v 0.25 

Cohesionc' 150 kPa 

Friction angle 4>' 25" 
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where the t.enns of the sum denote the elastic strains in the three principal directions. Since 
E: = 0 (plane strain condition) and the out-of-plane plastic flow can be neglected in most cases 
(Cantieni and Anagnostou, 2008), 

(8) 

and, consequently (Eq. 7), 

L(L + L,f.L = 0 . (9) 

Eqs. (8) and (9) in combination with Hooke's law, which expresses the relationship between 
the elastic strain components and the change of the effective stresses, lead to the following 
expressions for the latter: 

(10) 

According to this equation, the average effective stress remains equal to the initial stress a'0 

not only within the elastic zone but in the plasti·c zone as well. In addition to Eq. (10), the 
effective stJ·esses must satisfy the yield criterion (Eq. 3) at each point within the plastic zone. 
These two equations determine completely the effective stress field. Since the radius r does 
not appear in Eqs. (3) and (10), the effective stresses are constant within the plastic zone, i.e. 
they do not depend on the position r for a < r < p (Figure 1) and are, therefore, equal to the 
stresses at r = p which have been derived before. So, Eq. (4) can be replaced by 

UJJ =U&J USu, U{J =Ul)J +Su (a Or O p). (11) 

Since the effective radial stJ·ess at the excavation boundary is now given by Eq. (11) and the 
total stress at r = a is also known (it is equal to the given support pressure aa), one can 
calculate the pore pressure at the excavation bounda1y: 

(12) 

For obtaining the complete distribution of the pore pressure, we insert the known effective 
stresses (Eq. 11) into the equilibrium condition 

dn }J = ni-J nn}J r dp 
dr r dr ' 

(13) 

thus obtaining the following equation for the pore pressure field: 

(14) 
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The solution of this equation for the boundaty condition at r =a (Eq. 12) reads as follows: 

r 
p= Pa +2~ ln - . 

a 
(15) 

According to this equation, the pore pressure increases monotonously with the radius r and 
must therefore reach its initial value po at a cet1ain distance from the tunnel. This distance 
marks the interface between plastic and elastic zone (as explained above, the pore pressure 
remains equal to po in the elastic zone). Consequently applying Eq. (15) for p = po yields the 
radius p of the plastic zone: 

n - =e 
a 

(16) 

As the volume of the plastic zone remains constant, the excavation boundaty displacement lla 

is related to the displacement u, of the elasto-plastic interface by the following geometrical 
relationship: 

aua = Ou, . (17) 

Combining Eqs. (1), (16) and (17) yields the following, vety simple expression for the radial 
displacement: 

CoOCa r~ 
Ua 1+U ~ 
-=-~e 
a E 

(18) 

Note that if the support pressure Oa 0 a0 - S11, the system remains elastic and the ground 
response cmve is given by Kirsch's solution, i.e. by Eq. (1) witl1 a and Oa instead of p and a,, 
respectively. 

As shown in the Appendix, Eqs. ( 16) and (18) can be obtained also by a common total 
stress analysis for a material having tile same shear modulus (1 +v)IE as above, a friction 
angle 1/>u = 0 and a shear strength Su according to Eq. (5). The effect of drainage becomes 
evident when observing Eq. (5), as this equation shows that the equivalent shear strength s, 
increases linearly with the effective stress prevailing before excavation. Advance-drainage 
causes consolidation of the ground ahead of the working face, i.e. a pore pressure relief, a 
higher effective stress and, on account of Eq. (5), a higher shear strength. The drainage
induced modification of the effective sb"ess field will be studied in the next Section. 

3 SHORT TERM GROUND RESPONSE AFTER PRE-CONSOLIDATION 

3.1 Effect of advance-drainage on stress field 

We consider a cross-section ahead of the working face and assume that the drainage via the 
advance boreholes causes a complete pore pressure relief inside the core, i.e. that the pore 
pressme p = 0 for r 0 a, where a denotes tile radius of the futme opening. As a consequence 
of the drainage, seepage flow starts to occur, the pore pressures decrease around the core as 
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well and this leads to consolidation of the ground, i.e. to an increase of the effective stresses 
and to radial displacements towards the core. 

This problem has been analyzed by Anagnostou & Kovari (2003) in the context of 
tunneling through geological fault zones and under the following simplifying assumptions: 
the ground response to drainage is elastic; the seepage flow obeys Darcy's law; the region 
affected by the drainage extends up to a distance R from the ttmnel (i.e., p = po for r 0 R), 
where the influence radius R can be taken equal to the initial head poly,. (y,. is the unit weight 
of the water). According to Anagnostou & Kovari (2003), due to the drainage, the future 
excavation boundaty experiences an inward radial displacement of 

_ (1 + n)(1 n2n) Po 
Ua,DR - 2(1 U4 aE (19) 

and an increase of the effective radial stress by 

un UUrl= _ P_o-
a:'DR 6" 2(1 U4 ' (20) 

while the total radial stress decreases by 

n nn = r 1n2n 
a, DR 0 Po 2(1 UU) · (21) 

In the borderline case of v = 0.5 (which characterizes the theoretical case of an 
incompressible material), the volun1e of the core remains constant and, consequently, the 
drainage-induced radial displacement Ua,DR = 0 (cf. also Eq. 19). Furthennore, as can be seen 
from Eqs. (20) and (21), the total stress remains unaffected by the drainage, while the 
effective stress increases by the same amount as the pore pressure decreases. So, with 
reference to Eqs. (5) and (18), the effect of drainage is an increase of the parameter S 11 (which 
is the shear strength of the equivalent material in the total stress analysis, as stated above) by 
Lis" = posimp-. 

For typical values of the Poisson's ratio ( v = 0.20 - 0.30), the drainage causes a smaller 
increase in the equivalent shear strength (by about Mu = 65% posin¢) but, at the same time, a 
reduction in the total stress that prevails before excavation at r = a by about L1aa = 35% po. 

The complete distribution of the pore pressure p and of the effective stresses over the 
radius rare given by the following equations: 

p _ln(r/a) 
Po -ln(R/ a)' 

8 

(22) 

(23) 



where 

f r _ 21 n( R/ r) 
,( ) - 4(1 on) ln(R/ a)' 

U L !3 l 
(1 u 2u):1 LI~L r 

f r = ~ rr r[ 
2( ) 4(1 Du)ln(R/ a) · 

(24) 

One can readily verify that the radial and the tangential effective stress change at r = a by the 
same amount, but their difference increases with the distance r from the tullllel and this 
implies the possibility of yielding. As discussed by Anagnostou & Kovari (2003), the 
assumption of elastic behavior is valid in most cases but should be checked, if the initial pore 
pressm·e p0 is high relatively to the initial effect stress a0' (this may happen in the case of 
subsea tunnels). 

3. 2 Ground response curve after pre-consolidation 

As discussed above, advance-drainage modifies in general both the effective and the total 
stress fields. The state prevailing after drainage represents the initial state for the calculation 
of the ground response curve. As can be seen from Figure 2, this "modified" initial state is 
neither homogeneous nor isotropic and therefore the closed form equations of Section 2, 
which have been derived assuming homogeneous and isob·opic initial stress fields. may be 
applied (with modified initial stresses a 0 = Oa,IJR and a'0 = a'a.DR according to Eqs. 20 and 21) 
only in the sense of an approximation. 
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Fig. 2. Distribution of the pore pressure, of the effechve stresses and of the total stresses after pre

consolidation of the ground (parameters values: see Table 1) 
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Fig. 3. Grotutd response curve w~thout I with pre-consolidation (parameters values: see Table 1) 

An exact solution can be obtained numerically by the Finite Element Method. Such a 
calculation proceeds in two steps. The first step simulates the advance drainage and gives as a 
result the state prevailing before tunnel excavation (basically the results of Section 3.1 ). In 
the second computational step, we calculate the ground response cwve by reducing the radial 
stress at r =a monotonously from the value prevailing after drainage (Eq. 21) to zero. 

Figure 3 shows for a munerical example (i) th.e exact ground response cmve without pre
consolidation of the grOtmd (based on Eq. 18); (ii) the approximate ground response curve 
with pre-consolidation of the ground (based on Eq. 18 with modified initial stresses); (iii) the 
exact ground response cm·ve with pre-consolidation of the ground (obtained munerically by 
the Finite Element Method). It is clear that the en·or introduced by the approximate closed
fonn solution is relatively small, while the effect of drainage is considerable from the 
practical engineering point of view (at co111111on support pressures of 0.5 - 1 MPa, the 
convergence amounts to about 2- 3% instead of7- 9%). 

4 CLOSING REMARKS 

The equations given in Section 3.1 apply to the steady state, i.e. they pre-suppose completion 
of the transient consolidation process associated with the advance-drainage. As squeezing 
rocks are often fine-grained and have a very low pe1meability, the time needed for the pre
consolidation may be very long. Auxiliary stmctures (such as side adits or pilot tunnels) offer 
the possibility of drainage sufficiently in advance of the actual excavation works. 

We focused here on the effect of pre-consolidation on the short-te1m ground response. The 
advance-drainage has, however, a considerable favorable effect on the long-term behavior as 
well. This issue is being investigated by Anagnost.ou (2009). 
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APPENDIX: TOTAL STRESS ANALYSIS OF SHORT-TERM GROUND RESPONSE 

As in the effective stJ·ess analysis of Section 2, the mechanical behavior is assumed to be 
linearly-elastic and pe1fectly-plastic (this time however with a Tresca yield condition, since 
the material is frictionless in terms of total stress) and is characterized by three material 
constants: the undrained shear strength s11 (also referred to as "undrained cohesion"); the 
Young's modulus Eu; and the Poisson's number v,. (We use here the subscript "u" in order to 
differentiate the material constants fi"om those appearing in the constitutive equations in te1ms 
of effective stress.) 

The derivation of the sho1t-te1m ground response cmve in te1ms of total stress is routine 
because the Tresca criterion represents a special case of the Mohr-Coulomb criterion for 
which well-known closed form solutions do exist (cf. e.g. Anagnostou & Kovari, 1993). 
However, the derivation will be outlined here in order to illustrate the relationship between 
total and effective stress analysis (see Section 2). 

The radial displacement u0 of the excavation bounda1y can be obtained again from the 
geometrical relationship Eq. (17), while Kirsch's solution applies for the displacement uP of 
the elasto-plastic interface (r = p): 

1+[L ( ) u0=~u u0 uu0 , (25) 

where oP denotes the radial stress at the elasto-plastic interface r = p. The radial stJ·ess oP can 
be obtained by conside1ing the outer elastic zone. More specifically, the stress components at 
r = p must satisfy both the yield condition 

Ut = Ur +2~ (26) 

and Kirsch's solution, according to which the average stress is equal to the initial stress: 

(27) 

The solution of the system of the linear Eqs. (26) and (27) yields the stresses at r = p: 

(28) 

In addition to oP, the radius p of the plastic zone is needed by the equation for the radial 
displacement !Ia (Eq. 17). In order to calculate p , we dete1mine the stress field within the 
plastic zone based upon the yield condition and the equilibrium equation 

dOr = Ot DOr 
dr 

11 
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Eqs. (26) and (29) represent a system, whose solution yields the radial stress within the 
plastic zone r 0 p: 

nr = na +2~ ln(r I a). (30) 

For the detennination of the radius p of the plastic zone, we apply this equation tor = p and 
solve the resulting equation with respect to p. Taking into account aP according to Eq. (28), 
we obtain again Eq. (16) for the radius p of the plastic zone, while combining Eqs. (17), (25), 
(28) and (16) yields again Eq. (18) for the ground response cwve. 
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