
ETH Library

Specifying Access Control in
Event-B

Report

Author(s):
Hoang, Thai S.; Basin, David; Abrial, Jean-Raymond

Publication date:
2009

Permanent link:
https://doi.org/10.3929/ethz-a-006733720

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical report 624

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006733720
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Specifying Access Control in Event-B

Thai Son Hoang, David Basin, and Jean-Raymond Abrial

Department of Computer Science
Swiss Federal Institute of Technology, Zurich (ETH Zurich)

Abstract. We investigate the idea of developing access control systems
in Event-B by specifying separately the “insecure” target system and
the security authorisation, then combining them together in order to
construct a secure system. This is based on the work by Basin et. al. [6]
where the chosen language is CSP-OZ. Moreover, in order to verify the
secure system against some safety temporal properties, we propose an
approach of constructing several abstract models corresponding to these
properties, and using refinement to prove that the final system satisfies
these properties.
Keyword: Event-B, access control, security, temporal property.

1 Introduction

We investigate the idea of developing access control systems in Event-B. Our
approach is based on the work of Basin et. al. [6] where the chosen language
is CSP-OZ. Our first contribution is the methodology to develop this type of
systems by specifying separately the insecure target system and the security au-
thorisation, then combine them together in order to construct an secure system.
When developing the insecure system, developers can concentrate on the func-
tional requirements of the actual system without any knowledge of the security
features. On the other hand, when developing the security authorisation, the de-
velopers do not need to know about the details that are irrelevant to the model
of the authorisation itself. Later the combine secure system contain properties
of both of them: the functional requirements of the insecure system and the
security aspects of the authorisation.

Our second contribution is the idea of verifying system against safety tem-
poral properties using refinement. In our approach, we propose for each safety
property to construct an abstract model correspondingly, and prove that our
system refines these models. The proof of refinement guarantees that our model
satisfies these temporal properties. Safety properties which are expressed in LTL
or by some regular expressions can be translated easily into Event-B models. The
proofs of refinement depend on the glueing invariants between these “test” mod-
els and the system under verification.

As for tool support, we have used the “Parallel Composition Plug-in” [7] for
supporting our combination of insecure model and the security authorisation.
Our approach is in fact a special case of using shared event composition. More-
over, we also require a tool to support “multiple” refinements since we usually



2

want to verify our secure model against several properties which are expressed
as abstract models. This is not supported by standard Event-B and the Rodin
Platform. However, somewhat surprisingly, the parallel composition plug-in pro-
vides a workaround for us. For each property, we create a composition machine
which include only the final secure model, but we can specified the abstract
model and the corresponding invariant for the secure model to refine this ab-
stract model. This is a bonus for us since supporting multiple refinement is not
the main purpose of the composition plug-in.

The structure of our report as follows. We give a brief overview of the Event-
B modelling methods in Section 2. Section 3 discusses about the development of
an insecure bank, without any security measure. Section 4 formalises separately
a security authorisation system. Section 5 describes our approach of combining
the two developed systems to create a secure bank. In Section 6, we verify the es-
tablished secure system against some safety properties using refinement. Finally,
Section 7 gives some conclusion and future work.

2 Event-B Modelling Methods

Event-B [3], unlike classical B [2], does not have a fixed syntax. Instead, it
is a collection of modelling elements that are stored in a repository. Still, we
present the basic notation for Event-B using some syntax. We proceed like this
to improve legibility and help the reader remembering the different constructs
of Event-B. The syntax should be understood as a convention for presenting
Event-B models in textual form rather than defining a language.

Event-B models are described in terms of the two basic constructs: contexts
and machines. Contexts contain the static part of a model whereas machines
contain the dynamic part. Contexts may contain carrier sets, constants, axioms,
where carrier sets are similar to types [4]. In this article, we simply assume that
there is some context and do not mention it explicitly. Machines are presented
in Section 2.1, and machine refinement in Section 2.2.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may con-
tain variables, invariants, and events. Variables v define the state of a machine.
They are constrained by invariants I(v). Possible state changes are described by
means of events. Each event is composed of a guard G(v) and an action S(v)1 .
The guard states the necessary condition under which an event may occur, and
the action describes how the state variables evolve when the event occurs. An
event can be represented by the following form

evt =̂ when G(v) then S(v) end (1)

The short form
evt =̂ begin S(v) end (2)

1 For simplicity, we do not treat events with parameters.



3

is used if the guard equals true. A dedicated event of the form (2) is used for
initialisation.

The action of an event is composed of several assignments of the form

x := E(v) (3)
x :∈ E(v) (4)
x :| Q(v, x′) , (5)

where x are some variables, E(v) expressions, and Q(v, x′) a predicate. Assign-
ment form (3) is deterministic, the other two forms are non-deterministic. Form
(4) assigns x to an element of a set, and form (5) assigns to x a value satisfying a
predicate. The effect of each assignments can also be described by a before-after
predicate:

BAP
(
x := E(v)

)
=̂ x′ = E(v) (6)

BAP
(
x :∈ E(v)

)
=̂ x′ ∈ E(v) (7)

BAP
(
x :| Q(v, x′)

)
=̂ Q(v, x′) . (8)

A before-after predicate describes the relationship between the state just before
an assignment has occurred (represented by un-primed variable names x) and
the state just after the assignment has occurred (represented by primed variable
names x′). All assignments of an action S(v) occur simultaneously which is ex-
pressed by conjoining their before-after predicates, yielding a predicate A(v, x′).
Variables y that do not appear on the left-hand side of an assignment of an
action are not changed by the action. Formally, this is achieved by conjoining
A(v, x′) with y′ = y, yielding the before-after predicate of the action:

BAP
(
S(v)

)
=̂ A(v, x′) ∧ y′ = y . (9)

In proof obligations we represent the before-after predicate BAP
(
S(v)

)
of an

action S(v) directly by the predicate

S(v, v′) .

Proof obligations serve to verify certain properties of a machine. Here a proof
obligation is presented in the form of a sequent: “hypotheses” ` “goal”. The
intuitive meaning of this sequent is that under the assumption of the hypotheses,
prove the goal.

For each event of a machine, the following proof obligation which guarantees
feasibility must be proved.

I(v)
G(v)

`
∃v′ · S(v, v′)

FIS



4

By proving feasibility, we achieve that S(v, v′) provides an after state whenever
G(v) holds. This means that the guard indeed represents the enabling condition
of the event.

Invariants are supposed to hold whenever variable values change. Obviously,
this does not hold a priori for any combination of events and invariants and,
thus, needs to be proved. The corresponding proof obligation is called invariant
preservation:

I(v)
G(v)
S(v, v′)

`
I(v′)

INV

Similar proof obligations are associated with the initialisation event of a ma-
chine. The only difference is that the invariant and guard do not appear in the
antecedent of the proof obligations (FIS) and (INV).

2.2 Machine Refinement

Machine refinement provides a means to introduce more details about the dy-
namic properties of a model [4]. For more on the well-known theory of refinement,
we refer to the Action System formalism that has inspired the development of
Event-B [5]. We present some important proof obligations for machine refine-
ment. As mentioned before, the user of Event-B is not presented with a be-
havioural model but only with proof obligations. The proof obligations describe
the semantics of Event-B models.

A machine CM can refine at most one other machine AM . We call AM
the abstract machine and CM a concrete machine. The state of the abstract
machine is related to the state of the concrete machine by a glueing invariant
J(v, w), where v are the variables of the abstract machine and w the variables
of the concrete machine.

Each event ea of the abstract machine is refined by one or more concrete
events ec. Let abstract event ea and concrete event ec be:

ea b= when G(v) then S(v) end

ra b= when H(w) then T (w) end

Somewhat simplified, we can say that ec refines ea if the following conditions
hold.

1. The concrete event is feasible. This is formalised by the following proof
obligation.



5

I(v)
J(v, w)
H(w)

`
∃w′ ·T(w, w′)

FIS

2. The guard of ec is stronger than the guard of ea. This is formalised by the
following proof obligation.

I(v)
J(v, w)
H(w)

`
G(v)

GRD REF

3. The abstract event can always “simulate” the concrete event and preserve
the glueing (concrete) invariant. This is formalised by the following proof
obligation.

I(v)
J(v, w)
H(w)
T(w, w′)

`

∃v′ ·
„

S(v, v′) ∧
J(v′, w′)

« SIM

For the initialisation, the corresponding proof obligations are obvious. The
proofs of these above obligations guarantee the correctness of the refinement
model with respect to the abstract model and the glueing invariant between
them.

In the course of refinement, often new events ec are introduced into a model.
New events must be proved to refine the implicit abstract event skip that does
nothing.

skip =̂ begin skip end (10)

Moreover, it may be proved that new events do not collectively diverge, but this
is not relevant here.

3 An Insecure Bank

In this section, we develop a simple bank system maintains the balances of some
accounts without any knowledge about security measure. In our simple system,



6

we even assume that set of customers and accounts are constants, but this should
not effect the generality of our approach.

The following context information about customers and accounts are also
shared with the development of security authorisation later.

carrier sets: USER, ACCOUNT

constants: customers, accounts, initBal

axioms:
customers ⊆ USER
accounts ⊆ ACCOUNT
accounts 6= ∅
initBal ∈ accounts→ N

We have two carrier sets USER and ACCOUNT to denote the set of all possible
users and accounts. Constant customers denotes the current set of registered
customers of the bank, whereas constant accounts formalises the set of existing
accounts within the bank. We also required that this there must be some existing
accounts in the system. Since we are going only model only the query operation
about the balance of an account and transferring operation between two account,
other operations such as deposit, withdraw are left out. As a result, we will need
to have some initial balance in our accounts to start with and this is model by
constant initBal.

Moreover, to denote different states of the bank, we use the following enu-
merated set BANK STATE, with the elements corresponding to the initial state,
operation state (after login), transfer state (between transfer request and transfer
execution).

carrier sets: BANK STATE constants: INIT, OP, TRANS

axioms:
BANK STATE = {INIT, OP, TRANS}
¬INIT = OP
¬INIT = TRANS
¬OP = TRANS

The model of our insecure bank is as follows. We have two variables to keep
track of the current state of the bank, and the balance of the existing accounts
within the bank. Every account must have some balance which is a natural
number associated with. The initialisation for these two variables are trivial.

variables: bankState, balance
invariants:

bankState ∈ BANK STATE
balance ∈ accounts→ N



7

init
begin

bankState := INIT
balance := initBal

end

We first model the login operation as two separate events to reflect the differ-
ent outcome of this operation, either successful or not. Here we use a convention
for modelling the output of an operation by parameters of the event which are
written in capital letters. In the following two events, OK is the corresponding
output to the user of the system. In the case of unsuccessful, the bank state is
still at the initial state.

loginTrue
any u, OK where

bankState = INIT
u ∈ customers
OK = TRUE

then
bankState := OP

end

loginFalse
any u, OK where

bankState = INIT
u /∈ customers
OK = FALSE

then
skip

end

The event logout is modelled as follows

logout
when

bankState = OP
then

bankState := INIT
end

The user can logout when the bank is in “operation” state, but not between the
execution of the transfer operation. Note that our bank here is single threaded,
i.e. at a time at most one user can log in and use the system.

The query operation about balance of an account is straight forward with
the use of event parameters as outputs for the operation. We have a parameter
a to indicate the account under query.

balance
any a, V AL where

bankState = OP
a ∈ accounts
V AL = balance(a)

then
skip

end



8

The transfer operation are carried out in two steps: The user first make a
request and then transfer is then executed or aborted depending on the users’
input. As a result, the bank need to keep the information that the user enters
in the first step in order to use these information later in executing the transfer.
We introduce the following additional variables for this purpose.

variables: from, to, amount, transferOK

invariants:
from ∈ accounts
to ∈ accounts
amount ∈ N1
transferOK = TRUE⇒ from 6= to ∧ amount ≤ balance(from)

The variable transferOK to keep the status of the transfer request if it is valid.
We have an invariant to state that if this is the case then the source account
must be different from the destination account and there must be sufficient fund
in the source account for the transfer.

The transfer request operation is modelled as the following event. It is straight
forward to see that the event maintains the invariants presented above.

transferRequest
any a1, a2, s, OK where

bankState = OP
a1 ∈ accounts
a2 ∈ accounts
s ∈ N1
OK = bool(a1 6= a2 ∧ s ≤ balance(a1))

then
bankState := TRANS
transferOK := OK
from := a1
to := a2
amount := s

end

Depending on the validity of the request, the bank either carries out the
transfer or aborts the transfer operation. This is modelled by the following pair
of events.



9

transferExecTrue
when

bankState = TRANStransferOK = TRUE
then

bankState := OP
transferOK = FALSE
balance := balanceC−
{from 7→ balance(from)− amount, to 7→ balance(to) + amount}

end

transferExecFalse
when

bankState = TRANS
transferOK = FALSE

then
bankState := OP

end

4 A Security Authorisation

In this section, we look at the model of a security authorisation which is inde-
pendent of the insecure bank that we have modelled in the last section. First,
we define some context that will be used for the model of the authorisation.

We use a enumerated set SEC STATE for denoting different states of the
authorisation. We leave out the trivial axioms to specify that the elements of
this set are different. They corresponding to the following state: initial, entering
PIN, operation, entering TAN, transferring state (between transfer request and
transfer execution).

carrier sets: SEC STATE

constants: SEC INIT, SEC PIN, SEC OP, SEC TAN, SEC TRANS

The authorisation uses several security methods: PINs, TANs (Transaction Au-
thorisation Numbers) and privileges. They are defined as some carrier sets and
constants as follows.

carrier sets: PIN, ACTION, TAN

constants: credentials, BALANCE, TRANSFER, privileges, tanlist



10

axioms:
credentials ∈ customers→ PIN
ACTION = {BALANCE, TRANSFER}
¬BALANCE = TRANSFER
privileges ∈ P(USER×ACCOUNT ×ACTION)
tanlist ∈ customers→ (N→ TAN)

– We model the set of PINs by a carrier set and each customer needs to have
a pin.

– The authorisation monitors the customers’ privileges. This is the relationship
between a users, an account and the action that the user can perform on this
account. For our simple bank, the action is either checking the balance or
transferring money from this account.

– We model the set of possible TANs by a carrier set and for each customer, we
assume that there is an infinite sequence of TANs associated with them. An
infinite sequence of TANs is modelled by a total function from N to TAN .

The model of the authorisation contains the variables representing the current
state, the current user who logged into the system and current index in TAN
lists for each customer.

variables: secState, user, tid

invariants:
secState 6= SEC INIT ⇒ user ∈ customers
tid ∈ customers→ N

init
begin

secState := SEC INIT
user :∈ USER
tid := customers× {0}

end

An important invariant is that if the authorisation is not in the initial state, i.e.
some user has already attempted to log into the system, then that user must
be an existing customer of the bank. Initially, the index in the tan list for each
customer starts from the beginning of their corresponding sequence, i.e. with
index 0.

The login operation is modelled similarly by two events as in the insecure
bank. The differences are that the authorisation keeps track of the user logging
into the system and there is no need for an output.



11

loginTrue
any u where

secState = SEC INIT
u ∈ customers

then
bankState := OP
user := u

end

loginFalse
any u where

secState = SEC INIT
u /∈ customers

then
skip

end

For the authorisation, the user can log out of the system when in either two
state SEC OP or SEC TAN.

logout
when

secState ∈ {SEC OP, SEC TAN}
then

secState := SEC INIT
end

After enter the user name, the user of the system will be ask to enter his
PIN number. Again, we separate the operation into two events depend on the
outcome. Both of them has output to indicate if the operation is successful or
not.

pinTrue
any p, OK where

secState = SEC IDENT
user 7→ p ∈ credentials
OK = TRUE

then
secState := SEC OP

end

pinTrue
any p, OK where

secState = SEC IDENT
user 7→ p /∈ credentials
OK = FALSE

then
skip

end

The authorisation for the balance operation does not concern with the actual
functional requirement operation, but with the privilege of the user. The user
need to have a privilege for checking the balance of the account in order to
perform the actual operation.

balance
any a where

secState = SEC OP
user 7→ a 7→ BALANCE ∈ privileges

then
skip

end



12

Similarly for the transfer request operation, the authorisation does not relate
to the amount that will be transferred or the destination account. Instead, the
authorisation only relates the privilege of the user on the source account.

transferRequest
any a1 where

secState = SEC OP
user 7→ a1 7→ TRANSFER ∈ privileges

then
secState := SEC TAN

end

After the user makes a transfer request, the bank requires the user to enter
the TAN number corresponding to transfer operation. This must be the TAN
corresponding to the current number in the TAN sequence of this user. We
separate this operation into two events for different outcome of this operation.
In the case the user gives the correct tan number, the authorisation continues to
the next state in order to execute the transfer, and at the same time, the index
in the tan list corresponding to the user is advanced by 1. On the other hand, in
the case of unsuccessful, the state of the authorisation comes back to operation
state, i.e. the transfer process is cancelled.

tanTrue
any t, OK where

secState = SEC TAN
t = tanlist(user)(tid(user))
OK = TRUE

then
secState := SEC TRANS
tid := tidC− {user 7→ tid(user) + 1}

end

tanFalse
any t, OK where

secState = SEC TAN
t 6= tanlist(user)(tid(user))
OK = FALSE

then
secState := SEC OP

end

In contrast with the insecure system, the transfer execution for authorisation
just changes its internal state from SEC TRANS to SEC OP.



13

transferExec
when

secState = SEC TRANS
then

secState := SEC OP
end

5 A Secure Bank

In this section, we see how the two systems, i.e. insecure bank and security
authorisation, combining together to create the secure bank. We merge the two
systems as follows.

– The states of the two machines are merged.
– The following events are merged

Insecure Bank Sec. Auth. Secure Bank
loginTrue loginTrue loginTrue
loginFalse loginFalse loginFalse

logout logout logout
balance balance balance

transferRequest transferRequest transferRequest
transferExecTrue transferExec transferExecTrue
transferExecFalse transferExec transferExecFalse

– The following events are copied from Security Authorisation: pinTrue, pin-
False, tanTrue, tanFalse.

We use the parallel composition plug-in [7] to create a “composition machine”
according to the above merging information. The resulting Event-B machine is
created automatically by the plug-in. For example, the combining event balance
is as follows.

balance
any a, V AL where

bankState = OP
a ∈ accounts
V AL = balance(a)
secState = SEC OP
user 7→ a 7→ BALANCE ∈ privileges

then
skip

end

Another example is the event transferRequest, which is combined as follows.



14

transferRequest
any a1, a2, s, OK where

bankState = OP
a1 ∈ accounts
a2 ∈ accounts
s ∈ N1
OK = bool(a1 6= a2 ∧ s ≤ balance(a1))
secState = SEC OP
user 7→ a1 7→ TRANSFER ∈ privileges

then
bankState := TRANS
transferOK := OK
from := a1
to := a2
amount := s
secState := SEC TAN

end

As one can see, the combination of the two systems contains the properties of
both, the functional requirements from the insecure systems is guarded by the
security authorisation to prevent improper usages.

Here, we present the approach where the two systems are developed sep-
arately and combining later together. We could develop the secure system as
a superposition refinement of the insecure bank by adding information about
security authorisation. By specifying the two sub-systems separately, we have
separation of concerns when developing these systems.

6 Analysis of Safety Properties

Since we have developed the secure system, we would like to verify our secure
system against some safety properties. We consider here two properties as de-
scribed in [6].

1. No balance check occurs before a sequence of successful login and pin entries.
2. No transferExec occurs before a successful tan entry.

These properties can be expressed by a CSP processes. For example the
second property can be specified as follows. (From now on, we use the second
property for our illustration).

INIT = tanTrue→ TRANS

�(�x : Other·x→ INIT )

TRANS = transferExec→ INIT

�(�x : Other·x→ INIT )

where Other is the set of other events rather than tanTrue and transferExec.
Notice that in our model, we have two different events corresponding to execution
of transfer, namely transferExecTrue and transferExecFalse.



15

On the other hand, we this property can be represented by a simple automa-
ton as in Figure 1.

TRANSINIT

tanTrue

Other
Other

transferExecTrue/False

Fig. 1. Automaton representation of the second property

The corresponding Event-B model of this automaton is by having a variable
to represent the current state. First, we defined a carrier set to represent the
possible state of this automaton.

carrier sets: TEST2 STATE

constants: TEST2 INIT, TEST2 TRANS

axioms:
¬ TEST2 INIT = TEST2 TRANS

The variable test2State represents the state and is initialised to TEST2 INIT
as follows.

variables: test2State
invariants:

test2State ∈ TEST2 STATE

init
begin

test2State := TEST2 INIT
end

The transition system of the automaton is modelled by three events corre-
sponding to the different transitions. The event other is the same as the skip
event.



16

tanTrue
when

test2State = TEST2 INIT
then

test2State := TEST2 TRANS
end

transferExec
when

test2State = TEST2 TRANS
then

test2State := TEST2 INIT
end

other
begin

skip
end

We need to prove that our secure system refines the above test model. We
need the glueing invariant as follows. The glueing invariant related the state of
the test model, i.e., test2State and the state of the secure system, here, repre-
sented by variable secState.

invariants:
test2State = TEST2 TRANS ⇔ secState = SEC TRANS

We also need to specify the corresponding refinement relationship between
events: tanTrue event of the secure model refines tanTrue event of the test model,
events transferExecTrue and transferExecFalse both refine transferExec event of
the test model. All other events in the secure model correspond to other in the
abstract test model.

We also used the parallel composition plug-in [7] in order to verify this re-
finement relationship. In Event-B, a model can be a refinement of at most one
abstract model. The reason is that the invariant in a model can represent at
most one glueing invariant with an abstract model. In our case, we would like to
verify our model against different abstract models representing different proper-
ties. In other words, we would like to be able to state the following: our system
refines the first test model with some glueing invariants and also refines the sec-
ond test model with some other glueing invariants. The plug-in provides us with
a workaround by constructing a special composition machine contains just the
secure system, and provides information that this composition machine refines
the test model with the specify glueing invariants. This can be illustrate by the
diagram in Figure 2. Since the parallel composition plug-in is not designed for



17

this purpose, the fact we can use the plug-in for multiple refinement is an extra
bonus for us.

composition machine

invariants

secure system

?> =<

89 :;
test model refinesoo

Fig. 2. Using composition plug-in for testing refinement

Using this technique, we verify that our secure bank system satisfies both
properties as expected.

7 Conclusion

We presented here our approach for developing access control system in Event-
B. The method that we use is to specify separately the insecure system and the
security authorisation and later to combine them to construct secure system.
Moreover, in order to verify our final system against some safety temporal prop-
erties, we propose an approach of constructing abstract models corresponding to
these properties and proving the refinement relationship between the final model
and these abstract model. We have used the parallel composition plug-in as a
tool support.

As for future work, we are going to investigate the example from SAP as to see
the applicability of our approach to this particular domain. We have confident
that our method is well suited to the particular mini-pilot for access control.
This will be our basis for further investigation of security aspect applying to the
context of business communication.

As for our work related to safety temporal properties, our approach is promis-
ing. Proving refinement is more general than proving trace refinement using some
model checker. The construction of the test abstract model is straight forward
and could be partially automatised. More interesting question which need to be
investigate further is about the preservation of these temporal properties with
refinement. There has been some work along line, notably by Abadi and Lam-
port [1]. We would like to investigate to know which kind of temporal properties
is preserved with Event-B refinement. Otherwise, what are the extra proof obli-
gations necessarily for preserving other kind of temporal properties.

References

1. Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theor.
Comput. Sci., 82(2):253–284, 1991.



18

2. Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

3. Jean-Raymond Abrial. Modeling in Event-B: System and Software Design. Cam-
bridge University Press, 2009. To appear.

4. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition and In-
stantiation of Discrete Models: Application to Event-B. Fundamentae Informatica,
2006.

5. Ralph-Johan Back. Refinement Calculus II: Parallel and Reactive Programs. In
J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems, volume 430 of Lecture Notes in Computer Science, pages
67–93, Mook, The Netherlands, May 1989. Springer-Verlag.

6. David A. Basin, Ernst-Rüdiger Olderog, and Paul E. Sevinç. Specifying and an-
alyzing security automata using csp-oz. In Feng Bao and Steven Miller, editors,
ASIACCS, pages 70–81. ACM, 2007.

7. Renato Silva. Parallel composition using event-b. http://wiki.event-b.org/

index.php/Parallel_Composition_using_Event-B.


