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Abstract

In order to increase machinery resource, energy and time efficiency, Condition Monitoring (CM) offers a wide set of beneficial tools. Those

tools can basically be segmented in maintenance improvements or the optimization of process parameters. CM requires data input from a

component, which is then analyzed using data based or physical models, which return an estimate of the component’s current condition. The

use of high quality sensors in a stable laboratory environment generally leads to an overemphasizing of the results which CM systems achieve

in an industrial environment. Additionally, the installation of sensors is not always economically feasible for low-cost machinery. To overcome

this, the CM system which is presented in this paper uses data, which is usually present in the PLC, as a consequence thereof, the data quality

is significantly lower compared to dedicated sensor equipment. A real production machinery is further used to demonstrate the capabilities of

condition monitoring in an industrial environment. The data driven CM process, which is used in this application example is compared to a model

driven approach, conducted on a test equipment machine.
c© 2017 The Authors. Published by Elsevier B.V.
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1. Introduction

In the last years, the pressure for a better and more sophisti-

cated approach in maintenance led to the development of con-

dition monitoring (CM) and predictive maintenance (PM) sys-

tems. Condition monitoring uses data which is present in the

machine, to calculate a quantifiable condition of a component

or a machine. This condition is a numeric expression of the

health of a component, and can quantify faults which are mod-

eled in the calculation algorithm resulting from wear, friction,

heat dissipation and similar.

Using this condition value, the efficiency of the machine can

be improved in several different ways. Approaches, such as

predictive maintenance, can be used to reduce the amount of

maintenance time on the machine. This approach allows to

better plan any maintenance action, based on the condition of

the component, rather than on afixed maintenance cycle. If the

maintenance is based on the real condition, it also reduces the

number of components, which are maintained, despite being

perfectly healthy.

Using condition monitoring, the machine can also be im-

proved in respect to its production and energy efficiency. Un-

healthy and unreasonably damaging processes can be identified

by following the condition of such processes. Also, energy in-

efficient processes can be identified, by identifying the energy

consumption accordingly.

To make such a condition monitoring accessible to any type

of machinery, this work focusses on sensors, which are already

available in the machine. Components, such as frequency con-

verters have a built-in current and voltage sensor, which can be

used instead of an external sensor. This allows the installation

of such a system even for cheap components, where a data ac-

quisition via external sensors is too costly. The downside of this

approach is a reduced data quality, compared to a high resolu-

tion external sensor.

2. Motivation

There are many different machine components available in

any possible combination in industry. This paper focusses on

a spindle drive, consisting of a servo motor, a gearbox, and a

mechanical spindle. The spindle drive combines electrical, me-

chanical and thermal systems in one, making it one of the most

complex systems in a standard machine. Thus, it is a good ex-

ample for a generic component, which can be reused for simpler

components.2212-8271 c© 2017 The Authors. Published by Elsevier B.V.
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2.1. Related Work

There are many different approaches to spindle drive mon-

itoring, which are presented by [1], which refers the reader to

[2] and [3], or various parameter identification methods as pre-

sented by [4]. This work will focus on the approach presented

by [1] and compare it to a data driven approach, which will be

elaborated further.

In [5] a condition monitoring for an electrical motor is pre-

sented which solely relies on current measurements. The goal is

to replace vibration measurements by currents measurements,

delivering the same result. Because stator vibration measure-

ment requires full access to the stator and rotor, this technique

is usually too expensive for small scale equipment. The usual

bearing failure can be measured consistently by a vibration sen-

sor. The current measurements yielded similar frequency re-

sponses and offer a unique opportunity for a cheap bearing fail-

ure detection.

Similarly [6] presents an approach to measure the condition

of an electrical motor using frequency analysis. The proposed

algorithms is based on the fact, that any vibration due to a mo-

tor error is also transferred to the current signal, based on the

electromechanical feedback through the motor windings. Us-

ing a simple analysis of the induced frequencies depending on

a certain error case, an error can be identified using a frequency

spectrum of the current feedback signal.

3. System Setup

The whole condition monitoring process, as presented in this

work, is based on a software tool. As mentioned above, the ab-

sence of external sensors makes it necessary to use of internal

sensors in the machine. Thus, the installation of such a sys-

tem is a mere software update. This software update is based

on three software layers. The first layer is the data acquisition

layer, which is situated on the PLC itself. The second layer it

the data interpretation loop, which conducts the condition cal-

culation and prediction, the third layer it the broadcasting to the

end user, which needs to interact with the data in a meaningful

way.

3.1. Cyber-Physical Data Connection

The data acquisition, which runs on the PLC, works indepen-

dently of the machine control. The data is handed to the data

acquisition function, which buffers the sampled data, such that

the condition monitoring software can load it asynchronously.

First, the sensors value is loaded in the memory of the PLC and

then placed into a predefined array. This process is repeated,

until the array is full (at a fixed predefined size). If that occurs,

the array is stored in an output buffer, and a flag is set that the

data is ready to transfer. At this point, the data acquisition loop

waits for the next trigger to start acquiring data again, which is

set in the machine control, e.g. at the start of a crucial process

which should be monitored. The data transfer loop waits until

an external application sets the data transfer flag and accepts

the transferred data to release the output buffer for the next data

transfer. This asynchronous data transfer allows the data acqui-

sition to continue, during the data transfer time. Most of the

monitored processes take two or more seconds to run, which is

more than enough time to transfer the data.

This data acquisition is built in such a way that it can be im-

plemented as a software update to any structured text program,

which makes it cheap to install on any machine. On the side

of the condition monitoring algorithm, a virtual counterpart of

the monitored component is created. Using object oriented pro-

gramming languages, the monitored component can be treated

as individual cyber object, which represents the physical com-

ponent in an abstract way. Each cyber-physical instance, as this

construct is called, has several physical properties and func-

tions related to it, as depicted in Figure 1. Each component has

a data handler, which is continuously waiting for data from the

data acquisition loop, as soon as the data ready flag is set in the

PLC, the condition monitoring algorithm loads the data in its

memory and starts the predefined algorithm. For each data set

which is transferred this way, a new condition value is calcu-

lated.

Fig. 1. Cyber-physical Instance

3.1.1. Data Interpretation
After the data is transferred to the condition monitoring ap-

plication, the interpretation algorithm is run. This algorithm

includes all models specified by the user, which lead to the cal-

culation of the condition, prediction and any other useful infor-

mation. This can include a detailed energy consumption analy-

sis, or data, which is critical to the production development.

This work focuses on the calculation of the condition and

the prediction algorithm. To calculate the condition of the com-

ponent, two approaches are introduced, based on the work pre-

sented by [1]. The two approaches are a model-based approach,

which identifies the physical model parameters of a dynamic

differential equation system. The second approach focusses on

a statistical approach, based on control charts, as presented by

[7].

3.1.2. Model-based approach
The model-based approach focusses on the dynamic model

of the corresponding component. In this case, the model of a

electrical spindle drive is introduced.

The electrical model, as presented by [8] is shown in (1) and

(2).

LsId(t) = Usd − RId + pLsωmIq (1)
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LsIq(t) = Usq − RIq − pLsωmId − 3
2

pωmΨ0 (2)

The model of the connected spindle mechanics looks as fol-

lows:

Θtotωm(t) = 3
2

pΨ0Iq − μssign(ωm(t)) − μvωm(t) − Fp
n10−3

2πγ
(3)

With the following parameters:

Ls: Inductance of the windings.

R: Resistance of the windings.

Ψ0: Motor Constant.

p: Number of pole pairs.

Usd, Usq: Control action voltages.

Iq: Acting current.

Id: Blind current.

ωm: Velocity of motor shaft.

γ: Gearbox transmission ratio.

n: Spindle increment

Θtot: Total inertia.

Fp: Process force.

μs, μv: Friction parameters

Using this model, it is possible to conduct a parameter iden-

tification process. Using a special trajectory, as presented by

[1], the parameters can be identified during the operation of the

machine, which is favorable due to production efficiency. An

online parameter test allows following the parameters in real

time. The identified parameters are:

Ψ0: Motor Constant

μs, μv: Friction parameters

Θtot: Total inertia.

These four parameters offer critical insight into the be-

haviour of the electrical spindle. The friction parameters give

a good response on the condition of the mechanical part (gear-

box, spindle, bearings and guidance). On the other hand, the

motor constant can yield possible interpretations on the health

of the electrical motor. The total inertia gives a good feedback

on any manual change to the system, which is not unusual for

this kind of machinery. As any change can have influences on

the monitoring algorithm, it needs to be monitored in detail.

These four parameters can be considered during a parameter

identification approach to calculate the condition of the spin-

dle. To have a uniform condition interpretation across differ-

ent physical parameters, the same statistical process as for the

data-based approach is used. The proposed statistical algorithm

takes the raw data from trajectories and recalculates a condi-

tion value between 0 and 100. The same can be done using the

physical parameters presented above.

As such, a normalisation of all results is achieved, and a

comparable basis is created. For example, a temperature con-

dition of 65 (e.g. overheating) can be compared to a condition

of 54 which is related to the friction parameter. Using absolute

values between 0 and 100 a interaction with the machine per-

sonell is much easier, because no physical understanding of the

process is needed.

3.1.3. Data-based approach
The data-based approach is of statistical nature. Instead of

using physical models of the components, the individual data

set and trajectory of each production cycle is monitored. With-

out any connection to a physical model, critical points in the

trajectory are chosen, which are to be monitored by the system.

Figure 2 shows a typical trajectory of a joining process.

In such a trajectory, amplitudes, mean values or peaks can

be monitored, as depicted in Figure 2.

Fig. 2. Typical joining process trajectory

If one of these characteristic points is chosen, the condition

monitoring algorithm takes it for every trajectory provided by

the data acquisition procedure, and updates its internal statis-

tics for the chosen components. In order to have a unified in-

terpretation procedure, the control chart algorithm is used, as

presented by [7]. The control chart algorithm originates from

the statistical process control where a manufacturing process is

controlled to be stable, based on certain measurement criteria,

which are fed into the statistical algorithm.

In the case of this work, this algorithm is used for the cal-

culation of a component’s condition. Because the control chart

algorithm offers upper and lower stability boundaries for a pro-

cess, it is applicable to the calculation of a component’s con-

dition. The upper and lower boundaries, as proposed by the

control chart algorithm, can be used to provide a stability cri-

teria for the health of a component. So for a value which is

above the mean value identified by the control chart algorithm,

using the upper control boundary (UCB), the condition can be

calculated as follows

condition = 100 − value−mean
(UCB−mean)

∗ 100 (4)

For values close to the mean value, which are taught, the

condition is close to 100, as soon as the taught value reaches

the upper control boundary, the condition reaches 0. The same
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can be done for the lower control boundary. As long as the

indicators stay close to the mean, the component is considered

healthy (e.g. condition close to 100%). If the indicators leave

this area, the condition will get worse until it reaches a critical

level (condition equals 0%), which are denoted by the identified

control boundaries. With the ongoing research and application

of the algorithm, these levels can be taught automatically.

3.1.4. Prediction Algorithm
To predict the time to failure of a component, the calculated

condition value is used. The condition value is extrapolated

over time, based on the following extrapolation functions:

yN = Σ
N
i=0aiti (5)

and

y = a(1 − exp(bt + c)) (6)

For the polynomial approach, an order N from 2 to 5 is suitable.

In order for the exponential approach to be linear in its parame-

ter, an assumption for the value of a has to be made. Because of

the nature of the problem, a denotes the steady state condition

at the actual timepoint, and can be estimated using:

at∗ = condition(t∗ − 5d) (7)

which gives an estimate of the condition 5 days ago. Using this

value for a leads to a linear equation system for the exponential

approach:

ln(1 − y
a ) = bt + c (8)

The exponential approach is linear in its parameters by design.

Using this prediction algorithm, the results, as depicted in Fig-

ure 3 were achieved.
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Fig. 3. Prediction trajectory

Figure 3 shows a condition trajectory of a test machine,

where a lifetime test was conducted. The plot denotes the pre-

diction of the failure time using the exponential extrapolation

function. The extrapolation predicts the condition 0 at the blue

point in time in the future. This data can be used to denote

the remaining useful lifetime (RUL) of the chosen component.

Similar results can be achieved using the polynomial approach.

However, the two approaches differ in robustness and quality of

extrapolation.

The condition trajectory shows a sharp degradation in a short

time period, due to a high load applied to the electrical spindle.

The prediction algorithm was able to find a clear failure time.

4. Data Broadcasting and User Interface

To ensure an application of the results, the data needs to be

broadcasted to a certain degree. It is important that the pro-

duction manager of the machine in question has access to this

information all the time. The best solution in this case is a web

server, containing all useful information, such as the condition,

as well as the failure prediction.

However, the user interface can not contain too much infor-

mation. Data, which is crucial to the company, such as detailed

information on the production cycle, sizes and exact product

names, can not be displayed, depending on the security issues

tied to such information. If data security is an issue, such a

web server can be hosted within the companies own network.

If the information is displayed as a web based user interface, it

is accessible from any computer as well as handheld device. As

such, the information can be reached at any time, within certain

security boundaries.

The communication procedure is depicted in Figure 4. The

proposed architecture is based on a TCP/IP based API. This

means that it can be used by any other software tool in order to

enhance the productivity of the whole company. SAP and ERP

system can access this information in order to plan production

batches ahead of time, considering the condition, as well as the

failure prediction of each machine.

Fig. 4. Broadcasting Procedure

The interfaces, which are used in this concept are completely

open source, and are based on a JSON. JSON allows an easy en-

coding and also readability for debugging and implementation

in other software tools. The Representational State Transfer

(REST) API principle allows an easy communication structure.

Additionally REST API’s allow for a seamless integration into

a machine-to-machine (M2M) communication network.

5. Application to a test machine

To validate the working algorithm, the application was run

on a test machine, where a short time failure test was conducted.
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The goal was to test the application of the predictive mainte-

nance algorithm, as well as the communication structure of the

application in a real industrial environment. The test machine

was set up to match the electronic and mechanic properties of a

real machine, currently in use at an industry partner.

The test setup is depicted in Figure 5 and shows the electrical

motor, mounted on a spindle axe, which is supported by two

guidances. This mechanical setup does not include a gearbox to

increase the load on the motor for the test. In order to simulate

a high load, such as in a joining process, a mechanical spring is

introduced at the bottom of the mechanical movement, which

induces loads up to 80% of the maximal motor load.

Both the parameter identification process and the statistical

process are run for this setup, which delivered the following

results.

5.1. Results

The results, which are presented in this section, are based on

a long term failure test on a test machine. This test machine,

as depicted in figure 5, was run for two months, in order to get

a good insight into the process. The process which was run on

the test machine is depicted in figure 2. It simulates a handling

movement, between 0 and 2 seconds, and a joining process,

with a high torque, between 3 and 5 seconds. This process is

run constantly, every 8 seconds to simulate a high load on the

axis. In order to have a fast degradation and exceptionally high

joining force is chosen, as mentioned before.

Fig. 5. Mechanical Test Equipment

The chosen point for the analysis is the minimum torque be-

tween time points 4 and 5 seconds, meaning the acceleration

peak away from the joining process. This peak is at a time,

where the axis is not in interference with any workpiece, which

means, it is suitable to calculate the condition of the axis. If

a different time point were chosen, where the workpiece is in

interference with the axis, the condition value can not be calcu-

lated only for the axis. If there are any faults in the workpiece,

the condition will be influenced, and thus not usable.

The condition value and extrapolation is shown in figure 3.

The figure shows the calculated condition over the time of the

long term test, as well as the extrapolation function. The extrap-

olation function shown in this figure is a polynomial approach,

which can be seen by the curvature of the function. The polyno-

mial approach, in contrast to the exponential approach is much

more resilient to phenomena, such as an increase in condition

at 1.3 · 106 seconds.

This behavior can be explained by a change in environmen-

tal temperatures during a weekend period, where the windows

were continuously opened. Such a change in environmental

conditions can not be handled by this algorithm, as they can

not be taken into account in a purely statistical approach. If one

would take into account environmental condition, data needs

to be collected for any possible environmental state, to identify

these effects on a statistical basis.

5.2. RUL Estimation Approach

The two extrapolation functions, which are proposed in this

paper are a polynomial and an exponential approach, the two

approaches estimate the RUL quite well, however, the nature of

the exponential approach can not handle increasing conditions

in the way it is modelled. Thus, effects such as the two condi-

tion increases as depicted in figure 3 at time points 0.3 · 106 and

1.3 · 106 can not be handled.

The resulting RUL predictions of both prediction approaches

are depicted in figures 6 and 7. Both figures show the predicted

failure time at any given time point during the test. The re-

sulting RUL is calculated form the extrapolation as depicted in

Figure fig:pred1, where the condition reaches 0. Depending on

the risk awareness of the machine operator, the threshold can be

adjusted. Because the extrapolation is implemented recursively,

a new RUL estimation is produces every time a new trajectory is

recorded. Because the exponential extrapolation is more robust

to environmental changes, it shows a more continuous trajec-

tory.

The polynomial approach, which can handle increasing con-

dition values by not proposing any RUL at all, shows no RUL

prediction in the uncertain period.
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Because for the exponential approach the RUL estimation is

increasing at a steady rate, it can lead to unwanted behaviour,

as is is continuously issuing warnings that a failure is about

to occur. For the polynomial approach, uncertain changes in

condition will result in an uncertain prediction, which leads to

no RUL prediction. This means, that no unwanted behaviour

can be observed in this time period.
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Fig. 7. Condition Trajectory and Extrapolation

However, the steady state value is approximately the same in

the end, only differing 12-24 hours. For a large scale production

environment, the maintenance can be planned in the production

schedule, and should be considered a few days before the im-

minent failure time.

6. Concluding Remarks

The proposed framework works well on the test machine and

could be implemented on a real machinery in a production en-

vironment. However, due to the slower degrading of the pro-

duction environment, no failure could be detected yet.

The application of the algorithms is automated, such that the

end user can apply it to any machine without effort. To display

the data in a meaningful way, a web interface was introduced,

as depicted in figure 8.

Fig. 8. Webinterface

The web interface eases the application of the prediction al-

gorithm to the end user, such as the maintenance team. It dis-

plays time to failure and the current condition. Further, infor-

mation such as the wear and energy consumption, depending on

the product can be displayed. Although not crucial to the con-

dition monitoring system, this information is a byproduct of the

algorithm, which helps with product development or similar.

6.1. Conclusion

The application of the algorithm shows, that the condition

monitoring and the prediction can actually foresee a degra-

dation and specify the time point, where the degradation has

reached its critical value. However, due to lack of data, which

needs to be collected over a timespan longer than a year, this

critical degradation can not be specified at this point in time.

The application of such systems, will however generate the

much needed data, in order to specify such margins in much

more detail than nowadays, based on real world failures, which

can be tied to the monitored data.

6.2. Outlook

To improve and further develop the condition monitoring

and prediction algorithm for this application, further insight

into real failures has to be gathered. The difference to test stand

failures, which are induced based on a physical understanding

of wear and motor load, industry applications tend to differ a

lot.

Human induced errors and breakdowns are frequent, as well

as changing environmental conditions, wrong usage and greas-

ing as well as different kinds of dirt. Such errors are hard to

model as they are induced by human error, but are crucial to the

lifetime and condition of each component. A long time data ac-

quisition and data analysis in an industrial environment would

be the next step to further improve the information on that mat-

ter.
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