
ETH Library

Introducing MATSim

Book Chapter

Author(s):
Horni, Andreas; Nagel, Kai; Axhausen, Kay W. 

Publication date:
2016-08

Permanent link:
https://doi.org/10.3929/ethz-b-000164522

Rights / license:
Creative Commons Attribution 4.0 International

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3331-1318
https://doi.org/10.3929/ethz-b-000164522
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


CHAPTER 1

Introducing MATSim

Andreas Horni, Kai Nagel and Kay W. Axhausen

1.1 The Beginnings

The MATSim project (MATSim, 2016) started with Kai Nagel, then at ETH Zürich, and his interest
in improving his work with, and for, the TRANSIMS (TRansportation ANalysis and SIMulation
System) project (Smith et al., 1995; FHWA, 2013); he also wanted to make the resulting code open-
source.1 A�er Kai Nagel’s departure to Berlin in 2004, Kay W. Axhausen joined the team, bringing
a di�erent approach and experience. A collaboration, successful and productive for more than
10 years, was thus established, combining a physicist’s and a civil engineer’s perspective, as well
as bringing together expertise in tra�c �ow, large-scale computation, choice modeling and CAS
(Complex Adaptive Systems):

•Microscopic modeling of tra�c: MATSim performs integral microscopic simulation of result-
ing tra�c �ows and the congestion they produce (see Section 1.3).

•Microscopic behavioral modeling of demand/agent-based modeling: MATSim uses a
microscopic description of demand by tracing the daily schedule and the synthetic travelers’
decisions. In retrospect, this can be called “agent-based”.

•Computational physics: MATSim performs fast microscopic simulations with 107 or more
“particles”.

•Complex adaptive systems/co-evolutionary algorithms: MATSim optimizes the experienced
utilities of the whole schedule through the co-evolutionary search for the resulting equilibrium
or steady state (see Section 1.4).

1 TRANSIMS has, since then, also become open-source (TRANSIMS Open Source, 2013); but in 2000, it was difficult to

procure in Europe.

How to cite this book chapter:

Horni, A, Nagel, K and Axhausen, K W. 2016. Introducing MATSim. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 3–8. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.1. License: CC-BY 4.0



4 The Multi-Agent Transport Simulation MATSim

At the end of the 1990s, the scene was set for these research streams’ mergence into a computa-
tionally e�cient, modular, open-source so�ware enabling further development on travel behavior,
network response and e�cient computation: MATSim.

1.2 In Brief

MATSim is an activity-based, extendable, multi-agent simulation framework implemented in
Java. It is open-source and can be downloaded from the Internet (MATSim, 2016; GitHub, 2015).
The framework is designed for large-scale scenarios, meaning that all models’ features are stripped
down to e�ciently handle the targeted functionality; parallelization has also been very important
(e.g., Dobler and Axhausen, 2011; Charypar, 2008). For the network loading simulation, for exam-
ple, a queue-based model is implemented, omitting very complex and computationally expensive
car-following behavior (see Section 1.3).

At this time, MATSim is designed to model a single day, the common unit of analysis for activity-
based models (see, for example, the review by Bowman, 2009a). Nevertheless, in principle, a multi-
day model could be implemented (Horni and Axhausen, 2012b).

As shown in Section 1.4, MATSim is based on the co-evolutionary principle. Every agent repeat-
edly optimizes its daily activity schedule while in competition for space-time slots with all other
agents on the transportation infrastructure. This is somewhat similar to the route assignment iter-
ative cycle, but goes beyond route assignment by incorporating other choice dimensions like time
choice (Balmer et al., 2005b), mode choice (Grether et al., 2009), or destination choice (Horni et al.,
2012b) into the iterative loop.

A MATSim run contains a con�gurable number of iterations, represented by the loop of
Figure 1.1 and detailed below. It starts with an initial demand arising from the study area pop-
ulation’s daily activity chains. The modeled persons are called agents in MATSim. Activity chains
are usually derived from empirical data through sampling or discrete choice modeling. A variety of
approaches is suitable, as evidenced in the scenarios’ chapters (cf. Chapter 52). During iterations,
this initial demand is optimized individually by each agent. Every agent possesses a memory con-
taining a �xed number of day plans, where each plan is composed of a daily activity chain and an
associated score. The score can be interpreted as an econometric utility (cf. Chapter 51).

In every iteration, prior to the simulation of the network loading with the MATSim mobsim
(mobility simulation) (e.g., Cetin, 2005), each agent selects a plan from its memory. This selection
is dependent on the plan scores, which are computed a�er each mobsim run, based on the executed
plans’ performances. A certain share of the agents (o�en 10 %) are allowed to clone the selected plan
and modify this clone (replanning). For the network loading step, multiple mobsims are available
and con�gurable (see Horni et al., 2011b, and Section 4.3 of this book).

Plan modi�cation is performed by the replanning modules. Four dimensions are usually con-
sidered for MATSim at this time: departure time (and, implicitly, activity duration) (Balmer et al.,

initial

demand 
analyses mobsim scoring 

replanning 

Figure 1.1: MATSim loop, sometimes called the MATSim cycle.



Introducing MATSim 5

2005b), route (Lefebvre and Balmer, 2007), mode (Grether et al., 2009) and destination (Horni
et al., 2009, 2012b). Further dimensions, such as activity adding or dropping, or parking and group
choices are currently under development and only available experimentally. MATSim replanning
o�ers di�erent strategies to adapt plans, ranging from random mutation to approximate sugges-
tions, to best-response answers where, in every iteration, the currently optimal choice is searched.
For example, routing o�en is a best-response modi�cation, while time and mode replanning are
random mutations.

Initial day chains do not have to be very carefully de�ned for the replanning dimensions included
in the optimization process. Plausible values just speed up the optimization process.

If an agent ends up with too many plans (con�gurable), the plan with the lowest score (con�g-
urable) is removed from the agent’s memory. Agents that have not undergone replanning select
between existing plans. The selection model is con�gurable; in many MATSim investigations, a
model generating a logit distribution for plan selection is used.

An iteration is completed by evaluating the agents’ experiences with the selected day plans
(scoring). The applied scoring function is described in detail in Chapter 3.

The iterative process is repeated until the average population score stabilizes. The typical score
development curve (Figure 1.2, taken from Horni et al., 2009) takes the form of an evolutionary
optimization progress (Eiben and Smith, 2003, Figure 2.5). Since the simulations are stochastic,
one cannot use convergence criteria appropriate for deterministic algorithms; for a discussion of
possible approaches for the MATSim situation, see Sections 47.3.2.2 and 48.2 as well as Meister
(2011).

MATSim o�ers considerable customizability through its modular design. Although implement-
ing alternative core modules, such as an alternative network loading simulation, may entail sub-
stantial e�ort, in principle, every module of the framework can be exchanged. MATSim modules
are described in Chapter 5 and following.

MATSim is strongly based on events stemming from the mobsim. Every action in the simulation
generates an event, which is recorded for analysis. These event records can be aggregated to evaluate
any measure at the desired resolution. The event architecture is detailed in Section 45.2.5.

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

A
v
g
. 
s
c
o
re

Iteration

Figure 1.2: Typical score progress.



6 The Multi-Agent Transport Simulation MATSim

1.3 MATSim’s Tra�c Flow Model

MATSim provides two internal mobsims: QSim and JDEQSim (Java Discrete Event Queue Simu-
lation); in addition, external mobility simulations can be plugged in. Some years ago, the DEQSim
written in C++ and described by Charypar (2008); Charypar et al. (2007b,a, 2009) was plugged

into MATSim and frequently used. The multi-threaded QSim is currently the default mobsim.
Charypar et al. (2009) distinguishes between

• physical simulations, featuring detailed car following models,
• cellular automata, in which roads are discretized into cells,
• queue-based simulations, where tra�c dynamics are modeled with waiting queues,
• mesoscopic models, using aggregates to determine travel speeds, and
• macroscopic models, based on �ows rather than single traveler units (e.g., cars).

As MATSim is designed for large-scale scenarios, it adopts the computationally e�cient queue-
based approach (see Figure 1.3). A car entering a network link (i.e., a road segment) from an
intersection is added to the tail of the waiting queue. It remains there until the time for travel-
ing the link with free �ow has passed and until he or she is at the head of the waiting queue and
until the next link allows entering. The approach is very e�cient, but clearly it comes at the price
of reduced resolution, i.e., car following e�ects are not captured. In JDEQSim, for computational
reasons, the waiting-queue approach is combined with an event-based update step (Charypar et al.,
2009). In other words, there is no time-step-based updating process of any agent in the scenario.
Instead agents are only touched if they actually require an action. For example, links do not have to
be processed while agents traverse them. Update events triggering is managed by a global sched-
uler. QSim, however, is time-step based. The MATSim tra�c �ow model is strongly based on the
two link attributes: storage capacity and �ow capacity. Storage capacity de�nes the number of cars
�tting onto a network link.

Flow capacity speci�es the out�ow capacity of a link, i.e., how many travelers can leave the re-
spective link per time step. It is an individual attribute of the link. The current implementation of
QSim has no maximum in�ow capacity speci�ed. In contrast, in the earlier DEQSim and current
JDEQSim, an in�ow capacity can also be speci�ed, which may move jams at merges from the end
of the �rst common link, where the QSim generates them, upstream to where the links merge and
where they plausibly should be (Charypar, 2008, p. 99). However, additional data is needed for this,
which is o�en not available.

This basic tra�c �ow model has been extended with various modules: Signals and multiple
lane modeling have been added (Chapter 12), backward-moving gaps, as investigated by Chary-
par (2008), are included in JDEQSim, but only available on an experimental basis for QSim
(Section 97.5). Interactions between di�erent modes are described in Section 4.6 and Chapter 21.

inflow

cap 

ou�low

cap 

link 

node 

wai�ng

queue 

Figure 1.3: Tra�c �ow model.



Introducing MATSim 7

1.4 MATSim’s Co-Evolutionary Algorithm

As illustrated in Figure 1.4, the MATSim equilibrium is searched for by a co-evolutionary algorithm
(see, e.g., Popovici et al., 2012). These algorithms co-evolve di�erent species subject to interaction
(e.g., competition). In MATSim, individuals are represented by their plans, where a person repre-
sents a species. With the co-evolutionary algorithm, optimization is performed in terms of agents’
plans, i.e., across the whole daily plan of activities and travel. It achieves more than the standard
tra�c �ow equilibria, which ignores activities. Eventually, an equilibrium is reached, subject to
constraints, where the agents cannot further improve their plans unilaterally.

Note that there is a di�erence between the application of an evolutionary algorithm and a
co-evolutionary algorithm. An evolutionary algorithm would lead to a system optimum, as op-
timization is applied with a global (or population) �tness function. Instead, the co-evolutionary
algorithm leads to a (stochastic) user equilibrium, as optimization is performed in terms of
individual scoring functions and within an agent’s set of plans.

Species1..n

op�mized

popula�on

Ini�al 

popula�on

recombina�on

muta�on

survivor

selec�on

parent

selec�on

parents

offsprings

Fitness 

evalua�on

Species0

op�mized

plans

Ini�al plans

Scoring

replanning

Execu�on

Agent1..n

Op�mized

plans

Ini�al plans

Op�mized

popula�on

Ini�al 

popula�on

Scoring

Recombina�on

Muta�on

Survivor selec�on

Parent selec�on

Parents

Offspring

Fitness 

evalua�on
Replanning

Execu�on

MATSim Co-Evolu�onary Algorithm

Agent0

Interac�on

Interac�on

Figure 1.4: The co-evolutionary algorithm in MATSim.


