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ABSTRACT 1 

 2 

The macroscopic fundamental diagram, relating average flows and densities in an urban 3 

network, has been analyzed in some empirical studies and many simulations. It has been shown to 4 

be an efficient tool for traffic management and control or the estimation of travel times in a 5 

network. However, empirical studies remain scarce and are usually based on one single data 6 

source, such as loop detector data (LDD) or floating car data (FCD).   7 

 In this paper, we analyze an extensive data set based on both, LDD and FCD for the city 8 

of Zurich. We show that each source exhibits a well-defined and reproducible MFD. However, 9 

they differ from each other, due to limitations of the data sources. We identify a placement bias, 10 

and a link selection bias for LDD, which leads to an overestimation of occupancy or density values, 11 

respectively. In order to mitigate such biases we develop a methodology accounting for the relative 12 

position of a loop detector on links and their frequency at that position. Moreover, we investigate 13 

and validate common practices when transforming LDD occupancy and FCD flows, which are the 14 

space effective mean length of a vehicle and the probe penetration rate, respectively. We also apply 15 

a combination of LDD flows and FCD speeds to estimate the MFD, which partly eliminates key 16 

drawbacks of both data sources.  17 
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INTRODUCTION 1 

The relationship between the accumulation of vehicles and their impact on speeds in urban 2 

networks raises the question of optimal congestion levels (1, 2). In the end, urban congestion levels 3 

are key determinants of a city’s productivity in terms of its transportation system (3, 4). First 4 

advances in understanding urban congestion were made by Mahmassani et al. (5) based on 5 

simulations. They found that the macroscopic relations between traffic variables appear to behave 6 

in a similar manner as their link level counterparts. Empirical evidence for these macroscopic 7 

relations was absent for almost twenty years until Geroliminis and Daganzo estimated a 8 

macroscopic fundamental diagram (MFD) for Yokohama, Japan (6). Subsequent findings were 9 

mostly based on simulations (7), as empirical data remains scarce (see Table 1). However, for 10 

application purposes, such as traffic control, we need to better understand how cities can estimate 11 

their MFDs (8–10) from empirical data.  12 

The existence of the MFD was originally based on the key assumptions that congestion 13 

spreads homogeneously across the network and that it is independent of demand patterns as long 14 

as average traveled distance remains unchanged. However, various findings challenge these 15 

assumptions. Urban networks might not be homogenously congested. Thus, efforts were made to 16 

partition networks according to the homogeneity of congestion, e.g. (11). Moreover recent studies 17 

Table 1 Empirical studies on urban MFD estimation 

City Year Data Sample Filter Source 

Yokohama, Japan 2008 LDD+FCD 500+140 Occupied taxis (6) 

Toulouse, France 2009 LDD 1000 Distance to signal (13) 

Rome, Italy 2011 FCD N/A  (23) 

Brisbane, 

Australia  
2013 FCD 301  (21) 

Shenzhen, China 2014 FCD 20000 Occupied taxis (31) 

Sendai, China 2015 LDD 1756  (32) 

Chania, Greece 2015 LDD 70  (33) 

Changsha, China 2016 LDD+FCD N/A+6200 Taxis (27) 

LDD: Loop detector data; FCD: Floating car data 
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show that the MFD is not invariant to changes in the origin-destination matrix (12). In light of such 1 

limitations, the question arises how a well-defined and reproducible MFD can be estimated from 2 

available data. 3 

There are typically two empirical data sources considered as viable for the estimation of 4 

the MFD: loop detector data (LDD) and floating car data (FCD).  5 

Loop detectors are installed for traffic control and congestion monitoring. They typically 6 

report the traffic variables flow (i.e. number of vehicles passing a detector), and occupancy (i.e. 7 

share of time a detector is occupied). Loop detectors are mainly used for counting vehicles, 8 

detecting congestion and controlling traffic signals. They have been used to estimate the MFD 9 

empirically and through simulation e.g. (6, 13–15). An important issue to consider is that their 10 

distance to the downstream traffic signal influences the shape of the MFD significantly (13), but 11 

the only correction method proposed so far is more appropriate for corridors (15). The network 12 

coverage and the spatial distribution of the LDD are critical for the estimation accuracy (14, 16, 13 

17). Moreover, the assumptions made to convert occupancy to density have not been validated and 14 

might underestimate the complexity of such conversion (18–20). 15 

FCD is collected from probe vehicles transmitting the data through a trajectory 16 

measurement device, today GPS (6), or  cellphones (21). FCD requires a matching of the GPS 17 

trajectories to the road network. This comes with uncertainties and does not allow to match a 18 

measurements to a lane but only to road segment (22). FCD has been used to estimate the MFD 19 

empirically and through simulation (e.g., 18, 24, 25).  Important issues to consider here are the 20 

probe penetration rate (i.e. the relative number of vehicles sending FCD), and its spatial 21 

distribution. The knowledge about both factors is crucial for the estimation accuracy (25, 26).  22 

In the literature, almost all MFDs are based on either one or the other source. A few studies 23 

cover both sources, some use loop detectors to estimate the probe penetration rate (ppr) of FCD 24 

(27, 25, 26), and others aim at comparing, combining, or fusing both data sources in order to 25 

estimate a more accurate MFD (16, 17). However, the latter efforts have been limited to 26 

simulations (15).  27 
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In this paper, we investigate the differences between both data sources based on an 1 

extensive empirical dataset from the City of Zurich. We also apply an approach formulated by 2 

Leclercq et al. (15) that combines the two sources, and compare the results with those obtained 3 

from either data source used individually. More importantly, in order to construct the MFDs, we 4 

identify the limitations that arise in practice for each data source, and also validate the common 5 

practice in determining the probe penetration rate and the conversion of occupancy into density.  6 

The remainder of this paper is organized as follows: We first present MFDs from both data 7 

sources. Subsequently, we compare both data sets by using appropriate parameters, and later 8 

combine them. The combined MFD is then used to validate the required parameters. Based on the 9 

results, we present the key findings of both datasets for the City of Zurich. Lastly, we discuss the 10 

appropriateness of each dataset to estimate a reproducible and well-defined MFD.  11 

DATA 12 

The city of Zurich, Switzerland, stretches across an area of 91.9km2 with a population of around 13 

400’000 inhabitants. The road network excluding motorways is 740km long. The traffic 14 

management system of Zurich operates 4852 traffic detectors at 384 intersections (28). They detect 15 

either public transport vehicles, private motorized vehicles or a combination thereof. Their purpose 16 

is mainly to give priority to public transport, support traffic signal control algorithms, and identify 17 

congestion. For the analysis we concentrate on loop detectors that measure private motorized 18 

Table 2 Overview of the data sets for Zurich 

LDD 26/10/2015 to 01/11/2015 (Monday to Sunday), 3min intervals  

variables recorded: flow (number of vehicles passing a detector), occupancy in 

percentage (share of time vehicles occupy the detector)  

link attributes: GPS coordinates, lane type, distance to downstream traffic 

signal, link length, road class 

FCD5 2014-2015, 5min intervals for an average week 

variables recorded: 2-year average speeds per segment, hits  

segment attributes: GPS coordinates, road class, segment length 

FCD15 26/10/2015 to 01/11/2015 (Monday to Sunday), 15min intervals 

variables recorded: average speed per segment, hits  

segment attributes: GPS coordinates, road class, segment length 
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transport. We have geo-coded all loop detectors and matched them to the corresponding links on 1 

the road network. We identified and removed 3.9% of all detectors due to defective measurements. 2 

Table 2 provides an overview of the variables and the time period recorded by LDD.   3 

In Figure 1a, all intersections equipped with loop detectors are marked by black dots. 4 

Figure 1b shows the distribution of detectors across all city links by their relative distance to the 5 

downstream traffic signal (i.e. 0 means the detector is at the stop line of the downstream traffic 6 

signal). As most detectors are used for traffic signal control, their average location is rather close 7 

to the traffic signal. 8 

As previously stated, FCD measurements can be recorded from navigation devices, 9 

smartphones, and fleet management systems, and can be matched to the road network map with 10 

an accuracy of 10m (22). Table 2 provides an overview of the FCD used in the following sections 11 

(22). Hits are the number of vehicles contributing to the average speed. In FCD15, the average 12 

speed for segment i on Monday between 8:00 to 8:15 is calculated from all probe vehicles passing 13 

 

FIGURE 1 LDD (a) Case study network, intersections equipped with loop detectors, 

and the two study areas used in this paper; (b) Distribution of loop detectors position on 

links with respect to downstream traffic signal 

b a 
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the segment in this exact time interval. On the other hand, in FCD5, the average speed for segment 1 

i between 8:05 and 8:10 is averaged over all Mondays in 2014 and 2015.  2 

The mean length of an FCD segment is 59m, whereas the average length of a link with 3 

loop detectors is 220m. FCD segments are merged with the LDD links, based on a joint geo-4 

reference system for both data sources. 5 

For the MFD estimations in the next sections we focus on two specific regions within the 6 

overall network, “City” (4.3km2) and “Hard” (6.4km2). Both regions have a similar number of 7 

loop detectors and network length. Both are downtown-like with one important difference, region 8 

“City” has an adaptive traffic congestion management system (see (14) for details). Figure 1a 9 

summarizes the respective network length and number of detectors. We removed all data measured 10 

on motorways, their ramps, and on all local roads from the samples. Latter are excluded since they 11 

usually serve residential areas where traffic-calming (e.g. dead ends, etc.) measures were 12 

undertaken.   13 

Note, for the region “City” construction work around Bellevue was finished shortly prior 14 

the LDD and FCD15 recording period. As a result, some of the most relevant arterial re-routings 15 

were only lifted during of the observation period (28).  16 

SINGLE SOURCE MFD  17 

In the following, we estimate the MFD for the region “City”. For clarity, we decided to plot only 18 

data for Mondays. We investigated the scatter plots for Tuesday to Friday as well and observed 19 

only marginal differences in the uncongested branch of the MFD and more scatter around the 20 

critical density.   21 

Loop Detector Data 22 

In this section we introduce different filters based on the placement of the loop detectors, and 23 

propose an approach on how to overcome the resulting biases. 24 

As a base and in accordance with Geroliminis and Daganzo (6), we calculate network flow, 25 

�̅�𝐿𝐷𝐷, and network occupancy, �̅�𝐿𝐷𝐷, including all loop detectors, as follows 26 

 27 



Ambühl, Loder, Menendez and Axhausen  8 

 1 

�̅�𝐿𝐷𝐷 =
∑ 𝑞𝑖  𝑙𝑖

∑ 𝑙𝑖

 Eq 1 

�̅�𝐿𝐷𝐷 =
∑ 𝑜𝑖  𝑙𝑖

∑ 𝑙𝑖

 Eq 2 

where li  stands for the length of link i. Hereafter this method is referred to as “base”. 2 

Since most loop detectors are used for traffic signal control, a subsample of detectors is 3 

located on turning pockets. Figure 2a shows the effect of excluding turns – the maximum flow is 4 

increased by 15%. This makes sense as turning lanes have in average less green time than straight-5 

ahead lanes.  6 

Buisson and Ladier show that the placement of loop detectors affects the shape of the MFD 7 

significantly (13). We confirm these findings by restricting the position of loop detectors to more 8 

than 20m upstream of a traffic signal in Figure 2b. Loop detectors right in front of a signal register 9 

much higher occupancies than loops further upstream (x>20; x being the distance between loop 10 

detector and traffic signal). However, this high occupancy might only represent the periodic queue 11 

over the loop detector. Excluding such loop detectors will thus result in lower average occupancies 12 

across the network.  13 

These results show a clear drawback of LDD. Loop detectors are representative of their 14 

exact location. However, due to traffic dynamics on a link, they cannot reproduce correctly the 15 

average occupancy for the entire link, which is actually necessary to accurately estimate the MFD 16 

(17). The underlying assumption of representative occupancies (or densities) of the base method 17 

applied earlier is violated. Moreover, filtering data, as previously employed, might exclude 18 

valuable information. Therefore, we propose an approach that includes all loop detectors, but takes 19 

into account their relative position and their frequency. 20 

By projecting loop detectors on a virtual link, we try to incorporate findings by Courbon 21 

et al. (16). Their study shows that if distances to downstream traffic signals are uniformly 22 

distributed across the network, an LDD MFD is accurate. Thus, we propose to first, project the 23 

network onto a single virtual link of unity length including all loop detectors of the network at 24 

their relative positions. Then, we average the weighted values for evenly distributed link segments. 25 

In other words, all loop detectors are put on a virtual link based on their relative position, then we 26 
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split the virtual link in J segments, calculate the weighted flow and occupancy of all LDD in each 1 

segment, and take the average over all segments. 2 

Evenly splitting the virtual link into J segments emulates a network where loop detectors 3 

are uniformly distributed. We tested for different values of J. We chose J=20, as this value ensures 4 

at least one loop detector in each segment. As seen, a majority of loop detectors are located in front 5 

of a traffic signal and overestimate the density for the whole link. It makes sense that average 6 

occupancy in Figure 2c is lower using our approach compared to the base method. Flow values 7 

measured on a road without any side entries are less susceptible to the location of the loop detector. 8 

However, in reality, roads in the network of Zurich are complex with frequent driveways and side 9 

entries. Thus the flow value is affected by the loop detector position as well and it makes sense to 10 

follow the aforementioned approach. In short: 11 

Floating Car Data 12 

FCD5 provides 2-year daily averages of hits and speeds during 5min intervals (see section “Data”). 13 

In our case, only a fraction of vehicles is equipped with FCD generating devices. We show later 14 

in detail that the ppr can be estimated by a combination of both data sources and amounts to 15 

roughly 4% during peak hours. For now, we analyze the macroscopic relations with the following 16 

equations, not accounting for the ppr: 17 

 18 

�̂�𝐹𝐶𝐷 =
∑ max (𝐻𝑖 𝑙𝑖 , 𝑣𝑖  𝑇)

𝑇 ∑𝑙𝑖
 Eq 5 

�̂�𝐿𝐷𝐷 =
1

𝐽
∑ ∑

𝑞𝑖 𝑙𝑖

∑ 𝑙𝑖
𝑖∈𝑁𝑗

𝐽

𝑗=1

 Eq 3 

�̂�𝐿𝐷𝐷 =
1

𝐽
∑ ∑

𝑜𝑖  𝑙𝑖

∑ 𝑙𝑖
𝑖∈𝑁𝑗

𝐽

𝑗=1

 Eq 4 

with  𝑁 = ⋃ 𝑁𝑗

𝑗∈𝐽

  and  𝑁𝑗 = {𝑖 ∈ 𝑁 | 
𝑗 − 1

𝐽
<

𝑥𝑖

𝑙𝑖
<

𝑗

𝐽
} 
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𝑣𝐹𝐶𝐷 =
∑ �̅�𝑖𝑙𝑖

 ∑ 𝑙𝑖
 Eq 6 

where �̂�𝐹𝐶𝐷 and 𝑣𝐹𝐶𝐷 are network flow and network speed, respectively. 𝐻𝑖 is the average number 1 

of  probe vehicles during observed time T on link i with length 𝑙𝑖. 𝑣�̅� is the average speed of these 2 

vehicles. Note that the average speed was calculated by using �̅�𝑖 =
∑ 𝑣𝑝,𝑖

𝐻𝑖
, where 𝑣𝑝,𝑖 is the speed 3 

of a FCD probe on link i. Thus, it constitutes an upper bound to the FCD space-mean speed. Figure 4 

2d shows the estimated MFD. Its density is calculated by dividing MFD flow by MFD speed. Due 5 

to the sample size, flow and density values are low. Nevertheless a low-scatter MFD is apparent. 6 

Interestingly, the MFD does not show strong indications of congestion. Still, during peak hour, we 7 

observe on certain links speeds of around 5km/h, confirming findings in (29). This is the result of 8 

an inhomogeneous spread of congestion in the city of Zurich. While certain links are congested 9 

and show very low speeds, others remain uncongested and in free flow condition. A short analysis 10 

on the variance of the speeds confirms these findings. Although not shown here for brevity, results 11 

from such analysis reveal that the speed variance is 85 km2/h2 during peak hour 5-min intervals. 12 

This poses the question, whether it makes sense to further partition these areas as per (11). Notice, 13 

however, that as of now the areas are relatively small, thus an additional partition could lead to 14 

very local results, defeating the idea of a macroscopic perspective. This dilemma is not unique to 15 

Zurich, as ideal homogeneous settings can hardly ever be expected in reality. 16 

When highlighting the different peak periods, we observe a slight bifurcation, indicating a 17 

difference in congestion during morning and evening peak. However, since ppr is disregarded, we 18 

must ignore this phenomenon for the time being. Such a bifurcation is not necessarily present in 19 

real conditions. This shows that lack of knowledge of the probe penetration and its temporal or 20 

spatial distribution are key drawbacks of the FCD.  21 
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FIGURE 2 LDD and FCD MFDs: (a) LDD filtering turns (b) LDD filtering loop detector 

position (c) LDD new proposed weighting (d) FCD MFD 
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MFD BASED ON BOTH SOURCES 1 

Combination of LDD and FCD 2 

In the following, we transform both data sets to common scales and combine both sources in a way 3 

that their respective drawbacks are reduced. Then, we validate the transformations used. 4 

 As the MFD neither based on LDD nor FCD alone gives absolute numbers for both, 5 

average flow or density, we need to transform LDD occupancy to density. Here we use a simple 6 

and common scaling based on the spacing effective mean length, s (6). FCD speeds and flows need 7 

to be transformed with 𝜌, the ppr (26).  8 

For LDD, we apply the projection on a virtual link. We assume s=6.3m (30), which is 9 

slightly above the 5.5m used in (6), due to the presence of larger vehicles in Zurich compared to 10 

Yokohama. For FCD, 𝜌 is estimated by comparing FCD15 to LDD. For each link we divide the 11 

number of probes passing a loop detector by the total number of vehicles passing that loop detector, 12 

and average such value across all the links. We compare the transformed MFDs to a combined 13 

MFD based on the approach by (15) to leverage the strength of each source. This approach has the 14 

advantage that it needs no transformation. The flow of the combined MFD is calculated from LDD, 15 

and the density is calculated by dividing this flow by the FCD speeds.  16 

Table 3 gives an overview of the three approaches, (i) LDD, (ii) FCD, and (iii) combined 17 

sources. Figure 3a shows the three approaches, again, for a Monday in the region “City” and Figure 18 

3b in the region “Hard”.  19 

Table 3 Estimation formulas 

Source Flow q Density k 

(i) LDD (eq. 3 and eq. 4 adjusted for s) �̃� = �̂�𝐿𝐷𝐷 �̃� =
�̂�𝐿𝐷𝐷

𝑠
 

(ii) FCD (eq. 5 and eq. 6 adjusted for �̂�) �̃� =
�̂�𝐹𝐶𝐷

�̂�
 �̃� =

�̂�𝐹𝐶𝐷

�̂�
 

(iii) Combination of LDD & FCD �̃� = �̂�𝐿𝐷𝐷 �̃� =
�̂�𝐿𝐷𝐷

�̂�𝐹𝐶𝐷
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FIGURE 3 MFD based on multiple sources. (a) MFDs for “City”, (b) MFDs for Hard, (c) 

occupancy-density parameter for LDD with x>20, (d)  occupancy-density parameter for 

LDD with projection on virtual link, (e) FCD-LDD ratio of flows, (f) estimated probe 

penetration rate for region “City” by time of week and day of week. 
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We observe a similar trend in both regions. LDD shows higher densities for any given 1 

flows, even though we use the projection on a virtual link method. Note not all links represented 2 

in FCD are also available in LDD. An analysis where only links with both data sources available, 3 

still shows this divergence (not shown here for brevity). Thus explanations, other than the spatial 4 

differences of the data sources are needed and are discussed below. FCD shows a high consistency 5 

with the combination ‘Kombo’ MFD. Since such a combination increases the accuracy in 6 

simulations (17), we can assume that it is more appropriate to use FCD, than LDD if we were to 7 

use a single data source, only. Obviously, for the combined MFD the maximum flow is that of  the 8 

corresponding LDD.  9 

LDD Biases 10 

We observe higher densities for any given flows in LDD compared to FCD and the combined 11 

approach. This can be attributed to two reasons: (i) a placement bias, (ii) a link selection bias. 12 

(i) Placement bias: We observe that the relative position of loop detectors on links is not 13 

uniformly distributed (see Figure 1). To alleviate the effects of this uneven distribution, 14 

we apply the projection on a virtual link method. Still, not many loop detectors are 15 

located in the middle of the link, although this position would provide important 16 

information on traffic states. Thus, the accuracy in the middle of the virtual link is the 17 

lowest, whereas it is the highest in the beginning and the end, where we collect 18 

information from most of the loop detectors.  19 

FCD measurements, on the other hand, are available throughout the link. Since the 20 

speed usually drops close to the traffic light, the mean speed of the entire link is more 21 

representative for the middle of the link. Thus, the accuracy of the FCD is highest in 22 

the middle of a link. When we compare FCD with LDD, we compare to a large extent 23 

measurements with high accuracy in the middle (FCD) versus measurement with low 24 

accuracy in the middle (LDD).  25 

(ii) Link selection bias: Loop detectors are placed at points of interest, such as in front of 26 

traffic signals or on links where congestion is more likely to occur (14). The latter leads 27 

to a link selection bias, as we do not measure the average traffic state on the whole 28 
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network, but on selected links with higher probability of getting congested. Conversely, 1 

FCD is distributed more homogeneously over the network. Thus, when comparing 2 

network averages, we observe a lower density for FCD. Again, the difference between 3 

the two data sources increases with congestion. With the available LDD, it is non-trivial 4 

to correct for this bias, because traffic states on links without loop detectors are 5 

unknown. Thus they must be predicted with additional data.  6 

We identify these two biases as the main reasons for a divergence between LDD and FCD 7 

MFDs.  8 

Validation of transformation parameters 9 

In the following, we validate the transformation parameters, s and 𝜌, assuming both data 10 

sources provide error-free measurements. We can calculate the transformation parameters 11 

correctly, (i) s and (ii) 𝜌.  12 

(i) Using �̂� =
�̂�𝐿𝐷𝐷

�̂�𝐿𝐷𝐷/�̂�𝐹𝐶𝐷
    we can estimate s from both datasets. Figures 3c and 3d show this 13 

parameter in relation to MFD flow and occupancy. Figure 3c is based on selecting only 14 

loop detectors that are located more than 20m upstream of a traffic signal, and Figure 15 

3d on the projection on a virtual link. The added horizontal line corresponds to the 16 

space effective mean length of 6.3m – the value used in Figures 3a and 3b and which 17 

was based only on average car and detector length (30). We also highlight in the small 18 

windows the LDD MFD. Both plots show the same general trend: at low flow levels 19 

the parameter is constant and increases with greater flow until strong vertical scatter 20 

occurs around critical occupancy. Figure 3c shows for lower flow levels a good 21 

agreement with the 6.3m. We argue that detectors located more than 20m upstream of 22 

a traffic signal are more likely to measure free flow conditions, even more so at lower 23 

flows. Still, with increasing flow the difference between LDD and FCD increases as 24 

both biases become more apparent. Figure 3c validates the 6.3m as a rough 25 

approximation of the transformation parameters. 26 

(ii) The ppr, �̂�, can be estimated on links with loop detectors installed. If LDD and FCD 27 

provided full network coverage, the ppr would be (a) equal to the number of probes 28 
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divided by the total number of vehicles. This would be equivalent to (b) the average 1 

FCD flow divided by the average LDD flow the ratio of flows, hereafter called ratio of 2 

flows, and to (c) the average number of probes on a lane divided by the average number 3 

of vehicles passing a loop detector. With neither full spatial nor temporal overlap of 4 

FCD5 with LDD, none of the three ratios are equal. Figure 3e shows the histogram of 5 

the ratio of flows (b) for region “City” and exhibits a clear peak at 0.04. Figure 3f shows 6 

�̂� (estimated ppr) using (c) for region “City” during five working days. We observe that 7 

�̂� is slightly lower than the average ratio of flows. The variability is high at night, and 8 

low during the day – especially during peak hours. At night, not many vehicles 9 

circulate. Thus, already one vehicle can represent a ppr of 20%. During daytime, 10 

absolute numbers are much higher, and thus the variability is reduced. We suggest to 11 

use (c), since (b) is influenced by the potential placement bias discussed before. Notice, 12 

this is valid for our type of FCD, and not necessarily for other kinds of FCD. 13 

Nevertheless this shows that for a rough approximation, the ppr can be estimated indeed 14 

using (c), validating this approach. 15 

NOTABLE FEATURES OF ZURICH’S MFD  16 

In this section we briefly outline two notable features observed in the Zurich empirical 17 

MFD. We first find indications of clockwise and counter-clockwise hysteresis loops. Then, the 18 

bifurcation seen in Figure 2d is further studied here. 19 

For the hysteresis, we use FCD5, as it gives the 2-year average effects, thereby 20 

smoothening noise. In Figure 4a we observe a counter-clockwise hysteresis loop for region “City” 21 

and in Figure 4b a clockwise hysteresis loop for region “Hard”, both for an average working day. 22 

Arguably, the hysteresis is not caused by variations in probe penetration, since during peak hours 23 

it can be assumed to be constant (see Figure 3f for region “City”). We attribute the counter-24 

clockwise hysteresis to Zurich’s traffic management system that controls signal cycles on arterials 25 

(i.e. access control). With a critical accumulation of vehicles reached, the system prevents more 26 

cars from entering the city, similarly to a perimeter control scheme (14). This is relevant, as it 27 

shows the effectiveness of such a traffic management scheme. 28 
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The LDD MFD does not show a hysteresis. However, this might be partially explained due 1 

to the fact that the access control system was not working on a regular basis during the LDD 2 

observation period because of the construction work mentioned above (28).  3 

We present the macroscopic speed-flow relations in Figure 4c for an average working day 4 

in FCD5. The scatter shows a distinction between morning and evening peak – evening speeds are 5 

dropping below the morning levels for any given flow. These findings are confirmed in Figure 4d 6 

 

Figure 4 Hysteresis and bifurcation in Zurich: (a) FCD Hysteresis City (b) FCD Hysteresis 

Hard (c) FCD peak hour speed-flow (d) LDD peak hour speed-flow 
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based on LDD. Similar to differences seen in the on- and off-set of congestion, it seems that filling 1 

the city in the morning is different from emptying it in the evening. This is important because it 2 

confirm differences between loading and unloading and guides cities to proper management 3 

schemes. 4 

CONCLUSIONS 5 

To the authors’ knowledge, this is the first study that analyzes jointly LDD and FCD empirically 6 

to this level of detail in respect to MFD estimation. This allows a deeper understanding of both 7 

data sources and discussion on their limitations. The contributions of this paper are threefold, first 8 

we point out the limitations of each data source, second we propose new or validate common 9 

practice methods that aim at overcoming such limitations by comparing both data sources, and 10 

third we combine for the first time empirical data in a way that the effects of such limitations are 11 

reduced. These three points are further explained below. 12 

 Loop detectors are (i) usually installed close to traffic signals and (ii) on links with 13 

greater congestion probability. We confirm that (i) leads to a placement bias, since 14 

for a reliable MFD loop detectors must be positioned uniformly within the links 15 

across the network. From (ii) results a link selection bias, confirming findings in 16 

(14). This implies that density and congestion levels are more likely to be 17 

overestimated. FCD, on the other hand, faces limitations as well, since 𝜌 is typically 18 

unknown a-priori, and a homogeneous spatial distribution of probe vehicles and 19 

congestion is not ensured. This implies that FCD is more reliable for average traffic 20 

states during daytime and on main roads with good coverage of probe vehicles.  21 

 To overcome LDD limitations as much as possible, we propose the methodology 22 

projection on a virtual link. This method weights the measurements according to 23 

their relative position on a link and their frequency at that position in order to reduce 24 

the placement bias.  25 

Comparing both datasets requires appropriate scaling of density (LDD) and flow 26 

(FCD). For LDD, this conversion parameter can be obtained a-priori. An ex-post 27 

estimate shows that the first parameter is a rough approximation, validating 28 

common practice, which uses the space effective mean length of a vehicle as 29 
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transformation parameter. For FCD we show that the ppr can be estimated with the 1 

average vehicle count data on links covered by both data sources.  2 

 We have shown that well-defined and reproducible MFDs exist for each source 3 

separately. However, such single-source MFDs differ somewhat, due to the 4 

limitations mentioned above, due to noise, and due to temporal and spatial 5 

differences in the data sources. We have empirically shown that a combination of 6 

the two data sets following an approach by Leclercq et al. (15) leads to a well-7 

defined MFD and we state that such combination of LDD and FCD reduces key 8 

drawbacks of each data source. 9 

Although the presented MFDs do not show a congested branch, we do observe congestion 10 

at link level in some areas. One approach to overcome this issue is partitioning the network, (e.g. 11 

11), another one might be developing a selective MFD that includes only certain links. Future 12 

research is needed to understand how to better represent these very local congestion 13 

inhomogeneities, as further partitioning of the network can yield very small areas, ultimately 14 

leading to fundamental diagrams rather than MFDs. On the other hand, link selection might lead 15 

to non-representative MFDs. 16 

To summarize, each data source exhibits a well-defined and reproducible MFD, but they 17 

differ from each other. This can be traced back to the limitations of the sources themselves, namely 18 

placement bias, link selection bias, and inappropriate transformation parameters. A combination 19 

of LDD flows and FCD speeds partly eliminates key drawbacks of the two data sources. At the 20 

moment, research is undergoing to further mitigate the problems arising when using both data 21 

sources simultaneously; a preliminary study (17) has shown that applying a data fusion algorithm 22 

increases the accuracy of the MFD estimation. 23 
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