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Abstract

Localization is a fundamental feature of mobile systems such as smart-
phones, airplanes or self-driving cars. Albeit current smartphones include
GPS receivers, accelerometers, and gyroscopes, localization is still difficult
in certain environments such as indoors. First we show how WiFi signal
strength measurements and motion data recorded with smartphones can be
used to create accurate signal strength maps. The maps are created from
data collected by a user walking around with a smartphone in the trouser
pocket. From this data, we can accurately observe how the person moves
by linking sensor measurements to how people walk. Exploiting the sig-
nal strength distributions recorded along the way, we show how the error
that aggregates from inaccuracies in the motion estimation can be reduced.
The signal strength maps are useful for localization indoors when GPS is
unavailable.

In Chapter 3 we introduce a GPS receiver design which allows for aggres-
sive duty cycling. This means that the RF front end only has to be turned
on for a very short time to collect enough data for localization. From the
short signal recordings we compute accurate position fixes efficiently even if
the uncertainty on position and time are larger than what can be expected
from synchronization and localization using cell towers. The receiver design
can be tailored for different applications. For example, short signal record-
ings can be stored without computing a position right away. This allows for
low power and long term tracking as well as instant position annotation for
photos or other data. Alternatively, the short signal duration allows for fast
initial position estimation for connected devices.

Chapters 4 and 5 are focused on device motion rather than device loca-
tion. We discuss how motion data can be used to infer personal data such
as pins or passwords. Our large scale user study reveals that, in uncon-
trolled environments, touch input on smartphone screens can be inferred
from the same devices’ motion data. We also show how motion data can be
used constructively to recognize gestures and sequences thereof. For gesture
recognition, we use motion data from people writing on whiteboards wear-
ing smartwatches. Albeit the high recognition accuracy of isolated letters,
sequences of letters are hard to segment. The built in microphone picks
up the sounds caused by the pen which can help to segment the input into
individual letters.

In the two final chapters, we localize sound sources in the environment
of smartphones. This can be especially useful for discussion analysis or
discussion diarisation. We first discuss how a single device can be used to
deliver basic functionality. Adding more devices that collaborate, we arrive



at a system that works in most real situations, overcoming clock inaccuracies
and device heterogeneity.



Zusammenfassung

Lokalisierung ist in vielen Geräten und Situationen nützlich, wie zum
Beispiel in Smartphones, Flugzeugen oder selbstfahrenden Autos. Smart-
phones sind oft mit GPS Receivern, Beschleunigungssensoren und Gyrosko-
pen ausgestattet. Dennoch ist es in Umgebungen wie in Gebäuden schwierig,
solche Geräte genau zu lokalisieren.

Im ersten Kapitel zeigen wir, wie Messungen der WiFi-Signalstärke und
Bewegungsdaten, die mit Smartphones aufgezeichnet wurden, verwendet
werden können, um Signalstärkeverteilungen zu kartografieren. Die dazu
nötigen Daten können mit einem Smartphone aufgezeichnet werden, wel-
ches in der Hosentasche getragen wird. Die Bewegung der tragenden Per-
son kann genau verfolgt werden, wenn ein Smartphone in der Hosentasche
getragen wird. Gleichzeitig können die Signalstärken der sichtbaren WiFi-
Infrastruktur aufgezeichnet werden. Diese verwenden wir, um sich akku-
mulierende Ungenauigkeiten in der Bewegungsmessung zu reduzieren. Die
resultierenden räumlichen Signalstärkeverteilungen sind nützlich für die Lo-
kalisierung in Räumen, die keinen GPS-Empfang zulassen.

In Kapitel 3 stellen wir einen GPS-Empfänger der kurze Arbeitszyklen
zulässt. Dies bedeutet, dass der Empfänger lediglich sehr kurze Signalauf-
zeichnungen benötigt, um eine exakte Position berechnen zu können. Dies
ist auch dann möglich, wenn die wirkliche Position nur bis auf einige hun-
dert Kilometer genau bekannt ist. Solch eine ungenaue Positionsschätzung
ist durch Mobilfunk oder die letzte bekannte Position einfach zu errei-
chen. Der Empfänger kann für verschiedene Anwendungen angepasst wer-
den. Zum Beispiel können die sehr kurzen Signalaufzeichnungen direkt ge-
speichert werden, ohne eine Position zu errechnen. Dies erlaubt es uns, mit
wenig Energie für lange Zeit die Position des Empfängers zu verfolgen oder
Fotos sofort mit Positionsdaten zu annotieren. Alternativ dazu kann der
Empfänger die Zeit für die erste Positionsberechnung herkömmlicher GPS-
Empfänger verkürzen, falls eine Netzwerkverbindung vorhanden ist.

In Kapitel 4 und 5 behandeln wir, wie die Bewegung eines Smartphones
verwendet werden kann, um auf persönliche Daten wie Pins oder Passwörter
zurückzuschliessen. Unsere Benutzerstudie zeigt, wie in unkontrollierten Um-
gebungen Eingaben auf Touchscreens aus den entsprechenden Bewegungs-
daten abgeleitet werden können. Bewegungsdaten können auch konstruktiv
verwendet werden, um Benutzergesten zu erkennen. Für die Gestenerken-
nung benutzen wir Bewegungsdaten, die mit Smartwatches aufgezeichnet
werden, während eine Person an ein Whiteboard schreibt. Obwohl die Er-
kennung einzelner Buchstaben gute Ergebnisse liefert, ist es schwierig, Se-
quenzen von Buchstaben korrekt zu segmentieren. Audiodaten helfen dabei,



sequenzen von Buchstaben zu unterteilen und dadurch die Segmentierung
zu vereinfachen.

In den zwei letzten Kapiteln lokalisieren wir Geräuschquellen in der Um-
gebung von Smartphones. Dies ist besonders nützlich, um Diskussionen zu
analysieren. Wir zeigen zuerst, wie ein einzelnes Gerät diese Funktiona-
lität bereitstellen kann. Wenn wir mehrere kooperierende Geräte verwenden,
können wir in den meisten realistischen Situationen gute Ergebnisse erzielen.
Wir präsentieren dazu Lösungen der praktischen Probleme wie Ungenauig-
keiten der Uhren und Geräteinhomogenität.
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1
Introduction

“See first, think later, then test. But always see first. Otherwise,
you will only see what you were expecting. Most scientists forget
that.”

Douglas Adams

Douglas Adams highlights the importance of observation in his quote
and hence nicely captures the recurring theme of this thesis. Observation
has taught us important lessons in most if not all areas of science. But
also in everyday situations, we learn through observation. For example in a
social interaction we may slowly adapt to a person’s behavior as we notice
distress or anger based on behavioral queues. Or, to find our destination,
we walk and observe our surroundings to figure out where we are and which
way to go.

Information has become easier to access, as smartphones are being adopt-
ed by the general population. Also, these devices contain many sensors like
microphones, cameras, GPS receivers, gyroscopes, accelerometers, and mag-
netic field sensors. Smartphones have gone from providing raw information
to helping us observe our environment. For example, a smartphone can use
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2 CHAPTER 1. INTRODUCTION

GPS signals to accurately track its position even if we put it into a, for
us, unknown location. The devices’ motion can even be tracked by iner-
tial sensors without needing to receive any radio signals. These devices are
becoming adept observers of the environment. However, even in well estab-
lished research areas such as localization, there are still unresolved issues.
For example, localization usually stops working when moving into an indoor
environment. Mostly because GPS signals are heavily attenuated and hence
reception is not possible.

Even if we may find it easy to navigate familiar indoor environments,
localization would still be helpful to find lost items, to improve a shop by
reorganizing items, or to efficiently route a robot vacuum. We will discuss
how device motion and the surrounding WiFi infrastructure can be used to
simplify and improve indoor localization in Chapter 2. Device motion and
WiFi signal strength measurements can be combined to generate accurate
signal strength maps. To some extent, people do the same thing when walk-
ing through a new environment. We remember where we are coming from
but since this is inaccurate, we may loose track and find it hard to return
to our place of departure. As soon as we recognize a place we have already
visited, we can account for some of the confusion and improve our guess on
where we are. We use the same principle to improve indoor localization.
First, we show how device motion can be estimated through inertial sen-
sors by modeling how people move while walking. This allows us to count
steps and measure length as well as the changes in heading which we use to
track a user’s location. Second, instead of visual landmarks, we use the sig-
nal strength measurements to recognize previously visited locations. These
landmarks help us to account for accumulating errors of the motion esti-
mation which leads to diverging tracks. The resulting maps of WiFi signal
strength landmarks are used to localize a device.

In history, people have developed advanced methods of localization that
do not require knowledge of local landmarks, but still function on a global
scale. Celestial navigation and compasses allowed us to find new continents
and navigate environments that only present few landmarks such as the
high seas. Observations such as the location of stars or the sun are not
fixed for any given location. Hence, recognizing a location based on such an
observation requires a more sophisticated method than comparing current
to previous observations. If a measurement of inclination is incorrect, the
location estimate may be completely wrong. An experienced navigator may
be able to correct the error by using prior information and checking the
observations for inconsistencies. However, constellations may be invisible
during the day or under a cover of clouds. Again, a skilled navigator may
be able to localize requiring only a fraction of stars to be visible.

Analogously, GPS localization works on a global scale as long as satellites
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are clearly visible. Also, localization can be disturbed if only one satellite’s
signal arrival time measurement is erroneous. We present an alternate ap-
proach to use satellite signal observations to deduce a receiver’s position in
Chapter 3. We focus on minimizing the effect of erroneous measurements.
Instead of observing each satellite’s signal arrival time individually, our re-
ceiver design assigns a likelihood value to a given location given the observed
signal. Much like in the star example, as long as there is a sufficient num-
ber of visible satellites, our receiver delivers the most likely location without
being distracted by erroneous measurements. This becomes increasingly im-
portant as the duration of the observed signal is shortened due to noise and
non-line-of-sight effects. Our receiver can compute a position estimate based
on a single millisecond of signal recording while maximizing the likelihood
of successfully finding the correct position fix.

Digressing from the topic of localization, we show how social interac-
tions can be tracked using smartphones. As voices originate from different
locations, we show how to annotate speaker activity in audio to analyze
the dynamics of a given discussion. In Chapter 6 we show how a single
smartphone and its built in microphone allows to distinguish speakers in
most situations. We extend this idea in Chapter 7 and discuss how a set
of smartphones can be used to collaboratively annotate speaker activity
in a distributed manner. The distances between the microphones and the
participants cause varying propagation delays for different speakers which
we exploit in our application. Relying on general purpose hardware, our
solution handles clock inaccuracies and non deterministic system delays.

The introduction of smartwatches has brought even more inertial sensors
into everyday life. Since these devices closely follow the motion of a user’s
wrist, these sensors can measure hand motion in great detail. We use this
fact, to develop a gesture recognition system. To test the performance,
we use motion data recorded from people writing on a whiteboard. This
has the advantage that people do not have to memorize a large number
of new gestures. Also most people are able to recreate their writing with
high accuracy which should simplify the recognition process. Although the
recognition rates of isolated letters is high, sequences of letters have proven
to be hard to segment.

However useful the discussed observations may seem, they can also be
exploited to infringe the privacy of users in unexpected ways. For example,
a geotag in a holiday photo that is uploaded to a public website may be
used to deduce a user’s location at a certain time. In Chapter 4 we discuss
how a skillful attacker can even infer touch input on a smartphone, solely
based on how the phone moves during the input. The required motion data
can be accessed by any application installed on current smartphones. Yet
the touch input data is generally only available to the currently displayed
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application for security reasons. As the motion data is sensitive to the
environment in which it is recorded, we can not convincingly show that
inference is possible in a lab setting. Hence, we implement a smartphone
game which collects motion and touch input data from many different users
in completely uncontrolled situations. The results show that touch input
inference is difficult but feasible. Especially for inputs that are repeated
over and over, such as pins and passwords that unlock smartphones.

1.1 Collaborations and Contributions

This thesis is based on several publications and drafts I worked on during
my time as a PhD student at the Distributed Computing group at ETH
Zurich under the supervision of Prof. Dr. Roger Wattenhofer. Research of-
ten is a collaborative effort. I shall list in the following the publications or
drafts underlying the respective chapters along with a list of the respective
co-authors. Note that the authors of the papers are listed in alphabetical
order and therefore do not represent the degree of contribution of the indi-
vidual authors. Besides this, all articles listed below are joint work with my
supervisor Prof. Dr. Roger Wattenhofer.

Chapter 2 is based on the publication A Pocket Guide to Indoor Map-
ping [17]. Co-author was Samuel Welten.

Chapter 3 is based on the publication Fast and Robust GPS Fix Using
One Millisecond of Data [15]. Co-author was Manuel Eichelberger

Chapter 4 is based on the publication Inferring Touch from Motion in
Real World Data [13]. Co-authors were Philipp Brandes and Jonas Passerini.

Chapter 5 is based on the publication Recognizing Text Using Motion
Data From a Smartwatch [4]. Co-authors were Luca Ardüser and Philipp
Brandes.

Chapter 6 is based on the publication RTDS: Real-Time Discussion Statis-
tics [14]. Co-authors were Klaus-Tycho Förster and Jan Deriu.

Chapter 7 is based on the publication Distributed Discussion Diariza-
tion [16]. Co-authors were Klaus-Tycho Förster and Simon Tanner.
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2
WiFi Indoor Localization

Today, GPS is an essential component of the global information infras-
tructure. GPS satellites surround our globe and current smartphones are
equipped with suitable receivers. However, GPS based localization still has
blind spots, in particular if a user enters a building. Often, navigating inside
an unknown building can be just as hard (if not harder!) than navigating
outside.

In this chapter, we exploit WiFi signal strength observations as well
as the motion of a smartphone to deduce its location. We present a way
to obtain accurate WiFi signal strength maps that can be used to localize
any WiFi enabled device, without dedicated hardware, and without a time
consuming and expensive training process.

The first contribution is a novel motion estimation technique that allows
us to gather accurate user motion data in an unobtrusive way. The required
sensors, a 3-axes accelerometer and a 3-axes gyroscope, can be found in many
modern smartphones. Using these sensor measurements, we show how the
direction of the leg and hip can be accurately estimated, independent of how
the smartphone is placed in the trouser pocket. Based on these estimates, we
can track the heading as well as the distance of each step the user takes. This
motion model is tailored to fit the requirements of tracking a user’s motion
in indoor environments and therefore does not utilize the (often unreliable)
magnetic field to determine the absolute heading. Instead, the change in

7



8 CHAPTER 2. WIFI INDOOR LOCALIZATION

heading between steps is estimated. We evaluate the performance of this
motion model and show that, despite our non-restrictive sensor placement
and the lack of absolute heading, the motion model is able to extrapolate
from a single configuration parameter to work at different walking speeds
for different people. The motion data is highly accurate for short tracking
intervals, i.e. short walks with a smartphone do exhibit a small relative
positioning error.

The positioning error is growing with distance though, so we use informa-
tion about the signal strength of access points of the wireless infrastructure
to globally correct that. Our second contribution lies in the integration of
the complementary information – the “locally accurate” motion data and
the “globally accurate” signal strength data – into a system that allows for
easy mapping with nothing but a smartphone in the pocket. More precisely,
we obtain additional positioning constraints between locations that the user
has visited while walking around in the area of interest. We use the com-
mon (least-squares) Graph-SLAM technique to obtain corrected positions
for all the signal strength measurements that a user recorded. As a result,
the system is capable of recovering accurate relative positions of the signal
strength measurements from data that was captured by multiple users walk-
ing through an area at different times. We show a qualitative example for
the mapping performance in a large university building.

2.1 Related Work

Crowd-sourcing Localization. Recent work presented by Rai et al. [70]
shows the high interest in localization solutions relying on crowd sourced
data rather than time consuming training. Their system can provide local-
ization information using only crowd-sourced information. Motion estimates
and WLAN signal strength measurements are fused using a particle filter
approach which also requires a floor plan map. As a result, the locations
of the signal strength measurements within the floor plan can be estimated.
High localization accuracy is achieved. However, the required floor plan map
has to fulfill strict requirements in order for the particle filter to converge
to the correct WLAN signal strength measurement locations. The proba-
bility density that has to be estimated with a particle has four dimensions
which implies a high computational complexity on the mobile device. Our
approach does not require a map and the use of efficient sparse non linear
solvers that are readily available, the computational complexity is lower.

Signal Strength Mapping. The problem of acquiring signal strength
maps in an unsupervised manner has been approached by Chintalapudi et
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al. [26]. The system they presented allows WLAN signal strength based
localization without annotated training data. No motion data is used in the
process. Instead, the relative positions of WLAN Access Points and mobile
node locations are modeled as a function of the received signal strengths.
The resulting set of overdetermined geometric constraints is solved using a
genetic algorithm. Occasional GPS location measurements are used to ob-
tain location information in the global frame. However, GPS measurements
are hard to obtain in indoor environments and may be erroneous. The
received signal strengths are the only indication for geometrical distance.
Due to non-line of sight effects in indoor environments the complexity of
this relationship is beyond the reach of the simple model used in the paper.
This shortcoming becomes evident as the localization accuracy drops if the
accurate locations of the access points are provided in the training phase.
Therefore, the model might be accurate enough to provide localization ca-
pabilities, but the estimated map will in reality never converge towards the
accurate access point distribution. In our approach, a person’s motion is
estimated in order to get geometrical distance information. The measured
signal strengths are only utilized to recognized previously visited locations.
Therefore, even if associations are incorrect, our maps converge to the accu-
rate signal strength distribution because the increasing number of unbiased
distance estimations from our motion model.

Motion Estimation. The dead-reckoning method presented in this chap-
ter is the enabling factor that allows us to create signal strength maps.
Many such methods to estimate human motion using foot-mounted sen-
sors have been described in the literature [11, 35, 37, 63]. These solutions
rely on the foot being stationary when in contact with the ground. This
zero-velocity interval can be used to counteract the velocity estimation drift
caused by integrating the accelerometer signals. An overview of different
methods to estimate motion based on foot-mounted sensor measurements
have been compared by Skog et al. [75]. Another approach, relying on sen-
sors fixed on a helmet was presented by Beauregard [10]. As our goal is
to perform mapping in an unobtrusive way, we desire to measure user mo-
tion based on its natural location when users are casually walking around.
Therefore, all motion estimation methods that require dedicated hardware
such as bodily fixed sensors are useless if we want to allow a wide range of
users to contribute in the mapping process. Our motion estimation method
only requires a smartphone being placed in a trouser pocket which makes
it tangible for many people now, and even more so in the future. A motion
estimation method that is seemingly similar to the one presented in this
chapter was described by Blanke and Schiele [18]. This method and a se-
lection of others that are equally nonrestrictive about the positioning of the
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sensors have been experimentally compared by Steinhoff and Schiele [76].
While the motion direction is estimated using the available sensor measure-
ments, the step length was assumed to be constant and even manually set
for each track. The presented evaluation does not allow us to quantitatively
benchmark our approach because the evaluation results are distance- and
orientation error quantities for each stride. The results are median stride
length errors of more than 10cm and median orientation errors of more than
5◦ whereas we achieve mean localization errors of below 10% of the trav-
eled distance. However, the argument that an estimation error of 10cm per
stride is already more than 10% of the traveled distance is highly question-
able. Partly due to measurement errors in the ground truth but also because
our approach estimates not only step- heading and count but also distance.
Also our motion model can cope with different walking speeds without re-
quiring the stride length to be manually configured. In addition to this, our
approach does not rely on the use of magnetic field sensors to determine the
absolute heading direction. Due to the large magnetic disturbances that
may interfere with finding the correct direction towards north, using mag-
netometers in indoor environments is questionable and may incur large and
unexpected errors. As a result, our approach is not able to estimate abso-
lute headings for the steps, but only the change in heading for consecutive
steps. Another system that is seemingly similar to ours, but requiring two
separate, fixed sensors to estimate motion based on the orientation of the
thigh was presented by Lee and Mase [46].

SLAM. In the robotics community, the Simultaneous Localization and
Mapping Problem (SLAM) has been an active research topic for over twenty
years. Bailey and Durrant-Whyte [8, 31] summarized the most important
results and solution ideas. To apply these SLAM solutions, two complemen-
tary information sources are required. Firstly, the motion of the measure-
ment device has to be estimated. Secondly, previous locations have to be
recognizable if visited again. Both requirements can be met with off-the-
shelf smartphones. The known SLAM solutions already have been applied
to the indoor mapping problem in several instances. Ferris et al. [34] in-
troduced a method to build signal strength maps in indoor environments
based on Gaussian Process Latent Variable models. Motion information is
integrated with signal strength observations to estimate the signal strength
distribution which can be used for localization. While the approach is able
to reconstruct topologically correct maps, the true geometric shape of the
building could not be captured. Comparing their reconstructed maps to
ours (see Figure 2.6) clearly indicates the superior mapping accuracy of our
approach. Huang et al. [40] presented an adaption of the Graph SLAM
method which uses WLAN signal strengths as observations. Pedometer
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and gyroscope measurements are used to estimate the user’s motion. The
results show that signal strength measurements are sufficient to recognize
previously visited locations. We follow this approach and formulate a sparse
non-linear optimization problem based on the motion estimates and signal
strength measurements. This has the advantage that many highly efficient
solvers are available and can directly be applied to solve the mapping prob-
lem. Also this problem formulation allows us to combine motion and obser-
vation information from multiple walks or even users. In the publication of
Huang et al. [40], the resulting pose distribution is only shown for a small
building that allows for many loop closure constraints. Also, it is unclear
how to crowd source the required data as the motion estimation approach
is assumed to be known. Our motion estimation approach allows us to
present results for larger buildings with sparser loop closure opportunities.
Additionally, our approach requires only a smartphone as well as existing
wireless infrastructure.

2.2 Motion

The algorithm we present to track the motion of a user requires a 3-axes gy-
roscope and a 3-axes accelerometer to be placed loosely in a trouser pocket.
Modern smartphones not only contain the required set of sensors, but are
likely to be located in a user’s trouser pocket. Additionally, the proximity-
and light-sensors can be used to determine if the phone might be located
in- or outside the pocket. The method is split into three parts which are
described in the three following subsections. Firstly we show how the ori-
entation changes of the phone can be estimated using the gyroscopes only.
These orientation estimates are then used to track the motion of the users
thigh which allows us to find the exact moments in time when the leg reaches
its extreme orientations as depicted in Figure 2.1. We then estimate the
length and the direction of each step based on two consecutive orientation
extrema.

Orientation. In indoor environments, the earth magnetic field is heavily
disturbed by power cables, concrete reinforcements and such. In addition,
magnetic disturbances are caused by varying electrical currents in the sensor
frame itself. To complicate the use of these magnetic field sensors even more,
infrequent recalibration of the sensors occurred without notification. Since
these errors are hard to model, we decided to not use the magnetic field
sensor to counter the heading drift caused by the gyroscopes. We found that
the heading drift caused by the gyroscopes is nearly time independent and
can be effectively corrected with the observation model presented later on.
Therefore, we only use the gyroscope measurements (ωx, ωy, ωz) to estimate
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φ(tmin)φ(tmax)

Figure 2.1: The most important vectors used to find φ(t) are shown for a min-
imum of φ(t) and a maximum of φ(t) respectively. The leg direction L is shown
in red, the hip direction H is shown in green (points out of the image), the earth
gravitational force g is shown in blue, the inclination angle φ(t) is shown in yellow
and the vector used to find the inclination L × H is drawn in black.

the orientation quaternion q which can be computed using the Hamilton
product:

qt = qt−1 · (1, ωx2 ,
ωy
2 ,

ωz
2 ) (2.1)

This orientation estimate relates the sensor frame to an arbitrarily chosen
coordinate frame which has an offset to the earth coordinate frame that
evolves according to the gyroscope drift. While the orientation estimate
drift leads to errors in the motion estimates, knowledge of the absolute
orientation in the earth coordinate frame is not required.

Rotation Based Step Detection. The following step detection and es-
timation is based on the assumption that a smartphone that is placed in a
trouser pocket approximately follows the motion of the thigh. We use this
assumption to infer the evolution of the orientation of the thigh and the axis
around which it rotates (the hip axis). We then use these vectors to find
orientation extrema which we use to determine step direction and distance.
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Figure 2.2: A comparison of the accelerometer magnitude (left) and inclination
angle φ (right) during several steps on a treadmill. The treadmill setting for the
measurements was set to 1 km

h
. Clearly the inclination φ is suitable to detect steps.

The most relevant vectors that are used in the following discussion are shown
in Figure 2.1. In the following discussion, all vectors are expressed in sensor
coordinates. The acceleration of the earth’s gravitational field g is trans-
formed into the sensor coordinate frame using the orientation quaternion q
from Equation 2.1.

In a first step, the direction of the leg L in the sensor coordinate frame
can be estimated using a low-pass filter:

L = LC · L + (1− LC) · g

The cutoff frequency LC =
√

L · g is chosen to allow the leg estimate
to quickly converge whenever the device orientation relative to the thigh
changes. During normal use, L is oscillating around g and the leg estimate
is not significantly converging towards g. The normalized estimate L

|L| can
be used to determine the rotation axis between the leg and the direction of
the gravitational force:

r = g × L

Based on the rotation axis r, we estimate the direction of the hip H using
a low-pass filter:

H = HC · H + (1−HC) · r (2.2)
The cutoff frequency HC = |sin(|r|)| is chosen to increase the influence of
the rotation axis r on the hip estimate H if the angle between L and g grows.
The reason for this is the fact, that the rotation axis can be determined with
higher accuracy if the angle between the two vectors is larger. In case the
rotation axis is pointing into the opposite direction of the hip estimate, the
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rotation axis is reversed (r = r · signum(r · H)) before applying the
low-pass filter in Equation 2.2. The hip axis H converges to one of the two
(opposing) main rotation axes of the leg. In the absence of absolute heading
information, the two convergence possibilities of H deliver equal estimation
performance and results. The hip- and leg-direction estimates are then used
to find φ(t):

φ(t) = arccos ((L × H) · g) (2.3)

The evolution of φ(t) is used to find the points in time when the the thigh is
at the extrema of the back and forth movement. Figure 2.2 visualizes φ(t)
and for comparison also shows the evolution of the acceleration magnitude
signal a(t). In phi(t) the minima and maxima are easy to detect whereas
in the accelerometer signal, it is extremely hard to extract isolated steps.
Each minimum and maximum in φ(t) corresponds to the end of the last step
and the beginning of the next. With accelerometer based step detection
methods, counting steps gets increasingly difficult at low walking speeds, as
the foot impact gets less articulated in the accelerometer signal. In addition
to this, φ(t) allows us not only to count steps, but also to find the orientation
extrema of the leg swing which allows us to accurately estimate the step
length and direction.

Step Estimation. The direction and length of each step is estimated based
on the smartphone orientations recorded in the minima and maxima of φ(t).
The change in orientation between minima and maxima can be expressed as
axis a and angle α. Because absolute heading information is not available,
a can be used as the walking-direction. The angle α can be used to estimate
the step length.

s = a
|a| · c · sin

(
α

2

)
(2.4)

The constant c is user dependent and has to be configured.

2.3 Observation

In addition to the motion data, the smartphone is able to record the evolu-
tion of received signal strength indicators (RSSI) for all visible access points.
In indoor environments, inferring distance from received signal strengths is
infeasible. Non-line of sight effects and antenna imperfections lead to a
spatial signal strength distribution which cannot be captured in a function
that depends on the distance between sender and receiver. This is why we
use these signal strength measurements not to infer physical distance, but
to recognize previously visited locations only. We achieve this recognition
by comparing two landmarks L1 and L2 using the following signal space
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Figure 2.3: Comparing the motion model speed output to the ground truth
(Treadmill speed setting). Clearly, the motion model output linearly depends on
the actual walking speed which means that when properly configured, the motion
model will work at different walking speeds.

distance measure:

s(L1, L2) = 1
|M1 ∩M2|

∑
e=M1∩M2

|M1(e)−M2(e))|

+ 1
|M1 \M2|

∑
e=M1\M2

|M1(e)− lmin)|

+ 1
|M2 \M1|

∑
e=M2\M1

|lmin −M2(e))|.

(2.5)

The sets of visible access points are denoted as M1 and M2 respectively. Ac-
cess points that report an RSSI lower than lmin are neglected. In addition,
access points that are only visible in the other landmarks are considered to
be received with signal strength lmin. Two landmarks assumed to be cap-
tured in the same location (associated) if their distance measure s(L1, L2)
is lower than a threshold sth.

2.4 Fusion

The complementary characteristics of the motion- and observation associa-
tion constraints can be exploited to counteract the divergence of integrating
motion estimates using the observation associations. Similar to finding the
equilibrium point of a system of springs and masses, the visited locations
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correspond to the masses and are described as point in space as well as
current motion heading xi = (x, y, φ). The motion and association con-
straints correspond to the springs. The stiffness of the springs corresponds
to the confidence level of the estimates. Whereas the association constraints
are modeled as springs with equilibrium length zero and do not constrain
the heading difference, the motion constraints are modeled as springs with
equilibrium length equal to the estimated step length that also constrain
the change in heading φ between consecutive poses.

xi = fi(xi−1, ui) + wi. (2.6)

The pose xi is linked to the previous pose xi−1, using the sensor readings ui.
The model uncertainty is captured in the Gaussian noise term wi. Landmark
associations are described as follows:

0 = ||xik − xjk ||+ vk. (2.7)

This captures the fact that if we associate two landmarks, we expect them
to be recorded in spatially close locations. The Gaussian noise term vk may
vary depending on the association quality where k addresses one specific
association between two poses xik and xjk . The optimization problem is
defined as follows:

Θ∗ = argmin
Θ

[ M∑
i=1

||fi(xi−1, ui)− xi||2Λi

+
K∑
k=1

||xik − xjk ||2Σk
]
.

(2.8)

For simplicity, the notation ||e||Σ = eᵀΣ−1e was used. The solution
is the set of poses Θ that minimizes the given cost function based on the
constraints obtained from the motion- and observation model. We solve the
sparse non-linear optimization problem using iSAM [42].

Compared to a particle filter based approach, this non-linear least squares
problem allows us to overcome the lack of absolute heading information as
well as heading drift without increasing the computational complexity. Note
that a particle filter would need to sample the joint probability function of
spatial location, heading offset and heading drift. Adding dimensions to the
probability distribution causes the number of particles to grow exponen-
tially.
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Figure 2.4: Relating the traveled distance with the resulting motion model inte-
gration error.

2.5 Localization

As a sample Application, we propose a localization scheme based on the
acquired signal strength fingerprints. Localizing a signal strength measure-
ment is achieved using the k-nearest neighbors in the signal strength space:

p = 1∑K

i=1 di

K∑
i=1

di · pi. (2.9)

Here, di are the signal space distances defined in Equation 2.5, pi are the
corresponding landmark locations of the k-nearest neighbors and p is the
localization estimate.

2.6 Experiments and Results

The following experiments were carried out using a Samsung Nexus S smart-
phone. In a first step, the motion- and observation models are evaluated
separately because the motion model will deliver user specific performance
whereas the observation model will be largely user independent.

Motion. Firstly the speed estimation is compared to the actual walking
speed. A single user was walking on a treadmill whose speed setting was
used as the ground truth walking speed.

The results shown in Figure 2.3 indicate a linear dependance between
actual speed and motion model estimate. This is the desirable outcome
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Figure 2.5: While walking around a set of rectangular shaped (50m x 10m) set
of hallways twice, roughly 420 fingerprints were collected. This figure shows the
fingerprint signal space distance for all pairs i, j of recorded fingerprints.

since it indicates that the motion model can be configured for a specific
user with only one parameter and deliver accurate speed estimates over a
variety of walking speeds. The variances shown for each treadmill speed
setting indicates a large variance of of the speed estimates even though
the treadmill- and therefore walking speed was very constant during the
experiment. The results shown in Figure 2.3 were used to find the parameter
c from Equation 2.4.

The distance estimation was evaluated with eleven people that were
asked to walk down a 51 meter long straight hallway. The motion model
output had a mean of 51.7 meters and a standard deviation of 4.4 meters.
This result indicates, that the motion model may be adapted for different
users. To evaluate the motion model accuracy in a more realistic setting
in which people were walking through hallways, doors and bends, the same
eleven people were asked to walk along four predefined tracks with increasing
lengths (51m, 81m, 120m, 154m, 195m). All the tracks ended in their start-
ing point which means, the localization error after each track is captured
in the distance between start- and estimated end-point. Figure 2.4 shows
the increasing localization error caused by accumulating motion estimation
errors. As expected, the localization error increases as the traveled distance
grows. A large portion of the error is caused by the drifting heading estimate
which could not be corrected using the magnetic field sensors. Although
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the closed tracks facilitate evaluating the localization error, note that this
evaluation scheme does not capture the fact that the motion model might
systematically over- or underestimate the step lengths for different users.
However, combined with the results shown in Figure 2.3 and the distance
measurement accuracy of the straight hallway experiment we conclude that
the motion model works for a variety of people walking at different speeds
only requiring to be configured at one speed, or even only using the users
body height.

Observation.
Observations are associated to each other if their mutual signal space

distance is below a given threshold. Therefore, we require the signal space
distance to be low for two spatially close fingerprints. On the other hand,
comparing spatially distant fingerprints should lead to a high signal space
distance. To evaluate how well this requirement is met by the smartphone
WLAN observations, we carried out the following experiment. We collected
a large number of fingerprints by walking at constant speed through office
building hallways. The hallways are are forming a rectangle (50m x 10m)
which is traversed twice during the experiment. The distance measure for
all the pairs of recorded fingerprints are shown in Figure 2.5. Note that
the distance measure is commutative and therefore, the distribution is sym-
metric. Also, elements that are close to the diagonal indicate signal space
distances of two fingerprints that have been recorded within a short period of
time. The farther away from the diagonal, the larger the time span between
the two recorded fingerprints. Because the experiment was conducted while
walking at constant speed, this also means that the time span in which two
fingerprints were recorded linearly translates to a spatial distance. Since the
goal of this experiment is to get an idea of how well our signal space distance
measure is able to distinguish fingerprints that are far from fingerprints that
are close, it is desirable to have low distance measures along the diagonal,
but high distance measures the further away from the diagonal. In addition
to the main diagonal, two secondary diagonals which are originate from the
second round through the rectangular set of hallways. Similar to the main
diagonal, we desire low distance measures close to the secondary diagonals
but high distance measures the further away we get. Clearly the secondary
diagonals are less clear than the main diagonal especially, the off diagonal
elements are less distinguishable from the diagonal elements. The four by
four checkerboard pattern is a result of the rectangular track and shows
that fingerprints recorded in the two opposite long hallways have a large
signal space distance. However, within one hallway, the spatial distance of
fingerprints with small signal space distances can grow large. Due to this
shortcoming, erroneous associations have to be expected. In addition, the
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Figure 2.6: Fingerprint distribution for ETH Zurich main building (HG). Fin-
gerprint locations are indicated as blue dots. Signal strengths for selected access
points are shown in blue (weak) to red (strong) colors

similarity between fingerprints within one hallway will impede localization
performance.

Fusion. Fusing motion- and association data by non-linear optimization
leads to a map of fingerprints. The quantitative evaluation of the map
quality is difficult as long as no localization scheme is used to measure
localization performance based on the generated fingerprint map. Figure 2.6
shows the fingerprint distribution resulting from the fusion step for the ETH
main building. The recorded fingerprints are drawn as blue dots. The
received signal strengths for two distinct (non overlapping) access points are
indicated in blue to red colored areas around the corresponding fingerprints.
The relative fingerprint positions are the result of the fusion step. The
floor plan as well as the rotation and translation between floor plan and
fingerprint distribution is not automatically obtained but added by hand.
The fingerprint locations obtained in the fusion step resemble the true shape
of the building with with few exceptions (intersection on the right side).
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Figure 2.7: Localization performance in the three different buildings using KNN
localization scheme described in Equation 2.9

Localization. The fingerprint distributions for all three experiments were
comparably accurate as the one shown in Figures 2.6. One explanation for
the poor performance is that buildings consisting of large open spaces lead
to more dispersed signal strength distributions than buildings that contain
only small open spaces. This means that smaller measurement differences
translate to larger localization differences and therefore, the system is more
sensitive to measurement errors. The performance difference mimics the
environments in which the experiments were performed. The sites range
from an office building (ETZ), a university main building with large hallways
and lecture halls (HG), to a shopping mall (Sihlcity).

2.7 Conclusion

In this chapter we discussed how smartphones that are carried in trouser
pockets can learn signal strength distributions. To this end, a method to
track how people walk was introduced. Locations can be identified from the
received signal strengths of visible WiFi access points. Hence, returning to a
known location allows the system to compensate for errors that accumulate
slowly when tracking people’s movements.
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3
Fast and Robust GPS Localization

In the previous chapter, we discussed localization in indoor environments
which provide little to no GPS reception. In this chapter, we show how
the existing GPS infrastructure can be used in a novel receiver design that
improves performance. For most outdoor scenarios, GPS is the localization
system of choice, mainly due to its global coverage and accuracy. However,
continuous receiver operation consumes too much energy for mobile devices
such as fitness trackers or even smartphones. Mostly because current re-
ceivers cannot be efficiently duty-cycled. When the receiver is switched off
for a few minutes to conserve power, it takes a lot of time and energy to
compute a new position fix once it is turned back on again. This has far-
reaching consequences for many application scenarios. For example, today’s
GPS receivers make us wait for a first fix, which can be annoying if one
wants to navigate an unknown place. Also, geotagging photos is not in-
stant and energy consuming. Due to the energy consumption issues, many
applications, such as long term tracking, are out of reach.

In this chapter, we present a receiver which requires only a single mil-
lisecond of GPS signal to compute its position. This means that the signal
can be recorded and stored locally for later processing. Alternatively, the
signal recording can be sent to a remote server which can perform the energy
consuming position computation. This translates to a reduction in energy
consumption as well as an increase in convenience for many applications.

25
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For example, the initial position when navigating with your phone can be
found within a few milliseconds depending on network latency. A smart-
watch or fitness tracker may be able to track its location every few seconds
for weeks at a time. When the duty cycle is further reduced, a tracking
device that only requires one position fix per hour may run for years on a
single coin cell battery. Geo-tagging photos can be simplified to adding a
one ms signal recording to the photo which is stored and from which the
position can be computed later on.

To increase the noise tolerance as well as the robustness in non-line of
sight situations, we search the most likely position at which the recorded
signal was received. This reduces the impact of satellite range estimation
errors which can throw off current GPS receivers as well as CTN receivers
based on the classical least squares localization approach. Since we rely on
a single millisecond of signal, noise tolerance is even more critical compared
to receivers running tracking loops and long integration intervals.

If the location is approximately known, finding the most likely position
can be achieved by computing the likelihoods of all close-by positions and
selecting the most likely one. The more uncertain the initial guess about
position and time, the larger the search space (position and time) gets.
Computing all the likelihoods presents a computationally expensive maxi-
mization problem in this case. However, we show how the global maximum
can be found efficiently using a branch and bound approach. The runtime
of the algorithm is correlated with signal quality: In good signal conditions,
the computational load is low. The worse the signal conditions get, the
higher the computational burden. However, the most likely position and
time fix is found in any case. The branch and bound implementation speeds
up the acquisition time and hence also the time to first fix (TTFF).

We exploit the shape of the likelihood function to achieve higher po-
sitioning accuracy and robustness. As a result, under similar conditions
(signal duration and sampling rate), our method leads to more accurate
positioning compared to previous approaches. Furthermore, we show that
that there is a trade-off between the amount of sampled signal used and
the accuracy of the positioning solution. If we average over two consecutive
fixes from one millisecond of data each, the median error is reduced from 25
to 15 meters. Averaging over 30 fixes (0.03 s of signal), the median error is
as low as 6 meters. Tracking a user’s position decreases the computational
complexity of each consecutive fix as the search space (space and time) is
much smaller.
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3.1 Related Work

Van Diggelen [81] introduced the idea of Coarse Time Navigation (CTN).
Using CTN, a position fix can be found from only a few milliseconds of data
without decoding any data from the GPS signal. The requirement for this
is prior knowledge of the receiver time and position to within a few seconds
and 150 kilometers, respectively. Liu et al. [49] showed that since CTN
only requires a few milliseconds of data, the raw signal can be stored and
the computation can be outsourced or postponed until power is available.
This mitigates the problem of high energy consumption for acquisition by
not acquiring the satellites on the receiver, enabling duty cycling. However,
due to the short signal duration, accuracy and robustness is worse than
in classic receiver designs relying on acquisition and tracking stages. Our
GPS receiver design extends this idea and can compute a position from a
single millisecond of signal. Our localization method counteracts the effect
of the short signal duration and improves positioning accuracy compared to
existing work on CTN. Also, we show how accurate position fixes can be
computed from inaccurate time estimates. This allows us to drop the heavy
and power consuming DCF-77 clock receiver required by Liu et al. [49]. As
a result, our receiver can be miniaturized and function for years even when
there is no clock synchronization except at the very beginning.

A second branch of research is concerned with improving the robustness
of GPS receivers. In classical GPS, the receiver location is determined based
on signal parameters. The most important ones being Doppler shift and
code delay for each satellite. From these parameters, a position in space is
computed. Clearly, signal parameters may be erroneously detected which
leads to erroneous position estimates.

Instead of estimating the signal parameters, Closas et al. [29] showed how
the receiver position can be estimated directly and how this can improve the
robustness of GPS receivers.

We refer to the basic idea as Collective Detection (CD), but it is also
called Direct Positioning or Combined Detection in the literature. We im-
prove the robustness of our approach by applying CD and we show how
the computational complexity of CD can be reduced without giving up any
accuracy.

Evaluations of CD have been performed in both simulation and prac-
tice [6, 25, 29]. The main concern is the computational complexity intro-
duced by the high-dimensional search space. Also, the likelihood function
is generally not smooth, such that standard greedy maximization methods
cannot always find the global maximum. Optimizations such as the one pro-
posed by Axelrad et al. [6] reduce the computational complexity but cannot
guarantee that the best possible position is found. Our branch and bound
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implementation reduces the computational complexity and always yields the
globally best solution.

3.2 GPS Fundamentals

The method described in the following is not only applicable to GPS, but
also to other global navigation satellite systems (GNSS) such as Galileo1 or
GLONASS2 with minor adaptations.

The GPS system can be seen as having three parts: the control segment,
the space segment and the user segment. The space segment consists of
24 satellites orbiting the Earth [30]. A network of monitor stations and
ground antennas makes up the control segment. It is primarily used to
monitor the satellites state and keep track of their ever changing orbits. The
orbits need to be known as accurately as possible to improve localization
performance [30]3The third – and for our discussion most important – part
of GPS are the receivers, making up the user segment.

3.2.1 GPS Signal
The satellites transmit signals in different frequency bands. These include
at least the so-called L1 and L2 frequency bands at 1.57542 GHz and 1.2276
GHz [30]. The signals are transmitted through a helix array antenna which
right-hand circularly polarizes the signals [30]. This helps suppressing mul-
tipath signals at a receiver because a reflection of the signal polarizes it in
the opposite direction.
In order to distinguish the signals from different satellites and to extract the
signals from the background noise, code division multiple access (CDMA)
is used.

Figure 3.1 shows the modulation scheme utilized in GPS. The Coarse/Ac-
quisition code (C/A code) is a sequence of 1023 bits which is satellite specific.
Gold codes are used to achieve favorable correlation and cross-correlation
properties [81]. The C/A code is transmitted at 10.23 MHz which means it
repeats every millisecond. The data is transmitted at 50 bit

s and hence, each
bit contains 20 complete C/A cycles. The data and C/A code are merged
using an XOR before being mixed with the L1 or L2 carrier. Figure 3.1
shows how the GPS signal is generated. Note that the C/A frequency and
the L1 frequency do not have the correct ratio to make the figure easier
to read. The data that is broadcast contains a timestamp (called HOW)
which can be used to compute the location of the satellite when the packet

1http://galileognss.eu/
2https://www.glonass-iac.ru/en/
3Further information can be found at http://www.gps.gov/systems/gps/control/

http://galileognss.eu/
https://www.glonass-iac.ru/en/
http://www.gps.gov/systems/gps/control/
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Figure 3.1: The structure and modulation of the GPS Signal. The binary data
and C/A code are mixed with the carrier frequency (L1) using the BPSK modu-
lation scheme.

was transmitted. However, to do this the receiver needs accurate orbital
information (called ephemeris) about the satellite which changes over time.
While the HOW timestamp is broadcast every six seconds, the ephemeris
data can only be received if the receiver can decode at least 30 seconds of
signal.

3.2.2 Localization

Conventional GPS receivers use three stages when obtaining a location fix.

Acquisition. First, the set of available satellites has to be found. This can
be achieved by correlating the received signal with the known C/A codes
from the satellites. Since the satellites move at considerable speeds, the
signal frequency is affected by a Doppler shift. Hence, receivers usually
correlate the received signal with C/A codes with different Doppler shifts.

Tracking. After a set of satellites has been acquired, the data contained
in the broadcast signal is decoded. Doppler shifts and C/A code phase are
tracked using tracking loops. After the receiver obtained the ephemeris data



30 CHAPTER 3. FAST AND ROBUST GPS LOCALIZATION

and HOW timestamps from at least four satellites, it can start to compute
its location.

Localization. Localization in GPS is achieved by multilateration, a tech-
nique using time difference of arrival (TDoA) measurements to compute a
position. The arrival times of the HOW timestamps received in the tracking
phase are used to compute the set of TDOAs.

In trilateration, the distances between a mobile station and some stations
with known position are measured. This can for instance be done through
time of arrival (TOA) measurements, when the signal transmission times
are known and all the stations are synchronized in time. The position of
the mobile station lies at the intersection of the spheres around the stations
with fixed position with the corresponding radii.

While the satellites operate on an atomic frequency standard, the re-
ceivers are not synchronized to the GPS time. Therefore, the local time
at a receiver is unknown. Due to that, the distance of the receiver to the
satellites cannot be directly computed from the local arrival time of the sig-
nals at the receiver. Instead, only the time differences of the arrival times
can be measured. Therefore, the multilateration method is applied. From a
computational view, there is not a large difference between the trilateration
and the multilateration approach. The latter problem contains one more
variable, which is the receiver time, and hence needs measurements from at
least four instead of three satellites for the problem to be well-defined. The
receiver position is found through a least squares optimization.

3.2.3 Assisted GPS

One of the main disadvantages of GPS is the low bit rate of the navigation
data encoded in the signals transmitted by the satellites. The minimal data
necessary to compute a position fix, which includes the ephemerides of the
respective satellites repeats only every 30 seconds. In order to decode all
that data, the receiver has to continuously track and process the satellite
signals which induces high energy consumption. Furthermore, upon start-
ing up a receiver, a position will not be instantly available. To overcome
this drawback, receivers can run continuously, but this consumes even more
power.
Assisted GPS (A-GPS) drastically reduces the startup time by fetching the
navigation data over the Internet, commonly by connecting via cellular net-
works which are faster than decoding the GPS signals and normally only
takes a few seconds. Using this data, the acquisition time can be reduced
since the set of available satellites can be estimated along with their ex-
pected Doppler shift. This is possible because the exact arrival time of the
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navigation data is not required for the localization. Also, ephemeris data
is valid for at least 30 minutes. However, the receiver still needs to extract
the HOW timestamps from the signal but since they are transmitted every
six seconds, this is roughly how much time it takes an A-GPS receiver to
compute a position fix.

3.2.4 Coarse-Time Navigation

Coarse-Time Navigation (CTN) is an A-GPS technique which drops the
requirement to decode the HOW timestamps from the GPS signals. Van
Diggelen [81] describes the concept in detail. The only information used
from the GPS signals are the phases of the C/A code sequences which are
detected using a matched filter. These arrival times are directly related
to the sub-millisecond parts of the corresponding TDoAs. The number of
whole milliseconds of the signal propagation time are resolved with a known
approximate location and time. Because the signals travel at the speed of
light, which is about 300 km per millisecond, in order to be able to resolve
the number of whole milliseconds unambiguously, the deviation may at most
be 150 km from the correct values. Here, the deviation is defined as the
local clock offset multiplied by the relative speed between the satellites and
the receiver plus the initial position error. Since the PRN sequences repeat
every millisecond, without considering navigation data bit flips in the signal,
CTN can in theory compute a position from one millisecond of the sampled
signal. But since bit flips can occur, to make sure all visible satellites can
be used, two milliseconds are necessary. With such short signal recordings,
clearly noise becomes a major issue, because noise cannot be filtered out as
easily as with much longer recordings of several seconds. But the advantage
of this extremely short recording period is that the signal can be recorded
quickly and without consuming much energy. As a result, the TTFF can be
shortened to less than a second. Also, since no metadata has to be extracted
from the GPS signal, CTN may be able to compute a location even if the
GPS signal cannot be decoded due to noise or attenuation.

3.2.5 Collective Detection

Collective detection builds upon the observation that detecting peaks in the
correlation functions of individual satellites might yield sets of pseudoranges
which are not consistent with the laws of physics. By searching a solution
in space and time directly, this can be avoided. The problem then consists
of finding the most likely position given the received signal. From a given
hypothetical position and time (referred to as hypothesis in the following),
the corresponding ranges of the satellites can be inferred, which are then
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used to determine the arrival times of the signals. A receiver can exploit
this by combining corresponding correlation values from all the satellites to
compute a likelihood measure. This is essentially what our receiver does.
Erroneous peaks in the correlation function most likely do not align which
improves noise resistance. Commonly, the hypothesis pseudo-likelihood is
defined as the sum of the satellite pseudo-likelihoods, but one could also use
other measures, for instance the product.

3.3 Localization Method

The basic idea of our method is to asses the quality of many hypothetical
receiver states h = (hp, ht) which consist of the receiver position hp and time
ht. The quality of a hypothesis is determined through a function which
assigns a pseudo-likelihood to the hypothesis given external information
and the observed signal. This likelihood L(h) is a measure of how well the
observed signal matches the signal expected at a hypothesis h.

3.3.1 Likelihood

Given a hypothesis h and the current orbits of the satellites, we can infer
the satellites’ signal transmit times and propagation delays to compute the
expected signal phase φi(h) arriving at the receiver from the ith satellite.
This is discussed in detail in Section 3.3.2. Hence, for any hypothesis h we
can expect a C/A code with phase φi(h) from satellite i in the arriving signal.
We can evaluate how well the received signal r(t) matches this expectation
by computing a single correlation value with satellite i’s C/A code cai(t).

ci(h) =
1ms∑
τ=0

|r(τ) · cai(τ − φi(h))| (3.1)

If our hypothesis h is correct, we expect large correlation values ci for
satellites whose signal can be received, because the code phase of the C/A
code in the received signal match the expected code phase φi(h). For satel-
lites that are heavily attenuated or reflected, ci will be almost completely
random. We define our likelihood function as the sum of the correlation
values for a given hypothesis over all visible satellites, whose indices are
denoted by the set V .

L(h) =
∑
i∈V

ci(h) (3.2)
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The receiver position and time are estimated by selecting the hypothesis
h∗ which maximizes the likelihood measure:

h∗ = arg max
h∈F

L(h)

where F is a set of feasible hypotheses (position, time tuples).

3.3.2 Computing the C/A Code Phase
To compute the likelihood of a hypothesis h, we need to know the C/A code
phases φi(h) of the visible satellites. In the following, we assume that the
signal propagation delay di(h) is mainly determined by the distance between
receiver and satellite. Note that the maximum signal propagation delay to
a receiver on Earth is 87 ms [80]. During this time, a receiver’s movement
does not have a significant effect on the propagation delay. However, the
much faster satellite movement has. Therefore, we compute the propagation
delay at the transmit time ti of a signal even though the receiver may still
travel for an additional 87 ms.

The code phase φi(h) relates to the transmit time ti(h) of the received
signal as follows:

φi = ti(h) mod 1 ms

The transmit time ti(h) of the received signal at time ht are related by
the propagation delay di(h) between the hypothetical position hp and the
satellite position.

ti(h) = ht − di(h) (3.3)

The propagation delay can be found by dividing the spatial distance
between the hypothetical position hp and the satellite position pi by the
speed of light C:

di(h) = ||h
p − pi(ti(h))||

C
(3.4)

The propagation delay di(h) depends on the distance between the satel-
lite position pi at the time of transmission ti(h) and the hypothetical po-
sition hp. The satellite position pi(ti(h)) at a given time can be computed
from the ephemeris.

So the propagation delay di(h) can be found knowing the transmit time
ti(h) which itself can be found knowing the position of the satellite pi(ti(h))
which can only be found knowing the transmission time ti(h) for which the
propagation delay di(h) needs to be known. This circular dependency can
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be resolved by a short fixed point iteration which exploits the difference
between the speed of light and the speed that the satellites travel with.

Namely, the signal propagation times from a satellite to a receiver on
Earth range between 67 and 86 ms [80]. If we compute the signal transmit
time using Equation 3.3 and this crude estimate we get ti ≈ ht − (67 +
86)/2 ms ≈ ht− 76.5 ms The estimation error in the transmit time ti(h) is
at most 9.5 ms. The maximum satellite speed relative to a receiver on Earth
is 929 m/s [80]. This means that our estimate for ti(h) of 9.5 ms leads to a
worst case satellite position estimation error of 9.5 ms · 929 m/s = 8.83 m.
Using this new satellite position error, the second iteration starts with a
new estimate of the transmit time ti(h), based on a satellite position error
which is at most 8.83 m. Hence, the propagation delay estimation error is
at most 8.83 m/C = 19.4 ns. The satellite position estimate that can be
achieved using this propagation delay estimate already has a negligible error
of 19.4 ns · 929 m/s = 18 µm.

3.3.3 Search Region

To guarantee the uniqueness of the solution, we limit the search region in
which the set F of feasible hypotheses is contained. As GPS signals travel at
the speed of light C, the C/A code phase of a satellite are the same for two
hypotheses if their distances to the satellite differ by k ·C ·1ms ≈ 300km for
integer values for k. To avoid this affecting our results, we bound the search
region in which the set of feasible hypotheses F is contained to a diameter
of 300 km. Most likely the correct solution can still be found in larger areas,
especially when more than four satellites are visible. The size of the search
space follows a similar limitation. Note that the correspondence between
time error and range error is given by the maximum relative satellite speed
against a receiver, which is less than 1 km

s on the Earth surface [80]. Hence,
the search space in both space and time has to be small enough to make
sure that the solution remains unique. For instance, a position range of 100
km and a time range of 50 km / 1 km

s = 50 s are guaranteed to deliver a
unique solution.

For bounding the solution domain, one can use the antenna position
of a cellular network as a reference. When the signal of the satellites is
strong enough, we can also find the approximate receiver location with an
idea presented by Liu et al. [49]. The authors show how the measured
Doppler shift of a signal limits the receiver position to a cone. The position
can be found at the intersection of the cones from each satellite. If we do
not compute an initial fix, we can use the last computed position as an
approximation for the new position.
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3.3.4 Visible Satellites

The set V contains the indices of all potentially visible satellites. It is
assumed to be the same for all hypotheses h ∈ F and is the set of all the
satellites with an elevation above the horizon larger than five degrees, as
seen from the center of the search region. In theory, V is a function of
a hypothesis h and the ephemerides, from which the elevation angles can
be computed. However, it is safe to assume V is fixed with respect to all
hypotheses since the elevation angles barely change within the search regions
we consider. Also the Earth’s rotation during the signal transmission can
be neglected when computing the elevation angle of a satellite.

3.3.5 Space Discretization

The computation of the correlation values given in Equation 3.1 shifts the
locally generated C/A code by its expected phase. In our case, the expected
phase is rounded such that we shift by an integer value corresponding to one
sampling interval Ts of the receiver. This helps to simplify the computation
of the likelihood function as no signal interpolation is required. Due to the
rounding, the likelihood of two hypotheses that are close may lead to the
exact same set of C/A code phases φi for all visible satellites.

Ideally, we spread hypotheses in the search range such that no two hy-
potheses correspond to the same set of C/A codes to conserve computation
resources. Also, we would like to have one hypothesis for every set of C/A
code ranges which can be achieved within the search region.

Depending on the sampling interval Ts, we can compute the range differ-
ence that is required to change the value of the rounded C/A code phase φi.
Namely, the corresponding “length” of a sample is λs = Ts · C, where C is
the speed of light (λs ≈ 37 m for Ts = 1

8MHz ). Thus, for each satellite, the
solution space is sliced into spherical shells with a slice width of λs. Each
hypothesis in such a slice produces the same rounded expected C/A code
phase φi.

With multiple satellites, the space is sliced in several directions as shown
in Figure 3.2. This divides the solution space into volumes inside which
all the hypotheses correspond to the same rounded C/A code phase and
therefore equal likelihoods. Figure 3.2 shows a two-dimensional example.

Since we do not know the exact shape of the division of the search space
in the volumes of equal observations, we sample the space with a regular
grid. Ideally, this grid would be dense enough to “capture” all these volumes.
However, some of these volumes can be infinitely small and thus, with any
fixed grid density, we might not sample some volumes and therefore not find
the most likely hypothesis. Luckily we can make sure that we do not miss
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λs

x

y

Figure 3.2: Two dimensional example of search space discretization. In this
example, three satellites are visible which cause three groups of lines slicing the
search space. When crossing a line, the expected C/A code phase φi for the
corresponding satellite is rounded to the previous or next sampling period Ts. All
positions inside a bounded area lead to the same likelihood. Very small regions
may exist (indicated by the red circles).

the correct solution completely because no hypothesis is close enough by
selecting the grid such that neighboring points are λs apart.

In this case, each hypothesis represents a cube of side length lambda.
Such a cube has a diameter of

√
3 · λs ≈ 1.7 · λs < 2 · λs. Since the

space is divided into those cubes, an uncovered area can at most be half
a diameter apart from the nearest hypothesis, that is the distance to the
nearest hypothesis is less than λs. Note that a distance smaller than λs can
at most cross one slice boundary for each satellite. This means that for an
uncovered area and its nearest hypothesis the expected code phases φi are
at most one sampling interval Ts apart.

The key observation is that our (and also common) GPS receivers over-
sample the GPS signals. For the correlation, this means that the peaks are
not confined to a single sample of length Ts, rather their neighboring values
are quite high as well and form a triangle-like pattern. Without noise, the
correlation values at a distance of k samples from the peak have a value of
at least (1 − k · 2 · fPRN/fs) times the value of the peak. fPRN is the rate
of the PRN sequences (1.023 MHz). fPRN/fs is the fraction of the locally
generated PRN sequence which does not match the correct part of the PRN
in the signal. For a sampling rate of 8 MHz (fs = 1

T s
) for instance, the
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Figure 3.3: In situations with line of sight between receiver and satellites the
likelihood function is smooth and unambiguous. The figures shown are a cut
through the search space where the time and height of the receiver have been fixed
at the values corresponding to the most likely hypothesis. The distance between
two points in the grid is approximately 37 meters.

directly neighboring values of the peak are at least 74 % as high as the peak
itself, for a sampling rate of 56 MHz at least 96 %. Assuming the used
sampling rate is at least 8 MHz, the found correlation values may at most
be 26 % smaller compared to the largest one. Alternatively, we could filter
the correlation values such that the correlation value at an index contains
the highest correlation values amongst its direct neighbors. In this case, we
are guaranteed to find the highest achievable likelihood, but the likelihood
function is less sharp. We will discuss this idea further in Section 3.3.8.

3.3.6 Time Discretization

The hypotheses also have to be spread in the time domain. As in the spatial
discretization above, we have to make sure that we sample densely enough,
such that we do not miss the most likely position. If the hypothetical time
for the correct location hp is off by as few as 10 · Ts, its likelihood will be
completely random (assuming Ts = 8MHz). This follows from the same
argument about the shape of the PRN autocorrelation function above. In
order to allow for sampling in the time domain, we exploit the fact that the
expected C/A code phase φi(h) is approximately constant when varying the
hypothetical time ht by less than one ms. Hence, we simplify the computa-
tion of the correlation values ci(h) for hypotheses that are identical up to a
difference in time tµ which is smaller than 1 ms.
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ci(h, tµ) =
1ms∑
τ=0

|r(τ) · cai(τ − φi(h)− tµ)| (3.5)

We can simplify the computation of ci(h, tµ) for all tµ ∈ [0, Ts, 2 ·
Ts, . . . , 1ms] using the correlation function Ci:

Ci(tµ) =
1ms∑
τ=0

|r(τ) · cai(τ − tµ)| (3.6)

Note that the correlation function Ci(tµ) can be computed independently
of the hypothesis. By shifting the correlation function Ci(tµ) of the received
signal with the C/A code according to the expected phase φi(h), we can
simplify the computation of the likelihood as follows:

L(h) = max
tµ

∑
i∈V

Ci(tµ + φi(h)) (3.7)

This allows us to choose the time domain to be sampled at up to 1 ms
intervals without letting a good solution be undetected.

In the worst case, an inaccurate time hypothesis shifts the most likely
position by the highest possible speed of the satellites relative to the earth’s
surface (1 km

s ). This means that the localization error is expected to increase
less than 1 m if the hypothetical time is off by 1 ms. Hence, we can further
increase the intervals at which the time domain is sampled. This does not
negatively affect the observations about the spatial discretization. We are
still guaranteed to observe hypotheses that are very close to the highest
achievable likelihood.

3.3.7 Averaging Likely Hypotheses
So far, we only discussed choosing the hypothesis with the largest likelihood
as the solution. As described in Section 3.3.5, hypotheses that are near
the correct solution should get a higher likelihood because of the triangular
shape of the PRN autocorrelation function. See Figure 3.3 for an example.
To improve localization accuracy, we consider the set of hypotheses H with
the highest likelihoods. The set of most likely hypotheses is combined using
a weighted average.

h̄p =
∑
h∈H
L(h) · hp

In Section 3.4 we discuss the performance impact of the averaging as
opposed to selecting the location of the most likely hypothesis.
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3.3.8 Efficient Implementation with Branch-and-Bound

Algorithm 3.4 Finding the n most likely points given a search space
defined by a hypothesis h.

procedure S = GetMostLikelyPoints(n,h)
n: the number of likely points contained in S.
h: the initial hypothesis defining the search space.
hlmax = maxLikelihood( h )
queue.add(h)
S = ∅
while queue.hasElement() do

h = queue.popMostLikely()
if hlmax ≤ minn(hlmin ∈ S) then

continue
end if
hlmin = likelihood( h )
hlmax = maxLikelihood( h )
S.add(h)
h[1] . . . h[16] = splitHypothesis( h )
for h[i] = h[1] . . . h[16] do

h[i]lmax =hlmax
queue.add(h[i])

end for
end while

end procedure

Figure 3.3 shows horizontal cuts of example distributions of our likeli-
hood computed from a one millisecond window of samples in good signal
conditions. Our branch and bound method exploits that, under good signal
conditions, large volumes in the solution space yield low likelihoods. The
search space as discussed in Sections 3.3.3 and 3.3.5 is large as the hypothe-
ses are spread at a distance of 37 m from each other and the search space
spans 200 km × 200 km × 30 km. In addition to this, the time domain
is searched within 10 s at intervals of 40 ms. This means that there are
roughly 2 · 1012 hypotheses which need to be tested. To reduce the number
of hypotheses for which we need to compute the likelihood, we employ a
branch and bound method as described in Algorithm 3.4. To do so, we need
a method to compute both an upper- and lower-bound on the achievable
likelihood (indicated by hlmax and hlmin) within an area defined by a hy-
pothesis . Note that in the algorithm, a hypothesis h contains the center
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position in x,y,z, and t as well as the size of the search space around it in all
dimensions (x,y,z,t). The initial hypothesis covers the entire search space
i.e. it extends over 200 km × 200 km × 30 km × 10 s. We approximate the
lower bound of achievable likelihoods within an area as the likelihood of the
hypothesis (hp,ht) which is indicated in the Algorithm as likelihood(h). For
the upper bound (maxLikelihood(h) in the Algorithm), we use the expected
code phases φi along with the size of the area covered by the hypothesis.
Note that the larger the area covered by a hypothesis, the larger the uncer-
tainty about the possible code phases φi. The uncertainty is given by the
diagonal of the area covered divided by the speed of light. For a hypothesis
with a diagonal of 10 km, the uncertainty is roughly 33 microseconds which
corresponds to roughly 270 sample intervals Ts at 8 MHz.

To compute the upper bound on the likelihood, this can efficiently be
taken into account. Instead of utilizing the correlation function as described
in Equation 3.6, we apply a max-filter first.

C′i(tµ) = max
τ∈R

Ci(tµ) (3.8)

R is the set of possible shifts that can be expected within the region
covered by a hypothesis. In the example above with 10 km diagonal,
R = [−16.5µs, 16.5µs]. The likelihood computation stays the same as in
Equation 3.7 but using C′i(tµ) instead of Ci(tµ). This yields an upper
bound on the achievable likelihood inside the area covered by h. To fur-
ther speed up the computation, the max-filtered correlation functions can
be pre-computed as it is the same for all hypotheses covering areas of the
same size.

Hypotheses in the queue are processed according to their maximum
achievable likelihood hlmax (popMostLikely()). This is crucial as areas with
great potential are explored first, improving the likelihood that bad areas
do not have to be further split up and analyzed. Each processed hypothesis
is split in two in all dimensions (x,y,z,t) which leads to 16 new hypotheses,
each covering a smaller volume of the search space. As soon as a hypothesis
cannot achieve a higher likelihood than the n best hypotheses already ob-
served, it s not further split up and discarded. The method guarantees that
the n most likely points are found as only hypotheses are discarded which
cannot possibly achieve a high enough likelihood.

Clearly, the performance of the algorithm depends on the quality of the
received signal as the bounds will be more accurate for a smooth likelihood
function. We will analyze the performance degradation as the signal quality
deteriorates in Section 3.4.
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3.3.9 Local Oscillator Frequency Bias

In practice, one of the problems we have to deal with is the frequency error
of the local oscillator (LO). The LO in the front-end is not only used for the
generation of the reference frequency for the frequency down-conversion,
but also for the sampling rate of the ADC. Hence the error of the LO
influences two parameters. First, the observed frequencies of the signals
change. Second, the time that passes per sample changes. Akos [1] states
that the frequency for the locally generated C/A code should match the
actual frequency with an error smaller than 250 Hz. Otherwise correlation
peaks are hard to find even under good signal conditions.

During the acquisition phase in conventional receivers, the Doppler shift
of each satellite is estimated by correlating the received signal with multiple
frequency shifted versions of the C/A code. The frequency shifted C/A
code which matches the received signal best is used to estimate the arrival
time and also gives information about the sum of the LO offset and the
Doppler shift. After the acquisition, the Doppler shift and hence the LO, is
known only approximately to reduce the computational complexity during
acquisition. This approach could be replicated in our solution to estimate
the LO offset.

Similar to the search performed in classic receivers, we could track the
LO offset by computing the C/A code correlation functions for different
frequency offsets. Note that since we do compensate for the Doppler shifts
using our prior knowledge, we only need to estimate the LO offset instead
of the sum of the LO offset and the Doppler shifts of each satellite.

In our test setup described in Section 3.4, we measured the LO offset
initially using the classical GPS approach. Over the course of 1.5 years, all
experiments were performed with the same, constant LO offset (+1.9ppm).
Careful calibration of the LO can reduce the impact of its errors to an extent
that is acceptable. The performance details are discussed in Section 3.4.

3.4 Evaluation

For the evaluation of our method, we used an Ettus USRP B200 software
radio with a standard GPS patch antenna from Trimble Navigation. Sam-
ples were recorded as 8 bit I/Q samples with 8 MHz sampling frequency.
We made recordings of several minutes and cut out windows with one mil-
lisecond length every 0.999 seconds. We did not choose exactly one second,
since bit flips in the navigation signal, which severely degrade the signal
quality, can occur every 20 milliseconds. To prevent these to always have an
influence on the same satellites’ signal, we chose a slightly shorter interval.
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We used navigation data originally broadcast from the satellites, which
we downloaded from NASA’s archive of space geodesy data4 [62]. For the
time synchronization, we determined the time of the first sample received
from the RF front-end with the Network Time Protocol (NTP). The start
time of subsequent one millisecond windows was estimated by counting the
number of elapsed samples in the recorded data stream.

To evaluate the accuracy of our algorithm, we placed the receiver antenna
on a survey point located on our university building. The location of this
point is known accurately. We expect errors in its location to affect our
results negatively giving us a lower bound of the performance.

Unless otherwise indicated, experiments were performed under good sig-
nal conditions (direct line of sight to most satellites above the horizon) and
the search space size was 200 km × 200 km × 30 km × 10 s. The rea-
son for the size of the search in the time dimension, is that with a good
oscillator with maximum drift of 0.5 ppm and an initial time error of 50
ms (easily achievable with NTP), a range of ±5 seconds covers a duty-cycle
interval of up to 114 days. So, 10 seconds are a very large bound on the
time search especially since time inaccuracies can be compensated when a
fix is computed.5

For each processed one millisecond window of signal, we varied the grid of
hypotheses uniformly at random in each dimension, up to half the distance
between two points. This eliminates possible bias from a specific positioning
of the grid. For instance, if one hypothesis always matched the correct
receiver position and time exactly, the results might look much better than if
the correct position and time lie in the center between the closest hypotheses
in each dimension.

3.4.1 Averaging Over Likely Hypotheses

First, we evaluate how the accuracy depends on the number of most likely
points used to compute the weighted average as described in Section 3.3.7.
Figure 3.5 shows the cumulative distribution functions of 501 fixes covering
approximately 500 seconds with the duty cycle of 0.999 s. The shown num-
bers of points are {1, . . . , 7} to the power of four, since we expect the points
around the correct position to have the highest likelihoods. So, the idea is
that the curves show the results when averaging over the hypercubes in four

4We used the “Daily GPS Broadcast Ephemeris Files” data set that can be
found at http://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_
data.html

5We think a more reasonable upper bound on the duty-cycle interval would be one
day, which means that with such a large time search, we could tolerate many failed
localizations between two successful ones, for instance when the receiver is indoor for a
long time period.

http://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
http://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html
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Figure 3.5: Accuracy of our method with different numbers of most likely points
used for the weighted averaging. Cumulative distribution functions of positioning
error (distance to ground truth).

dimensions with side lengths of one to seven hypotheses around the correct
position.

The best accuracies are achieved with 81 or 256 points. Since lower
number of points correspond to a higher likelihood threshold to eliminate
regions of hypotheses with low maximum likelihood (see Section 3.3.8), we
use 81 points in the following, as this will save more computation time.

Note that existing CD methods search for the best point only, which
is clearly suboptimal. The median position error with 81 points is 23.5 m,
which is almost twice as good as the solution with the best point only, which
has a median error of 44.3 m. The standard deviation is 17.3 m with 81
points and 27.6 m with the best point only. This shows that our weighted
averaging is a substantial improvement over standard CD, substantially im-
proving accuracy.

3.4.2 Position Averaging over Time
To understand the trade-off between accuracy and the amount of data used,
we tested the influence of averaging multiple positions computed from dif-
ferent one millisecond long windows (sliding window average). The results
– obtained again from 501 windows – are shown in Figure 3.6. With just a
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Figure 3.6: Comparison of positioning accuracy when averaging over different
numbers of consecutive fixes.

few more milliseconds, we can gain significant accuracy. For instance, with
two milliseconds of data, the median positioning error drops from 23.5 m to
17.4 m. With 10 ms, it even drops to 9.2 m. And with 30 ms, all positions
are within 13.9 meters.

3.4.3 Horizontal Positioning

To evaluate the accuracy when searching in space only horizontally, we fixed
the altitude for the search to that of the ground truth. This emulates sce-
narios where the receiver is 1) on the Earth surface, so the height can be
determined using an Earth elevation model (for example the United States
Geological Survey (USGS) elevation model6) or 2) the receiver has a barom-
eter, whose measurements can be used together with meteorological data to
determine the altitude. The benefit of such an approach is not only better
accuracy, as can be seen in Figure 3.7, but the search space is reduced by
one dimension, resulting in less hypotheses to test, which translates to faster
and less energy consuming processing. For the positioning with fixed height,
we also first determined the best number of points for weighted averaging

6More information about the USGS elevation model can be found at the “The Na-
tional Map” website: http://nationalmap.gov/elevation.html

http://nationalmap.gov/elevation.html
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Figure 3.7: Positioning accuracy with and without fixed height.

with the same procedure as explained in Section 3.4.1, although with num-
bers to the power of three, because the search space is three dimensional.
The best number of points turned out to be 64. Also for this experiment,
the number of one milliseconds windows processed was 501.

The idea of using an Earth elevation model to restrict the possible so-
lutions has also been used by Liu et al. [49]. Because we do not have an
implementation of CTN available, we cannot directly compare our results
to theirs. However, the box plots in their paper show a median error of
approximately 40 m with 2 ms of data used. Our median error when using
2 ms of signal and fixing the height of the solution is 12.1 m. This suggests
that our approach is competitive.

3.4.4 Computation Time

To show how the performance of our method using branch-and-bound de-
pends on the signal conditions, we conducted two experiments capturing
both very good signal conditions (rooftop) as well as very bad signal condi-
tions (inside a multistory university building). We reduce the search space
to 10 km × 10 km × 1 km × 4 s for this experiment, to also be able to test
the brute force implementation which tests every single hypothesis.

Figure 3.8 shows the cumulative distribution functions in both indoor
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Figure 3.8: Positioning accuracy with different signal qualities. Outdoors the
solution is much more accurate than indoors.

and outdoor scenarios as described in the last paragraph. It clearly shows
that the indoor scenario did not allow for a meaningful localization.

For the indoor test, the computation time was 240s whereas in very
good conditions, the time is only 18.6 s. Note that the indoor test presents
a worst case scenario in both computation time and localization accuracy.
The brute force implementation takes more than two hours to complete in
any scenario.

This means that even in situations that make it difficult to find a fix, we
find the most likely location in reasonable time compared to a brute force
implementation. For the previous experiments with the larger grid in good
signal conditions, our method takes 31s of computation time.

The performance corresponds to the execution on a current Intel i7 mo-
bile processor with a single thread. The runtimes are not indicative of an
optimized implementation of our method, since it could easily be parallelized
because the computation of the likelihood is independent for each hypothe-
sis. In all the above experiments about computation time, roughly 1.5 · 103

hypotheses are evaluated each second. A working CUDA implementation of
the brute force method revealed that on a Nvidia GTX 1080, roughly 3 ·106

hypotheses can be evaluated each second which indicates that the search
can be sped up 200 times.
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Figure 3.9: Shape of L(h) for large time errors.

3.4.5 Time Dependence of the Likelihood Function
To test the influence of the time parameter in our likelihood function, we
picked a random one millisecond long window of the sampled signal and
searched the position which maximizes the likelihood given different receiver
times. The results are shown in Figures 3.9 and 3.10, other ms windows
exhibit the same properties as described below. The plot on top shows that,
at least for signals with good quality, our likelihood function (in blue) is
roughly convex in the time dimension. However, we cannot reconstruct the
correct time precisely because the probability of the best point does not
change significantly when the time is within a second of the correct time
(blue curve in the right hand side plot). However, the positioning quality
does vary significantly inside this time range (red curve in the right hand side
plot). This is due to the fact that within the search space, there are points
which still match the received signal well. Judging from the localization
error, the most likely position passes the correct position in a linear fashion
as the time error is varied from negative to positive. This suggests that
the likelihood function is quite flat in the time domain which is one of the
reasons why the averaging over the most likely hypotheses helps to increase
the accuracy of our method.

3.5 Conclusion

We have shown how Collective Detection can be optimized to compute a
location fast, even from coarse initial guesses about both position and time.
Our branch and bound method scales well in both good as well as bad signal
conditions. The localization performance is superior to similar approaches
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Figure 3.10: Shape of L(h) for small time errors.

due to the averaging which greatly reduces the effect of the flatness of the
likelihood function in the time domain. When utilizing more than one mil-
lisecond of signal, the performance is very competitive even with classical
GPS receivers consuming much more energy.

A work in progress hardware prototype indicates that a tracking device
running off of a coin-cell battery could record one one ms signal sample every
hour for as long as two years. Since our receiver does not require accurate
time synchronization and the footprint of the PCB can be reduced to match
the coin-cell which is a great advantage over the recent work of Liu et al. [49]
which used a large and heavy DCF-77 receiver for time synchronization.
For connected devices such as smartphones, all the computation can be
performed in the cloud which frees the mobile device from the computational
burden completely.
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4
Touch in Motion

We have seen how mobile devices can observe their environment to deduce
their location. Motion sensor helped us to learn about environmental prop-
erties such as WiFi signal strength distributions. The utility of smartphones
with accurate location and environmental sensors means that people carry
such devices in most day to day situations. This opens opportunities for
violations of privacy.

These sensors, on a first glance, do not reveal sensitive information.
Therefore, in past and current versions of Android and iOS, they can be
accessed by any application installed on the device, even by applications
running in the background. For security reasons, the same does not apply
for touch screen input. Only foreground Apps are granted access to touch
input data since it reveals, among other things, characters being typed on
the on-screen keyboard which may include passwords or private information
in text messages. In most situations, when touching the screen of a phone,
the phone will move. Depending on the usage scenario this motion might
be very small and hard to track, for example when the phone is lying on
a table. However, usually interaction with hand held mobile devices causes
the device to move so much that the built in accelerometer and gyroscope
sensors are able to track this motion. The relation between touch and motion
raises the question: how well one can infer touch from motion input? Being
able to do so presents a security threat for most of today’s smartphones.

51
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Mobile devices are by design used in a large variety of environments that
directly influence the motion sensor readings. This drastically complicates
the task of inferring touch from motion and therefore has to be taken into
account when evaluating any inference mechanism. To build a data set
that reflects variable real world environments, we collect data through an
Android game. Players are not instructed to hold or interact with the device
in a specific way. Therefore, we do not know or take into account if a player
is sitting in a train or walking while playing.

The player’s task is to memorize and imitate patterns that mimic the
lock-screen patterns found on most current mobile operating systems.

We describe how an attacker could collect both touch and motion data
to train a classifier, that can be used to derive touch input in any application
being used on the device under attack. We use the Dynamic Time Warping
(DTW ) algorithm to compare and classify gestures and evaluate classifi-
cation accuracy for touch inputs. By performing this side channel attack,
an attacker can steal passwords or at least reduce the number of guesses
required to do so. Our results are based on a large scale user study that
covers arbitrary and unknown usage scenarios, 1’493 users and 615 of differ-
ent Android device models. We show that varying environmental influences
impact performance heavily.

4.1 Related Work

Motion sensors have previously been used for side channel attacks. In most
cases data was recorded in controlled environments, thereby reducing the
impact of real world effects such as varying user activities. An attacker
cannot be sure that motion data was recorded when the user was sitting
still, instead the user might be walking or riding a train.

Examples of such results include the paper by Cai and Chen [23], who
showed that side channel attacks on touch input using motion sensors are
feasible in a lab environment. Aviv et. al. [5] collected data from 26 partici-
pants while sitting or walking. Although this study helps understanding the
effects of added disturbances, the environment is still controlled and known.
The study with the largest data set has been performed by Cai et. al. [24].
They collected 47’814 keystrokes from 21 test persons, with 4 devices in a lab
setting. Miluzzo et. al. [57] performed a study comparing multiple classifi-
cation algorithms with data from 10 test persons while sitting or standing.
Although their results identify how to best infer touch from motion input,
their data set also limits the applicability of their results in the real world.
The work of Xu et. al. [87] focuses on tap gestures and describes a game
which collects training gestures when running in the foreground and test
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gestures when running in the background. However, their data set spans
only three users and was recorded in a controlled environment. Owusu et.
al. [64] focus on random forests to detect passwords on smartphones by an-
alyzing the accelerometer readings of 4 test persons. Other studies [45, 88]
show that smartphone users can be distinguished based on their touch and
motion input behavior. Hinckley et al. [39] show that the combination of
touch and motion data can be used to create novel ways to interact with
our mobile devices.

In contrast to the papers described above, we focus on collecting data in
uncontrolled environments. Namely, our data set originates from users that
were primarily concerned with playing a game on their smartphone and were
not instructed about how and where to do so. The environments may range
from office spaces to airplanes or trains. Since our data acquisition process
can be replicated by an attacker, our data set allows us to assess how realistic
a side channel attack on touch input really is. We collected data from 1’493
test users, which generated more than a million gestures on 615 distinct
device models. This is roughly 50 to 200 times more participants and up to
20 times more gestures than in previous studies. To our knowledge, there
is no similar work with the same magnitude of collected data in similarly
unconstrained environments.

Touch input was not the only target of side channel attacks using motion
sensor data. Liu et. al. [48] tried to infer three-dimensional, free-hand
movements using accelerometer readings. They collected 4’480 gestures from
8 test persons over several weeks. With (sp)iPhone, Marquardt et. al. [53]
developed a mechanism to infer input on a physical keyboard by analyzing
the motion sensor readings of a phone laying next to the keyboard. The
proof of concept Android application Gyrophone [56] demonstrates that it
is possible to recognize speech using a gyroscope sensor. Niu et. al. [61] used
Dynamic Time Warping to measure the similarity of gestures to authenticate
users. Recognizing ten distinct gestures, Chong et. al. [28] used the motion
sensors to unlock the phone by performing a user defined series of gestures.
Since the gesture detection is performed independently of the user and the
raw information is not used in the authentication process, this is very similar
to a password composed of ten letters that are entered through performing
gestures instead of pressing keys.

4.2 Method

To simulate a realistic attack scenario, we decided not to invite test persons
into a test laboratory with a predefined and controlled environment. In-
stead, we developed an Android game, which we distributed on the Google
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Play store1 to collect data. The same method can be used by an attacker
and might already be exploited. In the game, the player’s task is to mem-
orize and reproduce patterns on the screen as shown in Figure 4.1. The
patterns are displayed in the bottom half of the screen, where one usually
finds the keyboard or pin input field. As the levels get harder, the grid
resolution is increased from 3 × 3 to 4 × 4 touch elements, which we call
cells. The game not only asks the user to press specific cells in this area,
which we call tap gesture, but also to connect cells using swipe gestures.
In contrast to an attacker, we informed users upon installation and first
launch of the game that motion data is collected for research purposes and
only when the game is running in the foreground. Touch input is measured
in terms of x,y coordinates or a series of them for swipe gestures. In ad-
dition to touch input, the game also records the x,y,z coordinates of both
accelerometer and gyroscope sensors built into the device. All recorded data
is linked to a randomly generated unique id that is generated when the game
is first installed. Since different users might play the game on the device,
this unique id is device (and not user) specific. In addition to this, we
collect basic device information such as the device manufacturer and type.
When connected to a WLAN, the compressed log files are sent to a central
database. When analyzing users with bad classification performance, we
observed that their motion sensor measurements contain random readings
close to zero. This indicates, that the device might not be moving enough,
possibly being placed on a table or otherwise fixed. We excluded such users
from our experiments. The number of users evaluated for each experiment
are mentioned in the respective sections.

4.2.1 Preprocessing
The motion data is first segmented using the touch input as ground truth. To
account for device motion that occurs before and after the screen is touched,
we leave a variable amount of sensor readings before the touch gesture starts
and after it ends. The time window is at most 100 ms. This segmentation
can also be performed in an attack scenario, at least for the training data
collection phase, using the same technique. For the classification task, we
can use device events to segment motion data. For example, power on and
unlock events provided by the operating system can be used to segment
pattern or pin inputs performed to unlock the device. To remove the effects
of gravity and gyroscope drift, we remove the mean values for each individual
sensor axis. We thereby implicitly assume that the device orientation and
velocity is the same at the beginning and at the end of each gesture.

1Game on Google Play. https://play.google.com/store/apps/details?id=ch.ethz.
pajonas.ba.imitationgame.android (2015-03-13)

https://play.google.com/store/apps/details?id=ch.ethz.pajonas.ba.imitationgame.android
https://play.google.com/store/apps/details?id=ch.ethz.pajonas.ba.imitationgame.android
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Figure 4.1: Screens of the game showing the main menu, and both the 3× 3 as
well as the 4× 4 grid the player interacts with during the game.

4.2.2 Classification

We do not attempt to guess the exact pixel the user touched, but rather
predict the cell, which was pressed or swiped by the user. We build a
classifier for each separate unique id and assume an id to relate to one single
player although multiple users might play the game on the same device. To
quantify the similarity of two gestures, we use the DTW algorithm [59] with
varying cost functions to compare individual time samples as described in
Section 4.2.3. The user model M consists of 10 motion sensor recordings for
each cell i on the grid Mi. In order to classify a test gesture t, our algorithm
computes the DTW distance to all samples in M and selects the cell with
the minimal DTW distance (see Equation 4.1). We also evaluated different
metrics, such as the average and median DTW distance (Equation 4.2).

class(t) = arg min
x

min
i∈Mx

dtw(t, i) (4.1)

class(t) = arg min
x

(
1
|Mx|

∑
i∈Mx

dtw(t, i)

)
(4.2)

However, the average DTW distance is not robust against outliers in
the training set, and therefore was expected to produce worse results than
the min and median distances. Alternative classification techniques used in
similar work are Hidden Markov Models [5] or feature based approaches,
Support Vector Machines [84].
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4.2.3 Dynamic Time Warping Cost Functions
To perform the time series analysis using the DTW algorithm, we need
to select features, which we can use to describe the distance or matching
cost between two sensor events from two different gestures. Each motion
sensor event consists of 3 accelerometer and 3 gyroscope measurements, one
for each spatial dimension. These 6 coordinates form a feature vector A
= {accx, accy, accz, gyrox, gyroy, gyroz}, representing the values of the
x, y, and z accelerometer and gyroscope coordinates of a single sensor event
in a touch or swipe gesture. One possible metric to calculate the distance
between two sensor events is the Euclidean distance, as Niu et al. suggest
in their work [61]. Cai et al. [24] propose a different feature, calculating the
two-argument arctangent (atan2) using the x and y axis of the accelerometer
readings, arguing that motion data on the z axis is not a good feature to infer
keystrokes (see Equation 4.3). We designed a new metric which pairwise
calculates atan2 for all accelerometer and gyroscope axes combinations and
then sums up their absolute differences (Equation 4.4). The equations below
show how those three metrics are used to compare two sensor events i, and
j in two different gestures A and B. Variations of the metrics above and
others like the Manhattan distance or the L∞-norm are also included in our
experiments. The Manhattan distance is the sum of the accelerometer and
gyroscope differences between two measurements.

cxyacc(Ai, Bj) =
∣∣atan2(Ai,xacc, Ai,yacc)− atan2(Bj,xacc, Bj,yacc)

∣∣ (4.3)

cacc(Ai, Bj) = cxyacc(Ai, B) + cxzacc(Ai, Bj) + cyzacc(Ai, Bj)

csum(Ai, Bj) = cacc(Ai, Bj) + cgyro(Ai, Bj) (4.4)

4.2.4 Dynamic Time Warping Penalty
In order to penalize sequences whose time axis needs to be stretched a lot,
we employ different penalization factors p. See Equation 4.5 for the recur-
sive definition of an entry in the DTW matrix d(i, j). In the penalization
experiment, we use the csum distance metric to compare two measurements
Ai and Bj at times i and j respectively. By increasing p, the cost of ad-
vancing time i and j unevenly is penalized. This leads to a higher DTW
matching cost for sequences of uneven length or speed.

d(i, j) = min{ d(i− 1, j − 1) + csum(Ai, Bj)
d(i, j − 1) + csum(Ai, Bj) · p
d(i− 1, j) + csum(Ai, Bj) · p }

(4.5)
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Figure 4.2: Variety of the devices and Android versions on which we collected
our data set. Data has been collected from 615 distinct device models from 25
manufacturers with over 38 different screen sizes.

4.3 Data Set

At the end of the 4 month data collecting phase, the game reached 2’049
installations. Most of the users are from India, USA, Italy, or Switzerland.
The Android application received 70 ratings in the Google Play Store, with
an average rating of 4.01 stars out of 5. The most used device to play the
game is the Google Nexus 5. Figure 4.2 shows that most players’ phones are
produced by Samsung, and the most popular Android version is 4.4. Data
has been collected from 615 device models with over 38 different screen sizes.
The server application received data from 1’493 users, who played a total
of 87’962 levels. With an average of 15 gestures per level, this corresponds
to more than a million collected gestures. Since the data has not been
collected in a laboratory, it contains unknown external influences on the
motion data, devices with malfunctioning motion sensors, and users with
very few gestures.

4.4 Evaluation

A training gesture is a gesture for which we know the motion sensor readings
as well as the ground truth touch data, which we collected with our Android
application. A test gesture on the other hand, is a gesture for which the
touch input is ignored and the task is to infer the correct touch gesture using
only the motion sensor readings. Only users with working accelerometer and
gyroscope sensors are included in the experiments. Not all players generated
enough data to generate a model for each cell. In these cases, we only classify
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Figure 4.3: Comparison of different segmentation time windows. A larger window
means that there are more pre- and post- measurements. In this plot, tap gestures
on the 3× 3 board from 14 users have been evaluated

cells with at least 10 recorded training gestures. Hence, a user might have
fewer than 9 or 16 cells with enough training data. The random guessing
probability is adapted to compensate for the reduced solution space of the
classification problem. To generate enough training data for every single
cell, a user is required to interact with the Android application for about 30
minutes. Depending on the experiment, between 10 and 500 players were
used to evaluate performance changes.

4.4.1 Segmentation Time Window

The segmentation time window controls the number of pre and post mea-
surements of each gesture. This window can be varied to optimize the clas-
sification performance since the device moves already before touch input is
registered. For this experiment, we use our sum of atan2 cost function as
described in Equation 4.4. The DTW penalty is set to 240% and we use the
min classification method as described in Equation 4.1. Figure 4.3 shows
different time windows of the length 0 ms, 100 ms, and 500 ms. Including
no measurements that are recorded before the touch gesture starts produced
bad results. This leads to the conclusion that the motion of the device before
the touch event actually starts is the most discriminant. The time window
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Figure 4.4: Influence of different penalties on the classification performance. In
this experiment, all users have been evaluated for tap gestures on the 3× 3 board.
We have evaluated the probability of correctly guessing the label with the first
attempt.

of 500ms also performs significantly worse than 100ms, which is why we
chose 100ms for all the other experiments. In our work, we do not focus on
the segmentation of the test gestures. To detect the unlock pattern, it seems
to be sufficient to trigger the measurements using the unlock events of the
smartphone. To infer PIN entries or multiple gestures, one would need to
segment the test gestures. According to previous results [24,87], there exist
promising segmentation methods to achieve this.

4.4.2 DTW Penalty

To evaluate the effect of varying DTW time penalties, we analyzed the
classification results from all players on the 3 × 3 grid utilizing the sum of
atan2 metric as described in Equation 4.4 and the min classification method
as described in Equation 4.1. We evaluate the penalty in the range of
p = 100% to p = 350% in 10% increments. Figure 4.4 shows the effect
of a varying DTW penalty. As expected, penalties that are very small or
large result in worse performance. For very small penalties, sequences can
be stretched beyond what is to expect due to the natural variance each
user causes. In case of very high penalties, the DTW algorithm mostly
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Figure 4.5: Comparison of the distance metrics used in the DTW algorithm
(described in Section 4.2.3). The sum over all atan2 features performs best and is
used as the distance metric for the other experiments. In this plot, all users have
been evaluated for tap gestures on the 3× 3 board.

matches sequences without stretching either time axis, resulting in a score
that is very close to the sum of all corresponding sample costs. The best
classification results can be achieved with p at 240% but as one can see, the
performance differences are marginal for non extreme choices of p.

4.4.3 DTW Cost Functions

Figure 4.5 shows the comparison of the four presented distance metrics in
the DTW algorithm. For this experiment, all users were evaluated using a
DTW penalty of 240%. Our proposed sum over all atan2 features metric
performs slightly better than the atan2 function and is therefore chosen
as the distance metric in all other experiments. The euclidean distance
function performs worse than both of the other distance metrics, but still
much better than other metrics we tested (Manhattan, L∞) which we omit
on this plot.
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Figure 4.6: Comparison of the classification methods minimum, mean and me-
dian as described in Section 4.2.2. The minimum metric performs best and is used
for the other experiments. In this plot, all users have been evaluated on the 3× 3
board.

4.4.4 Classification Methods
The performance comparison for the presented classification distance met-
rics for all users on the 3×3 grid is shown in Figure 4.6. The DTW penalty
was set to 240%. Interestingly, performance variations are insignificant for
all three methods. Since our training sets may include outliers, we expected
the average method to perform significantly worse than the min and median
method, respectively. If the user e.g., bumped into someone or walked up
steps while performing the tap gesture, then this outlier will skew the re-
sults and make the classification task more difficult. The minimum distance
method performed best in this experiment and is therefore used in the other
evaluation tasks.

4.4.5 External Influences
To evaluate the impact of changing environments, we compare the perfor-
mance of heavy- and light-users while using a fixed training set of 10, a
DTW penalty of 240%, the min classification method (Equation 4.1), and
the sum of atan2 features. Heavy users played more levels and hence, pro-
duced more data. We expect their data set not only to be bigger, but also to
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Figure 4.7: Performance comparison between heavy- and light users with fixed
training set size. The environments in which heavy users played the game cannot
be captured by a small training set size. Therefore, small training sets are sufficient,
as long as the environmental effects are similar in both the training and testing
phase.

contain more varied environments. Since we limit the training set size to 10
for both user groups, we expect the performance for heavy users to be bad
since the small training set cannot capture all environments the game was
played in. Figure 4.7 shows the 20 users with the most collected gestures
(heavy) in blue and the 20 users with the least gestures in red (light) out
of more than 200 users in total. Guessing the correct cell in the first try for
the bottom 20 users is with 29% roughly 10% higher than for the top 20
users (19%).

4.4.6 Training Set Size

The results in the previous section beg to evaluate the same two user groups
while using larger training sets for the heavy users. Performance for heavy
users should increase as the training set captures more environments. To
evaluate the effect of varying training set size, we lifted the restriction to
only use 10 and instead trained our model with as all available samples
for each user. This means that only the test gesture is excluded from the
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Figure 4.8: Impact of varying training set sizes on the classification performance.
In this experiment, all training samples were used for each user on the 3× 3 grid.
Users with the most training data (in blue) show similar performance as compared
to the users with the least training data (in red).

training set. Thereby we remove the advantage of light users being able
to capture a larger fraction of the environmental effects in the training set
when compared to the heavy users. In our data set this means that the
training set can be up to two orders of magnitude larger. Classification was
performed using the min metric (Equation 4.1). Figure 4.8 shows the 20
users with the most collected gestures in blue and the 20 users with the
least gestures in red (out of more than 200 users in total). The classification
rate of the top 20 users differs insignificantly (1.5% on the first guess) from
the bottom 20.

Since both heavy- and light-users are tested using training sets that
capture all environments the game was played in, performance is consistent
for both user groups. For an attacker, this means that small training set sizes
are sufficient, as long as the environment under which touch input inference
should be performed is similar to the one predominant during training data
set collection.

Both the experiment on the training set size, as well as the one on the
environmental effects were performed using the exact same two user groups.
As long as the training set captured the external influences affecting the
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Figure 4.9: The probability of guessing the correct label for a given set of test
gestures improves from less than 20% to more than 40% when increasing k from 1
to 27 test gestures

classification phase, performance is insensitive to the size of the training
set. Collecting a large training set therefore helps capturing more environ-
mental influences but does not allow the classification accuracy to improve
significantly once an environment has been captured.

4.4.7 Repeated Attack
In this section we try to emulate an attack on the user’s pin code to unlock
the screen. Since users enter the same pin code over and over again, an
attacker could use multiple motion measurements to improve the guessing
accuracy. We know that after turning on the screen, the first number entered
is always the first digit of the pin code. Thus, instead of using one test
gesture, we use several of them. The task is now to classify these gestures,
about which we know that they belong to the same label, but not to which
one. The simplest approach is to cast a vote for each test gesture’s most
likely label according to the previously described method and then pick the
label with the highest number of votes. Note that we limit our setting to
k gestures in order to evaluate the influence of the number of votes on the
classification accuracy we can achieve. If a user has more than k gestures,
we limit it to k artificially and we keep the training set size fixed to 10.

As one can seen in Figure 4.9, the chance to correctly guess the label
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Figure 4.10: Not only the first guess accuracy improves, but all consecutive
guesses are more accurate. More than 50% of gestures are classified correctly in
two guesses.

in the first attempt increases with k. The chance dramatically increases
for very small values of k. Performance stagnates around 40% when using
more than 20 test gestures at once and starts deteriorating when using more
than 35 test gestures. We believe that this is because of the limited training
set size for users as discussed in Section 4.4.6. If we only consider users
with more than 30 gestures per label, then these users need to have a lot of
gestures and thus have played the game in varying environments. Hence, the
more we increase k, the noisier the data gets. Thus, the advantage of having
more votes to cancel out noise is balanced out by more noise introduced by
later samples. As show in Figure 4.10 the performance not only increases for
the first guess, but helps predicting the correct gesture with higher accuracy
also for the following guesses. In our case, the peak performance of 40% of
first guesses being correct was reached when using 27 test gestures. This
means that an attacker can more easily guess pins or passwords that are
repeatedly entered.

In addition to that, the attacker needs to solve the problem of recognizing
repeated inputs. In case of device unlock pins or patterns, this is easily
achieved through events triggered by the operating system.
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Figure 4.11: Gesture preferences of 452 users. “Down - Right” indicates a down-
ward diagonal line from left to right, “Up - Right” an upward diagonal line from
left to right. “Up - Down” is a downward, vertical line, “Left - Right” a horizontal
line from left to right.

4.5 Additional Observations

We observed a heavy preference in which direction a gesture is performed.
Most people have a preference on how they imitate a certain pattern. A
pattern with a straight horizontal line can either be drawn with a swipe
gesture from left to right or a swipe gesture from right to left. The same
applies for vertical or diagonal lines. We analyzed the behavior of 452 users.
The results are shown in Figure 4.11. One can see that most of the people
prefer to perform the vertical gestures downwards and the horizontal ges-
tures from left to right. When it comes to the diagonal gestures, there is an
overall preference for the “Down - Right” gesture instead of the opposite di-
rection, but for the “Up - Right” respectively “Down - Left” gestures, there
is less of a general preference.

The profiles created in the previous subsection may reveal further in-
formation about the user. For single test persons, we observed that the
gesture preference may be related to the handedness of the user.We could
not confirm this claim, since we did not collect the corresponding ground
truth data with the Android application. In future work, one could collect
this data from test users to answer this question.



4.6. CONCLUSION 67

4.6 Conclusion

In this chapter, we discussed a side channel attack on touch input by an-
alyzing motion sensor data. Firstly, we collected data by distributing an
Android application. Secondly, we trained a DTW based classifier using
the collected data to infer touch gestures. In contrast to similar work, we
collected real world data in a way an attacker could also do. The evaluation
has shown that the side channel attack presents a realistic threat. Especially
for touch input which is repeated often, such as unlock patterns or pin codes,
motion sensor data can help an attacker to guess the correct touch input.

As opposed to software vulnerabilities, the side channel attack we ana-
lyzed in this chapter is not caused and cannot be fixed by app developers.
Background access to motion sensors needs to be limited on the operating
system level because otherwise no application can protect itself against these
attacks. Since we expect motion sensors to become more accurate in the
future, the risk of a successful side channel attack grows even further. As
devices are more capable in observing motion as well as their environment,
the risk of side channel attacks will only increase.
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5
Text in Motion

As we have seen in the previous chapter, the motion of a device can be
used to infer what a smartphone user types on the screen. The introduction
of smartwatches is putting accurate motion sensing devices around peoples
wrists. Nowadays, these sensors allow to track the movement of a user’s wrist
in great detail. In this chapter we focus on the opportunities that these sen-
sors present for novel user input methods. Existing touch input methods for
smartwatches can be cumbersome due to small display sizes. The emerging
options for voice input is efficient on such small devices. However it may be
awkward to use in quiet environments or when private information has to
be conveyed in public places.

In the following, we describe a system that can recognize letters by ana-
lyzing motion data recorded with a state of the art commercial smartwatch.1
Generally speaking, we build a gesture recognition system and evaluate its
performance on a set of 26 distinct gestures (the Roman alphabet). Letters
are interesting since people do not have to artificially learn the gestures.
However, also arbitrary gestures could be trained and tested. Rejecting- or
accepting a phone call, muting an alarm, skipping or pausing a song are just
a few of the commands that could be mapped to gestures. The similarity
measure we use for this is based on Dynamic Time Warping (DTW ). We

1We used a LG Watch R for our experiments, but any modern smartwatch can easily
be used.
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focus on creating a classification method which performs well with few train-
ing samples, which is why the system was tested using 3 training samples
for each of the 26 letters. The classification method does not only provide
the most likely gesture but creates a ranking of gestures depending on the
similarity to the input. Therefore, we could also predict the second likeliest
gesture and so on. We also apply our method to written words. However,
naively segmenting the data has proven infeasible. We show how the pen’s
sound can be used to extract isolated strokes, which greatly simplifies the
segmentation problem.

5.1 Related Work

Gesture driven interaction is an extensively studied problem. The meth-
ods employed vary from pattern recognition in camera images [36], us-
ing special gloves to record the data [47], to more similar technologies to
the smartwatches used in this paper, e.g., a Wiimote [72]. Consequently,
smartwatches themselves have also been used for gesture recognition, e.g.,
in [12, 68, 69]. In contrast to these works, our system can cope with gentle
gestures that only cause minor movements of the smartwatch.

A more specialized version of gesture recognition is handwriting recogni-
tion. The most prominent solution is optical character recognition (OCR).
Instead of trying to analyze the movement, the resulting image is being
looked at. This process does not use any time information and is similar to
how humans do it. It has a long and successful history [67]; using various
techniques like hidden markov models [21] or SVMs [7].

We want to focus on approaches that use the movement of the hand.
There is software to recognize written text on touchscreens [32, 44]. But
since the screen is two dimensional and provides very accurate information
about the x and y coordinate, techniques used in this line of work are hard
to translate into our setting. Text recognition on whiteboards has been
explored using infrared [50]. This approach is less easily applied than our
method in everyday situations because it requires infrared transmitters and
receivers attached to the whiteboard.

Closer to our system is research from Choi et al. [27]. They use an
accelerometer directly attached to a pen to recognize written numbers. This
system needs a special pen; it is evaluated using the 10 Arabic numerals, and
achieves a recognition rate of more than 90%. Even though the smartwatch
in our work may be seen as special hardware, it could be used for much more
tasks than just recording handwriting and might become, like smartphones,
an ubiquitous companion in the future.

In a recently published work Xu et. al. have also used a smartwatch-like
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device carried on the wrist, to realize gesture recognition [85]. They also
implemented a letter recognition system which recognized up to 94.6% of
the letters on average. They restricted the letters to be within a window of
fixed size, while the arm has to lay on the armrest of a chair. The letters
were drawn using the index finger. With our system the arm position does
not have to be fixed, and the letters can be written with a normal pen.

Smartwatches also have been used in an unexpected way to predict words
that are typed on a keyboard [83]. The smartwatch is attached to the left
wrist and depending on the movement of the wrist, a list of words that
is likely to contain the written word is generated. A median of 24 words
is sufficient to correctly guess the typed word. This number decreases for
words that are longer than 6 letters to 10.
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Figure 5.1: Drawing a straight line parallel to the xb axis leads to different
measurements depending on the watch orientation. The left column shows the
linear acceleration measurements when the clock face points to the right. The right
column corresponds to the measurements where the clock face points upwards.
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Figure 5.2: The variance of the linear acceleration is large with respect to both
axes. The green line represents the orientation of the whiteboard. Only the blue
points where considered to fit the blue line

5.2 Method

The raw sensor data is influenced by changing hand postures as shown in
Figure 5.1. Furthermore, writing at the top or bottom of the whiteboard
affects these measurements. Training our system to work in all these en-
vironments is cumbersome. This would artificially increase the number of
gestures we have to recognize which in general reduces the recognition per-
formance.

To alleviate this problem, we transform raw measurements in sensor
coordinates to a coordinate system relative to the whiteboard. This allows
us to track user motion with respect to the whiteboard. The whiteboard
coordinate system is invariant to changes in watch orientation relative to
the user’s wrist. Hence, we can reuse training data even if the watch is not
worn exactly the same when performing the gesture. First we transform the
measurements into the world coordinate system to remove the acceleration
caused by the gravity of the earth. The world coordinate system consists of
the zw axis pointing to the sky, and the xw and yw axes lying perpendicular
in the horizontal plane. No magnetometer measurements are used to relate
xw or yw to the cardinal directions. Instead, we rely on a Kalman filter [43]
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Figure 5.3: The recognition performance for each feature. The plot shows how
many letters were correctly recognized depending on the number of guesses avail-
able. After 3 guesses WhiteboardCoords correctly recognizes 99% of the letters.
Even though this is slightly worse than SensorCoords, this feature is superior since
it can also handle letters written on a different height (see Figure 5.4).

to determine the zw axis.
The zw axis already directly relates to the whiteboard z coordinate zb.

To find xb and yb we assume that writing on a whiteboard mostly causes
acceleration within the whiteboard plane. As a result, the xw and yw coor-
dinates of the linear acceleration measurements (gravity compensated) are
correlated. We use large accelerations to find the dependency caused by
the whiteboard through linear regression. Figure 5.2 shows this correlation
along with the determined whiteboard orientation. As a result we can find
and track the base vectors of the whiteboard coordinate system. Since this
is ambiguous, we use both possible rotations in the recognition process (the
yb axis pointing into the whiteboard and pointing out of it).

Android provides functions to transform measurements in device coordi-
nates into world coordinates. As our results show, this transformation does
not work reliably. We want to avoid to use the magnetic field sensors since
errors can be introduced by magnetic fields caused by currents, magnets or
magnetized material.

The recorded training gestures also contain irrelevant data before the
gesture starts and after it ends. Since during training, the users are required



78 CHAPTER 5. TEXT IN MOTION

5 10 15 20 25
0

20

40

60

80

100

Number of guesses

C
or

re
ct

pr
ed

ic
tio

ns
in

%

WhiteboardCoords
SensorCoords
SensorCoordsAndroid

Figure 5.4: The effect of transforming the data into whiteboard coordinates. The
test gestures were written at the upper edge while the train gestures were written
at the lower edge of the board. The transformation improves the result.

to keep their hand still before and after writing, we use the amplitude to
segment our data.

The data is recorded during a short time interval. The time from the
beginning of this window up to the moment when the user starts to write is
called left-margin. Similarly, the time before the user finishes writing and
after the end of the recording period is called right-margin. These margins
should contain no movement of the pen. The measurements which corre-
spond to the gesture we are interested in, lay between these two margins.
To eliminate these margins and extract only the relevant part of the gesture,
a segmentation algorithm is used. The algorithm relies on changes in am-
plitude of the acceleration signal to find the start and the end point of the
gesture. The amplitude corresponds to the euclidean norm of each sample
of the sequence. If the amplitude is larger than a given threshold, we as-
sume that there was pen movement. The first time the amplitude is higher
than the threshold will be interpreted as the starting point ps. If there is a
longer period of time, after detecting such a ps, in which the amplitude is
continuously lower than the threshold, this will be interpreted as the end of
the gesture and an endpoint pe will be set. Extracting the sequence of mea-
surements between ps and pe eliminates the margins. In addition, we want
to eliminate noise, which is induced by the user before writing a letter, e.g.,
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if he moved his hand before the application told him to do so. To achieve
this, the algorithm does not stop after finding the first ps, pe pair, but it
also considers the rest of the sequence. If there is a new value larger than
the threshold, the algorithm rejects the already collected start-/endpoints
and chooses the new interval. This removes noise in the beginning, but may
still produce wrong segmentation values if there is noise in the end. Note
that the collected data seems to indicate that noise appears mainly in the
beginning.

5.2.1 Classification
The classification algorithm for letters consists of three stages. The first
stage extracts features from the collected data. We evaluated various fea-
tures of which the following performed best:

• WhiteboardCoords Gyro & linear acceleration data transformed
into the whiteboard system as described above.

• SensorCoords Linear acceleration & gyro data in sensor coordinates.

• SensorCoordsAndroid Linear acceleration & gyro data provided by
Android in sensor coordinates.

In the second stage, the sequences of feature vectors are compared using the
DTW algorithm [59]. To compare two feature vectors, we use the euclidean
distance.

In the third stage we create a ranking out of the similarity scores between
test- and training-letters. This ranking captures the similarity between the
input and all the training samples of all letters.

5.3 Evaluation

Recall that the recorded data depends on the orientation of the watch be-
cause the device may change its orientation depending on the height the
user writes on the board. Therefore, we implemented the transformation
into the whiteboard coordinate system as described earlier in order to ob-
tain orientation independent acceleration measurements.

Figure 5.4 shows the difference between non-transformed and trans-
formed data. In this case the whole alphabet was written by one of our
users above the lower edge of the whiteboard and at the upper edge twice.
The gestures written at the top are compared to the gestures written at
the bottom and vice versa. We used the features WhiteboardCoords, Sen-
sorCoords, and SensorCoordsAndroid. We test two gestures of each letter
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Figure 5.5: This matrix represents the average ranking for each letter and all
users if we use the WhiteboardCoords feature. The test letters are shown on the
Y -Axis, the values on the X-Axis represent the ranking.

against two training gestures for each letter. As we can see, we get the low-
est performance using the linear acceleration provided by Android. In the
remainder, both the test and the training set were written on approximately
the same height.

Twelve people were asked to write each letter of the alphabet four times.
The test subjects were asked to write at a comfortable height without further
restrictions. We test the algorithm offline by using three samples of each
gesture as training set and one for testing with cross validation.

5.3.1 Letter Recognition

In Figure 5.3 the performance for all users is shown. Using our rotation
into whiteboard coordinates slightly reduces the performance to about 94%,
but it allows us to use the training data on different whiteboards. Within
three guesses, we can predict the correct letter in 99% of the cases. The
percentage of letters that was predicted correctly after a specific number of
guesses is shown for each user. This shows that the rotation into whiteboard
coordinates clearly outperforms the linear acceleration provided by Android.
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Figure 5.6: Distance for each feature of the first guess of every evaluated point
in time when using a naive approach on the word “JUMPS”. The red and green
marks show the start and end points of the letter according to the ground truth.

5.3.2 Letter Confusion

Figure 5.5 shows the average similarity rank for each test letter (Y -Axis).
The diagonal values have the best (lowest) entries. This means that our
system predicts low ranks for the correct letters on average. The entries for
the four letter pairs (“I”,“J”), (“M”,“N”), (“E”,“F”) and (“U”,“V”) shows
that these pairs are easily confused. This makes sense, since these letters
look somewhat similar. Generally, the letter “E” can be distinguished well.
This can be explained by the relatively long time and the number of strokes
it takes to write an “E”. Note that this matrix does not need to be symmetric.
We take the column of the letter “E” as an example. “E” appears late in
the ranking for many other letters but this does not mean that all letters
appear late in the ranking of an “E”. Many of these letters will produce high
costs comparing them to an “E”.

5.3.3 From Letters to Words

In order to extract letters from unsegmented sensor recordings, we need to
find starting points of gestures. If the user writes quickly, then segmenting
the individual letters is non-trivial.

First, we naively assume that each sample in the recordings is a start-
ing point and generate a ranking of letters for it. However, finding the
starting points of gestures from this sequence of rankings has proven to be
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Figure 5.7: Cross correlation between an audio signal and the corresponding ac-
celeration measurements. Red areas indicate strokes as detected and in Figure 5.8.

difficult. Figure 5.6 shows that the DTW distances do not reliably drop
significantly when a gesture starts. Hence, this method does not work di-
rectly. Furthermore, for most (random) time segments, there is a trained
letter that matches the sensor measurements in said segment. This means
that in order to find as many correct gestures as possible, we have to accept
a massive number of false positives caused by the difficulty to segment the
input correctly.

To reduce the number of false positives, we segment the sensor measure-
ments using audio recorded with the smartwatch while writing. When a pen
is dragged on the whiteboard surface, it emits a distinct sound that can be
used to track isolated strokes on the whiteboard.

Figure 5.8 shows the spectrogram of an audio track recorded when writ-
ing “OVER”. The strokes of each letter are easily visible. Our audio assisted
recognition algorithm uses this information and only applies our DTW dis-
tance metric whenever a stroke starts. We call the starting points of strokes
Points of Interest abbreviated as POI.

The detection algorithm sums up the absolute amplitude value of all
frequencies between 5 kHz to 10 kHz for each point in time. This gives us
a vector p where pi contains the sum for the ith point in time. We then
search for values in p which are greater than a threshold value τ . Multiple
successive values greater than τ will be combined.

Note that the recording of the audio and the recording of the accelera-
tion do not start exactly at the same time. Because of that, we align the
two signals using the cross correlation between p and the evolution of the
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Figure 5.8: Spectrogram of the word “OVER”. The strokes are clearly visible for
each letter. “O” shows as one long stroke ending shortly after the first second. “V”
is split into two strokes at two seconds. “E” starts at three seconds and ends at
second four and “R” contains two strokes, the latter of which shows the change in
direction in the same manner as “V”.

magnitude of the linear acceleration. An example is shown in Figure 5.7.
Now, we are able to extract the starting and ending of a stroke with respect
to the linear acceleration signal.

We run our DTW distance metric for every POI. Because letters may
consist of multiple strokes, we cannot use the next stroke endpoint to extract
the test sequence. Instead, we use a time window of length 2.5 seconds to
select possible endpoints. As a result, every starting point leads to multiple
test sequences, which are individually passed to the recognition stage. In
total, eight users wrote 428 words. Half of these words were written with
a small break between the letters; the other half without any restrictions.
The ground truth was manually annotated. We evaluated the performance
using the WhiteboardCoords feature, which performed very well in the letter
recognition task and also works for arbitrary writing heights.

The naive approach, considering each sensor sample as a possible starting
point for a letter, correctly recognized 64.5% of the letters within 3 guesses.
However, the method produces nearly 250000 erroneous predictions. Most
of them in places no letter started.

Using the audio signal to reduce the number of possible starting points
of gestures increased the recognition rate to 71.2% within three guesses. It
also allowed us to reduce the number of erroneous predictions by nearly two
orders of magnitude.
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5.4 Conclusion

Our experiments show that recognizing which letters are written to a white-
board using motion data recorded with a smartwatch is feasible. This holds
true even if the training set is small. Hence, our system could be used to
recognize gestures, e.g., to cycle through slides while writing on a white-
board. Recognizing letters within words is possible to some extent if we
know when the letters appear, i.e., the start and end time. However, with-
out solving the segmentation problem, our approaches lead to prohibitively
large numbers of erroneous recognitions. Using the audio data helps re-
ducing the number of false positives but the performance is still not good
enough for practical applications. Similar to software keyboards or T9, we
may be able to estimate the most likely word even based on ambiguous let-
ter input. Digressing from the task of recognizing text, the recognition of
isolated letters and hence gestures performed well. Even with 26 different
gestures that make the classification task harder, more than 94% of gestures
could be correctly recognized.
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6
Discussion Diarisation

Modern technology has allowed us to quantify more and more aspects of
our behavior. A few years ago, fitness tracking for example was limited to
comparing lap times, running distances or other key parameters of a work-
out. Today, fitness tracking devices can tell you, with high accuracy, how
much exercise you get throughout a normal day by continuously monitoring
your behavior. The ease of quantifying complex personal exercise behav-
ior leaves a user with undeniable facts, that when taken seriously, can help
improving quality of life. The same principles have been applied to social
interactions. For example, there is a tool that helps quantifying the quality
of the encounters with your friends [77].

Face to face communication is a vital part of our everyday lives. Discus-
sions occur at work or with friends and family. However, even though we
spend a lot of time talking to other people, it is hard to obtain objective data
about these discussions. The lack of facts, be it during business meetings
or in informal situations, makes it hard to improve discussions. Also, we
cannot present our peers with facts when criticizing or trying to improve a
conversation. Subjective criticism can be perceived as being offensive rather
than helpful. In a corporate environment, inefficient communication and a
bad work climate directly translate to added cost. To reduce these effects,
companies organize team building events or even hire counselors.

In this chapter we evaluate how discussions can be analyzed in an un-
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obtrusive way. Like in the previous ones, we use measurements performed
with regular smartphones. To our knowledge there are no tools to easily
track verbal interactions, even though conversations are an integral part of
our everyday lives and the underlying mechanics might give insights on the
state of a relationship. The information can be used to identify behavior
that is keeping the discussion from being productive. For example, there
might be a person hogging the conversation by not leaving any room for oth-
ers. Or there might be someone who continuously interrupts others. Telling
the culprit is usually difficult since there is no evidence and hence, the con-
structive criticism may be ignored or interpreted as a personal attack. By
supplying objective data of such behavior, conversations can be optimized
in an objective way.

The tool we developed to this end (RTDS) can accurately capture how
people interact in a discussion. It can give insights about how much peo-
ple speak, or reveal more complex patterns in their interaction. RTDS is
applicable in many situations such as business meetings, interviews, dinner
conversations, or during arguments. Running on of the shelf smartphones,
RTDS is quickly setup and can give insights about verbal interaction pat-
terns wherever you go. Furthermore, RTDS can also augment conversations
by acting as a referee, e.g., by notifying participants of using too much time
in the ongoing conversation.

6.1 Related Work

Business meetings have been in the spotlight for being inefficient and frus-
trating as shown in a study by Romano et al. [71]. The process of auto-
matically distinguishing different speakers is called speaker diarisation and
is extensively discussed in literature.

One of the prevalent types of systems rely on acoustic features like Mel
Frequency Cepstral Coefficients (MFCC) [60] and others [58] generated from
one recording to identify the active speaker. These systems are especially
useful if only one recording is available such as during radio broadcasts.
However, we have observed that MFCC features perform poorly for voices
that are similar (such as the voices of brothers). MFCC features are suit-
able for authentication tasks when the spoken words are always the same.
Changing the content introduces uncertainty that greatly reduces the per-
formance of these features.

Our discussion mechanics inference method is based on Time Difference
of Arrival (TDoA) to determine the Angle of Arrival (AOA) of sound signals.
Humans and animals use this method in everyday life with their two ears
to aid the localization of sounds, we refer to [73] for an overview: As it
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turns out, the change of the angle of a sound source can be detected by
humans even if the difference is as small as 1◦, depending on the relative
position of the sound source. Not surprisingly, this established technique
has already been applied in various contexts, e.g., shooter detection: In
Washington, D.C., USA, the installment of just 300 sensors was enough to
localize several ten thousands of gun shots in an area of 20 square miles
since 2006 [66].

More directly related to the work in this chapter are methods that are
using TDoA to determine the relative speaker location/angle (cf. [19, 38])
or to localize a set of connected smart phones in a meeting, cf. [65], where
10 phones are used for accuracy. However, all these systems differ from
the work in this chapter in the sense that we just need one off the shelf
smart phone with our application installed. No specialized hardware or
cumbersome setup is needed. The participants enroll with one tap on the
screen.

McCowan et al. [55] presented a system that automatically analyzes and
stores meeting contents. Amongst others, features such as “speech pitch”
and “presentation speech activity” are tracked. The features allow for fine
grained analysis of the meeting. However, the system requires multiple
cameras and microphones being placed in a certain way. This reduces the
applicability in many real world scenarios in which RTDS can give insights
on the social dynamics of a discussion.

Another aspect of our work relates to lifelogging (cf. [9,22]) & the quanti-
fied self (e.g., [79]) and augmenting conversations with smart phones. Many
people are interested in quantifying activities in their everyday life by logging
(for example, recording audio with their smart phone all the time [74]) and
subsequently analyzing them. Lu et al [51] recently discussed continuous
audio sensing to identify nearby speakers could improve life-logging appli-
cations. They use a single microphone to determine if a certain speaker
is talking at the time. Note that their approach requires training for each
speaker that is to be classified whereas our method does not require any
training data. Similarly, Xu et al. [86] showed that smartphone microphones
can be used to count speakers in an unsupervised fashion.

Automatically augmenting discussions can come into play here, by, e.g.,
trying to enforce certain conversation criteria (as done in our work). Current
applications such as the system in [41] embark in a similar (yet maybe
orthogonal) direction by creating, e.g., tickets-to-talk between participants.
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Figure 6.1: Values of c(τ) for different time slices k (44100 samples each) and
sensible values of τ considering a sampling rate of 44.1kHz and microphone distance
of 12.7 cm. At k = 8, the TDoA changed drastically which is clearly reflected in
the change of c(τ).

6.2 Measurement System

In order to distinguish people within one discussion, we rely on a Time
Difference of Arrival measurement of the audio signal. We use a Samsung
I9300 smart phone from 2012 which allows for stereo recording using the two
built in microphones. A large portion of current smart phones is equipped
with two microphones, with some even having three or more (e.g., LG G3).
The microphones are sampled at 44.1 kHz and are located at the top and
bottom of the device (12.7 cm apart). Assuming the spoken signal is s(t),
we assume that we receive ri(t) = ki · s(t− τi) + n(t) at microphone i. The
noise term n(t) is assumed to be uncorrelated and the signal s(t) is shifted
in time due to the distance between microphone and the sound source. The
anisotropic gain of the microphones and the speaker itself is captured in ki as
it is constant during a discussion as long as we assume neither microphones
or participants move significantly. To find the angle of arrival based on two
microphones (i ∈ [1, 2]), we use a cross correlation of the received signals:

c(τ) =
n∑
i=0

r1(i) · r2(i− τ).

This gives us an indication of how well the received signals match for
a given time delay τ within a fixed time slice of length n samples. The
value τ which maximizes c(τ) gives the time difference of arrival at which
the most energy arrives at the two microphones. Since each τ corresponds
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Figure 6.2: Areas of same color lead to the same TDoA measurement at the
phone. The area shown is 5m by 2.5m and the microphone assumptions are based
on the Samsung I9300 which we used for our experiments. As seen, TDoA with
two microphones cannot distinguish two speakers sitting on opposite sides of the
microphone axis.

to an angle of arrival given the distance between the microphones (shown in
Figure 6.2, the speakers can approximately be localized with respect to the
microphone pair. Figure 6.1 shows values of c(τ) for different delays τ over
a period of 17 consecutive time slices of one second. The change of c(τ) at
half time of the measurement indicates that the angle of arrival has changed
significantly. See Figure 6.2 to get an intuitive idea of which areas around
the microphone pair lead to a fixed value of τ . As you can see, the areas
extend to both sides of the microphone axis. Therefore, two speakers sitting
exactly opposite of each other with respect to the microphone axis cannot be
distinguished using our method and only two microphones. However, this
problem can easily be avoided by placing the phone such that the arrival
angles are unambiguous. Should there be no dominant angle of arrival
(c(τ) < x ∀ τ), we assume that nobody was speaking. The threshold we
use to separate silence from speech is empirically evaluated (we refer to the
evaluation section for details).

Discussion Dynamics Inference. In order to reduce the effect of mea-
surement noise and to infer high level discussion statistics, we use a Markov
model. The structure of the model is defined as shown in Figure 6.4. Each
user can either be speaking or silent (top and bottom row of states). By
modeling silent states for each user, we allow the model to distinguish a
pause from a user continuing the discussion after another stopped talking.
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(a) Information shown by RTDS dur-
ing a conversation. The circle shows the
arrival angles for each user in a differ-
ent color. The symmetry of these ar-
rival angles is caused by the fact, that
two microphones only allow for unam-
biguous angle arrival detection to either
side of the microphone axis. Below, the
transition probabilities between all the
speakers in the discussion are shown.
Wider arrows indicate higher transition
probabilities.

(b) An example for the final statistics
shown by RTDS. Included is the speak-
ing time for each participant (Time)
and the number of distinct contribu-
tions (# Contr.). In the lower part of
the screen the complete transition ma-
trix between the users is shown (silent
and speaking states for each user are
fused). The bar at the top displays who
spoke during which time period.

Figure 6.3: Two of the display modes of RTDS .

The transition probabilities are adapted throughout each discussion to best
explain the sequence of angle of arrival measurements using the Baum-Welch
algorithm, cf. [52]. The emission probability distributions for each speak-
ing state matches the dimensions of the TDoA measurements. Figure 6.6
shows such a distribution that resulted from one of our test discussions.
Each silent state is only allowed to emit silence observations. This means
that our system does not require prior information about where speakers
are located, and is able to find and distinguish speakers solely based on the
structure of the Hidden Markov Model. To generate the final statistics, we
use the Viterbi algorithm [82] to obtain the most likely state sequence using
the trained model.
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Person 1

Silent

Person 2

Silent

Person 1

Speaks

Person 2

Speaks

Figure 6.4: Hidden Markov Model template for two speakers. Silent states are
introduced for each user to capture user specific discussion behavior. For simplicity,
only transitions originating from Person 1 are drawn.

6.3 Application

We implemented the discussion inference method described above in an
Android application. The application requires two microphones that can
be programmatically accessed which most modern phones provide. In order
to obtain statistics for a discussion, each participant needs to specify an
alias and an approximate direction so the states of the Markov chain can be
matched to the user aliases.

During any discussion, RTDS provides on-line feedback about the cur-
rent state of the discussion as shown in Figure 6.3a.

Offline Feedback. In addition to the online feedback, RTDS provides
detailed statistics after each discussion, cf. Subfigure 6.3b. These include
the total amount of time each participant spoke and how many distinct
contributions were made. Also the min, max and average length of each
contribution is listed for each participant. The transition matrix shows how
many contributions from participant A were followed by a contribution of
participant B. This information can be useful for finding repeating patterns
in the way the participants interact.

Special Operation Modes. In addition to the passive feedback modes de-
scribed above, we can use the online statistical data to enforce constraints
on how participants may interact. In case a constraint is violated, we
can give visual or acoustic feedback. We included two operating modes
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Figure 6.5: The graph in this figure depicts how the silence threshold (in
max(c(τ))
sum(c(τ)) ) affects the classification accuracies of both speaking and silent states.

into RTDS that the user can choose from. The first mode helps enforce
even speaking times for all participants. The second mode forces partic-
ipants to take turns when talking and limiting the talking time for each
participant and round. These modes for example can be used to defuse
a heated argument by disallowing repeated interruptions or by reproving
participants that are not allowing others to talk.

6.4 Evaluation

To evaluate the accuracy of our system, we recorded 6 separate discussions
with a total of 7 people. Each of the 6 discussions was annotated manually,
this information was then used as ground truth. In all 6 discussions, two
(1), three (3), or four (2) people were involved, and the phone was placed
in a way that allowed for unambiguous arrival angles for all participants.
Natural disturbances like coffee machines or other background noise were
present. Figure 6.5 shows the overall classification results with respect to
a varying silence threshold. We consider direct transitions between speak-
ing states of two users a valuable metric that captures how one user might
disrupt another. Therefore, we consider confusing speakers worse than con-
fusing a speaking state with silence since the latter does not affect direct
transition probabilities between speaking states. With a growing number of
observations being classified as silence, more speaking states are confused
with silence. Most wrong speaking user classifications occur at a silence
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Figure 6.6: The observation probability distributions are accurately estimated
even if two users cause similar time of arrival differences τ depicted on the x-axis.
In this case, speaker 1 and speaker 2 are only separated by a two sample delay
between the microphone channels.

threshold of 0.8-0.9. For lower threshold, the model matches the discussion
better thereby causing less errors. For higher thresholds, too many speaking
states are mistaken for silence, thereby reducing the share of speaker mis-
classification. According to our results, a silence threshold of 0.5 is ideal as
it leads to error rates of 3% and erroneous speaking user classification rates
of only 2%.

All our experiments were carried out with up to four participants. How-
ever, the number of speakers is not limited to four. Figure 6.6 shows the
observation probabilities in a discussion during which two speakers (2 and
3) sat very close to each other and therefore caused similar time difference
of arrival measurements. Even though the measurements are only 2 samples
apart on average (45µs), speakers are reliably detected and misclassification
rates are only 2%.

6.5 Conclusion

In this chapter we looked at speaker activity annotation using one single
smartphone with a stereo microphone. The presented application collects
speaker activity data online and aggregates statistics which are then pre-
sented in a summary. Furthermore, RTDS can be used as an active referee
to enhance discussions by, e.g., allocating a fair share of time to each par-
ticipant. For an early prototype version of RTDS, we experimented with
voice recognition to identify participants: While the recognition rates were
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in general still acceptable (mostly close to Angle-of-Arrival), there were ac-
curacy issues with recognizing very similar voices, e.g., brothers. In the next
chapter, we show how speaker ambiguities can be resolved when multiple
smartphones are used to collaboratively annotate speaker activity.



6.5. CONCLUSION 97



98 CHAPTER 6. DISCUSSION DIARISATION



7
Distributed Discussion Diarisation

Pursuing the same goal as in the previous chapter, we extend our discussion
diarisation system to aggregate data from multiple smartphones. This helps
resolving ambiguities caused by stereo microphones but requires overcoming
severe hardware limitations of current smartphones. Since most people carry
a smartphone nowadays, Disca can be applied in most everyday situations
easily. We collect this data using a set of smartphones that collaborate to
identify the current speaker. Each smartphone records the conversation and
exchanges chunks of recorded audio with the others. For each smartphone
pair, the delay between the recordings is estimated using cross correlation.
This leads to a vector containing delays for each smartphone pair which
is then used to identify a speaker. Our method compensates offsets in the
sampling rates of different smartphones and runs in real time on off-the shelf
smartphones. As in the previous chapter, a Markov model is used to reduce
the effect of noisy measurements. The computational burden is distributed
among the participating smartphones to avoid very slow devices being over-
burdened. The results are visualized in real time and archived so previous
conversations can be aggregated or compared. Also, the results gained from
the Markov chain allow to analyze if there are cliques of participants com-
municating mostly with each other.

Disca performs all computations in real time without sending any audio
recordings to the cloud. Instead, all computations are performed locally

99
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such that no personal data has to be shared to obtain the results. To
our knowledge there are no speaker diarisation systems that can run in a
distributed setting. This is mostly due to clock inaccuracies that prohibit
tracking time difference of arrival measurements. In Disca, we show how
clock inaccuracies can be overcome by coarsely synchronizing the clocks via
network as well as tracking clock drifts using the recorded audio directly.

7.1 Related Work

We refer to the last chapter for related work focused on discussion diariza-
tion. In this chapter, we focus on systems takes advantage of multiple micro-
phones. In contrast to methods relying on acoustic features, these methods
generally require the microphones and speakers to remain approximately in
the same location during a discussion, the speaker voices can be arbitrarily
similar. Brandstein and Silverman [19] showed that microphone arrays can
track active speakers. Similarly, Anguera et al. [3] use acoustic beamform-
ing to enhance the signal from multiple distant microphones. However, the
time difference of arrival (TDoA) data is not used to classify speakers. In
their later paper [2], recordings from different microphones are compared to
a reference and the timing data is used to infer active speakers. Note that
they need reference microphone which can record each speaker well. Hence,
all speakers have to be at a similar distance to the reference microphone.
If this is not the case, the results will deteriorate since it will affect all the
TDoA measurements from all other microphones. In addition to this, all the
above methods are not robust against uneven sampling rates across differ-
ent recording devices. We show that off-the-shelf smartphones are equipped
with clocks that are prohibitively inaccurate for the above methods to work.
More recently, Sur et al. [78] showed that smartphones can be accurately
synchronized to perform beamforming. A central server is used to track
clock drifts to achieve array gain for the microphones. Their speaker lo-
calization algorithms require the phones to be placed according to a given
scheme. Also, a central server is required to achieve accurate synchroniza-
tion. Disca does not require a central server or reference microphone and
can accurately compensate for clock differences between recording devices.

Praviainen et al. [65] show how environmental sounds can be utilized to
synchronize and localize off-the-shelf devices such as smartphones. Our sys-
tem is similar because the recording setup of multiple smartphones is alike.
Interestingly in [65], clock drifts are neither handled nor mentioned albeit
in our experiments their impact on performance proved to be severe. Gen-
erally, the resulting sequence of clusters that best match the observations
are post processed to reduce noise. For example, the Viterbi algorithm can
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Figure 7.1: Typical drift observed between all pairs of five different phones.
Each time segment corresponds to 8192 samples and hence 1200 time segments
correspond to 220 seconds. The clock drifts exceed the time difference of arrival
measurements by far after a short period of time.

be used to impose basic temporal properties of discussions as described by
Anguera et al. [2].

7.2 Method

We aim to analyze discussions based on who was speaking at what time.
To this end, a set of smartphones record the discussion. We assume that
any two participants of the discussion have a unique set of distances to each
microphone. If there are three microphones that are not arranged on a
line, it is easy to see that, in a plane, there are no two locations with the
same set of distances. Not every participant requires to provide a phone
to obtain accurate results. The distances between the speaking participant
and the microphones cause a propagation delay. If the locations of the
microphones were known and their clocks would be synchronized, it would
be possible to deduce the location of the speaker. Mostly because of the
delay caused by the operating system which is not designed for such tasks,
clock synchronization on such a high level of accuracy is infeasible on current
smartphones.

We use the differences in propagation delays ∆s to classify each speaker
s. This difference is defined and may vary for each pair of smartphones. We
assume speakers and smartphones to remain more or less in the same loca-
tion throughout the discussion. In this case ∆s is constant for all speakers
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s.
The time difference of arrival (TDoA) dk(i) observed in audio segment

i for the kth pair of smartphones is influenced by the difference in sampling
rates of the two recording smartphones rk. Also, clocks are not perfectly
synchronized which leads to a constant offset ck. The time difference of
arrival observation dk(i) therefore relates to the difference in propagation
delays ∆s,k as follows:

dk(i) = ∆s,k + i · rk + ck + w (7.1)

We account for Gaussian measurement noise with the term w. When n
smartphones are used, the time differences of arrival di,k are calculated for
each of the n(n−1)/2 pairs of recordings in each audio segment. Combining
all pairs of recordings we get the following:

Di = ∆s + t ·R+ C +W (7.2)
In the following sections, we show how we estimate the difference in

propagation delay for each observed audio segment. This information is
then used to find each speaker’s ∆s. First, the smartphones are roughly
synchronized such that audio segments from the individual smartphones
that were recorded roughly at the same time can be compared. The time
differences of arrival Di are then calculated for each audio segment as de-
scribed in the Time Difference of Arrival Section. The estimation of the
difference in sampling rates R is explained in the Clock Sync Section. The
resulting vectors of propagation delay differences ∆s are then estimated by
clustering and filtered as described in the Clustering Section.

Figure 7.1 shows the raw TDaA measurements performed for a set of
five phones. Each pair of phones leads to a line that is sloped because of
the clock differences rk between the two participating devices. Also, the
influence of the audio source ∆s is apparent since the lines for each phone
pair assume different levels as the speakers take turn.

7.2.1 Time Difference of Arrival
The calculation of the TDoAs requires the recordings of the different smart-
phones to be roughly synchronized. To find the corresponding position of
one audio segment in an other recording, the time difference should be small.
Otherwise the audio segment has to be compared to a long segment of the
second recording.

Before starting with the recording, the phones exchange packets analo-
gously to the Precision Time Protocol (PTP).

Using this synchronization method, the smartphones start recording at
roughly the same time. The audio is then partitioned into segments of 8192
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Figure 7.2: Typical voting result for the most frequent slope aggregated in 500
time segments considering the past 500 segments.

samples length that overlap the previous segment by 4096 samples. At a
sample rate of 44.1 kHz one segment is 185.8 ms long, with one new segment
being created every 92.9 ms. The corresponding position of this segment is
then searched in the other recordings in a segment of 16384 samples.

The cross-correlation is used to find the time delay between the two
signals x1 and x2.

Rx1,x2 (n) = F−1(X1(ω)X∗2 (ω)) (7.3)

. where X1 and X2 are the Discrete Fourier Transforms of the signals
x1 and x2. The TDoA is then the delay for which the cross-correlation
Rx1,x2 has the largest value. The Generalized Cross Correlation (GCC)
[20] introduces weights in the frequency domain of the cross-correlation to
make the calculation of the cross-correlation more robust against disturbing
factors like noise and reverberations.

RGCCx1,x2 (n) = F−1(X1(ω)X∗2 (ω)ψ(ω)) (7.4)

One such weighting function that is used in conditions with reverberations is
the Phase Transform (PHAT) [20]. It normalizes each frequency component
and only uses the phase.

ψPHAT (ω) = 1
|X1(ω)X∗2 (ω)| (7.5)
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Figure 7.3: One dimension of Di from a recording of a discussion with 3 partic-
ipants taking turns.

This method is then called Generalized Cross Correlation with Phase Trans-
form (GCC-PHAT). The TDoA d can the be calculated according to:

d = arg max
n

RGCCx1,x2 (n) (7.6)

Figure 7.3a shows three different speakers taking turns in a discussion.
The difference in the TDoA from time segments when one speaker is active
to segments when another speaker is active are clearly visible. The slope is
caused by the difference in the sampling rates of the two devices rk.

7.2.2 Clock Drift
Experiments with different smartphones have shown that they do not record
the audio at exactly 44.1 kHz. Figure 7.1 shows how quickly clock drifts
aggregate to exceed the time difference of arrival values obtained rooms of
regular size for meetings.

This is due to manufacturing tolerances and temperature differences.
The differences measured are up to ± 15 samples per second. Without
compensating these differences, two corresponding audio segments diverge
and do not overlap anymore after a few minutes. Also, the TDoA vectors
for any given speaker change over time if the difference in sampling rate is
not compensated.
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As a result of the difference in sampling rates, Di lie on slopes as shown
in Figure 7.1. The offset of these drifts is caused by different speakers
being active at different times. To compute the actual propagation delay
differences ∆j that are used to detect the speakers, we need to compensate
for the clock drift. Without knowledge of which speaker is active at what
time, linear regression methods cannot be applied to estimate the slope.
The presence of outliers makes least squares methods unsuitable. Instead,
we compute the most likely slopes r using a voting scheme. For each newly
Di, we compute the slope to 500 Dj . The measurements Dj to which Di
is compared are cast from the last 2000. Each resulting slope casts a vote
for the the actual slope. The binning then aggregates the most likely slope
on-line by adding votes for each new TDoA measurement. The initial range
that the binning spans is −4 . . . 4 samples per time segment and contains
800 bins.

Figure 7.2 shows a typical binning showing a clear peak for a slope of
roughly -1 samples per time segment containing 8192 samples. To more ac-
curately estimate the slope, the range which the binning spans is reduced to
accommodate the most likely slope values on-line. Previous measurements
Di are updates as the slope estimation becomes more accurate. Figure 7.3b
shows the values of the slope compensated Di (Di − t · R) and the corre-
sponding to the raw Di values in Figure 7.3a.

7.2.3 Clustering

After accounting for the clock differences, the differences in propagation de-
lays ∆s are the main unknown influences on the measurements from Equa-
tion 7.2. For each time window i we can compute li from the initial mea-
surement Di:

li := ∆s +W = Di − t ·R− C (7.7)

The values that li can assume are directly related to the time differences
caused by different sound sources ∆s and the measurement noise. Hence we
do expect a user to cause values of li that are similar regardless of the frame
number i. To find the actual set of ∆s we cluster the results of the right
side of Equation 7.7. The DBSCAN [33] algorithm clearly outperformed
K-means clustering due to the large number of outliers that are present
in the measurements. Running DBSCAN iteratively allows us to add new
measurements at run-time.

By iteratively adding new data points, the density of noise points in-
creases. This can lead to the merging of individual clusters which may
represent different speakers. To avoid this problem, the number of data
points is kept constant by removing the oldest data points. Clusters vanish



106 CHAPTER 7. DISTRIBUTED DISCUSSION DIARISATION

when they have no data points left but the position of the previous clusters
is stored. When a new cluster is created, it is compared to the position of
the previous clusters and is connected to it if the positions are close. There-
fore, speakers that were quiet for some time can be correctly detected when
they start speaking again.

The measurements Di often contain noisy components. Since the dif-
ference in propagation delay is short for all pairs of phones assuming that
the recording area is limited, we can easily filter noisy measurements. After
that, most ∆s do not contain all components. Even so, the measurements
should be clustered. To achieve this, the Partial Distance Strategy [54] is
used to compute the distance between two data points using all components
that exist in both data points. The distance between the vectors li and lj
each with N dimensions is calculated according to

d =

√
N

∑N

k=1(li,k − lj,k)2Ii,jk∑N

i=1 I
i,j
k

(7.8)

with li,k being the kth component of li and

Ii,jk =
{

1, if kth component is defined in li and in lj

0, otherwise
(7.9)

Additionally, the distance d is set to infinity when too few corresponding
vector components are available after filtering. Since the geometry of the
phones and the position of the speakers are not known, it is not possible
to determine if these available components are sufficient to distinguish the
different speakers. In the worst case clusters representing different speakers
get merged. To avoid this problem, a high number minPts for the DBSCAN
clustering is used and a penalty for measurements with only few components
is introduced:

d′ = d
N∑N

K=1 I
i,j
k

(7.10)

7.2.4 Temporal Filtering With Markov Model
Time segments may be incorrectly classified as silence or as another speaker.
These errors can occur because of short pauses or environment noise that
caused the calculation of the TDoAs to give wrong results. Subsequently
these time segments were associated with the wrong speaker in the clustering
algorithm.

These errors can be corrected by assuming a structure for conversations
that can be captured in a Markov model. For example, it is unlikely that
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speakers take turns 10 times per second. The states in the model we use
represent the active speaker and silence. It is assumed that only one speaker
is active at the same time. The transitions between the states represent the
probability of moving from one state to an other in one time segment. If
a speaker is active in one segment, the same speaker will probably still be
active in the next time segment 92.9 ms later. Therefore, the probability of
staying in the same state is higher than the probability of changing to an
other active speaker or to silence. For each state there are emission probabil-
ities describing the probability of getting a certain observation when being
in this state. The observations here are the different cluster assignments.
The probability of observing the cluster assignment corresponding to the
current state is highest while the probability of observing silence or another
cluster is assignment is smaller. The Viterbi Algorithm is used to find se-
quence of states x1, ..., xT of the Hidden Markov Model that matches the
observations best.

7.2.5 Distributing the Workload

The smartphones used today vary in their processing power. Therefore, it
is necessary to distribute the workload of processing the audio recording
pairs to the participating phones such that all can complete their work in
time. Since the step size of the processed audio segments is 4096 samples,
one segment should be processed in 92.9 ms. On smartphones with multiple
cores, multiple segments can be processed in parallel.

After starting the application, the audio recording pairs are distributed
evenly to the participating smartphones through WiFi. Each pair is pro-
cessed on one of the smartphones that is part of the pair. This helps to min-
imize the network bandwidth utilized by Disca. Also, each phone monitors
the time required to process one segment. If the required time exceeds the
available time of 92.9 ms, it requests its neighbors to take over the computa-
tion for their respective audio pair. So the workload allocation is handled in
a fully distributed manner without chaning the network bandwidth require-
ments. After sending a neighbor a request to pass on the responsibility of
processing the pair of recordings, the other smartphone accepts or refuses
depending on the available processing time. If the transfer is rejected, we
try to pass on one of the other pairs of recordings in which the overburdened
smartphone is involved. We observed that even dated Android devices such
as the Galaxy Nexus easily handle the computational burden. After calcu-
lating the TDoA for an audio pair, the smartphone transmits the calculated
value to all other smartphones. When all measurements for one time seg-
ment are received, the clustering and classifying steps are executed on each
smartphone.
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7.3 Evaluation

To evaluate our speaker detection system two setups have been used. Firstly,
actual conversations with three speakers sitting around a desk have been
recorded. In total, 4 different seating positions, rooms and combinations
of people were recorded for a total of 20 minutes. The rooms were not
chosen to be explicitly quiet and noise sources such as air conditioning or
people moving and talking outside the open door were present. Each of
these discussions was annotated manually.

To do a long term test, we used a 5.1 speaker system. We distributed
an audio book such that it was played from one speaker at a time. The
speaker was switched in a random pattern to simulate multiple people taking
turns speaking. This setup, by design, provides an accurate ground truth
about which speaker was active at which time. Like this, a total of 60
additional minutes of annotated data was obtained. All the experiments
were recorded with five smartphones (Samsung Galaxy S3, Samsung Galaxy
Nexus, Samsung Nexus S, HTC One M7).

7.3.1 Segment Length

The length of the audio segment has a large impact on the reliability of
the observed TDoAs dk(i). With smaller segment lengths, fewer TDoAs
are correctly estimated. As a result, incorrect observations are removed in
the filtering step and some are classified as noise. This leads to a poor
clustering result with many time segments not assigned to any speaker.
However, the processing power limits the length of the segments, larger
segments require more processing power to compute correlation functions.
Additionally, the segments should capture only one active speaker and also
detect short pauses. For the remainder of the evaluation, a segment length
of 8192 was used. This allowed us to run Disca on our test devices in real
time.

Figure 7.4 shows for the different fragment lengths, which segments could
be assigned to a cluster.

7.3.2 Distributed Speaker Diarisation performance

Naively comparing the ground truth annotation to the output of our di-
arisation algorithm leads to roughly 93% of time segments being correctly
classified.

In the real discussion experiments, performance is slightly worse at 90%.
Manual inspection showed that many misclassifications occur when the
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Figure 7.4: Segments that could be clustered for segment lengths from 1024 to
16384 samples. With shorter segment length fewer segments could be assigned to
a cluster.

speaker changes. More explicitly, time segments that are within 0.2 sec-
onds of a speaker change annotated in the ground truth are only in 58%
of cases correct. Ignoring these time segments, 94% of the remaining time
segments to be correctly classified. Note that 8% of time segments lie within
0.2 seconds of a speaker change.

When annotating the recordings, it is in many cases unclear at which
time exactly a speaker changes happen. In most cases there is a slight pause
between the speakers and it is unclear to which speaker the pause should
be assigned. In other cases, one speaker interrupts another creating a slight
overlap. In the rarest cases, speakers change without either an audible pause
or overlap.

In the audio book experiment, the performance is slightly higher at 96%
of the segments being correctly identified. Neglecting errors within 0.2 sec-
onds of a speaker leads to 98% of the segments being correctly classified.
Note that, again, 8% of time segments lie within 0.2 seconds of a speaker
change. The improved performance is mostly due to the more controlled se-
quence of speakers without long pauses or overlaps. Also, the ground truth
data is not subjective and free of annotation errors due to the experimental
setup.

To estimate the performance when less smartphones are contributing
to the system, we randomly selected three of the available five recordings.
The results were within 1% of the previously discussed results with five
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(a) Overview of a previously
recorded conversation.

(b) On-line visualization of the
speaker activity.

Figure 7.5: Selection of saved conversations and overview of those. Transitions
between speakers are shown in the transition diagram and the number of transitions
are displayed. For all speakers their time contributing to the conversation is listed.

recordings.

7.4 Android Application

The implemented Android application is able to detect the active speakers
in real time. When starting the detection, the participating persons can be
selected. Speakers selected on one phone are automatically matched to the
cluster which is closest to that phone. The number of speakers is not tied
to the number of phones participating. Additional speakers are assigned a
color which at any time can be matched with a name manually.

While detecting the active speakers, the application shows at the top
of the screen the sequence of the last speakers. The upper half of the bar
in Figure 7.5b shows the result from the clustering step and the lower half
the detected speakers after filtering with the Markov model. The transi-
tion diagram is updated periodically and shows how often the transition
between the different speakers and silence occurred. The area of the circles



7.5. CONCLUSION 111

corresponds to the total time the person has spoken. When the detection
is stopped, the results are saved. Figure 7.5a shows a the statistics avail-
able for a completed discussion. In addition to the information shown while
processing, the number of transitions is also shown in text form.

7.5 Conclusion

We have shown how a set of off-the-shelf smartphones can be used to distin-
guish active speakers in a conversation. We show that speaker diarization
can be performed using multiple phones and software albeit the practical
limitations of inaccurate clocks. As opposed to the previous chapter, this
allows for unambiguous speaker annotation. The resulting system could also
be used to perform beamforming to boost the audio quality for the active
speaker.
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8
Conclusion

In this work we have discussed how observations made with regular smart-
phone sensors can be used in various ways. Localization, indoors and out-
doors, can be simplified and improved relying on existing infrastructure.
Existing WiFi networks can be used as landmarks similarly to how people
use visual objects to localize. In combination with an accurate method to
track where people walk, we have shown how to create signal strength maps
without hassle. Similarly, we relied on the existing GPS infrastructure to lo-
calize more quickly and robustly compared to state of the art least squares
localization schemes. The receiver design we propose requires only a few
milliseconds of signal to compute a position fix with minimal requirements
about initial location and time guesses. As a result, signal recordings can be
stored for off-line localization without processing them immediately. This
is especially useful to conserve energy or to store a GPS signal snippet to
geotag data such as photos. We also used smartphones to track speaker ac-
tivity during discussions. The locations of the speakers translate to distinct
propagation delay differences between participating devices. In order to ob-
serve the propagation delay differences in the recorded audio signals, non
deterministic system delays and differences in the device clocks have to be
tracked. The propagation delay differences can be observed in the recorded
audio signals. We have also shown that motion data from wrist-worn de-
vices can be used to detect gestures. Using the alphabet as the gesture set,

113
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we have shown how coordinate transformations can significantly improve
recognition performance.

Albeit the benefits of accurate motion sensing are apparent, we show how
such data can be exploited to infer touch input. To do so we refrained from
using lab experiments and instead sourced our data from a smartphone game
that has been played in unknown environments by 2’049 different players.
Although the results show that touch inference is a difficult task, motion
data can significantly reduce the number of guesses required to crack a
password or pin. Since current mobile operating systems are not built to
consider motion data to be sensitive information, touch input can be inferred
by unauthorized applications. Especially because such data is entered on a
regular basis.

Returning to Douglas Adams’ quote - in the context of this thesis -
seeing first means building a prototype, setting up a measurement system,
or collecting data before there is certainty on the outcome. During my time
as a PhD student, I was fortunate enough to see many ideas being pursued in
the face of complete uncertainty. Some of these ideas made it into this thesis
but most did not. Therein lies the risk of seeing first. Often, results are
unsatisfying after a lot of work has been put into seeing if there is something
to be achieved with an idea.

However, this policy of seeing first also gives insights that are not influ-
enced by expectations or prejudice. Clearly, this is what Douglas Adams’
quote is conveying and even though the cost was high, seeing first has re-
sulted in this thesis.
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