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Abstract Two approaches have traditionally been used to describe the widening rate of
jets and plumes: the diffusion concept of Prandtl, and the entrainment principle of Morton,
Taylor and Turner. The entrainment concept is based on depth-averaged flow scales, and
was later applied to plane gravity currents on an incline by Ellison and Turner [ET]. The
two parameterizations are compared here for free shear flows, and gravity currents. It is
shown that the diffusion concept is suitable for supercritical gravity currents, and that both
approaches agree for subcritical ones. Depth-averaged models are also used for open chan-
nel flows, but the depth and velocity scales for the two flows are different. Those of ET are
derived from the velocity distribution, whereas the depth of an open channel flow is the verti-
cal extent of the dense liquid phase, and the velocity is derived from its flux. To reconcile the
two descriptions, we extended the mass-based flow scales of open channel flows to gravity
currents in an earlier contribution. In the present study these scales are outlined, and extended
further to axisymmetric and non-buoyant free shear flows. Ratios of the diffusion rates in
terms of mass- and velocity-based flow scales, are obtained from available experimental data
for free shear flows.
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1 Introduction

Jets and wakes in neutral environments have been the subject of many studies for about a
century. The width of plane and axisymmetric jets has traditionally been defined as the trans-
verse location, bu, at which the velocity is one-half of its maximum value um. Conversely,
the maximum value has been used as the relevant velocity scale. When necessary, the corre-
sponding concentration of a tracer was denoted as cm and the corresponding half-width as
bc = λbu, where λ is a coefficient. By invoking the concept of self-preservation, the fluxes
of momentum and volume were expressed in terms of these velocity scales, and a computed
shape function. The rate at which the half-width increases in the flow direction x was esti-
mated by Prandtl [1]. His model implies that the outward drift of turbulent structures advected
with the mean flow is proportional to their excess velocity, i.e. that Dbu/Dt ∝ um (see also
[2] and [3]). For a jet-like flow in calm surroundings, Dbu/Dt ∝ dbu/dx um, which leads to
a closure relation dbu/dx = const. A later study by Morton, Taylor and Turner [MTT] [4]
focused on jets and plumes in stratified environments, which can arise when wastewater is
returned to the aquatic environment, or warm flue gases to the atmosphere. Such flows lack
in self-preservation and the authors deemed it too difficult to compute shape functions for the
velocity distributions in this case. As a consequence, they assumed Gaussian profiles for all
flows. To distinguish the ambient stratification from the density distribution within the flow
they also introduced a flow boundary, at which the velocity and density changed from con-
stant internal values to the ones in the ambient fluid. The required top-hat (or depth-average)
scales of velocity and width were derived from the fluxes of momentum and volume. The
volume flux was also needed to keep track of the changing buoyancy flux, and its streamwise
increase was specified by an entrainment velocity at the boundary of the jet. This velocity
was assumed to be proportional to the mean flow velocity.

The most striking difference between the diffusion and the entrainment concepts is that
with Prandtl’s model the spatial widening rate of free shear flows in a calm fluid can be deter-
mined without making use of the momentum equation, i.e. without considering whether the
flow is buoyant or nonbuoyant. Moreover, the widening rates measured for jets and plumes
agree to within the experimental error [5–7]. This good agreement does not necessarily fol-
low from Prandtl’s model, and the reasons are not quite clear. Similarly, his model does not
distinguish between axisymmetric and plane flows, and the widening rates for both of these
flows again agree well [6]. The two approaches are consistent with each other for thermals
and puffs, and the spreading rates appear to be about the same for buoyant and nonbuoyant
flows of this type as well [8].

Prandtl’s diffusion model has been used for jets in co-flows after Abramovich [3] and Patel
[9]. An equivalent approach was adopted for other jetlike flows by Chu [10], who examined
the dynamics of dominant eddies, and derived a flow width b̃ from the intermittency dis-
tribution. The MTT approach has been the one generally used for studies of the dilution of
effluents in the aquatic environment [11,12]. A combination of both models was proposed
by Jirka [7]. We also noticed that the origin of the diffusion concept appears to be getting
lost, Patel [9] already quoted Abramovich [3] as attributing it to Prandtl. The two concepts
are compared for plane jets and plumes in Sect. 2.

Bottom-hugging gravity currents can be due to an inflow of cold, saline or turbid water
into a water body. The entrainment approach was extended to such flows by Ellison and
Turner [ET] [13]. These authors also accounted for the presence of an ambient flow, and dis-
tinguished the flow from its environment by deriving the depth and velocity scales from the
excess velocity distribution. The effect of the slope on entrainment was accounted for by an
entrainment function, which depends on the Richardson number of the flow. The ET scales
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have been extensively used to describe gravity and turbidity currents in lakes and marine
environments [14–17]. Manins and Sawford [18] used them for a field study on katabatic
(downslope) winds in a stratified atmosphere. Gravity driven flows have recently attracted
increased attention in connection with climate modeling [19], and sedimentation control in
reservoirs [20]. A limitation of ET’s entrainment concept, and of later models relying on it,
is that the value of the entrainment function is the same for wall jets and wall plumes, which
does not agree with experimental data. In Sect. 3 we show that this difficulty can be overcome
by adopting Prandtl’s approach for supercritical gravity currents.

Depth-averaged descriptions similar to those of ET’s are also used for open channel flows
[21], but their depth scale is the vertical extent of the dense liquid phase, regardless of the
velocity distribution. To retain the same type of flow scales for both types of flows, Bühler
and Siegenthaler [22] extended these latter scales to gravity currents. Princevac et al. [23]
modified the underlying concepts and considered non-Boussinesq flows as well as ambient
co-flows. The results are outlined in Sect. 4.

Mass-based flow scales are then further extended to free shear flows in Sect. 5, and exper-
imental data for plane and axisymmetric jets and plumes are reanalyzed in terms of these
scales. Conclusions are drawn in the final section.

2 Relation between the diffusion and entrainment concepts

Prandtl [1] proposed a model for the widening rate of weak jets in an ambient coflow of
velocity ua. He assumed that the transverse drift of turbulent structures carried along in
such a nearly self-preserving flow is proportional to the characteristic transverse velocity
fluctuations v′, which leads to

Dbu

Dt
= v′ (1)

where bu is the half-width based on the excess velocity (Fig. 1). According to his old mixing
length concept the turbulent shear stress is ρu′v′ = ρl2(∂ ū/∂y)2, where l is the mixing
length, ρ the fluid density, ū the local flow velocity, y the transverse coordinate, and the
overbars denote time-averaged quantities. As the transverse fluctuations are proportional to
the streamwise ones, this leads to a closure relation

Dbu

Dt
∝ l

∂ ū

∂y
∝ luem

bu
∝ αuem, (2)

where α is the constant ratio of the mixing length and the jet width, and uem the maximum
excess velocity. Similarity arguments then imply that the mean values of the lateral drift vd

of the turbulent structures, and of their excess velocity ues, are proportional to each other
(Fig. 1).

The fact that the excess velocity distributions are similar for most free shear flows also
agrees with the evidence that the widening rate is fairly universal. Prandtl [24] later assumed
that u′v′ = ±κbuuem∂ ū/∂y, i.e. that the kinematic eddy viscosity κbuuem is constant in a
cross-section (see also [2]). The profile function then agrees with that of laminar jets, and
this approach leads to the same dependence as (2), since v′ ∝ κ1/2uem; see also [3] and [25].

The flow scales of MTT were extended by ET to gravity currents by allowing for ambient
coflows of velocity ua. They derived top-hat scales for the depth H , and the characteristic
excess velocity U of plane flows according to
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Fig. 1 Jet in a co-flow.
Half-width bu, maximum excess
velocity uem. Prandtl’s model
implies that the mean values of
the transverse drift vd of large
structures, and of their excess
velocity ues are proportional to
each other

x

ua

y

bu

uem

ues

vd

eu

U H =
∫

(ū − ua) dy
(3)

U 2 H =
∫

(ū − ua)
2dy

For free shear flows H is the top-hat half-width, and the integration is carried from the center-
plane to a location in the ambient fluid at which the velocity gradient dū/dy, and the velocity
fluctuations can be neglected.

They stated the entrainment relation as

d

dx
[(U + ua)H ] = EU (4)

where E is an entrainment function, to be specified, which assumes constant values Ej and
Ep for jets and plumes (ua = 0).

Prandtl’s diffusion relation can also be restated in terms of top-hat scales. In the spirit of
Patel [9] and [26] the corresponding relation can be stated as

dH

dx
= D

cU

cU + ua
(5)

where D is a diffusion function and c a constant, which has no effect when ua = 0. The
value of c depends on the excess velocity of the structures which define the width scale H .
According to Patel [9], Prandtl assumed a value of uem/2 for this velocity, which leads to
c = 1/

√
2 for a Gaussian profile. Patel himself proposed a velocity uem instead, which leads

to c = √
2, and claimed better agreement with experimental data. In terms of the depth-aver-

aged model used here, we shall adopt the intermediate value c = 1, which implies that the
structures which define the width of the flow travel at a velocity U + ua. As the velocity

123



Environ Fluid Mech (2010) 10:369–386 373

profiles are approximately Gaussian for both jets and plumes, the widening rates Dj and Dp

can again be expected to agree well.
To compare E and D we consider a thin slab of fluid of width H and thickness δ which

is advected with the velocity U + ua in terms of the depth-averaged description. When
dua/dx = 0, Dδ/Dt ∼= dU/dx δ, and the rate of change D(Hδ)/Dt of the slab volume can
be expressed in the Eulerian frame of reference as

dH

dx
(U + ua)δ + H

dU

dx
δ − EUδ ∼= 0 (6)

The term dH/dx (U + ua) δ is the rate at which the slab volume grows in time as the slab
widens, the term H dU/dx δ is the growth in case it thickens, and the rate EUδ is the result-
ing horizontal inflow of ambient fluid through its outer surface. By omitting δ, and with the
widening rate in time dH/dx (U + ua) = DU according to (5), this can also be written as

dH

dx
(U + ua) + H

dU

dx
= DU

(
1 + H

DU

dU

dx

)
= EU (7)

The diffusion model thus specifies the temporal widening rate dH/dx (U + ua) in terms of
the excess velocity as DU . Conversely, the entrainment rate EU also depends on the veloc-
ity gradient, which is determined by the momentum equation of the flow. Note that EU is
the velocity of ambient fluid through the rim of the widening slab. We shall see that it is
not necessarily equal to the entrainment velocity, i.e. the transverse motion of the ambient
fluid. For pure plumes U is constant [6], and the gradient vanishes, such that the spreading
coefficient Dp for plumes corresponds to the corresponding entrainment coefficient Ep for
these flows. The velocity in jets, however, varies with x−1/2 [6], and by noting that H = Dx ,
the expression in the second parenthesis is 1/2. Ej is then Dj/2 = Ep/2 provided that the
corresponding diffusion coefficients Dj and Dp for jets and plumes are assigned the same
value, as proposed by List and Imberger [5], Chu [10], and other investigators. The transition
from the value of 1/2 to 1 of this term along a forced plume (i.e. a buoyant jet) has been related
to the Richardson or Froude number of the flow when the MTT entrainment relation is used
[11]. Chu [10] devised a spread model for dominant eddies in the flow, which is similar to
that of Prandtl, and derived the ratios of E and the widening rate for plane and axisymmetric
jets and plumes.

The difference between plane plumes and jets is illustrated in Fig. 2 by adopting ET’s
highly idealized depth averaged description. On the left, a thin fluid slab in the plume is
shown at two different heights and times. In such flows the velocity U (x) remains constant,
such that the widening rate dH/dx U = DpU of the slab is due to the inflow −EpU through
its outer surface, marked by cross-hatching (new fluid). This implies that the water particles
move downstream within the slab after entering into it, and maintain their lateral position y
during their onward journey (old fluid).

The situation is different for jets, which are decelerating due to entrainment, i.e. the mass
flux carrying the available momentum is increasing in the flow direction. As a result of the
deceleration, the term in dU /dx is negative, and the slab is thinning, such that the parti-
cles contained in it keep moving outwards. Due to this outward motion, the inflow velocity
through the rim of the slab is only half as great as for a plume for the same value of U . In
other words, the spatial widening rate is due in about equal parts to the thinning of the slab,
and the inflow of new particles. It can be shown along the same lines that 5/6 and 1/2 of the
spread dB/dx is due to inflow for an axisymmetric plumes and jets of radius B, respectively,
in accordance with [10] and other authors.
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DjU
EjU

plume Entrained
fluid

jet

location 1 

location 2 

old fluid 
old fluid 

DpU

EpU
2H 2H

U U

slab thinning 

δ 

dU/dx = 0 dU/dx < 0

Fig. 2 Depth-averaged view of a slab of fluid of thickness δ at two different downstream positions in a
plane plume and a plane jet. The streamwise velocity in the jet decreases, and the slab becomes thinner. The
entrainment of new fluid (cross-hatched) is thus only half as great for the jet as for the plume, whereas the two
widening rates Dj and Dp agree closely

When a jet enters into a co-flow, the excess velocity uem keeps decreasing, and the flow
becomes approximately self-preserving in the range U � ua. The excess flux of momentum
of the jet in that region is me = 2HUua, and constant. H and U can then be evaluated from
(7) as H = (Djcmex/u2

a)
1/2, and U = [me/(4Djcx)]1/2, with Djc denoting the diffusion

coefficient in co-flows. The widening rate dH/dx ua = Djc U in (7) is thus proportional to
x−1/2, and the thinning term H dU/dx to x−1. The thinning term thus decreases faster, and
the internal flow becomes similar to that in a plume, in which this term vanishes. The inflow
velocity −EjcU through the rim of the moving slab is then again opposite, and nearly equal,
to its outward velocity DjcU due to diffusion. Since U � ua, the streamwise velocity ua of
the inflowing external fluid is close to that within the jet, and the inflow through the rim of the
slab is horizontal, as it is for jets and plumes in calm fluids. For jets in a co-flow, however, the
transverse motion of the external fluid towards the jet, i.e. the entrainment velocity, vanishes,
and the excess volume flux HU remains constant. In the Eulerian frame of reference the
inflow velocity into the jet is ua, and parallel to the centerplane of the flow (Fig. 1). A few
attempts have been made to quantify the corresponding increase dH/dx ua of the volume
flux due to diffusion [11,26]. The lack of a transverse motion of the ambient fluid towards
the jet, and the different directions of the inflow in the Eulerian and the Lagrangian frame of
reference, may have contributed to past discussions about what entrainment is [27]. Similar
to jets in a co-flow, thermals and puffs also grow in time due to turbulent outward diffusion
of their boundary. There is no net ambient flow towards these clouds, and no entrainment
velocity, because there is no sink of mass within them [8].

The entrainment rate EU of external fluid into a free jet or plume also corresponds to
the small-scale entrainment of new fluid through the highly contorted turbulent/nonturbulent
interface of these flows. The corresponding small-scale entrainment velocity corresponds to
the diffusion of vorticity and tracer into the irrotational outer fluid, and Holzner et al. [28]
showed that it essentially scales with the Kolmogorov velocity. This implies that ratio of the
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ρ
uH

ϕ

a a,u ρ

x

y

aU u+ Δ
0 0 0,  ,  q ρ Δ

Fig. 3 Definition sketch for a developing gravity current in unstratified and deep water. ET’s top-hat scales
for depth H, excess velocity U, and buoyancy � are based on the distribution of the excess velocity ū − ua,
and on the buoyancy flux. q0 is the initial discharge, per unit width

area of the small-scale interface per unit top-hat interface depends on the Reynolds number
of the flow [29]. The above considerations on EU in (7) indicate that the ratio depends not
only on the local excess velocity U , and the Reynolds number, but also on the streamwise
velocity gradient dU /dx , i.e. on the momentum equation of the flow under consideration. An
additional difficulty is that the small-scale entrainment velocity has a viscous as well as an
inviscid component [30].

In the following section, the above comparison of the entrainment and diffusion concepts
is extended to gravity currents.

3 Diffusion model for gravity currents

Gravity currents in a deep and unstratified upper layer were investigated by ET. The flow,
sketched in Fig. 3, is generally not self-preserving as it develops, and ET modified MTT’s
approach to describe them.

The depth H and the velocity U in their entrainment relation (4) were derived from the
velocity distribution as stated in (3). The buoyancy scale � was related to the buoyancy flux
j by

(U + ua) �H = j = g
∫

(ρ̄ − ρa)ū + ρ′u′
ρa

dy = g

R

∫
(ρ̄ − ρa)ū

ρa
dy (8)

where R is the ratio of the mean and total buoyancy flux. ET neglected the turbulent contri-
bution to the flux, but in their experiments they also determined � from the mean velocity
distribution and the initial buoyancy flux j0 = �0q0. It is desirable to retain the turbulent
contribution whenever possible, as the total buoyancy flux it is the only flux which can be truly
conserved. Their shallow water equations for a dilute gravity current in a calm environment
are

dy

dx
(U H) = EU (9)

d

dx

(
U 2 H + S1

2
�H2 cos ϕ

)
= S2�H sin ϕ − CDU 2 (10)

d

dx
(�U H) = 0. (11)
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ϕ is the slope angle, E(Ri) is an entrainment function, which depends on the Richardson
number Ri = �H cos ϕ/U 2, and CD is a Chezy-type drag coefficient.

The shape factors S1 and S2 relate the excess bottom pressure and the excess pressure
force to the flow scales, i.e.

S1�H2 = 2g
∫

(ρ̄ − ρa)

ρa
ydy

(12)
S2�H = g

∫
(ρ̄ − ρa)

ρa
dy

By making use of (9)–(11), the variation of the depth and the Richardson number was
expressed as

dH

dx
=

E
(

2 − S1
2 Ri

)
− S2 Ri tan ϕ + CD

1 − S1 Ri
(13)

H

3Ri

dRi

dx
=

E
(

1 + S1
2 Ri

)
− S2 Ri tan ϕ + CD

1 − S1 Ri
(14)

One feature of (13) and (14) is that the denominator vanishes when Ri = 1/S1, which is of
order one. The flow is critical under these conditions, in analogy to open channel flows. An
important result of ET is that on a constant slope Ri and dH /dx vary along the flow depending
on the source conditions, and finally adjust to a constant value. In this final equilibrium state
the flow is called uniform, and the velocity is constant, as it is in free plumes.

Wall jets, and plumes on a vertical wall, are special cases of gravity currents, as the Rich-
ardson number Ri = �H cos ϕ/U 2 vanishes for both of these flows. As an estimate for E for
wall jets, ET adopted a value of 0.075 for free jets, corresponding to dH/dx = 2Ej = 0.15
[31]. They already noted that the values for free plumes, for which Ri also vanishes, appeared
to be higher, but thought that insufficient data were available to make definite conclusions.
More recent experiments by Patel [9] indicate that their spreading rate dH /dx of wall jets is
about 0.091 (with C = 0.065). Similar to what is found for free shear flows, this is again
in excellent agreement with the value dH/dx = 0.095 ± 0.005 of Grella and Faeth [32] for
wall plumes, which have a similar velocity distribution. Based on these considerations it is
tempting to adopt a diffusion relation

dH

dx
= D (15)

based on (5) to specify the widening rate of gravity currents. ET and later investigators [17]
determined the entrainment relation E(Ri) for equilibrium flows (dU /dx = 0), such that the
two descriptions are identical for that case according to (7), i.e. D(Ri) ≡ E(Ri). Relation
(15) thus describes the transition from a forced wall plume to a wall plume if the value of D
at Ri = 0 is increased slightly from 0.075 to about 0.093. The relation can, however, also be
applied to other slopes, as it becomes equivalent to (9) with E = D as soon as the equilibrium
state is reached. By applying (15) to the momentum and buoyancy equations (10) and (11),
the variation of the Richardson number can be stated as

H

3Ri

dRi

dx
=

D
(

1 + S1
2 Ri

)
− S2 Ri tan ϕ + CD

2 − S1
2 Ri

(16)

whereas the nominator of this relation agrees with that in (14) for E = D, the denominators
are quite different. In particular, the one in (16) no longer vanishes when gravity currents are
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ua

U + ua

ds

H

dH
Entrainment = Diffusion

a a

E DU U
ds ds

U u U u
=

+ +

new fluid

Fig. 4 Depth-averaged view of subcritical gravity current with small entrainment. The widening rate due to
entrainment is equal to the one due to diffusion, such that E ≡ D, see (5), (17)

critical, and the Richardson number is close to one, but when it is close to 4. The reason is
that only (9), but not (15) is consistent with the continuity equation for open channel flows.
Expressions (15) and (16) are thus appropriate for developing supercritical flows, but not for
small slopes, on which the resulting equilibrium flow can be subcritical.

To evaluate numerical models for gravity currents, Odier et al. [33] performed measure-
ments in flows on a steep slope (10◦), for which the diffusion model applies. They found that
the mixing length concept provides a better description of the turbulent fluxes u′v′ and ρ′v′
than a constant eddy viscosity does.

On mild slopes the entrainment is small, and any changes of the last two terms in the
nominator of (14) become dominant. The streamwise velocity gradient is then primarily due
to changes in slope, roughness and topography, and the volume flux is essentially conserved
except for a thin, superimposed layer of ambient fluid (Fig. 4).

When ua remains constant, the continuity equation (4) can be restated for this case as

dH

ds
= E

U

U + ua
− H

(U + ua)

dU

ds
, (17)

where s is the streamwise coordinate. As noted earlier, E = D for uniform flows (dU/ds = 0),
and the first term on the RHS corresponds to the diffusion relation (5) with c = 1. As the
entrainment is small, the second term on the RHS of (17) is essentially unrelated to the
first one, and represents any depth change due to variations in slope or roughness. Even
for nonuniform subcritical flows the entrainment relation (4) can thus be restated in terms
of D as

d

dx
[(U + ua)H ] = DU (18)

Similarly, E can be replaced by D in (13) and (14) for these flows. Prandtl’s concept, and
the diffusion relation, thus accounts for that part of the depth change which is due to fluid
entrainment in both supercritical and subcritical gravity currents.
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4 Mass-based flow scales

As mentioned in Sect. 1, another relevant aspect of ET’s shallow water equations is that the
flow scales H and U in (3) disagree from the depth and velocity scales of open channel flows
because they are derived from the velocity distribution instead of the excess mass distribution.
Similarly, the buoyancy scale � in (8) is derived by dividing the buoyancy flux by the volume
flux. � is thus a quantity related to the transport of buoyancy, and the mean concentration
�/�0 = q0/(U + ua)H of effluent in a flow is unrelated to the buoyancy distribution.

Bühler et al. [34], and Princevac et al. [23] reconciled the flow scales for open channel
flows with those of gravity currents in a co-flow by setting

g′h2 = 2g
∫

(ρ̄ − ρa)ydy

ρ0
= S1�H2

g′h = g
∫

(ρ̄ − ρa)dy

ρ0
= S2�H (19)

g′hu =
g

∫ (
(ρ̄ − ρa)ū + ρ′u′

)
dy

ρ0
= (U + ua)�H = j0

The two quantities associated with shape constants S1 and S2 by ET are thus used to define
the flow scales g′ and h, whereas the buoyancy flux now determines the flow velocity u. The
excess velocity ue and the excess buoyancy flux g′hue can be expressed as

g′hue =
g

∫ (
(ρ̄ − ρa)(ū − ua) + ρ′u′

)
dy

ρ0
= j0 − g′hua = [U + (1 − S2)ua] �H

(20)

The fluid density, or the concentration of a stratifying agent, is a scalar quantity, and gener-
ally easier to measure than velocity. At least in laboratory experiments, the concentration can
also be made to vanish outside the flow. When the buoyancy flux is known, and conserved, u
can be obtained without carrying out velocity measurements. This also holds for the excess
velocity ue when the ambient velocity is known, and constant in the transverse direction.
The option of deriving u instead of � from the flux of buoyancy also allows for a simple
distinction of the excess buoyancy flux g′hue, which depends on both the excess velocity
and buoyancy distributions, from the flux g′hua associated with the ambient velocity, which
only depends on the buoyancy distribution. This is relevant for developing flows, in which
the ratio of the two fluxes changes in the streamwise direction. As S1 and S2, link the two
profiles, this leads to a variation of these shape factors along the flow even in case the profiles
remain similar.

Shape factors β and γ were introduced to relate the excess fluxes of volume and momen-
tum to these flow scales as

γ h(u − ua) = HU, γ (βu − ua)uh = (U + Ua)U H (21)

where γ modifies the depth h (Fig. 5).
The scales derived in (19) are consistent with the ones for open channel flows, where ρa

and ua are generally neglected, such that ρ = ρ0. As the density is known, g′ = g, and the
bottom pressure ρ0gh alone is required to derive a depth scale h. Similarly, γ in (21) is equal
to 1, and β is the momentum coefficient, or Boussinesq coefficient, for open channel flows,
which accounts for nonuniformities of the velocity distribution [21].
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aρ ρ−hγh

ϕ

a a,u ρ

x

y

0 0 0 0,  , ,  'q c gρ

u

'g
,u c

Fig. 5 Definition sketch for mass-based flow scales of depth h, buoyancy g′ and velocity u, which are derived
from the excess density distribution ρ̄ − ρa, and the buoyancy flux. The excess volume flux is confined to the
depth γ h

The corresponding relations for non-Boussinesq flows, which are intermediate between
dilute gravity currents and open channel flows, were derived by Princevac et al. [23]. These
authors also evaluated available experimental and field data [16,35], and showed that γ h
exceeds the mass-based depth h in gravity currents (Fig. 5). The bottom layer, of velocity
u, is thus considered as consisting of dense fluid of depth h, and of superimposed ambient
fluid of depth (γ − 1)h. γ was found to be in the range from 1.0 to 2.7. β again accounts for
nonuniformities of the velocity distribution, and is in about the same range from 1.03 to 1.33
as for open channel and ducted flows [21]. Whereas S1 and S2 are difficult to interpret, β is
comparable to the corresponding quantity in open channel flows, and γ is the depth ratio of
the top-hat heights of the velocity and density distributions, similar to the turbulent Schmidt
number 1/λ = bu/bc of free shear flows.

The shallow water equations of ET can be written in terms of fully mass-based scales.
For calm ambients (ua = 0) and in terms of (10), (11), and (18), the equations for subcritical
flows are

d

dx
(uh) = D∗u (22)

d

dx
(βγ u2h + 1

2
g′h2 cos ϕ) = g′h sin ϕ − C∗

Du2 (23)

d

dx
(g′uh) = 0 (24)

The star denotes definition in terms of mass-based flow scales. Identities (19), (20) and
(21) can be used to derive the relation between the two sets of scales. For calm environ-
ments h = H S1/S2, g′ = �S2

2/S1, u = U/S2, β = S2, γ = S2
2/S1, D∗ = DS1/S2, and

C∗
D = CDS2

2 . ET reported values of S1 from 0.2 to 0.3, and of S2 from 0.6 to 0.9. When
the buoyancy flux is known, uncertainties related to velocity measurements thus affect the
shape factors in the momentum equation (23) only, but not the flow scales. Princevac et al.
[23] derived the shallow water equations by considering ambient co-flows, and derived the
corresponding relations between the flow parameters in the mass-based and velocity based
descriptions.

Relations (22)–(24) can be expressed as
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dh

dx
= D∗ (

2βγ − 1
2 Ri∗

) − Ri∗ tan ϕ + C∗
D

βγ − Ri∗
(25)

h

3Ri∗
dRi

dx

∗
= D∗ (

βγ + 1
2 Ri∗

) − Ri∗ tan ϕ + C∗
D

βγ − Ri∗
(26)

As it does in (14), the denominator again vanishes when Ri∗ = g′h cos ϕ/u2 ≈ 1.
Relations to (15), (10) and (11) for supercritical flows can similarly be restated in terms

of mass-based scales as

dh

dx
= D∗ (27)

h

3Ri∗
dRi∗

dx
= D∗ (

βγ + 1
2 Ri∗

) − Ri∗ tan ϕ + C∗
D

2βγ − 1
2 Ri∗

(28)

The denominators in (26) and (28) again differ, as they do in (14) and (16).
A set of slightly different, and intermediate, flow scales was proposed by Noh and Fer-

nando [36]. They also derived the velocity scale by dividing the buoyancy flux by the excess
bottom pressure, but distinguished only a single depth hi = γ h. They retained ET’s concept
of dilution, and their buoyancy scale is ratio of the buoyancy flux g′hu and the flux γ hu of
volume, such that g′

i = g′/γ . Intermediate flow scales are related to fully mass-based ones
by ui = u, Rii = Ri∗, γi = γ , Di = γ D∗, and βi = β.

Mass-based width scales can also be derived from the concentration distribution c̄ of a
tracer, which is added to the discharge. This technique has been used in flow visualizations
to determine the visible width of unsteady flows, such as thermals and puffs. Similarly, (19)
can be expressed in terms of c̄ instead of the excess density to derive flow scales u and h and
c for nonbuoyant jets. A width scale b̃ based on the intermittency distribution was proposed
for jet-like flows by Chu [10]. Scales based on the vorticity, or tracer distribution, are also
suitable for more complex flows, in which the distribution of the streamwise velocity ceases
to be relevant. An example are jets in a cross-flow, where the streamwise excess velocity grad-
ually vanishes in the bent-over region, and the transverse excess velocity becomes dominant
[37]. Prandtl’s model specifies the outward drift of turbulent structures as they are advected
downstream with the main flow, and the large-scale transverse diffusion of tracer and turbu-
lence associated with this process. Mass-based flow scales are, therefore, well suited for the
description of this diffusion process.

Whereas the identity E(Ri) = D(Ri) allows a specification of D(Ri) based on previous
work, we do not have sufficient information to provide the relations D∗(Ri∗) and γ (Ri∗) for
the entire range of gravity currents. In a first step we shall evaluate the widening rates D∗ for
free shear flows in the next section, and compare them with the corresponding values of D.

5 Jets and plumes

Mass-based flow scales for gravity currents outlined in (19) can also be used for plane plumes.
Equivalent scales for jets can be derived from the concentration c̄ of a passive tracer contained
in the flow, even though the scales then no longer reflect gravity forces. To remain consistent
with the notation for gravity currents, H and h will denote one-half of the flow width, q0,
m0 and j0 one-half the initial fluxes of volume, momentum and buoyancy.
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The non-uniformity of the excess velocity distribution is the one relevant for the excess
momentum flux. This flux can then be suitably expressed as

me = γ hue(βeue + ua) =
∞∫

0

ū(ū − ua)dy = HU (U + ua), (29)

where γ hue is the excess volume flux, and the momentum coefficient βe based on the excess
velocity is

γβeu2
eh =

∞∫

0

(ū − ua)
2dy = HU 2 (30)

Analogous scales can be defined for axisymmetric flows. In terms of the concentration of a
tracer they correspond to

πb3c = 3π

4

∞∫

0

c̄r2dr = S1π B3C,

πb2c = 2π

∞∫

0

c̄rdr = S2π B2C

πb2cu = c0 Q0 = 1

R
2π

∞∫

0

c̄ūrdr = π B2C(U + ua) (31)

γπb2ue = 2π

∞∫

0

(ū − ua)rdr = π B2U

γβeπb2u2
e = 2π

∞∫

0

(ū − ua)
2rdr = π B2U 2

where r is the radial distance, and caps are again used to denote velocity-based scales.
By following the approach of Wright [38] the widening rates are expressed as

dB

dx
= D

U

U + ua
,

db

dx
= D∗ ue

u
(32)

In comparing the top-hat widths of plane and axisymmetric flows it should be noted that they
are different when the half-width bu is equal in both types of flows. For Gaussian profiles it
can be shown that B/H = 1.13 in this case. Similarly, b/h = 1.18 for a given bc.

Data on jets and plumes, evaluated from recent recommendations, are presented in Tables 1
and 2. Axisymmetric flows are from a source of total strength Q0, M0 and J0. All authors
assumed Gaussian profiles, and the width scale bg is the one at which the velocity has decayed
to e−1uem. Velocities U and u and concentrations C and c are made dimensionless in the
same way as um, and cm for plane and axisymmetric flows.

The last rows (Min/Max) show the ratio of the minimum and maximum values of the basic
flow scales in a given column, and provides a measure for their consistency. The recommen-
dations by Jirka [7,12], as well as those by Lee and Chu [6] are intended for dilution models,
and the flow scales are adjusted to include the turbulent buoyancy flux, such that R = 1. The
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Table 3 Weak jets in co-flow (ue � ua)

Plane jets, Jirka [12]
bgua

(2moex)1/2 λ
uemx1/2

(2moe)1/2
cm(2moex)1/2

2c0q0
D D∗ γ D∗ R S1 βe γ

0.291b 1.3 1.94 1.49 0.133 0.180 0.18 1 1.17 1.16 0.99

Axisymmetric jets, Jirka [7]

bgu2/3
a

(Moex)1/3 λ
uemx2/3

(Moeua)1/3
cm(M0ex)2/3

u1/3
a c0 Q0

D D∗ γ D∗ R S1 βe γ

0.37 1.2 2.27 1.58 0.154 0.211 0.20 1 1.13 1.22 0.96

b From the entrainment coefficient

recommendations by Fisher et al. [11] for plane plumes lead to a value of R = 0.65, which
is quite low. The width of jets and plumes determined from dye visualizations was found to
agree well with h.

Table 1 shows that at least according to the two recent recommendations γ is close to one,
i.e. the entraining interface at γ h coincides quite well with the boundary of excess mass or
tracer at h. This indicates that the ratio hu/q0 = g′

0/g′ agrees with the dilution γ hu/q0, and
suggests that mass-based scales derived from the flux and distribution a passive tracer can
also be used for free shear flows in stratified ambient fluids by expressing (19) in terms of the
concentration of that tracer. Similar considerations apply for axisymmetric flows in Table 2.
The determination of the volume flux, and of γ , is particularly difficult for axisymmetric
jets, as errors due to induced ambient flows can be large near the boundaries. The sensitivity
to such errors can also be illustrated by computing the flux for a given half-width bu and
a velocity um for different velocity profiles. For the algebraic profile function based on a
constant eddy viscosity (see Schlichting [2]), the flux is 67% larger than for a Gaussian, even
though this author claims good agreement with the velocity measurements. Conversely, the
momentum flux is only 12% larger, as the small velocities near the boundary are squared.

A hopeful feature of the last row (Min/Max) in Tables 1 and 2 is that the discrepancy of
the mass-based widening rates D∗ is smaller than that of the velocity-based rates D. This also
holds for the nondimensional concentrations c and C, but not for the velocities u and U in
plane jets and axisymmetric flows. Considering that it is not clear how well the Gaussian dis-
tribution represents the concentration profiles in different flows, the widening rates D∗ also
agree rather well with the value of b̃/x = 0.17 based on the integral over the intermittency
distribution, which Chu [10] found to be quite universal for free shear flows.

For jets in co-flows the excess velocity is small in a region far from the source, and the
shape factor S2 is equal 1. The corresponding recommendations of Jirka [7,12] are shown in
Table 3. As his values of λ are the same for jets in co-flows as for those in calm ambients,
the ratios of U/uem, ue/uem, B/bg, b/bg , and c/cm also remain the same.

The table shows that the values of D and D∗ agree fairly well with those in calm ambients,
considering again that the velocity and buoyancy profiles may be slightly different.

6 Conclusions

In a first part of this study the diffusion model of Prandtl for the widening rate DH/DT
of free shear flows is compared with the entrainment concept, which was developed for a
depth-averaged description of such flows. The difference is that the widening rate of the
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flow only depends on the streamwise excess velocity, whereas the entrainment rate Eu of
ambient fluid also depends on the streamwise velocity gradient. It is shown that the area
of the contorted turbulent/nonturbulent interface of such flows also depends on the stream-
wise gradient. The entrainment and diffusion concepts agree for uniform gravity currents
(dU /dx = 0). Experimental data for wall jets and wall plumes indicate that the diffusion
relation is the one appropriate for strongly entraining supercritical gravity currents, which
are similar to free shear flows. For subcritical currents the entrainment and diffusion functions
are identical even when the flow is not uniform. The diffusion function D thus describes the
entrainment-induced depth change over the entire range of gravity currents.

ET’s depth-averaged flow scales for gravity currents were derived from the velocity dis-
tribution, in analogy to those of MTT. Depth-averaged scales are also used for open channel
flows, but they are derived from the depth, and the flux, of the liquid phase. To use the same
scales for both types of flows we extended the ones for open channel flows to gravity currents
in a previous contribution. In the present study they are extended further to free shear flows.
In our view the concept of mass-based flow scales could provide a solid basis for future work
on depth-averaged models of gravity currents and free shear flows. The main reason for our
expectation is that are they, and the corresponding shape factors, are consistent with those of
open channel flows. Furthermore, mass-based scales are easily determinable, suitable in the
presence of co-flows, and the average concentration of a pollutant in the flow depends on the
concentration distribution instead of the velocity distribution.

To provide first data we determined mass-based flow scales for free shear flows from avail-
able experimental data. The results for plane and axisymmetric jets and plumes suggest that
the top-hat boundaries of excess motion and excess mass (or tracer) coincide (γ ∼1), which
would make mass-based scales suitable for describing free shear flows in a stratified envi-
ronment. The momentum coefficient β is in the same range as for open channel and ducted
flows, and the flow parameters recommended by different investigators are more consistent
with each other when expressed in terms of mass-based than in terms of velocity-based flow
scales.
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