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Abstract 

In the last decade simulation models and optimization environments have been developed 

that are able to address the complexity of real-time railway dispatching. Nevertheless, 

actual implementations of these systems in practice are scarce. Essential for 

implementation of an advanced dispatching system is the trust of traffic controllers into a 

stable working of the system. Nervous systems might change advice suddenly, and even 

switch back to a solution previously discarded, as time and knowledge of the perturbation 

progress. To this end, we propose several metrics and a framework to assess the stability 

of railway dispatching solutions under incomplete knowledge, and report on the 

evaluation of the state-of-the-art dispatching system ROMA, coupled with the simulation 

environment EGTRAIN, here considered as a surrogate of the real field. Rescheduling 

plans calculated at different control stages have been compared for different prediction 

horizons of the rescheduling tool. This setup has been applied to the Dutch Utrecht-Den 

Bosch corridor. Results obtained from this case study show that more stable control 

strategies are achieved when using shorter prediction horizons. Train retiming is scarcely 

sensitive to changes in the prediction horizon but more affected by the dynamic 

propagation of random disturbances over time.  
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1 Introduction 

Railway traffic is strongly influenced by random disturbances during operations which 

cause deviations from the original schedule and thereby reducing performances. In order 

to cope with small perturbations, the design of a robust timetable can be an effective 

solution. If larger disturbances or service disruptions are observed, it is necessary to adopt 

real-time dispatching measures to effectively reschedule (reorder, retime or reroute) train 

services into new updated conflict-free train path plans. In practice, dispatching decisions 

are taken by traffic controllers based on their own experience or rule-of-thumbs, to solve 

observed conflicts as soon as possible. The myopic and limited knowledge that 

dispatchers have of traffic evolution can anyway lead to implement plans that are 

ineffective or even counterproductive. For this reason, several approaches have been 

proposed in literature (see e.g. [11], [26], [9]) for the optimal real-time management of 

traffic perturbations.  

Most of them refer to a closed-loop rolling horizon framework (e.g. [17], [6], [3]) 

where at regular time intervals (rescheduling interval) current traffic information (e.g. 
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train speeds and positions) is collected from the field; the behaviour over a pre-set time 

period ahead (called prediction horizon) is then predicted according to some mathematical 

model; if track conflicts are detected a new complete traffic plan is then computed. This 

procedure is then iterated over time in a fashion that can be time-driven or event-driven. 

In real systems, the effectiveness of these plans can be strongly compromised if a large 

deviation between the actual and the predicted behaviour is observed, due to stochastic 

and dynamic evolution of traffic. This might lead to a nervous behaviour of continuously 

changing solutions, that is not well accepted by human dispatchers and practitioners. For 

this reason, particular attention must be paid to the stability of rescheduling plans. A plan 

is defined as stable when its (initial) structure is invariant to random perturbations 

occurring on the network within a given time period Δt. In other words, the initial actions 

of a stable control strategy will remain the same even if computed at a Δt later, with 

respect to updated traffic information. Understanding the stability of dispatching solutions 

in a rolling horizon framework is therefore a preliminary task for an effective control plan 

of real railway operations. So far, only little research has tackled this issue (e.g. [15], 

[20]), given the lack of advanced decision support tools in the railway industry and the 

unavailability of optimal rescheduling models (proposed in the academic literature) 

interfaced with the real field or with accurate simulation models that could represent a 

valid surrogate of the reality.  

To this purpose, this paper studies the stability of real-time schedules of railway traffic 

within a dynamic and stochastic environment. An innovative framework is developed 

which integrates the Alternative-Graph based tool ROMA [9] for computing optimal 

rescheduling plans with a stochastic microscopic model for simulating railway traffic, 

EGTRAIN [23]. The investigation has been performed by considering a rolling horizon 

approach and referring to a single perturbed traffic scenario as a random realization of the 

reality. At regular time intervals updated traffic information is gathered from the 

simulation model (considered here as the real field) and transferred to the rescheduling 

tool to compute optimal plans. Solutions obtained at successive stages are compared for 

three relevant locations in the network to understand how optimal control plans change 

over time due to random evolution of train dynamics. The comparison is based on 

different indicators: the sequence of trains at a certain location, the amount of trains that 

are reordered with respect to the previous solution, the average amount of time shift 

compared to the original timetable (retiming), and the total number of reordering 

instructions that the dispatcher would give to trains, if he implemented the entire optimal 

control strategy. This study has been then repeated for different prediction horizons in 

order to comprehend how relevant this parameter is with respect to the stability of optimal 

plans. The proposed methodology has been applied to a real case-study in the 

Netherlands: the railway corridor between Utrecht and Den Bosch. Results show the 

effectiveness of the developed framework and the usefulness of the proposed 

methodology to analyze the stability of optimal plans under a stochastic and dynamic 

environment.  

In the following section a literature review on rescheduling methods and stability 

analysis of dispatching plans is provided. A description of the framework developed is 

given in section 3. Section 4 illustrates the methodology adopted to perform the stability 

analysis, while the application to a real case study and relative results are reported in 

section 5. Conclusions are supplied in section 6. 
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2 Literature review  

In literature, works addressing the stability of rescheduling plans are mostly concerning 

the management of activities in a job-shop or manufacturing environment. Here the 

stability is measured by means of the number of rescheduling instructions that must be 

taken to implement a control strategy [5], or by means of the number of jobs processed on 

different machines in the initial and the new schedule [1], or also considering the 

deviation of job starting times (retiming) and job sequences between the original and the 

revised schedules ([29], [8]). Several authors ([8], [14], and [16]) proposed a method for 

the dynamic or stochastic scheduling problem addressed to minimize the makespan and 

the deviation from the initial schedule considering a bi-criteria objective function that 

simultaneously takes into account the efficiency and the stability of rescheduling plans. 

Vieira et al. [28] determined the existence of a conflict between avoiding setups (as a 

metric of stability) and reducing flow-time (metric of efficiency). The rescheduling 

interval significantly affects the above objectives, as also concluded in [5], [16] and [24]. 

In their study, Mehta and Uzsoy [19] and Cowling and Johansson [8] indicate that 

schedules that are robust to stochastic disturbances can be generated without a lot of 

degradation of system performance. Bidot et al. [2] conclude that while the length of 

rescheduling intervals decreases the selected performance metric (makespan) improves.  

In the field of railway traffic management most approaches that have been proposed 

focus on efficiently generating optimal schedules to minimize train delays, through an 

open-loop optimization process which involves a variety of assumptions on objectives and 

certain and deterministic conditions. Macroscopic approaches have been proposed by 

Carey and Lockwood [4] who developed an iterative decomposition approach for solving 

the train timetable and path problem in a railway network with one-way and two-way 

tracks. Higgins et al. [13] introduced a complex nonlinear mixed-integer program that 

incorporates the lower and upper limits on speed for each train on each segment, with the 

aim of minimizing the total train tardiness and fuel consumption. Dorfman and Medanic 

[11] obtain time-efficient and energy-efficient suboptimal schedules based on the concept 

of a local greedy travel-advance strategy and using a discrete-event model, relying on 

train priority rules and a capacity check algorithm to prevent deadlocks.  

Törnquist and Persson [26], who represented the train rescheduling problem as a 

mixed-integer linear program, considering the network as divided in different segments 

composed of n parallel tracks. Near-optimal solutions are identified by means of a 

heuristic approach which is proved to be efficient also for large scale scenarios. 

Microscopic models are instead proposed by Mazzarello and Ottaviani [18] who set up an 

advanced real-time traffic management tool which consists of a speed regulation module 

(SPG), and a train scheduling and routing module (CDR) based on an alternative graph 

representation of train movements and responsible for generating conflict-free schedules. 

D’Ariano et al. [9], [10] developed an alternative-graph based model, called ROMA 

(Railway traffic Optimization by Means of Alternative graphs) which formulates the train 

rescheduling problem as a job shop with no store constraints. The rescheduling solution 

which minimizes the maximum consecutive delay on the network is identified by means 

of three greedy heuristics and a truncated version of a branch and bound [10], while a tabu 

search algorithm is adopted for finding suitable alternative routes for the rerouting 

problem (Corman et al. [7]). Lüthi [17] analyzes how advanced decision support tools for 

rescheduling traffic could be integrated into real railway operations, and defines schematic 

frameworks to practically implement a closed-loop integration. Caimi et al. [3] propose a 

dispatching assistant in the form of a model predictive control for complex station areas. 
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The closed-loop discrete-time system advices rescheduling trains according to solutions of 

a binary linear optimization model addressed to maximize customer satisfaction. The 

rescheduling module interfaces with an approximated model for calculating train 

trajectories; that is why this framework neglects some practical aspects that can only be 

considered by using very precise simulation models.  

Only little work has been addressed so far to analyze the stability of dispatching plans. 

Meng and Zhou [20] study the robustness of a meet-pass plan for a disrupted single-track 

rail line, against random variations both in the running times and in the duration of the 

disruption. A macroscopic stochastic programming model is used in a rolling horizon 

framework to identify robust schedules for every roll period. The quality of the solution is 

then evaluated to understand how it is affected by the accuracy of the information on the 

disruption duration. Lee and Ghosh [15] study the stability of a decentralized algorithm 

(RYNSORD) with soft reservation for efficient scheduling and congestion mitigation. The 

investigation adopts a large-scale simulation model to generate perturbed traffic 

conditions. A steady-state operating point is initially identified, and the stability analysis 

is conducted by examining whether and when the system returns to the previous steady-

state condition under a disturbed scenario. Törnquist[27] investigates how the quality of 

optimal rescheduling solutions is affected by the objective function and the length of the 

prediction horizon used in the rescheduling tool. The heuristic approach HOAT is used to 

reschedule traffic on a Swedish network under several perturbed scenarios. 

The major drawbacks of these works are that they: i) only analyze the quality of 

optimal rescheduling solutions but do not study their variation over time when computed 

within a realistic closed-loop scheme; ii) refer to macroscopic, static, deterministic, and/or 

approximated models. This means that on one hand the models proposed in literature are 

not able to accurately reproduce system dynamics (resulting from the interaction of train 

speed profiles, delays and signalling system) and local stochastic  phenomena that are 

inherently present in the real system and responsible for local solution instability. This is 

indeed a relevant issue to understand how optimal plans can perform during real-time 

operations. On the other hand, there is the necessity to interface models for the optimal 

rescheduling in a closed-loop with simulation environments that can represent a valid 

substitute of the railway field. In this way it is possible to direct the research towards the 

realization of on-line Decision Support Systems based on advanced algorithms, that can 

be actually implemented in the real field for a more effective management of real-time 

traffic perturbations. This issue is one of the objectives of the European FP7 project 

ONTIME [21] that involves a large group of infrastructure managers and universities of 

several European countries.  

3 A framework for the stability analysis of rescheduling solutions 

3.1 The framework 

To analyse the stability of optimal rescheduling solutions an innovative framework has 

been set up which connects the rescheduling tool ROMA to a detailed microscopic model 

for the stochastic simulation of railway traffic, EGTRAIN, that is here considered as if it 

is the real field. Figure 1 illustrates the SysML representation of this framework, showing 

the input-output communication between the rescheduling and the simulation modules. 

Both these modules need to be initialized by specifying all the input data relative to the 

infrastructure, the rolling stock characteristics, the signalling and the ATP features, the 

original timetable, the entrance train delay (intended as the delay suffered from trains 

when they enter the network area under examination), as well as the stochastic 
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disturbances considered during the microscopic traffic simulation.  

At regular time intervals, current traffic information (positions and speeds of trains) 

are transferred from EGTRAIN as input to the ROMA tool. Such information is used by 

the Track Conflict Detection module as the basis for forecasting traffic conditions over the 

prediction horizon, in order to identify potential track conflicts. The blocking time theory 

[12] is adopted for this purpose. This means that a track conflict is detected when an 

overlap between the blocking times of two trains is observed for a certain block section. 

The traffic prediction performed by this module is based on deterministic process times 

(i.e. running times and dwell times based on the train dynamics infrastructure 

characteristics, and published plans) without taking into account random disturbances to 

train operations. If no track conflicts are identified, the current schedule (that can be the 

original timetable if no dispatching actions have been selected) can be still operated 

without any modification. Otherwise, the detected conflicts (described by their space-time 

coordinate of the conflicts and IDs of conflicting trains) are sent as input to the Track 

Conflict Resolution module. This module computes a new conflict-free plan (rescheduling 

solution) obtained by retiming/reordering and/or rerouting trains in order to minimize the 

maximum consecutive delay on the network.  

  

 

 

Figure 1: SysML representation of the framework for the stability analysis of rescheduling 

solutions. 

 

The updated departure times and train orders provided by the rescheduling plan are 

sent as input to the Traffic Management System module of the EGTRAIN model. 

Departure times and orders given by the rescheduling tool are considered as hard 

constraints when implemented in the simulation environment. 
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Railway traffic is microscopically simulated by the EGTRAIN simulation core according 

to the computed real-time plan, and considering additional stochastic disturbances to train 

operations. In particular, entrance train delays and perturbations to dwell times at stations 

are considered. A more detailed description of both the rescheduling and the simulation 

modules is respectively provided in the following subsections. 

 

3.2 The detection and resolution model ROMA 

Apart from a data loading and a post processing phase, the dispatching problem 

conceptually defines two problems, namely a conflict detection problem and a conflict 

resolution problem. For the solution of both problems alternative graphs are used, which 

are composed by nodes representing train operations (passage of trains over a block 

section) and directed arcs connecting two nodes (e.g. arc (i,j) connects node i with j). 

Fixed arcs (Fix) constrain successive operations of the same train to be separated by a 

given process time wij; while Alternative arcs (Alt) separate potentially conflicting 

operations of different trains over shared block sections, by given headways wij. In a 

compact manner, an alternative graph can be represented as follows: 

 

                             

                                                                

 

where the variable   , for          , represents the starting time of operation i 

and corresponds to the entrance time of a train in the associated block section. The first 

group of constraints models fixed order constraints such as the running of trains over 

successive sections, dwell processes, entrance in the network. The second kind of 

constraints models the choice between the two orders of potentially conflicting trains. 

Each order can be selected by choosing a particular side of the disjunction. The notation 

     refers to the successor of operation i on the path of a train. Further details on 

alternative graph models can be found in [7]. 

Given a prediction horizon, the entrance times of trains, and suitable weights for the 

time durations wij (considered as deterministic), the conflict detection task is performed by 

visiting the graph. This means that starting times are associated to each operation, while 

not enforcing yet the orders of trains. A conflict is detected if the computed starting times 

lead to overlaps between blocking times of different trains. 

The conflict resolution task is tackled instead by solving the mathematical problem of 

choosing a particular side of the disjunction, i.e., a particular train order. The scheduling 

problem defined is solved within ROMA by a Branch and Bound (BB) scheduling 

algorithm. This is an exhaustive algorithm that explores all the reordering alternatives and 

chooses the one minimizing the maximum consecutive delay. Here a truncated branch and 

bound [10] is considered that returns near-optimal schedules for practical size problems 

within a short computation time. A typical objective function of the conflict detection and 

resolution (CDR) problem is the minimization of the maximum consecutive delay, which 

can be computed easily on an alternative graph.  

Running and headway times are a function of the speed profiles of trains, which again 

depend on the ordering decisions taken. Thus a speed adjustment phase is performed on 

the scheduling solution to deliver a feasible train plan. 

 

3.3 The stochastic microscopic simulation model EGTRAIN 

A “self-built” microscopic model [23] has been used in order to overcome applicability 
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limits of commercial models that do not permit an easy manipulation of all network 

characteristics and train parameters, or to be interfaced with mathematical tool-boxes for 

“black-box” optimization. In particular EGTRAIN (Environment for the desiGn and 

simulaTion of RAIlway Networks) is an object-oriented model developed in C++, 

representing in detail attributes of each element of the railway network. It consents to 

accurately describe the dynamic evolution of train state variables (e.g. speed and position) 

considering both planned and perturbed traffic.  

 

 

Figure 2: Input-output of the microscopic railway simulation model EGTRAIN 

 

 It is a time-driven, synchronous, microscopic and stochastic multi-train simulation model 

which administers input data in the following four interacting modules:  

 Infrastructure module. The railway network is here modelled as a directed graph with 

arcs containing all information about track attributes (e.g. gradients, radii, speed 

limits on tracks and switches), while details about spatial coordinates of signals, 

switches and stations are assigned to nodes. 

 Rolling stock module. Tractive effort-speed curve of the traction unit, maximum 

deceleration rate, jerk value, as well as train composition (number of wagons, masses 

of the coaches, etc.) are all input data of this module. A sub-module for the 

calculation of train energy consumption is also included. 

 Signalling system module. In this module, interactions between rail vehicles and 

signalling equipments are modelled, for different signalling systems and ATP 

characteristics. The positions of signals and beacons, the length of block sections, as 

well as the braking behaviour and the speed codes of the ATP system are all input to 

this module. The Dutch NS’54 speed signalling system with ATB train protection is 

implemented for this study. 
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 Timetable module. Inputs required by this module are departure/arrival times at 

stations, but also minimum dwell times can be specified. Stochastic train delays can 

also be considered by specifying the type and the parameters of the respective 

distribution function. 

The train movements along the track are obtained by integrating the Newton’s motion 

formula over time: for each time step, the maximum surplus force between the traction 

unit’s wheels and the tracks is calculated to determine the acceleration function which is 

then integrated a first time to provide speed function and a second time to provide train 

position. Output data returned by this model are: 

 Train diagrams (e.g. distance-time trajectories, speed-distance diagrams, etc.), 

 Train conflicts (e.g. conflicts due to blocking time overlaps) 

 Energy consumption diagrams (e.g. mechanical power-time diagrams, mechanical 

energy-distance diagrams). 

A successful validation process of the model has already been performed [23], verifying 

the congruence of its outputs with those returned by the consolidated microscopic model 

OpenTrack for the same input data set.    

4 Methodology 

4.1 The rolling horizon approach used for the stability analysis 

To solve the traffic scheduling problem within a dynamic and stochastic environment a 

rolling time horizon approach has been adopted. This approach decomposes the dynamic  

(i.e. with information and status known only as time goes by) scheduling problem into a 

number of static (i.e. deterministic and with complete information) sub-problems that can 

be solved by using static scheduling methods. A schedule is produced for each sub-

problem and is then regularly updated by taking into account fresh information from the 

field.  

Figure 3 represents the case of a small network with 3 trains (V1, V2, V3) that in case 

of perturbation may need to be reordered at their passage from signal CP. The total 

observation period H is decomposed in multiple time periods named “Stages”, which are 

partially overlapping and spaced at regular time intervals, namely the rescheduling 

intervals (RI). At the beginning of each stage (i.e. at times t1, t2, t3, …) current traffic 

information (e.g. train positions represented by red circles) is collected from the field and 

set as input to the rescheduling tool. This latter, on the basis of the information received, 

predicts how traffic will evolve over the prediction horizon PH (respectively PH1, 

PH2,…), detecting the presence of potential conflicts by means of the blocking time 

theory. If conflicts are detected, a new rescheduling plan is generated. The rescheduling 

plan is provided with a certain delay (d1, d2, d3, ...) from the beginning of the stage due to 

the computation time of the process. For an effective real-time management it is necessary 

that this computing time is always acceptably shorter than the RI. After each rescheduling 

interval a new stage is activated and a new plan is produced on the basis of updated traffic 

information. In a closed-loop control framework, a new rescheduling solution should be 

implemented each time that this latter differs from the one computed at the previous stage.  

 In this paper, we assume that only the plan computed at the first stage is implemented 

while the other successive solutions are computed but not put into operation. In this way 

we can separate the different factors of the dynamic control process and observe how the 

solutions change over time as effect of the stochastic perturbations only. This assumption 
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represents the case of a dispatcher that implements only the optimal plan computed at the 

first stage, but observes how successive solutions, elaborated on the basis of current traffic 

information, vary over time. 

 

Figure 3: Rolling time horizon approach for the stability analysis of rescheduling solutions 

 

The methodology applied to analyse the stability of traffic rescheduling plans is 

described as follows: 

a) Implementation of the solution computed at the first stage. At stage 1, train entrance 

delays are set as input to the ROMA tool which predicts the traffic evolution over the 

prediction horizon (considering deterministic train running and dwell times), detects 

possible conflicts due to such delays, and provides a first rescheduling solution 

obtained by retiming/reordering trains. This plan is then implemented in the 

EGTRAIN model by means of the Traffic Management System module. During the 

entire observation period, the traffic will therefore follow this rescheduling plan. For 

the example in Figure 3 this means that at time t1 the rescheduling tool is fed with 

train entrance delays (current train information is not available since trains have not 

entered the network yet) and computes a solution. This solution is implemented in the 

field and imposes the order (V1, V2, V3) at signal CP. In fact, real trajectories (solid 

blue lines) follow this plan.  

b) Generation of the base-case perturbed scenario. At this point, the microscopic model 

EGTRAIN is activated to simulate railway traffic according to the obtained 

rescheduling solution, taking into account both train entrance delays and additional 

stochastic disturbances to dwell times at stations. These latter are considered as 

independently and identically distributed Gaussian variables. In the current 

Rescheduling 
Plan for Stage 2

Rescheduling 
Plan for Stage 3

Rescheduling 
Plan for Stage 1

d1

d2

d3
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preliminary study, dwell times are obtained by considering only a single random 

sample. Rescheduling plans are computed for each stage taking this realization as 

base-case. Further research  would investigate the impact of different random samples 

and distributions. In Figure 3, perturbations determine the difference between the 

predictions (dotted lines) and real trajectories (solid blue lines). 

c) Calculation of the solutions at successive stages. Iteratively, at the beginning of each 

successive stage, train speeds and positions are gathered from EGTRAIN and set as 

input to the ROMA tool. Based on this information, ROMA forecasts traffic 

behaviour assuming deterministic running and dwell times, and checks the presence 

of potential conflicts. In this case a conflict-free schedule is generated by retiming 

and reordering trains. To decouple the dynamics of prediction and control, these plans 

are not implemented in EGTRAIN but only compared to analyze how they vary as 

consequence of unplanned dynamics. In the example, at time t2 current speeds and 

positions (red circles) of trains V1 and V2 are collected from the field and sent to 

ROMA. A deviation between real and predicted (dotted grey line) trajectories is 

observed, that increases with the flow of time due to propagation of random 

disturbances. At time t3 ROMA is fed with updated traffic information which allows 

the prediction to be adjusted and obtain a more accurate detection of track conflicts. 

In this case the deviation between real and forecast trajectories (dotted red line) is 

reduced with respect to the previous stage. 

d) Solution comparison. The solutions returned by ROMA for each consecutive stage 

are analyzed to understand how they differ from each other. In particular, they are 

compared in terms of train orders at given locations of the network (called 

checkpoints). A retiming metric measures for each checkpoint the average extent of 

train retiming with respect to the original schedule.  The number of reorderings with 

respect to the previous solution are also calculated for each plan. This metric 

highlights the amount of different instructions that would be given from the 

dispatcher to trains within each rescheduling interval, giving also insights in the 

practical feasibility of the computed plans. All these metrics are better described in 

the following section. 

A further investigation is then conducted to comprehend how the stability of 

rescheduling solutions is affected by the length of the prediction horizon used to foresee 

track conflicts. This means that the steps described above are repeated for different 

lengths of the prediction horizon. 

 

4.2 Metrics used to compare rescheduling solutions 

The comparison among the rescheduling plans computed for each stage is performed by 

evaluating the differences in both the train orders at given checkpoints and the retiming 

with respect to the original timetable for the same checkpoints. In particular the following 

metrics are considered: 

 ID number of the solution (Solution ID). Rescheduling solutions provide for each 

checkpoint a permutation of trains that sets the order in which they should pass from 

that checkpoint. A positive integer number          is assigned to each different 

permutation of trains, in order to uniquely identify them. Solutions giving the same 

order are identified with the same ID. As can be seen in Table 1 three different IDs 

are assigned to three different permutations respectively: 1 to (V1, V2, V3), 2 to (V2, 

V1, V3) and 3 to (V3, V1, V2). For certain checkpoints, it can happen that the 

rescheduling plans computed at a given stage provide ordered lists in which some 
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trains are missing. This can occur if i) trains are not scheduled to pass from that 

location, ii)  they have already passed that checkpoint, iii) they enter the network after 

the end of the selected prediction horizon, iv) they have already finished their run. In 

this case, if these lists do not present a new permutation of elements, they receive the 

same ID of the list that is equal when deleting from it the missing trains. For example 

the ID = 3 is assigned to the list (V3, V1) in which train V2 is missing. This is 

because such sequence is obtained from the solution with ID = 3 by deleting train V2. 

Of course this assumption is valid as far as cancelling trains is not used as a control 

action. 

Table 1: Evaluation of rescheduling plans for the case of Figure 3. 

 
 

 Number of Relative Reordering (NRR). For a rescheduling solution produced at stage 

i, this metric gives the total number of trains that have been reordered with respect to 

the previous solution returned at stage i-1. This indicator is frequently used in the 

field of telecommunication engineering when analyzing the order of packets in digital 

streams over computer networks [22]. In general an element is defined as reordered if 

it has a sequence number smaller than its predecessors. The sequence number aj 

assigned to each train j of a list of K trains is a consecutive integer from 1 to K which 

follows the same order provided by the solution computed at stage i-1. The sequence 

of trains (b1,...bK), observed for the plan produced at the following stage i, is said in 

the same order of the previous solution if 
 

     1,  ,     0 q Kk qb b k K      (1) 
 

otherwise it is said out-of-order and train k  is defined as reordered. In this case the 

total number of reordered trains corresponds to the Number of Relative Reordering 

and is indicated by NRR. An example is shown in Table 1. If the sequence number aj 

attributed to trains (V1, V2, V3) follows the order of solution 1 (i.e. with ID = 1), the 

number of reordering relative to solution 2 is 1, since train V1 does not satisfy 

condition (1) and is therefore reordered with respect to solution 1. In the same way if 

the sequence number aj follows the order given by solution 2, the amount of 

reordering relative to plan 3 is 2 because both trains V1 and V2 are reordered. 

 Number of reordering instructions (NRI). The sum of the NRR over all the 

rescheduling stages gives the total number of reordering instructions that the 

dispatcher would provide to trains if he implemented the solution of each consecutive 

Solution ID
Train Order 

at CP

Sequence 

number stage i 

(aj)

Sequence 

number stage i-1 

(bj)

N° relative 

reordering 

(NRR)

1

V1 1 1

0V2 2 2

V3 3 3

2

V2 1 2

1V1 2 1

V3 3 3

3

V3 1 3

2V1 2 2

V2 3 1
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stage. If NRRs is the number of relative reorderings corresponding to the plan 

computed at stage s and S is the total number of stages,  the number of reordering 

instructions NRI is calculated as: 

 

         

 

   

 (2) 

In the following of this paper this metric is referred to a period of 1 hour since the 

rescheduling is performed over such time span.  

 Average Retiming (AR). This metric measures, for a given location, the deviation 

between the passage times given by the rescheduling plan and the ones established by 

the original schedule. The retiming metric can be expressed as: 

 

   
 

 
                

            
 

 

   

 (3) 

 

where Tpassresch.,CP,j represents the time instant at which train j is scheduled to pass at 

location CPj according to the rescheduling plan, TpassTT.,CP,j is the passage time 

established from the original timetable (TT) and K is the total number of trains 

passing at CPj within the selected prediction horizon. 

5 Case study: the Utrecht - Den Bosch corridor 

5.1 Case-study description 

The proposed framework has been applied to a real-case study: the double-track corridor 

between the cities of Utrecht and Den Bosch in the Netherlands. This corridor has a length 

of more than 48 km with a total of 8 stations. The schematic layout is illustrated in Figure 

4. The network is equipped with a fixed-block signalling system and the traditional Dutch 

automatic train protection ATB system (see [25] for more information) whose behaviour 

and characteristics have been implemented in both ROMA and EGTRAIN.  

 

Figure 4: Schematic layout of the Utrecht - Den Bosch corridor (as given by InfraAtlas 

2011), with the locations (CP1, CP2 and CP3) in which train reordering is considered. 

 

This was necessary to accurately model train movements on the track accordingly with the 

rules imposed by these systems.  

Utrecht Central (Ut)

Lunetten
(Ln)

Houten
(Htn)

Houten
Castellum

(Htnc)

Culemborg
(Cl)

Geldermalsen
(Gdm)

Zaltbommel
(Zbm)

Den Bosch (Ht)

Diezenbrug
junct.

CP1

CP2

CP3

Nijmegen
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The hourly traffic pattern on this corridor is composed per each direction of: 4 

Intercity trains (IC) between Utrecht (Ut) and Den Bosch (Ht) that stop only in Ut and Ht; 

2 regional trains (Reg) between Ut and Ht stopping at all stations; 2 regional trains 

operating between Utrecht and Geldermalsen (Gdm) and also stopping at Lunetten (Ln), 

Houten (Htn), Houten Castellum (Htnc), and Culemborg (Cl). Two intercity and regional 

trains operating between Nijmegen and Den Bosch are also scheduled to run between the 

Diezenbrug junction (where the branch from Nijmegen merges) and Ht, but these trains 

are not taken into account in the analysis. Also freight trains are neglected. For the sake of 

simplicity, only trains running along the Ut - Ht direction are considered. This assumption 

does not alter the results of the investigation since in this double-track corridor there is no 

interaction between trains running in opposite directions. The train services are operated 

according to a periodic timetable with one hour period. The scheduled minimum dwell 

time for the ICs is 120 s at both Ut and Ht. For the regional trains it is 120 s for Ut and Ht, 

240 s for Gdm (where an overtaking is scheduled) and 24 s for all the other stops. Traffic 

is observed for a total period of 2 hours while the rolling horizon approach described in 

section 3 is analysed only for the first hour. A total number of 16 trains is considered 

during the entire observation period. Train names are shown in Table 2. The ID of each 

train is obtained by adding to its name a prefix that is equal to 1 if it is scheduled to depart 

during the first hour and 2 if departs within the second hour.  

Table 2: Train names used for trains running along the Ut- Ht direction 
Train Name Category Stops 

D8001, B8001 IC Ut, Ht 

D35001, B35001 IC Ut, Ht 

D160001, B160001 Reg Ut, Ln, Htn, Htnc, Cl, Gdm, Zbm, Ht 

D60001, B60001 Reg Ut, Ln, Htn, Htnc, Cl, Gdm,  

 

Trains can overtake each other at three different locations where ICs and regional 

trains run on different routes: at the exit of the Utrecht station area (CP1), at the exit of the 

Houten interlocking area (CP2) and at the exit of the Geldermalsen station (CP3). These 

locations constitute therefore the checkpoints where train reordering can be applied by 

real-time plans.  

A single disturbed scenario is examined, which is obtained by drawing a single 

random sample of entrance delays and dwell times at stations respectively from a Weibull 

and a Gaussian distribution (μ, σ). In particular for the dwell time distribution the mean μ 

is the scheduled dwell time, while the standard deviation σ is assumed to be the 30% of 

the mean (σ = 0.3 ∙ μ). At the first stage a rescheduling solution is elaborated by ROMA 

on the basis of train entrance delays and is implemented in EGTRAIN. 

Figure 5 shows the base-case (as simulated by EGTRAIN) used for the analysis, where 

traffic follows the plan given at the first stage under the selected disturbed conditions. 

Some trains are forced to stop and wait at some locations to give way to late trains and 

respect the order given by the plan computed at the first stage. For example this is the case 

of the IC 1D35001 that is forced to stop at the location Htnc in order to give way to the 

delayed Reg 1D160001 and satisfy the rescheduled order for the checkpoint CP2. Other 

trains instead are forced to stop or slow down because of track conflicts (e.g. IC 1D35001 

slows down before Cl). 
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Figure 5: Traffic behaviour simulated by EGTRAIN following the first rescheduling 

solution given by ROMA. ICs are reported in blue, regional trains in green. 

 

The study has also investigated how the stability of optimal rescheduling plans is 

influenced by the length of the prediction horizon used to compute solutions. Four 

different lengths have been considered: 15, 60, 30 and 90 minutes. A total of four 

experiments (one for each value of the prediction horizon) have been therefore carried out. 

The rescheduling interval is always set to 5 minutes. This means that for each experiment, 

12 successive stages having the same length of the prediction horizon are considered 

 

5.2 Results 

A total of 13 different permutations have been observed over the whole analysis. The ID 

assigned to each one of these permutations is reported in Table 3.  

Table 3: ID assigned to the permutations returned by rescheduling solutions 

 

Ln

Ut

Htn Htnc Cl Gdm Zbm

Ht

RI

1D160001

1D8001
1D35001

1D60001

1B160001
1B8001

1B35001

1B60001

2D160001

2D8001

2D35001
2D60001

2B160001

2B35001

H

CP2 CP3CP1

s TT
Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name
s TT

Train 

name

1 1D8001 2 1D160001 2 1D160001 2 1D160001 3 1D35001 1 1D8001 1 1D8001 1 1D8001 1 1D8001 1 1D8001 3 1D35001 1 1D8001 1 1D8001

2 1D160001 1 1D8001 1 1D8001 1 1D8001 2 1D160001 3 1D35001 3 1D35001 3 1D35001 3 1D35001 3 1D35001 1 1D8001 2 1D160001 2 1D160001

3 1D35001 3 1D35001 3 1D35001 3 1D35001 1 1D8001 2 1D160001 2 1D160001 2 1D160001 2 1D160001 2 1D160001 2 1D160001 3 1D35001 3 1D35001

4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001 4 1D60001

5 1B8001 6 1B160001 6 1B160001 6 1B160001 5 1B8001 5 1B8001 5 1B8001 5 1B8001 5 1B8001 5 1B8001 5 1B8001 5 1B8001 5 1B8001

6 1B160001 5 1B8001 5 1B8001 5 1B8001 6 1B160001 6 1B160001 6 1B160001 6 1B160001 6 1B160001 6 1B160001 6 1B160001 6 1B160001 7 1B35001

7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 7 1B35001 6 1B160001

8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001 8 1B60001

9 2D8001 10 2D160001 10 2D160001 9 2D8001 10 2D160001 9 2D8001 9 2D8001 9 2D8001 9 2D8001 9 2D8001 11 2D35001 9 2D8001 9 2D8001

10 2D160001 9 2D8001 9 2D8001 10 2D160001 11 2D35001 13 2B8001 13 2B8001 10 2D160001 10 2D160001 11 2D35001 9 2D8001 13 2B8001 13 2B8001

11 2D35001 12 2D60001 13 2B8001 13 2B8001 9 2D8001 10 2D160001 10 2D160001 13 2B8001 11 2D35001 10 2D160001 10 2D160001 10 2D160001 10 2D160001

12 2D60001 11 2D35001 12 2D60001 12 2D60001 12 2D60001 12 2D60001 11 2D35001 11 2D35001 12 2D60001 12 2D60001 12 2D60001 11 2D35001 11 2D35001

13 2B8001 13 2B8001 11 2D35001 11 2D35001 13 2B8001 11 2D35001 12 2D60001 12 2D60001 13 2B8001 13 2B8001 13 2B8001 12 2D60001 12 2D60001

14 2B160001 14 2B160001 14 2B160001 14 2B160001 14 2B160001 14 2B160001 14 2B160001 14 2B160001 15 2B35001 15 2B35001 15 2B35001 15 2B35001 15 2B35001

15 2B35001 15 2B35001 15 2B35001 15 2B35001 15 2B35001 15 2B35001 15 2B35001 15 2B35001 14 2B160001 14 2B160001 14 2B160001 14 2B160001 14 2B160001
16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001 16 2B60001

9 10 11 12

ID

0 1 2 3 4 5 6 7 8
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   The sequence number sTT used to categorize permutations follows the order given by the 

original timetable. This order is identified with ID = 0. These are permutations of the 

complete list of elements, since they include all the 16 trains monitored during the entire 

observation period. 

For each different value of the prediction horizon, the plan computed at the first stage 

and implemented in EGTRAIN has provided the permutations 1, 0, and 8 respectively for 

the checkpoints CP1, CP2, and CP3. Trains respect these orders in the base-case scenario 

considered for the analysis. 

Results obtained are reported in Figure 6, Figure 7 and Figure 8, respectively for 

checkpoint CP1, CP2 and CP3. Part a) of these figures shows how the solution ID varies 

over time for different prediction horizons. It is worth noting that this represents only the 

ID of the permutation returned for a certain checkpoint, and it does not have any strictly 

numerical meaning. A larger difference in the ID of two solutions therefore does not mean 

a larger difference between their train orders. As can be seen, the rescheduling solution 

remains more or less the same for the first 20 minutes of operation, independently from 

the length of the prediction horizon used. Then, it starts to become unstable with changes 

that become more and more frequent with the passing of time. This is due to stochastic 

disturbances in the real field (EGTRAIN) that progressively propagate on the network, 

altering train running times. This induces a gap between real (produced by EGTRAIN) 

and predicted (given by ROMA) trajectories that leads to incorrect forecasts and 

uncertainty in the detection of track conflicts.  

 

 

Figure 6: Results at checkpoint CP1 for  different lengths of the prediction horizon. 

 

In our test case, different conflicts are detected at consecutive stages and different 

plans are therefore computed.  
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Figure 7: Results at checkpoint CP2 for different lengths of the prediction horizon. 

 

 

Figure 8: Results at checkpoint CP3 for different lengths of the prediction horizon. 
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This is the reason why oscillations of the rescheduling solution are observed in Figure 

6a), Figure 7a) and Figure 8a). The effect is particularly relevant for longer prediction 

horizons. The motivation is that uncertainties in the prediction grow when traffic is 

foreseen over a wider time window ahead (as also stated in [27]), increasing the 

probability that the forecast is distant from reality. At a certain stage, trains that are 

already in the network must be predicted also for time instants that are quite far from the 

current time, with a higher probability that estimated trajectories will be different from the 

real ones. A large number of trains that have not entered the network yet are also forecast, 

with the disadvantage that their predictions cannot be adjusted accordingly to their current 

states, simply because this information cannot be obtained for these trains. These factors 

result in larger uncertainties when using longer prediction horizons.  

The changes in the solution over time decrease instead progressively while shortening 

the prediction horizon since: i) trajectories of trains already in the network are predicted 

for a shorter period and can be adjusted more effectively according to their current states; 

ii) fewer trains that have not entered yet in the network are forecast. For these reasons it  

seems that shorter prediction horizons would result in an increased control stability. 

This is also the conclusion when looking at the number of relative reordering NRR for 

different lengths of the prediction horizon (Figure 6b), Figure 7b) and Figure 8b)). For all 

the three checkpoints it is immediately seen that while shortening the prediction horizon, 

the value assumed by NRR at a fixed time instant decreases, and so does its variation over 

time. Figure 6c), Figure 7c) and Figure 8c) report instead for each checkpoint the number 

of reordering instructions that the dispatcher would provide over a period of 1 hour, if he 

implemented all the plans obtained at each stage. These figures show how the effort of the 

dispatcher in instructing trains with new orders varies if a different length of the 

prediction horizon is adopted for the rescheduling tool. For CP1 this effort presents an 

increasing trend with the length of the prediction horizon. An increasing trend is presented 

also for CP2 and CP3, with the particularity that the effort of the dispatcher is the same if 

using a prediction horizon of 30 or 60 minutes. This is due to the fact that for PH=60 min 

there is a smaller difference between consecutive solutions, although they change more 

frequently than in the case of PH=30 min (as shown by the variation of the solution ID in 

part a)). For this case study, the number of reordering actions tend to grow when longer 

PHs are set into the rescheduling tool. This can be explained by the fact that when using 

larger PHs, the rescheduling tool has a wider knowledge of both future traffic states 

(although only as expected value) and the time margins actually exploitable to mitigate 

the disturbance. Both these factors enlarge the domain of the possible rescheduling 

solutions and might lead to identify reordering as a more effective measure to manage 

perturbations. This outcome differs from what observed in [27] in which is stated that no 

significant difference in the solution is obtained when enlarging the PH over a certain 

threshold. Most likely such discordance is due to the consistent disturbances considered in 

our test field that differently from the case in [27], induce: key conflicts distributed over 

the entire observation period; perturbations with long term effects; and/or disturbances 

extended to more trains. The trend of NRI shown in part c) of the figures are strictly valid 

only for the perturbed scenario considered in this paper and cannot be generalized. A 

more reliable conclusion can be drawn only after having extended the analysis to a 

significant set of different disturbed scenarios. It is expected indeed that this latter kind of 

analysis returns outcomes that are in accordance with [27].  

Such findings highlight anyway the importance that the analysis performed in this 

paper can assume also to design the parameters (e.g. rescheduling interval and prediction 

horizon) of an optimal control closed-loop setup, if the objective is a more stable 
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dispatching plan, rather than a control strategy that minimizes the effort of the dispatcher.  

Figure 6d), Figure 7d) and Figure 8d) represent how train paths are averagely shifted 

in time (AR) with respect to the original timetable, for different prediction horizons. The 

trend shown by the indicator AR is opposite to the one observed for the metric NRR, given 

that when shortening the prediction horizon, the value assumed for a fixed time instant 

increases and also its instability over time grows. This is due to the fact that the 

rescheduling solution computed at a given time prescribes a train retiming that is more or 

less the same independently from the prediction horizon employed. This means that for a 

given rescheduling stage, the numerator of the AR metric remains more or less the same 

across different lengths of prediction horizon. The denominator instead decreases while 

shortening the horizon since a lower number of trains are considered in the forecast and 

therefore in the solution. That is why the value of AR increases for shorter time windows 

of the prediction. When the rescheduling time is around 30 min a similar value of AR is 

obtained for all the prediction horizons. This is only due to a local effect since at this stage 

some heavily retimed trains are not considered when shorter time windows are used for 

the forecast. For the case study examined in this paper, train retiming is therefore scarcely 

affected by the length of the prediction horizon, but it is more sensitive to the evolution of 

traffic behaviour over time, given the oscillations observed over all stages for a fixed 

value of PH. Retiming is therefore not as sensitive to the length of the prediction horizon 

as instead reordering is.  

 

6 Conclusions 

The implementation of automatic and advanced dispatching systems did not reach real 

operations yet. Optimal dispatching solutions can be in principle very sensitive to input 

data and be fragile when confronted with unplanned dynamics. When optimal solutions 

are embedded within an on-line closed-loop Decision Support System, this might lead to a 

stressed behaviour of continuously changing advices that would be hardly acceptable by 

human dispatchers and practitioners.  

In this paper a stability analysis of optimal rescheduling plans is performed by 

adopting a rolling horizon approach within a stochastic and dynamic environment. An 

innovative framework has been used, which integrates the laboratory rescheduling tool 

ROMA with the stochastic microscopic railway simulation model EGTRAIN, which is 

here considered as a valid surrogate of the real field. The current analysis assumes that the 

dispatcher implements only the plan obtained at the first rescheduling stage, while the 

solutions of successive stages are computed on the basis of updated train information 

(speeds and positions) supposing a single randomly perturbed scenario. Consecutive 

optimal plans are then compared by a set of metrics, to understand how they change over 

time when additional stochastic disturbances to operations are considered. A further 

investigation is addressed to estimate how sensitive the stability of a control strategy is 

when varying the length of the prediction horizon in the rescheduling tool.  

Results obtained for the case study Utrecht-Den Bosch show that longer prediction 

horizons result in more unstable control strategies. This is due to the uncertainty in the 

track conflict detection which increases when random disturbances are considered (since 

the probability that the traffic behaviour deviates from the prediction is higher). This 

aspect is observed from the trends of both the solution ID and the number of relative 

reordering NRR. When analyzing the number of reordering instructions, no general trend 

is identified that explains how the effort of the dispatcher varies when changing the 



 19 

prediction horizon. For instance, even unstable (i.e. frequently changing) dispatching 

plans might result in low dispatcher effort, if the consecutive solutions computed are only 

slightly different. A study on a larger statistical sample and/or a specific detailed study on 

a case might help in understanding which value of PH minimizes the effort of the 

dispatcher. Train retiming is instead scarcely sensitive to variations of this parameter but 

mainly influenced by the propagation of stochastic disturbances over time.  

The outcomes confirm the effectiveness of the developed framework and the 

usefulness of the proposed methodology to study the stability of optimal control plans 

during perturbed traffic operations. A similar investigation can also support the design of 

the parameters of the control framework (e.g. lengths of the rescheduling interval and the 

prediction horizon) in order to implement a more stable dispatching plan, rather than a 

control strategy that minimizes the effort of the dispatcher. 

Future research will be addressed to extend this analysis to a significant number of 

randomly generated disturbed scenarios to draw conclusions that are independent from the 

case study considered. Then a complete closed-loop framework will be examined in 

which the entire control strategy (i.e. each consecutive solution computed at each stage) is 

implemented in the simulated field. This would allow not only the evaluation of the 

solution stability but also the effects on solution quality (delays, punctuality) when 

different perturbed conditions are observed. 
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