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Abstract
Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the
mineralized bonematrix ofmost vertebrates. This osteocyte lacuno-canalicular network (OLCN) is
believed to play important roles inmechanosensing,mineral homeostasis, and for themechanical
properties of bone.While the extracellularmatrix structure of bone is extensively studied on
ultrastructural andmacroscopic scales, there is a lack of quantitative knowledge on how the cellular
network is organized. Using a recently introduced imaging and quantification approach, we analyze
theOLCN in different bone types frommouse and sheep that exhibit different degrees of structural
organization not only of the cell network but also of the fibrousmatrix deposited by the cells.We
define a number of robust, quantitativemeasures that are derived from the theory of complex
networks. Thesemeasures enable us to gain insights into how efficient the network is organizedwith
regard to intercellular transport and communication.Our analysis shows that the cell network in
regularly organized, slow-growing bone tissue from sheep is less connected, butmore efficiently
organized compared to irregular and fast-growing bone tissue frommice. On the level of statistical
topological properties (edges per node, edge length and degree distribution), both network types are
indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological
architecture of the osteocyte canalicular network at the subcellular levelmay be independent of species
and bone type. Our results suggest a universalmechanismunderlying the self-organization of
individual cells into a large, interconnected network during bone formation andmineralization.

1. Introduction

Network structures are ubiquitous inNature and often fulfill important functions in transport and signal
processing. In humans, examples include the airways (Metzger et al 2008), the vasculature (Blinder et al 2013,
Pries and Secomb 2014) and the nervous system (Eguiluz et al 2005, Bullmore and Sporns 2009). The
organization into networks can already occur on the level of the individual cells, with neurons using their
extended dendrites and synapses to connect with other cells as the prototypical example (Cajal andMay 1928,
Helmstaedter et al 2013, Takemura et al 2013). It has also been known for a long time that themineralized bone
tissue ofmost vertebrates is densely populated by cells called osteocytes. These cells are embedded in the
extracellular bonematrix during bone deposition, and are linkedwith each other andwith blood vessels through
a highly interconnected network of cell processes (Bonewald 2011) in appearance and size similar to the
neuronal system (Buenzli and Sims 2015). Osteocyte bodies and their processes reside in hollow lacunae and
narrow canals termed canaliculi, respectively, that together comprise the osteocyte lacuno-canalicular network
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(OLCN) (Franz-Odendaal et al 2006). The functional relevance of this network and the details of its architecture
are still under debate, despite a large number of recent studies in thisfield (Asada et al 2013, Thi et al 2013,Hesse
et al 2015,Milovanovic et al 2015, Sano et al 2015,Nango et al 2016).

One assumed function of osteocytes is to orchestrate the process of structural adaptation andmaterial
renewal in bone. These processes are thought to bemechanically controlled, with the result that newbone is
addedwheremechanically needed and resorbedwhere local loading is low. The role of the osteocytes is to locally
initiate bone (re)modeling by generating biochemical signals that activate precursor cells in response to
mechanical stimuli (Nakashima et al 2011). In this case, the role of theOLCNwould be that of a signal amplifier:
small deformations or cracks within the bone tissue are sensed by osteocyte processes and transduced into a
biochemical response that is then spatially integrated and triggers the recruitment of osteoblast and osteoclast
precursor cells (Wang et al 2007). Besides this putativemechano-sensory role, osteocytes are suspected to be able
to locally remodel the bonematrix that surrounds them (osteocytic osteolysis) (Belanger 1969, Teti and
Zallone 2009). This would enable them to participate in the calcium andphosphatemetabolism of the body by
making themineral reservoir deep in the bone tissue accessible through the network of canaliculi. The ability of
osteocytes to secrete endocrine factors involved inmineral homeostasis strongly supports this possibility (Dallas
et al 2013). For both,mechanosensing andmineral exchange, the efficiency of the network in distributing
molecules and signals between cells and throughout thematrix plays a central role, as suggested by in vivo tracer
studies and theoreticalmodeling (Tate et al 1998). Finally, the function of the canalicular network for the
osteocytes is to supply nutrients and removewaste bymaintaining contact to blood vessels (Bonewald 2011).

The efficiency of real-world networks such as roadmaps,metabolic networks, or the internet can be assessed
usingmethods andmeasures derived from graph theory (Boccaletti et al 2006). By representing these diverse
systems as a collection of edges connected by nodes, their structural and topological properties can be analyzed
and compared. Common features of real-world networks include exponential or scale-free degree distributions,
high clustering coefficients (CC), and hierarchical organization. In contrast to randomgraphs, empirical
networks often exhibit small-world properties such thatmost points in the network can be reached from
anywhere by a small number of steps, which is very efficient for transport and communication. The application
of complex network theory to biological networks resulted inmany important insights into the structure and
function of these networks (Bullmore and Sporns 2009, Pries and Secomb 2014).

To date, such a characterization could not be carried out for the osteocyte network in bone, in part due to a
lack of structural data that provide sufficient resolution and at the same time span large enough volumes. Direct
imaging of osteocytes and their processes in living bone is difficult due to the limited accessibility and
transparency of the bonematrix; therefore,most techniques for imaging the osteocyte network rely on imaging
theOLCN in bone samples after cells and soft tissue have been removed.Mainly, three classes of imaging
modalities have been reported, based on x-raymicro computed tomography (μCT), scanning electron
microscopy (SEM), or confocal laser scanningmicroscopy (CLSM). TEMandTEM-based electron tomography
are notwell suited for imaging larger parts of theOLCNdue to limitations in sample thickness and preparation.
While conventionalμCT scanners can image individual lacunae including their shape and orientation, phase-
resolved synchrotron x-ray tomography has recently been applied to derive 3D images of the network of
canaliculi around a single osteocyte at a fewnm resolution (Dierolf et al 2010,Hesse et al 2015). SEMcan only
image surfaces due to the low penetration depth of electrons in dense tissue, but two approaches have been
reported to derive 3Ddata of theOLCNusing SEM. In one approach, the hollow spaces in bone are filledwith a
resin, and the surrounding bone tissue is then etched away, exposing the resin cast and hence the structure of the
OLCNas a projection (Pazzaglia andCongiu 2013). The other approach is FIB-SEM slice-and-view, where the
surface is repeatedly imagedwith SEMandmilled using a focused ion beam. This variant produced themost
detailed and accurate 3D images of theOLCN (Schneider et al 2011) and its embedment into the collagenmatrix
(Reznikov et al 2014) to date, yet both SEM-based techniques inevitably result in the destruction of the sample.
The thirdmethod, CLSM, requires fluorescent staining of the networkwhile the sample itself is preserved
(Anderson et al 2008, Kerschnitzki et al 2011). The resolution of CLSM is limited by the optical diffraction limit
and is intrinsically anisotropic and depth-dependent, and therefore, in contrast to XRPT and FIB-SEM, cannot
accurately resolve the diameter of individual canaliculi. Scaled-upmodels fromCLSMstacks have e.g. been used
to study transport properties of theOLCN,without detailed quantification of the canalicular network
(Anderson et al 2008).

We previously showed that by image processing, the network can be reconstructed fromCLSM image stacks
as long as the resolution is sufficient to separate neighboring canaliculi (Kerschnitzki et al 2013). This study
revealed a relationship between the proximity of the bonematrix to canaliculi and the nanoscale properties of
themineral crystals in thematrix, suggesting active participation of osteocytes in bone remodeling andmineral
homeostasis. Here, we present an improvement of this imaging and analysis technique and use it to quantify the
architecture of the osteocyte network in different bone types frommouse and sheep.We usefibrolamellar bone
from sheep, which growsmore slowly but in amore controlledway on top of a template surface (Ferretti et al
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2002, Liu et al 2010, Kerschnitzki et al 2011), andwoven bone frommice, which grows faster but in the absence
of an organizing surface. Based on these data, we report the first detailed characterization of its topological and
statistical properties on the subcellular level usingmeasures from complex network theory. TheOLCN
reconstructed fromCLSM image stacks is described as a network graph, i.e. by the locations of nodes and edges,
and the adjacencymatrix, which contains information on hownodes are connected through edges. Thismakes it
possible to calculate generic statistical and topological properties such as edge length and degree distributions,
and relationships between these properties.With this proof-of-principle approach, we aim to address the
questionwhether the knowndifferences in tissue organization and appearance of theOLCN in different types of
bone fromdifferent species are reflected in the organization of the network of cell processes, or if the network at
the cellular and subcellular level is independent of bone type and level of organization. By developing a
quantitative characterization of the topological and statistical properties of theOLCN in different bone types, we
hope to learnmore aboutwhat purpose this networkmay have evolved for, how its formation is controlled, and
how these networkmeasures relate to bonematerial quality during physiological development or pathological
conditions of age, disease and pharmaceutical intervention.

2.Materials andmethods

2.1. Sample preparation and imaging
Theworkflow from sample preparation to image analysis and quantification is summarized infigure 1(a). Bone
samples, sample preparation, and stainingwith Rhodamine-6Gwere the same as previously described
(Kerschnitzki et al 2011, 2013).We usedfibrolamellar ovine bone from themid-diaphysis of the femur of a 5
year old sheep aswell asmurine bone from themid-diaphysis of the femur froma 12month-oldmouse, without
initial aldehyde fixation. Bone sampleswere cut either in cross sections or in longitudinal sections with an initial
thickness of 200 μmand polished fromboth sides in an automatic polisher (Logitech PM5, Logitech Ltd,
Glasglow,UK) until afinal thickness of 80 μm. Samples were kept wet throughout thewhole preparation

Figure 1.Overview of theworkflow and the resulting networks in different samples. (a)Appearance of theOLCN in the four different
types of samples, from left to right:mousewoven bone cross section,mousewoven bone longitudinal section, ovinefibrolamellar
bone cross section, and ovinefibrolamellar bone longitudinal section. Images aremaximum intensity projections of the skeletonized
data fromone representative volume of each sample type. The total number of analyzed volumeswas 20 (n= 5 per subgroup). Images
of all samples are included as supplementary information. The field of view is always 100 μm× 100 μm. (b) Image analysis workflow
from left to right: raw confocal images, surface after thresholding, segmented skeleton, and network topology. (c)Canalicular density
over total void fraction for all individual samples (symbols), andmeans and standard error (lines) for each of the four sample types.
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process. Until further usage, samples werewrapped in cotton gauze soaked in phosphate buffered saline solution
(SigmaAldrichGmbH,Germany) and stored at 4 °C. For each bone type (murinewoven bone and ovine
fibrolamellar bone) and orientation (longitudinal and transversal),five different non-overlapping fields of view
far from the sample border were randomly selected and imaged, amounting to 20 image stacks with 51 images
per stack in total. Image acquisitionwas done on a LeicaDM IRBE confocalmicroscope (LeicaMicrosystems,
Wetzlar) using a 100x oil immersion objective (NA= 1.4) using a voxel size of∼0.2 μm× 0.2 μm× 0.2 μm.
Total volume size was 512× 512× 51 voxels or 100 μm× 100 μm× 10 μm.

2.2. Image processing
Raw image stacks wereGaussian filtered in 3D (σ= 0.65 voxels) to remove high-frequency noise, and a top hat
filter with a disk-shaped kernel of radius 25 pixels was applied to each image slice separately. Top-hat filtering
subtracts the eroded and dilated image from the original image, thereby removing intensity gradients on length
scales larger than the kernel in the image plane before applying a global intensity threshold. The threshold for
separating foreground and background voxels was defined as the intensity where the number of non-connected
objects in the binarized imagewasminimal (Kerschnitzki et al 2013). Smaller values would result in an increase
of the number of objects due to noise, whereas higher values would lead to fragmentation of the network, again
increasing the number of objects. Thismethodwas applied to a number of representative stacks to determine the
value for the threshold, whichwas thenfixed and applied globally to all pre-processed stacks. All objects in the
resulting binary volumes smaller than 10 voxels were considered as noise and removed. Finally, the imagewas
morphologically closed tofill gaps, and all isolated background components (e.g. voids inside lacunae resulting
from incomplete staining)were filled. The key step that influences graph structure is thresholding, while the pre-
and postprocessingmainly ensure that a global threshold can be applied, and serve to remove spurious
structures, but do not influence graph structures. Therefore, given that the staining procedure ismore likely to
miss existing than to add artificial canaliculi, any remaining error in our topological threshold optimizationwill
rather under- than overestimate the number of links.

2.3. Cell lacunae detection and skeletonization
Cell lacunae and other large structures (e.g. blood vessels)were detected using amodified 3Dwatershed
algorithm. All objectsmore than 7 voxels away from the surface andmore than 100 voxels in sizewere defined as
seed points. These objects were then expandedwithin the existing binary volume by iterative dilationwith a
sphere (diameter 3 voxels) until the relative increase in volume per stepwas smaller than 10%, to prevent
growing of the cells into the canaliculi. The cutoff of 10%yields accurate lacuna shapes empirically butmay have
to be adapted if different structures are to be recognized. The detected objects weremasked to exclude them
from the skeletonization, and the remaining volumewas skeletonized using a customvectorized
implementation of parallelmedial axis thinning in 3D (Lee et al 1994), resulting in a one-voxel thick
representation of the network of canaliculi connecting the non-skeletonized cell lacunae and blood vessels
(figure 1(a)). Short branches resulting from image noise were pruned after skeletonization using a cutoff of
1 μm.The canalicular networkwas then converted into aweighted non-directed graph represented by nodes,
edges and their adjacencymatrix. Here, edgeweight in the adjacencymatrix corresponds to the length of the
canaliculus between two intersections, or to the length of the shortest canaliculus ifmultiple connections exist.
Skeletonziation, filtering and graph conversionwere repeated until the number of nodes and edges did not
change anymore between iterations to ensure accurate node connectivity and small-worldness properties. All
image and network analysis was implemented inMATLAB (MATLAB 2013b,Mathworks) using the image
processing toolbox. The analysis of a single ROI takes less than 15 min on an Intel Xeon E5-2697 2.7 GHzCPU
and consumes about 2GBRAM.

2.4. Spatial network analysis
The total void fraction is defined as the number of all foreground (lacunar or canalicular) voxels in the binary
image divided by the total number of voxels. Canalicular density (Ca.Dn) is ameasure for the density of cell
processes within thematrix and is defined as the number of network voxels without lacunae divided by the total
number of voxels without lacunae (Repp et al 2017). The proximity of amatrix voxel to cell lacunae, dL, and to
the entire lacuno-canalicular network dLC, wasmeasured by calculating the 3DEuclidean distance transformof
the background to the foreground voxels in the binarized images of lacunae only, or of the entire network
including lacunae. The distance dnet of any point within the network of canaliculi to reach the closest cell
through the networkwas determined by iteratively tagging all canalicular voxels starting from cell lacunae. The
(dimensionless) gain factorGnet of transport efficiency between cells andmatrix due to presence of the
canalicular networkwas calculated as the actual distance to the next lacuna through the network divided by the
effective distance if the transport through canaliculi is k= vnetwork/vmatrix times faster compared to passive
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diffusion through the bonematrix,

= + + ´( ) ( )/G d d d k d1 ,net LC net LC net

averaged over allmatrix voxels. Here, we define transport efficiency in the sense of how long signals andminerals
travel between cells andmatrix, assuming that travel time is proportional to distance. Since dLC is the proximity
ofmatrix to the lacuna-canalicular network and dnet the distance to the closest lacuna through the network, the
sumof both is proportional to the travel time of amolecule from any point in thematrix to the next lacuna
(figure 2(d)).Gnet is a lower boundary for the actual time gain, since the scaling of transport timewith distance is
expected to be faster for directed transport through the network compared to passive diffusion through the
matrix.

2.5. Topological network analysis
The network topology is represented as a sparse connectivitymatrixA, where aij is the length of the shortest link
between nodes i and j, or 0 if no such link exists. The size of thematrix corresponds to the number of nodesN
and defines the graph size. The edge density, sometimes also called connectivity, is calculated as the number of
existing edges E divided by the number of possible edges in an undirected graph,N(N− 1)/2. The Euler
characteristic for graphs is defined as the number of edgesminus the number of nodes,N–E (Mecke and
Stoyan 2001). The degree, orweight, of a node k is the number of edges connected to it. Nodes with degree= 1 are
end points of branches of the network, all other nodes have degree�3 by definition.We define nodeswith aCC
larger than 0.5 (independent of their degree) as ‘cluster nodes’ and nodeswith degree= 3 andCC= 0 as ‘tree
nodes’. Endpoints at the edge of the volume (<3%) cannot be distinguished from cut-off canaliculi, but were
kept tomaintain consistency of the network. TheCCof a node, which is ameasure for the local connectivity, is
calculated by dividing the number of existing by the number of possible edges between all neighbors of a node.
The average shortest path (ASP), whichmeasures the typical separation between two nodes in the network, is
derived by taking themean of all shortest paths between any two nodes. The betweenness centrality of a node is

Figure 2. Structural characterization reveals advantages of themore organized network infibrolamellar bone compared towoven
bone. (a)Accessibility of the bonematrix from the lacuno-canalicular network (solid lines) and from lacunae (dashed lines). The
fibrolamellar bonematrix is on average further away from the next lacuna, but closer to the lacuno-canalicular network and therefore
to bone surfaces. (b)Examples of color-coded distancemaps of the bonematrix from lacunae and the canalicular network for woven
(left) andfibrolamellar bone (right). (c)Average distance of the network from the next lacuna (dnet), and of thematrix from the
canalicular surface (dLC). The network infibrolamellar bone is further away from the next lacuna but on average closer to thematrix.
(d)Effective gain of transport efficiency over the network compared to through the bonematrix. The higher the relative difference in
velocity through the network, vnetwork, compared to diffusion through thematrix, vmatrix, the larger the benefit of having a denser
lacuno-canalicular network. The sketch on the right side illustrates the difference between transport from any point in thematrix to
the next lacuna through the network versus through thematrix.
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the fraction of all such shortest paths in the network running through that node. Such centralitymeasures are a
way to determine the importance of a nodewithin the network, and non-random clustering of high-
betweenness nodes reveals important paths connecting distant parts of the network. To compare the results for
theOLCNwith randomnetworks, we simulated 50 equivalent Erdös–Renyi (ER)networks (identical size and
density but randomly placed edges) for each sample, and estimated the values of the relevant parameters by
averaging over them. CCs, shortest paths, betweenness centrality andER graphswere calculated using the Boost
Graph Library forMATLABbyGleich (2008).

2.6. Statistics
All results are stated asmean±95% confidence interval unless stated otherwise. Differences between the two
bone types and cutting planeswere tested for by performing a two-wayANOVA (anova2() inMATLAB). In
addition, individual differences between all four groupswere assessed bymultiple comparison testing
(multcompare() inMATLAB)with Bonferroni correction. Allmeans and p values are summarized in tables
S1 and S2 are available online at stacks.iop.org/NJP/19/073019/mmedia. Rawdata and the scripts to perform
the analysis and generate thefigures are available for download6.

3. Results

3.1. Structural quantification
3.1.1. Network density and void fraction
Wecompared the lacuno-canalicular network in fibrolamellar sheep bone andwovenmouse bone from
different locations and orientations. At a first glance, cell networks infibrolamellar bone appear dense andwell
organized, with regularly spaced cell lacunae. In contrast, the lacunae inwoven bone seem to be randomly
arranged, and the canaliculi lookmore sparse and irregular (figure 1(a)). To quantify these observations, we
assessed the density of the canalicular network expressed as length per volume, and related it to the total porosity
of the tissue including both the canalicular network and the lacunae (figure 1(c)). The total void fraction is about
three times as high inwoven bone (0.16± 0.05) compared tofibrolamellar bone (0.05± 0.01) due to the
presence of large voids that likely correspond to blood vessels. In contrast, the Ca.Dn of the bonematrix in the
fibrolamellar bone samples is 0.19± 0.01 μm μm−3 and therefore twice as high as compared to that in the
woven bone samples (0.10± 0.01 μm μm−3).While the total void fraction depends on the sample region and
exhibits high variability, theCa.Dn is a local property and appearsmuchmore homogeneous across different
samples from the same bone type. Overall, fibrolamellar bone has less total void volume but a denser canalicular
network.

3.1.2. Proximity ofmatrix to bone surfaces
Wenext compared the accessibility of the bonematrix in the different samples by calculating the distance of the
matrix from the closest lacunar or lacuno-canalicular surface.We found that thematrix is on average closer to
lacuno-canalicular surfaces infibrolamellar bone (dLC= 1.01± 0.04 μm) compared towoven bone (dLC= 1.75
± 0.22 μm), but further from the next lacuna (figure 2(a)). Cumulative histograms infigure 2(a) show that in the
twofibrolamellar bone groups, 93% and 96%of thematrix are within 2 μmfrom the network, whereas in the
woven bone groups, only 64% and 77%arewithin 2 μm, respectively. Figure 2(b) shows the 3D spatial
distribution of the distance in representative volumes of each sample type. Inwoven bone ofmice, the presence
of largewhite and gray areas suggests that those regions of the tissue have only limited access to the lacuno-
canalicular network.

3.1.3. Transport properties
Wenext quantified the distanceswithin the canalicular network. Cell bodies and nuclei of osteocytes reside
within the larger lacunae, whereas the canaliculi contain their thin cell processes. Since signals are processed in
the cell bodies rather than in the protrusions, the distances that need to be overcome between cell bodies through
the network are an important parameter for the intercellular communication between osteocytes.We found this
distance to be on average smaller inwoven bone (dnet= 7.79± 0.97 μm) compared tofibrolamellar bone (dnet
= 10.25± 1.46 μm) (figure 2(c)). In otherwords, a single cell infibrolamellar bonemust span on average a larger
matrix volumewith its processes than a cell inwoven bone.

Infigure 2(c), we compare the two previously quantified parameters, the distance dLC of the bonematrix
from the closest lacuno-canalicular surface, and its effective distance dnet from the closest cell lacuna through the
network, since both distances are important for the accessibility of thematrix by cells. It is evident that, since

6
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fibrolamellar bone ismore denselyfilled by awell-organized canalicular network, the distance to the network is
smaller compared to that of woven bone. Interestingly, the variance of the two parameters is opposite in the two
bone types: the variation of the distance to the next lacuno-canalicular surface is smaller infibrolamellar bone,
whereas the variance of the distance to the next cell lacuna is smaller inwoven bone. The two sample groups
withinfibrolamellar andwoven bone, respectively, were not different in either of the two parameters.

An important functional aspect of the canalicular network is that transport ofmolecules and signals is faster
and thereforemore efficient through the network than by diffusion through the bonematrix.We estimated the
gainGnet of efficiency due to the presence of the network as a function of the increase in transmission velocity
through canaliculi (vnetwork) compared to through thematrix (vmatrix). An effective distance to the next cell was
calculated as a function of the ratio k= vnetwork/vmatrix and normalized against the actual physical distance
(figure 2(d), seemethods). This corresponds to a decrease in the time necessary that a signalingmolecule or
mineral ion from the bonematrix reaches the next cell. For a velocity ratio of 1,Gnet= 1—in this case there
would be no advantage of having a canalicular network for transport. In reality, the diffusion coefficient of small
molecules through the collagen-apatite porosity of the bonematrix is estimated to be at least 100 times smaller
than for free diffusion or load-enhanced fluid flow through theOLCN (Wang et al 2005, Fritton and
Weinbaum2009,Marinozzi et al 2014). For a ratio of k= 100, the gain rises above 10 infibrolamellar bone, and
up to 6 inwoven bone, and then saturates since it is now limited by diffusion to the closest canalicular surface.
Therefore, at realistic values for the velocity ratio, the performance gain due to the presence of the canalicular
network ismore than twice as high infibrolamellar compared towoven bone.

3.2. Statistical properties
3.2.1. Network size and edge density
The representation of theOLCNas a graph enabled us to apply complex network analysis to determine statistical
properties of the network, and to compare thembetween different bone types andwith other biological
networks. Themost general properties of a graph are its size, defined as the number of nodesN, and its edge
density, which is the fraction of existing edges over all possible edges. The size of the networks was larger in the
more ordered fibrolamellar bone compared towoven bone (figure 3(a)). Therewas a clear difference between
the two sample groupswithin bothfibrolamellar andwoven bone. This correlates with the apparent network
density in the respective images (figure 1(c)). Since all samples had identical volume, differences in graph sizeN
represent differences in the number of nodes per volume. The average node density was 4× 107 permm3 in
woven bone and 7× 107 permm3 infibrolamellar bone.

Remarkably, the network graphs for the different samples do not exhibit a size-independent edge density, as
would be the case for a random graph (figure 3(a)). Rather, the universal invariant in the osteocyte network is the
number of edges per node.Whennumber of nodes (excluding cells and endpoints) and edges are plotted against
each other, all examined samples regardless of species and bone type fall onto a single straight line, as shown in
the inset tofigure 3(a). The number of edges per node averaged over all samples is 3.28± 0.01 if only nodes of
degree� 3 are included, and there is no statistically significant difference between the four groups. This predicts
an edge density that scales with the number of nodes as 3.28×N−1. This power law precisely fits the data in
figure 3(a). The equivalent Euler characteristic for these networks is 3.28×N. If also endpoints, i.e. nodes with
degree 1, are included the average degree drops to 2.8 and becomes significantly different between sample groups
due to the different percentage of endpoints (see below).

3.2.2. Universal edge length and degree distributions
Wenext determined the cumulative statistical distributions of edge length and node degree, which are two
commonmeasures to classify and compare complex networks. Cumulative edge lengths were exponentially
distributed in all examined networks (figure 3(b))with a typical decay parameter of−2/3. The decay parameter
(or slope of the distribution in a semi-logarithmic survival plot, shown as a gray line infigure 3(b))was not
significantly different between any of the four sample groups.

Cumulative degree distributions for all four sample groups are shown infigure 3(c). All four groups followed
an exponential distributionwith a decay (or slope in a semi-logarithmic plot, indicated by the gray line) around
−4/3. Again, therewas no significant difference in the decay parameter between the four groups. Taken
together, all examined networks, despite their differences in appearance and density, universally follow the same
exponential edge length and degree distributions.

In a spatial network, the ‘importance’ of a node depends not only on the number of edges that connect to it,
but also on the length, or ‘weight’, of the edges. To quantify this, the ‘weighted degree’WDis calculated as the
sumof the length of all edges connected to a node. The cumulative weighted degree distributions are shown in
figure 3(d). In this evaluation, cells were included and plotted togetherwith all other nodes in one graph. The
weighted degree distribution follows an exponential decay similar to the degree distribution, but with a long tail
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above about 200 μmdue to the presence of cells. For comparison, the gray lines indicate an exponential decay of
−1/2 and a power law decaywith an exponent of 3/2, respectively.

3.3. Topology and connectivity
3.3.1. Tree-like local topology
Wenext looked at the local topological organization of the network of interconnected canaliculi. Here, it is not
only interesting to look at the number of neighboring nodes towhich a node is connected (its degree), but also at
the probability of connections between these neighboring nodes, expressed in theCC. ACCof onemeans that all
neighbors of a node are connected to each other, while a CCof zeromeans that there are no connections between
neighbors of a node. Thefirst case corresponds to a fully connected dense region of the network, whereas the
latter case indicates a tree-like organization of this region of the network (figure 4(a)).

To characterize the local organization of the canalicular network, we classified nodes according to their CC
and their degree: nodes with aCC larger than 0.5 (independent of their degree)were identified as ‘cluster nodes’,
whereas nodes with degree= 3 andCC= 0were defined as ‘tree nodes’, indicating a dendritic-like organization
of the networkwhere a cell process branches into two sub-processes (figures 4(a) and (b)).We found in all cases
that themajority of nodes belonged to the category of tree nodes, suggesting that the network of cell processes is
largely organized as a dendritic branching network. All investigated networks exhibited only a small number of
cluster nodes.Woven bone samples had a higher percentage of cluster nodes (1.48± 0.5%) and a smaller
percentage of tree nodes (43.0± 3.9%) compared tofibrolamellar bone (0.76± 0.2% and 53.5± 1.7%,
respectively).

A third relevant class of vertices are the end points of branches, defined as nodes with degree= 1 that are not
at the boundary of the volume (i.e. no cut-off canaliculi). The percentage of such nodes in the network is a

Figure 3.Global statistical analysis and universal properties of the network topology. (a)Edge density (number of existing over
number of possible edges) versus number of nodes for individual samples. The edge density depends on network size, while the
number of edges per node is identical in all samples (inset) and about 3.3. (b)Cumulative edge length distribution for all four sample
types. The edge length distribution is in all cases exponential with a factor of−2/3 (gray line). (c)Cumulative degree distribution for
all four sample types. Again, all four distributions are exponential with a decay of−4/3 (gray line), most nodes have degree 3. (d)
Cumulative weighted degree distributions, taking into account the edge length and including cell lacunae as nodes. All four samples
show an exponential distribution up to 200 μmwith a decay of−1/2, and a power law tail at larger degrees with an exponent of−3/2.
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measure for howoften canaliculi end as ‘one-way roads’ rather than being connected to other parts of the
network.We found that on average, 29.8± 4.2%of all nodes inwoven bone are such end points, whereas only
17.5± 1.9%of all nodes infibrolamellar bone are end points (figure 4(c)).

3.3.2. ASP and betweenness centrality
Our investigation of the local topology showed that the network of osteocyte cell processes can be described as a
dendritic branching network interspersedwith a fewhigh-CCnodeswithmany connections between neighbors.
Woven bone had a higher percentage of highly clustered nodes compared tofibrolamellar bone.We next asked if
these local differences in topology coincidewith differences in globalmeasures for topology and transport
efficiency (e.g. for nutrients or chemical andmechanical signals). One possibility to express the efficiency of
transport across a network is the ASP fromone node to any other in the network. TheASP averaged over all
samples was 48.2± 3.7 μm,with no significant differences between sample groups despite the larger overall size
of the network infibrolamellar bone. For any given node, the betweenness centrality, defined as the fraction of
shortest paths in the network running through that node, is ameasure for the importance of that node.
Figure 4(d) shows two color-codedmaps of the betweenness centrality of nodes forfibrolamellar andwoven
bone, respectively. It is immediately clear that in both bone types, high-centrality nodes align along preferential
‘highways’ across the network throughwhichmany shortest paths are running.

Figure 4. Local topology and connectivity analysis reveals small-world properties. (a)Percentage of tree-like nodes is higher in
fibrolamellar than inwoven bone. (b)Woven bone has a higher percentage of cluster nodes. (c) Spatialmaps of betweenness centrality
(number of shortest paths running through a node) reveals ‘highways’ between cells and cell layers. Nodes with betweenness in the
highest 15% are light green, while nodes within the highest 5% are dark green. (d) Small-worldness S, defined as CCover average
shortest path (ASP) relative to an equivalent Erdös–Renyi (ER) randomnetwork of same size and edge density, plotted over network
size. Small-world networks have a similar ASP but larger CC compared to the equivalent ER network, resulting in S> 1. (e) S for all
four subgroups of osteocyte networks in comparison to other real world networks (data fromHumphries andGurney 2008). Black
line is the fit of S overN for all data described in (Humphries andGurney 2008).
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3.3.3. Small-world properties
Wenext investigated if the osteocyte lacuna-canalicular system is a small world network. Small world networks
are a class of networks where the average path length between any two nodes ismuch smaller than in a random
network of same size and density, resulting in amore efficient communication (Amaral et al 2000, Boccaletti et al
2006).Many biological, technical and social networks have been found to belong to this class (Amaral et al 2000,
Eguiluz et al 2005). Although there is no standard definition of a small world network, a number of practical
measures for small-worldness have been proposed. The classicalmeasure is that the ASP ismuch smaller than in
a randomnetwork of same size, but theCC is similar (Amaral et al 2000, Boccaletti et al 2006).While the ASPwas
not significantly different between all subgroups, CCwas slightly higher inwoven bone than infibrolamellar
bone (p< 0.05,figure 4(g)). Amore rigid definition proposed byHumphrey et al (Humphries andGurney 2008)
is small-worldness S, defined as the ratio of ASP andCCdivided by the same ratio for a ER random graph of the
same size and edge density.We calculated this ratio for each of the 20 networks and found S to be 31.9± 4.6 in
woven bone and 44.8± 5.0 for fibrolamellar bone (figure 4(e)).We observe a higher S for the larger fibrolamellar
bone networks and a roughly linear relationship betweenN and S (figure 4(e)).We compared the network size
and small-worldness S to those of>30 real small-world networks from (Humphries andGurney 2008),
including theC.Elegans neuronal connectome, electric circuitmaps, and train networks (figure 4(f)).Wefind
that the osteocyte network, with its intermediate size compared to the other networks,fits well into the linear
relationship between S andN.

4.Discussion

In this study, we report an extensive quantification of the spatial and topological properties of theOLCN in
bones of different structural organization, i.e. woven bone frommouse and fibrolamellar bone from sheep.
Woven bone has a higher overall void fraction but a smaller density of canaliculi compared tofibrolamellar bone
(figure 1(c)). Concurrently, itsmatrix is on average further from the next canalicular surface (figure 2(a)),
whereas the distance to the next lacuna both through thematrix as well as through the network is shorter
(figure 2(c)). Inwoven bone, thesemean distances exhibitmore pronounced variation between samples
compared tofibrolamellar bone (figure 2(b)). A smaller variation between samples suggests that this parameter
ismore controlled during development. Hence, the spacing and organization of the canaliculi appears to be
more tightly regulated infibrolamellar bone compared towoven bone. The higher degree of organization of the
network infibrolamellar bone is furthermore supported by the 2.5-fold higher gain in transport efficiency due to
the presence of the network (figure 2(d)). Taken together, the spatial organization of the network in
fibrolamellar bone ismore efficient compared towoven bone in terms of controlling the bonematrix and
accessing the storedmineral.

While the quantification of the spatial architecture of theOLCN revealed pronounced differences between
all four sample groups, they exhibit surprisingly universal statistical properties on the level of network topology.
The number of edges per node is 3.3 in all examined networks independent of size. Both edge length and node
degree are exponentially distributed, with no statistically significant differences between the four sample groups.
The presence of power-law tails of theweighted degree distribution including cell lacunae emphasizes the role of
cells as ‘hubs’within the network.

Investigation of the local topology reveals that the network ismainly organized in a tree-like fashion, with
only a small percentage of nodes with highCC. This tree-like organization is the expected outcome of a dendritic
outgrowth process with successively branching cell processes (Bonewald 2005, Buenzli and Sims 2015). The
exponential degree distribution and presence of high-degree nodes in the network does not contradict such a
branching process as themain organizingmechanismduring growth, since high-degree nodes could also
represent dense clusters of branching points (tree nodes)within a small volume below the optical imaging
resolution (Wittig et al 2016). This would not affect small-world properties of the network since no links are
added or removed. All examined networks seem to exhibit similar local organization despite pronounced
differences in the total network size.

The topological architecture of the network allows quantifying the efficiency of the network for information
transfer. An importantmeasure here is the ASP between any two nodes in the network, and the number of such
paths that run through a given node (betweenness centrality).We found that the shortest paths between nodes in
the network run along a few ‘highways’ onwhichmost high-centrality nodes are clustered together (figure 4(c)).
In a completely homogeneous spatial network, the betweenness centrality would be highest in the center and
decrease towards the edge (Barthelemy 2011). Our results showno such simple relationship, but instead the
clustering along important paths linking distant regions of the network reveals the small-world character of the
OLCN. By comparing the ratio of ASP andCC to that of a random graph of the same size and density, we derive
the small-worldness S andfind it to be significantly higher infibrolamellar compared towoven bone networks,
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and proportional to network sizeN. Proportionality between S andN has been reported for a large number of
real-world networks as diverse as neuronal connectomes, transport and signaling networks with S∼ 0.023*N0.96

(Humphries andGurney 2008). Despite a different proportionality observed for our data, this probably explains
the observed difference in S for the different bone types.Whenwe compare the average S andN for all samples to
the data inHumphries andGurney (2008), wefind that the osteocyte network exhibits a similar S as other real-
world complex networks of similar size (figure 4(f)). These include both spatial as well as non-spatial networks,
despite differences such as the cost associatedwith link length in spatially embedded networks such as theOLCN
(Barthelemy 2011). Since small-worldness is ameasure for how efficiently the network is organized to transmit
signals between distant points in the network, we conclude that the small-world like topology of the osteocyte
network, with interconnected ‘trees’ emanating from lacunae, is a result of adaptation towards efficient
organization. A completely randomor homogeneous spatial network of same size and edge density would be
missing these short connections between distant regions.

How are thesefindings linked to the functions of the osteocyte network? As outlined in the introduction, the
OLCN is believed to be important for bonemechanosensing, signal transduction, and nutrient supply of
osteocytes. In all three of these functional scenarios, the efficiency of the network in distributingmolecules and
signals between cells and throughout thematrix plays a central role. The optimal strategywould then be to access
asmuch bonematrix volume as possible with as few cells as possible, while keeping the effective distance
between cells through the network as short as possible. Our results show that fibrolamellar bone, despite
containing fewer cells per volume, exhibits amore optimized organization of the canalicular networkwith
respect to these functional criteria as compared towoven bone.

This advantagemight be a consequence of themore controlled but slower growth of highly organized bone
against a pre-existing endogenous scaffold, whereas woven bone is rapidly formed in a less controlledmanner
and in the absence of an organizing surface (Ferretti et al 2002, Kerschnitzki et al 2011). The guidance by the
scaffold surface results in long-ranged alignment of cells and extracellularmatrix fibers during bone deposition.
This oriented organization does not only improve themechanical performance of bone, but serves as a blueprint
for the osteocyte network. Cell processes alignwith the topographical cues of the surroundingmatrix (Dunn and
Heath 1976, Curtis andWilkinson 1997) and direct the orientation of subsequently deposited extracellular
matrix fibers (Wang et al 2003, Lamers et al 2010). This continuous feedback between cells and their
environment gradually producesmore coordinated and integrated higher-level structures. Together with the
longer time available to the fibrolamellar network to grow and reorganize before the tissue structure isfixed due
tomineralization, this allows for amore dense, well-organized and therefore efficient network. The higher
degree of organization of thefibrolamellarOLCN togetherwith the superiormechanical performance justifies
whywoven bone is gradually replaced byfibrolamellar bone, despite the high cost of resorbing and depositing
bone tissue. Once the network is in place, the newly remodeled bone canmore efficiently contribute to the
existingmechano-sensory network andmineral depot of the skeleton.

Our results show that the organization of the osteocyte network can serve as ameasure for bone quality
(Seeman andDelmas 2006) due to its direct functional relevance. The quantification developed heremay be
useful in assessing bone quality during physiological development or pathological conditions of age, disease and
pharmaceutical intervention, complementary to existing parameters such as bonemineral density. Althoughwe
did not apply our analysis to compare healthy to diseased bone, our choice of different bone types reflecting
different degrees of organization demonstrates the potential of ourmethod to quantify differences in efficiency.
Pathological deviations inmatrix protein structure,matrix deposition, or bone homeostasis likely result in a less
efficiently organized network. Conversely, deficits in network organization lead to less efficientmineral
exchange, impairedmechanotransduction and overall reduced osteocyte viability due to limited nutrient
supply. By quantifying the parameters of theOLCNas introduced here, such two-way interactions between
network organization and bone quality can be easily assessed by comparing healthy and diseased bone samples,
and the results can e.g. be used to add amore accurate description of the canalicular network to theoretical flow
models (Mishra andTate 2003).

While the density and spatial organization of the network differ between bone types, other properties of the
network, such as edge length distribution, degree distribution, and the tree-like topology are surprisingly
universal despite the different growthmodalities. This shows that the same cellularmechanisms is at work
during the outgrowth of cell processes and the formation and pruning of cell–cell contacts, independent of bone
type and species. It also suggests that thesemechanisms operate in a narrowparameter range that results in an
optimized topologywith regards to node density and edge length. For example, a certain fraction of high-degree
nodes, or closely spaced 3-nodes,might be ideal for sensing damage or integrating signals from remote branches
of the network.

One fundamental challenge in biology is to understand how individual cells come together and formhigher-
order structures that perform complex functions.Multicellular networks such as theOLCNare a common
example of such emergent self-organization. Complex network theory offers awell-established framework to
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robustly quantify and compare such structures usingmeasures from statistical physics and graph theory.Our
results provide insight intowhich principlesmight be at workwhen individual bone cells self-organize into a
large, interconnected network during bone formation andmineralization. In future work, the definition of
small-worldness S via generic randomnetworks (Humphries andGurney 2008) could be extended to spatially
explicit 3Dmodels of network formation to learnmore about howdifferent growthmechanisms produce
different spatial network topologies (Barthelemy 2011). Theworkflow that was used in this proof-of-concept
study on a limited number of samples (volume imaging followed by segmentation and conversion into a graph)
is broadly applicable tomany biological network-like structures at different length scales. One remarkable
outcome of our analysis is that the osteocyte network sharesmany characteristics with othermulticellular
networks, such as neuronal networks, andwith higher-order network structures such as the vascular systemor
the airways (Eguiluz et al 2005, Bullmore and Sporns 2009, Blinder et al 2013,Herriges andMorrisey 2014). The
analogy between theOLCNand neuronal networks has previously inspired speculations about the potential
signal processing power of thewhole skeleton (Turner et al 2002). The approach presented herewould allow for
amore in-depth quantitative comparative analysis between different networks, potentially revealing unexpected
similarities and universal ordering principles.

5. Conclusion

Wedeveloped a strategy for the quantification of the architecture of the osteocyte network using different bone
types frommouse and sheep for the proof of principle. Based on these data, we reported the first detailed
quantitative characterization of its topological and statistical properties on the cellular level.We defined a
number of robust, quantitativemeasures that are derived from the theory of complex networks, and used these
measures to gain insights into how efficient the network is organizedwith regard to intercellular transport and
communication.Our analysis shows that, on the canalicular level, highly organized fibrolamellar bone from
sheep, which grows slower but in amore controlledway on top of a template surface, is less interconnected, but
more efficiently organized thanwovenmouse bone, which grows faster but in the absence of an organizing
surface. Despite pronounced differences at the tissue level, the topological architecture of the osteocyte
canalicular network at the subcellular level is identical across sample types, suggesting a universal growth
mechanismduring network formation. Ourmethod could be useful for comparing quantitatively the quality of
the network of canaliculi in bone of different tissue and individuum age, loading condition and disease state. The
results presented here provide insight inwhich principlesmight be at workwhen individual bone cells self-
organize into a large, interconnected network during bone formation andmineralization.
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