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COEVOLUTIONARY SYSTEM MATSim

Transportation and activity location infrastructure is generally lim-
ited, which means that users are in competition for time slots to use
the infrastructure. Even though the idea of homo oeconomicus clearly
needs to be extended by altruism, bounded rationality, satisficing prin-
ciples, incomplete information, and choice heuristics, the assumption
that people in general do not act against their own good is close to
consensus. As a consequence, it can be deduced that choices expected
to bring less subjective benefit than others disappear from people’s
minds. This can be seen as a coevolutionary mechanism with respect
to people’s choices.

Although coevolutionary systems exhibit a variety of behaviors,
ranging from convergence to a fixed point to periodic or even chaotic
behavior, for transport demand modeling, traditionally the attrac-
tive fixed points Nash equilibria, the states in which no individual
improvement is possible due to unilateral change [Nash (2)] are rel-
evant. Even though the individual dynamics of real travelers are not
known, building a coevolutionary system model shows promise for
potentially capturing the patterns of people’s activity scheduling and
participation behavior at a high level of detail in relation to space and
time. This coevolutionary approach is adopted in MATSim.

COMPUTABILITY OF LARGE-SCALE SCENARIOS

Before efforts are made to bring the MATSim simulation results
closer to reality by iterative extension, calibration, and validation of
the model, two crucial conceptual problems need to be solved. First,
practical computability of large-scale scenarios needs to be achieved,
and second, further light needs to be shed on the question of the
uniqueness of a computed solution (i.e., an equilibrium that is related
to the Nash equilibrium). The first part of this paper addresses the
computability problem by combining microsimulation and time
geography.

Being confronted with large location choice sets and large num-
bers of agents to be modeled on one hand and knowing that in real-
ity people’s choices are in general subject to constraints on the other,
researchers recognize that the idea to confine the agent’s location
choices through time–space constraints is natural and that it has
already been applied both in simultaneous and in sequential opera-
tional microsimulations such as PCATS [e.g., Kitamura et al. (3)]
and Albatross [e.g., Arentze and Timmermans (4)]. Nevertheless, the
effects on computational efficiency and behavioral accuracy, as well
as the methodological needs of incorporating space–time constraints
derived from exogenous data or defined by preceding stages of the
model, define a scientific problem for each model in its own right.
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The activity-based multiagent simulation toolkit MATSim adopts a
coevolutionary approach to capturing the patterns of people’s activity
scheduling and participation behavior at a high level of detail. Until now,
the search space of the MATSim system was formed by every agent’s
route and time choice. This paper focuses on the crucial computational
issues that have to be addressed when the system is being extended to
include location choice. This results in an enormous search space that
would be impossible to explore exhaustively within a reasonable time.
With the use of a large-scale scenario, it is shown that the system rapidly
converges toward a system’s fixed point if the agents’ choices are per iter-
ation confined to local steps. This approach was inspired by local search
methods in numerical optimization. The study shows that the approach
can be incorporated easily and consistently into MATSim by using Häger-
strand’s time–geographic approach. This paper additionally presents a
first approach to improving the behavioral realism of the MATSim loca-
tion choice module. A singly constrained model is created; it introduces
competition for slots on the activity infrastructure, where the actual load
is coupled with time-dependent capacity restraints for every activity loca-
tion and is incorporated explicitly into the agent’s location choice process.
As expected, this constrained model reduces the number of implausibly
overcrowded activity locations. To the authors’ knowledge, incorporat-
ing competition in the activity infrastructure has received only marginal
attention in multiagent simulations to date, and thus, this contribution is
also meant to raise the issue by presenting this new model.

Behaviorally precise and computationally efficient modeling of peo-
ple’s location choices for shopping and leisure activities is clearly of
great importance, not only for science but also for planning, in which
different disciplines, such as transportation planning, marketing, and
geography, to name a few, benefit from improved location choice
models. However, descriptive empirical data for shopping and
leisure activity location choice are sparse, and moreover, they are
not easily transferable spatially. Thus, behavioral models capturing
the underlying factors that drive the decision process have to be
designed, which is the objective of MATSim [Multi-Agent Transport
Simulation Toolkit (1)] and its location choice module in particular.
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For example, for the simultaneous model discussed here, constrain-
ing the choice set is mainly for efficiency, as explanatory power
related to human behavior is based on the utility function, whereas,
in sequential models such as Albatross, behavioral realism is partially
produced by its choice heuristics.

IMPROVING BEHAVIORAL REALISM 
OF MATSim LOCATION CHOICE MODULE

The second main point of the paper is the improvement of the
behavioral realism of the MATSim location choice module. This
improvement is achieved by creating a constrained model that intro-
duces competition for slots on the activity infrastructure. Modeling
this competition is relevant as it has an effect on duration of activity
participation and choice of activity location in the sense of avoidance
actions similar to the effect of road load on people’s route choices.
As mentioned earlier, competition arises because the activity infra-
structure is generally limited (e.g., a limited number of parking spaces
or tables in a restaurant or limited availability of sales staff). To the
authors’ knowledge, the only comprehensive implementation of a
constrained model for a microsimulation framework is introduced in
Vovsha et al. (5). There a sequential-choice process is proposed in
which alternatives are removed from the choice set of later travelers
if the locations are already occupied by earlier travelers. Thereby,
the order of the travelers is specified arbitrarily, and thus the last-
record problem (the last travelers have to travel far to find an avail-
able location) is not negligible when heterogeneous travelers are
modeled. This problem does not appear with the algorithm presented
in this paper, as it is based on a simultaneous-choice process in which
every agent in an overcrowded facility gets penalized equally and
simultaneously.

The rest of this paper is organized as follows. The section on
method gives an overview of MATSim and presents the implementa-
tion details of its location choice module, especially the incorporation
of the time–geographic approach. The synthetic simulation scenario
is also described. The section after that presents the results of the sim-
ulation runs for which four configurations are used. Conclusions and
ideas for future research are given in the last section.

METHOD

MATSim Simulation Toolkit

MATSim is an activity-based, easily extendable, open-source multi-
agent simulation toolkit implemented in Java and constructed to
handle large-scale scenarios. It falls under the category of utility-
maximizing models, as opposed to sequential rule-based decision-
making models [e.g., Timmermans (6)]. As mentioned earlier,
MATSim is designed as a coevolutionary system model. This means
that while being in a competition for time slots on the infrastructure
with all the other agents, every agent iteratively optimizes its daily
activity chain by trial and error. To do this, every agent possesses a
memory of a number of day plans in which each plan contains a
daily activity chain and a utility value. In every iteration before the
execution of the microsimulation [e.g., Cetin (7 )] (in MATSim
called Mobsim), that is, before the selected plans are processed on
the infrastructure, every agent selects one plan from its memory with
probability proportional to eβSj, where Sj is the utility of plan j and 
β is an empirical constant. A certain share of the agents (usually 10%)
is then allowed to modify its selected plans, in which time, route,
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and location choices for shopping and leisure activities can be made.
Time choice is based on local random mutation [e.g., Balmer et al. (8),
Raney (9)]; route choice uses a best-response module, namely the
A-star algorithm [Lefebvre and Balmer (10)]; and location choice,
described later in more detail, uses a local search based on time–space
constraints derived from the plans. An iteration is completed by
evaluation of every agent’s daily routine, performed following its
selected day plan, with a utility function. This function is compati-
ble with microeconomic foundations and computes the sum of all
activity utilities Uact,i plus the sum of all travel (dis)utilities Utrav,i

[Charypar and Nagel (11)]:

where typei, starti, and duri are the type, start time, and duration of the
activity, respectively.

The utility of an activity is defined as follows:

where

Udur,i = utility of performing the activity,
Uwait,i = disutility of waiting,

Ulate.ar,i and Uearly.dp,i = disutility of late arrival and early departure,
respectively, and

Ushort.dur,i = penalty for too short an activity participation
time.

For real-world scenarios (time and route choice), the procedure
described above has so far shown convergence toward a unique Nash
equilibrium, although coevolutionary systems in general exhibit a
variety of behaviors. Simulation results are validated against traffic
count data, in which an average working day is computed by using the
data of one complete year with an hourly resolution. Further details
about MATSim are available in Balmer (12) and Balmer et al. (13, 14).

Achieving Computability by Integrating
Time–Geographic Approach

Computation Time

If one assumes for a moment that the agents’ choices are restricted
to location choice, the required computation time for exhaustively
searching the phase space is given as

This is a huge number even for medium-scale scenarios. Hence, it
is obvious that MATSim cannot be based on enumeration or a global
random search, which is likely to be even worse than enumeration as
solutions might be sampled multiple times. In numerical optimiza-
tion, the general way of handling prohibitively large search spaces
is to implement local search methods capable of escaping local
optima [e.g., simulated annealing, Kirkpatrick et al. (15)]. This idea
is adapted to the MATSim coevolutionary system by confining the
agents’ choices to local steps per iteration, which means that the
available range of day plan modifications per iteration is constrained
for every agent.

# #locations activities
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Implementation Details

Activity chains of travel demand models consist of a sequence of
activities and connecting trips in which activities are usually defined
by the following attributes: start time and duration, location, position
in the chain, and group composition. Trips are defined by route and
travel mode information. In the context of location choice models, it
is common practice to distinguish between primary and secondary
activities. This research followed a similar classification, but due to
the lack of a consistent definition in the literature, it classified activ-
ities as fixed and flexible, with flexible activities being ones for which
location choice is applied (i.e., in this model, shopping and leisure
activities). Both fixed and flexible activities are modified in the time
choice step. Nevertheless, in the location choice step, besides the spa-
tial dimension, the temporal dimension of the fixed activities is also
tentatively taken as fixed, whereas for flexible activities, for exam-
ple, the start time is obviously dependent on the chosen location. This
fixation is needed to define the origin and the terminal vertex of the
space–time prisms confining the flexible activities that are taking
place between two consecutive fixed activities according to Häger-
strand’s time geography [Hägerstrand (16), Landau et al. (17)]. In
this model, to confine the search space further, the duration of the
flexible activity is additionally defined to be fixed in the location
choice step. Doing so defines a travel time budget for the flexible
activities between two fixed activities.

To determine potential locations efficiently for these flexible activ-
ities, subject to the travel time budget, the authors propose a novel
algorithm based on recursion. This algorithm extends the geographic
information system–based algorithm introduced in Scott (18), which
serves the purpose of constructing an explicit location choice set for
exactly one flexible activity performed between two fixed activities.
That algorithm works as follows: One should assume that the loca-
tions and the planned start and end times of the fixed activities and the
duration of the flexible activity. In turn, this means that the travel time
budget ttb is defined. The construction of the travel time–based poten-
tial path area (PPA) algorithm has two stages. First, a distance-based
approximate subset of locations [in Scott (18) network links are used]
for possible inclusion in the PPA is chosen. Second, the network
accessibility of the chosen links in relation to the given travel time
budget is computed to identify the links of the PPA.

In more detail, in the first step, all links within a circle whose cen-
ter is the point equidistant to the two fixed locations and with radius
(ttb × v)/2 (where v is chosen as a reasonable speed for that region)
are included in the subset of potential PPA links. Activity spaces are
usually approximated by elliptical regions. However, the existence
of efficient implementations of spatial query methods for circular
regions makes it advantageous to use a circle whose diameter is equal
to the major axis of the underlying ellipse. The algorithm proposed in
this paper tailors that earlier algorithm in the sense that, for efficiency
reasons, an implicit choice set for chains of arbitrary length for flexi-
ble activities is constructed. This is achieved by using the algorithm
of Scott recursively and by checking only the feasibility of an alterna-
tive in relation to the given travel time budget after that alternative has
been randomly and tentatively chosen as an activity location. Given
the two fixed activities and n flexible activities with planned activity
durations duration(actfl,i), the algorithm proposed in this paper works
as follows.

After the activity location subset in the first stage has been con-
structed, a location is chosen randomly from it and the travel time bud-
get is reduced by the time it takes to travel from the first fixed activity
to that location in the loaded network. As long as the total travel time
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is smaller than the travel time budget, the algorithm is applied recur-
sively so that the recently set flexible activity location is taken as the
first anchor point. In cases in which the travel time budget is exceeded,
the algorithm starts on the first recursion again but with a different ran-
dom seed. After a certain number of failed trials, the algorithm is ini-
tialized with a reduced travel speed (arbitrarily set to 10% reduction),
as it is supposed that the assumed average travel speed for that region
has been set too high. Termination of the algorithm is guaranteed
by random choice within the universal choice set after a certain
maximum number of failed trials.

More precisely, the skeleton of the proposed algorithm is given
in pseudocode as follows:

1. Set act1 ← first fixed activity and
2. act2 ← second fixed activity
3. Compute the total travel time budget as

4. Set the total travel time tt ← 0
5. for i = 1 to n do
6. Construct the subset of Stage 1 for act1 and act2 by using

travel speed v as described below.
7. Randomly choose a location from the subset, and set it as the

location for actfl,i

8. Update the total travel time: tt ← tt + time to travel from
location(act1) to location(actfl,i)

9. if i = n then
10. tt ← tt + time to travel from location(actfl,n) to 

location(act2)
11. end if
12. if tt > ttb then
13. Start on Line 1 again, but use a different random seed
14. end if
15. act1 ← actfl,i

16. end for

where location(acti), starttime(acti), and endtime(acti) mean the loca-
tion and start and end times of activity i, respectively, and tt is the
total travel time.

A good estimate of the travel speed v mentioned on Line 6 could
in a future version be derived from travel speed information avail-
able from the preceding iteration. If the small speedup produced
by the more exact estimation of travel speed is forgone, v can sim-
ply be set at a reasonable value. The value that is currently used
is computed from the National Travel Survey 2005 (19) and is set
at 25.3 km/h.

Improving Behavioral Realism 
by Applying Capacity Restraints

Activity location load, computed for time bins of 15 min, is derived
from events delivered by Mobsim. The load of one particular iter-
ation combined with time-dependent activity location capacity
restraints is considered in the agents’ choice process of the succeed-
ing iteration. In detail, this means that the utility function term Uact,i

described earlier is multiplied by max(0; 1 − fp) × fattractiveness, where
the first term penalizes agents dependent on the load of the location
they frequent and fp is a power function, as this has proven to be a
good choice for modeling capacity restraints. [The well-known

ttb starttime act endtime act duration a← ( ) − ( ) −2 1 cctfl,i
i

n

( )
=
∑

1



Bureau of Public Roads cost-flow function (20) is a power function.]
To introduce additional heterogeneity about the activity locations,
attractiveness factor fattractiveness is introduced that is defined to be
logarithmically dependent on the activity location size given by the
official census of workplaces (21). Although there is empirical evi-
dence that the attractiveness of shopping locations actually increases
with size [e.g., Carrasco (22)] setting fattractiveness = f(location size)
serves the purpose of demonstration and is essentially arbitrary.

As for demonstration purposes, capacity restraints are exclusively
applied to shopping locations, where in principle leisure activity
locations can be handled similarly. However, for future calibration
and validation of the model, derivation of capacity restraints for
leisure activity locations is expected to be much more difficult than
for shopping locations because the data availability are much smaller
for leisure locations and capacity restraints vary much more between
leisure locations than between shopping activities (for example,
hiking versus going to the movies).

The proposed model allows the assignment of individual time-
dependent capacities to the activity locations. However, for the sake
of demonstration, the capacities of all shopping facilities are set
equal, so that the values are derived from the shopping trip infor-
mation given in the National Travel Survey of 2005 (19) (Figure 1).
The total daily capacity is set so that the activity locations in the
region of Zurich (see next section) satisfy the total daily demand
with a reserve of 50%. In detail, the capacity restraint function for
location i is as follows:

where

αi = 1/1.5βi,
βi = 5, and
fp,i = penalty factor as described in the text above.

fp i i
i

i

i

, = × ⎛
⎝⎜

⎞
⎠⎟

α
β

load

capacity
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Simulation Scenario

As real-world application and therefore validation is not an issue in
this paper, a completely synthetic simulation scenario could be used.
However, to ensure consistency with future steps, a real-world sce-
nario was chosen; it is described in detail in Balmer et al. (23). The
initial demand of this simulation scenario is derived from the Swiss
Census of Population 2000 (24) and the National Travel Survey for
2000 and 2005 (19). For this scenario, a 10% sample was chosen of
Swiss car traffic that crosses the area delineated by a 30-km circle
around the center of Zurich (the Bellevue area).

The activity location data set is computed from the Federal Enter-
prise Census 2001 (21), and the network is an updated and corrected
version of the Swiss National Transport Model [Vrtic et al. (25)]. An
average weekday is simulated. The locations for the flexible activities
are initially assigned randomly within the Zurich region. Comparable
data are available in most countries from official sources, such as cen-
suses and national travel diary studies, and commercial sources, such
as navigation network providers, yellow pages publishers, or business
directories.

In detail, the following data form the basis of the scenario:

• Total number of agents simulated: 61,480;
• Total number of facilities for

– Shopping activities: 1,162 and
– Leisure activities: 6,662;

• Total number of activities performed for
– Shopping: 25,896 and
– Leisure: 40,971;

• Total number of persons doing
– Shopping activities: 22,639,
– Leisure activities: 32,229, and
– Shopping or leisure activities: 42,962;

• Activities:
– Fixed: home, work, and education and
– Flexible: shop and leisure;
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• Average number of trips per agent: 3.35; and
• Network, number of

– Directed links: 60,492 and
– Nodes: 24,180.

RESULTS

One goal of this work was to achieve computability, that is, to drive
the coevolutionary system to a fixed point within a reasonable time
(even though uniqueness of a found solution has not yet been studied).
A second goal is to improve the behavioral realism of this model
by including activity capacity restraints that are expected to reduce
the number of implausibly overloaded activity locations. Simulation
results are produced for the following four configurations, spanning
the relevant combinations of choices and choice sets:

Configuration 1:
• Replanning: rerouting and time choice and
• Scoring: no capacity restraints;

Configuration 2:
• Replanning: rerouting, time choice, and location choice

(universal choice set) and
• Scoring: no capacity restraints;

Configuration 3:
• Replanning: rerouting, time choice, and location choice

(universal choice set) and
• Scoring: including capacity restraints; and

Configuration 4:
• Replanning: rerouting and time choice and
• Scoring: including capacity restraints.

As mentioned in the section on the simulation scenario, all flexi-
ble activity locations were initially assigned randomly within the
Zurich circle. During the replanning phase, location choice for Con-
figurations 2 and 3 were made by random choice from the universal
choice set that contains the locations within the Zurich circle. Con-
figuration 4 used the authors’ novel algorithm, which constrained
the choice set with respect to the agents’ travel time budget. For
Configuration 1, no location choice was performed during the re-
planning phase. The replanning step was carried out for 10% of the
agents in each iteration. As no precisely defined termination criterion
(i.e., a general measure for the relaxation of the system) existed yet
for MATSim, the scenario runs were terminated after 500 iterations,
which was sufficient to evaluate the actual achievement of the
above-mentioned goals.

As Figure 2 shows, in all four configurations, the average plan score
(utility), shows a strong increase during the first iterations, then a short
attenuation phase, and finally a long phase of small increases. This is
the typical progress of evolutionary algorithms [Eiben and Smith (26)],
and this, in general, gives an indication of the effective operation of
the coevolutionary algorithm of MATSim.

A comparison of Configurations 3 and 4 in Figure 2 shows a much
faster decrease of the average travel times and distances for Config-
uration 4 and hence a faster increase of the average plan’s score than
random choice from the universal location choice set as made for
Configuration 3. This comparison reveals the strongly needed speedup
of the relaxation process toward practical computability. The urgent
need for this speedup is further illustrated by the results of run-
ning Configuration 3 for 4,000 iterations (i.e., more than 25 days)
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(Figure 3a). Under the assumption that Configurations 3 and 4 reach
the same Nash equilibrium, it is expected that finally the average
travel distances are equal for both configurations. For Configuration 3,
it can be seen that, at between 3,000 and 4,000 iterations, the decrease
in average travel distance still goes on. However, the value after
4,000 iterations is still much higher than the value that is reached for
Configuration 4 after only 500 iterations (Figure 2b). This means
that it takes a very long time until the average travel distance for
Configuration 3 is at the level of Configuration 4. Thus, it can be
concluded that, when the modelers of a system are being confronted
with phase spaces that are prohibitively large for exhaustive search,
confining the agents’ choices to local steps per iteration by using a
time–geographic approach actually is productive, similar to local
search methods in numerical optimization. Nevertheless, the crucial
question about uniqueness of a found fixed point (Nash equilibrium)
and the follow-up discussion on local optimal needs to be researched.

The effect of explicitly incorporating the activity location load,
coupled with capacity restraints, into the agents’ location choice
process is visible in Figure 4. Figure 4a shows the distribution of
fattractiveness with respect to the activity locations. In relation to the
distribution of visitors on the activity locations (Figure 4b), a
strong shift toward the activity locations with a high fattractiveness can
be observed for Configuration 2, whereas this shift is much smaller
for Configuration 3, where capacity restraints are applied. Given the
distribution of fattractiveness with respect to the activity locations (Fig-
ure 4a), the strong shift for Configuration 2 suggests an overload of
the highly attractive locations. In fact, Figure 4c shows many heav-
ily overloaded activity locations for Configuration 2, whereas, for
Configuration 3, this implausible overload is not observed. These
observations lead to the conclusion that designing a constrained
model with respect to activity location load improves behavioral
realism in general.

In addition to affecting the activity facility load, the constrained
model shows two further effects that will have to be the subject of eval-
uation steps in the future. The comparison of Configurations 2 and 3 in
Figure 2 shows that the constrained model produces a small increase
in travel distances (and times). In addition to that spatial effect, con-
straints produce a temporal effect. Besides a general reduction of the
load (shortening of the shopping duration), comparison of Figure 3b
to Figure 1 shows that the aggregated hourly load of activity locations
is adjusted to the time-dependent capacity restraints.

Table 1 gives the average computation times per iteration for the
four configurations. [The data in Table 1 were computed with four
CPUs (Dual-Core AMD Opteron Processor 8218 with 2,600 MHz
and 1,024 KB cache size) and 18 GB of RAM]. Due to shorter
routes, which have to be handled in the microsimulation, compu-
tation times are generally reduced by performing location choice
(compare Configurations 1 and 2). In particular for Configuration 4,
which produces short routes after a few iterations, it can be seen that
the additional replanning effort is more than compensated by shorter
microsimulation computation times. In other words, applying the
time–geographic approach in the simulation not only reduces the total
number of needed iterations but is also expected to lower the average
computation time per iteration.

CONCLUSIONS AND OUTLOOK

Through the incorporation of location choice, MATSim is capable of
simultaneously modeling time, route, and location choice for shopping
and leisure activities.
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The results presented, on the one hand, emphasize that random
location choice made from the universal choice set is not possible for
large-scale scenarios in relation to computability, which is particularly
important when a complete scenario is being simulated for Switzer-
land with 7 million agents and 1.7 million activity locations, which is
the long-term aim of MATSim. On the other hand, the results exem-
plify that confining the agents’ choices to a local range per iteration
by including the time–geographic approach is actually a useful step
on the way to computability. In addition, the paper shows that the
time–geographic approach can easily be integrated by using a sim-
ple and efficient recursive algorithm that successively generates an
implicit choice set for shopping or leisure activities.

Moreover, evidence is given that incorporating activity location
load coupled with capacity restraints actually improves the behavioral
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realism of location choice models of microsimulations by reducing
the number of implausibly overloaded locations.

As mentioned earlier, calibration and validation using empirical
data are subjects for future work. In addition, the crucial and highly
complex question about the uniqueness of a found fixed point of the
coevolutionary system needs to be answered. To improve goodness
of fit, the range of attributes included in the utility function will be
considerably extended, as the research will draw on recent Swiss
work [Carrasco (22)] estimating facility-specific grocery location
choice models by means of the geocoded National Travel Survey
(19). A possible improvement in the presented algorithm for choice
set generation could be to handle the flexible activities on the basis
of priority rather than chronologically. On the practical side, tools for
easy analysis of time-dependent aggregated and disaggregated
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FIGURE 3 Results for Configuration 3 (Iterations 0 to 4,000): (a) average travel
distance of agents’ best plan and (b) aggregated hourly load of the shopping activity
locations.
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facility usage and catchment area analysis will be added to the
MATSim module for location choice.
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TABLE 1 Mean Computation Time per Iteration

Configuration Mobsim Replanning Sum

1 Rerouting; time choice no 581 13 594
capacity restraints

2 Rerouting; time choice; 498 49 547
location choice no capacity
restraints

3 Rerouting; time choice; 529 50 579
location choice capacity
restraints

4 Rerouting; time choice; 365 82 447
location choice improved
capacity restraints


