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Abstract We propose methodology for estimation of sparse precision matrices and
statistical inference for their low-dimensional parameters in a high-dimensional set-
ting where the number of parameters p can be much larger than the sample size. We
show that the novel estimator achieves minimax rates in supremum norm and the low-
dimensional components of the estimator have a Gaussian limiting distribution. These
results hold uniformly over the class of precision matrices with row sparsity of small
order

√
n/ log p and spectrum uniformly bounded, under a sub-Gaussian tail assump-

tion on the margins of the true underlying distribution. Consequently, our results lead
to uniformly valid confidence regions for low-dimensional parameters of the preci-
sion matrix. Thresholding the estimator leads to variable selection without imposing
irrepresentability conditions. The performance of the method is demonstrated in a
simulation study and on real data.
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144 J. Janková, S. van de Geer

1 Introduction

We consider the problem of estimation of the inverse covariance matrix in a high-
dimensional setting, where the number of parameters p can significantly exceed the
sample size n. Suppose that we are given an n× p designmatrixX, where the rows ofX
are p-dimensional i.i.d. random vectors from an unknown distribution with mean zero
and covariance matrix Σ0 ∈ R

p×p. We denote the precision matrix by Θ0 := Σ−1
0 ,

assuming that the inverse of Σ0 exists.
The problem of estimating the precision matrix arises in a wide range of applica-

tions. Precision matrix estimation in particular plays an important role in graphical
models that have become a popular tool for representing dependencies within large
sets of variables. Suppose that we associate the variables X1, . . . , X p with the ver-
tex set V = {1, . . . , p} of an undirected graph G = (V, E) with an edge set E . A
graphical model G represents the conditional dependence relationships between the
variables, namely, every pair of variables not contained in the edge set is conditionally
independent given all remaining variables. If the vector (X1, . . . , X p) is normally dis-
tributed, each edge corresponds to a non-zero entry in the precision matrix (Lauritzen
1996). Practical examples of applications of graphical modeling include modeling of
brain connectivity based on FMRI brain analysis (Ng et al. 2013), genetic networks,
financial data processing, social network analysis, and climate data analysis.

A lot of work has been done on methodology for point estimation of precision
matrices. We discuss some of the approaches below, but a selected list of papers
includes, for instance, Meinshausen and Bühlmann (2006), Friedman et al. (2008),
Bickel and Levina (2008), Yuan (2010), Cai et al. (2011) and Sun and Zhang (2012). A
common approach assumes that the precisionmatrix is sufficiently sparse and employs
the �1-penalty to induce a sparse estimator. Themain goal of theseworks is to show that
under some regularity conditions, the sparse estimator behaves almost as the oracle
estimator that has the knowledge of the true sparsity pattern.

Our primary interest in this paper lies not in point estimation, but we aim to quan-
tify uncertainty of estimation by providing interval estimates for the entries of the
precision matrix. The challenge of this problem arises, since asymptotics of regular-
ized estimators which are the main tool in high-dimensional estimation is not easily
tractable (Knight and Fu 2000), as opposed to the classical setting when the dimension
of the unknown parameter is fixed.

1.1 Overview of related work

Methodology for inference in high-dimensional models has been mostly studied in
the context of linear and generalized linear regression models. From the work on
linear regression models, we mention the paper by Zhang and Zhang (2014) where a
semi-parametric projection approach using the Lasso methodology (Tibshirani 1996)
was proposed, which was further developed and studied in van de Geer et al. (2013).
The approach leads to asymptotically normal estimation of the regression coefficients,
and an extension of the method to generalized linear models is given in van de Geer
et al. (2013). The method requires sparsity of small order

√
n/ log p in the high-
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Honest confidence regions and optimality in high-dimensional… 145

dimensional parameter vector and uses �1-norm error bound of the Lasso. Further
alternative methods for inference in the linear model have been proposed and studied
in Javanmard andMontanari (2014), Belloni et al. (2014), and bootstrapping approach
was suggested in Chatterjee and Lahiri (2013), Chatterjee and Lahiri (2011).

Other lines of work on inference for high-dimensional models suggest post-model
selection procedures, where in the first step, a regularized estimator is used for model
selection, and in the second step, e.g., amaximum likelihood estimator is applied on the
selected model. In the linear model, simple post-model selection methods have been
proposed, e.g., in Javanmard and Montanari (2013), Candes and Tao (2007). These
approaches are, however, only guaranteed to work under irrepresentability and beta-
min conditions (see Bühlmann and van de Geer 2011). Especially in view of inference,
beta-min conditions, which assume that the non-zero parameters are sufficiently large
in absolute value, should be avoided.
In this paper, we consider estimation of precision matrices, which is a problem related
to linear regression; however, it is a non-linear problem, and thus, it requires a more
involved treatment. One approach to precision matrix estimation is based on regu-
larization of the maximum likelihood in terms of the �1-penalty. This approach is
typically referred to as the graphical Lasso, and has been studied in detail in several
papers, see Friedman et al. (2008), Rothman et al. (2008), Ravikumar et al. (2008)
and Yuan and Lin (2007). Another common approach to precision matrix estimation
is based on projections. This approach reduces the problem to a series of regression
problems and estimates each column of the precisionmatrix using a Lasso estimator or
Dantzig selector (Candes and Tao 2007). The idea was first introduced inMeinshausen
and Bühlmann (2006) as neighborhood selection for Gaussian graphical models and
further studied in Yuan (2010), Cai et al. (2011) and Sun and Zhang (2012).

Methodology leading to statistical inference for the precision matrix has been stud-
ied only recently. The work Ren et al. (2015) proposes to use a more involved variation
of the regression approach to obtain an estimator which leads to statistical inference.
This approach leads to an estimator of the precision matrix which is elementwise
asymptotically normal, under row sparsity of order

√
n/ log p, bounded spectrum of

the true precision matrix and Gaussian distribution of the sample. The paper Janková
and van de Geer (2015) proposes a method for statistical inference based on the graph-
ical Lasso. The work introduces a desparsified estimator based on the graphical Lasso,
which is also shown to be elementwise asymptotically normal.

1.2 Contributions and outline

We propose methodology leading to honest confidence intervals and testing for low-
dimensional parameters of the precision matrix, without requiring irrepresentability
conditions or beta-min conditions to hold. Our work is motivated by the semi-
parametric approach in van de Geer et al. (2013) and is a follow-up of the work
Janková andvandeGeer (2015).Compared to the previousworkon statistical inference
for precision matrices, this methodology has several advantages. First, the estimator
we propose is a simple modification of the nodewise Lasso estimator proposed in
Meinshausen and Bühlmann (2006). Hence, the estimator is easy to implement, and
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146 J. Janková, S. van de Geer

efficient solutions are available on the computational side. Second, the novel estimator
enjoys a range of optimality properties and leads to statistical inference under mild
conditions. First, the asymptotic distribution of low-dimensional components of the
estimator is shown to be Gaussian. This holds uniformly over the class of precision
matrices with row sparsity of order o(

√
n/ log p), spectrum uniformly bounded in n

and sub-Gaussian margins of the underlying distribution. This results in honest con-
fidence regions (Li 1989) for low-dimensional parameters. The proposed estimator
achieves rate optimality, as shown in Sect. 3.2. Moreover, the desparsified estimator
may be thresholded to guarantee variable selection without imposing irrepresentable
conditions. The computational cost of the method is orderO(p) Lasso regressions for
estimation of all parameters and two Lasso regressions for a single parameter.

This paper is organized as follows. Section 2 introduces the methodology. Section
3 contains the main theoretical results for estimation and inference, and in Sect. 3.4
the suggested method is applied to variable selection. Section 4 provides a comparison
with related work. Section 5 illustrates the theoretical results in a simulation study.
In Sect. 6, we analyze two real data sets and apply our method to variable selection.
Section 7 contains a brief summary of the results. Finally, the proofs were deferred to
the Online Resource 1.

Notation For a vector x = (x1, . . . , xd) ∈ R
d and p ∈ (0,∞], we use ‖x‖p to denote

the p−norm of x in the classical sense. We denote ‖x‖0 = |{i : xi �= 0}|. For a matrix
A ∈ R

d×d , we use the notations |||A|||∞ = maxi ‖eTi A‖1, |||A|||1 = ∣
∣
∣
∣
∣
∣AT

∣
∣
∣
∣
∣
∣∞ and

‖A‖∞ = maxi, j |Ai j |. The symbol vec(A) denotes the vectorized version of a matrix
A obtained by stacking the rows of A on each other. By ei , we denote a p-dimensional
vector of zeroswith one at position i . For real sequences fn, gn , wewrite fn = O(gn) if
| fn| ≤ C |gn| for someC > 0 independent of n and all n > C.Wewrite fn � gn if both
fn = O(gn) and 1/ fn = O(1/gn) hold. Finally, fn = o(gn) if limn→∞ fn/gn = 0.
Furthermore, for a sequence of random variables xn , we write xn = OP(1) if xn
is bounded in probability and we write xn = OP(rn) if xn/rn = OP(1). We write
xn = oP(1) if xn converges in probability to zero.

Let� denote the convergence in distribution and
P→ the convergence in probability.

Let Φ denote the cumulative distribution function of a standard normal random vari-
able. By �min(A) and �max(A), we denote the minimum and maximum eigenvalue
of A, respectively. Let a ∨ b, a ∧ b denote max(a, b), min(a, b), respectively. We use
letters C, c to denotes universal constants. These are used in the proofs repeatedly to
denote possibly different constants.

2 Desparsified nodewise Lasso

Our methodology is a simple modification of the nodewise Lasso estimator proposed
in Meinshausen and Bühlmann (2006). The idea is to remove the bias term which
arises in the nodewise Lasso estimator due to �1-penalty regularization. This approach
in inspired by literature on semiparametric statistics Bickel et al. (1993), van der Vaart
(2000). We note several papers have used this idea in the context of high-dimensional
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sparse estimation, see Zhang and Zhang (2014), van de Geer et al. (2013), van de Geer
(2016), Javanmard and Montanari (2014), Janková and van de Geer (2015).

We first summarize the nodewise Lasso method introduced in Meinshausen and
Bühlmann (2006) and discuss some of its properties. This method estimates an
unknown precision matrix using the idea of projections to approximately invert the
sample covariancematrix. For each j = 1, . . . , p,wedefine the vectorγ j = {γ j,k, k �=
j} as follows:

γ j := arg min
γ∈Rp−1

E‖X j − X− jγ ‖22/n (1)

and denote η j := X j − X− jγ j and the noise level by τ 2j = EηTj η j/n. We define the

column vector Γ j := (−γ j,1, . . . ,−γ j, j−1, 1,−γ j, j+1, . . . ,−γ j,p)
T . Then, one may

show:
Θ0 = (Θ0

1 , . . . , Θ0
p) = (Γ1/τ

2
1 , . . . , Γp/τ

2
p), (2)

where Θ0
j is the j th column of Θ0. Hence, the precision matrix Θ0 may be recovered

from the partial correlations γ j,k and from the noise level τ 2j . In our problem, we
are only given the design matrix X. The idea of nodewise Lasso is to estimate the
partial correlations and the noise levels by doing a projection of every column of
the design matrix on all the remaining columns. In low-dimensional settings, this
procedure would simply recover the sample covariance matrixXTX/n.However, due
to the high-dimensionality of our setting, the matrix XTX/n is not invertible and we
can only do approximate projections. If we assume sparsity in the precision matrix
(and thus also in the partial correlations), this idea can be effectively carried out
using the Lasso. Hence, for each j = 1, . . . , p define the estimators of the regression
coefficients, γ̂ j = {γ̂ j,k, k = 1, . . . , p, j �= k} ∈ R

p−1, as follows:

γ̂ j := arg min
γ∈Rp−1

‖X j − X− jγ ‖22/n + 2λ j‖γ ‖1. (3)

We further define the column vectors

Γ̂ j := (−γ̂ j,1, . . . ,−γ̂ j, j−1, 1,−γ̂ j, j+1, . . . ,−γ̂ j,p)
T ,

and estimators of the noise level

τ̂ 2j := ‖X j − X− j γ̂ j‖22/n + λ j‖γ̂ j‖1,

for j = 1, . . . , p. Finally, we define the j th column of the nodewise Lasso estimator
Θ̂ as:

Θ̂ j := Γ̂ j/τ̂
2
j . (4)

The estimator Θ̂ j of the precision matrix was studied in several papers (following
Meinshausen and Bühlmann 2006) and has been shown to enjoy oracle properties
under mild conditions on the model. These conditions include bounded spectrum of
the precision matrix, row sparsity of small order n/ log p and a sub-Gaussian distri-
bution of the rows of X (alternatively to sub-Gaussianity, one may assume that the
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148 J. Janková, S. van de Geer

covariates are bounded as in van de Geer et al. 2013). Our approach uses the nodewise
Lasso estimator as an initial estimator. The next step involves debiasing or despar-
sifying, which may be viewed as one step using the Newton–Raphson scheme for
numerical optimization. This is equivalent to “inverting” the Karush–Kuhn–Tucker
(KKT) conditions by the inverse of the Fisher information as in van de Geer et al.
(2013). The challenge then also comes from the need to estimate the Fisher informa-
tion matrix which is a p2 × p2 matrix. We show that the estimator Θ̂ can be used
in a certain way to create a surrogate of the inverse Fisher information matrix. Since
the estimator Θ̂ j can be characterized by its KKT conditions, it is convenient to work
with these, conditions to derive the new desparsified estimator. Consider, hence, the
KKT conditions for the optimization problem (3):

− XT− j (X j − X− j γ̂ j )/n + λ j κ̂ j = 0, (5)

for j = 1, . . . , p, where κ̂ j is the subdifferential of the function γ j �→ ‖γ j‖1 at γ̂ j ,

i.e.,

κ̂ j,k =
{

sign(γ̂ j,k) if γ̂ j,k �= 0

a j,k ∈ [−1, 1] otherwise,

where k ∈ {1, . . . , p}\{ j}. If we define Ẑ j to be a p × 1 vector

Ẑ j := (κ̂ j,1, . . . , κ̂ j, j−1, 0, κ̂ j, j+1, . . . , κ̂ j,p)/τ̂
2
j ,

then the KKT conditions may be equivalently stated as follows:

Σ̂Θ̂ j − e j − λ j Ẑ j = 0, for j = 1, . . . , p, (6)

where Σ̂ = XTX/n is the sample covariance matrix. This is shown in Lemma 11 in
the Online Resource 1. Consequently, the KKT conditions (6) imply a bound ‖Σ̂Θ̂ j −
e j‖∞ ≤ λ j/τ̂

2
j for each j = 1, . . . , p, which will be useful later. Note that the KKT

conditions may be equivalently summarized in a matrix form as Σ̂Θ̂ − I − Ẑ� = 0,
where the columns of Ẑ are given by Ẑ j for j = 1, . . . , p and � is a diagonal matrix
with elements (λ1, . . . , λp).

Multiplying the KKT conditions (6) by Θ̂i , we obtain

Θ̂T
i (Σ̂Θ̂ j − e j ) − Θ̂T

i λ j Ẑ j = 0.

Then, we note that adding Θ̂i j − Θ0
i j to both sides and rearranging, we get:

Θ̂i j − Θ̂T
i λ j Ẑ j − Θ0

i j = Θ̂i j − Θ̂T
i (Σ̂Θ̂ j − e j ) − Θ0

i j

= −(Θ0
i )T (Σ̂ − Σ0)Θ

0
j + Δ̃i j , (7)
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where Δ̃i j = −(Θ̂i − Θ0
i )T (Σ̂Θ̂ j − e j ) − (Θ̂ j − Θ0

j )
T (Σ̂Θ0

i − ei ) is a term which

can be shown to be oP(n−1/2) under certain conditions (Lemma 1). Hence, we define
the desparsified nodewise Lasso estimator:

T̂ := Θ̂ − Θ̂T (Σ̂Θ̂ − I ) = Θ̂ + Θ̂T − Θ̂T Σ̂Θ̂. (8)

3 Theoretical results

In this section, we inspect the asymptotic behavior of the desparsified nodewise Lasso
estimator (8). In particular, we consider the limiting distribution of individual entries of
T̂ and show the convergence to theGaussian distribution is uniformover the considered
model. For construction of confidence intervals, we consider estimators of the asymp-
totic variance of the proposed estimator, both for Gaussian and sub-Gaussian design.
We derive convergence rates of the method in supremum norm and consider appli-
cation to variable selection. For completeness, in Lemma 6 in the Online Resource
1, we summarize convergence rates of the nodewise Lasso estimator. The result is
essentially the same as Theorem 2.4 in van de Geer et al. (2013), so the proof of the
common parts is omitted. Recall that V = {1, . . . , p} and we define the row sparsity
by s j := ‖Θ0

j ‖0, maximum row sparsity by s := max1≤ j≤p s j and the coordinates of

non-zero entries of the precision matrix by S0 := {(i, j) ∈ V × V : Θ0
i j �= 0}. For the

analysis below, we will need the following conditions.

A1 (Bounded spectrum) The inverse covariance matrix Θ0 := Σ−1
0 exists and there

exists a universal constant L ≥ 1, such that

1/L ≤ �min(Θ0) ≤ �max(Θ0) ≤ L .

A2 (Sparsity) s log p
n = o(1).

A3 (Sub-Gaussianity condition) Suppose that the design matrixX has uniformly sub-
Gaussian rows Xi , i.e., there exists a universal constant K , such that

sup
α∈Rp :‖α‖2≤1

E exp
(

|αT Xi |2/K 2
)

≤ 2 (i = 1, . . . , n).

The lower bound in A1 guarantees that the noise level τ 2j = 1/Θ0
j j does not diverge.

The upper bound (equivalently lower bound on eigenvalues of Σ0) guarantees that the
compatibility condition (seeBühlmann andvan deGeer 2011) is satisfied for thematrix
Σ0− j,− j , which is the true covariance matrix Σ0 without the j th row and j th column.
The sub-Gaussianity condition A3 is used to obtain concentration results which are
crucial to our analysis. Condition A3 is also used to ensure that the compatibility
condition is satisfied for Σ̂ with high probability (see Bühlmann and van de Geer
2011). Conditions A1, A2, and A3 are the same conditions as used in van de Geer
et al. (2013) to obtain rates of convergence for the nodewise regression estimator.
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150 J. Janková, S. van de Geer

Define the parameter set

G(s) :=
{

Θ ∈ R
p×p : max

1≤i≤p
‖Θi‖0 ≤ s, A1 is satisfied

}

.

The following lemma shows that the proposed estimator T̂ can be decomposed into a
pivot term and a term which is of small order 1/

√
n with high probability.

Lemma 1 Suppose that Θ̂ is the nodewise Lasso estimator with regularization para-

meters λ j ≥ c
√

log p
n , uniformly in j , for some sufficiently large constant c > 0.

Suppose that A2 and A3 are satisfied. Then, for each (i, j) ∈ V × V , it holds:
√
n(T̂i j − Θ0

i j ) = −√
n(Θ0

i )T (Σ̂ − Σ0)Θ
0
j + Δi j , (9)

where there exists a constant C > 0, such that

lim
n→∞ sup

Θ0∈G(s)
P

(

max
i, j=1,...,p

|Δi j | ≥ C
slog p√

n

)

= 0.

From Lemma 1, it follows that we need to assume stronger sparsity condition than
A2 for the remainder term Δi j to be negligible after normalization by

√
n. This is

accordance with other literature on the topic, see van de Geer et al. (2013), Ren et al.
(2015). Hence, we introduce the following strengthened sparsity condition.

A2* s log p√
n

= o(1).

The next result shows that the elements of T̂ are indeed asymptotically normal. To
this end, we further define the asymptotic variance

σ 2
i j := var

((

Θ0
i

)T
X1X

T
1 Θ0

j

)

.

In some of the results to follow, we shall assume a universal lower bound on σi j as
follows.

A4 There exists a universal constant ω > 0, such that σi j ≥ ω.

Assumption A4 is satisfied, e.g., under Gaussian design and A1. Denote a parameter
set

G̃(s) :=
{

Θ ∈ R
p×p : max

1≤i≤p
‖Θi‖0 ≤ s, A1, A4 are satisfied

}

.

Theorem 1 (Asymptotic normality) Suppose that Θ̂ is the nodewise Lasso estimator

with regularization parameters λ j �
√

log p
n uniformly in j . Suppose that A2* and A3

are satisfied. Then, for every (i, j) ∈ V × V and z ∈ R, it holds

lim
n→∞ sup

Θ0∈G̃(s)

|PΘ0

(√
n
(

T̂i j − Θ0
i j

)

/σi j ≤ z
)

− Φ(z)| = 0.
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To construct confidence intervals, a consistent estimator of the asymptotic variance
σi j is required. Consistent estimators of σi j are discussed in Sect. 3.1 (see Lemmas
2 and 3). Hence, Theorem 1 implies uniformly valid asymptotic confidence intervals
Iα := [T̂i j ± Φ−1(1 − α/2)σ̂i j/

√
n], i.e.,

lim
n→∞ sup

Θ0∈G̃(s)

∣
∣
∣PΘ0

(

Θ0
i j ∈ Iα

)

− (1 − α)

∣
∣
∣ = 0.

The result also enables testing hypotheses about individual elements of the preci-
sion matrix. For testing multiple hypothesis simultaneously, we may use the standard
procedures, such as Bonferroni–Holm procedure (see van de Geer et al. 2013).

3.1 Variance estimation

For the case of Gaussian observations, wemay easily calculate the theoretical variance
and plug in the estimate Θ̂ in place of the unknown Θ0, as shown in the following
lemma.

Lemma 2 Suppose that assumptions A2 and A3 are satisfied and assume that the rows
of the design matrix X are independentN (0,Σ0)-distributed. Let Θ̂ be the nodewise
Lasso estimator and let λ j ≥ cτ

√
log p/n uniformly in j for some τ, c > 0. Then,

for σ̂ 2
i j := Θ̂i i Θ̂ j j + Θ̂2

i j , we have

sup
Θ0∈G(s)

P

(

max
i, j=1,...,p

∣
∣
∣σ̂

2
i j − σ 2

i j

∣
∣
∣ ≥ Cτ

√

s log p/n

)

≤ c1 p
1−τc2 ,

for some constants Cτ , c1, c2 > 0.

Lemma 2 implies that under s = o(
√
n/ log p), we have a rate |σ̂ 2

i j − σ 2
i j | =

oP(1/n1/4). If Gaussianity is not assumed, we may replace the estimator of the vari-
ance with the empirical version, and plug in Θ̂ in place of the unknown Θ0. Thus, we
take the following estimator of σ 2

i j , where Θ̂ is the nodewise regression estimator:

σ̂ 2
i j := 1

n

n
∑

k=1

(

Θ̂T
i Xk X

T
k Θ̂ j

)2 − Θ̂2
i j . (10)

The following lemma justifies this procedure under A1, A2*, and A3.

Lemma 3 Suppose that the assumptions A2* and A3 are satisfied and for some ε > 0,
it holds that limn→∞ log4(p ∨ n)/n1−ε = 0. Let Θ̂ be the nodewise Lasso estimator
and let λ j ≥ cτ

√
log p/n uniformly in j for some τ, c > 0. Let σ̂i j be the estimator

defined in (10). Then, for all η > 0

lim
n→∞ sup

Θ0∈G(s)
P

(

max
i, j=1,...,p

∣
∣
∣σ̂

2
i j − σ 2

i j

∣
∣
∣ ≥ η

)

= 0.
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3.2 Rates of convergence

The desparsified estimator achieves optimal rates of convergence in supremum norm.
Observe first that for the nodewise regression estimator, it holds by (7), Lemma 1 and
Lemma 10 in the Online Resource 1 that

Θ̂i j − Θ0
i j = Θ̂T

i

(

Σ̂Θ̂ j − e j
)

+ OP

(

max

{
1√
n
, s

log p

n

})

.

By Hölder’s inequality and the KKT conditions, it follows

∣
∣
∣Θ̂

T
i

(

Σ̂Θ̂ j − e j
)∣
∣
∣ ≤ λ j‖Θ̂i‖1/τ̂ 2j .

Consequently, for the rates of convergence of the nodewise Lasso in supremum
norm, we find

‖Θ̂ − Θ0‖∞ = OP

(

max

{

max
i, j=1,...,p

λ j‖Θ̂i‖1/τ̂ 2j ,
1√
n
, s

log p

n

})

.

Desparsifying the estimator Θ̂ as in (8) removes the term involving λ j‖Θ̂i‖1/τ̂ 2j in
the above rates.

Theorem 2 (Rates of convergence) Assume that A2 and A3 are satisfied. Let τ > 0
and let T̂ be the desparsified nodewise Lasso estimator with regularization parameters
λ j ≥ cτ

√
log p/n for some sufficiently large constant c > 0, uniformly in j . Then,

there exist constants Cτ , c1, c2 > 0, such that

sup
Θ0∈G(s)

P

(

|T̂i j − Θ0
i j | ≥ Cτ max

{
1√
n
, s

log p

n

})

≤ c1e
−c2τ .

and

sup
Θ0∈G(s)

P

(

‖T̂ − Θ0‖∞ ≥ Cτ max

{√

log p

n
, s

log p

n

})

≤ c1 p
1−c2τ .

We compare the results of Theorem 2 with results on optimal rates of convergence
derived for Gaussian graphical models in Ren et al. (2015). Suppose that the obser-
vations are Gaussian, i.e., X1, . . . , Xn ∼ N (0,Σ0). For s ≤ C0n/ log p for some
C0 > 0 and p ≥ sν for some ν > 2, it holds (see Ren et al. 2015)

inf
Θ̂i j

sup
Θ0∈G(s)

P

(

|Θ̂i j − Θ0
i j | > max

{

C1
1√
n
,C2s

log p

n

})

> c1 > 0,

and

inf
Θ̂

sup
Θ0∈G(s)

P

(

‖Θ̂ − Θ0‖∞ > max

{

C ′
1

√

log p

n
,C ′

2s
log p

n

})

> c2 > 0,
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where C1,C2,C ′
1,C

′
2 are positive constants depending on ν and C0 only. As follows

from Theorem 2, the desparsified nodewise Lasso attains the lower bound on rates and
thus is in this sense optimal (considering the Gaussian setting).

3.3 Other desparsified estimators

The desparsification may work for other estimators of the precision matrix, provided
that certain conditions are satisfied. This is formulated in Lemma 4. A particular
example of interest is the square-root nodewise Lasso estimator that will be discussed
below. This estimator has the advantage that it is self-scaling in the variance, similarly
as the square-root Lasso (Belloni et al. 2011) on which it is based.

Lemma 4 Assume that for some estimator Ω̂ = (Ω̂1, . . . , Ω̂p), it holds:

max
j=1,...,p

‖Ω̂ j − Θ0
j ‖1 = OP(s

√

log p/n), ‖Σ̂Ω̂ − I‖∞ = OP(
√

log p/n). (11)

Then, for T̂ := Ω̂ + Ω̂T − Ω̂T Σ̂Ω̂ , it holds under A1, A2*, and A3

‖T̂ − Θ0‖∞ = OP(max{s log p/n,
√

log p/n}).

Moreover,
√
n(T̂i j − Θ0

i j )/σi j � N (0, 1).

We briefly consider nodewise regression with the square-root Lasso as an example.
The square-root Lasso estimators may be defined via

γ̂ j := arg min
γ∈Rp−1

‖X j − X− jγ ‖2/n + 2λ0‖γ ‖1,

for j = 1, . . . , p. Define τ̂ 2j := ‖X j − X− j γ̂ j‖22/n and τ̃ 2j := τ̂ 2j + λ0τ̂ j‖γ̂ j‖1. The
nodewise square-root Lasso is then given by Θ̂ j,sqrt := Γ̂ j/τ̃

2
j , where

Γ̂ j := (−γ̂ j,1, . . . ,−γ̂ j, j−1, 1,−γ̂ j, j+1, . . . ,−γ̂ j,p)
T .

Note that compared with the nodewise Lasso, the difference lies in estimation of the
partial correlations, where we used the square-root Lasso that “removes the square”
from the squared loss. The Karush–Kuhn–Tucker conditions similarly as in Lemma 11

in Online Resource 1 give

Σ̂Θ̂ j,sqrt − e j − τ̂ j

τ̃ 2j
λ0 Z̃ j = 0,

where Z̃ j := (κ̃ j,1, . . . , κ̃ j, j−1, 1, κ̃ j, j+1, . . . , κ̃ j,p)
T and κ̃ j,i is the subdifferential of

the function β �→ ‖β‖1 with respect to βi , evaluated at γ̂ j . The paper Belloni et al.
(2011) further shows that the �1-rates for the square-root Lasso satisfy condition (11).

123



154 J. Janková, S. van de Geer

The desparsified estimator may then be defined in the same way as in (8). Then, the
conditions of Lemma 4 are satisfied, and this implies that a desparsified nodewise
square-root Lasso achieves the same rates as the desparsified nodewise Lasso and thus
is also rate-optimal.

3.4 The thresholded estimator and variable selection

The desparsified estimator can be used for variable selection without imposing irrep-
resentable conditions. Under mild conditions, the procedure leads to exact recovery of
the coefficients that are sufficiently larger in absolute value than the noise level. The
following corollary is implied by Theorem 2 and Lemmas 2 and 3.

Corollary 1 Let Θ̂ be obtained using the nodewise Lasso and T̂ be defined as in (8)
with tuning parameters λ j ≥ cτ

√
log p/n uniformly in j , for some c, τ > 0. Assume

that conditions A1, A2*, A3, and A4 are satisfied. Let σ̂i j , i, j = 1, . . . , p be the
estimator from Lemma 3 and assume that log4(p ∨ n)/n1−ε = o(1) for some ε > 0.
Then, there exists some constant Cτ > 0, such that

lim
n→∞P

(

max
i, j=1,...,p

|T̂i j − Θ0
i j |/σ̂i j ≥ Cτ

√

log p/n

)

= 0.

If, in addition, the rows of X are N (0,Σ0)-dsitributed and σ̂i j , i, j = 1, . . . , p is
instead the estimator from Lemma 2, then there exist constants c1, c2,Cτ , such that

P

(

max
i, j=1,...,p

|T̂i j − Θ0
i j |/σ̂i j ≥ Cτ

√

log p/n

)

≤ c1 p
1−c2τ .

Corollary 1 implies that we may define the resparsified estimator

T̂ thresh
i j := T̂i j1|T̂i j |>Cτ σ̂i j

√
log p/n,

where σ̂i j is defined as in Corollary 1. Denote Ŝthresh := {(i, j) ∈ V×V : T̂ thresh
i j �= 0}.

Denote Sact0 := {(i, j) ∈ V ×V : |Θ0
i j | ≥ 2Cτ σi j

√
log p/n}. Then, it follows directly

from Corollary 1 that with high probability

Sact0 ⊂ Ŝthresh ⊂ S0.

The inclusion Sact0 ⊂ Ŝthresh represents that T̂ thresh correctly identifies all the non-zero
parameters which are above the noise level. The inclusion Ŝthresh ⊂ S0 means that
there are no false positives. If for all (i, j) ∈ S0 it holds:

|Θ0
i j | ≥ 2Cτ σi j

√

log p/n, (12)

then we have exact recovery, i.e., with high probability: Ŝthresh = S0.
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4 Further comparison to previous work

Closely related is the paper Janková and van de Geer (2015), where asymptotically
normal estimation of elements of the concentration matrix is considered based on
the graphical Lasso. While the analysis follows the same principles, the estimation
method used here does not require the irrepresentability condition (Ravikumar et al.
2008) that is assumed in Janková and van de Geer (2015). Hence, we are able to show
that our results hold uniformly over the considered class. Furthermore, regarding the
computational cost, our method uses Lasso regressions, which can be implemented
using fast algorithms as in Efron et al. (2004). In comparison, the graphical Lasso
method presents a more challenging computational problem, for more details see
Mazumder and Hastie (2012).

Another related work is the paper Ren et al. (2015). This paper suggests an estima-
tor for the precision matrix which is shown to have one dimensional asymptotically
normal components with asymptotic variance to Θ0

i iΘ
0
j j + (Θ0

i j )
2. The assumptions

and results used in the paper are essentially identical with our assumptions and the-
oretical results in the present paper. However, there are some differences. The paper
Ren et al. (2015) assumes Gaussianity of the underlying distribution, while we only
require sub-Gaussianity of the margins. Another difference is in the construction of
the estimators. Both approaches use regression to estimate the elements of the pre-
cision matrix, but the paper Ren et al. (2015) concentrates on estimation of the joint
distribution of each pair of variables (Xi , X j ) for i, j = 1, . . . , p. Thus, it is compu-
tationally more intensive as it requires O(ps) high-dimensional regressions (see Ren
et al. 2015), while our methodology only requires O(p).

5 Simulation results

In this section, we report on the performance of our method on simulated data and pro-
vide a comparison to another methodology. The random sample X1, . . . , Xn satisfies
EXi = 0, var(Xi ) = Θ−1

0 , where the precision matrix Θ0 = five-diag(ρ0, ρ1, ρ2) is
defined by

Θ0
i j =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ρ0 if i = j,

ρ1 if |i − j | = 1,

ρ2 if |i − j | = 2,

0 otherwise.

We consider the settings S1 = (ρ0, ρ1, ρ2) = (1, 0.3, 0) and S2 = (ρ0, ρ1, ρ2) =
(1, 0.5, 0.3). The second setting (1, 0.5, 0.3) is further adjusted by randomly perturb-
ing each non-zero off-diagonal element ofΘ0 by adding a realization from the uniform
distribution on the interval [−0.05, 0.05]. We denote this new perturbed model by
(1, 0.5, 0.3)U .Hence, the second precision matrix was chosen randomly. The sparsity
assumption requires s = o(

√
n/ log p). We have chosen the sample sizes for numer-

ical experiments according to the sparsity assumption (for this purpose, we ignored
possible constants in the sparsity restriction), i.e., n ≥ s2 log2 p.
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Asymptotic normality in the Gaussian setting
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Fig. 1 Histograms of
√
n(T̂i j − Θ0

i j )/σ̂i j , for i = 1, j = 1, . . . , 8. The sample size was n = 500 and the
number of parameters p = 100. The nodewise regression estimator was calculated 300 times. The setting
is S1 = (1, 0.3, 0)

5.1 Asymptotic normality and confidence intervals for individual parameters

5.1.1 The Gaussian setting

In this section, we consider normally distributed observations, Xi ∼ N (0,Θ−1
0 ), for

i = 1, . . . , n. In Fig. 1, we display histograms of
√
n(T̂i j − Θ0

i j )/σ̂i j for (i, j) ∈
{(1, 1), (1, 2), (1, 3)}, where T̂ is defined in (8) and the empirical variance σ̂i j is
estimated as suggested by Lemma 2. Superimposed is the density of N (0, 1).

Second, we investigate the properties of confidence intervals constructed using the
desparsified nodewiseLasso. For comparison,we also provide results using confidence
intervals based on the desparsified graphical Lasso introduced in Janková and van de
Geer (2015). The coverage and length of the confidence interval were estimated by
their empirical versions,

α̂i j := PN1{Θ0,i j∈Ii j,α} and �̂i j := PN2Φ
−1(1 − α/2)σ̂i j/

√
n,

respectively, using N = 300 random samples. For a set A ⊂ V × V , we define the
average coverage over the set A (and analogously average length avglengthA) as

avgcovA :=
∑

(i, j)∈A

α̂i j/|A|.

We report average coverages over the sets S0 and Sc0. These are denoted by avgcovS0
and avgcovSc0 , respectively. Similarly, we calculate average lengths of confidence
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intervals for each parameter Θ0
i j from N = 300 iterations and report avglengthS0 and

avglengthSc0 .
The results of the simulations are shown in Tables 1 and 2. The target coverage

level is 95%. The methodology for the choice of the tuning parameters was used as
follows (see Ren et al. 2015), for both methods:

ŝ = √
n/ log p, B = qt(1 − ŝ/(2p), n − 1), λ = B/

√

n − 1 + B2, (13)

where qt(β, n − 1) denotes the β-quantile of a t-distribution with n − 1 degrees of
freedom.

5.1.2 A sub-Gaussian setting

In this section, we consider a design matrix with rows having a sub-Gaussian distrib-
ution other than the Gaussian distribution. LetU := (U1, . . . ,Un) be an n× p matrix
with jointly independent entries generated from a continuous uniform distribution on
the interval [−√

3,
√
3]. Further consider a matrix Θ0 := five-diag(1, 0.3, 0) and let

Σ0 = Θ−1
0 . Then, we define

Xi := Σ
1/2
0 Ui

for i = 1, . . . , n. Then, the expectation of Xi is zero and the covariance matrix of Xi

is exactly Σ0 and the precision matrix is Θ0. It follows by Hoeffding’s inequality that
Xi defined as above is sub-Gaussian with a universal constant K > 0.

A further difference compared to the simulations in Sect. 5.1.1 is that we now
estimate the variance of the desparsified estimator using the formula proposed in (10)
for sub-Gaussian settings:

Table 1 A table showing a comparison of desparsified nodewise Lasso (D–S NW) and desparsified graph-
ical Lasso (D–S GL)

Setting S1 = (1, 0.3, 0) S0 avgcov S0 avglength Sc0 avgcov Sc0 avglength

p n

Gaussian setting: estimated coverage probabilities and lengths

100 191 D–S NW 0.945 0.302 0.963 0.262

D-S GL 0.931 0.293 0.974 0.254

200 253 D–S NW 0.947 0.267 0.963 0.232

D-S GL 0.928 0.254 0.976 0.220

300 293 D–S NW 0.949 0.238 0.965 0.220

D-S GL 0.928 0.236 0.977 0.205

400 324 D–S NW 0.948 0.246 0.965 0.230

D-S GL 0.925 0.228 0.981 0.223

Parameter p takes values 100, 200, 300, 400 and the corresponding values n are given by n = �s2 log2 p�,
where s = 3. The regularization parameter was chosen as described in (13). The number of generated
random samples was N = 300
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Table 2 A table showing a comparison of desparsified nodewise Lasso (D-S NW) and the desparsified
graphical Lasso (D-S GL)

Setting S2 = (1, 0.5, 0.3)U S0 avgcov S0 avglength Sc0 avgcov Sc0 avglength

p n

Gaussian setting: estimated coverage probabilities and lengths

100 531 D–S NW 0.896 0.164 0.975 0.146

D-S GL 0.781 0.153 0.980 0.137

200 702 D–S NW 0.868 0.142 0.976 0.126

D-S GL 0.729 0.133 0.982 0.119

300 814 D–S NW 0.863 0.131 0.976 0.117

D-S GL 0.712 0.124 0.984 0.110

400 898 D–S NW 0.859 0.125 0.976 0.111

D-S GL 0.709 0.118 0.984 0.105

Parameter p takes values 100, 200, 300, 400 and the corresponding values n are given by n = �s2 log2 p�,
where s = 5. The regularization parameter was chosen as described in (13). The number of generated
random samples was N = 300

Asymptotic normality in the sub-Gaussian setting
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Fig. 2 Histograms of
√
n(T̂i j − Θ0

i j )/σ̂i j , for i = 1, j = 1, . . . , 8. The sample size was n = 500 and the
number of parameters p = 100. The nodewise regression estimator was calculated 300 times. The setting
is S1 = (1, 0.3, 0)

σ̂ 2
i j := 1

n

n
∑

k=1

(Θ̂T
i Xk X

T
k Θ̂ j )

2 − Θ̂2
i j , (14)

where Θ̂ is the nodewise Lasso. The regularization parameters for the nodewise Lasso
are used in accordance with (13). Figure 2 again shows the histograms related to
several entries of the desparsified nodewise Lasso. Results related to the constructed
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Table 3 A table showing a comparison of desparsified nodewise Lasso (D-S NW) and the desparsified
graphical Lasso (D-S GL)

Setting S1 = (1, 0.3, 0) S0 avgcov S0 avglength Sc0 avgcov Sc0 avglength

p n

Sub-Gaussian setting: estimated coverage probabilities and lengths

100 191 D–S NW 0.906 0.234 0.949 0.249

D-S GL 0.811 0.190 0.944 0.216

200 253 D–S NW 0.909 0.203 0.950 0.217

D-S GL 0.791 0.165 0.946 0.187

300 293 D–S NW 0.911 0.189 0.950 0.202

D-S GL 0.765 0.152 0.947 0.173

400 324 D–S NW 0.911 0.180 0.951 0.192

D-S GL 0.740 0.143 0.947 0.164

Parameter p takes values 100, 200, 300, 400 and the corresponding values n are given by n = �s2 log2 p�,
where s = 3. The regularization parameter was chosen as described in (13). The number of generated
random samples was N = 300

confidence intervals are summarized in Table 3. The results demonstrate that the
desparsified nodewise Lasso performs relatively well even under this non-Gaussian
setting.

5.2 Variable selection

For variable selection as suggested in Corollary 1, we compare the desparsified node-
wise Lasso and the desparsified graphical Lasso. The setting is again as in Section
5.1.1. Average true positives and false positives over 100 repetitions are reported.
Choice of the tuning parameters is according to (13) and the thresholding level is
given by

λthresh = σ̂i j

√

2ν
log p

n
, (15)

taking ν = 1 for the desparsified nodewise regression, ν = 0.5 for the desparsified
graphical Lasso. We take σ̂i j = Θ̂i i Θ̂ j j + Θ̂2

i j as in Lemma 2. The results of this
simulation experiment are summarized in Table 4.

6 Real data experiments

Weconsider two real data sets, wherewemodel the conditional independence structure
of the covariates using a graphicalmodel. In particular, we aim to do edge selection and
we estimate the edge structure of the graphical model using the desparsified nodewise
Lasso. The first data set is the Prostate Tumor Gene Expression data set, which is
available in the R package spls. The second data set is about riboflavin (vitamin B2)
production by bacillus subtilis. The data set is available from the R package hdi.
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Table 4 Estimated true positives (TP) and false positives (FP) for the desparsified nodewise regression
estimator (D–S NW) and for the D–S GL estimator

Setting S1 = (1, 0.5, 0.4) TP TP rate % FP FP rate %

Estimated true positives (TP) and false positives (FP)

p = 100 D–S NW 494 100.0 0 0

|S0| = 494 D–S GL 493.98 99.999 0 0

p = 200 D-S NW 994 100.0 0 0

|S0| = 994 D–S GL 993.62 99.961 0 0

p = 300 D–S NW 1494 100.0 0 0

|S0| = 1494 D–S GL 1492.42 99.894 0 0

p = 400 D-S NW 1994.00 100.0 0 0

|S0| = 1994 D–S GL 1989.08 99.753 0 0

The sample size n = 400 was held constant for all the values of p; the number of repetitions was N = 100.
The thresholding levels was chosen as in (15)

For both data sets, the procedure is essentially identical. We only consider the first
500 covariates which have the highest variances. In the first step, we split the sample
and use 10 randomly chosen observations to estimate the variances of the 500 variables.
With the estimated variances, we scale the design matrix containing the remaining
observations. We calculate the nodewise Lasso using the tuning parameter as in the
simulation study, and then calculate the desparsified nodewise Lasso.We threshold the
desparsified nodewise Lasso at the level Φ−1(1− α/(2p2))σ̂i j/

√
n, where α = 0.05

and σ̂ 2
i j = Θ̂i i Θ̂ j j + Θ̂2

i j is an estimate of the asymptotic variance calculated under

the assumption of normality and using the nodewise Lasso estimator Θ̂.

The first data set contained observations of p = 4088 logarithms of genes expres-
sion levels from n = 71 genetically engineered mutants of bacillus subtilis. We
considered 500 variables with the highest variances; hence, a full graph contains

(500
2

)

edges. The desparsified nodewise Lasso identified 20 edges as significant. For compar-
ison, the desparsified graphical Lasso introduced in Janková and van de Geer (2015)
identified 5 edges as significant. It is worth pointing out that the set of edges selected
by the desparsified graphical Lasso is a subset of the edges selected by desparsified
nodewise Lasso.

The second data set contained n = 102 observations on p = 6033 variables. We
used the procedure above to do edge selection using the desparsified nodewise Lasso.
Our analysis identified 108 edges as significant using the desparsified nodewise Lasso.
For comparison, the desparsified graphical Lasso identified 28 edges as significant.
Again, the set of edges selected by the desparsified graphical Lasso is a subset of the
edges selected by desparsified nodewise Lasso.

7 Conclusions

We proposed a methodology for low-dimensional inference in high-dimensional
graphical models. The method, called the desparsified nodewise Lasso, is easy to
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implement and computationally competitive with the state-of-art methods. We stud-
ied asymptotic properties of the desparsified nodewise Lasso under mild conditions on
the model. The desparsified nodewise Lasso enjoys rate optimality in supremum norm
and leads to exact variable selection under beta-min conditions and mild conditions on
the model. We demonstrated its performance on several models in a simulation study
and on two real data sets. These numerical studies showed that it performs well in a
variety of settings, including non-Gaussian settings. Further open questions concern,
for instance, the asymptotic efficiency of the proposed estimator, similarly as in the
low-dimensional settings.
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