
ETH Library

Specification and verification
challenges for sequential object-
oriented programs

Journal Article

Author(s):
Leavens, Gary T.; Leino, K. Rustan M.; Müller, Peter

Publication date:
2007-06

Permanent link:
https://doi.org/10.3929/ethz-b-000002103

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Formal Aspects of Computing 19(2), https://doi.org/10.1007/s00165-007-0026-7

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000002103
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00165-007-0026-7
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


DOI 10.1007/s00165-007-0026-7
BCS © 2007
Formal Aspects of Computing (2007) 19: 159–189

Formal Aspects
of Computing

Specification and verification challenges
for sequential object-oriented programs
Gary T. Leavens1, K. Rustan M. Leino2 and Peter Müller3

1Dept. of Computer Science, Iowa State University, 229 Atanasoff Hall, Ames, IA 50011, USA. E-mail: leavens@cs.iastate.edu
2Microsoft Research, Redmond, One Microsoft Way, Redmond, WA 98052, USA. E-mail: leino@microsoft.com
3ETH Zurich, ETH Zentrum RZ F2, 8092 Zurich, Switzerland. E-mail: peter.mueller@inf.ethz.ch

Abstract. The state of knowledge in how to specify sequential programs in object-oriented languages such as Java
and C# and the state of the art in automated verification tools for such programs have made measurable progress
in the last several years. This paper describes several remaining challenges and approaches to their solution.

Keywords: Program verification; Specification; Contract; Object-oriented programming; Challenge

1. Introduction

The last few years have shown a renewed interest in formally verifying software. For example, within the last
decade, interactive program verifiers have been applied to control software and other critical applications [Abr96,
Cha00], software model checking has made strides into industrial applications [BBC+ 06], and a number of
research tools for bug detection have been built using automatic program-verification technology [BRL03, FM04,
FLL+ 02, CK05, MPMU04]. In fall 2005, a large, international group of researchers gathered in Zurich at the
Verified Software: Theories, Tools, Experiments conference [HMS05], to explore the next steps in a long-term
initiative by Hoare [Hoa03] to advance the science of program construction. Specification and verification of
sequential object-oriented software is certainly important to this overall picture.

In this paper, we describe several important specification and verification challenges as we see them today. We
draw on our experience with specifying and verifying code using the Java Modeling Language (JML) [LBR99,
LBR06, LPC+ 06] and Spec# [BDF+ 04, BLS05, LM04], and static checking and verification tools for these
[BCD+ 06, FLL+ 02, CK05]. While we do not claim that the set of challenges is complete, we hope that these
problems will provide a roadmap for problems to attack and a basis for measuring future progress.

Three years ago, Jacobs, Kiniry, and Warnier described several challenge problems for Java program verifi-
cation [JKW03]. Here, we group them into the categories used in our paper (plus a category “Others” for the
remaining challenges):

A. Data abstraction in specification

1. Specification: numeric models and method calls in specifications

B. Frame properties

2. Side effects in expressions

Correspondence and offprint requests to: P. Müller, E-mail: peter.mueller@inf.ethz.ch



160 G. T. Leavens et al.

C. Heap data structures

3. Aliasing and field access

4. Class invariants and callbacks

5. Static initialization

D. Control flow

6. Breaking out of a loop

7. Catching exceptions

E. Others

8. Bitwise operations

9. Overloading and dynamic method invocation

10. Inheritance

11. Non-termination

The specification challenge of dealing with computer versus infinite arithmetic (A.1) has been addressed in
the context of JML [Cha03]. The problem of how to deal with method calls in specifications (A.1) has also seen
some work recently [Cok05, DM06, JP06], but still faces open issues regarding frame properties. We discuss
these in Sect. 3.1. Side effects in expressions (B.2) as well as aliasing (C.3) are handled by various program logics
for object-oriented languages [AL97, Bec00, BS01, Boe99, HJ00, Jac04, JP01, Lei97, OYR04, vO01, vON02,
PB05, PHM99, Rey02] and also in ESC/Java [FLL+ 02, LSS99, CK05] and other tools geared to the verifica-
tion of Java-like programs [BCD+ 06, BRL03]. There has been much work on invariants and callbacks (C.4)
[BDF+ 04, LM04, LN02, MPHL06], which we discuss in more detail in Sect. 4.1. Although some work has also
been done on static initialization (C.5) [LM05], we still consider this problem an open challenge, which we discuss
further in Sect. 3.2. Both challenges related to control flow (D.6 and D.7) are solved by logics for abrupt termina-
tion [BS01, HJ00] or by translating programs to low-level languages such as BoogiePL [BCD+ 06, DL05, LSS99]
before verification. Handling bitwise operations (E.8) is important in practice. To automate verification of bitwise
operations, there are various decision procedures [CKS05, XA05], but there is still work to be done on integrating
these decision procedures with theorem provers, in particular, on combining them with arithmetic operations.
Dynamic method binding (E.9) and inheritance (E.10) are largely handled by the discipline of behavioral sub-
typing [Ame91, LD00, LW95, LW94, Mey97], which is incorporated into JML and Spec# using the idea of
specification inheritance [DL96, Lea06, LN06, Wil92]. Finally, non-termination (E.11) can be addressed using
standard techniques such as loop variants. The problem has also been tackled successfully using model checkers
[CPR06].

In summary the challenges presented by Jacobs, Kiniry, and Warnier’s paper are areas where much progress
has been made. Still, a number of difficult challenges remain, which are the subject of the present paper.

1.1. Scope and assumptions

Our survey of these challenges is limited to specification and verification techniques for object-oriented lan-
guages, such as Eiffel, Java, and C#. Because we draw on our experience with JML and Spec#, we largely ignore
concurrency issues and instead concentrate on issues in the specification and verification of sequential code.

Even within the domain of specification and verification techniques for sequential object-oriented programs,
there are several different styles of specification and verification. We focus on detailed design specification, i.e., the
specification of interfaces of individual program modules, also known as interface specification [GH93, Win87,
Win90]. This can be contrasted with requirements specification, which often occurs earlier in the development
cycle and is more concerned with the behavior of an entire program and less with the specification of individual
modules.

Most interface specification languages use some variation on Hoare’s pre- and postcondition technique
[Apt81, Gri81, Hoa69]. A well-known early example of such a language is VDM [Jon90]. The Larch family
[GH93, Win87] of interface specification languages exemplifies the approach of writing such pre- and postcon-
ditions using a specialized mathematical vocabulary. Specifications operate on abstract values [Hoa72], which



Specification and verification challenges for sequential object-oriented programs 161

are abstractions of the “concrete” state of the program. Furthermore, the operations used on abstract values are
completely mathematical, and thus an excellent fit for formal manipulation (e.g., with theorem provers).

Unfortunately, experience with Larch-style interface specification languages indicates that a mathematical
syntax for assertions, such as the Larch Shared Language [GH93], which is different than the programming
language’s syntax, is a barrier to use by programmers. Programmers seem more comfortable with an assertion
language that is based on the programming language’s own expression syntax. This is the approach followed
by Gypsy [AGB+ 77], Anna [Luc90, LvH85], APP [Ros95], and Eiffel [Mey92, Mey97], and adopted by JML
[LCC+ 05] and Spec# [BLS05].

Several of the challenges we describe in the design of such Eiffel-like interface specification languages stem
from this fundamental decision to write assertions using a subset of the expressions in the underlying program-
ming language. One of the basic problems is to overcome the mismatch between the programming language’s
expressions and the needs of automatic theorem provers.

It is essential that verification techniques are modular, that is, that they allow one to reason about a class inde-
pendently of its clients and subclasses. Modularity is crucial to verify reusable classes such as library classes and
for scalability. Many of our challenges stem from this modularity requirement. They call for modular solutions
to problems for which non-modular solutions already exist.

The specification and verification challenges described in this paper are challenges for specification and ver-
ification methodology, that is, how to apply existing concepts, formalisms, logics, etc. to specify and verify a
program. Therefore, the discussion is somewhat independent of the particular program logic that is used. We
believe the discussion applies to all or most of the logics for object-oriented languages, including Hoare-style
logics [AL97, Boe99, HJ00, Jac04, JP01, Lei97, vO01, vON02, PHM99], dynamic logics [Bec00, BS01], and
separation logic [OYR04, PB05, Rey02].

1.2. Outline

In this paper, we describe challenges in the areas of data abstraction in specification (Sect. 2), frame properties
(Sect. 3), reasoning about heap structures (Sect. 4), control flow (Sect. 5), and practical considerations (Sect. 6).
We describe each challenge and try to give an idea of why it is not yet solved, by describing a number of solution
approaches with their potentials and limitations.

2. Data abstraction in specification

One of the key innovations in JML’s design is the use of a library of modeling types that describe mathematical
bags (multisets), sets, sequences, relations, and maps [LCC+ 05]. These modeling types play the same role in a
JML specification as the built-in traits in the Larch Shared Language or the built-in types of VDM: they allow the
specifier to describe abstract values of objects using standard mathematical notions. These types are designed to
have immutable objects, to better match mathematics. They allow the specification of abstract values, especially
for collection classes. For example, the abstract value of a java.util.Collection can be specified using a
(specification-only) model field whose type is a JMLEqualsBag. While the hope was that such types would be
useful for both runtime assertion checking and static verification, they do not work well with static verification.
This leads to our first two challenges.

2.1. Specifying modeling types

If an interface specification language provides several built-in modeling types, a fundamental problem arises in
how to specify them in a way that is useful for verification. Modeling types can, of course, be specified using other
modeling types, but ultimately some modeling types must be specified in some other way.

Challenge 1 Develop a specification technique for modeling types.

2.1.1. Solution approach 1: Collected algebraic specifications

One approach to solving this challenge is to specify modeling types by mimicing algebraic specification tech-
niques [BW82, EM85, GTWW77, GH78, Wan79]. This approach initially seems sensible, because modeling types



162 G. T. Leavens et al.

Fig. 1. A JML modeling type ModelSet that is specified using an algebraic specification technique. In JML, annotations are enclosed in
special comments that start with an at-sign (@); in such annotations initial at-signs on a line are ignored. They keyword pure says that
the methods of this type have no side effects. An invariant declares a property that is true in all visible states. The operator ==> means
implication. The modifier nullable allows the parameter to equals to be null, contrary to JML’s default

typically have immutable objects. Thus, semantic ideas developed for equational algebraic specifications, such as
the initial algebra approach [BW82, EM85, GTWW77] or the final algebra approach [Wan79], could be used to
give the mathematical meaning to such a specification. Specifiers can use the technique of sufficient completeness
[GH78] to make sure that they have specified a type to the level of completeness desired.

For instance, a data type Set contains laws that relate the operations add and has , such as: (∀Set s,Element e :
has(add (s, e), e)) . In a similar way, we can relate the methods of a modeling type. For instance, each instance s
of a modeling type ModelSet has to satisfy the law: (\forall Object e; s.add(e).has(e)). In this
JML notation, universal quantification starts with \forall. (Such expression keywords start with a backslash
to prevent them from being confused with programmer-defined names.)

Fig. 1 shows a specification for ModelSet using this approach. In this specification, the invariant states
several properties of the methods shown in the figure. Such specifications are used for many of the JML modeling
types, and in actual practice they are considerably more extensive than shown in Fig. 1.

Unfortunately, this approach is not usable for verification, due to several problems.
A first problem is that the invariant in Fig. 1 quantifies over all objects, making it non-executable and thus

unsuitable for runtime assertion checking. With static verification techniques, this invariant’s quantification would
mean that every new object created could potentially violate the invariant. It is not clear how to reason efficiently
about such invariants. Such additional proof obligations would be non-modular and impractical. In our example,
creating a new object in fact cannot violate the invariant. Therefore, we would like to tell the theorem prover not to
check every new object against this invariant. However, taking such invariants as axioms instead of as invariants
seems dangerous, as it may lead to inconsistencies and would not be checked against the implementation.

A second problem is that the approach shown in Fig. 1 uses the equals method of the ModelSet type,
whereas standard algebraic specification techniques work with a built-in notion of equality. The use of theequals
method introduces several considerations that are not problems in standard algebraic data type specifications,
such as that equality might not be a congruence (reflexive, symmetric, transitive, preserved by the methods).
Furthermore, calls to the equals method make theorem proving more difficult (see Sect. 3.1).

2.1.2. Solution approach 2: specifying methods via other methods

It seems possible to solve the problems of the first approach while still using ideas inspired by algebraic specifi-
cation techniques, in that methods are specified in terms of their effect on other methods. However, this second
approach does not use a single algebraic style specification in an invariant. Instead, it divides the set of methods up
into query and non-query methods; no specifications are written directly for query methods, but each non-query
method’s behavior is specified by describing how it changes the results of all query methods [Mey97]. (One can
also distinguish between primitive and derived query methods, to help abbreviate such specifications [GH78].)

As an example, consider the type UModelSet in Fig. 2 on the next page. In this example, the meaning of the
non-query methods emptySet and add are both specified using the query method has. The method has itself
is not directly given a specification.

The main drawback of this approach seems to be that the verification of an implementation of a modeling class
may need additional specifications. For example, to verify an implementation of the hasmethod in UModelSet,
one would have to write a (private) implementation-dependent specification.



Specification and verification challenges for sequential object-oriented programs 163

Fig. 2. A JML modeling type UModelSet that is specified by giving specifications of various methods in terms of other methods. The
keyword ensures starts a postcondition for the following method. The keyword \result stands for the result of a (non-void) method

This approach also requires a sound treatment of quantifiers, such as the one in the specification of emptySet
(see Sect. 2.2), and of method calls in specifications (see Sect. 3.1).

2.1.3. Solution approach 3: translation between modeling types and mathematical theories

Another approach for specifying modeling types in some technique other than that used to specify normal,
user-defined types. One possibility is to develop an automatic translation between modeling types and theories
of some standard theorem prover (as suggested in [LCC+ 05]). Such a translation could be defined either from
modeling types to mathematical theories or vice versa.

Translating modeling types into mathematical theories allows programmers to write new modeling types and
then automatically translate them for static verification. This seems possible, but is non-trivial [Mir04]. First,
the resulting data types are typically complicated. For instance, JML’s model class JMLObjectSet for sets of
references cannot simply be mapped to a mathematical set of references. JMLObjectSet contains several ghost
fields, which are independent coordinates in the state space. Therefore, the resulting data type is a tuple, where
one component is a mathematical set. This makes working with it tedious. Second, if the modeling type is not
final, then programmers can override the equals method in various ways. Therefore, the equals method of a
non-final modeling type cannot always be translated to mathematical equality. The same problem occurs when
programmers implement their own modeling types and equals methods. Third, modeling types may refer to
methods of normal program code. For instance, the has method of JMLValueSet uses the equals method to
determine whether the (non-model) argument is in the set. It is not clear how such calls to program code can be
expressed in a mathematical theory (without formalizing the whole language semantics as part of the theory).

Translating mathematical theories into modeling types also has shortcomings. First, if programmers want
to develop their own modeling types, they would have to specify them in the language of a theorem prover.
This is contrary to the basic idea of contract languages, which try to shield programmers from specialized theo-
rem prover notation. Second, runtime assertion checking requires that modeling types be executable. However,
arbitrary mathematical theories cannot be translated automatically into executable program code.

In summary, it seems that the generality of these translation approaches causes problems. In particular, it is
unclear how to verify that the implementations (used by a runtime assertion checker) of such modeling types are
correct with respect to the mathematical theories (used by a theorem prover or other static analysis tool).

2.1.4. Solution approach 4: built-in modeling types based on mathematical theories

The problems of the automatic translations between modeling types and mathematical theories can be avoided if
the specification language provides a fixed, but carefully chosen set of modeling types together with their trans-
lations to mathematical theories. Programmers could then develop new modeling types only by instantiating
existing ones. In essence, this approach would harken back to VDM [Jon90], in using a small set of built-in types
for specification.

This approach meshes with the very recent work of Charles [Cha06]. In Charles’s work on JML, the Java
“native” keyword is reused to declare methods and types that have a correspondence in the prover (Coq). Types
declared as native are considered to be value types, that is, not to be subtypes of Object. Also, the prover has
a built-in understanding of how certain Java types (such as Object) correspond to types in the prover (e.g.,
Reference). That is, when translating from JML to the prover’s language, all occurrences of such Java type
are replaced by their corresponding prover type. Methods of such native types must also be “native” and are
treated as uninterpreted function symbols in the theorem prover. The JML declaration of such native types and



164 G. T. Leavens et al.

Fig. 3. A JML example that uses a generalized quantifier \num of in its loop invariant. Details of this expression are explained in the text.

methods is accompanied by text in the prover’s native language that axiomatizes the corresponding uninterpreted
function symbols. Normal users would not extend the set of such types, and no extra ghost or model fields would
be permitted in such types.

This seems like a promising approach to solving the challenge. One problem is defining a set of such “native”
types that would satisfy the demands of a wide variety of theorem provers and that would also work for runtime
assertion checking. In particular, correctness of the implementations of “native” types with respect to the mathe-
matical theories is again an issue. Another problem is figuring out how to use “native” types to specify types such
as Java’s collection types, where program code (equals) is supposed to define membership in the collection.

2.2. Quantifiers and comprehensions

It is well known that various generalized quantifiers (such as summations and products) are useful in specifica-
tions [Coh90, GS94]. Similarly, mathematicians have long found that set comprehensions are very convenient
notational abbreviations. Haskell [HJW+ 92] and other functional languages also use comprehension notations
for lists to great effect.

Generalized quantifiers and comprehensions are equally useful and important in specification languages,
where generalized quantifiers are notational shorthands and comprehensions act as literals for modeling types.
A prominent example of the utility of comprehension notations is Z [Spi92], in which, for example, set compre-
hensions are a central and important feature. JML has a few kinds of generalized quantifiers and set compre-
hensions. The example in Fig. 3 shows the use of a generalized quantifier \num_of, which counts the number
of integers, j, that both satisfy the range predicate, 0 <= j && j < args.length, and the body predicate
args[j].starts\-With("-"). This numerical quantifier is used in a loop invariant. The loop invariant is
needed to show that count is within the boundaries of the out array, which illustrates that quantifiers can be
useful even in situations where one’s verification ambitions are limited, like trying only to prove the absence of
array index bounds errors; of course, quantifiers and comprehensions are even more useful if one is trying to
prove full functional correctness.

Quantifiers and comprehension expressions pose several pitfalls for specification language designers. For
example, if quantifiers only quantify over non-garbage objects, then they become sensitive to garbage collection,
which causes semantic problems [COB03]. On the other hand, quantifying over non-allocated objects is also
problematic. For instance, if the quantifier in the invariant of class ModelSet (Fig. 1 on page 162) ranges over
all objects including non-allocated objects, then the invariant calls methods with parameter objects that are not
allocated. It is unclear what it means if these methods access the state of these parameter objects.

There are also practical difficulties in the implementation of quantifiers for runtime assertion checking, which
require either restriction of the language [KC97, Kra98] or recognition of patterns of bounded quantification



Specification and verification challenges for sequential object-oriented programs 165

Fig. 4. A method, countHits, that could be used to avoid the \num of quantifier in the previous figure. The requires clause specifies
its precondition. The use of two ensures clauses is equivalent to the conjunction of the postconditions they specify.

[Che03, WBL94]. Similar difficulties affect comprehension expressions. However, these difficulties in language
design and runtime assertion checking seem fairly well understood.

The remaining challenge is about program verification.

Challenge 2 Develop a verification technique for general quantifiers and comprehensions that is suitable for
automatic verification systems.

This challenge focuses on automatic program verifiers, such as ESC/Java and Boogie. These encode the proof
obligations as first-order formulas that are passed to an automatic theorem prover like Simplify [DNS05]. In such
automatic first-order provers, common inductive definitions of generalized quantifiers are not readily available.

2.2.1. Solution approach: replace comprehensions by functions

In our example, we could introduce the side-effect free (pure) method shown in Fig. 4 to count the number of
elements in the array a from index from that start with "-". We use this method to replace the comprehension
in the loop invariant of method filter as follows:

//@ loop_invariant 0 <= count && countHits(args ,i) == out.length - count;

However, this solution has some shortcomings. First, it requires a technique for reasoning about method calls
in specifications (see Sect. 3.1). Second, specifiers generally have to introduce auxiliary methods with non-trivial
(typically recursive) specifications for each quantifier or comprehension, which increases the specification over-
head significantly. One possible line of attack might be to develop heuristics that cause the verification-condition
generation to introduce suitably axiomatized functions whose parameters are the variables mentioned in the
generalized quantifier.

Without a solution to Challenge 2, users would have to choose between automatic theorem proving support
and specifications that are rich enough to mention generalized quantifiers and comprehensions.

3. Frame properties

This section presents several challenges related to frame properties. Frame properties say what a method is per-
mitted to change during its execution [BMR95]. The permitted modifications are often specified in so-called
“modifies clauses” [GH93]. Our JML examples use “assignable clauses” to say what locations a method may
assign. For instance, the assignable clause of method push in Fig. 5 on the following page permits the method to
assign to all fields of its receiver, but nothing else. Assignable clauses are slightly more restrictive than modifies
clauses. A method that assigns to a location l and then re-establishes its original value still has to list l in its
assignable clause, but since the method in effect does not modify l , l need not be listed in the modifies clause.
The challenges presented in this section do not rely on this subtle difference.

3.1. Method calls in specifications

Assertions in Eiffel, JML, and Spec# rely on pure (that is, side-effect free) methods, so-called observers, to
support data abstraction. For instance, the BoundedStack interface in Fig. 5 on the next page contains an



166 G. T. Leavens et al.

Fig. 5. Interface BoundedStack uses the pure method hasRoomFor to provide an implementation-independent JML specification for
push. The notation this.* in push’s assignable clause means that all fields of this (including the inherited model field objectState
and its data group) are assignable. Class Calculator uses a BoundedStack to store a stack of operands. The method constOp fetches
an operand and pushes it onto the stack. The modifier spec_public allows the field stack to be used in public specifications

Fig. 6. A possible implementation of interface BoundedStack. The stack elements are stored in the unused part of the operand array of the
Calculator object calc. Consequently, modifications of calc.next affect the capacity of the stack and, therefore, the result of has-
RoomFor

observer method hasRoomFor, where stack.hasRoomFor(i) yields true if and only if stack has room for
at least i additional elements. This observer is used to provide a specification for method pushwithout referring
to the concrete implementation of the stack. Implementation independence is required by information hiding.
Moreover, implementation independence is crucial to supporting subtyping since different subtypes must satisfy
a common specification, but may have different implementations (or no implementations at all in the case of
abstract classes and interfaces).

Recent papers by Cok [Cok05] as well as by Darvas and Müller [DM06] present encodings of observer meth-
ods in program logics. However, they do not explain how to reason about frame properties when the specification
uses observer methods.

Existing specification techniques for frame properties [LBR06, LM06, LN02, MPHL03] allow one to describe
the fields that are potentially modified by a method execution using an assignable clause. However, assignable
clauses do not specify the effects of a method execution on the results of observers. In our example, method push
affects the result of hasRoomFor for some arguments, but this effect is not declared in push’s assignable clause.

Since effects on observers are not covered by assignable clauses, the specification of method getOperand
of class Calculator does not express whether the result of stack.hasRoomFor is potentially affected by
the method. In fact, the specification in Fig. 5 does not prevent such an interaction between getOperand and
stack.hasRoomFor. Class StrangeStack in Fig. 6 stores the stack elements in the unused part of the oper-
and array of the Calculator object calc. Consequently, modifications of calc.next affect the capacity of
the stack and, therefore, the result of hasRoomFor. If a Calculator object c and a StrangeStack object
mutually use each other, then calling c.getOperand may indeed affect the result of c.stack.hasRoomFor.

Due to its requires clause, method constOp may assume stack.hasRoomFor(1). However, we cannot
conclude that this property still holds when it is needed to satisfy the requires clause of the call to stack.push,
because that property might have been invalidated by the preceding call to getOperand. Consequently, we
cannot prove that the requires clause of push is satisfied, which causes the verification of constOp to fail. This
example illustrates an open challenge.



Specification and verification challenges for sequential object-oriented programs 167

Challenge 3 Develop a specification and verification technique that allows one to determine the effects of heap
modifications on the results of observer methods.

3.1.1. Solution approach 1: listing modified observers

One approach to this challenge is to require a method’s assignable clause to list all observers that are potentially
affected by the method. This can be done in COLD-K [FJ92, Sect. 5.7], where the frame of a procedure specifi-
cation lists the variables, including the COLD-K equivalent of observer methods, whose value may be changed
by the procedure.

However, this solution is obviously not modular.1 To see why, consider a class Sequence with an ob-
server method isEqualTo(BoundedStack b), which states whether the sequence and the stack contain
the same values. Method push affects the result of isEqualTo by adding an element to the stack, but since
class Sequence might have been developed long after BoundedStack, method push cannot be required to
declare its effect on isEqualTo.

Besides not being modular, listing modified observers is also too weak since it handles only heap changes
through method calls. However, field updates also change the heap and, therefore, potentially affect the result
of an observer. Consider a variant of the Calculator example, where the implementation of getOperand is
inlined into the body of the method constOp. In this case, it is again not possible to prove that constOp’s call
to push satisfies the requires clause of push because we cannot prove that the assignment to the field next that
now precedes the call to push does not affect the result of hasRoomFor.

3.1.2. Solution approach 2: model fields

Model fields [CLSE05, Lei95] are specification-only fields whose value is determined by applying a mapping (a
representation function) to the concrete state of an object. Therefore, model fields are similar to observers, but
are restricted in two ways. First, model fields do not have parameters. Second, since a model field encodes an
abstraction of an object, it is reasonable to require model fields to be confined [LM06, MPHL03]. The value of a
confined model field may depend only on the state of the receiver object including the sub-objects of an aggregate
object. We assume that the sub-object relation is acyclic and is declared explicitly in programs, for instance, by
using ownership annotations [CPN98, LM04]. Observers typically serve a more general purpose than model
fields. Therefore, the result of an observer method may depend on the state of all reachable objects. For instance,
an equals observer may depend on the state of its receiver and on the state of its explicit parameter.

The confinededness of model fields allows one to specify frame properties for model fields in a modular way
[LM06, MPHL03]. The modification of an object x potentially affects: (1) model fields of x and (2) model fields
of aggregate objects containing x as sub-object. Model fields of group 1 can be listed in assignable clauses. With
appropriate alias control, model fields of group 2 cannot be accessed by methods of x and, therefore, do not
have to be listed in assignable clauses [LM06, MPHL03]. Note that the modularity problem of the isEqualTo
example above stems from the fact that this observer depends on the state of its explicit argument and is, therefore,
not confined.

The similarity between model fields and observers suggests that the existing verification techniques for model
fields can be generalized to confined, parameterless observers. Figure 7 shows a variant of the Bounded-
Stack example, where the observer hasRoomFor has been replaced by two confined, parameterless observers
getSize and getCapacity. In this example, we treat confined, parameterless observers like model fields, that
is, we require them to be listed in the assignable clause of each method that potentially affects their result values.

Since getSize and getCapacity are confined, their results depend only on the state of the receiver and
its sub-objects. The rep annotation in the declarations of the fields stack and operands expresses that the
stack and operand array are sub-objects of the Calculator object. Since the sub-object relation is acyclic,
we know that a Calculator object c is not a sub-object of the BoundedStack object c.stack. Conse-
quently, we can prove that an execution of c.getOperand does not affect the values of c.stack.getSize
and c.stack.getCapacity. Hence, they need not be listed in getOperand’s assignable clause, and so we
can conclude that the call, in constOp, to getOperand does not invalidate the requires clause of push.

Soundness and modularity of existing verification techniques for model fields rely on the confinededness
of the model fields, because this allows one to determine whether a heap modification might affect the value

1 COLD-K also uses the third approach, described below, to deal with this modularity problem.



168 G. T. Leavens et al.

Fig. 7. Alternative JML specification of interfaceBoundedStack. The observersgetSize andgetCapacity yield the number of elements
and the capacity of the stack, respectively. They are parameterless and confined and can, therefore, be treated like model fields. The confined
modifier is supported by Spec#, but not by the current version of JML. Listing observers in assignable clauses such as in the specification of
push is currently not allowed in either Spec# or JML

of a model field. Since heap modification does not affect parameter values, we expect that one can generalize
these techniques to confined observers with parameters such as hasRoomFor. This generalization supports, for
instance, an equals observer that tests for reference equality. Such an observer uses the parameter value, but
does not read the state of the explicit parameter. It is, therefore, confined. However, it does not support a version
of equals that tests for deep equality, which requires read access to the state of the explicit parameter. Therefore,
this approach is promising for many practical applications, but not a complete solution to the challenge.

3.1.3. Solution approach 3: read effects

The solution approach based on model fields requires that observers read only the state of the receiver object and
its sub-objects. A verification technique can use this information about the read effect of an observer to determine
which heap changes (or write effects) potentially have an impact on the result of an observer. The read effect of a
method m is the set of all mutable heap locations that are potentially read by m [GB99]. Analogously, the write
effect of m is the set of all heap locations that are potentially modified by m .

In general, one can prove that a method m does not affect the result of an observer o if the write effect of
m and the read effect of o are disjoint. While specifications typically describe the write effect of a method in an
assignable clause, read effects are usually not specified explicitly.2 In the following, we discuss three approaches
to using read effects for reasoning about observers.

Mutable state independent observers We call an observer mutable state independent if its result does not depend
on any mutable state. In other words, the read effect of a mutable state independent observer is the empty set.
Therefore, the result of a mutable state independent observer cannot be affected by any heap changes, which
simplifies reasoning significantly.

Consider class ArrayStack in Fig. 8 on the next page, which implements the BoundedStack interface
from Fig. 7. The observer getCapacity is declared (mutable) state independent because it reads only immu-
table fields, namely elems, which is immutable because it is final3, and elems.length, which is immutable
because the size of arrays cannot be changed in Java.

SincegetCapacity is mutable state independent, its result cannot be affected by heap changes, in particular,
by the execution of getOperands in the Calculator example (Fig. 7).

2 However, JML does have an “accessible clause” that allows specification of read effects [LPC + 06, Sect. 9.9.10].
3 We assume that an observer is called only on fully initialized receiver objects. Therefore, it is safe to consider final fields as immutable state
because their value cannot be mutated after the object is initialized.



Specification and verification challenges for sequential object-oriented programs 169

Fig. 8. An implementation of interface BoundedStack. The observer getCapacity is mutable state independent since it reads only
immutable fields. The state independent modifier is supported by Spec#, but not by the current version of JML. In JML the keyword
also must be used to start a specification for an overriding method; it says that the given specification is joined with that of the method
being overridden.

Mutable state independent methods solve Challenge 3, but only for observers that do not read any muta-
ble state, such as many mathematical operations, and observers that operate on immutable state, such as most
methods of Java’s String class. However, they do not solve the challenge in general. For instance, method
getSize of class ArrayStack is not mutable state independent. Therefore, this approach does not suffice to
verify method constOp of class Calculator.

Complete specifications of result values The relevant read effect of an observer can be determined if the observer
has a complete specification of its result value, that is, an ensures clause of the form \result == E , where
the expression E refers to parameters, fields, and other observers with complete specifications of their result
values. For instance, method getSize in Fig. 8 completely specifies the result in terms of the field count. With
a complete specification of the result value, a conventional assignable clause is sufficient to determine whether a
method affects the result of an observer. In ourCalculator example (Fig. 7 on the previous page), the assignable
clause of getOperand does not mention stack.count. Therefore, getOperand must leave stack.count
unchanged. From this information and the ensures clause of getSize in class ArrayStack, we can conclude
that the result of this observer is not affected. If class Calculator were to use class ArrayStack instead of
the interface BoundedStack, then one could use the stronger specification of getSize and getOperand to
verify method constOp.

The drawback of complete specifications of result values is that they are difficult to write in an implementa-
tion-independent way. For instance, in class ArrayStack, the ensures clause of getSize violates information
hiding by mentioning the private field count (hence, in JML, count must be declared to be spec_public).
This ensures clause would have to be expressed using a model field [CLSE05] in the interface BoundedStack
(Fig. 7 on the previous page), since the field count cannot be declared in the interface. Furthermore, different
subclasses of BoundedStack might implement and specify getSize in different ways. Thus, complete specifi-
cations of result values are only a partial solution to Challenge 3 and, in general, require additional support for
data abstraction such as model fields.

Explicit effect specifications The approaches discussed so far either work with a very coarse specification of
read effects (confined and mutable state independent observers) or infer read effects from ensures clauses. These
approaches are useful for special cases, but do not solve Challenge 3 in general. A more comprehensive solution
can be achieved by specifying the read effects of methods explicitly (see [FJ92, Sect. 10.11] [GB99, JP06] for effect
specifications).

Explicit specifications of read effects must be implementation independent to support interfaces and infor-
mation hiding. Clarke and Drossopoulou achieve that by building an effect system on top of an ownership type
system [CD02]. Ownership type systems organize the heap hierarchically. This hierarchy of objects can be used



170 G. T. Leavens et al.

in effect specifications. For instance, the JML-style effect specification “accessible \under(this)” could
express that the method may read the state of its receiver and its sub-objects, that is, that the method is confined.
In interface BoundedStack (Fig. 7), we could annotate getSize and getCapacity with this read effect.
Since the Calculator object is not a sub-object of the BoundedStack object (but vice versa), this read effect
allows us to prove that the implementation of getOperand does not affect the results of these observers.

Data groups [Lei98, LPHZ02] enable more fine-grained effect specifications. A data group is essentially a
named collection of heap locations. Listing a data group in a read effect specification allows the method to read
all fields in the data group without exposing the names of these fields. Subtyping is supported by allowing subtypes
to add new fields to inherited data groups. In our example, getSize could be declared to read the size data
group. The implementing class, ArrayStack, would then declare count to be a member of data group size,
which gives ArrayStack’s implementation of getSize the right to read count. A linked list implementation
of BoundedStack would put all list nodes into the data group to allow getSize to iterate over the list and
count the number of elements.

As originally described by Leino [Lei98] (and as currently found in JML), a location may be declared to
be a member of more than one data group. Greenhouse and Boyland [GB99] observe that while this is fine for
limiting what a method may write (using assignable clauses), it does not give one a sound way to decide on pos-
sible interference between methods, which is needed to solve this challenge. For example, in Fig. 5 on page 166,
knowing the read effects of hasRoomFor and the write effects of getOperand does not let one soundly say
that getOperand does not interfere with hasRoomFor if one is permitted to add new locations that are in both
sets of data groups.

Recent work by Jacobs and Piessens [JP06] shows that explicit effect specifications seem to be the most
promising approach to Challenge 3. Specifying read effects might seem cumbersome, but the verification of
multi-threaded programs also requires these specifications [Gre03, vPG03], which may justify the additional
effort.

3.2. Modification of static fields

Most of the state of an object-oriented program resides in the fields of objects, but there are also situations where
some state is shared among all instances of a class. In those situations, one can use global variables, or static fields
as Java and C# call them. A problem arises in reasoning about when static fields change.

The program in Fig. 9 on the next page declares an abstract class whose overridable run method performs
an operation of some sort. The public method perform invokes run, bracketing the invocation with calls to
now, which retrieves the current time. The class keeps track of the number of operations that have completed
since the counters of the class were last reset, and also keeps track of the sum of the times elapsed during those
operations. Method perform ends by computing and printing the average time elapsed during an operation.

The correctness of the implementation of perform depends on operations being non-zero at the time
the average is computed, thus avoiding a division-by-zero error. The class invariant states that operations is
at least zero, so the increment will make operations positive. The implementation of perform is therefore
correct, provided the second call to now has no effect on the static field operations, more specifically that it
does not set it to zero. Such an undesired effect could, for instance, occur if an override of now in a subclass
of Operation would call reset. This shows that method specifications must express which static fields are
potentially modified by the method.

The effect of a method on instance fields is described by the method’s assignable clause. However, stipulating
that a method also affects only those static fields listed in the method’s assignable clause has a couple of fatal
flaws. First, the discipline violates information hiding, because public methods would have to advertise any private
static fields that they modify. Second, the assignable clause of a method would become overly verbose, because
it would have to include all static fields modified by all transitive callees. The need to declare modifications of
both private static fields and static fields modified by transitive callees in assignable clauses is due to potential
reentrancy. Consider for instance a method C.caller that calls D.middle, which in turn calls C.callee. If
C.callee modifies a private static field of class C, then this modification has to be advertised to C.caller
and, therefore, must be declared in the assignable clauses of both C.callee and D.middle. Dealing with the
information hiding problem and the transitivity problem is an open challenge.

Challenge 4 Develop a specification and verification technique that allows one to determine the effects of methods
on static fields.



Specification and verification challenges for sequential object-oriented programs 171

Fig. 9. A Java class with some static fields. In this example, the correctness of method perform relies on the fact that executions of now do not
change the value of operations. The field runGroup is a model field, and hence only usable in specifications. The type JMLDataGroup
is used in such declarations to declare data groups.

For instance fields, the information hiding problem and the transitivity problem are addressed by data groups
[Lei98] and ownership [CPN98]. Our solution approaches are to adapt these concepts to static fields.

3.2.1. Solution approach 1: data groups

As explained in Sect. 3.1.3, data groups allow one to group several heap locations into one named collection.
Data groups support information hiding in assignable clauses by the following rule. The license to modify a data
group implies the license to modify the variables it contains. For example, in Fig. 9, the fields modified by run
are specified by the data group runGroup. Data groups also allow subclasses of Operation to introduce more
instance fields and declare that these are contained in runGroup. Thus, the assignable clause of run is both
expressive and concise.

One can also attempt to use data groups to solve the information hiding problem for static fields. For example,
class Operation could declare a data group

//@ public static model JMLDataGroup staticGroup;

By declaring operations and elapsedTime to be contained in staticGroup, as in:

private static long operations; //@ in staticGroup;
private static long elapsedTime; //@ in staticGroup;



172 G. T. Leavens et al.

they no longer need to be declared as spec_public and the assignable clause of perform can be replaced by

//@ assignable staticGroup , runGroup;

which does not mention any private fields.
To address the transitivity problem, we must also declare nested containments of data groups. Suppose class

Date declares a data group Date.staticGroup and lists it in the assignable clause of method getTime (for
instance, because the method updates a cache stored in a static field). Then, in order for perform to own up to
modifying Date.staticGroup, we must arrange for that data group to be contained in Operation.stat-
icGroup.

Nesting of data groups is also necessary to handle dynamic method binding. Consider for instance a dynam-
ically-bound method m declared in a class C, and a subclass D of C that overrides m. Let’s assume that C.m and
D.m assign to static fields of C and D, respectively. C.m lists a data group C.staticGroup in its assignable
clause, but not D’s data groups because in a modular setting, C cannot be expected to know all of its subclasses.
Behavioral subtyping requires that D.m satisfy the assignable clause of C.m. Therefore, the only way for D.m to
be allowed to modify the static fields in D is by declaring D.staticGroup to be contained in C.staticGroup.

To be useful, it must be possible, at verification time, to know that certain data group containments are not pres-
ent in a program. For example, in order to determine that the call to Date.getTime in Fig. 9 on the preceding
page does not have an effect on operations, one needs to determine that Date.staticGroup does not
(directly or transitively) contain operations. Assume for instance that our specification technique would allow
a class Illegal to declare a data group to contain Operation.staticGroup and to be contained in Date.
staticGroup. With this declaration, operations would be transitively contained in Date.staticGroup,
but this containment could not be determined in a modular way from the declarations of Operation and Date.

This example shows that a specification discipline needs to restrict where data group containments can be
declared: it can either make declarations of the form “data group g contains x” possible as part of the declaration
of g (discipline 1) or make them possible as part of the declaration of x (discipline 2). With discipline 1, one can
determine modularly all static fields contained in g by following the containment relation starting from g. With
discipline 2, one can determine modularly all data groups that contain x by following the inverse containment
relation starting from x. However, neither of the two declarations in isolation is expressive enough to handle
our examples: discipline 1 requires class C to declare that C.staticGroup contains D.staticGroup, but
C cannot be expected to know all of its subclasses; discipline 2 requires class Date to declare that Opera-
tion.staticGroup contains Date.staticGroup, but Date cannot be expected to know all of its clients.
Permitting a mix of both disciplines leads to the modularity problem illustrated by class Illegal.

In conclusion, using data groups to specify the modification of static fields cannot be made to fit the require-
ments on data groups imposed by sound modular verification.

3.2.2. Solution approach 2: class ordering

For instance fields, the transitivity problem of assignable clauses can be solved using ownership. For example, the
Boogie methodology [BDF+ 04, LM04] allows a method to modify fields of objects directly or transitively owned
by the receiver without declaring these fields in the assignable clause. The intuition behind this rule is that owned
objects are sub-objects that belong exclusively to their owner. Therefore, client code does not need to know about
their modification.

Ownership cannot directly be used for static fields because it prescribes a tree order of exclusive ownership.
In contrast, classes are typically global, that is, not exclusively owned by other classes. There is a variation of the
Boogie methodology that removes the restriction that entities be ordered by a tree according to the ownership
relation. By imposing some further restrictions on what variables may be named in invariants, this variation is
able to allow any partial ordering between entities. The variation has been developed in the context of invariants
over static fields [LM05] where the entities are classes.

We assume that the edges in the partial order among classes are declared explicitly. Typically, a class C suc-
ceeds class D in the order if C is a client of D or if D is a subclass of C . In the former case, the edge is declared
in the client C ; in the latter case, it is declared in the subclass D . This shows that the methodology permits a
mix of the two disciplines described in Sect. 3.2.1. Soundness is restored by a simple link-time check. This partial
order among classes can also help with specifying and verifying frame conditions of static fields.

In this variation of the Boogie methodology, a class is in one of the states mutable , valid , or transitively-valid
( tvalid ). In the context of invariants over static fields, mutable means that the class is in a state in which its static
fields may be assigned. If a class is in state valid or tvalid , its invariant is known to hold. The methodology



Specification and verification challenges for sequential object-oriented programs 173

guarantees the following property at all times: if a class is in state tvalid , then so are all the classes that it succeeds
in the class ordering. The typical precondition of a method is that the enclosing class is in state tvalid , which
means that the invariant of the enclosing class and all the classes that it succeeds in the class ordering may be
assumed to hold.

A possible frame rule that governs the modification of static fields is: a method is allowed to affect the static
fields of any class that, in the pre-state of the method, is not in state mutable [LM05]. For example, since class
Operation in Fig. 9 on page 171 is a client of class Date, Operation would be declared to succeed Date in
the class ordering. The precondition of perform would say that class Operation is in state tvalid , which then
implies that class Date is also in state tvalid . Since method now does not rely on the invariant of Operation, it
would only require that Date be in state tvalid . This allows the implementation of now to meet the precondition
of Date.getTime, namely that Date is in state tvalid .

In order to mutate the state of a class, the methodology says that the class has to be in state mutable . Thus,
performwould need to change Operation into state mutable before assigning to the fields operations and
elapsedTime. Because Operation succeeds Date, this has no effect on the state of Date. Now the pro-
posed frame condition comes into play: because Operation is in state mutable during the executions of now
and Date.getTime, the frame rule says that the static fields of Operation are unchanged. This allows the
implementation of perform to be verified.

But this frame rule is not entirely satisfactory, because it says nothing about the static fields of classes not in
state mutable . Imagine that method now would require class Operation to be in state tvalid . Then method
performwould make Operation mutable only between the calls to now instead of during the execution of the
whole method body. Consequently, now would be allowed to modify static fields of Operation without declar-
ing these modifications in its assignable clause, and we could not verify perform. In this particular example,
since now is a method of class Operation, one could add a stronger ensures clause to express that it does not
modify static fields of Operation. However, this would in general not be possible if the method was declared
in a different class. One could imagine making the frame rule stricter, to say that a method in a class C can only
ever have an effect on the static fields in classes that C succeeds. However, this does not help if the relative order
of two classes is unknown.

3.3. Class initialization

Modern programs often rely on large library components. Reducing the time to load and initialize these libraries is
important to improve the responsiveness of the programs. A solution employed by both the Java Virtual Machine
and the .NET Common Language Runtime is to support lazy class initialization. This means that a class is not
loaded and initialized until its first use. While this feature can improve responsiveness, it complicates reasoning
about programs.

Consider the following program snippet:

int x = A.a;
int y = B.b;
int z = A.a;
assert x == z;

where A.a and B.b are static fields in two classes, A and B. If one expects the reading of static fields to have no
side effects, then one would conclude that the assertion will hold. However, given the following class declarations:

class A {
public static int a;
static { a = 0; }

}
class B {

public static int b;
static { b = 0; A.a = 5; }

}



174 G. T. Leavens et al.

it is possible, in the presence of lazy class initialization, to arrive at the assertion with local variables x and z
having the values 0 and 5, respectively. This would happen if class B has not yet been loaded at the time B.b is
read; the reading of B.b will then first invoke class B’s static initializer, which sets A.a to 5.4

We certainly need to allow static initializers to mutate state, but it would be horribly non-modular to have to
reason about the possibility of such mutations happening any time something from another class is referenced.
What we would like is a specification and verification technique that confines the side effects of class initializers
in such a way that one can ignore the specific time at which they actually occur.

Challenge 5 Develop a specification and verification technique for lazy class initialization.

3.3.1. Solution approach 1: limit class initialization invocations

In some programming systems, it may be possible to limit when class initializers are invoked. For example, the
.NET Common Language Runtime allows some flexibility in when class initialization takes place. If class initial-
izers are invoked only when the program reaches a procedure boundary (call or return), then it may be possible
to extend a solution to Challenge 4 to also account for the state being modified as part of class initialization. A
solution along these lines would still need to develop restrictions on what state static initializers are allowed to
modify.

3.3.2. Solution approach 2: class ordering

Reasoning about eager class initialization, including the eager initialization of dynamically loaded classes and
libraries, can be facilitated by a partial order on the classes as described in Sect. 3.2.2. That methodology pre-
scribes when it is possible to rely on invariants declared about static fields [LM05]. Perhaps it is possible to use
the class ordering to restrict the modifications of static initializers to those static fields declared in predecessor
classes. By doing so, it seems possible to regain the property that reading a static field leaves the program’s state
unchanged.

Note that it is not sufficient simply to define a rule that a class may only assign to static fields declared in
superclasses. For instance, if class B in the example above were declared to be a subclass of A, then the same
problem would exist. Also, note that it is not sufficient simply to define a rule that says a class can only assign
directly to its own static fields. In the example above, we could replace B’s direct assignment to A.a by a call to a
method in A that would do the actual assignment to A.a, in which case the problem would still exist.

The two solution approaches we have alluded to here may, at best, hint at some ingredients that may be useful
in solving Challenge 5. A full solution remains an open challenge.

4. Heap data structures

Over the last decade, research in program verification has seen tremendous improvements in reasoning about
heap structures and aliasing [BN04, LM04, LN02, Mül02, MPHL03, MPHL06, OYR04, PB05, Rey02]. In this
section, we discuss two of the remaining challenges, the verification of invariants of complex object structures
and the verification of finalizers.

4.1. Invariants of complex object structures

Almost all interesting data structures consist of several interacting objects. The invariant of such a data structure
relates the state of several objects, which implies that modifications of these objects potentially affect the invariant.
Consequently, a sound verification technique has to generate proof obligations for all methods that modify an
object of the data structure to maintain the invariant.

We illustrate invariants of object structures by the implementation of the Composite Pattern [GHJV95] in
Fig. 10 on the next page. Each Composite object stores references to its direct sub-components in an array. The
invariant of a Composite object x expresses that the field x .total contains the number of components of the

4 This problem has been noted by others. For example, N. G. Fruja mentioned it in his talk at the .NET Technologies workshop in Plzeň,
Czech Republic, in June 2004.



Specification and verification challenges for sequential object-oriented programs 175

Fig. 10. An implementation of the Composite pattern. As expressed by the JML invariant in Composite, the total field stores the number
of (sub-)components of a component. For simplicity, we omit the invariants that express that each component is correctly linked to its parent.
The invariant shown in Composite uses \sum to express the addition of all component totals

composite tree rooted in x . Therefore, the invariant of x depends on the state of x , the array x .components,
and the state of x ’s direct sub-components. Any method that modifies any of these objects potentially violates x ’s
invariant. Therefore, the invariant leads to proof obligations for the methods of Component and its subclasses,
methods of Composite, and any method that has access to the components array. To handle the latter group
of methods in a modular way, one has to employ some form of alias control to limit this group, for instance, to
the methods of Composite.

Our example illustrates that reasoning about invariants of object structures has to deal with the complications
of subclassing and aliasing, and is, therefore, a rather difficult challenge:

Challenge 6 Develop a specification and verification technique for invariants of complex object structures.

4.1.1. Solution approach 1: ownership-based invariants

Ownership [CPN98] provides encapsulation for object structures, which can be used to verify invariants mod-
ularly [LM04, Mül02, MPHL06]. Ownership organizes a data structure hierarchically into an interface object
(the owner), which is used by clients to access the data structure, and representation objects, which are accessed
only via their owner. An admissible ownership-based invariant of an object x depends only on fields of x and
objects owned by x . Therefore, x has full control over any modifications that potentially affect the invariant,
and a verification methodology can impose appropriate proof obligations on the methods of x .

Although many object structures are well encapsulated and can be verified using ownership, there are sev-
eral practically relevant data structures that expose their objects to clients. For instance, implementations of the
Composite pattern typically do not encapsulate the sub-components of a composite. Clients can add components
to any composite of the hierarchy, not only to the root composite. Forcing clients to always access a hierarchy
through its root r would be highly inefficient because the add operation would have to determine the roots of
all sub-hierarchies between r and the composite where the new sub-component should be added. In general,
this requires a costly traversal of the hierarchy. Consequently, a Composite object does not own its sub-com-
ponents, and the invariant of class Composite is not an admissible ownership-based invariant. The invariant is
nevertheless maintained because the addComponent method triggers a bottom-up traversal of the composite
structure to re-establish the invariant. In our example, this traversal is done by method addToTotal, which
adjusts the total fields of the (transitive) parent composites.



176 G. T. Leavens et al.

In summary, ownership-based verification is a powerful technique that is useful for many practical examples,
in particular, aggregate objects. However, some heap data structures such as the Composite pattern maintain
interesting invariants, but do not follow an ownership discipline [BN04]. Therefore, ownership-based invariants
are only a partial solution to Challenge 6.

4.1.2. Solution approach 2: visibility-based invariants

While ownership-based invariants gain their modularity from a strong encapsulation, visibility-based invariants
[BN04, LM04, Mül02, MPHL06] gain their modularity from enforcing that all invariants that are potentially
affected by a field update are visible in the method that contains the update. Therefore, it is possible to show
modularly that these invariants are preserved. In our example, we assume that the classes Component and Com-
posite are declared in the same package and, therefore, mutually visible. In particular, Composite’s invariant
is visible in every method that updates Component’s total field. Therefore, it is possible to generate proof
obligations that these methods maintain the invariant.

Visibility-based invariants are useful for data structures that do not follow an ownership discipline. However,
they have several severe drawbacks. First, the visibility requirement is often too strict. For instance, visibility-based
invariants must not depend on array elements because every method in a program that gets hold of a reference
to an array can modify it. Without alias control (such as ownership), the set of such methods generally cannot
be determined modularly. Second, the visibility requirement does not support subtyping well. For instance, the
invariant of a subclass of Component in a different package cannot refer to the total field because this invari-
ant is not visible where the total field is declared. If the subclass invariant could refer to total, then methods
in Component’s package could break this subclass invariant by assigning to total. However, since the subclass
invariant is not visible in these methods, they cannot be required to maintain it. Third, visibility-based invariants
increase the number and complexity of proof obligations. For instance, the fact that the composite data structure
forms a tree is trivial if composites own their sub-objects (since ownership is a tree order) but has to be specified
and verified explicitly if no ownership discipline is applied. Such a specification involves reachability predicates,
which are difficult to reason about, especially by automatic theorem provers [DNS05].

Due to these drawbacks, visibility-based invariants are useful to complement ownership-based invariants,
but cannot replace them. The invariant of the composite example in Fig. 10 on the page before can be expressed
using a combination of ownership (for the components array) and visibility (for Component–Composite).
However, this combination still suffers from the second and third drawback. Complex heap structures such as
the Composite pattern require new solutions to Challenge 6.

4.2. Finalizers

Finalizers are special methods that are invoked by the runtime system before an unreachable object is de-allo-
cated. Their purpose is mainly to free system resources. For instance, the finalize method in Fig. 11 on the
next page closes the files used by its receiver object.

Since the runtime environment of languages like Java and C# may invoke the garbage collector in any execution
state, programs have no control over the execution of finalizers. This leads to two problems for verification.

First, a finalizer might be invoked in a state in which certain object invariants do not hold. In our example,
the constructor of TempStorage throws an exception if opening the files fails. In this case, the object is never
fully initialized and thus its invariant does not hold. However, the finalizer of TempStorage relies on the object
invariant and, therefore, will abort with a null-pointer exception when a partly-initialized object is destroyed. A
verification technique can prevent an application program from calling a method on a partly-initialized object,
for instance, by making explicit which object invariant may be assumed to hold [BDF+ 04]. However, finalizers
are called by the runtime system and, therefore, cannot be controlled.

Second, like any other method, a finalizer potentially modifies the heap. Since finalizers might be called in
any execution state, a verification technique has to deal with spontaneous heap changes, which is even worse than
the heap changes caused by static initializers (see Sect. 3.3).

Dealing with these problems is an open challenge:

Challenge 7 Develop a verification technique for finalizers.

A solution to this challenge is necessary to guarantee that verification is not unsound for programs containing
finalizers.



Specification and verification challenges for sequential object-oriented programs 177

Fig. 11. The finalizemethod closes the files used by the receiver object. Although non-null is the default in JML, we include, for emphasis,
a declaration that makes this invariant explicit

4.2.1. Solution approach: severe restrictions

Since the runtime system may invoke finalizers in any execution state, reasoning about finalizers is similar to
reasoning about multi-threaded programs. However, multi-threading is very general, whereas finalizers are mainly
used for the special purpose of freeing system resources. Therefore, a specification and verification technique may
impose strong requirements on finalizers that would be too restrictive for multi-threading.

To deal with the first problem, we do not see an alternative to simply not making any assumptions about
the heap in finalizers. Any property a finalizer requires has to be checked at runtime. For instance, the method
invocations in our example have to be guarded by checks that the corresponding receivers are non-null. In order
to allow finalizers to call methods of other objects, which typically require their invariants to hold, it would be
helpful to allow programs to explicitly check at runtime whether certain invariants hold.

Concerning the second problem, it seems necessary to allow a finalizer to modify only those objects and
system resources that are exclusively used by the object that is being destroyed. In particular, finalizers must not
modify global state such as static fields. Techniques such as ownership type systems may be useful for reasoning
about the sharing of objects. However, it is unclear how to guarantee that certain system resources are not shared,
for instance, how to prevent two objects from creating handlers for the same file.

5. Control flow

Program logics that can handle jumps [BM05, BL05, Ben05, Cri84, HJ00] solve the earlier verification challenges
of dealing with unstructured control flow such as abrupt termination of loops and exceptions. However, a remain-
ing challenge is to deal with higher-order features, for instance, a filter method that takes a reference to a predicate
method that determines whether a data element should be filtered out of a collection. Higher-order features occur
in object-oriented programs in the form of objects that act as functions, which we refer to as function objects.

A type-safe way of implementing function objects in object-oriented languages is the Strategy pattern [GHJV95].
This pattern consists of an interface with the signature of the method that should be passed as a function object
and subclasses implementing this method. Alternatively, C#’s delegates [ECM05a] and Eiffel’s agents [ECM05b]
are language features that provide type-safe function objects. In this section, we discuss how to specify meth-
ods that use function objects and how to verify invocations of function objects. We illustrate the challenges by
the Strategy pattern and delegates with a single underlying method, but the discussion also applies to multicast
delegates and Eiffel agents.

5.1. Specification of methods that use function objects

Fig. 12 on the next page shows a typical application of function objects. In this example, the format method of
class Paragraph takes a delegate as an argument. This delegate represents a format algorithm that is applied



178 G. T. Leavens et al.

Fig. 12. An implementation of text paragraphs with two formatters. The formatter for a text paragraph is passed to the format method as
a delegate. In this example, we have used Java and JML notation extended with C# delegates

Fig. 13. An alternative implementation of the example in Fig. 12 using the Strategy pattern (in Java and JML)

to the text paragraph. Class Formatters provides two implementations of formatters that can be used to
instantiate the delegate Formatter. The formatters format the text by directly modifying the text array of the
Paragraph object p. Fig. 13 shows the example using the Strategy pattern instead of a delegate.

Since different format algorithms can have very different behavior, we cannot completely specify their effect in
an ensures clause of the Formatter delegate (or the formatParagraph method of the interface Formatter
of Fig. 13). This is typical for function objects. The various methods a function object can be instantiated with
often have almost no common behavior that could be described in a specification of the function object. For
instance, the update methods of different observers in the Observer pattern may react to an event completely
differently. This distinguishes function objects from virtual methods with overriding implementations, where
typically all implementations share some common behavior.

It is also not possible to give a direct and complete specification of the effect of format on a Paragraph
object. Verifying such a specification would require knowledge about the effect of the invocation of the func-
tion object, but this knowledge is not available because the function object does not (and cannot) have a strong
specification.

Since we cannot give a direct specification for format, we would like to specify its behavior relative to
the behavior of the function object. In other words, we would like to specify that format applies the delegate
instance f (or the method f.formatParagraph) to its receiver object. However, to use f in a mathematical
description of the behavior of format one must summarize f’s behavior mathematically. This brings us again
to the problem of using method calls in specifications. In JML, using f directly in a specification would require
that the delegate f be pure, and hence that all methods the delegate can be instantiated with also be pure. But this
is not the case in our example since these methods modify the text array. Function objects that are non-pure
methods are common and occur, for instance, in the cooperation between containers and layout managers in the
Java Abstract Windowing Toolkit. Thus reasoning about function objects is an interesting research challenge:

Challenge 8 Develop a specification technique for methods that use function objects.



Specification and verification challenges for sequential object-oriented programs 179

Fig. 14. A JML specification of the example in Fig. 13 on the previous page using pure check methods. In JML, (* and *) delimit informal
specifications

5.1.1. Solution approach 1: pure methods

Our first solution approach works for function objects that contain pure methods, which may be used in spec-
ifications. Recent work on the encoding of pure methods [Cok05, DM06, JP06] can be generalized to function
objects. These encodings introduce a mathematical function for each pure method of a program. The functions
for pure methods are axiomatized based on the method specifications.

A possible encoding of pure delegates is a mapping from delegate objects to the functions for the underly-
ing pure methods. However, such a second-order encoding is not supported by automatic theorem provers like
Simplify [DNS05]. Therefore, one has to develop alternative encodings in first-order logic.

This approach allows us to specify and verify applications of function objects to pure methods. However, this
approach does not work for non-pure methods like in the Paragraph example (Fig. 12 on the previous page
and Fig. 13 on the previous page) because these methods cannot be used in specifications.

5.1.2. Solution approach 2: pure check methods

Based on the previous approach, we can handle non-pure function objects by always passing pairs of methods, the
non-pure method we want to call and a pure boolean check method that simply checks the effect of the non-pure
method. Objects containing such pairs of methods are easily implemented in the Strategy pattern, where we can
simply add a second method to the interface.

Fig. 14 illustrates this approach. In addition to the impure method formatParagraph, interface Format-
ter declares a pure check method isFormatted, which is used in the specification of format. The formal
connection between the method formatParagraph and its check method isFormatted is the ensures clause
of formatParagraph.

Now we can use the first approach (Sect. 5.1.1) to verify the example. Provided that we know the concrete
type of the Formatter object passed to format, we can use the specification of the check method in that type
to reason about the effects of format.

This approach is a partial solution to Challenge 8 for the Strategy pattern. Unfortunately, it increases the
specification overhead because pure check methods have to be added. Moreover, it requires a solution to Chal-
lenge 3 to be useful in practice. It is not immediately clear how to extend this approach to delegates, which do
not support the pairwise combination of a method and its check method.



180 G. T. Leavens et al.

5.1.3. Solution approach 3: specification reflection

C#’s delegates, Eiffel’s agents, and the Strategy pattern allow a specification language to equip function objects
with specifications and purity annotations. The previous two solution approaches show how to use such speci-
fications for static verification. Function objects can also be implemented by reflection, for instance, using class
Method in Java. This solution is not type-safe and does not allow one to associate specifications with function
objects. It may be possible to extend the reflective capabilities of the language to also allow access to specifications
[CHL04], or to extend the specification language to permit access to the specifications of such objects [Jon91].
However, the details of how to do static verification with such specifications remain to be worked out.

5.1.4. Solution approach 4: model programs and enriched traces

Yet another approach to this challenge is based on ideas of the refinement calculus [BvW98, Mor94]. The “grey-
box” approach to specification of Büchi and Weck [Büc00, BW99] specifies such higher-order procedures using
abstract programs. JML’s “model programs” are designed to allow for specifications in this style. As an example,
the specification of method format from Fig. 14 on the preceding page could be given as follows.

//@ public model_program { f.formatParagraph(this); }
public void format(Formatter f) { f.formatParagraph(this); }

The model program in this case is quite simple, and just exposes the essential form of a conforming implemen-
tation to the clients. So in this case, there are essentially no other correct implementations. In more interesting
cases, one can use specification statements to leave parts of such a method up to the implementation. Details
of the semantics of model programs in JML remain to be worked out (especially how to verify that a method
satisfies the specification of such a model program [Sha06]). While the model program in theory contains enough
information to reconstruct a trace of the program’s execution, the technique by itself does not solve the challenge,
because it does not provide a direct way for clients to verify interesting properties about calls to methods that
have model program specifications.

This challenge is more directly addressed by the work of Soundarajan and Fridella [SF04]. In their work,
specifications for function objects have an additional part, called an “extended specification”. The extended spec-
ification describes what traces of method calls may result from the method’s execution. These traces allow clients
to derive stronger constraints on the post-state, by plugging in (more) exact specifications for the method calls
in the trace. That is, the extended specification is parameterized on the meaning of the methods it calls; if the
client knows more about such methods, then this extra knowledge can be used to strengthen what is known about
the post-state. While reasoning using extended specifications and traces is not simple, it seems like a promising
direction for this challenge. Soundarajan and Fridella claim both soundness and a kind of completeness for their
technique.

5.2. Verification of invocations of function objects

In the previous subsection, we discussed how to specify methods that use function objects. In this subsection, we
focus on a related problem, namely how to prove that the invocation of a function object is correct.

Fig. 15 on the next page shows an implementation of a storage system. The Archive delegate allows one
to create function objects for the store methods of different archives. In method Main, the Archive delegate is
instantiated with the instance method store. As illustrated by this example, instantiation of a delegate with an
instance method also fixes the receiver object of calls to this method, in this case, tapeArchive.

Invoking a function object triggers a call to the underlying method. Verification has to ensure that the requires
clause of this method holds when the function object is invoked. Conversely, the properties guaranteed by the
underlying method should be available at the invocation site. The challenge is to enable this kind of reasoning.

Challenge 9 Develop a specification and verification technique for function objects.



Specification and verification challenges for sequential object-oriented programs 181

Fig. 15. A implementation of a tape archive and its client. The represents clause says that the model field isReady is true when a tape
is loaded in the archive. The model field provides an implementation-independent specification for the methods of TapeArchive. The
delegate Archive provides clients with a uniform way of storing data in different archives

5.2.1. Solution approach 1: pre-post-specifications and refinement

With the Strategy pattern, invocations of function objects are verified using the specification of the method in
the Strategy interface. Behavioral subtyping enforces that all implementations of this Strategy method refine its
specification.

To adapt this approach to delegates, we associate each delegate declaration with a specification similar to
method specifications. When a delegate type D is instantiated with a method m , one has to prove that m ’s
specification refines D ’s specification. More precisely, one has to prove that D ’s requires clause is stronger than
m ’s and that D ’s ensures clause is weaker than m ’s when D ’s requires clause holds. At the invocation site of the
delegate, it suffices to prove that the requires clause of D holds, which implies that the weaker requires clause of
m holds as well. Conversely, one may assume D ’s ensures clause after the invocation.

Ignoring for the moment the requires clause of method store, which will be used in a later example, the
delegate Archive and the method store have identical requires and ensures clauses. Therefore, store’s spec-
ification trivially refines the specification of Archive, which allows us to verify the delegate instantiation in
method main. When the delegate is invoked in method log, we have to prove that the requires clause of the
delegate is satisfied, which in this example also is trivial.

Equipping delegates with specifications and checking a refinement relation when a delegate is instantiated
allows us to verify many delegate invocations such as the example in Fig. 12 on page 178. However, this approach
is insufficient when a delegate is instantiated with a method whose specification refers to properties of the receiver
object. The problem is illustrated in Fig. 15 by the requires clause of store, which requires the model field
isReady of the receiver to be true. In order to ensure that the specification of store refines the specification
of Archive, Archive’s requires clause has to express properties of the receiver of the underlying method. This
can be done using the target field of C#’s Delegate class:

/*@ requires _target != null && _target is TapeArchive
@ ==> (( TapeArchive)_target ). isReady;
@*/

With the appropriate substitution, it is trivial to show that this requires clause implies the requires clause of
method store. However, the above requires clause entails two problems. First, using target in the delegate



182 G. T. Leavens et al.

Fig. 16. An implementation of the storage example based on the Strategy and Adapter patterns.

specification requires callers of the delegate to reason about properties of the receiver object. This is cumber-
some because these properties have to be propagated from the instantiation of the delegate (where the receiver is
known) to each invocation site. For instance, we have to add a similar requires clause to method log to verify
the delegate invocation. Second, the specifier of Archive has to foresee that the delegate might be instantiated
with a method of TapeArchive. Otherwise, they would not specify a requires clause for Archive that acces-
ses isReady. This deprives delegates of much of their flexibility. In particular, adding a new method such as
DiskArchive.save to the program requires an additional requires clause for Archive, which cannot be
added without changing the existing code.

These problems are avoided by an implementation using a simple Strategy pattern instead of delegates. The
model field isReady could then be declared in the Strategy interface and used in the specification of the Strategy
method. Different subclasses of the Strategy interface can provide different representations for the model field.
However, such a simple Strategy pattern requires that all implementations of the Strategy method have the same
name and be declared in subclasses of the Strategy interface, which is often too restrictive. These restrictions
are eliminated when the Strategy pattern is combined with an Adapter pattern. We discuss an approach for this
design next.

5.2.2. Solution approach 2: visibility-based invariants

The code in Fig. 16 shows a pattern-based implementation of the storage example from Fig. 15 on the page before.
The Strategy interface ArchiveStrategy declares the method apply, which is used to invoke the function
object. To achieve the same flexibility as with delegates, in particular, to be able to instantiate the function objects
with methods with different names or from classes that do not implement ArchiveStrategy, we combine
the Strategy with an Adapter pattern. Class TapeArchiveAdapter is the adapter for class TapeArchive.
It delegates invocations of apply to the store method of the TapeArchive instance ta. A similar adapter
would be needed to instantiate the function object with a method DiskArchive.save.

In this pattern-based implementation, the receiver for an invocation object is stored in a field of the adapter
object. Therefore, properties of the receiver object can be expressed as object invariant of the adapter as shown
in class TapeArchiveAdapter.

Let’s assume a visible state semantics for invariants [GH93, Mey97], where all object invariants hold in
the pre- and post-states of all method executions. In our example, we can prove that the instantiation of
TapeArchiveAdapter in method main satisfies the requires clause of the constructor, which establishes the
invariant. The visible state semantics allows us to assume that the invariant of logfile holds in the pre-state of
method log and, therefore, to verify the invocation of the delegate. The verification of log neither needs addi-
tional requires clauses nor involves properties of the receiver of the function object. This shows that invariants
solve the first problem of solution approach 1 (Sect. 5.2.1). The second problem of solution approach 1 is solved
because the invariant is declared in the adapter class, not the Strategy interface. In our example, the implementor
of the interface ArchiveStrategy does not have to foresee that the function object will be instantiated with
TapeArchive.store.



Specification and verification challenges for sequential object-oriented programs 183

If the invariant of a function object refers to the state of the receiver of the underlying method, it can be violated
by modifying this receiver. Suppose method main in Fig. 16 on the previous page callstapeArchive.eject()
before calling Client2.log. The call to eject violates the invariant of the adapter archive. Therefore, the
extended example should not verify. As discussed in Sect. 4.1, existing work provides two modular verification
techniques for invariants of object structures.

Ownership-based invariants require the adapter object to own the receiver of the underlying method. They
prevent the call tapeArchive.eject() because ownership forces all accesses to an owned object to be initi-
ated by the owner, in this case, archive. This is clearly too restrictive for many programs. Consider for instance
an implementation of the model-view-controller architecture where the controller uses function objects to dis-
patch events to the model. Using ownership would mean that the model can be accessed only through callbacks
from the controller, which is not realistic. Moreover, existing ownership systems support only single ownership.
Therefore, the receiver of a function object could not be part of another ownership hierarchy.

Visibility-based invariants are better suited for function objects. The invariant of TapeArchiveAdapter is
an admissible visibility-based invariant if TapeArchiveAdapter is visible in classTapeArchive, for instance,
because both declarations are contained in the same package. The visibility of the invariant allows us to impose
proof obligations that each method that modifies isReady preserves the invariant. The specification in Fig. 15
on page 181 does not allow one to show this proof obligation for method eject.

Visibility-based invariants provide a partial solution to Challenge 9, but leave some problems unsolved. First,
they require the adapter to be declared in the same package as the fields mentioned in its invariant. In particular,
it is not possible to declare an adapter with an invariant that mentions a field from a library class because in this
case, the adapter class is not visible where the field is declared. This is a severe restriction on reuse. Second, with
a visible state semantics, invariants have to be preserved by all methods of a program. In our example, the call
x .eject violates the invariant of any TapeArchiveAdapter object that references x . Consequently, eject
needs a requires clause that no such TapeArchiveAdapter object exists. In a pattern-based implementation,
this requirement can be established by setting the ta field of all relevant TapeArchiveAdapter objects to
null. However, delegates do not provide such an operation to detach their target. Barnett and Naumann [BN04]
present a powerful methodology for dealing with visibility-based invariants, but adapting their methodology to
the peculiarities of delegates has not yet been attempted.

6. Practical considerations

In addition to the technical specification and verification challenges described above, there are also challenges of
a more practical nature. These involve the ease of using the specification language, its expressiveness, and tool
support for both specification and verification.

6.1. Library specifications

One of the most important and difficult practical problems is obtaining specifications of standard class libraries,
such as the libraries that come with Java and C#. These libraries are especially important for the verification of
real programs, since most programs make heavy use of them; hence calls to methods in such libraries can only
be verified if the libraries are specified. For example, if the assignable clause for a library method m is not given,
then callers of m have to assume conservatively that m modifies the state of all reachable objects. In particular,
m might be overridden in subclasses such that a call to m may modify even fields that are not accessible to
the library implementation of m . Furthermore, library methods are usually called to achieve some particular
postcondition, so fairly complete functional specifications will be needed by many clients.

The sheer size of the libraries that come with C# and Java makes the task of writing functional specifications
for these libraries daunting and costly. It would be ideal if the designers of these libraries had written specifications
for them, but failing that, some automated inference of specifications can be very helpful in making this task
more practical. Of course, an automated inference process cannot precisely infer design intent, so some decisions,
for example about preconditions, will need human judgment. Moreover, human input will be needed to decide
what are the appropriate abstractions. However, if a person decides what an appropriate abstraction would be
for a type, then it may be possible to automatically infer a reasonable specification (or set of likely specifications
for many cases).



184 G. T. Leavens et al.

Challenge 10 Provide assistance in specifying libraries of classes.

One tool that can help with creating specifications is Daikon [BCC+ 05, ECGN01]. It can infer specifications
by performing data mining on information gathered from test runs. However, using it requires a test suite that
will exercise the relevant modules. A similar approach, but without the requirement of a test suite, was taken
by Houdini [FL01], which guessed various method specifications and used ESC/Java [FLL+ 02] to prune away
invalid guesses. Nimmer and Ernst worked to combine these approaches by using ESC/Java to prune invariants
produced by Daikon that could be statically shown to be invalid [NE01].

However, all of these efforts produce specifications that describe the effects of methods on (private) fields.
Allowing users to specify abstractions, or inferring them, remains a challenge.

6.2. Dealing with multiple tools

Specifiers often write specifications in different styles and at different levels of detail and completeness. One
reason for this is that they may only be interested in using certain tools (such as a runtime assertion checker or
static checker) and not others. Having several different kinds of tools able to work on specifications is a benefit,
as different tools have different strengths and weaknesses [BCC+ 05]. However, having a choice of tools means
that documentation is needed that explains what features of the specification language are relevant for each of the
tools. For example, unbounded quantifiers are not usually considered executable by runtime assertion checking
tools.

To design a specification language that serves the needs of several tools is thus a balancing act. The seman-
tics of the specification language has to be designed to work with all the different kinds of tools. Fortunately,
it seems that the needs of runtime checking and static verification are not incompatible [LCC+ 05]. Neverthe-
less, besides needing more complete specifications, static verification often needs extra specification constructs,
such as intermittent assertions and assumptions, loop invariants or specifications of the entire effect of a loop
[Heh93, Heh05], and axioms. Different static verification systems may also have different needs, for example
based on their different strategies for handling loops and recursion. This leads to the following challenge.

Challenge 11 Carefully document what specification language constructs are useful for which tools, and make
sure the semantics of all these constructs are compatible.

One approach to organizing documentation that may be helpful to users is to specify a graduated sequence
of language subsets. For example, one might specify a subset for runtime assertion checking, a larger one for
extended static checking, and a yet larger one for formal verification. This would also help users understand what
constructs are useful for what tools. The Omnibus environment takes such an approach and offers suggestions
for how different specification styles can be combined [WMC05]. Yet another way to organize the documentation
might be based on which features are most often needed.

A related practical problem is that when one first starts using a new feature of a specification language, it
often must be used everywhere at the same time. For example, if one adds an assignable clause to a method M ,
one must specify assignable clauses for all methods that M calls, and then all methods called by those methods,
etc. Tools might helpfully point out a (bottom-up) ordering that would allow useful checking during intermediate
phases of such additions.

Another related practical problem is to hide the complexity of various verification techniques from users
by suitably chosen defaults. One would like the flexibility to override such defaults when necessary, but suitable
defaults can greatly ease the burden of writing and reading specifications in the normal case, especially if the need
to override the defaults is rare.

In our experience with Spec#, we have found it awkward to override the defaults, because it is difficult to be
specific about which part of the default should be overridden. For example, the current default of an ordinary
method in Spec# is that all parameters are “peer consistent” on entry and that the return value is “peer con-
sistent” on exit. If one wants a different precondition for, say, the receiver parameter, then one would mark the
whole method as not getting any default specifications, which means that the default specifications for the other
parameters must all be provided explicitly. The rationale behind this design of providing only one way to turn
off (all) default specifications for a method was to simplify the way a user works with defaults, but this has not
worked out so smoothly. Perhaps some support from an integrated development environment (IDE) could help
here, since an IDE might be able to, upon request by a user, display the defaults and allow them to be explicitly
deleted or changed. The IDE could still keep the defaults from view in the common cases.



Specification and verification challenges for sequential object-oriented programs 185

7. Conclusions

In this paper, we described specification and verification challenges that we currently face in our work on JML
and Spec#. In trying to write down various challenges and solution approaches, we also found a few problems
that turned out to already have solutions. Two of the more notable of these are the following:

• Supporting field-like properties of objects, which is solved by using model fields [CLSE05, Lei95]
• Specifications of coroutine-like iterators, which is solved by the techniques of Jacobs et al. [JMPS05].

For many of the remaining challenges, we could at least give partial solutions or describe promising approaches.
We hope that the identification and description of the remaining challenges will help increase the understanding
of some important issues in specification and verification of sequential object-oriented programs, and that the
described approaches will help point out some likely avenues for future research.

Our list of challenges is not complete. For example, we did not consider how to specify and verify programs
that use multi-threading, reflection, dynamic class loading, and other advanced features. There are certainly plenty
of challenges in these and other areas. Furthermore, in the short period of time between our paper’s submission
and the final version, we had to rewrite several sections to accommodate the latest results; this shows how active
the field is. Nevertheless, we hope that our list of challenges and their analysis will help, in a small way, the field
make progress towards the grand challenge of verified software.

Acknowledgments

We are grateful to Kristina Boysen, David Cok, Ádám Darvas, Fraaz Hussain, Bart Jacobs, Joseph Kiniry,
and Joseph Ruskiewicz for their comments on draft versions of this paper. We also thank the referees for their
extremely insightful comments.

Leavens’s work was funded in part by the US National Science Foundation under grant CCF-0429567.
Müller’s work was funded in part by the Information Society Technologies program of the European Commis-
sion, Future and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

[Abr96] Abrial J-R (1996) The B-Book: assigning programs to meanings. Cambridge University Press, Cambridge
[AGB + 77] Ambler AL, Good DI, Browne JC, Burger WF, Cohen RM, Hoch CG, Wells RE (1977) GYPSY: a language for specification

and implementation of verifiable programs. SIGPLAN Notices 12(3):1–10. doi:10.1145/800022.808306
[AL97] Abadi M, Leino KRM (1997) A logic of object-oriented programs. In: Bidoit M, Dauchet M, (eds) Theory and practice

of software development (TAPSOFT), Vol 1214 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 682–696.
http://www.springerlink.com/content/kp4n0b4xhn8rjg4p

[Ame91] America P (1991) Designing an object-oriented programming language with behavioural subtyping. In: de Bakker JW, de Roever
W-P, Rozenberg G (eds) Foundations of object-oriented languages. REX School/Workshop, Noordwijkerhout, The Nether-
lands, May/June 1990, Vol 489 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 60–90. doi:10.1007/BFb0019440

[Apt81] Apt KR (1981) Ten years of Hoare’s logic: a survey—part I. ACM Trans Program Lang Syst 3(4):431–483. doi:
10.1145/357146.357150

[BBC + 06] Ball T, Bounimova E, Cook B, Levin V, Lichtenberg J, McGarvey C, Ondrusek B, Rajamani SK, Ustuner A (2006) Thorough
static analysis of device drivers. In: EuroSys’06. ACM, New York, pp 73–85. doi:10.1145/1217935.1217943

[BCC + 05] Burdy L, Cheon Y, Cok DR, Ernst MD, Kiniry JR, Leavens GT, Leino KRM, Poll E (2005) An overview of JML tools and
applications. Int J Softw Tools Technol Transf 7(3):212–232. doi: 10.1007/s10009-004-0167-4

[BCD + 06] Barnett M, Chang B-YE, DeLine R, Jacobs B, Leino KRM (2006) Boogie: a modular reusable verifier for object-oriented
programs. In: Formal Methods for Components and Objects (FMCO) 2005, Revised Lectures, Vol 4111 of Lecture Notes in
Computer Science. Springer, Heidelberg, pp 364–387. doi:10.1007/11804192 17

[BDF + 04] Barnett M, DeLine R, Fähndrich M, Leino KRM, Schulte W (2004) Verification of object-oriented programs with invariants.
J Object Technol 3(6):27–56. http://tinyurl.com/m2a8j

[Bec00] Beckert B (2000) A dynamic logic for Java Card. In: Drossopoulou S, Eisenbach S, Jacobs B, Leavens GT, Müller P, Po-
etzsch-Heffter A (eds) Workshop on formal techniques for Java Programs (FTfJP). Technical Report 269, FernUniversität
Hagen

[Ben05] Benton N (2005) A typed, compositional logic for a stack-based abstract machine. In: Yi K (ed) Programming languages and
systems: third Asian symposium (APLAS), Vol 3780 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 364–380.
doi: 10.1007/11575467 24

[BL05] Barnett M, Leino KRM (2005) Weakest-precondition of unstructured programs. In: Ernst MD, Jensen TP (eds) Program
analysis for software tools and engineering (PASTE). ACM, New York, pp 82–87. doi:10.1145/1108792.1108813



186 G. T. Leavens et al.

[BLS05] Barnett M, Leino KRM, Schulte W (2005) The Spec# programming system: an overview. In: Barthe G, Burdy L, Huis-
man M, Lanet J-L, Muntean T (eds) Construction and analysis of safe, secure, and interoperable smart devices (CASSIS
2004), Vol 3362 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 49–69. http://www.springerlink.com/con-
tent/0m789xre652nuv06

[BM05] Bannwart F, Müller P (2005) A logic for bytecode. In: Spoto F (ed) Bytecode semantics, verification, analysis and transformation
(BYTECODE), Vol 141(1) of Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam, pp 255–273. doi: 10.1016/
j.entcs.2005.02.026

[BMR95] Borgida A, Mylopoulos J, Reiter R (1995) On the frame problem in procedure specifications. IEEE Trans Softw Eng 21(10):785–
798. doi:10.1109/32.469460

[BN04] Barnett M, Naumann D (2004) Friends need a bit more: maintaining invariants over shared state. In: Kozen D (ed) Math-
ematics of program construction (MPC), Vol 3125 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 54–84.
http://www.springerlink.com/content/6gt28um7j5jgra12

[Boe99] Boer FSd (1999) A WP-calculus for OO. In: Thomas W (ed) Foundations of software science and computation structures (FOSS-
ACS), Vol 1578 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 135–149. http://www.springerlink.com/content/
avdcmfyp8fxwk1y0

[BRL03] Burdy L, Requet A, Lanet J-L (2003) Java applet correctness: a developer-oriented approach. In: Araki K, Gnesi S, Mandrioli D
(eds) Formal methods (FME), Vol 2805 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 422–439. http://www.
springerlink.com/content/wje4yrg7mm7k4u88

[BS01] Beckert B, Sasse B (2001) Handling Java’s abrupt termination in a sequent calculus for Dynamic Logic. In: Beckert B, France R,
Hähnle R, Jacobs B (eds) IJCAR Workshop on Precise Modelling and Deduction for Object-oriented Software Development,
pp 5–14

[Büc00] Büchi M (2000) Safe language mechanisms for modularization and concurrency. Technical Report TUCS Dissertations No.
28, Turku Center for Computer Science, May 2000

[BvW98] Back R-J, von Wright J (1998) Refinement calculus: a systematic introduction. graduate texts in computer science. Springer,
Heidelberg

[BW82] Broy M, Wirsing M (1982) Partial abstract types. Acta Informatica 18(1):47–64. doi:10.1007/BF00625280
[BW99] Büchi M, Weck W (1999) The greybox approach: when blackbox specifications hide too much. Technical Report 297, Turku

Center for Computer Science, August 1999. http://tinyurl.com/ywmuzy.
[CD02] Clarke DG, Drossopoulou S (2002) Ownership, encapsulation and the disjointness of type and effect. In: Object-oriented pro-

gramming systems, languages, and applications (OOPSLA), Vol 37(11) of SIGPLAN Notices. ACM, New York, pp 292–310.
doi:10.1145/582419.582447

[Cha00] Chapman R (2000) Industrial experience with SPARK. ACM SIGADA Ada Lett 20(4):64–68. doi:10.1145/369264.369270
[Cha03] Chalin P (2003) Improving JML: For a safer and more effective language. In: Araki K, Gnesi S, Mandrioli D (eds) Formal

methods (FME), Vol 2805 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 440–461. http://www.springer-
link.com/content/26cpmd9b3vbgd2et

[Cha06] Charles J (2006) Adding native specifications to JML. In: Workshop on formal techniques for Java-like Programs (FTfJP), July
2006. http://www.disi.unige.it/person/AnconaD/FTfJP06/paper04.pdf

[Che03] Cheon Y (2003) A runtime assertion checker for the Java Modeling Language. PhD dissertation, Technical Report 03-09,
Department of Computer Science, Iowa State University, April 2003. ftp://ftp.cs.iastate.edu/pub/techreports/TR03-09/TR.pdf

[CHL04] Cheon Y, Hayashi Y, Leavens GT (2004) A thought on specification reflection. In: Callaos N, Lesso W, Sanchez B (eds) The
8th World multi-conference on systemics, cybernetics and informatics (SCI), Vol II, Computing Techniques, pp 485–490

[CK05] Cok DR, Kiniry JR (2005) ESC/Java2: Uniting ESC/Java and JML: progress and issues in building and using ESC/Java2,
including a case study involving the use of the tool to verify portions of an Internet voting tally system. In: Barthe G, Burdy L,
Huisman M, Lanet J-L, Muntean T (eds) Construction and analysis of safe, secure, and interoperable smart devices (CASSIS
2004), Vol 3362 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 108–128. http://www.springerlink.com/con-
tent/mbxr4yj1dj0lj6ap

[CKS05] Cook B, Kroening D, Sharygina N (2005) Cogent: accurate theorem proving for program verification. In: Etessami K, Raja-
mani SK (eds) Computer aided verification (CAV), Vol 3576 of Lecture Notes in Computer Science. Springer, Heidelberg, pp
296–300. doi:10.1007/11513988 30

[CLSE05] Cheon Y, Leavens GT, Sitaraman M, Edwards S (2005) Model variables: cleanly supporting abstraction in design by contract.
Softw Pract Exp 35(6):583–599. doi: 10.1002/spe.649

[COB03] Calcagno C, O’Hearn P, Bornat R (2003) Program logic and equivalence in the presence of garbage collection. Theor Comput
Sci 298(2):557–581. doi:10.1016/S0304-3975(02)00868-X

[Coh90] Cohen E (1990) Programming in the 1990s: an introduction to the calculation of programs. Springer, Heidelberg
[Cok05] Cok DR (2005) Reasoning with specifications containing method calls and model fields. J Object Technol 4(8):77–103.

http://www.jot.fm/issues/issue 2005 10/article4
[CPN98] Clarke DG, Potter JM, Noble J (1998) Ownership types for flexible alias protection. In: Object-oriented program-

ming systems, languages, and applications (OOPSLA), Vol 33(10) of SIGPLAN Notices. ACM, New York, pp 48–64.
doi:http://doi.acm.org/10.1145/286936.286947

[CPR06] Cook B, Podelski A, Rybalchenko A (2006) Termination proofs for systems code. In: Schwartzbach MI, Ball T (eds) Proceedings
of the ACM SIGPLAN 2006 conference on programming language design and implementation (PLDI). ACM, New York, pp
415–426. doi:http://doi.acm.org/10.1145/1133981.1134029

[Cri84] Cristian F (1984) Correct and robust programs. IEEE Trans Softw Eng 10:163–174
[DL96] Dhara KK, Leavens GT (1996) Forcing behavioral subtyping through specification inheritance. In: Proceedings of the 18th

international conference on software engineering, March 1996, Berlin. IEEE Computer Society Press, New York, pp 258–267.
A corrected version is ISU CS TR #95-20c, http://tinyurl.com/s2krg. doi:10.1109/ICSE.1996.493421

[DL05] DeLine R, Leino KRM (2005) Boogie PL: aA typed procedural language for checking object-oriented programs. Technical
Report MSR-TR-2005-70, Microsoft Research. ftp://ftp.research.microsoft.com/pub/tr/TR-2005-70.pdf



Specification and verification challenges for sequential object-oriented programs 187

[DM06] Darvas A, Müller P (2006) Reasoning about method calls in interface specifications. J Object Technol 5(5):59–85.
http://www.jot.fm/issues/issue 2006 06/article3.pdf

[DNS05] Detlefs D, Nelson G, Saxe JB (2005) Simplify: a theorem prover for program checking. J ACM 52(3):365–473.
http://doi.acm.org/10.1145/1066100.1066102

[ECGN01] Ernst M, Cockrell J, Griswold WG, Notkin D (2001) Dynamically discovering likely program invariants to support program
evolution. IEEE Trans Softw Eng 27(2):99–123.doi:10.1109/32.908957

[ECM05a] C# language specification. ECMA Standard 334, June 2005
[ECM05b] Eiffel analysis, design and programming language. ECMA Standard 367, June 2005
[EM85] Ehrig H, Mahr B (1985) Fundamentals of algebraic specification 1: equations and initial semantics, Vol 6 of EATCS Mono-

graphs on Theoretical Computer Science. Springer, Heidelberg
[FJ92] Feijs LMG, Jonkers HBM (1992) Formal specification and design, Vol 35 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, Cambridge
[FL01] Flanagan C, Leino KRM (2001) Houdini, an annotation assistant for ESC/Java. In: Oliveira JN, Zave P (eds) FME 2001:

formal methods for increasing software productivity, Vol 2021 of Lecture Notes in Computer Science. Springer, Heidelberg, pp
500–517. http://www.springerlink.com/content/nxukfdgg7623q3a9

[FLL + 02] Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, Stata R (2002) Extended static checking for Java. In: Proceedings
of the 2002 ACM SIGPLAN conference on programming language design and implementation (PLDI), Vol 37(5) of SIGPLAN
Notices. ACM, New York, pp 234–245. doi:10.1145/512529.512558

[FM04] Filliâtre J-C, Marché C (2004) Multi-prover verification of C programs. In: Formal methods and software engineering, 6th inter-
national conference on formal engineering methods, ICFEM 2004, Vol 3308 of Lecture Notes in Computer Science. Springer,
Heidelberg, pp 15–29. http://www.springerlink.com/content/ejxv14xdjf5676u5

[GB99] Greenhouse A, Boyland J (1999) An object-oriented effects system. In: European conference on object-oriented programming
(ECOOP). Springer, Heidelberg, pp 205–229. http://www.springerlink.com/content/tu309p114v1kbd8v

[GH78] Guttag JV, Horning JJ (1978) The algebraic specification of abstract data types. Acta Informatica 10(1):27–52.
doi:10.1007/BF00260922

[GH93] Guttag JV, Horning JJ (1993) Larch: languages and tools for formal specification. Springer, Heidelberg
[GHJV95] Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns. Addison-Wesley, Reading
[Gre03] Greenhouse A (2003) A programmer-oriented approach to safe concurrency. Technical Report CMU-CS-03-135, School of

Computer Science, Carnegie Mellon University, May 2003. http://reports-archive.adm.cs.cmu.edu/anon/2003/CMU-CS-03-
135.pdf

[Gri81] Gries D (1981) The science of programming. Springer, Heidelberg
[GS94] Gries D, Schneider FB (1994) A logical approach to discrete math. texts and monographs in computer science. Springer,

Heidelberg
[GTWW77] Goguen JA, Thatcher JW, Wagner EG, Wright JB (1977) Initial algebra semantics and continuous algebras. J ACM 24:68–95.

doi:10.1145/321992.321997
[Heh93] Hehner ECR (1993) A practical theory of programming. texts and monographs in computer science. Springer, Heidelberg.

Available from http://www.cs.utoronto.ca/ hehner/aPToP
[Heh05] Hehner ECR (2005) Specified blocks. Verified Software: Theories, Tools, Experiments (VSTTE), http://vstte.inf.ethz.ch/Files/

hehner.pdf, October 2005
[HJ00] Huisman M, Jacobs B (2000) Java program verification via a Hoare logic with abrupt termination. In: Fundamental approaches

to software engineering (FASE). Springer, Heidelberg, pp 284–303. http://www.springerlink.com/content/fkrbjn1vg56ra052
[HJW + 92] Hudak P, Jones SP, Wadler P, Boutel B, Fairbairn J, Fasel J, Guzmán MM, Hammond K, Hughes J, Johnsson T, Kieburtz D,

Nikhil R, Partain W, Peterson J (1992) Report on the programming language Haskell: a non-strict, purely functional language,
version 1.2. ACM SIGPLAN Notices 27(5). doi:10.1145/130697.130699

[HMS05] Hoare T, Misra J, Shankar N (2005) Verified software: theories, tools, experiments (VSTTE 2005). http://vstte.ethz.ch, October
2005. Sponsored by International Federation for Information Processing, Technical Committee 2

[Hoa69] Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580,583.
doi:10.1145/363235.363259

[Hoa72] Hoare CAR (1972) Proof of correctness of data representations. Acta Informatica 1(4):271–281. doi:10.1007/BF00289507
[Hoa03] Hoare T (2003) The verifying compiler: a grand challenge for computing research. J ACM 50(1):63–69.

doi:10.1145/602382.602403
[Jac04] Jacobs B (2004) Weakest pre-condition reasoning for Java programs with JML annotations. J Logic Algebraic Program 58(1–

2):61–88. doi:10.1016/j.jlap.2003.07.005
[JKW03] Jacobs B, Kiniry J, Warnier M (2003) Java program verification challenges. In: de Boer FS, Bonsangue MM, Graf S, de Roever

W-P (eds) FMCO 2002: formal methods for component objects, proceedings, Vol 2852 of Lecture Notes in Computer Science.
Springer, Heidelberg, pp 202–219

[JMPS05] Jacobs B, Meijer E, Piessens F, Schulte W (2005) Iterators revisited: proof rules and implementation. In: Workshop on formal
techniques for Java-like Programs (FTfJP), July 2005. http://www.cs.ru.nl/ftfjp/2005/Jacobs.pdf

[Jon90] Jones CB (1990) Systematic software development using VDM. International series in computer science, 2nd edn. Prentice
Hall, Englewood Cliffs

[Jon91] Jones KD (1991) LM3: A larch interface language for Modula-3: a definition and introduction: Version 1.0. Technical Report
72, Digital Equipment Corporation, Systems Research Center

[JP01] Jacobs B, Poll E (2001) A logic for the Java modeling language JML. In: Fundamental approaches to software engineering
(FASE), Vol 2029 of Lecture Notes in Computer Science. Springer, Heidelberg, pp 284–299. http://www.springerlink.com/con-
tent/17ul9mb1y0ja42eb

[JP06] Jacobs B, Piessens F (2006) Verification of programs with inspector methods. In: Workshop on Formal Techniques for Java-like
Programs (FTfJP), July 2006. http://www.disi.unige.it/person/AnconaD/FTfJP06/paper09.pdf

[KC97] Katrib M, Coira J (1997) Improving Eiffel assertions using quantified iterators. J Object-Oriented Program 10(7):35–43



188 G. T. Leavens et al.

[Kra98] Kramer R (1998) iContract—the JavaTM design by contractTM tool. In: TOOLS 26: technology of object-oriented languages
and systems, August 1998. IEEE Computer Society Press, New York, pp 295–307. doi:10.1109/TOOLS.1998.711021

[LBR99] Leavens GT, Baker AL, Ruby C (1999) JML: a notation for detailed design. In: Kilov H, Rumpe B, Simmonds I (eds) Behavioral
Specifications of businesses and systems. Kluwer, Dordrecht, pp 175–188

[LBR06] Leavens GT, Baker AL, Ruby C (2006) Preliminary design of JML: a behavioral interface specification language for Java. ACM
SIGSOFT Softw Eng Notes 31(3):1–38. doi:10.1145/1127878.1127884

[LCC + 05] Leavens GT, Cheon Y, Clifton C, Ruby C, Cok DR (2005) How the design of JML accommodates both runtime assertion
checking and formal verification. Sci Comput Program 55(1–3):185–208. doi:10.1016/j.scico.2004.05.015

[LD00] Leavens GT, Dhara KK (2000) Concepts of behavioral subtyping and a sketch of their extension to component-based sys-
tems. In: Leavens GT, Sitaraman M (eds) Foundations of component-based systems, Chap 6. Cambridge University Press,
Cambridge, pp 113–135. http://www.cs.iastate.edu/ leavens/FoCBS-book/06-leavens-dhara.pdf

[Lea06] Leavens GT (2006) JML’s rich, inherited specifications for behavioral subtypes. In: Liu Z, Jifeng H (eds) Formal methods and
software engineering: 8th international conference on formal engineering methods (ICFEM), Vol 4260 of Lecture Notes in
Computer Science, New York. Springer, Heidelberg, pp 2–34. doi:10.1007/11901433 2

[Lei95] Leino KRM (1995) Toward reliable modular programs. PhD Thesis, California Institute of Technology. Available as Technical
Report Caltech-CS-TR-95-03. http://caltechcstr.library.caltech.edu/234/00/95-03.ps

[Lei97] Leino KRM (1997) Ecstatic: an object-oriented programming language with an axiomatic semantics. In: Pierce B (ed)
Fourth international workshop on foundations of object-oriented languages (FOOL), January 1997. Available from:
http://www.cis.upenn.edu/ bcpierce/FOOL/

[Lei98] Leino KRM (1998) Data groups: specifying the modification of extended state. In: Object-oriented programming
systems, languages, and applications (OOPSLA), Vol 33(10) of SIGPLAN Notices. ACM, New York, pp 144–153.
doi:10.1145/286936.286953

[LM04] Leino KRM, Müller P (2004) Object invariants in dynamic contexts. In: Odersky M (ed) European conference on object-
oriented programming (ECOOP), Vol 3086 of Lecture Notes in Computer Science, June 2004. Springer, Heidelberg, pp 491–
516. http://www.springerlink.com/content/ttfnjg36yq64pah8

[LM05] Leino KRM, Müller P (2005) Modular verification of static class invariants. In: Fitzgerald J, Hayes IJ, Tarlecki A (eds)
Formal methods (FM), Vol 3582 of Lecture Notes in Computer Science, July 2005. Springer, Heidelberg, pp 26–42.
doi:10.1007/11526841 4

[LM06] Leino KRM, Müller P (2006) A verification methodology for model fields. In: Sestoft P (ed) European symposium on
programming (ESOP), Vol 3924 of Lecture Notes in Computer Science, March 2006.Springer, Heidelberg, pp 115–130.
doi:10.1007/11693024 9

[LN02] Leino KRM, Nelson G (2002) Data abstraction and information hiding. ACM Trans Programm Lang Syst 24(5):491–553.
doi:10.1145/570886.570888

[LN06] Leavens GT, Naumann DA (2006) Behavioral subtyping, specification inheritance, and modular reasoning. Technical Re-
port 06-20a, Department of Computer Science, Iowa State University, Ames, August 2006. ftp://ftp.cs.iastate.edu/pub/techre-
ports/TR06-20/TR.pdf

[LPC + 06] Leavens GT, Poll E, Clifton C, Cheon Y, Ruby C, Cok DR, Müller P, Kiniry J, Chalin P (2006) JML reference manual.
Department of Computer Science, Iowa State University. Available from http://www.jmlspecs.org, January 2006

[LPHZ02] Leino KRM, Poetzsch-Heffter A, Zhou Y (2002) Using data groups to specify and check side effects. In: Proceedings of the 2002
ACM SIGPLAN conference on programming language design and implementation (PLDI), Vol 37(5) of SIGPLAN Notices,
May 2002. ACM, New York, pp 246–257. doi:10.1145/512529.512559

[LSS99] Leino KRM, Saxe JB, Stata R (1999) Checking Java programs via guarded commands. In: Jacobs B, Leavens GT, Müller P,
Poetzsch-Heffter A (eds) Formal techniques for Java Programs (FTfJP), Technical Report 251. FernUniversität Hagen, May
1999. Also available as Technical Note 1999-002, Compaq Systems Research Center

[Luc90] Luckham D (1990) Programming with specifications: an introduction to Anna, a language for specifying Ada programs. Texts
and Monographs in Computer Science. Springer, Heidelberg

[LvH85] Luckham D, von Henke FW (1985) An overview of Anna—a specification language for Ada. IEEE Softw 2(2):9–23
[LW94] Liskov B, Wing JM (1994) A behavioral notion of subtyping. ACM Trans Program Lang Syst 16(6):1811–1841.

doi:10.1145/197320.197383
[LW95] Leavens GT, Weihl WE (1995) Specification and verification of object-oriented programs using supertype abstraction. Acta

Informatica 32(8):705–778. doi:10.1007/BF01178658
[Mey92] Meyer B (1992) Eiffel: the language. Prentice Hall, New Jersey
[Mey97] Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice Hall, New Jersey
[Mir04] Miragliotta M (2004) Specification model library for the interactive program prover Jive. Student project, ETH Zurich. Avail-

able from: http://www.sct.inf.ethz.ch/projects/student docs/Marcello Miragliotta/M arcello Miragliotta paper.pdf
[Mor94] Morgan C (1994) Programming from specifications, 2nd edn. Prentice Hall International, Hempstead. http://web.com-

lab.ox.ac.uk/oucl/publications/books/PfS/
[MPHL03] Müller P, Poetzsch-Heffter A, Leavens GT (2003) Modular specification of frame properties in JML. Concurr Comput Pract

Exp 15(2):117–154. doi:10.1002/cpe.713
[MPHL06] Müller P, Poetzsch-Heffter A, Leavens GT (2006) Modular invariants for layered object structures. Sci Comput Program

62(3):253–286. doi:10.1016/j.scico.2006.03.001
[MPMU04] Marché C, Paulin-Mohring C, Urbain X (2004) The Krakatoa tool for certification of Java/JavaCard programs annotated in

JML. J Logic Algebraic Programm 58(1–2):89–106. doi:10.1016/j.jlap.2003.07.006
[Mül02] Müller P (2002) Modular specification and verification of object-oriented programs, Vol 2262 of Lecture Notes in Computer

Science. Springer, Heidelberg
[NE01] Nimmer JW, Ernst MD (2001) Static verification of dynamically detected program invariants: integrating Daikon and ESC/-

Java. In: Proceedings of RV’01, first workshop on runtime verification, July 2001. Elsevier, Amsterdam. doi:10.1016/S1571-
0661(04)00256-7



Specification and verification challenges for sequential object-oriented programs 189

[OYR04] O’Hearn PW, Yang H, Reynolds JC (2004) Separation and information hiding. In: Jones ND, Leroy X (eds) Proceedings of
the 31st ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL), January 2004. ACM, New
York, pp 268–280. doi:10.1145/964001.964024

[PB05] Parkinson M, Bierman G (2005) Separation logic and abstraction. In: Palsberg J, Abadi M (eds) Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL), January 2005. ACM, New York, pp
247–258. doi: 10.1145/1040305.1040326

[PHM99] Poetzsch-Heffter A, Müller P (1999) A programming logic for sequential Java. In: Swierstra SD (ed) European symposium
on programming languages and systems (ESOP), Vol 1576 of Lecture Notes in Computer Science. Springer, Heidelberg, pp
162–176. http://tinyurl.com/krjle

[Rey02] Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: IEEE symposium on logic in computer
science. IEEE, New York, pp 55–74

[Ros95] Rosenblum DS (1995) A practical approach to programming with assertions. IEEE Trans Softw Eng 21(1):19–31.
doi:10.1109/32.341844

[SF04] Soundarajan N, Fridella S (2004) Incremental reasoning for object oriented systems. In: Owe O, Krogdahl S, Lyche T (eds)
From object-orientation to formal methods, essays in memory of Ole–Johan Dahl, Vol 2635 of Lecture Notes in Computer
Science. Springer, Heidelberg, pp 302–333. http://www.springerlink.com/content/n9uv7k2bha03l9ln

[Sha06] Shaner S (2006) Semantics for model programs in JML. Master’s Thesis, Iowa State University (expected)
[Spi92] Spivey JM (1992) The Z notation: a reference manual. international series in computer science, 2nd edn. Prentice-Hall, New

York. http://spivey.oriel.ox.ac.uk/mike/zrm/
[vO01] von Oheimb D (2001) Analyzing Java in Isabelle/HOL: formalization, type safety and Hoare logic. PhD Thesis, Technische

Universität München. http://www4.in.tum.de/ oheimb/diss/
[vON02] von Oheimb D, Nipkow T (2002) Hoare logic for NanoJava: auxiliary variables, side effects and virtual methods revisited.

In: Eriksson L-H, Lindsay PA (eds) Formal methods—getting IT Right (FME’02), Vol 2391 of Lecture Notes in Computer
Science. Springer, Heidelberg, pp 89–105. http://www.springerlink.com/content/bp1vtfr9ha3kl3t5

[vPG03] von Praun C, Gross TR (2003) Static conflict analysis for multi-threaded object-oriented programs. In: Proceedings of the ACM
SIGPLAN 2003 conference on programming language design and implementation (PLDI), June 2003. ACM, New York, pp
115–128. doi:10.1145/781131.781145

[Wan79] Wand M (1979) Final algebra semantics and data type extensions. J Comput Syst Sci 19(1):27–44. doi:10.1016/0022-
0000(79)90011-4

[WBL94] Wahls T, Baker AL, Leavens GT (1994) The direct execution of SPECS-C++: a model-based specification language for C++ clas-
ses. Technical Report 94-02b, Department of Computer Science, Iowa State University, March 1994. ftp://ftp.cs.iastate.edu/pub/
techreports/TR94-02/TR.ps.Z

[Wil92] Wills A (1992) Specification in Fresco. In: Stepney S, Barden R, Cooper D (eds) Object orientation in Z, workshops in com-
puting, Chap 11. Springer, Heidelberg, pp 127–135

[Win87] Wing JM (1987) Writing larch interface language specifications. ACM Trans Program Lang Syst 9(1):1–24.
doi:10.1145/9758.10500

[Win90] Wing JM (1990) A specifier’s introduction to formal methods. Computer 23(9):8–24. doi:10.1109/2.58215
[WMC05] Wilson T, Maharaj S, Clark RG (2005) Omnibus verification policies: a flexible, configurable approach to assertion-based

software verification. In: Aichernig BK, Beckert B (eds) Third IEEE international conference on software engineering and
formal methods (SEFM), September 2005. IEEE Comput Soc, New York, pp 150–159. doi:10.1109/SEFM.2005.29

[XA05] Xie Y, Aiken A (2005) Scalable error detection using boolean satisfiability. In: Palsberg J, Abadi M (eds) Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL), January 2005. ACM, New York, pp
351–363. doi:10.1145/1040305.1040334

Received 17 May 2006
Revised 20 August 2006
Accepted 19 February 2007 by C. B. Jones
Published online 6 April 2007


