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Abstract
Purpose Thin-plate splines (TPS) represent an effective tool
for estimating the deformation that warps one set of land-
marks to another based on the physical equivalent of thin
metal sheets. In the original formulation, data used to
estimate the deformation field are restricted to landmark
locations only and thus does not allow to incorporate
information about the rotation of the image around the land-
mark. It furthermore assumes that landmark positions are
known exactly which is not the case in real world applica-
tions. These localization inaccuracies are propagated to the
entire deformation field as each landmark has a global influ-
ence. We propose to use a TPS approximation method that
incorporates anisotropic landmark errors and rotational infor-
mation and integrate it into a hierarchical elastic registration
framework (HERA). The improvement of the registration
performance has been evaluated.
Methods The proposed TPS approximation scheme
integrates anisotropic landmark errors with rotational infor-
mation of the landmarks. The anisotropic landmark errors are
represented by their covariance matrices estimated directly
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from the image data as a minimal stochastic localization
error, i.e. the Cramér-Rao bound. The rotational attribute
of each landmark is characterized by an additional angular
landmark, thus doubling the number of landmarks in the TPS
model. This allows the TPS approximation to better cope up
with local deformations.
Results We integrated the proposed TPS approach into the
HERA registration framework and applied it to register 161
image pairs from a digital mammogram database. Experi-
ments showed that the mean squared error using the
proposed TPS approximation was superior to pure TPS
interpolation. On artificially deformed breast images HERA,
with the proposed TPS approximation, performed signif-
icantly better than the state-of-the-art registration method
presented by Rueckert.
Conclusion The TPS approximation approach proposed in
this publication allows to incorporate anisotropic landmark
errors as well as rotational information. The integration of
the method into an intensity-based hierarchical non-rigid
registration framework is straightforward and improved the
registration quality significantly.

Keywords Thin plate splines · Image registration ·
Approximation

Introduction

Medical image registration is a difficult and ill-posed
problem. Numerous methods and tools have been proposed
to address this task, see [8,16] and the references therein.
One key element common to all these methods is the need
to interpolate a dense deformation field from sparse known
correspondences. For parametric models, such as rigid or
affine transformations, this interpolation step is trivial but
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they lack the necessary degrees of freedom (df) to accurately
compensate for local deformations. Schaeffer et al. proposed
in [15] a locally rigid or affine Moving Least Squares
approach that is more flexible and still computationally effi-
cient. A yet different polyrigid transformation approach was
proposed by Arsigny et al. [2]. Other types of transforma-
tions, such as B-splines [14], thin-plate splines (TPS) [4]
or continuum mechanics based approaches (like finite ele-
ments) offer more general deformation models that can have
an arbitrary number of df.

Thin-plate splines are often used to interpolate a dense
deformation field in landmark and intensity-based image reg-
istration. TPS were first proposed in 1976 by Duchon [7] for
surface fitting and then applied to landmark-based registra-
tion of images by Bookstein et al. [4] in 1989. TPS represent
an effective tool for estimating the deformation that warps
one set of landmarks to another based on the physical equiv-
alent of thin metal sheets. Data used to estimate the defor-
mation field are restricted to landmark locations only in the
original formulation and thus do not allow to incorporate
information about the rotation of the image around the land-
mark. It furthermore assumes that landmark positions are
known exactly which is not the case in real world applica-
tions. These localization inaccuracies are propagated to the
entire deformation field as each landmark has a global influ-
ence. To model complex and localized deformations many
landmark have to be used at the expense of high computa-
tional cost.

Various methods have been described in the literature to
address these problems. Rohr et al. [11,13] proposed a reg-
ularized interpolation scheme, which provides a smoothing
function that approximates rather than strictly interpolate.
A different approach was proposed by Lewis et al. [9] who
tackles the inaccuracies by replacing the ambiguous land-
marks along a contour.

An extension that further improves TPS’ capability to cope
up with local deformations is the integration of the deriva-
tives such as tangent and curvature information. Bookstein
and Green [5] describe a TPS-based approximation method

that incorporates the tangent direction, which is used to char-
acterize the local orientation of the contours at the land-
marks. The orientations are characterized through additional
points placed close to these landmarks. The limitation of
their approach is that changes in the landmarks and their
derivatives in one part of the image can have an apprecia-
ble effect on the deformation in distant locations. The
Kriging method presented by Mardia et al. [10] also uses the
derivative. Their interpolation scheme yields an exact orien-
tation, but it requires that the corresponding vectors have to
be of unit length. It should be noted that both Bookstein’s
and Mardia’s approach are interpolation schemes, although
a generalization to approximation is possible. A yet different
approach was proposed by Rohr et al. [12], which includes the
orientation constraints as scalar products of the normal-
ized orientation vectors. His landmark-based registration
approach, however, requires user intervention to select the
landmarks based on localization uncertainty and to estimate
their orientation attributes. Their approach shows a substan-
tial improvement, but landmarks should be well distributed
in order to achieve good registration results.

In this work, we present an extended TPS model that
incorporates anisotropic landmark errors as well as rota-
tional information. We furthermore show that its integration
into a fully automatic hierarchical elastic image registration
method [1] is possible and significantly improves the regis-
tration result.

Method

The proposed TPS model is integrated into the elastic hier-
archical image registration framework (HERA) proposed in
[1], which decomposes a non-rigid registration problem into
numerous local rigid transformations, see Fig. 1a. The pro-
cedure entails multiple hierarchical levels. At each level, the
floating image, pre-registered with the reference image at
the higher level, is partitioned into progressively smaller

Fig. 1 a Hierarchical
registration scheme,
b angle points
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sub-images. Each floating sub-image is then rigidly regis-
tered with the corresponding part of the reference image
by maximizing mutual information. After each level, out-
lier sub-images are detected using consistency tests. The
final dense deformation field is then obtained with the pro-
posed TPS interpolation scheme. The set of landmarks for the
TPS is formed by the centers and rotation of all terminating
sub-images. Hence, the landmarks and the corresponding
rotation angles are automatically obtained from the hierar-
chical procedure.

Our TPS approximation scheme combines the rotation
information of the image around landmarks using a vari-
ant of the method proposed by Chen [6] with the anisotropic
landmark localization errors from Rohr [11]. This approach
is generally more accurate and allows, in contrast to [12], a
fully automatic implementation.

Let the location of the n floating landmarks, i.e. the centers
of the sub-images, be denoted by pi = (xi , yi ), i = 1, . . . , n
and the rotation angle of each sub-image as θi . The unit circle
around each landmark pi and its corresponding angular land-
mark pa,i = (xa,i , ya,i ), see Fig. 1b, can thus be obtained
by

xa,i = xi + cos(−θi ), ya,i = yi + sin(−θi ). (1)

Each of these newly created angular landmarks needs a
corresponding landmark in the reference image. These addi-
tional reference landmarks qa,i = (xa,i , ya,i ) can be straight-
forwardly determined as

xa,i = xi + 1, ya,i = yi . (2)

The rotational attribute of each landmark is thus converted
into an additional angular landmark doubling the number of
landmarks in the TPS model.

The incorporation of the anisotropic landmark errors in
the TPS model was taken from [13] and is briefly summa-
rized in the following. The anisotropic landmark localiza-
tion errors can be represented by their covariance matrices
�i estimated directly from the image data. In this case, the
covariance matrices represent the minimal stochastic locali-
zation error, i.e. the Cramér-Rao bound, which can be written
as

�i = σ 2
n

m
C−1

g (3)

where σ 2
n denotes the variance of additive white Gaussian

image noise, m the number of pixels in a local neighborhood,
and Cg is the averaged dyadic product of the image gradient
with g(x) being the image function. Let the doubled land-
mark sets be denoted by pnew = {p, pa} and qnew = {q, qa}.
By including the information about the landmark localiza-
tion error into minimization, the base functional of the TPS

[12] can be re-written as

Jλ(u) = 1

n

∑ (
qnew,i − u

(
pnew,i

))T
�−1

i

(
qnew,i

−u
(
pnew,i

)) + λJ d
m (u) . (4)

The first term measures the distance between the two land-
mark sets weighted by the covariance matrices �i , whereas
the second term represents the smoothness of the transfor-
mation. The parameter λ weights between these two terms. It
should be noted that the �i represent the localization errors
of corresponding landmark pairs, therefore the covariance
matrices of corresponding landmarks have to be combined.
Similar to Rohr et al. [13], we assume that the two covari-
ance matrices only slightly depend on the nonlinear part of
the transformation and that the images have a similar ori-
entation, scale and shear. With these assumptions the two
covariance matrices can be simply summed to form �i .

This functional (4) has an analytic solution which can be
written as

uk(x) =
M∑

v=1

ak,vφv(x)

+
n∑

i=1

wk,iU (x, pnew,i ), k = 1, . . . , d (5)

with monomials φ up to the order m −1 and a suitable radial
basis function U (x, pnew,i )=

∥∥x−pnew,i
∥∥2log

∥∥x−pnew,i
∥∥2.

Here m represents the order of the involved derivatives of
u, d is the image dimension and M = d + m − 1 repre-
sents the dimension of the nullspace of the functional (4).
The unknown coefficients a = (aT

1 , . . . , aT
M )T and w =

(wT
1 , . . . , wT

M )T can be calculated from the following sys-
tem of linear equations
(

K + nλW−1
)

w + Pa = v, (6)

PT w = 0 (7)

where W−1 = diag {�1, . . . , �n}, K = (
U

(
pnew,i , pnew, j

)

Id), P = (
φ j

(
pnew,i

)
Id

)
and Id is the d × d identity matrix.

The vector v is the column vector of the qnew,i coordinates.
All subsequent statistical analyses were performed using

the software package R (release 2.7.1 for Linux,
http://www.r-project.org). The non-Gaussian distributed
MSE results were compared with a Wilcoxon signed and
paired rank test. A p value < 0.05 was considered statisti-
cally significant for all tests.

Results and discussion

We integrated the proposed TPS approximation in the
elastic registration scheme [1] and applied it to register pairs
of images of the same patient acquired during follow-up

123

http://www.r-project.org


466 Int J CARS (2009) 4:463–468

investigations, provided by the MIAS1 digital mammogram
database. The MIAS database consists of breast images of
161 patients obtained from X-ray film. The altogether 322
images have been classified into three groups, namely of
normal breasts (208 images) and those showing benign (63
images) and malignant (51 images) lesions. Experts addition-
ally labeled the images with four kinds of abnormities (archi-
tectural distortions, stellate lesions, circumscribed mass and
calcifications).

To evaluate the performance of the proposed TPS approx-
imation scheme three independent experiments were con-
ducted. For all these experiments the following parameter
settings were used: (a) the localization uncertainty Cg was
estimated using σ 2

n = 25 in a 5 × 5 window; (b) the regu-
larization parameter λ was set to 0.01; (c) the 2D histogram
was generated using 256 bins (256 × 256 normalized gray
values).

First, we demonstrate the benefit of incorporating rotation
information at landmarks. The mean squared error (MSE)
was used to quantify the registration quality of (1) TPS with
anisotropic errors, (2) TPS with rotational information, and
(3) the proposed TPS with anisotropic errors and rotational
attributes all in relation to pure TPS interpolation. The eval-
uation was performed separately on the 161 image pairs.
Significant non-rigid deformations can be observed in a group
of 32 images with architectural distortions and/or asymme-
tries. Table 1 summarizes the MSE improvement and
Fig. 2 shows an example registration as well as the differ-
ence image.

The results are very encouraging and the proposed
approach significantly improved p < 0.05 (p = 10−16)
all registrations with an average improvement of the MSE as
compared to pure TPS interpolation with 8.7±9.9% for sym-
metric and 8.8 ± 13.2% for asymmetric mammograms. The
table also clearly shows that the combination of the rota-
tional attributes and anisotropic landmark errors performs
best and thus justifies its higher computational costs. The
average increase factor in run time in relation to pure TPS
interpolation is shown in the right most column.

In the second experiment, we compare the hierarchical
non-rigid registration [1] using our TPS approximation sch-
eme with the state-of-the-art non-rigid registration approach
proposed by Rueckert et al. [14]. Rueckert’s method models
the global motion with an affine transformation, while the
local deformations are described by a free-form deformation
(FFD) based on B-Splines. As the similarity criterion, which
measures the degree of alignment between two images, they
use mutual information.

For the 161 analyzed image pairs from the MIAS data-
base, our hierarchical approach performed significantly
(P ≈ 10−9) better, by providing superior results for 128

1 http://peipa.essex.ac.uk/ipa/pix/mias.

Table 1 Average MSE improvement in relation to pure TPS
interpolation

Spatial MSE MSE Run-time
transformation normal [%] asymm. [%]

TPS with 0.8 ± 17.7 6.9 ± 15.9 1.1 ± 0.1

anisotropic errors

TPS with 1.1 ± 5.9 1.3 ± 4.4 1.7 ± 0.2

rotation attributes

TPS with rotational 8.7 ± 9.9 8.8 ± 13.2 2.2 ± 0.3

and anisotropic errors

The right most column shows the average increase factor in run-time in
relation to pure TPS interpolation

cases, while in six cases both approaches performed poorly.
These cases can be attributed to large architectural distortions
(4 cases) or lesions (2 cases), but there was no clear misalign-
ment between the images. The proposed approach achieved
an average MSE decrease in percentage of 9.7±37.0% com-
pared to Rueckert’s method. Table 2 gives the average values
of the MSE, mutual information (MI) and correlation coeffi-
cient (CC) for Rueckert’s and our approach calculated from
the reference and the registered images.

The number of landmarks used to model the final
deformation field in our registration method depends on the
structural content of the image. To make the two methods
comparable we tuned Rueckert’s approach such that the
average landmarks of both methods were approximately
equal. In particular, we used on average 625 landmarks in
Rueckert’s and 595 landmarks in our registration approach.

In a third experiment, we artificially deformed ten images
of different patients from the MIAS database. To obtain the
deformation field, eight landmarks were chosen along the
contour of the breast in the original image. Then each land-
mark was randomly translated and rotated (Fig. 3), where the
range of translation and rotation was limited to 5–20 pixels
and 0◦–30◦. Finally, the known deformed reference image
was obtained using TPS interpolation. To avoid correlated
noise, the resulting images were modulated with white noise
with zero mean and variance equal to 1% of the maximum
amplitude. Because we artificially deformed the image, the
exact deformation vector of each pixel is known. Hence, we
can determine the average error per pixel for both registra-
tion approaches. With a mean error and standard deviation
of 5.86 ± 6.67 pixels (min 0.05, max 19.77) for Rueckert’s
approach, our method was significantly better (P = 0.027)
having a mean and standard deviation of 0.88 ± 0.86 pixels
(min 0.02, max 2.58). The black regions in the registered
images (air) were ignored when calculating the above errors,
as these regions can not be properly registered anyway.
Figure 4 shows an example registration for both methods.
The average error per pixel of registered breast tissue by
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Fig. 2 a The reference image,
b asymmetric floating image, c
the registered image using the
proposed TPS interpolation, d
difference between the reference
and registered image

Table 2 Average MSE in pixels, MI and CC values

Non-rigid registration approach MSE MI CC

Rueckert non-rigid 0.1228 1.6571 0.9029

image registration

Hierarchical non-rigid 0.1006 1.6867 0.9095

registration with TPS

Rueckert and our approach for this example was 8.40 and
0.60 pixels, respectively.

To avoid the bias when registering images using TPS
that were artificially deformed with TPS we performed the
same test using B-Spline deformations. For this, the same
ten images were artificially deformed with B-Splines to get
the deformation field. First the uniform grid, that is needed
for B-Spline interpolation, of size 8 × 8 was generated. The
eight grid points closest to the landmarks used during TPS-
based deformation were translated and rotated using the same
parameters as for the TPS landmarks. The remaining grid
points were left at their initial position. Rotations of the
B-Splines grid were implemented using the method proposed

by Berthaud et al. [3]. Although Rueckert’s approach is also
based on a B-Spline transformation model, it did not per-
form significantly better (P = 0.064) than our TPS-based
approach. The average error per pixel for Rueckert’s method
was 1.34 ± 1.17 pixels (min 0.03, max 3.65), while our pro-
cedure resulted in 1.83 ± 1.43 pixels (min 0.04, max 4.02).

Fig. 3 a The initial position of landmarks, b position of the landmarks
after translation and rotation

Fig. 4 a The original image
used as the floating image,
b artificially deformed image
used as the reference image,
c the registered image using the
proposed TPS approximation,
d the registered image using
Rueckert’s approach
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The TPS approximation approach proposed in this
publication allows to incorporate anisotropic landmark errors
as well as rotational information. The integration of the
method into an intensity-based hierarchical non-rigid regis-
tration framework is straightforward and improved the regis-
tration result significantly. In contrast to the state-of-the-art,
our method is fully automatic. The proposed TPS approx-
imation incorporating rotation and landmark errors is well
suited for integration in other applications using TPS inter-
polation. The generalization of the proposed procedure to
3D images is straightforward, as only the definition of the
angular landmarks needs to be adjusted.
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