
ETH Library

Complexity Constraints and Error
Tolerance in Learning Processes
on Small Graphs

Journal Article

Author(s):
Atmanspacher, Harald; Filk, T.; Finke, R.; Gruber, G.

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-b-000021921

Rights / license:
Creative Commons Attribution-NonCommercial 3.0 Unported

Originally published in:
The Open Cybernetics & Systemics Journal 4, https://doi.org/10.2174/1874110X01004010006

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000021921
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.2174/1874110X01004010006
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

6 The Open Cybernetics & Systemics Journal, 2010, 4, 6-13

 1874-110X/10 2010 Bentham Open

Open Access

Complexity Constraints and Error Tolerance in Learning Processes on
Small Graphs

H. Atmanspacher
*,1,2

, T. Filk
1,2,3

, R. Finke
1
 and G. Gruber

1

1
Institute for Frontier Areas of Psychology and Mental Health, Wilhelmstr. 3a, D-79098 Freiburg, Germany

2
Parmenides Center for the Study of Thinking, Kardinal-Faulhaber-Str. 14a, Munich, Germany

3
Institut für Physik, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany

Abstract: Continuing previous studies, we present further results about the behavior of small abstract networks during

supervised learning. In particular, we show that constraints on the complexity that a network is permitted to assume

during learning reduces its learning success in ways that depend on the nature of the applied limitation. Moreover, we

show that relaxing the criterion due to which changes of the network structure are accepted during learning leads to a

dramatic improvement of the learning performance. The non-monotonicity of network complexity during learning, which

remains unchanged in both scenarios, is related to a similar feature in -machine complexity.

1. INTRODUCTION

 The study of complex networks, with applications in

numerous fields of research, has attracted enormous amounts

of interest in recent years. In addition to purely structural

investigations of such networks, it is often important to

include their dynamics to get a more comprehensive picture.

This is particularly significant in cases where the dynamics

is explicitly assumed to change the structure, and vice versa.

A pertinent example for such a situation is the dynamics of

learning in networks.

 Following up on previous work [1, 2], we are interested

in an understanding of general mechanisms and features of

the dynamics of learning. Therefore we do not specialize in

certain areas of application (such as neuronal networks) but

consider abstract networks. Moreover, we focus on small

networks of (far) less than a hundred nodes under the simple

condition of supervised learning. Although the behavior of

such networks is already quite sophisticated, their small size

facilitates, or so we hope, an analytical understanding of the

intricate details of their dynamics.

 A surprising result of earlier studies is a non-monotonic

evolution of network complexity as learning proceeds [1].

Another key feature that was observed in fairly small

networks is punctuated equilibrium [2]. In addition, we

found tentative indications for a transition of the network

structure from initial random graphs to small-world networks

during learning. These and other results will be further

investigated in detail in future work.

 In this contribution we present results concerning the

behavior of the complexity of the network and the impact of

different degrees of error tolerance during learning. We start

*Address correspondence to this author at the Theory Division of the

Institute for Frontier Areas of Psychology, Wilhelmstr. 3a, D--79098

Freiburg, Germany; E-mail: haa@igpp.de

with a brief description of the model, of the simulation

procedure, and of the definition of complexity that we are

using in Section 2. Subsequently we describe how the

learning process is implemented. Section 4 contains the

results for learning under constraints on the complexity of

the network and the influence of variations of error

tolerance. Section 5 summarizes the paper and sketches some

perspectives. An Appendix discusses the relationship

between our complexity measure and -machine complexity

due to Crutchfield and colleagues [3, 4].

2. DESCRIPTION OF THE MODEL AND THE
SIMULATION PROCEDURE

 We first define the mathematical model that is intended

to simulate the dynamics of a network. The model belongs to

a particular class of neural networks (for an introduction to

neural networks see [5]) and consists of graphs together with

two types of dynamics:

1. The dynamics of an activity potential defined on the

vertices of the graph. This type of dynamics is

described in the present section.

2. The dynamics of the learning process according to

which the connectivity among the vertices is changed

in order to improve the performance of the system.

This dynamics will be described in section 3.

2.1. The Graphs

 A simple, directed graph can be defined as a set V of

vertices (sometimes also called points or nodes) together

with a relation “ ” between vertices, where y x denotes a

directed line (sometimes also called edge) from vertex y to

vertex x (for more details see e.g. [6, 7]). If two points are

connected bidirectionally, i.e., both relations y x and x y

are present, the line between x and y is called undirected. If

all lines are undirected, the graph is called undirected.

Complexity Constraints and Error Tolerance in Learning Processes on Small Graphs The Open Cybernetics & Systemics Journal, 2010, Volume 4 7

 The restriction to “simple” graphs means that there are no

self-loops (no vertex is connected with itself) and no

multiple connections for one direction (for each pair (x,y)

there exists at most one line from x to y and from y to x). The

connections between vertices can be expressed in terms of

the adjacency matrix A with indices x and y :

A(x, y) =
1 if there is a directed line from y to x

0 else
. (1)

 Depending on their role in the learning process we

distinguish three types of vertices:

1. Input vertices serve to provide an input which the

system has to process. The activity potential at input

vertices is determined by the input pattern and does

not take part in the dynamics on the graph. In our

model, input vertices are only connected to internal

vertices by directed links, i.e., there are no links to an

input vertex and there are no direct links from input

vertices to output vertices. Due to redundancies in the

input pattern it can happen that during or after

learning an input vertex has no link at all to other

vertices. In our simulations we always use 16 input

vertices.

2. Output vertices (zi) are those vertices at which the

activity potential represents the output of the system.

Output vertices can be connected to internal vertices

in both ways, i.e., the value of the activity potential at

the output vertices can influence the dynamics of the

activity potential at all internal vertices. In our

simulations we always define two output vertices.

Input vertices and output vertices together are

sometimes referred to as peripheral vertices.

3. Internal vertices are the actual processing units

(although the activity potential at output vertices

takes part in the dynamics). They can be arbitrarily

connected among each other and to the output

vertices, and there can be arbitrary directed

connections from input vertices to internal vertices.

Thus, the studied networks are highly recurrent. For

the simulations presented here we use graphs with 6

internal vertices, sometimes also referred to as hidden

vertices.

2.2. The Dynamics of the Activity Potential

 On the set of vertices V we define a field (called activity

potential or, sometimes, firing rate) u(t,x). At each (discrete)

time step t, the activity at each vertex x can assume one of

several values:

u(t, x) {0,1, 2,…,umax} . The restriction to

discrete integer values for the activity potential has

numerical reasons (program speed). As a consequence of this

discreteness, the possible attractors (see Section 2.3) can

only be fixed points or limit cycles, and they are reached

after a finite number of steps.

 The configuration {u(t, x)} x V will be called the

state of the system at discrete time t . Its dynamics is defined

by the following equation:

u(t +1, x) = f
y x

u(t, y) = f
y

A(x, y)u(t, y) , (2)

where
y x

 indicates a summation over all vertices y for

which a (directed) line from y to x exists. Hence, the activity

u(t +1, x) of vertex x at time t+1 depends only on the sum

of the activities of the neighbors y at time t. For the transfer

function f(x) (see Fig. 1) we use a “triangular” function

defined by:

f (x) =

umax
u0

x for x u0

umax
u1 u0

(u1 x) for u0 < x < u1

0 for x u1

, (3)

where | u | denotes the smallest integer greater or equal to u.

 Simulations with different values for the parameters u0

and u1, and even with various other forms of the transfer

function, left the results reported in the following

qualitatively unchanged. However, the number of optimal

learners per 1000 runs depends crucially on the transfer

function. We chose the parameters u0 = umax and u1 = 30

because they yielded a maximal number of optimal learners.

Fig. (1). Illustration of the transfer function f(x). In the simulations
we used the values umax= 10, u1= 30, and u0= 10.

 For the input vertices the value of the activity is set to 0

or umax= 10 according to a set of “input images” or input

patterns Bi which are “presented” to the graph. Fig. (2)

shows the 11 input patterns used in the simulations. The

input patterns are grouped into three different classes. The

first class contains only image 1, the second class consists of

images 2 to 5, and the other six images 6 to 11 belong to the

third class. Note that for the images in group two and three

the number of vertices with activity 0 and maximal activity

is the same: the system cannot distinguish these patterns by

simply counting the number of vertices with maximal

activity. Furthermore, it should be obvious that the

arrangement of these vertices in form of a 4 4 matrix is of

no relevance or meaning to the system.

 For each class of input patterns we define an optimal

reaction u(Bi;zi)opt of the system coded by the activity of the

two output vertices. The optimal reactions for the three

different classes are: (0,0) for group 1, (10,0) for group 2,

and (0,10) for group 3. An optimal learner is a graph for

����

����

�� �� �

8 The Open Cybernetics & Systemics Journal, 2010, Volume 4 Atmanspacher et al.

which the activities at the output vertices agree, after the

learning process, with the predefined optimal reaction for

each of the 11 images.

 The following expressions define a measure for the

performance of a graph. Sometimes they are called error

functions or performance functions, and they may be

interpreted as an inverse fitness of the system:

2 =
11 images Bi 20 time steps t 2 output vertices zi

(u(t, zi) u(Bi ; zi)opt)
2 , (4)

and:

1 =
11 images Bi 20 time steps t 2 output vertices zi

| u(t, zi) u(Bi ; zi)opt |. (5)

 Although the quantitative results for these two error

functions differ, we found no actual difference in the

qualitative behavior of the systems.

 The sums in Eqs. (4) and (5) extend over the 11 input

patterns Bi, 20 time steps t (updates) according to the

defined dynamics, and the two output vertices z1 and z2. i

vanishes for optimal learners, while for random graphs 2

assumes values between 15000 and 25000, and 1 assumes

values between 2000 and 2200. After each change of the

input pattern, the system relaxes onto an attractor after some

transient time steps (usually 10 to 20). After this relaxation

time the output is measured.

 The simulations are programmed in C
++

 and the random

number generator used is the standard random number

generator “rand()” provided by the C
++

 library.

2.3. Attractors and Attractor States

 We now define the notion of attractors and attractor

states in the context of neural networks.

 While the configuration {u(t, x)}x V characterizes the

state of the system at time t, u(t, x) is the state of the vertex

x at time t. Furthermore, as the states of the input vertices

depend on the input pattern “presented” to the graph and do

not take part in the dynamics, we typically exclude the input

vertices and characterize the state of the system by the

collection of states of the internal vertices and the output

vertices only.

 The restriction of u(t, x) to integer values (and the

restriction to networks with a finite number of vertices)

implies that there is only a finite number of states. An

attractor (or attractor set) of a dynamical system may be

defined as a subset of all possible states which is closed

under the dynamics, i.e., once the system assumes one of the

states of the attractor set then it will stay within the attractor

set (Usually it is assumed that this attractor set is also

minimal, i.e., the system approaches each state within this

attractor set arbitrarily closely). The attractor landscape

consists of all attractor sets of a dynamical system.

 Starting from an arbitrary initial state, the dynamical

system corresponding to the neural network used in our

simulations runs into an attractor set after a finite number of

time steps. In many cases, this attractor set consists of one

element only, i.e. one single state that is asymptotically

stable. Such an attractor is called a fixed point. Otherwise the

attractor is a limit cycle, i.e. a periodic succession of

attractor states. Strange attractors do not occur in our case

since the number of states is finite.

 In general, the attractor onto which a system relaxes after

some time depends only on the initial state at time t=0. In

our case, however, there is an additional complication,

because the attractor landscape depends on the input pattern

“presented” to the network. In the context of dynamical

systems, these input patterns can be interpreted as boundary

conditions and the attractor landscapes depend on these

boundary conditions. Strictly speaking, there are as many

attractor landscapes as there are input patterns.

 Our aim is to define a minimal set of attractor states

which is closed in the following sense. Taking an arbitrary

attractor state in this set as an initial condition and any of the

eleven input patterns as a boundary condition, the attractor

state (or the attractor states) reached by the system after a

sufficient amount of time should again be an element

(elements) of this set of attractor states. Atmanspacher and

Filk [1] defined the number of attractor states in this set as a

complexity measure for learning processes (See Appendix

for a comparison with -machine complexity as introduced

by Crutchfield and Young [3]). This complexity measure

turns out to be non-monotonic as a function of randomness.

It is (in general) small for random graphs as well as for (least

random) optimal learners, but it is usually large for

intermediate epochs during the learning process.

Fig. (2). The 11 input patterns Bi, shown as 4 4 matrices, which were presented by the 16 input vertices. ° indicates activity 0, • indicates

activity umax. Note that this also represents the corrected sequence of inputs in [1].

� � � 	

�������

Complexity Constraints and Error Tolerance in Learning Processes on Small Graphs The Open Cybernetics & Systemics Journal, 2010, Volume 4 9

 It should be noted that the notion of randomness here

refers to the structure of the graph in relation to the learning

algorithm: During the learning process the graphs become

less random in their performance with respect to the task to

be learned. This does not imply that the graphs become

“ordered” in the sense that the degree distribution or other

common statistical properties change significantly with

respect to the corresponding properties for random graphs.

However, recent simulations (to be published elsewhere)

show that distributions for certain motifs change drastically

as compared to random graphs.

 In detail, we determine this set of attractor states as

follows (see also [1]): We start from a random initial

configuration, apply input pattern 1 to the input vertices and

let the system run for a sufficiently long time (we chose

t=101) until the system enters a fixed point or a cycle. We

identify all states of this cycle (only one state in case of a

fixed point) and subsequently use these states as initial

conditions, applying successively all other input patterns and

determining the corresponding attractor states. In a second

step, all new attractor states are used as initial conditions and

all input patterns are tested to check if new attractor states

appear. This procedure stops when no new attractor states

occur after all existing attractor states have been used as

initial conditions with all input patterns applied.

 In a more mathematical terminology, this procedure

defines a multiplicative structure of evolution operators

which depend on the input patterns. The set of attractor

states constitutes a representation space of this structure.

Some of its general properties have been analyzed previously

[1].

3. THE LEARNING PROCESS

 The simulation procedure for obtaining optimal learners

mimics an evolutionary scenario: starting from a graph with

a random adjacency matrix (an arbitrary “species”), we

obtain a sequence of new graphs (new “species”) by

randomly injecting changes (“mutations”) in the

connectivities of the graph. We measure both the

performance function (inverse “fitness”) of each graph and

its complexity in terms of the number of attractor states. If

the performance function is smaller than for any previous

graph, i.e., if the fitness is better, and if the graph satisfies

certain constraints imposed on its complexity (which will be

described below), then the new graph is accepted and

becomes the “surviving species”. Otherwise it is rejected and

the previous “fitter” graph survives.

 In order to distinguish between the single time (update)

steps of the iterative dynamics (Eq. (2)) and the iterative

sequence of graphs obtained by randomly inserting and

deleting lines, we refer to the latter as “generation steps”.

One generation step comprises 330 or 440 time steps,

depending on whether the (transient) relaxation time after

each image change is chosen to be 10 or 20 time steps.

 In detail, the simulations proceed as follows: For n

vertices (input, internal, and output) we start with an n n

adjacency matrix A(x,y) whose initial entries are all 0. Next

we set each of the elements in the upper diagonal part of

A(x,y) to 1 with some suitable probability p=0.4 with respect

to all admissible links (some links are prohibited: no self-

loops, no output-output connections). This number turned

out to yield a high percentage of optimal learners for graphs

with nint = 6 internal vertices, i.e., n=24 vertices in total, in

previous simulations without complexity restrictions.

 Note that p=0.4 is twice the threshold pth =1 / (nint 1)

for the emergence of a “giant component” in the statistical

sense of Renyi-Erdos network theory [8] for a random graph

with nint = 6 internal vertices. As a rule of thumb, it turns out

that this factor of about two is a suitable choice for the initial

random graph in the simulations even if larger graphs are

considered.

 The initial n n random matrix is symmetrized (i.e., the

lower diagonal part is symmetrically completed), so that it

becomes the adjacency matrix for an undirected random

graph. All entries which correspond to a connection between

an input and an ouput vertex are set to 0. All connections

from internal vertices to input vertices are also set to 0

(although this does not have any influence on the simulation

because the input vertices do not participate in the

dynamics).

 Each image is presented for a total number of 40

(sometimes 30) time steps, and for the last 20 time steps the

difference between the actual activity and the predefined

optimal activity (the “error” i) is measured. The images are

always presented in the same sequence (not in randomized

order). Then we determine the number of attractor states of

the resulting graph.

 Next, one of the connections among all admissible links,

including those between input and internal vertices, is

changed by inserting or deleting a single directed line for

two randomly chosen vertices which are not both input and

output points. This way, directed graphs become admissible:

even though the initial random matrix was symmetrized

(undirected lines only), insertion or deletion refers to

directed lines. The performance function of the new graph is

determined.

 In [1], the only criterion for accepting a graph was an

improvement of the performance function 2. Now we add a

second criterion concerning the complexity of the graph,

which is applied in addition whenever the criterion for i

alone is satisfied. For this second criterion we investigate

two variants: a fixed complexity limit and an adaptive

complexity limit.

1. Fixed complexity limit: The number of attractor states

must not exceed a certain limit, determined in relation

to the number of attractor states N0 of the initial

(random) graph. We define the maximum number of

attractor states which a network is allowed to have

by N fix = p1N0 , where p1 is a parameter between 1

and 2 (p1 <1 is obviously meaningless, while for p1

>2 the performance rapidly approaches the

unrestricted case). Any new graph is only accepted if

both the performance is better than for the previously

10 The Open Cybernetics & Systemics Journal, 2010, Volume 4 Atmanspacher et al.

accepted graph and the number of attractor states

does not exceed Nfix.

2. Adaptive complexity limit: The rate of growth of the

number of attractor states must not exceed a certain

limit. Let Nprev be the number of attractor states of any

precedingly accepted graph, then the number of

attractor states of the subsequent graph must not

exceed Nadap = p2Nprev . As above p2 is varied

between 1 and 2 (Here, p2 <1 is possible but leads to a

restriction which is almost never satisfied. For p2 >2

the performance again approaches the unrestricted

case).

 With both kinds of complexity limits, the learning

process stops when a certain number of successive line

changes (in our case 1500 generation steps) has been

rejected.

4. RESULTS

4.1. Complexity Constraints

 For a reasonable characterization of the influence of

fixed and adaptive complexity limits on the learning

behavior, we compiled 3000 runs for each value of p1 and p2.

The error in these runs is measured as 1, i.e., as the absolute

value (rather than the square) of the difference between

actual output and desired output.

 The number of terminal graphs is then plotted as a

function of the absolute deviation from the desired output at

the end of the learning process. Depending on the

complexity constraint applied, more or less of these terminal

graphs are optimal learners. The mean of the resulting

histograms for each value of p1 and p2 provides a statistical

characterization of the learning success. Without any

complexity constraint, the value of 1 is about 600.

 In Fig. (3) we plot these mean absolute deviations 1

as a function of the limiting parameters p1 (for fixed

constraints, squares) and p2 (for adaptive constraints,

crosses). It is evident that changes of fixed complexity

constraints influence the success of learning only faintly,

from 1 800 at p1 = 1.0 to 1 750 at p1 = 2.0 . This

is identical with the value of 1 without limiting

parameters. Not only the means but also the form of the

histograms remains almost invariant over the considered

range of p1.

 For adaptive complexity constraints, where the limiting

parameter p2 refers to the preceding (rather than the first)

learning step, the situation turns out to be completely

different. The mean absolute deviations 1 are higher than

1600 if only a small increase in complexity is permitted (p2 =

1.05) and they decrease exponentially with increasing p2,

until they reach (asymptotically) a value close to that for

fixed constraints, 1 750 , for p2 = 2.0.

 There are presumably several reasons for the different

learning behavior with fixed versus adaptive complexity

constraints. One of them is that fixed constraints allow

arbitrary fluctuations of the complexity of the network as

long as they stay below the fixed limit, determined by the

initial complexity. This gives the network some flexibility to

explore different possible trajectories. By constrast, an

adaptive constraint always relates to the complexity for the

preceding learning step, so that a temporary decrease in

complexity may enforce a limit that is smaller than under

fixed constraints. This explains, at least in part, why the

learning success for small p2 is so much worse than under

fixed constraints.

Fig. (3). Mean absolute deviation 1 as a function of limiting

parameter p1 (for fixed constraints) and p2 (for adaptive

constraints). High values indicate low average learning success and

vice versa. Errors are of the size of the plotted symbols. For further

discussion see text.

 An unexpected feature of learning on small graphs

observed earlier [1] is the non-monotonic behavior of

complexity during learning for both optimal and non-optimal

learners: The complexity at the beginning and at the end of

learning is low compared to intermediate stages (Note that

others, such as Crutchfield [9], indicated similar results).

This behavior is also found with complexity constraints, but

we still have no compelling explanation for it.

4.2. Error Tolerance

 So far [1] we studied learning processes in which

changes of the structure of the graph were only accepted if

the error strictly decreased. Since networks often operate

under conditions in which they tolerate increasing error

temporarily, it is reasonable to relax this criterion. A first,

important step toward such a relaxation is to also accept

changes leading to the same error, achieving neither

improvement nor its opposite. In the theory of molecular

evolution, such a criterion was proposed in 1968 as “neutral

evolution” by Kimura [10] and has been studied intensely

since then [11]. It is now well-known that the difference

between strict improvement and neutrality can dramatically

change the evolutionary capabilities of species.

 As Fig. (4) shows, the same is the case for learning

processes on small graphs studied here. The plot shows the

percentage of optimal learners among 1000 runs as a

function of error tolerance. The acceptance criterion for a

���

����

�	��

����

����

��

���
��� ��� ��	 ��� �� ���

������������������

�
��
��
�
��
��
 �
�!

�"
��
��
��

Complexity Constraints and Error Tolerance in Learning Processes on Small Graphs The Open Cybernetics & Systemics Journal, 2010, Volume 4 11

change of the graph structure is that 1 at any given

generation is strictly smaller than the value of 1 for the

generation surviving so far plus an error tolerance . The

value =0 corresponds to strict improvement (as in [1]) and

=1 corresponds to neutrality. Higher values of reflect

actual “error tolerance”, i.e. it is permissible that 1 increases

locally during evolution or learning, respectively.

Fig. (4). Percentage of optimal learners as a function of error

tolerance. Note the dramatic increase of optimal learners if the

acceptance condition is relaxed from strict improvement (error

tolerance = 0) to neutrality (error tolerance = 1). Further

relaxation of acceptance conditions leads only gradually to more
optimal learners, before the curve saturates.

 The plotted curve yields a dramatic increase of optimal

learners, i.e. of learning success, from 2% in the condition of

strict improvement (= 0) to more than 70% in the neutrality

condition (= 1). Further increases in error tolerance yet lead

to more optimal learners, although the curve becomes

increasingly flatter and saturates at 85 with more than

95% optimal learners. For larger graphs, the change from =

0 to = 1 is less dramatic but still considerable.

 In view of future work, in which we plan to analyze the

possible emergence of small-world or scale-free properties

[12] from initially random graphs during learning, it will be

conducive to work at least under neutrality conditions. In this

case, the achievable statistics might be good enough to find

evidence for or against such properties even though the

graphs themselves are small. Moreover, investigations of the

nature of punctuated equilibrium in small graphs [2], which

will be carried out as well, will profit from better statistics.

5. SUMMARY AND PERSPECTIVES

 Continuing previous studies of supervised learning in

small graphs [1, 2], this paper presents results on essentially

two issues. First, the influence of constraints on the

complexity, which the network is allowed to assume during

learning, on the learning performance is investigated.

Second, the learning performance is analyzed under different

criteria for the acceptance of a change of the network

structure.

 With respect to complexity constraints, we found that the

learning performance, measured by the terminal distance

of the actual output from the desired output, is generally

reduced if the complexity of the network is not permitted to

exceed particular limitations. This reduction is moderate in

case of a fixed criterion, given as a multiple p1 of the initial

value of , and it does hardly depend on p1. If such a rigid

complexity limitation is replaced by an adaptive criterion,

given as a multiple p2 of the preceding value of ,

respectively, then the learning performance is greatly

obstructed if p2 is not much greater than 1. Increasing p2

leads to an improved performance, approaching the behavior

for fixed constraints at about p2 = 2.

 With respect to an increased error tolerance for the

acceptance of changes of the graph during learning, we

found a dramatic increase of the number of optimal learners.

if the acceptance criterion is relaxed from strict improvement

to neutrality. A further increase of tolerated error, i.e.

temporary deterioration of performance, leads to further, but

less drastic increases in the number of optimal learners up to

about 96% of all runs.

 The non-monotonic behavior of the complexity of the

graph observed earlier [1] resembles speculations by

Crutchfield [9] based on -machine complexity (outlined in

an Appendix to this paper). It remains unchanged under both

complexity constraints and increased error tolerance. Our

previous hypothesis that this feature might teach us

something about semantic and pragmatic information

processed in the network is still inconclusive. In particular,

we are still unable to find a significant correlation of the

intermediate maximum of complexity during learning with

other network observables. Further work along these lines

might profit from comparison with recent results [13] about

the emergence of small-world networks during the solution

of cognitive insight problems.

APPENDIX: -MACHINE COMPLEXITY

 The idea to use algorithms or automata for a definition of

complexity goes back to Solomonoff [14], Kolmogorov [15]

and Chaitin [16]. It is based on deterministic automata and

represents, loosely speaking, a measure of randomness.

Crutchfield and Young [3] suggested to use stochastic

automata as well, which they called -machines. For a survey

of the theory of computational complexity, with particular

emphasis on -machines, see [4]. The determination of the

complexity C of an -machine, characterizing a given

symbol sequence, can be divided into four main steps.

1. Construction of a tree: A binary tree T = (V,E,a) of

length l1, with a finite set V of vertices, a set

E V V edges, and an origin a V of T, is

assigned to a given symbol sequence S. A conditional

probability pe = pv1 v2
 is assigned to each edge

e = (v1, v2) .

2. Search for equivalent subtrees: Consider all subtrees

of T that have length l2 (l2 < l1). Within the set of

subtrees an equivalence relation (-similarity) is

#�����$������%�

�
��
%�

��
��

��
�&
��

'�
��

��
��

��
��
��
�

� ��

�

��

	�

��

��
� ��� �
� ���

12 The Open Cybernetics & Systemics Journal, 2010, Volume 4 Atmanspacher et al.

defined such that any two subtrees are equivalent iff

the difference of the probabilities assigned to their

edges is smaller than , | pe1 pe2 |< .

3. Construction of stochastic automaton: This similarity

condition generates a classification in the set of

subtrees. Each equivalence class is regarded as a state

of the automaton, a so-called causal state, and each

edge between the origins of two subtrees represents

an edge between two states of the automaton. The

transition probabilities between different states of the

automaton are determined such that the original

sequence is reconstructed in an -similar manner.

Increasing l1 and l2 results in an increasing resolution

of the dynamics.

4. Determination of complexity: The -complexity C is

defined as the Shannon information of the state

probabilities of the automaton.

 For more details concerning an optimal choice of the

parameters l1, l2, and , we refer the interested reader to the

quoted literature, see also [17] for an overview.

 An intelligible example illustrating how the calculation

of C works can be given for a deterministic period-three

process, where S = 001001001001... . This sequence can be

assigned to a binary tree as in Fig. (5a) Defining equivalence

classes 0, 1, 2, 3, 4 as in Fig. (5b) leads to an automaton

shown in Fig. (5c). It consists of a closed loop composed of

three automaton states, each of state probability 1, thus

providing C = log 3 . In case of doubly stochastic behavior

(pv1 v2
= 0.5 , binary tree), the automaton has only one state

(Fig. 6). The resulting -similar sequence of automaton states

has period 1, and C = 0 .

Fig. (6). Stochastic automaton for doubly stochastic behavior.

 These simple examples show that -machine complexity

is non-monotonic as a function of randomness: It is low for

both purely deterministic and purely random (stochastic)

symbol sequences. An overview of several other non-

monotonic measures of complexity as compared to

monotonic measures can be found in [17]. A direct

application of a non-monotonic measure (based on mutual

information) to charaterize the functional connectivity of

neural systems is due to Tononi et al. [18].

 The complexity measure proposed in [1] is closely

related to C insofar as the number of attractor states of the

network dynamics during learning can be identified as the

number of automaton states. In the approach presented here,

we do already enter at the level of the automaton (the graph)

as it results from the network dynamics over all inputs. Since

the attractors in the scenario introduced in Sec. 2 are either

fixed points or limit cycles, hence deterministic, the

logarithm of their total number does precisely yield C for

each step of the considered learning process. It should be

added that in our case this does not only characterize the

actual realization of one learning process, but the complete

set of all possible “trajectories”.

 We have speculated [1] that the stage of the learning

process exhibiting maximum complexity could be related to

a release of semantic or pragmatic information, signifying

something like an “aha”-experience. This speculation is

reinforced by corresponding remarks by Crutchfield [9] in

the context of -machine complexity.

ACKNOWLEDGMENTS

 Robert Finke and Günter Gruber are grateful for a

research grant during their student internship in the theory

department at IGPP, from which this work emerged.

Comments and suggestions by three anonymous referees are

greatly appreciated.

REFERENCES

[1] H. Atmanspacher and T. Filk, “Complexity and non-commutativity
of learning operations on graphs”, Biosystems, vol. 85, pp. 84-93,

2006.
[2] T. Filk and A. von Müller, “Evolutionary learning of small

networks”, Complexity, vol. 13(3), pp. 43-54, 2008.

Fig. (5). Illustration of how -complexity is calculated for a (deterministic) period-3 process. For a binary tree of length l1=6 (a) and subtrees

of length l2=3 as equivalence classes (b), the automaton (c) is derived.

�(�(%(

�

� �

� 	 �

	

�

�

� 	

�

�

�

�

�

��

�

� �

�

�

�

�

�

�

�

�	 	

�

�

�

�

� �

Complexity Constraints and Error Tolerance in Learning Processes on Small Graphs The Open Cybernetics & Systemics Journal, 2010, Volume 4 13

[3] J.P. Crutchfield and K. Young, “Inferring statistical complexity”,

Phys. Rev. Lett., vol. 63, pp. 105-108, 1989.
[4] C.R. Shalizi and J.P. Crutchfield, “Computational mechanics:

pattern and prediction, structure and simplicity”, J. Stat. Phys., vol.
104, pp. 816-879, 2001.

[5] S. Haykin, Neural Networks: A Comprehensive Foundation. Saddle
River NJ: Prentice Hall, 1999.

[6] R.J. Wilson, Introduction to Graph Theory. 3rd ed. Harlow Essex:
Longman Scientific & Technical, 1985.

[7] S. Bornholdt and H.G. Schuster, Eds., Handbook of Graphs and
Networks. Weinheim, Wiley-VCH, 2003.

[8] P. Erdos and A. Renyi, “On the evolution of random graphs”, Publ.
Math. Inst. Hungarian Acad. Sci., vol. 5, pp. 17-61, 1960.

[9] J.P. Crutchfield. Private communication 2006; compare also his
presentations of 2003 on his homepage.

[10] M. Kimura, “Evolutionary rate at the molecular level”, Nature, vol.
217, pp. 624-626, 1968.

[11] E.G. Leigh, Jr., “Neutral theory: a historical perspective”, Evol.

Biol., vol. 20, pp. 2075-2091, 2007.
[12] A. Albert and A.-L. Barabasi, “Statistical mechanics of complex

networks”, Rev. Mod. Phys., vol. 74, pp. 47-97, 2002.
[13] M.A. Schilling, “A small-world network model of cognitive

insight”, Creativ. Res. J., vol. 17, pp. 131-154, 2005.
[14] R. Solomonoff, “A formal theory of inductive inference”, Inf.

Control, vol. 7, pp. 1-22, 224-254, 1964.
[15] A.N. Kolmogorov, “Three approaches to the quantitative definition

of information”, Probl. Inf. Transm., vol. 1, pp. 1-7, 1965.
[16] G.J. Chaitin, “On the length of programs for computing binary

sequences”, J. ACM, vol. 13, pp. 547-569, 1966.
[17] R. Wackerbauer, A. Witt, H. Atmanspacher, J. Kurths, and H.

Scheingraber, “A comparative classification of complexity
measures”, Chaos Solitons Fractals, vol. 4, pp. 133-173, 1994.

[18] G. Tononi, O. Sporns, and G. Edelman, “A complexity measure for
selective matching of signals by the brain”, Proc. Natl. Acad. Sci.

USA, vol. 93, pp. 3422-3427, 1996.

Received: May 30, 2009 Revised: September 1, 2009 Accepted: September 23, 2009

© Atmanspacher et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

