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Abstract: Continuing previous studies, we present further results about the behavior of small abstract networks during 

supervised learning. In particular, we show that constraints on the complexity that a network is permitted to assume 

during learning reduces its learning success in ways that depend on the nature of the applied limitation. Moreover, we 

show that relaxing the criterion due to which changes of the network structure are accepted during learning leads to a 

dramatic improvement of the learning performance. The non-monotonicity of network complexity during learning, which 

remains unchanged in both scenarios, is related to a similar feature in -machine complexity. 

1. INTRODUCTION 

 The study of complex networks, with applications in 

numerous fields of research, has attracted enormous amounts 

of interest in recent years. In addition to purely structural 

investigations of such networks, it is often important to 

include their dynamics to get a more comprehensive picture. 

This is particularly significant in cases where the dynamics 

is explicitly assumed to change the structure, and vice versa. 

A pertinent example for such a situation is the dynamics of 

learning in networks. 

 Following up on previous work [1, 2], we are interested 

in an understanding of general mechanisms and features of 

the dynamics of learning. Therefore we do not specialize in 

certain areas of application (such as neuronal networks) but 

consider abstract networks. Moreover, we focus on small 

networks of (far) less than a hundred nodes under the simple 

condition of supervised learning. Although the behavior of 

such networks is already quite sophisticated, their small size 

facilitates, or so we hope, an analytical understanding of the 

intricate details of their dynamics. 

 A surprising result of earlier studies is a non-monotonic 

evolution of network complexity as learning proceeds [1]. 

Another key feature that was observed in fairly small 

networks is punctuated equilibrium [2]. In addition, we 

found tentative indications for a transition of the network 

structure from initial random graphs to small-world networks 

during learning. These and other results will be further 

investigated in detail in future work. 

 In this contribution we present results concerning the 

behavior of the complexity of the network and the impact of 

different degrees of  error tolerance during learning. We start  
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with a brief description of the model, of the simulation 

procedure, and of the definition of complexity that we are 

using in Section 2. Subsequently we describe how the 

learning process is implemented. Section 4 contains the 

results for learning under constraints on the complexity of 

the network and the influence of variations of error 

tolerance. Section 5 summarizes the paper and sketches some 

perspectives. An Appendix discusses the relationship 

between our complexity measure and -machine complexity 

due to Crutchfield and colleagues [3, 4]. 

2. DESCRIPTION OF THE MODEL AND THE 
SIMULATION PROCEDURE 

 We first define the mathematical model that is intended 

to simulate the dynamics of a network. The model belongs to 

a particular class of neural networks (for an introduction to 

neural networks see [5]) and consists of graphs together with 

two types of dynamics: 

1. The dynamics of an activity potential defined on the 

vertices of the graph. This type of dynamics is 

described in the present section. 

2. The dynamics of the learning process according to 

which the connectivity among the vertices is changed 

in order to improve the performance of the system. 

This dynamics will be described in section 3. 

2.1. The Graphs 

 A simple, directed graph can be defined as a set V of 

vertices (sometimes also called points or nodes) together 

with a relation “ ” between vertices, where y x denotes a 

directed line (sometimes also called edge) from vertex y to 

vertex x (for more details see e.g. [6, 7]). If two points are 

connected bidirectionally, i.e., both relations y x and x y 

are present, the line between x and y is called undirected. If 

all lines are undirected, the graph is called undirected. 
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 The restriction to “simple” graphs means that there are no 

self-loops (no vertex is connected with itself) and no 

multiple connections for one direction (for each pair (x,y) 

there exists at most one line from x to y and from y to x). The 

connections between vertices can be expressed in terms of 

the adjacency matrix A  with indices x  and y : 

A(x, y) =
1 if there is a directed line from y to x

0 else
.      (1) 

 Depending on their role in the learning process we 

distinguish three types of vertices: 

1. Input vertices serve to provide an input which the 

system has to process. The activity potential at input 

vertices is determined by the input pattern and does 

not take part in the dynamics on the graph. In our 

model, input vertices are only connected to internal 

vertices by directed links, i.e., there are no links to an 

input vertex and there are no direct links from input 

vertices to output vertices. Due to redundancies in the 

input pattern it can happen that during or after 

learning an input vertex has no link at all to other 

vertices. In our simulations we always use 16 input 

vertices. 

2. Output vertices (zi) are those vertices at which the 

activity potential represents the output of the system. 

Output vertices can be connected to internal vertices 

in both ways, i.e., the value of the activity potential at 

the output vertices can influence the dynamics of the 

activity potential at all internal vertices. In our 

simulations we always define two output vertices. 

Input vertices and output vertices together are 

sometimes referred to as peripheral vertices. 

3. Internal vertices are the actual processing units 

(although the activity potential at output vertices 

takes part in the dynamics). They can be arbitrarily 

connected among each other and to the output 

vertices, and there can be arbitrary directed 

connections from input vertices to internal vertices. 

Thus, the studied networks are highly recurrent. For 

the simulations presented here we use graphs with 6 

internal vertices, sometimes also referred to as hidden 

vertices. 

2.2. The Dynamics of the Activity Potential 

 On the set of vertices V we define a field (called activity 

potential or, sometimes, firing rate) u(t,x). At each (discrete) 

time step t, the activity at each vertex x can assume one of 

several values: 
 
u(t, x) {0,1, 2,…,umax} . The restriction to 

discrete integer values for the activity potential has 

numerical reasons (program speed). As a consequence of this 

discreteness, the possible attractors (see Section 2.3) can 

only be fixed points or limit cycles, and they are reached 

after a finite number of steps. 

 The configuration {u(t, x)} x V  will be called the 

state of the system at discrete time t . Its dynamics is defined 

by the following equation: 

u(t +1, x) = f
y x

u(t, y) = f
y

A(x, y)u(t, y) ,         (2) 

where 
y x

 indicates a summation over all vertices y  for 

which a (directed) line from y to x exists. Hence, the activity 

u(t +1, x)  of vertex x at time t+1 depends only on the sum 

of the activities of the neighbors y at time t. For the transfer 

function f(x) (see Fig. 1) we use a “triangular” function 

defined by: 

f (x) =

umax
u0

x for x u0

umax
u1 u0

(u1 x) for u0 < x < u1

0 for x u1

,         (3) 

where | u |  denotes the smallest integer greater or equal to u. 

 Simulations with different values for the parameters u0 

and u1, and even with various other forms of the transfer 

function, left the results reported in the following 

qualitatively unchanged. However, the number of optimal 

learners per 1000 runs depends crucially on the transfer 

function. We chose the parameters u0 = umax and u1 = 30 

because they yielded a maximal number of optimal learners. 

 

Fig. (1). Illustration of the transfer function f(x). In the simulations 
we used the values umax= 10, u1= 30, and u0= 10. 

 For the input vertices the value of the activity is set to 0 

or umax= 10 according to a set of “input images” or input 

patterns Bi which are “presented” to the graph. Fig. (2) 

shows the 11 input patterns used in the simulations. The 

input patterns are grouped into three different classes. The 

first class contains only image 1, the second class consists of 

images 2 to 5, and the other six images 6 to 11 belong to the 

third class. Note that for the images in group two and three 

the number of vertices with activity 0 and maximal activity 

is the same: the system cannot distinguish these patterns by 

simply counting the number of vertices with maximal 

activity. Furthermore, it should be obvious that the 

arrangement of these vertices in form of a 4 4 matrix is of 

no relevance or meaning to the system. 

 For each class of input patterns we define an optimal 

reaction u(Bi;zi)opt of the system coded by the activity of the 

two output vertices. The optimal reactions for the three 

different classes are: (0,0) for group 1, (10,0) for group 2, 

and (0,10) for group 3. An optimal learner is a graph for 
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which the activities at the output vertices agree, after the 

learning process, with the predefined optimal reaction for 

each of the 11 images. 

 The following expressions define a measure for the 

performance of a graph. Sometimes they are called error 

functions or performance functions, and they may be 

interpreted as an inverse fitness of the system: 

2 =
11 images Bi  20 time steps t  2 output vertices zi

(u(t, zi ) u(Bi ; zi )opt )
2 ,     (4) 

and: 

1 =
11 images Bi  20 time steps t  2 output vertices zi

| u(t, zi ) u(Bi ; zi )opt |.      (5) 

 Although the quantitative results for these two error 

functions differ, we found no actual difference in the 

qualitative behavior of the systems. 

 The sums in Eqs. (4) and (5) extend over the 11 input 

patterns Bi, 20 time steps t  (updates) according to the 

defined dynamics, and the two output vertices z1 and z2. i 

vanishes for optimal learners, while for random graphs 2 

assumes values between 15000 and 25000, and 1 assumes 

values between 2000 and 2200. After each change of the 

input pattern, the system relaxes onto an attractor after some 

transient time steps (usually 10 to 20). After this relaxation 

time the output is measured. 

 The simulations are programmed in C
++

 and the random 

number generator used is the standard random number 

generator “rand()” provided by the C
++

 library. 

2.3. Attractors and Attractor States 

 We now define the notion of attractors and attractor 

states in the context of neural networks. 

 While the configuration {u(t, x)}x V  characterizes the 

state of the system at time t, u(t, x)  is the state of the vertex 

x at time t. Furthermore, as the states of the input vertices 

depend on the input pattern “presented” to the graph and do 

not take part in the dynamics, we typically exclude the input 

vertices and characterize the state of the system by the 

collection of states of the internal vertices and the output 

vertices only. 

 The restriction of u(t, x)  to integer values (and the 

restriction to networks with a finite number of vertices) 

implies that there is only a finite number of states. An 

attractor (or attractor set) of a dynamical system may be 

defined as a subset of all possible states which is closed 

under the dynamics, i.e., once the system assumes one of the 

states of the attractor set then it will stay within the attractor 

set (Usually it is assumed that this attractor set is also 

minimal, i.e., the system approaches each state within this 

attractor set arbitrarily closely). The attractor landscape 

consists of all attractor sets of a dynamical system. 

 Starting from an arbitrary initial state, the dynamical 

system corresponding to the neural network used in our 

simulations runs into an attractor set after a finite number of 

time steps. In many cases, this attractor set consists of one 

element only, i.e. one single state that is asymptotically 

stable. Such an attractor is called a fixed point. Otherwise the 

attractor is a limit cycle, i.e. a periodic succession of 

attractor states. Strange attractors do not occur in our case 

since the number of states is finite. 

 In general, the attractor onto which a system relaxes after 

some time depends only on the initial state at time t=0. In 

our case, however, there is an additional complication, 

because the attractor landscape depends on the input pattern 

“presented” to the network. In the context of dynamical 

systems, these input patterns can be interpreted as boundary 

conditions and the attractor landscapes depend on these 

boundary conditions. Strictly speaking, there are as many 

attractor landscapes as there are input patterns. 

 Our aim is to define a minimal set of attractor states 

which is closed in the following sense. Taking an arbitrary 

attractor state in this set as an initial condition and any of the 

eleven input patterns as a boundary condition, the attractor 

state (or the attractor states) reached by the system after a 

sufficient amount of time should again be an element 

(elements) of this set of attractor states. Atmanspacher and 

Filk [1] defined the number of attractor states in this set as a 

complexity measure for learning processes (See Appendix 

for a comparison with -machine complexity as introduced 

by Crutchfield and Young [3]). This complexity measure 

turns out to be non-monotonic as a function of randomness. 

It is (in general) small for random graphs as well as for (least 

random) optimal learners, but it is usually large for 

intermediate epochs during the learning process. 

 

Fig. (2). The 11 input patterns Bi, shown as 4 4 matrices, which were presented by the 16 input vertices. ° indicates activity 0, • indicates 

activity umax. Note that this also represents the corrected sequence of inputs in [1]. 

� � � 	 
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 It should be noted that the notion of randomness here 

refers to the structure of the graph in relation to the learning 

algorithm: During the learning process the graphs become 

less random in their performance with respect to the task to 

be learned. This does not imply that the graphs become 

“ordered” in the sense that the degree distribution or other 

common statistical properties change significantly with 

respect to the corresponding properties for random graphs. 

However, recent simulations (to be published elsewhere) 

show that distributions for certain motifs change drastically 

as compared to random graphs. 

 In detail, we determine this set of attractor states as 

follows (see also [1]): We start from a random initial 

configuration, apply input pattern 1 to the input vertices and 

let the system run for a sufficiently long time (we chose 

t=101) until the system enters a fixed point or a cycle. We 

identify all states of this cycle (only one state in case of a 

fixed point) and subsequently use these states as initial 

conditions, applying successively all other input patterns and 

determining the corresponding attractor states. In a second 

step, all new attractor states are used as initial conditions and 

all input patterns are tested to check if new attractor states 

appear. This procedure stops when no new attractor states 

occur after all existing attractor states have been used as 

initial conditions with all input patterns applied. 

 In a more mathematical terminology, this procedure 

defines a multiplicative structure of evolution operators 

which depend on the input patterns. The set of attractor 

states constitutes a representation space of this structure. 

Some of its general properties have been analyzed previously 

[1]. 

3. THE LEARNING PROCESS 

 The simulation procedure for obtaining optimal learners 

mimics an evolutionary scenario: starting from a graph with 

a random adjacency matrix (an arbitrary “species”), we 

obtain a sequence of new graphs (new “species”) by 

randomly injecting changes (“mutations”) in the 

connectivities of the graph. We measure both the 

performance function (inverse “fitness”) of each graph and 

its complexity in terms of the number of attractor states. If 

the performance function is smaller than for any previous 

graph, i.e., if the fitness is better, and if the graph satisfies 

certain constraints imposed on its complexity (which will be 

described below), then the new graph is accepted and 

becomes the “surviving species”. Otherwise it is rejected and 

the previous “fitter” graph survives. 

 In order to distinguish between the single time (update) 

steps of the iterative dynamics (Eq. (2)) and the iterative 

sequence of graphs obtained by randomly inserting and 

deleting lines, we refer to the latter as “generation steps”. 

One generation step comprises 330 or 440 time steps, 

depending on whether the (transient) relaxation time after 

each image change is chosen to be 10 or 20 time steps. 

 In detail, the simulations proceed as follows: For n 

vertices (input, internal, and output) we start with an n n 

adjacency matrix A(x,y) whose initial entries are all 0. Next 

we set each of the elements in the upper diagonal part of 

A(x,y) to 1 with some suitable probability p=0.4 with respect 

to all admissible links (some links are prohibited: no self-

loops, no output-output connections). This number turned 

out to yield a high percentage of optimal learners for graphs 

with nint = 6 internal vertices, i.e., n=24 vertices in total, in 

previous simulations without complexity restrictions. 

 Note that p=0.4 is twice the threshold pth =1 / (nint 1)  

for the emergence of a “giant component” in the statistical 

sense of Renyi-Erdos network theory [8] for a random graph 

with nint = 6 internal vertices. As a rule of thumb, it turns out 

that this factor of about two is a suitable choice for the initial 

random graph in the simulations even if larger graphs are 

considered. 

 The initial n n random matrix is symmetrized (i.e., the 

lower diagonal part is symmetrically completed), so that it 

becomes the adjacency matrix for an undirected random 

graph. All entries which correspond to a connection between 

an input and an ouput vertex are set to 0. All connections 

from internal vertices to input vertices are also set to 0 

(although this does not have any influence on the simulation 

because the input vertices do not participate in the 

dynamics). 

 Each image is presented for a total number of 40 

(sometimes 30) time steps, and for the last 20 time steps the 

difference between the actual activity and the predefined 

optimal activity (the “error” i) is measured. The images are 

always presented in the same sequence (not in randomized 

order). Then we determine the number of attractor states of 

the resulting graph. 

 Next, one of the connections among all admissible links, 

including those between input and internal vertices, is 

changed by inserting or deleting a single directed line for 

two randomly chosen vertices which are not both input and 

output points. This way, directed graphs become admissible: 

even though the initial random matrix was symmetrized 

(undirected lines only), insertion or deletion refers to 

directed lines. The performance function of the new graph is 

determined. 

 In [1], the only criterion for accepting a graph was an 

improvement of the performance function 2. Now we add a 

second criterion concerning the complexity of the graph, 

which is applied in addition whenever the criterion for i 

alone is satisfied. For this second criterion we investigate 

two variants: a fixed complexity limit and an adaptive 

complexity limit. 

1. Fixed complexity limit: The number of attractor states 

must not exceed a certain limit, determined in relation 

to the number of attractor states N0 of the initial 

(random) graph. We define the maximum number of 

attractor states which a network is allowed to have 

by N fix = p1N0 , where p1 is a parameter between 1 

and 2 (p1 <1 is obviously meaningless, while for p1 

>2 the performance rapidly approaches the 

unrestricted case). Any new graph is only accepted if 

both the performance is better than for the previously 
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accepted graph and the number of attractor states 

does not exceed Nfix. 

2. Adaptive complexity limit: The rate of growth of the 

number of attractor states must not exceed a certain 

limit. Let Nprev be the number of attractor states of any 

precedingly accepted graph, then the number of 

attractor states of the subsequent graph must not 

exceed Nadap = p2Nprev . As above p2 is varied 

between 1 and 2 (Here, p2 <1 is possible but leads to a 

restriction which is almost never satisfied. For p2 >2 

the performance again approaches the unrestricted 

case). 

 With both kinds of complexity limits, the learning 

process stops when a certain number of successive line 

changes (in our case 1500 generation steps) has been 

rejected. 

4. RESULTS 

4.1. Complexity Constraints 

 For a reasonable characterization of the influence of 

fixed and adaptive complexity limits on the learning 

behavior, we compiled 3000 runs for each value of p1 and p2. 

The error in these runs is measured as 1, i.e., as the absolute 

value (rather than the square) of the difference between 

actual output and desired output. 

 The number of terminal graphs is then plotted as a 

function of the absolute deviation from the desired output at 

the end of the learning process. Depending on the 

complexity constraint applied, more or less of these terminal 

graphs are optimal learners. The mean of the resulting 

histograms for each value of p1 and p2 provides a statistical 

characterization of the learning success. Without any 

complexity constraint, the value of 1  is about 600. 

 In Fig. (3) we plot these mean absolute deviations 1  

as a function of the limiting parameters p1 (for fixed 

constraints, squares) and p2 (for adaptive constraints, 

crosses). It is evident that changes of fixed complexity 

constraints influence the success of learning only faintly, 

from 1 800  at p1 = 1.0  to 1 750  at p1 = 2.0 . This 

is identical with the value of 1  without limiting 

parameters. Not only the means but also the form of the 

histograms remains almost invariant over the considered 

range of p1. 

 For adaptive complexity constraints, where the limiting 

parameter p2 refers to the preceding (rather than the first) 

learning step, the situation turns out to be completely 

different. The mean absolute deviations 1  are higher than 

1600 if only a small increase in complexity is permitted (p2 = 

1.05) and they decrease exponentially with increasing p2, 

until they reach (asymptotically) a value close to that for 

fixed constraints, 1 750 , for p2 = 2.0. 

 There are presumably several reasons for the different 

learning behavior with fixed versus adaptive complexity 

constraints. One of them is that fixed constraints allow 

arbitrary fluctuations of the complexity of the network as 

long as they stay below the fixed limit, determined by the 

initial complexity. This gives the network some flexibility to 

explore different possible trajectories. By constrast, an 

adaptive constraint always relates to the complexity for the 

preceding learning step, so that a temporary decrease in 

complexity may enforce a limit that is smaller than under 

fixed constraints. This explains, at least in part, why the 

learning success for small p2 is so much worse than under 

fixed constraints. 

 

Fig. (3). Mean absolute deviation 1  as a function of limiting 

parameter p1 (  for fixed constraints) and p2 (  for adaptive 

constraints). High values indicate low average learning success and 

vice versa. Errors are of the size of the plotted symbols. For further 

discussion see text. 

 An unexpected feature of learning on small graphs 

observed earlier [1] is the non-monotonic behavior of 

complexity during learning for both optimal and non-optimal 

learners: The complexity at the beginning and at the end of 

learning is low compared to intermediate stages (Note that 

others, such as Crutchfield [9], indicated similar results). 

This behavior is also found with complexity constraints, but 

we still have no compelling explanation for it. 

4.2. Error Tolerance 

 So far [1] we studied learning processes in which 

changes of the structure of the graph were only accepted if 

the error  strictly decreased. Since networks often operate 

under conditions in which they tolerate increasing error 

temporarily, it is reasonable to relax this criterion. A first, 

important step toward such a relaxation is to also accept 

changes leading to the same error, achieving neither 

improvement nor its opposite. In the theory of molecular 

evolution, such a criterion was proposed in 1968 as “neutral 

evolution” by Kimura [10] and has been studied intensely 

since then [11]. It is now well-known that the difference 

between strict improvement and neutrality can dramatically 

change the evolutionary capabilities of species. 

 As Fig. (4) shows, the same is the case for learning 

processes on small graphs studied here. The plot shows the 

percentage of optimal learners among 1000 runs as a 

function of error tolerance. The acceptance criterion for a 
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change of the graph structure is that 1 at any given 

generation is strictly smaller than the value of 1 for the 

generation surviving so far plus an error tolerance . The 

value =0 corresponds to strict improvement (as in [1]) and 

=1 corresponds to neutrality. Higher values of  reflect 

actual “error tolerance”, i.e. it is permissible that 1 increases 

locally during evolution or learning, respectively. 

 

Fig. (4). Percentage of optimal learners as a function of error 

tolerance. Note the dramatic increase of optimal learners if the 

acceptance condition is relaxed from strict improvement (error 

tolerance  = 0) to neutrality (error tolerance  = 1). Further 

relaxation of acceptance conditions leads only gradually to more 
optimal learners, before the curve saturates. 

 The plotted curve yields a dramatic increase of optimal 

learners, i.e. of learning success, from 2% in the condition of 

strict improvement (  = 0) to more than 70% in the neutrality 

condition (  = 1). Further increases in error tolerance yet lead 

to more optimal learners, although the curve becomes 

increasingly flatter and saturates at 85 with more than 

95% optimal learners. For larger graphs, the change from  = 

0 to  = 1 is less dramatic but still considerable. 

 In view of future work, in which we plan to analyze the 

possible emergence of small-world or scale-free properties 

[12] from initially random graphs during learning, it will be 

conducive to work at least under neutrality conditions. In this 

case, the achievable statistics might be good enough to find 

evidence for or against such properties even though the 

graphs themselves are small. Moreover, investigations of the 

nature of punctuated equilibrium in small graphs [2], which 

will be carried out as well, will profit from better statistics. 

5. SUMMARY AND PERSPECTIVES 

 Continuing previous studies of supervised learning in 

small graphs [1, 2], this paper presents results on essentially 

two issues. First, the influence of constraints on the 

complexity, which the network is allowed to assume during 

learning, on the learning performance is investigated. 

Second, the learning performance is analyzed under different 

criteria for the acceptance of a change of the network 

structure. 

 With respect to complexity constraints, we found that the 

learning performance, measured by the terminal distance  

of the actual output from the desired output, is generally 

reduced if the complexity of the network is not permitted to 

exceed particular limitations. This reduction is moderate in 

case of a fixed criterion, given as a multiple p1 of the initial 

value of , and it does hardly depend on p1. If such a rigid 

complexity limitation is replaced by an adaptive criterion, 

given as a multiple p2 of the preceding value of , 

respectively, then the learning performance is greatly 

obstructed if p2 is not much greater than 1. Increasing p2 

leads to an improved performance, approaching the behavior 

for fixed constraints at about p2 = 2. 

 With respect to an increased error tolerance for the 

acceptance of changes of the graph during learning, we 

found a dramatic increase of the number of optimal learners. 

if the acceptance criterion is relaxed from strict improvement 

to neutrality. A further increase of tolerated error, i.e. 

temporary deterioration of performance, leads to further, but 

less drastic increases in the number of optimal learners up to 

about 96% of all runs. 

 The non-monotonic behavior of the complexity of the 

graph observed earlier [1] resembles speculations by 

Crutchfield [9] based on -machine complexity (outlined in 

an Appendix to this paper). It remains unchanged under both 

complexity constraints and increased error tolerance. Our 

previous hypothesis that this feature might teach us 

something about semantic and pragmatic information 

processed in the network is still inconclusive. In particular, 

we are still unable to find a significant correlation of the 

intermediate maximum of complexity during learning with 

other network observables. Further work along these lines 

might profit from comparison with recent results [13] about 

the emergence of small-world networks during the solution 

of cognitive insight problems. 

APPENDIX: -MACHINE COMPLEXITY 

 The idea to use algorithms or automata for a definition of 

complexity goes back to Solomonoff [14], Kolmogorov [15] 

and Chaitin [16]. It is based on deterministic automata and 

represents, loosely speaking, a measure of randomness. 

Crutchfield and Young [3] suggested to use stochastic 

automata as well, which they called -machines. For a survey 

of the theory of computational complexity, with particular 

emphasis on -machines, see [4]. The determination of the 

complexity C  of an -machine, characterizing a given 

symbol sequence, can be divided into four main steps. 

1. Construction of a tree: A binary tree T = (V,E,a) of 

length l1, with a finite set V of vertices, a set 

E V V  edges, and an origin a V  of T, is 

assigned to a given symbol sequence S. A conditional 

probability pe = pv1 v2
 is assigned to each edge 

e = (v1, v2 ) . 

2. Search for equivalent subtrees: Consider all subtrees 

of T that have length l2 (l2 < l1). Within the set of 

subtrees an equivalence relation ( -similarity) is 
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defined such that any two subtrees are equivalent iff 

the difference of the probabilities assigned to their 

edges is smaller than , | pe1 pe2 |< . 

3. Construction of stochastic automaton: This similarity 

condition generates a classification in the set of 

subtrees. Each equivalence class is regarded as a state 

of the automaton, a so-called causal state, and each 

edge between the origins of two subtrees represents 

an edge between two states of the automaton. The 

transition probabilities between different states of the 

automaton are determined such that the original 

sequence is reconstructed in an -similar manner. 

Increasing l1 and l2 results in an increasing resolution 

of the dynamics. 

4. Determination of complexity: The -complexity C  is 

defined as the Shannon information of the state 

probabilities of the automaton. 

 For more details concerning an optimal choice of the 

parameters l1, l2, and , we refer the interested reader to the 

quoted literature, see also [17] for an overview. 

 An intelligible example illustrating how the calculation 

of C  works can be given for a deterministic period-three 

process, where S = 001001001001... . This sequence can be 

assigned to a binary tree as in Fig. (5a) Defining equivalence 

classes 0, 1, 2, 3, 4 as in Fig. (5b) leads to an automaton 

shown in Fig. (5c). It consists of a closed loop composed of 

three automaton states, each of state probability 1, thus 

providing C = log 3 . In case of doubly stochastic behavior 

( pv1 v2
= 0.5 , binary tree), the automaton has only one state 

(Fig. 6). The resulting -similar sequence of automaton states 

has period 1, and C = 0 . 

 

Fig. (6). Stochastic automaton for doubly stochastic behavior. 

 These simple examples show that -machine complexity 

is non-monotonic as a function of randomness: It is low for 

both purely deterministic and purely random (stochastic) 

symbol sequences. An overview of several other non-

monotonic measures of complexity as compared to 

monotonic measures can be found in [17]. A direct 

application of a non-monotonic measure (based on mutual 

information) to charaterize the functional connectivity of 

neural systems is due to Tononi et al. [18]. 

 The complexity measure proposed in [1] is closely 

related to C  insofar as the number of attractor states of the 

network dynamics during learning can be identified as the 

number of automaton states. In the approach presented here, 

we do already enter at the level of the automaton (the graph) 

as it results from the network dynamics over all inputs. Since 

the attractors in the scenario introduced in Sec. 2 are either 

fixed points or limit cycles, hence deterministic, the 

logarithm of their total number does precisely yield C  for 

each step of the considered learning process. It should be 

added that in our case this does not only characterize the 

actual realization of one learning process, but the complete 

set of all possible “trajectories”. 

 We have speculated [1] that the stage of the learning 

process exhibiting maximum complexity could be related to 

a release of semantic or pragmatic information, signifying 

something like an “aha”-experience. This speculation is 

reinforced by corresponding remarks by Crutchfield [9] in 

the context of -machine complexity. 
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