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Abstract: An optical bottle field containing a three-dimensional intensity null at the focal point
can be generated by placing a spatially inhomogeneous birefringent mask at the pupil of an
aplanatic high-NA focusing system. We derive the optimal birefringence distribution for which
a uniformly polarized input beam is converted into a bottle field with the sharpest possible
null in intensity. We show that a stress engineered optical (SEO) window, which has a radially
varying retardance, followed by a half-wave plate, performs nearly as well as the optimal solution.
Experimental results corroborate that an SEO element can be used to generate a bottle field.
© 2017 Optical Society of America

OCIS codes: (050.4865) Optical vortices; (260.6042) Singular optics; (260.5430) Polarization; (260.1440) Birefringence.
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1. Introduction

Trapping and manipulation of nanoparticles plays a crucial role in biology and physics. The field
of laser-based trapping was pioneered by Arthur Ashkin, who developed with co-workers a single-
beam gradient-force optical trap, known as “optical tweezers” [1–3]. Nowadays, optical tweezers
have found various applications, ranging from cooling and trapping atoms to manipulating live
bacteria and viruses [4–6]. The achievement of an efficient trap relies on the optical properties of
the particles and the surrounding medium, as well as the physical nature of the light-mediated
trapping forces. Optical tweezers are typically implemented using a high numerical aperture (NA)
objective, which generates a strong electric field gradient at the focal region. The gradient force
created causes particles of higher refractive index than the surrounding medium to be attracted to
the light field maximum, and it repels low index particles in a high index environment. Thus,
axial trapping efficiency of low index particles can be improved through the use of “hollow” (or
“donut”) beams, which have intensity minima on the optical propagation axis [7, 8].

In 2000, Arlt and Padgett introduced the concept of an “optical bottle” which represents a
beam with a finite axial region of low (ideally null) intensity surrounded in all directions by
light [9]. Generating this dark region at the focus creates useful intensity gradients to trap or
measure the dynamics of low index particles. For instance, the suitability of an optical bottle
beam for particle trapping and manipulation has been confirmed in experiments with atoms
and absorbing particles [10]. Optical bottle fields also have applications in stimulated emission
depletion (STED) fluorescence microscopy [11], in which the three-dimensional nature of the
bottle provides enhanced resolution along the longitudinal direction [12, 13].
Various techniques have been proposed to generate bottle fields [14–17]. Many of these
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involve vortices generated by the use of phase masks, spiral phase plates, or spatial light
modulators [18, 19]. These methods typically rely on interference between two fundamental
Gaussian modes, making them sensitive to alignment errors [20]. Polarization vortex beams have
also been generated by propagating a circularly polarized Gaussian beam through a stressed
engineered optical (SEO) window [21]. The circular polarization component exiting the stressed
window with the opposite handedness acquires a vortex along the axis, so a bottle can be
constructed by making sure that the component emerging with the original polarization has an
axial null. While SEO elements have been shown to have applications in the generation and
detection of spatially varying polarization states [22–26], to date they have not been utilized to
generate and optimize a three-dimensional bottle field, although studies on focal splitting [27]
have shown fields with an intensity minimum surrounded by high intensity regions.

In this paper, we treat the problem of a general transparent birefringent mask placed in the pupil
of an aplanatic high-NA focusing system. We derive the spatial variation of the mask for which
a uniformly polarized incident beam is optimally converted into a high-NA bottle field. While
such a mask could be fabricated using dielectric metasurfaces [28, 29], we show that the optimal
distribution very nearly corresponds to the simple combination of an SEO window followed by
a half-wave plate. Preliminary experimental results are presented demonstrating the ability of
this practical system to efficiently generate a bottle field without the need for interferometric
superposition of different components.

2. System layout and notation

Consider the optical system shown in Fig. 1, in which a collimated monochromatic light source
with uniform polarization is focused by an aplanatic lens with focal length f and numerical
aperture NA. A thin, transparent birefringent mask (BM) is placed at the back focal (pupil)
plane of the system. The radial coordinate in the pupil plane maps onto the focusing angle η
after the lens as u = sin η. The azimuthal pupil coordinate is denoted by φ, so that the spatial
frequencies over the pupil may be represented using the two-dimensional vector u = (ux, uy),
which corresponds to the transverse part of the three-dimensional unit direction vector after
the lens ®u = (ux, uy, uz) = (u cos φ, u sin φ, (1 − u2)1/2). The lens is assumed to be in air, so that
u ∈ [0,NA]. The results presented in later sections can be modified for an immersed imaging
system by changing the limits of integration to [0,NA/n], where n is the refractive index of the
immersion medium.

f

η
z

y

x

f

Fig. 1. Schematic of system layout for bottle field generation, in which a thin birefringent
mask is placed in the pupil plane of an aplanatic lens. The coordinate in the pupil plane is
specified in terms of the focus angle η.

The focusing lens produces a field distribution over the spatial coordinate ®r = (x, y, z). For a
bottle field, the intensity must vanish at ®r = ®0, the focal point of the lens. The polarization effect
of the lens is assumed to be a rotation of the electric field at each point about the direction of
the radial pupil coordinate [30]. The lateral incident field E(u) is transformed into a focused
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field ®E(®r) containing both lateral and longitudinal components. The matrix that maps the pupil
coordinate to the directional variables after the lens is given by [31]

Mlens =
√

cos η


sin2 φ + cos2 φ cos η sin φ cos φ(cos η − 1)
sin φ cos φ(cos η − 1) sin2 φ cos η + cos2 φ
− cos φ sin η − sin φ sin η

 . (1)

3. General birefringent mask

The Jones matrix of a general spatially-variant, transparent, thin BM can be written as

J(u) = exp[iΓ(u)]
{
exp[iδ(u)]p1(u) ⊗ p∗1(u) + exp[−iδ(u)]p2(u) ⊗ p∗2(u)

}
, (2)

where p1,2(u) are the two eigenpolarizations at each point of the BM, δ(u) is half the phase
mismatch between these eigenpolarizations, Γ(u) is a global phase function, and ⊗ indicates
an outer product. The fact that the mask is transparent means that this Jones matrix is unitary
(that is, Γ and δ are real and the eigenpolarizations pj are orthonormal); the fact that the mask
is “thin” means that at the pupil plane its effect is local. Up to an arbitrary global phase, the
eigenpolarizations of J may be written in the form

p1(u) =
[

cos(Φ/2) − sin(Φ/2)
sin(Φ/2) cos(Φ/2)

] [
cos(Θ/2)
i sin(Θ/2)

]
, p2(u) =

[
0 −1
1 0

]
· p∗1(u), (3)

where the functions Θ(u) ∈ [−π/2, π/2] and Φ(u) ∈ [0, 2π] are the latitude and longitude angles
of p1(u) over the Poincaré sphere. Substituting into Eq. (2), the Jones matrix then becomes

J(u) =
[

cos δ + i sin δ cosΘ cosΦ sin δ(sinΘ + i cosΘ sinΦ)
sin δ(− sinΘ + i cosΘ sinΦ) cos δ − i sin δ cosΘ cosΦ

]
exp(iΓ). (4)

For the special case of an SEO window with trifold symmetric stress, the retardance depends
only on the radial pupil coordinate according to δ(u) = bu, where the stress coefficient b is
proportional to the applied force [21, 27]. Because the birefringence results from stress, the
eigenpolarizations at all points are linear (thus Θ = 0), and the principal stress direction rotates
such that Φ = φ. A half-wave plate can be inserted after the stressed window to reverse the
direction of rotation to Φ = −φ.

4. Bottle field properties

In Sections 5 through 7 we find the optimal spatial variation of the BM that produces a bottle
field with the sharpest possible intensity null. First we must establish the necessary quantities to
optimize over, namely: (i) some measure for the width of the bottle, and (ii) the conditions under
which the intensity vanishes at the focal point.

4.1. Focused intensity distribution

The focused field is the Fourier transform of the pupil distribution, so the normalized intensity is
given by [31]

I(®r) = 1
(πk)2

∫ A(u)Mlens · J(u) · E0 exp
[
ik(®u · ®r)

]
d2u

2
, (5)

where k = 2π/λ is the wavenumber, A(u) is an envelope function accounting for the shape
of the incident beam and the aperture (assumed to have rotational symmetry), E0 is the
polarization of the incident field, and ‖®v‖ denotes the Euclidean norm of a vector ®v. (Recall that
®u · ®r = ux x + uy y + uz z.) The normalization factor of (πk)−2 in this expression has been chosen
for computational convenience. Without loss of generality, we may assume a right circularly
polarized input field E0 = (1,−i)/

√
2, since any other polarization could be converted into this

one using a wave plate, whose effect can be absorbed into the BM.
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4.2. Second derivatives of intensity

To achieve the maximum transverse and longitudinal sharpness of the null in intensity, we must
maximize the second derivatives Ixi xi evaluated at the origin, which are inversely proportional to
the squared widths of the bottle in each dimension xi . Starting from Eq. (5), we find that

Ixi xi
��
®r=®0 =

2
π2

∫ AMlens · J · E0 uxi d
2u

2
. (6)

The oscillations of the global phase factor exp(iΓ) contained within J will result in cancellations
between the contributions to this integral from different parts of the pupil. Therefore, the second
derivatives are as large as possible when Γ = 0. Also, in practice it is difficult to fabricate an
element with varying Θ(u) since most real-world devices have linear eigenpolarizations. For this
reason, we restrict our optimization to birefringent masks with Θ = 0. Moreover, we strongly
suspect that Θ = 0 is in fact the optimal solution. Under these simplifications,

Mlens · J · E0 =
√

cos η


cos δ[cos η cos φ + i sin φ]e−iφ + i sin δ[cos η cos φ − i sin φ]ei(φ−Φ)

cos δ[cos η sin φ − i cos φ]e−iφ + i sin δ[cos η sin φ + i cos φ]ei(φ−Φ)

− sin η
[
cos δ e−iφ + i sin δ ei(φ−Φ)]

 .
(7)

In order to avoid a discontinuity at the origin and match the periodic boundary condition on
Φ(u), we assume that δ(u) only depends on the radial pupil coordinate and that

Φ = mφ, (8)

where m is an integer. (Note that m = −2q, where q is the topological charge of the pattern of
eigenpolarization orientations of the mask.) In the paraxial limit, a bottle field can readily be
produced for m = ±1. In the nonparaxial case, however, the effects of orbital and spin angular
momentum counteract each other only when m = −1 [32, 33]. Otherwise, the bottle becomes
filled with light due to constructive interference between the various contributions over the pupil
to the longitudinal component of the field. While it is possible to derive conditions guaranteeing
a null in intensity for m , −1, these conditions would be difficult to satisfy and would come
at the cost of broadening the spatial extent of the focused field. In the derivation that follows
we assume that Φ = −φ, and we optimize the remaining function δ(u) to produce a bottle field
whose minimum in intensity is as narrowly distributed as possible. For a brief discussion of the
results obtained for general m, refer to Appendix A.

Substituting Eqs. (7) and (8) into Eq. (6) and integrating over φ ∈ [0, 2π], the second derivatives
of intensity become

Ixx = Iyy = 2


∫ NA

0
A


1
2ξ211 sin δ
1
2ξ211 sin δ
ξ310 cos δ

du


2

, Izz = 2


∫ NA

0
A


ξ131 cos δ
ξ131 cos δ

0

du


2

, (9)

where ξnm` = un(1 − u2)m/4(1 +
√

1 − u2 )` . Introducing the notation

αnm`,c =

∫ NA

0
Aξnm` cos δdu, αnm`,s =

∫ NA

0
Aξnm` sin δdu, (10)

this result may be restated as

Ixx = Iyy = α2
211,s + 2α2

310,c , (11a)

Izz = 4α2
131,c . (11b)

                                                                                        Vol. 25, No. 8 | 17 Apr 2017 | OPTICS EXPRESS 9322 



4.3. Bottle beam constraint

The intensity at the focal point can be calculated by substituting Eqs. (7) and (8) into Eq. (5) and
integrating over φ. This leads to the following requirement for a bottle field:

I(®0) = 1
k2


∫ NA

0
A


ξ111 cos δ
ξ111 cos δ

0

du


2

=
2
k2α

2
111,c = 0. (12)

5. Functional form of optimal BM retardance distribution

For the optimization problem one can consider various combinations of Ixx , Iyy , and Izz as a
measure of the localization of the bottle field. In Sections 6.1 through 6.4 we will propose four
different merit functions M1 through M4 and solve for the conditions under which each Mj attains
its minimum value. Using the method of Lagrange multipliers, the retardance distribution δj(u)
that minimizes each merit function Mj is found by solving the system of equations

∂

∂δ
Mj = Λ

∂

∂δ
α111,c, (13a)

α111,c = 0, (13b)

where the Lagrange multiplier Λ is an arbitrary constant and ∂/∂δ denotes a functional derivative
with respect to δ. In Section 6, we will find that each optimal solution takes the form

δj(u) = arctan
(

ξ101
cjξ001 + djξ200 + e jξ021

)
= arctan

(
u(1 +

√
1 − u2 )

cj(1 +
√

1 − u2 ) + dju2 + e j
√

1 − u2(1 +
√

1 − u2 )

)
, (14)

where cj , dj , and e j are constants. Substituting u2 = [1 + (1 − u2)1/2][1 − (1 − u2)1/2] in the dj

term, this simplifies to

δj(u) = arctan
(

u

gj + h j

√
1 − u2

)
, (15)

where the new constants gj and h j are mutually determined by Eqs. (13a) and (13b). The
function δj(u) can be interpreted as the angle traced by the upper half of the elliptic curve
{gj + h j(1 − u2)1/2, u} over the interval u ∈ [0,NA], as illustrated in Fig. 2. In order to avoid
singular behavior of the BM at the center of the pupil, we need δ(0) = 0 and δ′(0) , 0. The
former of these two constraints requires that gj + h j > 0, while the latter is satisfied as long
as gj + h j , 0. Although the constants gj and h j depend on A(u), the functional form of the
optimal solution is invariant to the shape of the input beam and aperture. If A(u) can be measured
experimentally, then the solution can be tailored to compensate for radial nonuniformities in the
beam profile.

6. Lagrange multiplier constraints for optimal retardance

In this section we evaluate Eq. (13a) for each merit function Mj and simplify the result to obtain
a constraint on the coefficients gj and h j . In these calculations we make use of the functional
derivatives

∂

∂δ
αnm`,c = −Aξnm` sin δ,

∂

∂δ
αnm`,s = Aξnm` cos δ. (16)
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Fig. 2. Illustration of the geometrical meaning of δj (u). Dashed lines are drawn to indicate a
sample point u0 on the elliptic curve (left) and the corresponding point on the retardance
distribution (right).

6.1. Merit function #1: Laplacian of intensity

Let us first minimize the merit function M1 = 1/(Ixx + Iyy + Izz)1/2. To simplify the calculation,
we solve the equivalent problem of maximizing 1/M2

1 , which is the Laplacian of the intensity
at the focal point of the bottle field. Using the Lagrange multiplier method, the condition for
optimality is

∂

∂δ

[
Ixx + Iyy + Izz

]
= Λ

∂

∂δ
α111,c. (17)

Applying the results of the previous sections, this becomes

4A
[
ξ211α211,s cos δ − 2(ξ310α310,c + ξ131α131,c) sin δ

]
= −ΛAξ111α111,c sin δ. (18)

Upon simplification, the solution for δ1 takes the form of Eq. (15), subject to the constraints
shown in the first row of Table 1.

6.2. Merit function #2: characteristic length

We next consider the merit function M2 = (1/Ixx + 1/Iyy + 1/Izz)1/2, which represents the
length along the diagonal of a box “containing” the bottle. This quantity is referred to as
the characteristic length. For the sake of simplicity we minimize M2

2 , which is equivalent to
minimizing M2. Substituting into Eq. (13a) and applying the chain rule,

−
2 ∂
∂δ Ixx
I2
xx

−
∂
∂δ Izz
I2
zz

= Λ
∂

∂δ
α111,c (19)

since Ixx = Iyy . Applying the results of the previous sections, this becomes

2
[
2α211,s Aξ211 cos δ − 4α310,c Aξ310 sin δ

]
(α2

211,s + 2α2
310,c)2

− 2α131,c Aξ131 sin δ
α4

131,c
= −ΛAξ111 sin δ. (20)

Upon simplification, the solution for δ2 takes the form of Eq. (15), subject to the constraints
shown in the second row of Table 1.

6.3. Merit function #3: volume of bottle

Next we consider the merit function M3 = 1/(Ixx Iyy Izz)1/2, which is proportional to the width
of the intensity profile in each dimension, thus representing in some sense the “volume” of the
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bottle. We will solve the equivalent problem of maximizing 1/M2
3 . Substituting into Eq. (13a),

the condition for optimality is

2Ixx Izz
∂

∂δ
Ixx + I2

xx

∂

∂δ
Izz = Λ

∂

∂δ
α111,c (21)

since Ixx = Iyy . Applying the results of the previous sections, this becomes

α131,c
(
2α211,s Aξ211 cos δ − 4α310,c Aξ310 sin δ

)
− (α2

211,s + 2α2
310,c)Aξ131 sin δ = −ΛAξ111 sin δ,

(22)
where a factor of [8α131,cI2

xx]−1 has been absorbed into the arbitrary constant Λ. Upon simplifica-
tion, the solution for δ3 takes the form of Eq. (15), subject to the constraints shown in the third
row of Table 1.

6.4. Merit function #4: cross-sectional area

Lastly, we consider the merit function M4 = 1/(Ixx Izz)1/2, which is proportional to the cross-
sectional area of the bottle in the x-z plane. In contrast to M3, this merit function places equal
emphasis on the transverse and longitudinal derivatives. Substitution of 1/M2

4 into Eq. (13a)
yields the condition

Izz
∂

∂δ
Ixx + Ixx

∂

∂δ
Izz = Λ

∂

∂δ
α111,c. (23)

The remainder of the derivation proceeds similarly to the previous case, leading to a solution for
δ4 of the form of Eq. (15), subject to the constraints shown in the final row of Table 1.

j M j Constraint 1 Constraint 2

1
[

1
Ixx + Iyy + Izz

]1/2
α111,c = 0 h1 =

2(α131,c − α310,c)
α211,s

2
[

1
Ixx
+

1
Iyy
+

1
Izz

]1/2
α111,c = 0 h2 =

(α2
211,s + 2α2

310,c)
2

8α211,sα
3
131,c

− 2α310,c

α211,s

3
[

1
Ixx Iyy Izz

]1/2
α111,c = 0 h3 =

α2
211,s + 2α2

310,c

2α211,sα131,c
− 2α310,c

α211,s

4
[

1
Ixx Izz

]1/2
α111,c = 0 h4 =

α2
211,s + 2α2

310,c

α211,sα131,c
− 2α310,c

α211,s

Table 1. Constraints for optimality of each merit function.

7. Numerical solutions

For each merit function, we now have a pair of constraints determining the coefficients gj and
h j that minimize Mj . The solutions for gj and h j can be found by numerically solving each set
of constraints over a discrete set of NA values. A second solution with identical performance
can then be found by flipping the signs of both gj and h j . With respect to the geometrical
interpretation (recall Fig. 2), this amounts to a reflection of the elliptic curve over the vertical
axis. To ensure that δ(0) = 0, we select the solution for which gj + h j > 0. The results obtained
for each merit function are plotted as a function of NA in Fig. 3(a), assuming a uniform envelope
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Fig. 3. Numerical solutions for (a) each pair of optimized coefficients gj and h j and (b) the
lowest-order stress parameter b0 required to produce a bottle field.

function A(u) = 1. The solutions do not change significantly if A(u) is instead assumed to be, say,
a Gaussian envelope.

For comparison, recall that the retardance distribution of an SEO window is a linear function
δL(u) = bu, and that the azimuthal angle when used in combination with a half-wave plate is
Φ = −φ. In this case, the bottle field constraint given in Eq. (12) becomes∫ NA

0
A(u)u(1 − u2)1/4

(
1 +
√

1 − u2
)

cos(bu) du = 0. (24)

Since the integrand contains a periodic function, this equation has infinitely many solutions for
the stress parameter b. The smallest solution b0 is most practical to fabricate (since it requires
the least applied force) and produces the best results when used to generate a bottle field. The
numerical solution for b0 (assuming A(u) = 1) is plotted as a function of NA in Fig. 3(b).
The optimized retardance distributions δ1(u) through δ4(u) and the linear solution δL(u) are

plotted in Fig. 4 for six different NA values. Note that merit function M1 is minimized by the
spatially uniform retardance distribution δ1(u) = π/2, which could be produced by a q-plate with
half-wave retardance and topological charge q = 1/2 [34]. As the NA approaches 1, the other
optimized solutions δ2, δ3, δ4 each become increasingly similar to δL.
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Fig. 4. Comparison of optimized and linear retardance distributions for generating a bottle
field, shown for six different NA values as indicated on the plots. From top to bottom at the
right edge of each plot, the curves appear in the following order: δ2, δ4, δ3, δL, δ1.
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8. Evaluation of numerical solutions

The solutions found in the previous section are now evaluated in terms of the transverse and
longitudinal widths of the bottle fields that they produce, which are inversely proportional to the
second derivatives of intensity:

σxi ∝
1√

Ixi xi
. (25)

As shown in Appendix B, for small numerical apertures Ixx ∝ NA6 and Izz ∝ NA8. This implies
that in the paraxial limit σz � σx , as one would expect. The transverse and longitudinal widths
of the bottle field (normalized according their respective NA dependences) are shown in Fig. 5.
The ratio σz/σx becomes closer to unity as the NA increases, as seen in Fig. 6. At NA = 1, the
solution δ2 produces the best balance between the widths in each dimension, with σz/σx = 1.596.
In comparison, the linear solution produces σz/σx = 2.616. Again, these results assume a
uniform envelope function A(u) = 1. If a Gaussian envelope A(u) = exp(−u2) is used instead, the
width of the bottle in each dimension increases by 23% for δL and by up to 30% for δ1 through δ4
in the worst-case scenario (NA = 1).
The performance of each solution can be visualized by plotting the cross-section of the

theoretical intensity distribution in the x-z plane. The intensity profiles produced by each
retardance distribution are shown in Fig. 7. These plots were simulated under the simplistic
assumption that the distribution of the stressed window at the pupil gets directly mapped onto the
NA disk, without any aberrations or Fresnel coefficients. Note the slight asymmetry between
the upper and lower halves, due to a slight trigonal deviation from rotational symmetry of the
intensity profile. In the case of δ1, the uniform retardance distribution simply writes a vortex
through spin-orbit interaction, with zero intensity along the entire z-axis. This shows that a q-plate
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Fig. 5. Logarithm of the transverse (left) and longitudinal (right) widths of the bottle fields
generated by each solution, normalized by factors of NA3 and NA4, respectively. The
longitudinal width of the beam produced by δ1 is not shown because it is infinite.
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solution. The ratio for δ1 is not shown because it is infinite.
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Fig. 7. Simulated cross-sections over the x-z plane of the focused intensity distributions
generated by each solution. The results obtained using the optimized solutions δ1 through δ4
(a-p) and the linear solution δL (q-t) are each shown for four different numerical apertures.
The solid green curves show the intensity profiles in the x (vertical) and z (horizontal)
dimensions. The dashed yellow circle is added for scale, with a radius of one wavelength.
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with δ = π/2 and q = 1/2, which has previously been used for vortex beam generation [35],
produces the optimal vortex with the sharpest possible null at its center. However, it also implies
that merit function M1 is not really appropriate for qualifying bottle fields since the longitudinal
confinement can be sacrificed completely in favor of the transverse one. The remaining solutions
δ2, δ3, δ4, and δL all produce bottles with similar appearances, although some subtle differences
can be noted. For instance, the intensity lobes along the longitudinal axis are slightly dimmer for
δL than for δ2 and δ4. Nevertheless, these results demonstrate that a stressed window can be used
to generate a bottle field with nearly optimal sharpness.

9. Experimental results

The generation of a bottle field using an SEO window was achieved experimentally using the
system shown in Fig. 8. A linear polarizer and quarter-wave plate were used to create a circularly
polarized input state. After passing through the SEO and a half-wave plate, the field was focused
by a lens with a focal length of 100 mm. An input beam diameter of 3 mm was used, resulting
in an effective NA of 0.015. This low numerical aperture was required in order to create a
bottle field with a large enough transverse cross-section (50 µm in diameter) to be resolved
by a CMOS camera (5 µm pixel size). To characterize a high-NA bottle field focus, one could
raster-scan a nanoparticle through the laser focus and detect the scattered intensity for every
particle position. Similarly, a quantum emitter, such as a quantum dot or a fluorescent molecule,
could be raster-scanned and the emitted fluorescence detected. These experiments are in the
works and will be published elsewhere. Note that for the low-NA measurement discussed here, it
is not necessary to insert a half-wave plate after the stressed window since in the paraxial limit
the longitudinal component of the field vanishes at focus for both Φ = ±φ. For higher numerical
apertures, however, the half-wave plate is strictly necessary.
The through focus transverse intensity distribution of the experimental bottle field is shown

in Fig. 9. Since the interior width of the bottle is comparable to the pixel size of the sensor,
an absolute null could not be measured. However, a local minimum in intensity was observed
at focus, with a ratio of 0.43 measured between the intensity at the central pixel and the peak
intensity of the surrounding lobes. This demonstrates in principle that the combination of an
SEO window and a half-wave plate can be used to generate a bottle field.

Laser LP λ /4 SEO
window f = 100 mm CMOS

sensorλ /2

Fig. 8. Schematic of experimental setup for bottle field generation. (LP = linear polarizer,
λ/4 = quarter-wave plate, λ/2 = half-wave plate.)

~ 2 cm

Fig. 9. Evolution through focus of the optical bottle beam’s transverse intensity profile over
a 2 cm distance along the propagation axis. The intensity distribution at focus has a diameter
of 50 µm, matching simulations.
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10. Concluding remarks

In summary, we have derived the optimal spatial variation of a birefringent mask for generation
of a tightly distributed optical bottle field using a high-NA focusing lens. We showed that a
practical real-world device, the stress engineered optical element, is theoretically capable of
producing a near-optimal bottle field when used in this configuration. The current experimental
results verify that an SEO window can be used to generate a focused field with a local minimum
of intensity on-axis. However, at low numerical apertures the resulting intensity distribution
along the propagation axis has a far greater extent than what is required in optical trapping and
microscopy applications. The experimental implementation of a high-NA system comes with
the added challenges of compensating for aberrations and angle-dependent polarization effects.
If these factors can be accommodated for, the SEO element has the potential to become an
efficient and reliable mechanism for bottle field generation that avoids the need of splitting and
recombining the input beam.

Appendix

A. Results for m , −1

In Sections 4 through 6 we optimized the retardance distribution of the BM under the assumption
that Φ = mφ with m = −1. Here we reproduce the main results of Section 4 for general m, an
exercise which provides additional insight as to why m = −1 is the optimal choice. We also state
the form of the solutions obtained for m = 3, which are very similar to the m = −1 case.

A.1. Second derivatives of intensity

Similarly to Section 4.2, the second derivatives of intensity are obtained by substituting Eqs. (7)
and (8) into Eq. (6) and integrating over φ. For m = 1, this leads to

Ixx = 2


∫ NA

0
A


ξ230 sin δ
ξ210 sin δ
ξ310 cos δ

du


2

, (26a)

Iyy = 2


∫ NA

0
A


ξ210 sin δ
ξ230 sin δ
ξ310 cos δ

du


2

, (26b)

Izz = 2


∫ NA

0
A


ξ131 cos δ
ξ131 cos δ
2ξ230 sin δ

du


2

, (26c)

where ξnm` = un(1 − u2)m/4(1 +
√

1 − u2 )` as defined in Section 4.2. For all other integers
m , −1,

Ixx = Iyy = 2


∫ NA

0
A


1
2∆3mξ̄211 sin δ
1
2∆3mξ̄211 sin δ

ξ310[cos δ + i(∆0m + ∆2m) sin δ]

du


2

, (27a)

Izz = 2


∫ NA

0
A


ξ131 cos δ − i(∆2mξ̄131 − ∆0mξ131) sin δ
ξ131 cos δ − i(∆2mξ̄131 + ∆0mξ131) sin δ

0

du


2

, (27b)
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where ξ̄nm` = un(1 − u2)m/4(1 −
√

1 − u2 )` and ∆i j is the Kronecker delta, equal to unity when
i = j and zero otherwise. Note that with the exception of the m = 1 and m = 3 cases, the first
two vector components contributing to Ixx and Iyy vanish, i.e., the transverse derivatives consist
solely of higher-order contributions from the z-component of the field. This results in a field with
a very large spatial extent, which is undesirable. For reasons discussed below, the field is also
widely distributed when m = 1. In the remaining m = 3 case, the second derivatives given in
Eq. (27) become

Ixx = Iyy = ᾱ2
211,s + α

2
310,c , (28a)

Izz = 4α2
131,c , (28b)

where αnm`,c is defined in Eq. (10) and

ᾱnm`,s =

∫ NA

0
Aξ̄nm` sin δdu. (29)

A.2. Bottle beam constraint

As in Section 4.3, the intensity at the focal point can be calculated by substituting Eqs. (7) and
(8) into Eq. (5) and integrating over φ. Repeating this process for general m, we find that for a
bottle field

I(®0) = 1
k2


∫ NA

0
A


ξ111 cos δ − i(∆2mξ̄111 − ∆0mξ111) sin δ
ξ111 cos δ − i(∆2mξ̄111 + ∆0mξ111) sin δ

2∆1mξ210 sin δ

du


2

= 0. (30)

For the m = 3 case, this reduces to the condition α111,c = 0, which is identical to the constraint
for m = −1. For the m = 1 case, an additional constraint α210,s = 0 is necessary to ensure that the
longitudinal component of the field vanishes at the focal point. However, this leads to a wider
intensity distribution since the transverse derivatives given in Eqs. (26a) and (26b) each contain
an α210,s term. This suggests that among all cases where m , −1, the best performance can be
achieved using m = 3.

A.3. Functional form of optimal solution and constraints for m = 3
The optimization of δ(u) for the m = 3 case is very similar to Section 6. The solution obtained
for each merit function takes the form

δj(u) = arctan
(

ξ̄101
cjξ001 + djξ200 + e jξ021

)
= arctan

(
u(1 −

√
1 − u2 )

cj(1 +
√

1 − u2 ) + dju2 + e j
√

1 − u2(1 +
√

1 − u2 )

)
, (31)

where the constants cj , dj , and e j are mutually determined by the constraints shown in Table
2. Note that in this case the transverse second derivatives consist of an integral with numerator
1 − (1 − u2)1/2, whereas in the m = −1 case the integral depends on 1 + (1 − u2)1/2. These
quantities can be interpreted as the volumes beneath the southern and northern hemispheres,
respectively, of a unit sphere sitting on a plane. Therefore, the m = −1 case can be expected to
yield larger second derivatives of intensity and consequently the narrowest possible bottle field.

                                                                                        Vol. 25, No. 8 | 17 Apr 2017 | OPTICS EXPRESS 9331 



j M j Constraint 1 Constraint 2 Constraint 3

1
[

1
Ixx + Iyy + Izz

]1/2
α111,c = 0 d1 =

2α310,c

ᾱ211,s
e1 =

2α131,c

ᾱ211,s

2
[

1
Ixx
+

1
Iyy
+

1
Izz

]1/2
α111,c = 0 d2 =

2α310,c

ᾱ211,s
e2 =

(ᾱ2
211,s + 2α2

310,c)
2

8ᾱ211,sα
3
131,c

3
[

1
Ixx Iyy Izz

]1/2
α111,c = 0 d3 =

2α310,c

ᾱ211,s
e3 =

ᾱ2
211,s + 2α2

310,c

2ᾱ211,sα131,c

4
[

1
Ixx Izz

]1/2
α111,c = 0 d4 =

2α310,c

ᾱ211,s
e4 =

ᾱ2
211,s + 2α2

310,c

ᾱ211,sα131,c

Table 2. Constraints for optimality of each merit function for the m = 3 case.

B. NA dependence of second derivatives of intensity in the paraxial limit

The Taylor series expansions

ξ111 = 2u + O(u3), (32a)

ξ310 = u3 + O(u5), (32b)

ξ131 = 2u − 2u3 + O(u5), (32c)

ξ211 = 2u2 + O(u4) (32d)

lead to the paraxial approximations

α111,c ≈
∫ NA

0 2u cos δdu, (33a)

α310,c ≈
∫ NA

0 u3 cos δdu, (33b)

α131,c ≈
∫ NA

0 (2u − 2u3) cos δdu, (33c)

α211,s ≈
∫ NA

0 2u2 sin δdu. (33d)

Since a bottle field is subject to the constraint α111,c = 0, the first-order component of α131,c
vanishes. Therefore, α310,c and α131,c are each proportional to NA4, and α211,s is proportional to
NA3. ForNA�1, the transverse derivatives given in Eq. (11) are dominated by theNA6-dependent
α2

211,s term, while the longitudinal derivative inherits the NA8 dependence of α2
131,c.
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