
Diss. ETH No. 24720

Towards an Accountable and
Private Internet

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

TAE-HO LEE

Master of Science in Electrical Engineering,
Stanford University

born on 24.02.1986

citizen of South Korea

accepted on the recommendation of

Prof. Dr. Adrian Perrig
Prof. Dr. Heejo Lee, co-examiner

Prof. Dr. Timothy Roscoe, co-examiner
Prof. Dr. Peter Steenkiste, co-examiner

2017

Abstract

Today’s Internet fails to provide either source accountability or privacy;
packets on the Internet cannot be attributed to their source, and commu-
nications on the Internet cannot be kept private. Furthermore, even if the
Internet can be modified to support the two properties, simultaneously
providing both is difficult because they are conflicting. Hence, most fu-
ture Internet architecture (FIA) proposals have focused on one property at
the expense of the other.

This dissertation explores an FIA that balances between source account-
ability and privacy. To this end, we investigate a trust model that can bal-
ance the two properties. Then, based on the trust model, we design a data
plane that balances the properties and satisfies today’s packet forwarding
requirements. Lastly, we explore how to deploy such FIAs.

Logically, this dissertation is organized into two parts: the first part
explores the design of an FIA that balances between source accountabil-
ity and privacy, and the second part explores deployment strategies for
such an FIA. The first part makes the following three contributions. First,
we propose the Accountable and Private Network Architecture (APNA) that
guarantees source accountability while preserving the privacy of the users.
Second, we strengthen the privacy guarantees of APNA. To this end, we
define a new concept, flow-packet unlinkability—preventing an adversary
from linking packets to flows. Then, we extend APNA to achieve flow-
packet unlinkability. Lastly, we improve the source accountability guaran-
tees by eliminating vulnerabilities introduced by replayed packets. Specif-
ically, we first propose an attack that can be launched by simply replay-
ing packets using compromised routers. Then, we describe an in-network
packet replay suppression mechanism to mitigate such attacks.

The second part of the dissertation explores two different approaches
to deploy FIAs—integrated and overlay approaches. The overlay approach
deploys the FIA itself by constructing an overlay over today’s Internet. In
contrast, the integrated approach deploys the FIA by integrating its main
ideas into today’s Internet; the FIA itself does not need to be deployed. This
approach uses the FIA research as a means to explore new and innovative
ideas without confining oneself to the rigidity of today’s Internet. Then,
these new ideas are realized on today’s Internet using well-established

ii

technologies. As an example, we take the key ideas of APNA and realize
them on today’s Internet to enhance privacy.

Zusammenfassung

Das heutige Internet unterstützt weder Rechenschaftspflicht noch Privat-
sphäre von Sendern. Über das Internet versandet Pakete können nicht mit
Bestimmtheit ihren Sendern zugeordnet werden und die Vertraulichkeit
von Kommunikationen über das Internet kann nicht gewährleistet werden.
Selbst wenn man Änderungen an der Architektur des Internets vornehmen
könnte, macht die Gegensätzlichkeit dieser Eigenschaften es schwierig bei-
de gleichzeitig zu unterstützen. Aus diesem Grund richten die meisten Vor-
schläge einer “Future Internet” Architektur (FIA) ihre Aufmerksamkeit auf
eine dieser beiden Eigenschaften.

Diese Dissertation untersucht eine FIA, die zwischen Rechenschafts-
pflicht und Privatsphäre von Sendern abwägt. Zu diesem Zweck erforschen
wir ein Vertrauensmodell, das ein Gleichgewicht zwischen diesen sich wi-
dersprechenden Eigenschaften schafft. Basierend auf diesem Modell ent-
werfen wir eine Datenbeförderungsinfrastruktur, die diese Eigenschaften
erreicht und die Anforderungen heutiger Paketweiterleitung erfüllt. Aus-
serdem erforschen wir, wie eine solche FIA in der Praxis umgesetzt werden
kann.

Diese Dissertation besteht aus zwei Teilen: der erste Teil untersucht das
Design einer FIA, die zwischen Rechenschaftspflicht und Privatsphäre von
Sendern abwägen kann; der zweite Teil richtet sich auf Einsatzstrategien
einer solchen FIA.

Im ersten Teil leisten wir die folgenden drei Beiträge. Zuerst schlagen
wir die Accountable and Private Network Architecture (APNA) vor, die
Rechenschaftspflicht von Sendern ermöglicht und gleichzeitig die Privat-
sphäre der Nutzer schützt. Im zweiten Beitrag erweitern wir APNA und
stärken die Privatsphäre-Garantien, welche durch APNA ermöglicht wer-
den. Dazu definieren wir ein neues Konzept, welches die Zuordung von
Datenpaketen, die über eine Netzwerkverbindung versandt wurden, durch
einen Gegner erschwert. Zudem beschreiben wir einen Angriff der durch
wiederholtes Senden von Paketen ermöglicht wird und mit geringem Auf-
wand von einem infizierten Router ausgeführt werden kann. Als Gegen-
massnahme präsentieren wir einen Netzwerk-basierten Mechanismus für
die Unterdrückung von wiederholt eingespielten Paketen und verbessern
dadurch die Rechenschaftspflicht von Sendern.

iv

Der zweite Teil der Dissertation untersucht zwei verschiedene Ansätze,
die den Einsatz von FIAs in Realität zu ermöglichen: einen Integrations-
ansatz und einen Overlay-Ansatz. Der Overlay-Ansatz realisiert eine FIA
durch die Errichtung eines Overlay-Netzwerkes durch Überlagerung des
heutigen Internet. Der Integrationsansatz untersucht die Integration der
Hauptkonzepte einer FIA in das heutige Internet. In letzterem Fall wird
die FIA nicht direkt umgesetzt, sondern dient zur Erkundung von neuen,
innovativen Ideen, welche durch die Starrheit der heutigen Internet Archi-
tektur beeinträchtigt werden. Zu einem späteren Zeitpunkt werden diese
Ideen durch den Einsatz bekannter Technologien im Internet realisiert. Als
Beispiel beschreiben wir die Umsetzung von APNAs Grundkonzepten im
heutigen Internet.

Acknowledgments

This thesis was made possible by support from my advisor, colleagues,
friends, and family who provided invaluable guidance, advice, and encour-
agement.

I would like to express my deepest gratitude to my advisor, Prof. Adrian
Perrig, for his support and continuous guidance during my studies. He
provided me with motivation and a push to achieve more that helped me
develop as a researcher.

I would also like to thank Prof. Heejo Lee, Prof. Timothy Roscoe, and
Prof. Peter Steenkiste for being on my doctoral committee and dedicating
time to read and help improve this thesis.

I would also like to thank my collaborators and colleagues from the
Network Security Group. Foremost, I would like to thank Chris Pappas
who I have worked very closely during my entire study; I will never for-
get all experiences, both from work and travel, that we shared throughout
our studies. I also would like to thank Dr. Pawel Szalachowski; this thesis
and related publications would not have been possible without our count-
less meetings and discussions. I also thank my close friends Jun Han, Yao
Zhang, and Daniele Asoni who helped me get through difficult periods in
this long journey. Last but not least, I would like to thank other past and
present members of the group: Dr. David Barrera, Cristina Basescu, Chen
Chen, Laurent Chuat, Sam Hitz, Tobias Klausmann, Dr. Jonghoon Kwon,
Dr. Qi Li, Steve Matsumoto, Dr. Raphael Reischuk, Benjamin Rothenberger,
Takayuki Sasaki, Kathi Schuppli, Stephen Shirley, Jean-Pierre Smith, and
Ercan Ucan.

Many thanks go to the colleagues at Electronic Telecommunications
Research Institute (ETRI) in South Korea. I would like to thank Dr. Woo-
jik Chun and Dr. Heeyoung Jung who planted the seed for my research by
providing me with the opportunity to work on Future Internet Architecture
(FIA) research and intuitions about the Internet architecture through nu-
merous discussions. I would also like to thank Dr. Byungok Kwak, Dr. Pyung-
koo Park for making my stay in ETRI enjoyable.

Finally, I would like to thank my family for all the love and support
they have given me throughout this long journey. I was only able to make

viii

it to the end because of their encouragement and support, and this work
is dedicated to them.

Contents

1 Introduction . 1
1.1 A Vision for a Better Internet . 2
1.2 Approach . 3
1.3 Overview . 4
1.4 Summary of Contributions . 11
1.5 Related Publications . 11

2 Source Accountability with Domain-brokered Privacy 15
2.1 Problem Definition . 17
2.2 APNA Overview . 19
2.3 APNA Protocol Details . 23
2.4 User-Defined Privacy . 33
2.5 Implementation & Evaluation . 34
2.6 Security Analysis . 39
2.7 Practical Considerations . 41
2.8 Integration with SCION . 44
2.9 Discussion . 48

3 Communication Based on Per-Packet One-Time Addresses 55
3.1 Problem Setup . 56
3.2 Overview . 58
3.3 Protocol Design . 62
3.4 Implementation . 72
3.5 Evaluation . 74
3.6 Caveat . 79

4 The Case for In-Network Replay Suppression 81
4.1 Router-Reflection Attack . 83
4.2 Challenges for In-Network Replay Suppression 94
4.3 In-Network Replay Suppression 97
4.4 Software Prototype . 106
4.5 Security Considerations . 110
4.6 Discussion . 112

5 Deployment Strategies . 115
5.1 Overlay Approach . 117
5.2 Integrated Approach . 120

xii Contents

6 Related Work . 139
6.1 Balancing Source Accountability and Privacy 139
6.2 Source Accountability . 140
6.3 Communication Privacy . 144
6.4 Incremental Deployment for FIAs 148

7 Conclusion and Future Work . 153
7.1 Future Work . 155

Bibliography . 161
Curriculum Vitae . 179

List of Figures

1.1 Thesis structure. 3

2.1 An end-to-end communication example. 22
2.2 Procedure for host bootstrapping. 26
2.3 Procedure for EphID issuance. 27
2.4 Procedures for data packet forwarding at border routers. . 30
2.5 Procedure for shutoff protocol. 32
2.6 EphID specification. 35
2.7 Header information. 37
2.8 Forwarding performance. 38
2.9 SCION+APNA packet structure. 47
2.10 An example of privacy implication for SCION+APNA. . . . 48
2.11 APNA-as-a-Service. 50

3.1 The infrastructure of an AS and the 3-layer structure of
the data plane that supports OTA-based communication. . . 61

3.2 Outgoing and incoming packet processing at access routers. 65
3.3 Connection establishment between two hosts. 69
3.4 Procedure for ReplyOTA request and reply. 71
3.5 OTA specification. 72
3.6 OTA header. 73
3.7 Data packet processing rate by an Access Router. 76
3.8 Data packet processing rate by an Core Router. 78

4.1 Router-Reflection Attack. 85
4.2 Location of bottleneck links. 89
4.3 Location of routers that can target at least one bottleneck. . 90
4.4 Number of routers that can target at least one bottleneck. . 92
4.5 Packet timing diagram. 105
4.6 Forwarding performance for packet sizes of 64 and 128

bytes and for IMIX. 109
4.7 Average, minimum, and maximum packet latencies for

packet sizes of 64 and 128 bytes and for IMIX. 110

xiv List of Figures

5.1 IP+APNA packet structure. 118
5.2 Example with an ISP owning two IP blocks and using two

inter-domain links. 128
5.3 Forwarding performance of a translation gateway. 130
5.4 Forwarding performance of an IPsec gateway. 132

7.1 A platform for Privacy-as-a-Service. 157

List of Tables

2.1 Notation. 24

3.1 Summary of symbols and notation. 63

4.1 Summary of parameters and notation. 100
4.2 Software-router implementation. 107
4.3 Hardware-based implementation. 113

Chapter 1

Introduction

The Internet was initially a network among scientists for collaborative re-
search. Back then, users of the Internet knew and trusted each other, and
communication was among trusted parties [119]. However, the Internet
has expanded into a global commercial network that connects diverse peo-
ple with heterogeneous trust and sometimes even with conflicting interests.
Today, communication often takes place between parties that do not nec-
essarily trust each other [44]. Moreover, some parties engage in malicious
activities, such as attacking other hosts or even the network itself, e.g., for
personal gains or due to conflicts of interest.

The transition to an environment with heterogeneous trust has sparked
debates on whether the network should consider source accountability
guarantees to hold the source responsible for any traffic that it originates,
and whether the network should provide functionalities to enhance user
privacy.

Importance of Source Accountability. In an environment with het-
erogeneous trust, users want assurance that they are communicating with
whom they think they are communicating. Additionally, the lack of source
accountability has become a Pandora’s box for Internet security. Attack-
ers spoof their victims’ addresses and launch reflection attacks exhausting
their victims’ resources. Address spoofing complicates identification of the
attackers and renders traffic filtering ineffective, not to mention the collat-
eral damage when incorrectly blocking benign hosts.

Importance of Privacy. Recent revelations have shown that govern-
ments perform pervasive monitoring and mass surveillance by systemat-
ically collecting users’ identities and their network traffic (e.g., NSA’s up-
stream collection program). Worse, their surveillance capabilities are rapidly
advancing with big data and data mining technologies—they can collect
even larger volumes of data, and analyze the data more thoroughly. Fur-
thermore, governments are not the only entities that use such technologies;
large corporations also use them to create a profile of their customers, e.g.,
to make a profit by creating targeted advertisements.

2 1 Introduction

Despite the importance of privacy, the network does not offer any pri-
vacy enhancing mechanisms, and users are forced to rely on application-
layer tools, such as Tor [56] and VPN services, to obtain privacy guaran-
tees. These solutions are often complex to install and have undesirable
side-effects, e.g., degraded communication performance.

Both source accountability and privacy are important properties for
the Internet. However, today’s Internet cannot support either of the two
properties; an IP address is insufficient to be an identifier since it can be
spoofed. At the same time, an IP address reveals information about its
user; for example, IP addresses are used in trackers [106, 155] that build
histories of users’ Internet activities. Furthermore, even if the Internet
can be modified to support both properties, supporting the two properties
at the same time is challenging since they conflict—source accountability
requires identification of the sender, but to guarantee privacy the sender’s
identity should not be revealed.

1.1 A Vision for a Better Internet

Strong Accountability. We envision an Internet that makes an unforge-
able link between the identity of a sender host and the sent packets. Such
a network would raise the confidence of users that they are indeed com-
municating with the intended peers. Furthermore, we envision an Internet
that provides new services based on strong accountability. For example,
the network offers a shutoff service that allows the receivers to voice their
dissent against unwanted communications and suppress such communica-
tions near the senders.

Strong Privacy. We envision an Internet that provides a range of privacy-
enhancing mechanisms that users can use to protect their communica-
tion. For example, the network supports end-to-end encryption at the
network-layer so that users can keep their communication private, even
from state-level adversaries or Internet service providers (ISPs). Moreover,
the network provides means for users to hide their identity, e.g., by using
pseudonyms [79] instead of IP addresses in their packets.

Moreover, we envision an Internet that allows users to choose the privacy-
enhancing mechanisms based on their privacy requirements, instead of
universally imposing a certain set of mechanisms. This design for choice is
important since privacy requirements can be very diverse even for a single

1.2 Approach 3

Accountable and

Private Internet

Step I: Architecture

 Design

Step II: Deployment

 Strategies

Base

Architecture

Privacy

Extension

Accountability

Improvement

APNA

OTA

In-Net. Replay

Suppression

Overlay

Deployment

Integrated

Deployment

Proposed

Approach

Traditional

Approach

Figure 1.1: Thesis structure.

user depending on the context of communication. For example, pervasive
encryption, perhaps surprisingly, may not always be desirable [51]. If a
user is communicating with a mistrusting peer that may include viruses
or trojans in the communication, the user may desire to have the packets
sanitized by a third-party, e.g., a security middle-box, rather than hide the
content via encryption.

Strong Accountability and Privacy. We envision an Internet that simul-
taneously provides source accountability guarantees and supports privacy-
preserving communication. To this end, the inherent tension between the
two properties must be resolved. To resolve the tension, for example, the
sender’s ISP could guarantee to a receiver that the respective sender has
indeed sent the received packets, but without revealing the sender’s iden-
tity to the receiver. That is, ISPs are used as the trusted third-parties to
balance between privacy and accountability.

1.2 Approach
We take a two-step approach to enhance the security of the Internet in
terms of source accountability and privacy (Figure 1.1). First, we design
an architecture to balance between source accountability and privacy. To-
wards this goal, we take a clean-slate approach [37, 69] so that we can
focus on the design of the architecture without constraining ourselves to
the limitations or the compatibility with today’s Internet.

Second, we explore deployment strategies for such an architecture. De-
ploying a clean-slate architecture is notoriously difficult, and there is no

4 1 Introduction

definitive path to deployment. A widely-accepted approach to deploy a
new architecture is to create an overlay network of the new architecture
over today’s Internet [143]. However, we cannot conclusively argue that
this is the best approach to deploy an FIA, especially given the diversity
of FIA proposals. Hence, in this dissertation, we also explore an new ap-
proach to FIA deployment.

1.3 Overview

In Chapters 2-4, we design the Accountable and Private Network Archi-
tecture (APNA) to study how to achieve both source accountability guar-
antees and privacy-preserving communication. In our work, our notion
of source accountability protects the integrity of the source’s identity and
holds the source responsible for any traffic that he originates. At the same
time, our notion of privacy-preserving communication allows users to con-
trol which of one’s traffic can be linked to a common sender. For example,
if a user sends two groups of flows and desires unlinkability between the
two groups, APNA ensures that any pair of flows, one from each of the two
groups, cannot be linked to a common sender.

Adversary Model. We design APNA to guarantee source accountability
and protect communication privacy against an adversary whose goal is to
subvert one of the two properties. We consider that an adversary has suc-
cessfully broken the source accountability guarantees, if he can transmit
a packet that is attributed to someone else in the network. Moreover, we
consider that an adversary has successfully subverted the privacy guaran-
tees, if he can identify a common sender across the observed traffic beyond
what users have specified.

To accomplish his goals, the adversary can control any entity on the
Internet except for the source host, other hosts in the same broadcast do-
main and the infrastructure in the source’s ISP. From the entities under his
control, the adversary can observe and inject packets. When injecting a
packet, the adversary can create a new packet from scratch or duplicate
previously observed packets. However, we assume that adversaries cannot
compromise the secret keys of the ISPs and cannot break cryptographic
primitives.

1.3 Overview 5

1.3.1 Source Accountability with Domain-Brokered Privacy

In the early stages of our efforts to design the Accountable and Private
Network Architecture, we have identified the following three questions
that guide our research: 1) How to balance between accountability and
privacy? 2) How to guarantee source accountability? 3) How to support
privacy-preserving communication?

Trust Model to Balance Accountability and Privacy. One approach to
achieve the conflicting requirements of accountability and privacy is to use
a trusted third-party. The third-party, serving as an accountability agent,
learns the identities of the senders to attributes packets to their correspond-
ing senders; however, it does not reveal the identities of the sender to any
other entity. Then, an important design decision is to determine the entity
that will serve as the trusted third-party.

There are two entities that could serve as the trusted third entity—ISPs
or non-ISP entities. The proponents of the latter [38] argue that ISPs are
unfit as the trusted third-party since the responsibilities of an accountabil-
ity service are in conflict with their interests. For example, ISPs would be
unwilling to take actions against their paying customers.

However, in our work, we enlist ISPs as the balancing point for the
following reasons. Since ISPs already know the identity and the physical
attachment point of their customers, they can naturally act as accountabil-
ity agents. Furthermore, already on today’s Internet, ISPs are encouraged
and sometimes even obligated to act as accountability agents. For exam-
ple, there have been efforts to urge ISPs to take actions against malicious
traffic generated within their networks [53, 113, 118, 121, 156]. Addition-
ally, some governments mandate the ISPs to keep a record of their traffic
(e.g., source and destination IP addresses, packet content, etc) to identify
threats against national security. At the same time, we believe that ISPs
have business incentives to provide privacy features to their customers,
especially in light of recent revelations regarding global surveillance.

Guaranteeing Source Accountability. The first step towards guarantee-
ing source accountability is to authenticate packets to their correspond-
ing senders. One common approach to source authentication is using
an access list of valid source addresses to filter packets with invalid (i.e.,
spoofed) source addresses. That is, a router forwards an incoming packet
only if the source address in the packet is in its access list. However, the ac-

6 1 Introduction

cess list-based approach has an inherent security weakness—an adversary
can still spoof any of the addresses in the access list.

Instead in APNA, we use cryptographic mechanisms to authenticate ev-
ery packet to avoid the security weakness of the access list-based approach.
That is, the senders insert cryptographic proofs to each of the transmitted
packets to attest their ownership, and their ISPs verify the cryptographic
proofs to authenticate the packets.

Realizing Privacy-Preserving Communication. Today’s Internet is not
appropriate for privacy-preserving communications. IP addresses reveal
topological and geographical information of the users; and, they can be
used to link various activities of the users since, once assigned by the net-
work, IP addresses remain unchanged for some time (e.g., until the DHCP
lease timeout). Moreover, today’s Internet lacks the infrastructure to sup-
port pervasive encryption at the network-layer.

In our architecture, the network provides multiple addresses, which
we call ephemeral IDs (EphIDs), to users, and users use the EphIDs as they
wish. For example, a user can use a different EphID for each flow or even
a different one for each packet. The granularity at which EphIDs are used
determines the volume of traffic that can be linked to a common sender
(since those packets have the same EphID), and we leave that decision
solely to the users.

We are not the first to propose the idea of using multiple addresses.
Previous works [79, 133, 157] assign multiple IPv6 addresses to the hosts
by creating multiple values for the interface identifiers (i.e., the lower eight
bytes of the IPv6 address). These works, however, restrict the size of the
anonymity set to the number of hosts within the same routing prefix. In
our architecture, we design the addresses such that the anonymity set is
the size of the ISP; in addition, we describe how the size of the anonymity
set can be further increased.

Furthermore, we design our architecture to support end-to-end encryp-
tion at the network layer. To this end, our architecture facilitates key man-
agement by assisting two communicating hosts in establishing a shared
key to encrypt their communication session.

Challenges. Although we design our architecture without confining our-
selves to the limitations of today’s Internet, we must still grapple with prac-
tical constraints of today’s technology, such as limitations on computation

1.3 Overview 7

and storage resource. Specifically, we must ensure that APNA routers can
forward APNA packets at a rate that is comparable to the packet forward-
ing rate for IPv4 packets. To this end, our source authentication protocol,
which is based on cryptographic operations, must be computationally effi-
cient. Furthermore, our architecture must avoid per-address state at the
routers since multiple addresses are provided to hosts, and an excessive
amount of forwarding state in routers degrades packet forwarding perfor-
mance.

In addition, our architecture facilitates end-to-end encryption at the
network layer. The encryption at the network layer implies that the ar-
chitecture needs to assist the end hosts with key management. That is, if
certificates are used for authentication, the architecture should specify the
trust model for the certificates as well as specify how the network provides
certificates to all hosts on the Internet. In addition, the encryption should
provide perfect-forward secrecy (PFS) to prevent an adversary that obtains
all long-term keys from decrypting the content of previous communication
sessions.

1.3.2 Communication based on One-Time Address

Source addresses in packets can be used to link packets to a common
sender, especially when an architecture provides source authentication.
One way to reduce this linkability is to use different addresses for dif-
ferent communications. In APNA, ISPs provide multiple EphIDs to their
customer hosts, and hosts decide how to use the EphIDs based on their pri-
vacy requirement. For example, a host uses a single EphID for all privacy-
insensitive communication while he uses different EphIDs for each flow
for privacy-sensitive communication. For highly sensitive communication,
a user could choose to use a different address for each transmitted packet.

One goal of using a different address for each transmitted packet is to
increase resilience against sophisticated flow-based attacks, such as traffic
correlation attacks against Tor [162, 168, 169, 171, 179] and attacks that
infer the content of flows by observing flow metadata (e.g., flow duration).
One way to satisfy such a goal is to break the fundamental assumption of
such attacks by eliminating flow information from packets so that adver-
saries cannot even group packets to flows. We name this property flow-

packet unlinkability and define it as follows: by observing packets of any

8 1 Introduction

number of flows, the packets are no more and no less related to any flow
after the observation than they were before the observation. To this end,
every packet of a flow should have a different source and destination ad-
dress, and should not contain any persistent flow information (e.g., a flow
identifier).

In Chapter 3, we extend APNA to support communication that achieve
flow-packet unlinkability.

Challenges. In theory, APNA allows a user to use a different address
for each transmitted packet; however, there are technical challenges that
make APNA, as described in Chapter 2, unsuitable for such communica-
tion. First, ASes must issue EphIDs to their hosts at a significantly higher
rate since the hosts use an EphID only once, to either send or receive a
single packet. Additionally, to achieve flow-packet unlinkability, any flow-
identifying information must be eliminated from the packets, and this
leads to an interesting question: how does the communicating hosts de-
multiplex such packets to flows?

1.3.3 In-Network Packet Replay Suppression

According to our adversary model (Section 1.3), an adversary can replay
packets of legitimate users to break the source accountability guarantees of
APNA. In APNA, replayed packets are incorrectly attributed to the senders
of the original packets because of APNA’s cryptographic approach for source
authentication. Specifically, replayed packets are exact copies of the legit-
imate packets, and hence contain the correct cryptographic proof.

Unfortunately, our cryptographic approach cannot be easily extended
to attribute replayed packets to the replaying adversaries. In fact, design-
ing a source authentication mechanism that can attribute replayed packets
to the replaying adversary, especially one that can scale to the entire Inter-
net, is difficult. Instead, we make a compromise and minimize the damage
inflicted by replayed packets (e.g., falsely accusing the senders of the orig-
inal packets for misbehaviors) by detecting and filtering replayed packets
within the network.

In Chapter 4, we improve the source accountability guarantees in APNA
by filtering replayed packets within the network. To this end, we first pro-
vide an additional motivation to filter replayed packets within the network
by describing a new attack—router-reflection attack—to illustrate the ad-

1.3 Overview 9

verse consequences of replayed packets. A router-reflection attack is an
attack that degrades the connectivity of a remote Internet region just by
replaying packets from compromised routers on the Internet. Then, we
propose a light-weight mechanism to suppress replayed packets within the
network.1

1.3.4 Deployment Strategies for Future Internet Architec-

tures

In Chapter 5, we consider how our architecture—APNA—can be deployed
on today’s Internet. Exploring new architectures that provide security
properties, e.g., source accountability, is intellectually interesting, but its
impact can be much greater if those ideas can be applied to today’s Inter-
net. However, deploying a new architecture is a daunting task for both
technical and business reasons. Technically, updating all devices on the
Internet to implement new functionalities is impossible, as the Internet
is a distributed system with billions of devices. From a business perspec-
tive, incumbents on the Internet, e.g., tier-1 ISPs, are unwilling to change
the Internet unless there is a critical imminent problem or they can make
immediate profit [80].

To this end, we investigate two different approaches to deploy a future
Internet architecture (FIA). The first deployment approach holistically de-
ploys an FIA as an overlay over today’s Internet while the second deploy-
ment approach realizes the main ideas of FIAs on today’s Internet instead
of deploying the FIAs themselves.

Overlay Approach to FIA deployment. In this approach, the FIA is ini-
tially deployed as an overlay over today’s Internet. That is, the Internet is
used as virtual point-to-point links to bridge islands of FIA deployments us-
ing well-established tunnel technologies (e.g., IP in IP tunnel [163], GRE
tunnel [81]) to create virtual point-to-point links. Then, hope that, over
time, the FIA would gradually replace today’s Internet as it becomes more
popular and ubiquitous. This deployment path has been described in many
FIA proposals [4, 67, 75].

1The suppression mechanism was mainly designed by Christos Pappas, the co-author of
the paper. Hence, I do not claim credit on that part of the work; however, we present the
suppression mechanism for completeness of the dissertation.

10 1 Introduction

Integrated Approach to FIA deployment. We explore a deployment strat-
egy that can be summarized by the following phrase—think revolutionary,

act evolutionary. This approach considers the design process of an FIA as
an exploration of new ideas and uses the insights from the research to
guide the evolution of the Internet [152]. That is, instead of concentrat-
ing the deployment effort to deploy an FIA itself, the deployment effort
focuses on identifying the key ideas from the FIA and realizing them on
today’s Internet using well-established technologies to evolve the Internet.

Sometimes using well-established technologies cannot fully realize an
idea of an FIA. For example, unicast reverse path forwarding (uRPF) [31],
a well-established technology that is used to prevent source address spoof-
ing and is already implemented in many routers, cannot fully provide
the source accountability guarantees of APNA, since uRPF only provides
a weak form of source authentication (See Chapter 6.2 for more detail).
However, we consider using uRPF to realize the source accountability guar-
antees of APNA as a deployment of APNA, since we believe that such a
compromise is inevitable to facilitate deployment.

We apply the integrated approach to deploy our proposed architecture,
APNA. To this end, we aim to realize the ideas of APNA—source account-
ability guarantees and privacy guarantees—on today’s Internet. As dis-
cussed above, source accountability guarantees can be realized using uRPF;
hence, we focus on the latter. More specifically, we consider how to realize
the notion of user-defined privacy on today’s Internet.

One approach that realizes the notion of user-defined privacy is to use
the privacy option of IPv6 (e.g., RFC 4941 [133]), which allows users to
create multiple IPv6 addresses. Indeed, this is a viable option; however, we
describe a more systematic approach to realize the notion of user-defined
privacy on today’s Internet.

To this end, we take a user-centric approach to privacy, and our first
step is to account for users’ diverse privacy requirements. Following a def-
inition of privacy by Westin [172]—what is revealed to whom—we intro-
duce the term of privacy domains that articulates what information about
the user (e.g., address, packet payload) can be revealed to which entities
(e.g., source, destination, and transit ISPs). As the second step, we iden-
tify privacy services that ISPs can readily deploy and that users can buy
to compose privacy domains. Then, user-defined privacy is realized as fol-

1.4 Summary of Contributions 11

lows: first, user’s privacy requirements are translated to privacy domains,
and these domains are composed using the identified privacy services.

1.4 Summary of Contributions
In the course of designing APNA that provides source accountability and
privacy guarantees and investigating deployment strategies for APNA, we
make the following high-level contributions:

• We design an architecture that balances source accountability and
communication privacy. Furthermore, the architecture realizes the
notion of user-defined privacy by providing two network primitives:
multiple addresses to control the degree of unlinkability, encryption
at the network-layer to encrypt the content of packets beyond the
network-layer header.

• We introduce flow-packet unlinkability and extend our architecture
to achieve this unlinkability property.

• We describe a new attack—the router reflection attack—that can
be launched simply by replaying packet from compromised routers.
This attack suggests that in-network duplication suppression is nec-
essary, contrary to the conventional view that end-to-end duplicate
suppression mechanisms are sufficient.

• We propose a new integrated approach to FIA deployment that aims
to evolve today’s Internet by realizing the main ideas of an FIA on
the Internet. As an example, we apply this deployment approach
to our architecture. To this end, we propose the concept of privacy
domain and identify privacy services that can be used to construct
privacy domains.

1.5 Related Publications
Some of the work presented in this thesis is based on the following publi-
cations, coauthored during my doctoral studies at ETH Zurich:

• Taeho Lee, Christos Pappas, David Barrera, Pawel Szalachowski, Adrian
Perrig, “Source Accountability with Domain-brokered Privacy,” in Pro-
ceedings of the ACM Conference on Emerging Networking Experi-
ments and Technologies (CoNEXT), 2016.

12 1 Introduction

• Taeho Lee, Christos Pappas, Pawel Szalachowski, Adrian Perrig, “Com-

munication Based on Per-Packet One-Time Addresses,” in Proceedings
of the IEEE Conference on Network Protocols (ICNP), 2016.

• Taeho Lee, Christos Pappas, Adrian Perrig, Virgil Gligor, Yih-Chun
Hu, “The Case for In-Network Replay Suppression,” in Proceedings of
the ACM Asia Conference on Computer and Communications Secu-
rity (AsiaCCS), 2017.

• Taeho Lee, Christos Pappas, Adrian Perrig, “Bootstrapping Privacy

Services In Today’s Internet,” (under submission), 2017.

Chapter 2

Source Accountability with

Domain-brokered Privacy

In this chapter, we describe the base architecture of the Accountable and
Private Network Architecture (APNA) that provides source accountability
guarantees and privacy-preserving communication. In our work, our no-
tion of source accountability protects the integrity of source’s identity and
holds the source responsible for any traffic that it generates. Our notion
of communication privacy allows users to control which of their traffic can
be linked to a common sender. To this end, we provide host privacy (for
the source and destination) and data privacy—host privacy means that
the identity of the host (e.g., IP address) remains private and data privacy
means that the transmitted data remains secret from unintended recipi-
ents.

To provide such properties, we enlist Internet Service Providers (ISPs)
as a fundamental component of our architecture for several reasons. First,
we build on past efforts to hold Autonomous Systems (ASes) accountable
for malicious traffic generated within their domain [113, 156]. Second,
we believe ISPs have business incentives to provide privacy features to
their customers, especially in light of recent revelations regarding global
surveillance. In APNA, ISPs facilitate connection establishment between
communicating hosts, but traffic encryption is still performed directly by
communication endpoints, keeping communication content hidden even
from their ISPs.

In our scheme, network communication is based on Ephemeral IDen-
tifiers (EphIDs) instead of long-lived network addresses, such as IP ad-
dresses. ASes issue EphIDs and assign them to their customer hosts as
tokens of approval for communication. EphIDs are designed to mask the
host address in the network, providing host privacy, while still function-
ing as a return address. In addition, EphIDs are bound to short-lived and
domain-certified public/private key pairs. These keys are used by hosts
to mutually authenticate each other and to negotiate a shared secret key,

16 2 Source Accountability with Domain-brokered Privacy

which allows native payload secrecy through network-layer traffic encryp-
tion.

The privacy architecture proposed in this chapter, which establishes
shared keys based on EphIDs, supports network-layer encryption to pro-
tect all payload data including the transport headers. A wide-spread en-
cryption at the network layer frustrates large-scale surveillance by obfus-
cating all communicated content. Moreover, the encryption scheme pro-
vides Perfect Forward Secrecy (PFS) such that an adversary that obtains
all long-term keys cannot decrypt the content of previous communication
sessions.

EphIDs are cryptographically linked to the identity of a host and serve
as accountability units. ISPs issue and assign EphIDs only to their authenti-
cated customers, thus bootstrapping source accountability. We argue that
ISPs are the natural accountability agents in today’s Internet since they al-
ready know the identities of their customers. Furthermore, we describe
a shutoff protocol [25], which is a common security mechanism relying
on source accountability. A complaining destination host instructs an ISP
to block outgoing traffic from a customer-host that is associated with an
EphID. The accountable identifiers allow an ISP to first verify that a cus-
tomer has indeed sent traffic to a certain destination and then prohibit any
further communication.

Contributions: This chapter describes a cohesive architecture, the Ac-
countable and Private Network Architecture (APNA), that simultaneously
guarantees accountability and protects privacy by involving ASes as ac-
countability agents and privacy brokers. In particular, APNA achieves the
following properties:

• Source accountability by linking every packet in the network to its
originating source.

• Host privacy by hiding the host’s identity from every entity except
the host’s AS.

• Data privacy by supporting encryption at the network-layer with per-
fect forward secrecy.

• Support for a shutoff protocol that terminates unwanted communi-
cation sessions.

2.1 Problem Definition 17

2.1 Problem Definition
Our goal is to design a network architecture that simultaneously supports
source accountability while preserving communication privacy. This sec-
tion describes the necessary requirements to realize these seemingly con-
flicting goals, the security properties we strive to achieve, and the adver-
sary model we consider.

2.1.1 Source Accountability

Source accountability refers to an unforgeable link between the identity
of a sender host and the sent packet. Thus, accountability ensures that
a source cannot deny having sent a packet, and a host cannot be falsely
accused of having sent a packet which it did not send.

Achieving source accountability in practice translates to two fundamen-
tal requirements. First, a strong notion of host identity is necessary so
that hosts cannot create multiple identities nor impersonate other hosts.
Second, a link between the source’s identity and all of its traffic must be
established. This link must be established (or at least confirmed) by a
third-party (e.g., source AS) that is not the sender itself, since senders
themselves can be malicious. To this end, the third party must observe all
of the sender’s traffic such that every packet in the network can be linked
to a specific sender.

Adversary Model: The goal of the adversary is to break source ac-
countability by creating a packet that is attributed to someone else in the
network. We assume that the adversary can reside in multiple ASes and
that she can see all packets within those ASes. Specifically, the adversary
can eavesdrop on all control and data messages in the network, but cannot
compromise the secret keys of the ASes that it resides in.

2.1.2 Communication Privacy

Our first goal with respect to privacy at the network layer is host privacy.
To achieve host privacy, the identity of a host must be hidden from any
other host in the source AS that is not in the same broadcast domain as
the host (e.g., on the same WiFi network or LAN segment), any transit
network that forwards traffic, as well as the destination AS (including the
communication peer). A host cannot hide from its AS, since the AS knows
the identity and network attachment point of every customer; and, a host

18 2 Source Accountability with Domain-brokered Privacy

cannot hide from other hosts in the same broadcast domain, since the layer-
2 address is visible. We address host privacy at the network layer, which
means that network-layer headers should not leak identity information. A
host’s identity may still leak at higher layers (e.g., HTTP cookies); however,
these aspects are out of scope for this paper.

In addition, our notion of host privacy includes sender-X unlinkability,
where ‘X’ could be a flow, an application, etc. We describe a concrete defi-
nition of sender-X unlinkability where ‘X’ is a flow to provide an intuition
about sender-X unlinkability. Sender-flow unlinkability means that simply
by observing packet contents (both headers and payloads) of any number
of flows originating from the same AS, the source(s) of the flows are no
more and no less related after the observation than they were before the
observation [145].

Our second goal is data privacy through the end-to-end encryption at
the network-layer. Transmitted data should be hidden from unintended
recipients, including the source and destination ASes. To this end, the
architecture must natively (i.e., without relying on upper-layer protocols,
such as TLS) provide secure key establishment between hosts and protec-
tion against Man-in-the-Middle (MitM) attacks.

Moreover, our notion of data privacy includes perfect forward secrecy
(PFS): disclosure of long-term secret keying material does not compromise
the secrecy of exchanged keys from past sessions, and thus data privacy of
prior communication sessions is guaranteed [127, p. 496].

Adversary Model: Breaking host privacy means that an adversary can
determine the identity of a sender, or can determine if two ‘X’s from the
same source AS originate from the same host. We assume that the adver-
sary can control any entity in the Internet except for the source host, hosts
that are in the same broadcast domain as the source host, and the source
AS itself. The adversary can observe packet headers and content, but we
do not consider timing analysis techniques, such as inter-packet arrival
times.

We argue that the architecture should provide only the basic building
blocks to achieve host privacy at the network layer; stronger privacy guar-
antees (e.g., resiliency against timing analysis) should be provided by pro-
tocols at a higher layer (e.g., transport protocol). For instance, a transport
protocol could implement a packet scheduling algorithm that alters tim-

2.2 APNA Overview 19

ing between packets to mitigate traffic identification based on inter-packet
timing analysis [62, 82, 95, 162]. Our argument is grounded by the fact
that strong privacy guarantees often come at the expense of network per-
formance, and not every user (or application) requires strong privacy guar-
antees. Hence, protocols that offer stronger privacy guarantees are left to
upper layers so that users can choose the appropriate protocol based on
their requirements.

An adversary can try to compromise data privacy by decrypting the
communication content exchanged between two hosts. To this end, we
assume that the adversary can control any entity in the Internet except
for the two communicating hosts, and one of the two ASes that the hosts
reside in.

2.1.3 Additional Goals

Shutoff Functionality: An accountability architecture can provide secu-
rity mechanisms that build on top of accountable addresses. A shutoff
mechanism is commonly used to terminate any active communication ses-
sion flagged for misbehavior. The architecture must ensure that the shutoff
mechanism does not create other attack vectors, such as denial-of-service
through non-permitted shutoff requests.

Support for Network Feedback: The architecture must allow the net-
work to communicate back to the source without revealing the identity of
the source. Feedback from the network is crucial for network-diagnostic
and management tools, such as ICMP.

2.2 APNA Overview
This section describes the components of our Accountable and Private
Network Architecture (APNA), beginning with the role of the ASes (Sec-
tion 2.2.1), followed by the use of ephemeral identifiers (Section 2.2.2),
and ending with an end-to-end communication example (Section 2.2.3).

2.2.1 Role of ASes

In APNA, ASes act both as accountability agents and as privacy brokers
due to their position in the network. Since ASes already know the identity
and the physical attachment point of their customers, they naturally act as

20 2 Source Accountability with Domain-brokered Privacy

accountability agents. At the same time, ASes mask their customers’ identi-
ties from all other entities, and thus act as host-privacy brokers. In addition,
ASes certify their customer-related information (e.g., public keys), which
is then used to generate keys for pervasive data encryption at the network
layer; thus ASes act as data-privacy brokers.

Accountability Functions: As an accountability agent, the AS per-
forms the following functions.

First, the AS creates a strong notion of host identity. To this end, the AS
ensures that subscribers do not create and use multiple unauthorized iden-
tities for their communication. ASes already authenticate their customers
and are thus selected as accountability agents.

Second, the AS creates a link between the identity of the source and
the sent packet. To this end, the AS can store every packet or insert a cryp-
tographic mark into every packet. Regardless of the implementation, the
AS is on the forwarding path of all the traffic originating from its customers
and is therefore selected to establish this link. Using any other third party,
which is not on the traffic path, as an accountability agent would require
additional mechanisms to report every packet to the third party [134].

Third, the AS realizes the shutoff functionality by accepting (and vali-
dating) shutoff requests and blocking the corresponding flows. An AS is in
a strategic position to block malicious traffic, since it is close to the source
and can stop traffic before it leaves its network.

Privacy Functions: As a privacy broker, the AS performs the following
functions.

First, the AS issues an Ephemeral IDentifier (EphID) that a host uses to
mask his identity by using it as the source address. This identifier serves as
a privacy-preserving return address and thus does not break bidirectional
communication. However, EphIDs must be bound to specific hosts; and,
since ASes know the identities of the hosts, they are well suited to perform
this binding and act as host-privacy brokers. We provide more details on
EphIDs in the following section.

Second, the AS acts as a certificate issuer, certifying that a public key
indeed belongs to a host in the AS’s network. More specifically, the AS
certifies the binding between an ephemeral identifier that is issued to a
host and a public key that is bound to the identifier. Hence, the AS becomes
a data-privacy broker without revealing the identity of its customers.

2.2 APNA Overview 21

2.2.2 Ephemeral IDs

At the heart of our proposal is the use of ephemeral identifiers instead of
addresses. An EphID is an identifier associated with the identity of a host,
yet it does not leak identity information. Since ASes know the identities of
their customers, issuing EphIDs to their connected hosts enables the hosts
to hide their identity without sacrificing accountability.

EphID as an Accountability Unit: As an accountability unit, an EphID
is an authorization token for communication that is issued by the AS to its
customer hosts. Issuing these tokens requires strong host authentication:
the host must first prove its identity to the AS, and only then EphIDs can
be issued.

In APNA, a host is represented to its AS through a Host Identifier (HID).
An HID could be a hash of the host’s public key [25] or a number that is
assigned by the AS to the host (e.g., IPv4 address). We do not specify
how an AS assigns HIDs, but require that HIDs be unique within the AS’
boundary.

There can be multiple EphIDs that are associated with an HID, and the
EphIDs are cryptographically bound to the HID such that only the host’s
AS can determine the binding. Furthermore, an EphID serves as the ac-
countability unit for shutoff requests. A shutoff request against an EphID
terminates all flows of the host that use that EphID as the source identifier.
In other words, flows with the same source EphID are fate-sharing with re-
spect to the shutoff protocol. Blacklisting source EphIDs instead of source
and destination EphID pairs forces hosts to carefully manage their pool of
assigned EphIDs.

EphID as a Privacy Unit: The EphID has two roles as a privacy unit: it
hides the identity of a host and provides a tool to achieve various notions
of sender-X unlinkability (e.g., sender-flow unlinkability). An EphID is
meaningful only to the issuing AS and opaque to all other parties. It reveals
no information about the host’s identity to other hosts inside the same AS
nor to the peer host that the host is communicating with.

EphIDs alone are insufficient for routing packets to a destination, since
location information is missing; and, in APNA, the location information
is provided at the granularity of ASes. Hence, a host is fully addressed
by an AS Identifier (AID) and EphID tuple (i.e., AID:EphID) where the
AID identifies the AS in which the host resides (e.g., Autonomous System

22 2 Source Accountability with Domain-brokered Privacy

Registry

Service (RS)

1. Host

Bootstrapping (§2.3.2)

AS (AID)A A

Accountability

Agent (AA)

EphID Mgmt

Service (MS)

Internet

Host
1

Border

Router (BR)

2. EphID

Issuance (§2.3.3)

3. Data Communication (§2.3.4)

 - Encrypted Communication (§2.3.4.1)

 - Data Packet Forwarding (§2.3.4.2)

Registry

Service (RS)

1. Host

Bootstrapping (§2.3.2)

AS (AID)B B

Accountability

Agent (AA)

EphID Mgmt

Service (MS)

Host
2

Border

Router (BR)

2. EphID

Issuance (§2.3.3)

Figure 2.1: An end-to-end communication example.

Number), and the EphID is the ephemeral identifier issued to the host by
the corresponding AS. Hence, the only leaked information is the AS where
the host resides; the host’s anonymity set becomes the size of the AS in
terms of number of hosts.

2.2.3 Communication Example

We describe the high-level workflow for communication between two hosts
(Figure 2.1). The protocol details are provided in Section 2.3.

An AS needs to manage its hosts; issue and manage EphIDs; and au-
thenticate packets that its hosts send. For these tasks, the following logical
entities are present in every AS:

• Registry Service (RS): authenticates and bootstraps hosts in the AS.

• EphID Management Service (MS): issues EphIDs to the hosts.

• Border Router (BR): handles incoming and outgoing packets based
on the AID:EphID tuple.

• Accountability Agent (AA): handles shutoff requests against the
hosts in the AS.

In Figure 2.1, a host in ASA initiates communication with a host in ASB.
Communication proceeds in the following three steps:

1. Host Bootstrapping: the host authenticates to the RS of its AS and
receives bootstrapping information.

2. EphID Issuance: the host contacts the MS of its AS to obtain an
EphID.

2.3 APNA Protocol Details 23

3. Data Communication: the hosts proceed with data communica-
tion using their AID:EphID tuples and their peers’ AID:EphID tuples,
which they obtain through out-of-band mechanisms (e.g., DNS, see
Section 2.7.1). If the hosts want to encrypt their communication,
they perform a connection establishment prior to the actual commu-
nication, to negotiate a shared key that will be used to encrypt their
data packets. The shared key is derived from public keys that are
associated with the EphIDs.

2.3 APNA Protocol Details
To construct a lightweight and efficient architecture, APNA is built under
consideration of the following design choices:

• Symmetric encryption is used to cryptographically link EphIDs with
HIDs; this allows an AS to efficiently obtain the HID from the EphID
without a mapping table, which can be large.

• Proof of sending a packet is embedded in the packet, avoiding large
amounts of stored state at ASes.

• Forwarding devices perform only symmetric cryptographic opera-
tions, guaranteeing high forwarding performance.

We begin by stating our assumptions and proceed with the details of
the steps that are shown in our communication example (Section 2.2.3).
Table 2.1 summarizes the notation we use throughout the protocol descrip-
tion.

2.3.1 Assumptions

• We assume that the cryptographic primitives we use are secure. For
instance, we assume that authenticated encryption is used for en-
crypting data communication, securing data communication against
chosen-ciphertext attacks (i.e., CCA-secure). We also require that
the generation of EphIDs to be CCA-secure; in Section 2.5.1.1, we
describe an efficient CCA-secure encryption scheme for generating
EphIDs.

• Every AS has a public key and a corresponding certificate; and there
is a public-key infrastructure (e.g., RPKI [29]) from which an entity
can retrieve and verify AS-certificates.

24 2 Source Accountability with Domain-brokered Privacy

Table 2.1: Notation.

kAi
Symmetric key of ASi that is known among the infrastruc-
ture (e.g., routers, RS, MS, AA).

kHiAi
Symmetric key shared between host Hi and its AS (ASi).

kEi E j
Symmetric key generated for the EphID pair Ei and E j .

HI Di Host identifier (HID) assigned to host Hi .

EphIDh An EphID issued to host H.

CEphIDi
Certificate for EphID EphIDi .

K+
E

, K−
E

Public, private key of entity E for both DH Exchange and
Digital Signatures.

MACk(M) Message M and MAC of M using symmetric key k.

{M}K− Message M and Signature of M using private-key K−.

Ek(M) Symmetric encryption of M with key k.

E−1
k
(C) Symmetric decryption of C with key k.

• Hosts do not use connection sharing devices (e.g., NAT). We discuss
how to relax this assumption in Section 2.7.2.

2.3.2 Host Bootstrapping

A host authenticates to its AS using a well-established authentication pro-
tocol [63, 154]. For example, when a user subscribes to an Internet service
provider, the provider creates the authentication credentials, and these cre-
dentials are preconfigured into an Internet access device (e.g., cable or DSL
modem). The device performs the authentication protocol when the user
connects it to the network.

The host (or his access device) creates a symmetric key kHA that serves
two purposes: encrypting EphID request and reply messages (Section 2.3.3),
and authenticating every packet that the host transmits to the network.1

During the authentication procedure, the host securely sends kHA to the
RS by encrypting it using AS’ public key (K+

AS
).

1In practice, two keys (one for encryption and the other for authentication) are derived
from kHA, but for simplicity, we refer to both keys as kHA throughout the protocol description.

2.3 APNA Protocol Details 25

Once the host has successfully authenticated, the Registry Service (RS)
of the AS performs the bootstrapping procedure (Figure 2.2). During this
procedure, the host receives information about its AS’ services that are nec-
essary to (later) establish communication sessions; and to support these
communication sessions, the infrastructure of the AS gets updated with
the host’s information. We require that all bootstrapping messages are
authenticated in order to avoid modifications en route.

First, the RS creates a control EphID (EphIDc t r l
h

) for the host (Line 6).
Control EphIDs are used to access AS’ internal services, e.g., to request
data-plane EphIDs from an EphID Management Service (MS). Both con-
trol and data-plane EphIDs are constructed identically so that all commu-
nication is based on EphIDs. However, control EphIDs have longer life-
time (e.g., DHCP lease time) than data-plane EphIDs. In addition, control
EphIDs are not used for data communication. We use the term EphIDs to
refer to the data-plane EphIDs.

The RS sends the host information (HI D, kHA) to infrastructure entities
in the AS, e.g., routers, MS, AA (Line 7); the entities store the information
in their database (host_in f o) as shown in Lines 9-10. The infrastructure
of the AS must learn the host information in order to handle packets that
are originating from and destined to this host. Specifically, the entities
need to learn the HID of the host (HI D) and the shared key (kHA) with the
host so that they can verify the authenticity of the packets that originate
from the host.

Finally, the RS returns the following information to the host (Line 8):
the control EphID (EphIDc t r l

h
) with its expiration time (Ex pT ime), and the

EphIDs for the MS (EphIDms) and the DNS (EphIDdns) within the AS. The
host uses EphIDc t r l

h
as the source address, and EphIDms and EphIDdns as the

destination addresses to access the respective services.

2.3.3 Ephemeral ID Issuance

An EphID is an encrypted token using the AS’ secret key (kA). It contains
the host’s HI D and an expiration time that indicates the validity period for
the EphID. Note that the use of encryption enables the issuing AS to obtain
the HID and expiration time from an EphID in a stateless fashion, without
an additional mapping table.

Every EphID is associated with a public/private key pair (K+
EphID

, K−
EphID

),
which serves three purposes: 1) to mutually authenticate with the peer

26 2 Source Accountability with Domain-brokered Privacy

AS Entities : All infrastructure (i.e., BRs, MSes, AAs) of the AS
verifySig(K+,M) : Verify signature of message M using K+

Host RS AS Entities

1. RS authenticates Host
2. Host securely sends kHA to RS
3. RS retrieves HID for Host

4. host_info[HID] = kHA

5. ExpTime= getExpTime()

6. EphIDctrl
h
= EkA

(HID,ExpTime)

7. m1 = EkA
(HID,kHA)

8. m2 = {EphIDctrl
h

,ExpTime,
EphIDdns,EphIDms}K−AS

m2 m1

9. (HID,kHA) = E−1
kA
(m2)

10. host_info[HID] = kHA

11. verifySig(K+
AS

,m1)

Figure 2.2: Procedure for host bootstrapping.

host, 2) to create a shared key with the peer host for data encryption (Sec-
tion 2.3.4.1), and 3) to authenticate shutoff requests (Section 2.3.5). To
keep the data encryption key secret from the AS, the host (not the AS)
generates the key pair, and the private key is never revealed to the AS.

The AS certifies the binding between an EphID and a public/private
key pair by issuing a certificate (CEphID) that has the same expiration time
as the EphID. From the certificate, a peer host learns the public key (K+

EphID
)

that is associated to the EphID as well as the EphID expiration time. The
certificate additionally contains information about the issuing AS—the AID
and the EphID of the accountability agent (EphIDaa). EphIDaa is used by
a peer host (with which the requesting host communicates) to initiate the
shutoff protocol when necessary (Section 2.3.5).

2.3 APNA Protocol Details 27

g,p : DH Parameters, a : A random DH Secret Integer
Host (EphIDc t r l

h
) MS (EphIDms)

1. (K+
EphID

,K−
EphID
) = (gamod p,a)

2. m1 = EkHA
(K+

EphID
)

m1

3. (HID,ExpTime1) = E−1
kA
(EphIDctrl

h
)

4. if (ExpTime1 < currTime) abort

5. if (HID /∈ host_info) abort

6. kHA = host_info[HID]

7. K+
EphID

= E−1
kHA
(m1)

8. ExpTime2 = getExpTime()

9. EphID= EkA
(HID,ExpTime2)

10. CEphID = {EphID,ExpTime2,
K+

EphID
,AIDAS,EphIDaa}K−AS

11. m2 = EkHA
(CEphID)

m2

12. verifyCert(E−1
kHA
(m2))

Figure 2.3: Procedure for EphID issuance.

To obtain an EphID, the host creates and sends an EphID request mes-
sage to the MS (Lines 1-2 in Figure 2.3). Specifically, the host first gener-
ates the public/private key pair (K+

EphID
, K−

EphID
) for the EphID and includes

K+
EphID

in the request message. In addition, the host uses EphIDc t r l
h

as the
source address for the request message and encrypts the message using the
shared key with the AS (kHA). The message is encrypted to hide it from
other entities in the AS that are not part of the AS infrastructure.

If an adversary trying to compromise sender-X unlinkability (see Sec-
tion 2.1.2 for the adversary model) sees the content of EphID request pack-
ets, she can identify a common sender at the level of EphIDc t r l

h
. Specifically,

the adversary first learns the (EphIDc t r l
h

, K+
EphID

) pair from the EphID re-

28 2 Source Accountability with Domain-brokered Privacy

quest packets; then, the adversary sees the K+
EphID

s from the connection es-
tablishment packets (see Section 2.3.4.1), allowing the adversary to iden-
tify the common sender of multiple connections. Note that the adversary
has not compromised the host identity since only the host’s AS can extract
host identity from EphIDc t r l

h
. Nonetheless, she has successfully identified a

common sender. In APNA, encrypting the EphID request message prevents
such attacks.

Upon receiving the request, the MS validates the authenticity of the
request; decrypts the source EphID (EphIDc t r l

h
) (Line 3); and performs the

following checks: 1) EphIDc t r l
h

has not expired (Line 4), 2) the client’s
identifier (HI D) is valid, i.e., has not been revoked (Line 5), and 3) the
request message (m1) is valid, i.e., the message can be decrypted success-
fully (Line 7). If any one of the checks fails, the request is dropped.

Then, the MS proceeds with the EphID issuance: it generates an EphID
and creates a certificate (CEphID) for the EphID (Lines 8-10). Finally, the
MS encrypts the certificate and sends it to the requesting host (Line 11).
The certificate is encrypted for the same reason as encrypting the EphID
request packets.

2.3.4 Data Communication

In this section, we describe how hosts encrypt their communication (Sec-
tion 2.3.4.1) and how APNA border routers forward data packets (Sec-
tion 2.3.4.2).

2.3.4.1 Data Communication with Network-layer Encryption

Connection Establishment. For a communication that the two commu-
nicating hosts want to encrypt, the two hosts mutually authenticate each
other using each other’s certificates and generate a shared symmetric key
for their communication session. This key is then used to encrypt all traffic
that belongs to this communication session. We emphasize that two hosts
can create multiple communication sessions and each session has a differ-
ent symmetric key to ensure that disclosure of one encryption key does not
compromise data privacy of other communication sessions.

Consider two hosts, A and B, with EphIDs EphIDa
2 and EphIDb, respec-

tively, that are establishing a connection. Assume that the hosts have ob-

2We use small ‘a’ to denote the EphID issued to A (i.e., EphIDa) to emphasize that there
can be many EphIDs that are issued to a host.

2.3 APNA Protocol Details 29

tained each other’s EphID and the associated certificate (we discuss ob-
taining EphIDs through DNS in Section 2.7.1). Using the certificate of
EphIDb and the public-private key pair associated with EphIDa, A derives
a shared key (kEa Eb

) between EphIDa and EphIDb. Similarly, B computes
the same shared key, completing the connection establishment. This sym-
metric shared key is then used to encrypt data packets between the two
hosts.

Encrypted Data Communication. Communication is based on symmet-
ric cryptographic operations. The host first encrypts the packet with the
shared key. Any existing CCA-secure encryption scheme can be used for
the encryption. Then, the host computes a MAC for every packet that it
sends, using the symmetric key that it shares with its AS (kHA). This al-
lows the host’s AS to link every packet to its source and drop packets from
(potentially) malicious hosts.

If the two communicating hosts do not want to encrypt their commu-
nication, then the sending host only performs the second step for the en-
crypted data communication; it just computes a MAC for source authenti-
cation.

2.3.4.2 Data Forwarding

A border router in the source AS ensures that only packets from authenti-
cated hosts and authorized EphIDs leave the AS; and a border router in the
destination AS forwards packets to the correct host based on the destina-
tion EphID. Transit ASes do not perform additional operations and simply
forward packets to the next AS on the path. As per our design choice, to
achieve high-performance data forwarding, only symmetric cryptographic
operations are used.

Communication end-points are specified as AID:EphID tuples. For inter-
domain forwarding, border routers use only AID to forward packets (Fig-
ure 2.4). Specifically, for external packets entering the AS, a border router
checks whether the packet has arrived at the destination AS (Line 1 in
the upper figure). If not, the packet is forwarded to the neighboring AS
towards the destination AS (Line 8). At the destination AS, the border
router checks the following conditions: 1) the destination EphID (EphIDd)
is valid, i.e., has not expired (Line 3) and has not been revoked (Line 4),
and 2) HI DD is valid, i.e., is registered and non-revoked (Line 5).

30 2 Source Accountability with Domain-brokered Privacy

AID: AID of the Destination AS
AIDS:EphIDs: Source Address as AID and EphID pair in the packet
AIDD:EphIDd: Destination Address as AID and EphID pair in the packet
revoked_ids : List of revoked EphIDs
verifyMAC(k,M) : Verify MAC of message M using k

Neighbor AS BR at dst AS

Incoming Packet

(AIDS:EphIDs→AIDD:EphIDd)

1. if (AIDD == AID)

2. (HIDD,ExpTime) = E−1
kAD

(EphIDd)

3. if (ExpTime< currTime) drop & abort

4. if (EphIDd ∈ revoked_ids) drop & abort

5. if (HIDD /∈ host_info) drop & abort

6. intraDomainForward(EphIDd,packet)

7. else

8. interDomainForward(AIDD,packet)

Host(EphIDs) BR at src AS

Outgoing Packet

(AIDS:EphIDs→AIDD:EphIDd)

1. (HIDS,ExpTime) = E−1
kAS

(EphIDs)

2. if (ExpTime< currTime) drop & abort

3. if (EphIDs ∈ revoked_ids) drop & abort

4. if (HIDS /∈ host_info) drop & abort

5. kHSAS
= host_info[HIDS]

6. if (!verifyMAC(kHSAS
,packet)) drop & abort

7. interDomainForward(AIDD,packet)

Figure 2.4: Procedures for data packet forwarding at Border Routers for
incoming (top) and outgoing (bottom) packets.

2.3 APNA Protocol Details 31

If all conditions are satisfied, then the packet is forwarded to the desti-
nation host (Line 6): border routers derive the corresponding HID from the
EphID and then forward the packet; we assume that intra-domain routers
forward packets based on HIDs (e.g., IP addresses).

For outgoing packets, a border router forwards the packets to a neigh-
boring AS only if all of the following conditions are satisfied: 1) the source
EphID (EphIDs) is valid, i.e., has not expired (Line 2 in the lower figure in
Figure 2.4) and has not been revoked (Line 3), 2) HI DS is valid (Line 4),
and 3) the MAC in the packet is correct (Line 6).

To verify the MAC in the packet, a border router retrieves the shared
key (kHA) between the source host and the AS by searching the host infor-
mation database (host_in f o) using the HI D of the source host as the key
(Line 5). These checks ensure that only authenticated packets leave the
source AS.

2.3.5 Shutoff Protocol

Shutoff protocols are designed to allow hosts to selectively block traffic
from specific source hosts. In our architecture, an accountability agent
(AA) checks the validity of a shutoff request and then blocks the source
EphID. More specifically, the AA checks whether a customer-host has actu-
ally sent the specific packet that the requesting party reports and whether
the party is authorized to make the request (e.g., the requesting host was
indeed the recipient of the specific packet). The AA checks the validity of
the request since, if misused, the shutoff protocol can be used to launch
DoS attack against a benign source. Note that the AA does not examine the
intent of the source nor tries to determine whether the packet is malicious.

Figure 2.5 shows the procedure for the shutoff request: the destination
host (D) that owns EphIDd is attempting to block traffic coming from the
source host (S) that owns EphIDs after receiving a specific packet. The des-
tination host creates a shutoff request message with the following informa-
tion (Lines 1-2): 1) the received packet, 2) a signature over the unwanted
packet using the private key of EphIDd (K−

EphIDd
), and 3) the certificate of

EphIDd . This information serves as evidence that S has indeed sent traffic
to D and that the shutoff request is not rogue. Then, D sends the request
message to the AA of S.

Upon receiving the request, the AA verifies the certificate of EphIDd

(Line 3) and the signature in the request message to confirm that the re-

32 2 Source Accountability with Domain-brokered Privacy

pkt : Packet that is sent by the Src Host but unwanted by the Dst Host
EphIDs, EphIDd: Src/Dst EphIDs in pkt
Dst : Dst Host (i.e., Host that is using EphIDd)
AAS: Accountability Agent at Source AS

AAS (EphIDaa) BR at src AS Dst (EphIDd)

pkt

1. proof = {pkt}K−
EphIDd

2. m1 =MACkHDAD
(proof ,CEphIDd

)

m1

3. if (!verifyCert(CEphIDd
)) abort

4. if (!verifySig(K+
EphIDd

,proof))

abort

5. (HIDS,ExpTime) = E−1
kAS

(EphIDs)

6. if (ExpTime< currTime) abort

7. if (HIDS /∈ host_info) abort

8. kHSAS
= host_info[HIDS]

9. if (!verifyMAC(kHSAS
,pkt)) abort

10. m2 =MACkAS
(revoke EphIDs)

m2

11. if (!verifyMAC(kAS
,m2)) abort

12. revoked_ids.insert(EphIDs)

Figure 2.5: Procedure for shutoff protocol.

quest has indeed been made by D who owns EphIDd (Line 4). Then, to
ensure that the packet has been really generated by S that owns EphIDs,
the AA checks the authenticity of the packet using the shared key (kHSAS

)
with S (Line 9). Finally, the AA instructs the border routers to revoke
EphIDs by putting it into their revoked_ids list (Line 10).

2.4 User-Defined Privacy 33

2.4 User-Defined Privacy
APNA provides two primitives that users can use to realize their privacy
requirements: choice of Ephemeral IDs and encryption at the network-
layer.

2.4.1 Ephemeral ID Granularity

Users can control how much information about himself can be linked from
his EphIDs. That is, a user controls what ‘X’ would be in sender-X unlinka-
bility by choosing how to use their EphIDs.

Per-Flow Ephemeral ID: We expect this to be the typical use case
where a host uses different EphIDs for different flows. There are two
advantages to per-flow EphIDs. First, it prevents an observer’s attempt
to identify a common sender of multiple flows by inspecting the content
of the packets (i.e., APNA header and payload). Second, shutoff incidents
have limited impact on a host. It terminates the flow that uses the reported
EphID as the source; however, all other flows remain intact. The disadvan-
tage of this case is that a host needs to acquire and manage EphIDs for
every new flow.

Per-Host Ephemeral ID: A host uses a single EphID for all packets. The
advantage of this model is that a host only needs to acquire and manage
one EphID. However, there are two drawbacks. Since all packets have the
same source EphID, all packets are linked to a common sender; and, a
shutoff request terminates all connections from the host.

Per-Packet Ephemeral ID: A host could use a different EphID for each
packet so that it is difficult to link packets to a single flow. This provides
the strongest privacy guarantees; however, additional mechanisms are nec-
essary for the destination host to demultiplex packets into flows. In Chap-
ter 3, we extend APNA to support per-packet EphIDs.

Per-Application Ephemeral ID: An EphID can be used to represent all
packets that are generated by an application or a service that is running
on the host. This EphID granularity facilitates managing traffic that is
generated by an application. For example, if an AS enforces its hosts to use
per-application EphIDs, the AS and its hosts could collaboratively identify
malicious applications (e.g., a bot) running at the hosts. The network
identifies malicious activities (e.g., flooding attacks) to a source EphID and

34 2 Source Accountability with Domain-brokered Privacy

inform the host about the EphID; then, the host identifies the application
that uses the EphID and takes appropriate actions.

2.4.2 Encryption at the Network-Layer

APNA supports encryption at the network-layer using the certificates as-
sociated with EphIDs. This encryption hides users’ communications and
makes pervasive monitoring by the state-level adversaries difficult; how-
ever, there are also disadvantages.

First, connection establishment requires one Round Trip Time (RTT)
delay before any communication can take place. For communications that
are not privacy-sensitive or for communications where latency is more im-
portant than data privacy, network-layer encryption may not be desired.
Second, for some communications, a user may not desire to encrypt their
packets to protect himself against his communicating peer. For example,
if a user is communicating with an untrustworthy peer that may include
viruses in the communication, the user may want to have the packets
screened before he receives the packet.

Hence, APNA facilitates encryption at the network layer; however, the
decision to use the network-layer encryption is left to the users.

2.5 Implementation & Evaluation
We present the implementation and performance evaluation of the archi-
tecture’s core components—EphID management server and border router.

2.5.1 EphID Management Server

The EphID Management Server (MS) is responsible for generating EphIDs
and assigning them to hosts. We describe the EphID structure, the MS im-
plementation, and then evaluate the performance of the EphID generation
procedure.

2.5.1.1 EphID Structure

We engineer the EphID length to optimize processing for the AES block
cipher; it is the only cipher with widespread hardware support, which en-
ables high performance.

We design an EphID as shown in Figure 2.6. We use 3 B for the HID,
which are sufficient to uniquely represent all hosts even in large ASes. The

2.5 Implementation & Evaluation 35

IV

(4 B)

Pseudorandom

Bytes (8 B)

HID

(3B)

Type

(1B)

ET

(4B)

CipherText

(8 B)

MAC

(4 B)

IV

(4 B)

ENC
A’k

CBC-MAC
A’’k

Figure 2.6: EphID construction, where ExpTime is EXP.

expiration time is 4 B long and is expressed in Unix seconds. Finally, one
byte is reserved to indicate the type of the EphID. For instance, it is used
to indicate whether an EphID is a control EphID or an one-time address
(See Chapter 3).

Recall that the security requirement for EphIDs is a CCA-secure encryp-
tion scheme. To this end, we use a generic composition called Encrypt-
then-MAC [35] that combines a symmetric encryption with a message au-
thentication code (MAC). The concatenation of HID and ExpTime is first
encrypted using AES in counter mode. Secure operation of this mode re-
quires a unique initialization vector (IV) for every encryption (i.e., for ev-
ery EphID). Moreover, the use of the IV allows us to generate multiple
EphIDs for a single HID. Note that the IV (4 B) is shorter than a single AES
block (16 B) and thus the input must be padded to 16 B. We use ten rounds
of AES to generate the ciphertext as recommended in RFC 3602 [73].

Next, a MAC is computed. The MAC is computed over the first 8 B
of the previously generated ciphertext and the IV that was used in that
encryption. We use CBC-MAC based on AES to generate the MAC, which
is secure as we have a fixed input length.

Finally, the EphID is constructed from the 8 B of the ciphertext, 4 B IV,
and 4 B of the MAC; the total length is 16 B. Note that the keys used for
encryption (kA′) and authentication (kA′′) are different; however, they are
derived from the secret key of the AS (kA).

2.5.1.2 MS Implementation

The MS generates EphIDs according to the procedure in Figure 2.3. For
asymmetric cryptography, we use cryptographic primitives based on Curve25519 [39],

36 2 Source Accountability with Domain-brokered Privacy

which offers high performance and features small public-keys (32 B) and
small signatures (64 B). Key exchange is done using the elliptic-curve vari-
ant of Diffie-Hellman (ECDH). To create digital signatures for certificates,
we use the Ed25519 signature scheme [40] and the Ed25519 SUPERCOP
REF10 implementation.3 For symmetric cryptographic operations, we lever-
age Intel’s AES-NI encryption instruction set [76]. Furthermore, we imple-
ment the host database (host_in f o) that stores the shared keys between
hosts and the AS as a hash table using HID as the key.

As an optimization, we parallelize the EphID generation by using four
processes to simultaneously handle EphID requests. The parallelization
is straightforward since the generation does not require any coordination
between the processes (e.g., shared memory or inter-process communica-
tion). However, no other optimizations were performed (e.g., optimizing
the Ed25519 REF10 implementation).

2.5.1.3 MS Performance Evaluation

We demonstrate the efficiency of generating per-flow EphIDs. To this end,
we need statistics for the peak flow generation rate inside an AS.

We use a 24-hour packet trace of HTTP(S) traffic from SWITCH.4 The
trace contains over 104 million entries for HTTP traffic and 74 million en-
tries for HTTPS traffic. Each entry contains a timestamp and anonymized
source/destination IDs. We identify 1,266,598 unique hosts generating a
peak rate of 3,888 active HTTP(S) sessions per second.

We test our implementation on a desktop machine with an Intel Core
i5-3470s CPU (4 cores, 2.9GHz) and 4 GB of DDR3 memory. For 500,000
EphID requests, our implementation runs for 6.87 seconds. On average,
13.7µs are needed for a single EphID generation, translating to a genera-
tion rate of 72.8k EphIDs/sec—over 18 times higher than the request rate.
Our experiment shows that even a low-end desktop machine can keep up
with the traffic demands of a real AS that has over 1.2 million hosts.

2.5.2 Border Router

We describe our border router prototype starting with the structure of the
network header. Then, we describe the border router implementation and
evaluate the forwarding performance.

3http://bench.cr.yp.to/supercop.html
4The Swiss academic ISP (www.switch.ch).

www.switch.ch

2.5 Implementation & Evaluation 37

Source AID (4 B) Destination AID (4 B)

0 1 2 3 4 5 6 7

Source EphID (16 B)

Destination EphID (16 B)

PktLen (2 B)
Next

Hdr (1B)

E2N MAC (16 B)

8
For Inter-domain

Routing
Initialization Vector (8 B)

0 1 2 3 4 5 6 7

E2E MAC (16 B)

Next

Hdr (1B)
Encrypted

8

Payload

(a) APNA Header (b) APNA Network-layer Encryption Header

Figure 2.7: Header information.

2.5.2.1 APNA Header Information

The APNA header, shown in Figure 2.7(a), contains source and destina-
tion addresses and a MAC (i.e., E2N MAC), which is used for source au-
thentication to the source AS, over the packet’s content. More specif-
ically, the packet consists of the following fields. The first eight bytes
of the header are inter-domain addresses. We assume that AS numbers,
which are four bytes, are used for inter-domain routing; in Sections 5.1
and 2.8, we show two examples of inter-domain addresses. Then, source
and destination EphIDs follow, where each EphID is 16 bytes as described
in Section 2.5.1.1. Next is the 16 bytes-long E2N MAC; 16 bytes is a sug-
gested length for the Integrity Check Value (ICV) field in the Authentication
Header (AH) for IPsec [124]. The last two fields are PktLen and NextHdr
for which we allocate two and one byte(s), respectively. The NextHdr field
indicates the header that follows the APNA header. For example, if a user
uses the network-layer encryption, then the next header indicates that the
APNA network-layer encryption header (Figure2.7(b)) follows the APNA
header. The APNA header sums up to 59 B.

Figure 2.7(b) shows the network-layer encryption header for APNA.
The header contains an initialization vector (IV) and a MAC (i.e., E2E
MAC) for authenticated encryption; similar to IPsec [170], we use 8 bytes
and 16 bytes for IV and E2E MAC, respectively. The encryption header
also contains a next header field to indicate the header (e.g., a transport
header) that follows the encryption header. All contents after the E2E
MAC, including the next header field, is encrypted to hide any informa-
tion beyond the network-layer.

38 2 Source Accountability with Domain-brokered Privacy

77 B 125 B 253 B iMIX0

2

4

6

8

10

12

14

Th
ro
ug

hp
ut
 (M

pp
s)

79.8%
100%

100%
100%6.

3
Gb

ps

8.
4

Gb
ps

9.3
Gbps 9.5

Gbps

Baseline
Border Router
Performance

Figure 2.8: Forwarding performance.

2.5.2.2 Border Router Implementation

Our border router performs additional processing compared to traditional
IPv4/IPv6 forwarding (Figure 2.4). Namely, the border router additionally
performs one decryption, two table lookups, and one MAC verification.
For the MAC computation, we use Galois Message Authentication Code
(GMAC) based on AES since GMAC is secure against variable length input
and has been proposed for data origin authentication in AH for IPsec [124].

We use DPDK [13] as our packet processing platform, which allows us
to implement the required functionality in userspace. The decryption of
the EphID in the packet is implemented through Intel AES-NI [76].

2.5.2.3 Forwarding Performance Evaluation

We evaluate the forwarding performance on a commodity server with 10
Gbps NICs and an Intel XEON E5 CPU. To generate traffic, we use Spirent-
SPT-N4U-220 [17] connected back-to-back with the server. The server re-
ceives the traffic, processes it, and sends it back to the generator.

Figure 2.8 shows the forwarding performance for multiple packet sizes
and for a representative mix of Internet traffic (IMIX [129] with 368 bytes
of average size); the performance baseline is forwarding without any ad-
ditional processing. In APNA, a 77-byte packet is the smallest packet that
consists of 14 bytes for the Ethernet header, 4 bytes for the Ethernet frame
check sequence and 59 bytes for the APNA header. For 77-byte pack-
ets, performance degrades by about 20% compared to the baseline per-
formance. However, for larger packet sizes, including the IMIX traffic, we
achieve the baseline performance.

2.6 Security Analysis 39

2.6 Security Analysis
We demonstrate how APNA prevents attacks that undermine source ac-
countability and data privacy.

2.6.1 Attacking Source Accountability

An adversary attacking source accountability (Section 2.1.1) has three at-
tack vectors at hand.

EphID Spoofing: The adversary can attempt to use an EphID that is is-
sued to another host (the spoofed victim). For instance, an adversary that
shares the same access port with the victim can sniff traffic and observe
valid EphIDs that are in use. However, using such an EphID is not suffi-
cient since every outgoing packet has to contain a MAC that is computed
with the shared key between the host and the host’s AS. Without the corre-
sponding shared key, the adversary cannot create valid MACs, resulting in
spoofed packets that are dropped by the host’s AS (additionally making the
attack visible). Obtaining the shared key requires compromising the host
or the AS; our adversary model does not account for such compromises.

An active adversary can attempt to obtain an EphID by pretending to
be another host. However, such an attack is infeasible: the adversary not
only needs to learn the control EphID (EphIDc t r l

h
) of the victim, but also

needs to learn the shared key between the victim and the source AS.
Unauthorized EphID Generation: The adversary can attempt to cre-

ate an unauthorized EphID. However, such an attempt is not feasible since
the EphID construction (Figure 2.6) is CCA-secure.

We achieve a CCA-secure encryption scheme through two primitives.
First, we use symmetric encryption in counter mode with a fresh IV for
every encryption; this encryption is secure under a chosen plaintext attack.
Second, we use a CBC-MAC scheme to authenticate the concatenation of
the ciphertext and the IV. Note that our use of the CBC-MAC is secure
since the input length to the CBC-MAC is fixed to 16 B.5 The combination
of these two primitives results in a CCA-secure encryption scheme [35].

Identity Minting: A common attack against systems that provide ac-
countability is identity minting, whereby a malicious host attempts to cre-
ate multiple (unauthorized) identities. In APNA, a host can at most have

5CBC-MAC is insecure for variable-length messages [34].

40 2 Source Accountability with Domain-brokered Privacy

one HID at any moment; and, a new HID invalidates previous HID and all
associated EphIDs.

Unauthorized Shutoff Requests: The shutoff protocol can be misused
to perform a DoS attack against a host. To prevent unauthorized shutoff
requests, three measures are implemented. First, only the destination host
and destination AS are authorized to issue a shutoff request. Furthermore,
the shutoff requester has to present the unwanted packet, which proves
that the source has indeed sent the packet. Since every packet has been
cryptographically marked by the source AS, the destination cannot issue
a shutoff request with a rogue packet. Lastly, the shutoff requester must
present its authorization credentials—it needs to sign the request message
with the private key associated with the destination EphID, and include
the corresponding certificate in the request message, proving that it is an
authorized party.

Relay attacks: A malicious entity that aims to “harm” a source host
may replay packets of the source. In the short-term, replayed packets may
induce shutoff incidents against the source host, disrupting communica-
tion of the source; and in the long-term, the AS of the source host may take
retributive action against the source host for repeated shutoff incidents.

Ideally, replayed packets should be filtered near the replay location, but
this requires routers in the network to perform replay detection. Designing
a practical in-network replay detection mechanism that does not affect
routers’ forwarding performance is not trivial. In Chapter 4, we design
and implement such an in-network replay detection mechanism.

2.6.2 Attacking Privacy

An adversary attacking data privacy can attempt to eavesdrop on commu-
nication data or store it and decrypt it once she obtains the encryption
keys. In APNA, traffic is encrypted and our scheme achieves perfect for-
ward secrecy: The symmetric key that is used for data encryption is bound
to the EphID (and the public/private key pair for that EphID) that is used
for the corresponding communication session. This key pair is not used
to derive other encryption keys and is not derived from other long-term
private keys (K−

AS
). Hence, only the compromise of a private key for an

EphID compromises data privacy and only for the communication session
that uses this EphID.

2.7 Practical Considerations 41

Alternatively, an AS-level adversary can actively try to compromise data
privacy of a customer host through a MitM attack. The malicious AS can
perform a MitM attack during the shared key establishment between the
victim (EphIDv) and a peer host (EphIDp). In this attack the malicious
AS replaces the certificate for the EphID of the victim host (CEphIDv

) with
another (fake) certificate, pretending to be the victim host to the peer host;
the peer host accepts CEphIDv

. However, the AS cannot deceive the victim
by pretending to be the peer host because it cannot generate the certificate
for EphIDp (CEphIDp

) that is signed by the private key of the peer host’s AS.
Consequently, the connection is not established, and the adversary cannot
read any communication of the hosts. The MitM attack is only possible if
the source and destination ASes collude, which we do not consider.

For communication between two hosts in the same AS (i.e., intra-domain
communication), APNA does not provide any privacy guarantee from the
AS: the identities of the two hosts are already known to the AS (compro-
mising host privacy), and the AS can perform MitM attacks to decrypt com-
munication between the hosts (compromising data privacy) as the AS can
fake both certificates for the EphIDs that the hosts use. The two hosts can
use security protocols at higher layers (e.g., TLS) to encrypt their commu-
nication or make a detour through another AS.

2.7 Practical Considerations

2.7.1 DNS Registration

Today, the names of publicly accessible services (e.g., an online shopping
website) are typically registered to public DNS servers. In APNA, the servers
that host public services publish the EphID and the corresponding certifi-
cate to a DNS server, and the DNS server returns the EphID with the corre-
sponding certificate for a requested domain name. To this end, the server
performs two tasks: 1) it requests an EphID and the associated certificate
from its AS; and 2) it registers the certificate under the domain name to
DNS;6 the registered EphID will be used as the destination address in fu-
ture communication.

Publishing EphIDs to the DNS raises a problem: a shutoff request against
a published EphID would terminate any ongoing communication sessions

6We assume DNSSEC to authenticate DNS records.

42 2 Source Accountability with Domain-brokered Privacy

that use this EphID. A naïve solution is to update the DNS entry with a
new EphID whenever the published EphID becomes invalid. However, this
would become burdensome for the DNS infrastructure, if attackers contin-
uously issue shutoff requests against a domain.

Our solution is to define receive-only EphIDs—EphIDs that are used only
to receive packets and are never used as the source EphIDs. Since they are
never used as the source identifier, they cannot become the target of shut-
off requests. To avoid using receive-only EphIDs as the source identifier,
the communication establishment to a server needs to be changed (i.e.,
the server does not respond to the client using the receive-only EphID).

Client-Server Connection Establishment: To support receive-only
EphIDs by the server, the connection establishment procedure in Section 2.3.4.1
is extended. To simplify the narrative, assume that the client uses EphIDc

to connect to the server, and the server uses EphIDr as the receive-only
EphID and EphIDs to serve the client.

After obtaining EphIDr from DNS, the client contacts the server using
EphIDc and EphIDr as the source and destination EphIDs, respectively. The
server verifies the certificate of EphIDc and computes a shared key that
will be used to encrypt data packets between the client and the server.
However, the server uses the certificate of EphIDs—instead of the certificate
of EphIDr—to compute the shared key. Then, in the response message to
the client, the server includes the certificate of EphIDs to inform the client
that EphIDs will be used by the server to serve the client.

The client verifies the certificate of EphIDs and computes the shared key
using the certificates for EphIDs and EphIDc . Then, the client uses EphIDs

as the destination EphID to communicate to the server.

Protecting DNS Queries: If the DNS server is operated by the host’s
AS, the AS can compromise the privacy of the DNS query—the AS knows
the identity of the host from the EphID and retrieves the content of the
query from the DNS server. To prevent such a compromise, the host can
use a DNS server that he trusts and that is not operated by the AS that he
resides in.

DNS Poisoning A malicious AS can poison its local DNS servers with rogue
entries. When the victim attempts to connect to a certain domain, the AS
can successfully launch a MitM attack. We do not explicitly address DNS

2.7 Practical Considerations 43

security since it is not a network-layer issue. With APNA, users can securely
communicate with a trusted DNS server of their choice, avoiding their AS.

2.7.2 Hosts Behind Connection-Sharing Devices

In the Internet, connection sharing devices (e.g., NAT) are often used. For
example, DSL or cable modems often have wireless Access Point function-
ality that allows multiple devices (e.g., laptops, smart phones) to connect
to the Internet; and, Internet cafés make their Internet connection acces-
sible to their customers. In this section, we describe two approaches that
embrace connection-sharing devices in APNA. For brevity, a connection
sharing devices is referred to as an Access Point (AP).

Bridge-mode In this approach, the AP serves as a transparent bridge that
interconnects users behind the AP to the AS. The AS requires all users
to be directly authenticated to itself. In this approach, the AS needs to
authenticate every single user, even those that may stay in the AS network
for only a short period of time.

NAT-mode In this approach, the AP creates a small AS of its own while
acting as a host to the AS network. That is, the AP performs the protocol
described in Section 2.3 as a host to the AS while playing the roles of a RS,
an MS, a router, and an accountability agent on behalf of its clients.

As a RS, the AP bootstraps the hosts into the AP’s internal network:
it authenticates the hosts to the internal network, negotiates shared keys
that are used to authenticate the packets that the hosts send, and provides
bootstrapping information.

As an MS, the AP makes EphID requests on behalf of its hosts to the
AS. The procedure that the AP follows to acquire EphIDs for its hosts is
similar to the EphID issuance protocol described in Figure 2.3, but with
two differences. First, when requesting for an EphID to the MS of the AS,
the AP uses an ephemeral public key that is supplied by its host. Second,
the AP keeps track of the EphIDs that are assigned to the hosts as a list, i.e.,
EphI D_in f o (as opposed to deriving HIDs from EphIDs) since EphIDs are
encrypted using the AS’s secret key and EphIDs contain HIDs assigned to
the AP, not to its hosts. This list is used to identify the hosts using EphIDs
in the packets.

As a router, the AP implements the data forwarding procedures de-
scribed in Figure 2.4, but with two differences. First, instead of parsing

44 2 Source Accountability with Domain-brokered Privacy

the EphIDs to determine the HID of the host, the AP uses the EphID_in f o

list. Second, for outgoing packets, in addition to verifying the MAC in the
packets using the shared keys with its hosts, the AP replaces the MAC using
its shared key with the AS before forwarding the packets to the AS.

Finally, as an accountability agent, the AP identifies the misbehaving
hosts based on EphIDs. Since the hosts behind an AP are not visible to the
AS and since the AS issues EphIDs to the AP not to the hosts, the AS holds
the AP accountable for misbehaving EphIDs. Then, the AP determines the
host that is using the misbehaving EphID.

2.8 Integration with SCION
In this section, we show that a more comprehensive security-oriented archi-
tecture can be created by combining different architectural proposals. To
this end, we combine APNA and SCION [178] to construct a new architecture—
SCION+APNA—that benefits from security properties of both architectures:
guarantees source accountability, communication privacy, and high avail-
ability.

We choose SCION for the following reasons. First, availability is an
important aspect to the Internet, and SCION is an FIA that guarantees
high availability. Second, the design of APNA and SCION facilitate integra-
tion with each other. SCION focuses on inter-domain aspects (e.g., inter-
domain routing) without specifying or constraining the intra-domain as-
pects (e.g., intra-domain routing) while APNA does the opposite; it mainly
focuses on designing an intra-domain architecture.

2.8.1 SCION Background

Before introducing the SCION+APNA architecture, we provide a brief in-
troduction to SCION; for more detailed description of SCION, we refer
readers to the SCION book [141].

Internet Structure. SCION divides the ASes on the Internet into groups
of independent routing sub-planes, called isolation domains (ISDs). The
ASes within each ISD are organized in a hierarchical (tree-based) structure
according to their provider-customer relationships, where the parent-child
relationships between nodes in the trees are determined by the provider-
customer relationship between ASes, with the provider AS being the par-

2.8 Integration with SCION 45

ent. The root of the tree, called the IDS core, consists of tier-1 ISPs that
manage the ISD.

Inter-domain Routing. At a high-level, inter-domain routing in SCION
consists of two steps. 1) Every AS learns a set of path-segments to reach
its ISD core (i.e., up-segments) via path-segment construction beacons
(PCBs), which are described in the next paragraph. Then, every AS reg-
isters some of the path-segments to the Path Server (PS) in its ISD so that a
sender that wishes to communicate with a receiver in the AS can retrieve
the AS’ path-segments from the Path Server; such retrieved path-segments
are called down-segments. 2) The source that wishes to communicate
with the destination retrieves a down-segment of the destination from the
path server and combines it with its up-segment to create an end-to-end
communication path.7

PCBs are constructed as follows. The ISD core periodically initiates
PCBs and sends them to its customer ASes. Then each customer AS inserts
its routing information to the PCBs and forwards them to its customers.
This process repeats until the stub ASes, i.e., leaves of the AS hierarchy,
receive the PCBs.

The routing information that an AS (ASi) inserts into a PCB contains
a hop field (HF), which is a pre-determined forwarding decision that its
border routers will use when they forward data packets with the HF. A
forwarding decision contains the following information as shown in Equa-
tion 2.1: ingress and egress interfaces of the border routers that connect
to the previous and the next hop ASes, and a MAC to protect the integrity
of HFs; the MAC is computed using a symmetric key that is only known to
the AS.

HFi = 〈InI F ||Eg I F ||MACK(HFi−1||InI F ||Eg I F)〉 (2.1)

For each received PCB, a stub AS learns a series of HFs, which repre-
sents the forwarding decision for the corresponding path. To send a packet
on the path, a sender inserts the HFs into the packets, and border routers
forward the packet based on the HFs. Hence, when a source wishes to com-
municate with a destination, the source 1) retrieves the down-segments of

7SCION also defines path-segments between ISD cores, called core-segments, and end-to-
end paths are constructed by combining up-, core-, and down-segments. For simplicity, we
omit core-segments in our description.

46 2 Source Accountability with Domain-brokered Privacy

the destination from the Path Server, 2) extracts HFs from his up-segment
and a down-segment of the destination, 3) combines the HFs to create an
end-to-end path, and 4) embeds the combined HFs into his data packets.

2.8.2 SCION+APNA Architecture

In this section, we show the technical feasibility of SCION+APNA by de-
scribing the packet structure for the combined architecture; in Section 2.8.3,
we describe a privacy implication that occurs when the two architectures
are combined.

Figure 2.9 shows the structure of a data packet for SCION+APNA. The
first, second, and fourth blocks (highlighted using solid boxes) of a data
packet are SCION-specific headers, and they are used for inter-domain
forwarding. The first block, the SCION common header, contains meta-
information for inter-domain routing. Specifically, it includes a field called
CurrHF that indicates the current hop field on the SCION Path (the fourth
block in Figure 2.9) that a border router should process. Recall from Sec-
tion 2.8.1 that a SCION path consists of a sequence of hop fields (HFs),
where each HF is a forwarding instruction for the corresponding AS on
the path. A border router in an AS must be able to identify the correct HF
to forward a packet, and the router uses CurrHF for this purpose.

The SCION common header also contains additional information about
the packet as follows: the SrcType and the DstType fields to indicate the
intra-domain address types in source and destination ASes, respectively;
packet length and the SCION header length; and, the NextHdr field to
indicate the type of the header that follows the SCION header.

The third block is the APNA header, and it is used for intra-domain for-
warding. The APNA header in SCION+APNA only has three fields—source
and destination EphIDs, and E2N MAC—and is shorter compared to that
shown in Figure 2.7(a). This is because the SCION header already includes
the other information. Specifically, the SCION Path field contains informa-
tion for inter-domain routing, and the SCION common header indicates
the type of the next header (NextHdr) and the packet length.

The fifth block in Figure 2.9 is the APNA network-layer encryption
header as indicated by the NextHdr field in the SCION common header
(i.e., NextHdr=Enc). This header is defined as a SCION extension header,
which is present only if the host decides to encrypt its packet. If a host does

2.8 Integration with SCION 47

For Inter-domain

Routing

SCION Common Header

SCION Path

Upper-Layer (UL) Header

Payload

DstType=APNANextHdr=Enc

SrcType=APNA

Source EphID

Destination EphID

E2N MAC

IV

E2E MAC

NextHdr=UL

For Network Layer

Encryption

SCION

Header

Destination ISD:AS

Source ISD:AS

SCION

Extension

Header

For Intra-domain

Routing

Figure 2.9: SCION+APNA packet structure.

not use the network-layer encryption, the NextHdr field would indicate the
Upper-Layer header (i.e., NextHdr=UL). Lastly, the sixth and the seventh
blocks are the upper-layer header (e.g., a transport layer header) and the
payload, respectively. If the APNA network-layer encryption is used, these
two blocks as well as the NextHdr field in the APNA encryption header are
encrypted as described in Section 2.5.2.1.

2.8.3 Privacy Implication

In SCION, multiple paths are available between ASes, and this path di-
versity contributes to high availability. However, in SCION+APNA, this
diversity creates a privacy implication. Depending on how a host chooses
paths for its communications, the size of its anonymity set is reduced from
the size of its AS. That is, an adversary may compromise host’s desired
sender-X unlinkability property.

If all hosts in an AS choose to use the same path to a destination AS,
then the size of the anonymity set does not shrink. Similarly, if all hosts
randomly choose a path for each of their communication, the size of the
anonymity set does not change. However, if a host has an unusual path
preference (e.g., avoid a mistrusting AS), this preference information can
be used to reduce the size of the anonymity set for the host.

Figure 2.10 shows such an example. In this example, the hosts (in blue
and black dots) in the bottom left AS communicate with hosts (not shown)
in the other two bottom destination ASes. Furthermore, the blue host uses

48 2 Source Accountability with Domain-brokered Privacy

Figure 2.10: An example of privacy implication for SCION+APNA.

the longer paths (blue arrows) to avoid the red AS while all other hosts
(black dots) use the shorter paths (black arrows) that go through the red
AS.

Now, consider an adversary whose goal is to compromise sender-flow
unlinkability and that monitors all packets leaving the bottom left AS.
When the adversary observes flows to the two destination ASes through
the blue paths, he can infer that these flows are more likely sent by the
same sender since communications using the blue paths are unusual, thus
compromising sender-flow unlinkability.

For illustration, we have used a simple example, and in reality, com-
promising host privacy based on hosts’ path preferences would be more
challenging. However, a reduction of the anonymity set is nevertheless
a concern. For example, a powerful state-level adversary, which sees all
traffic leaving from an AS and has enough computational capacity to run
sophisticated statistical techniques (e.g., cluster analysis), may be able to
reduce the anonymity set of a host based on its path preference.

2.9 Discussion

2.9.1 Support for Network Feedback

In APNA, an on-path intermediate node (e.g., router) can send messages
(e.g., ICMP) back to the source host. Assume that router R is attempting
to send an ICMP message to the source host S. To send an ICMP message
to S, R uses the source EphID (i.e., EphIDs) from the received packet (that
has prompted the ICMP message) as the destination address, and one of
its EphIDs (i.e., EphIDr) as the source EphID. Note that APNA protects

2.9 Discussion 49

the identity of R from the source host while holding R accountable for the
ICMP message.

2.9.2 Parameter Considerations

Expiration Time for EphIDs: If EphIDs are used per flow, the expiration
time can be set to 15 minutes as 98% of the flows in the Internet last less
than 15 minutes [45]. Alternatively, the EphID issuance protocol (Section
2.3.3) can be extended to allow hosts to express their choice of expira-
tion time. For instance, an AS may specify three categories (short-term,
medium-term, long-term EphIDs) to accommodate diverse flow duration
times.

Managing Revoked EphIDs: EphIDs can be preemptively revoked before
they expire: a host could revoke an EphID that is no longer needed, or an
EphID could have been subjected to a shutoff incident. Regardless of the
reason for revoking EphIDs, border routers in the ASes need to store a list
of revoked EphIDs (i.e., revoked_EphIDs in Figure 2.4). If there are too
many revocations in an AS, it burdens the border routers since the size of
the revoked_EphIDs would become large.

There are methods to limit the size of the revoked_EphIDs list. First,
an AS can rotate its secret key (kA) periodically; the rotation invalidates
all previously issued EphIDs. Second, since EphIDs will expire over time
and packets using expired EphIDs are dropped, the expired EphIDs can be
removed from revoked_EphIDs. Third, if too many EphIDs of a host are
revoked, the AS should view it as a sign of malicious activity by the host. In
such an event, the AS revokes the HID of the host invalidating all EphIDs
that are issued to the host and it assigns a new HID to the host. In addition,
the AS can contact the host for corrective measures. Such approaches are
already in use, e.g., ISPs that participate in the Copyright Alert System
(CAS) [18].

2.9.3 Strengthening the Shutoff Protocol

If designed incorrectly, the shutoff protocol can be abused as a tool to
perform DoS attacks against benign hosts. Thus, it is important to correctly
identify the entities that are authorized to perform a shut-off.

In Section 2.3.5, we restricted the authorized parties as the destination
host and AS since these are the only two parties that will provably receive

50 2 Source Accountability with Domain-brokered Privacy

Provider ISP

MS

Customer

AS1

Customer

AS2

Federated AS

AA

BR

RS

Figure 2.11: APNA-as-a-Service. The provider ISP provides APNA service
to its customer ASes.

the packet based on the APNA header. However, there are proposals to
encode the forwarding paths into the packets (e.g., Packet Passport [115],
ICING [132], and OPT [103]). When such proposals are combined with
our architecture, the list of authorized entities can be extended to include
on path-ASes (or their routers), strengthening the shut-off protocol.

2.9.4 APNA-as-a-Service

An ISP can offer APNA’s accountability and privacy protection not only
to hosts in its network, but also to its downstream (e.g., customer) ASes
as shown in Figure 2.11. In this deployment, a downstream AS can be
viewed as a connection-sharing device that provides APNA connections to
its hosts. Then the downstream AS can work as a transparent bridge or
NAT to connect its customers to the ISP (See Section 2.7.2 for details).

APNA-as-a-Service offers benefits to both the ISP and the downstream
ASes. The ISP can expand its APNA customer base beyond its network.
However, note that the ISP can only offer APNA-as-a-Service to ASes whose
packets must go through the ISP. This restriction is necessary since the
ISP needs to be able to verify all packets that are originating from the
downstream ASes to act as the accountability agent. The customer ASes,
especially the small ASes that do not have a large number of hosts (i.e.,
small anonymity set), can enjoy stronger level of host privacy protection
by mixing with customers of other (upstream) ISPs.

However, there are challenges in deploying APNA-as-a-Service. For ex-
ample, the authentication process of end-hosts becomes more complicated
since the hosts of the downstream AS may need to be remotely authen-
ticated. In addition, routing in the downstream ASes become complex,
especially for the ASes that are multi-homed (e.g., managing EphIDs).

2.9 Discussion 51

2.9.5 Usability of APNA

In Section 2.4, we have described two privacy primitives—-granularity at
which EphIDs are used and encryption at the network layer—that users
can use to satisfy their privacy requirements. In this section, we discuss
how users can use the privacy primitives for their communication.

Via the Socket API. The socket API can be extended to support privacy
primitives, and one possible approach is to use the protocol argument of
the socket() system call to express users’ choice of privacy primitives. For
example, socket(AF_APNA,SOCK_STREAM,PER_FLOW_EPHID|NET_ENC) in-
dicates that the user would like to dedicate an EphID for the packets of
the flow that would be sent using this socket and also encrypt the packets.
Then, the user’s operating system would assign an EphID when creating
the socket, and enforce that 1) the EphID would not be used by any other
flow, 2) the socket would be used only to send and receive packets that
belong to the flow. In addition, the operating system would negotiate
a shared symmetric key with the destination host (e.g., a server) before
transmitting the user’s data and encrypt packets using the negotiated sym-
metric key.

Via Privacy Modes in Web Browsers. Web browsers can be updated
so that their privacy enhanced modes (e.g., Incognito mode in Google
Chrome and Private Browsing mode in Safari and Firefox) use the two
privacy primitives. For example, when a user uses the privacy mode, the
browser can use EphIDs at per-session or per-flow granularity to reduce
linkability between users’ communication. Note that on today’s Internet,
user’s communication can be linked to the user’s IP address, even if the
user uses the privacy mode. In addition, the browser can by default nego-
tiate a shared symmetric key with each destination (e.g., servers) of the
communication to encrypt communication at the network layer.

2.9.6 Governments and Privacy

Although generally perceived as a threat on communication privacy, there
are legitimate reasons for governments to subvert communication privacy
(e.g., to monitor terrorist activities). In fact, many governments by law
mandate ISPs to keep a record of their traffic (e.g., source and destination
IP addresses, packet content, etc).

52 2 Source Accountability with Domain-brokered Privacy

APNA protects communication privacy by making mass surveillance dif-
ficult; however, at the same time, it allows entities, such as a government,
to deanonymize communication when necessary. With the cooperation of
an AS, a government can deanonymize the identity of hosts from EphIDs.
Furthermore, if the government has cooperation from the ASes in which
communicating hosts reside, the AS could decrypt ongoing communication
by performing a MitM attack. However, the government cannot observe
communication by simply collecting packets since packets are encrypted,
which makes mass surveillance difficult. In addition, since APNA achieves
perfect forward secrecy, governments cannot decrypt past communication
sessions of a host even if the long-term public key of the host is disclosed.

Chapter 3

Communication Based on Per-Packet

One-Time Addresses

Every field of a packet leaks some information about the communicating
hosts! Adversaries ranging from WiFi stalkers to state-level agencies sys-
tematically observe packet headers and payloads in order to infer commu-
nication patterns and to obtain communication contents [27, 32, 71, 173].

Packet headers inherently leak information, since they are the founda-
tion to achieve communication. Persistent host information across flows
(e.g., source and destination addresses) is used to link flows to a common
sender or a common destination, drawing a profile of communication pat-
terns. The research community has proposed multiple solutions that pro-
vide sender-flow unlinkability. For example, an ISP-wide NAT can be used
to masquerade the source address so that an adversary cannot link flows
from an ISP to a common sender [149]. APIP completely removes the
“source address” from the network header in order to eliminate common
source information across flows [134].

Although these proposals are a step forward, packet headers in these
schemes still leak valuable information. Persistent flow information across
packets is used for more sophisticated attacks. For example, state-level ad-
versaries deanonymize Tor sessions by correlating flows from the source
to the Tor-entry node with flows from the Tor-exit node to the destina-
tion host [162, 168, 169, 171, 179]. Furthermore, an adversary can infer
information about the content of a flow (e.g., video or VoIP traffic) by ob-
serving flow metadata (e.g., flow duration/size, and inter-packet arrival
times). These attacks become feasible since host information remains the
same among packets of the same flow.

In this chapter, we introduce a stronger privacy property that cannot
be achieved by previous proposals—flow-packet unlinkability: simply by
observing packets of any number of flows, the packets are no more and
no less related to any flow after the observation than they were before
the observation. In order to achieve this property, any flow-identifying
information must be eliminated from packet headers.

56 3 Communication Based on Per-Packet One-Time Addresses

Then, we extend APNA (Chapter 2) to support communications that
achieve flow-packet unlinkability. To this end, we leverage on two func-
tionalities offered by APNA. First, we make use of multiple Ephemeral IDs
that are available to each host by using an ephemeral ID to send or receive
exactly one packet. This also means that source addresses are not even re-
used as destination addresses in subsequent response packets. Second, we
use the network-layer encryption offered by APNA to encrypt packet pay-
load. The encryption prevents information leak at two levels: application-
layer information (e.g., cookies) that can be used to identify hosts and link
flows, and transport-layer information (e.g., explicit flow identifiers) that
is used on an end-to-end basis to demultiplex packets.

In this chapter, we use a more descriptive but more concise term—One-

Time Address (OTA)—to refer to per-packet ephemeral IDs. Furthermore,
we abuse the term OTA to refer to both an address and the extended APNA
architecture. However, whether the term refers to a specific address or the
architecture itself should be clear from the provided context.

Contributions. We propose a holistic architecture that provides strong pri-
vacy guarantees through flow-packet unlinkability. Our architecture builds
on the primitives of One-Time Addresses and network-layer encryption,
and addresses the following challenges:

• flow demultiplexing at the end hosts

• efficient OTA management
– secure and optimized OTA generation
– no per-OTA state in the network infrastructure.

• compatibility with APNA.

3.1 Problem Setup

3.1.1 Goals

The primary goal of our architecture is to provide privacy in terms of flow-
packet unlinkability. We explain this term by building on a weaker privacy
property.

The first step is host-flow unlinkability:1 simply by observing packets of
any number of flows, the source(s) are no more and no less related to a flow

1Host-flow unlinkability is a more generic privacy notion than sender-flow unlinkability
that refers to both the source and the destination hosts.

3.1 Problem Setup 57

after the observation than they were before the observation; similarly, the
destination(s) are no more and no less related after the observation than
they were before the observation. That is, an adversary cannot determine
if packets of two flows originate from the same host or are destined for
the same host. To achieve this property, source and destination addresses
need to be different for every flow, so that host-identifying information
is not persistent across different flows. Note that host-related informa-
tion can still be leaked at the granularity of the host’s AS, e.g., by routing
information or network topology: a packet can contain information that
identifies the destination AS, or the ISP of a leaf AS naturally knows the
source AS of all outgoing packets—it is difficult to hide this information.
Our proposal also reveals flow information at the granularity of ASes.

The next step is flow-packet unlinkability: simply by observing packets
of any number of flows, the packets are no more and no less related after
the observation than they were before the observation. In other words, an
adversary cannot determine if two packets belong to the same flow. To
achieve this property, source(s)/destination(s) need to ensure that persis-
tent flow-identifying information (e.g., persistent host addresses or flow
identifiers) is not present across different packets.

The secondary goal of our architecture is to provide data privacy. All
the exchanged content between two communicating hosts must be en-
crypted by default. To this end, the architecture must facilitate key man-
agement and enable hosts to negotiate cryptographic keys. Furthermore,
the proposed scheme should guarantee perfect-forward secrecy (PFS) [127]:
even if an adversary obtains all long-term keys of a host, he cannot subvert
data privacy of past communication.

3.1.2 Threat Model

We consider two classes of adversaries who attempt to subvert our two
goals, respectively.

The goal of the first adversary is to undermine flow-packet unlinkability.
To achieve his goal, the adversary can: i) observe any packet in the net-
work, including within the source and destination ASes, ii) actively inject
and change packets, and iii) compromise any entity (e.g., cryptographic
keys), except for the source and destination ASes.

The goal of the second adversary is to undermine data privacy by de-
crypting the payload of communicating hosts, which reside in two different

58 3 Communication Based on Per-Packet One-Time Addresses

ASes. To achieve his goal, the adversary can: i) observe any packet in the
network, including the source and destination ASes, and ii) compromise
any entity (e.g., cryptographic keys), including one of the two ASes.

However, we assume that the adversaries do not perform side channel
attacks (e.g., timing analysis); we believe side-channel attacks should be
handled in higher layers, e.g., transport layer (See Section 3.6 for more de-
tail.). We also assume that the cryptographic primitives we use are secure:
signatures cannot be forged and encryptions cannot be broken.

3.2 Overview

Communication in our architecture is based on One-Time Addresses (OTAs).
OTAs are (disposable) addresses that are issued by the Autonomous Sys-
tems (ASes) to their customer hosts; and the hosts use their OTAs as either
source or destination addresses in their packets only once.

In our architecture, a host is uniquely identified by its AS through a host
identifier (HID). The AS forwards packets to the host based on the HID,
but the HID cannot be present in the packet headers; an adversary would
correlate packets to the same host and subvert our privacy goal. Instead,
hosts use OTAs that can be linked to their HIDs in the packet headers. Note
that we do not impose restrictions on the form of HIDs; e.g., it can be an
IP address or the hash of a public key.

In order to achieve flow-packet unlinkability, each host uses two pools
of addresses: the first pool contains addresses that are associated with it-
self and serve as source addresses, and the second pool contains addresses
of the communicating peer and serve as destination addresses. When a
host sends a packet, it draws one address from each pool, to be used as
a source and as a destination address, respectively. The receiving host
follows the same procedure, without reusing any address in the received
packet. The AS of the destination host “somehow” obtains the HID infor-
mation from the destination one-time address and forwards the packet to
the correct host.

Furthermore, a host can instruct its peer to supply more addresses
when the address pool runs low, so that communication is not interrupted.
Note that the exchanged addresses are encrypted, so that an adversary
cannot infer flow information by observing address exchanges.

3.2 Overview 59

3.2.1 Design Space

The fundamental challenge we address is the following: Can we generate
addresses that are used once, but are valid routable identifiers within an AS
so that the intended recipient receives the packet? In order to justify our
design decisions, we describe incremental solutions that draw a perimeter
of the design space.

In a straw-man approach, the host generates an OTA on its own; and
informs it to both his AS and peer host. Then, the AS stores a binding be-
tween the OTA and the HID of the host, so that it can forward an incoming
packet with the generated OTA as the destination address to the correct
host. Although this approach provides the desired property of flow-packet
unlinkability, it comes with impractical requirements: per-packet state in
the form of a mapping table from the OTA to the HID. Furthermore, this
state must be distributed to all data-plane devices in the AS.

In order to reduce the impractical requirements, the host can instead
encrypt its HID. Specifically, a symmetric key that is shared between all
hosts and the AS can be used to generate OTAs from HIDs. In order to
route a packet to a host, a forwarding device of the AS uses this shared
key to decrypt the ciphertext and obtain the HID of the incoming packet;
then it forwards the packet according to the HID. Since only the decryp-
tion key must be distributed among the data-plane devices in the AS, the
state requirement is minimal. However, this solution provides weak secu-
rity properties: one compromised host in an AS allows an adversary to
compromise privacy for all other hosts in the AS, since one key is shared
between all hosts and the AS.

To provide stronger security properties, a symmetric key is shared be-
tween each host and its AS: the host encrypts its HID with the symmetric
key that it shares with the AS. When an incoming packet arrives, a for-
warding device decrypts the ciphertext and obtains the HID. This approach
introduces a circular dependency: in order to decrypt the ciphertext, the
forwarding device must obtain (from the packet) a pointer to the corre-
sponding key that was used for the encryption. However, including such a
pointer in the packet breaks our privacy goal, since it introduces persistent
host-identifying information across packets. In other words, the informa-
tion that we try to hide must be visible to derive the shared key that was
used for the encryption.

60 3 Communication Based on Per-Packet One-Time Addresses

3.2.2 Key Concepts

Our approach overcomes the previously presented challenges through the
combination of two concepts.

First, we use symmetric-key cryptography to moderate the excessive
state requirements without sacrificing processing efficiency (use of asym-
metric cryptography would sacrifice processing speed). Our evaluation
(Section 3.5.1) shows that per-packet symmetric-key cryptography is effi-
cient even on commodity machines.

Second, the AS—not the host—generates the OTAs, and it does so on
the communication path: the source transmits its HID in the clear; then,
the first-hop router—henceforth called access router (AR)—generates an
OTA based on the HID of the host. The address is an encryption of the
HID using a symmetric encryption key that is known only to the AS. When
an incoming packet arrives, a forwarding device uses the symmetric key
to decrypt the OTA, extracts the HID, and then forwards the packet to the
destination.

Note that we obtain stricter security properties since the symmetric key
is shared only among the forwarding devices in the AS, and not with the
hosts of the AS. Furthermore, all OTAs are generated using one key, thus
avoiding the circular dependency when obtaining this key from in-packet
information.

One-Time Addresses. OTAs are the basic building block to achieve flow-
packet unlinkability since they are used only once. The use of OTAs achieves
the following properties.

First, they serve as privacy-preserving addresses that protect host iden-
tity. An OTA is meaningful only to the issuing AS and opaque to all other
entities. That is, only the issuing AS, which already knows the identity of
its customer, can identify host identities from OTAs.

Second, they serve as building blocks to achieve flow-packet unlinkabil-
ity. Our architecture enables a host to use a different source OTA for every
outgoing packet; and to instruct its communication peer to use a differ-
ent destination OTA for every returning packet. This scheme prevents an
adversary from relating packets to flows based on source and destination
addresses.

OTAs, by construction, are only routable within the issuing AS, since
they are opaque to any other entity. Hence, to support inter-domain com-

3.2 Overview 61

Access

Network Core Network
Access

NetworkCore Network

BR. . .

Inter-domain

Network

S o u r c e A S D e s t i n a t i o n A S

CR

CR

CR

AR BR

CR

CR
CR

CR

AR

Figure 3.1: The infrastructure of an AS and the 3-layer structure of the
data plane that supports OTA-based communication.

munication, packets must carry additional information about the source
and destination ASes of the source and destination OTAs. Therefore, OTAs
are augmented with AS Numbers (ASNs).

Adding ASN information into OTA fixes the size of the anonymity set
to the number of hosts in an AS. For large ISPs with millions of customers,
the size of the anonymity set is sufficiently large [150]. In Section 2.9, we
have shown how to enlarge the anonymity set for small ISPs.

3.2.3 Architectural Components

We now describe the structure of the ASes and of the data plane (Fig-
ure 3.1).

Autonomous Systems. ASes play an integral role in our architecture, as
they facilitate private communication for their customers. First, ASes facil-
itate flow-packet unlinkability by issuing OTAs to customer hosts. Second,
ASes enable data privacy by acting as Certificate Authorities. Specifically,
ASes issue certificates that bind OTAs to OTA-specific public keys. The
associated public keys are used by the communicating hosts to negotiate
shared symmetric keys that are used to encrypt the communication data.

In order to provide the required functionalities, we consider the follow-
ing infrastructure components in an AS:

• Access Router (AR): connects hosts to the core network of the host-
ing AS. Furthermore, the AR generates and translates OTAs on behalf
of its hosts.

• Border Router (BR): interconnects the core networks of different
ASes. It forwards: i) outgoing and transit inter-domain traffic based

62 3 Communication Based on Per-Packet One-Time Addresses

on AS information in packet headers, and ii) incoming intra-domain
traffic based on host information that is extracted from OTAs.

• Core Router (CR): forwards packets in the core network of an AS,
between ARs and BRs. It forwards traffic in the same way as a BR.

Data Plane. We abstract the data plane into three layers, and each layer
uses different information to forward packets. At the highest layer, the
network is an interconnection of ASes and packets are forwarded by border
routers (BRs) using AS information (e.g., ASNs).

Next, we divide the data plane of an AS network into the core net-
work and the access network. In the core network, packet headers contain
OTAs to offer privacy guarantees; but in the access network, packet head-
ers contain the uniquely assigned HIDs of the hosts. We discuss the security
implications of our approach in Section 3.5.2.

3.3 Protocol Design
We present in detail the required steps so that two hosts (H1 and H2) can
communicate; we present the steps in an increasing order of complexity.

In our architecture, a flow F between two hosts H1 and H2 is identified
as F I D1 and F I D2 by each host, respectively; FIDs are used to demulti-
plex flows within a host, and each host chooses its own FIDs. Table 3.1
summarizes the notation that we use throughout the section.

3.3.1 Assumptions

We make similar assumptions as APNA (Section 2.3.1); however, we make
one additional assumption, i.e., the third assumption.

• We assume that the cryptographic primitives (e.g., encryption) we
use are secure.

• Every AS has a public key and a corresponding certificate; and there
is a public-key infrastructure (e.g., RPKI [29]) from which an entity
can retrieve and verify AS-certificates.

• Communication in the access network is secure. If encryption is
necessary to secure the network, hosts can establish secure sessions
(e.g., IPsec sessions) with their ARs and encrypt packet payloads.

3.3 Protocol Design 63

HI Di Host identifier assigned to host Hi

F, F I D1, F I D2 Flow F identified as F I D1 and F I D2 by hosts H1 and
H2, respectively

OTA
j

Hi
j th OTA generated for host Hi

OTA
(N)

Hi
A list of N OTAs that are generated for host Hi

COTAi
Certificate for OTAi

kF Symmetric key for flow F between two hosts

kF−AS Symmetric key for flow F that is shared between two
hosts and their ASes

ktmp Symmetric key for flow F that is shared between two
hosts and the AS of the connection initiating host (see
Section 3.3.4)

kASi
Symmetric key known among the infrastructure (e.g.,
routers) within ASi

Ek(•)/E
−1
k
(•) Symmetric encryption/decryption of • with key k

K+
E

, K−
E

Public, private key of entity E

{m}K− Message m and the signature generated using the pri-
vate key K−

〈a→ b|m〉 Packet with source and destination OTAs of a and b,
respectively, and payload of m

Table 3.1: Summary of symbols and notation.

3.3.2 OTA Structure

An OTA encodes the following information: 1) the HID of the host to which
the OTA is issued, and 2) the identifier of the flow FID for which the OTA
is issued. The FID points to the flow-specific shared key that is used to
encrypt the communication data. This information is then encrypted using
the local secret key of the issuing AS (kAS); the resulting ciphertext is an
OTA (Equation 3.1).

OTA= EkAS
(HI D, F I D) (3.1)

64 3 Communication Based on Per-Packet One-Time Addresses

Moreover, we require the encryption scheme to be CCA-secure: if an
adversary modifies the OTA of a packet, the issuing AS will detect the mod-
ification and drop the packet. To achieve CCA-security, a different OTA
must be produced for every invocation even if the same HID and FID are
provided. We describe CCA-secure OTA generation in Section 3.4.

Furthermore, an OTA is associated with a certificate that binds the OTA
of a host to a public key of the host; it is issued by the host’s AS and serves
two purposes. First, it certifies that the host owns the OTA. Only the OTAs
that are used for connection establishment (see Section 3.3.4) require cer-
tificates; subsequent OTAs that are used for data communication do not
require certificates. Therefore, only a few OTAs are associated with cer-
tificates. Second, the public key in the certificate is used to generate keys
that are used for data encryption between the communicating hosts.

Specifically, an OTA certificate encodes the following information: 1)
the OTA and 2) a public key (K+

OTA
) that is used to derive a symmetric

encryption key for data communication. The certificate-issuance protocol
is described in Section 3.3.5.

3.3.3 Packet Forwarding

Our architecture splits the data plane of an AS into two layers—the access
network and the core network—with different forwarding mechanisms at
each layer. We describe how ARs and CRs forward packets assuming that
end hosts have established a connection.

Access Routers. Communication based on OTAs makes packet demulti-
plexing challenging: the network header does not include any flow-identifying
information that would be needed to demultiplex packets at the receiver.
In our architecture, ARs aid hosts in flow demultiplexing; we leverage ARs
as they are the first/last AS-infrastructure component on the communica-
tion path.

Recall that a flow F is identified as F I D1 and F I D2 by the two commu-
nicating hosts. When the source host H1 sends a packet to the destination
host H2 using an OTA of H2, the pre-computed OTA encodes F I D2 that
is used by H2 to identify the flow. ARs process outgoing and incoming
packets differently (Figure 3.2).

To send a packet to the destination host (H2), the source host (H1) in-
cludes information that is necessary for its AR (AR1) to generate the correct

3.3 Protocol Design 65

H1 (HI D1) AR1 in AS1 AR2 in AS2 H2 (HI D2)

1.msg= EkF
(DATA,data)

2. m1 = 〈DATA,FID1,
OTA

j

H2
,msg〉

m1

3. OTAi
H1
= EkAS1

(HID1,FID1)

4.m2 = 〈OTAi
H1
→ OTA

j

H2
|msg〉

m2

5. HID2,FID2 = E−1
kAS2

(OTA
j

H2
)

6. m3 = 〈FID2,msg〉

m3

Figure 3.2: Outgoing and incoming packet processing at access routers.

OTAs (Line 2). More specifically, H1 specifies the packet type (DATA) to in-
dicate how AR1 should handle the packet; the destination OTA (OTA

j

H2
);

the flow identifier (F I D1) that is used by H1 to identify the flow; and the
payload (msg) that is encrypted using the shared key for the flow (kF). Al-
though flow F is identified by different identifiers for each host, there is
one shared key kF for the flow.

When AR1 receives an outgoing packet, it performs the following tasks:
it generates an OTA using H1’s identifier (HI D1) and the F I D1 in the
packet (Line 3). Then using the destination OTA (OTA

j

H2
) and the pay-

load (msg), the router constructs a packet and sends it to the core network
(Line 4).

When AR2 receives an incoming packet from its core network, it per-
forms the following tasks (Lines 5-6): it extracts from OTA

j

H2
the destina-

tion host identifier (HI D2) and the flow identifier (F I D2) that H2 uses to
identify the flow. Then, AR2 creates a packet that includes F I D2 and the
original message (msg); finally, it sends the packet to the destination host.

66 3 Communication Based on Per-Packet One-Time Addresses

Core Routers. CRs in source ASes forward packets to BRs according to
the destination ASN. CRs in destination ASes forward packets in the core
network based on the destination OTAs in the packet headers. CRs do not
perform address translation, but must decrypt the OTA in the packet to for-
ward it based on the HI D of the destination. This decryption is necessary
since the intra-domain routing protocol is based on HIDs and since we do
not want ASes to keep per-OTA state. Hence, the CRs in AS2 perform a
subset of the operations that AR2 performs (Line 5).

3.3.4 End-to-end Communication

We have described how packets are forwarded and how flows are demulti-
plexed, assuming that a connection has been established. We now provide
two missing pieces for fully functional end-to-end communication: con-
nection establishment and address-pool exchange.

Connection Establishment. Connection establishment includes three main
steps: 1) the initiating host authenticates the listening host, 2) the hosts
negotiate shared keys for data encryption, and 3) each host informs the
other of an OTA that it can use for the next packet.

Initially, the listening host waits for incoming connections similar to a
traditional socket that is binded to a port. Consider a listening host H2 that
waits for packets with a specific FID (e.g., F I D′2). The initiating host has
obtained an OTA of the listening host (e.g., through DNS), which contains
F I D′2. The destination accepts the connection and generates a new F I D2

that will be used henceforth to identify the new flow.

The first objective of connection establishment, i.e., host authentica-
tion, is achieved through the OTA certificates. The OTAs of the listening
host have corresponding certificates; the certificates are issued by the AS
of the host and certify that an OTA is associated with a public key; the
corresponding private key is only known to the host. The public/private
key pairs are used to securely bootstrap communication and to negotiate
symmetric encryption keys.

Figure 3.3 describes connection establishment between two hosts H1

and H2 that reside in domains AS1 and AS2, respectively. We make the fol-
lowing two assumptions. First, H1 has received an OTA certificate (COTA1

H1
)

and an OTA (OTA2
H1

), and H2 has received two OTA certificates (COTA1
H2

,

3.3 Protocol Design 67

COTA2
H2

) and an OTA (OTA3
H2

). Second, we assume that H1 has obtained
an OTA certificate (COTA1

H2
) of H2, e.g., through DNS or an offline method.

Initially, H1 generates a temporary symmetric key ktmp that is used to
protect the first message for the connection establishment (Line 1). Then,
H1 constructs a special connection-establishment message (msg1). To this
end, H1 encrypts the information tuple—packet type (INIT1), F I D1 and
OTA2

H1
, which will be used in H2’s reply packet back to H1—using ktmp,

and includes the ciphertext into msg1. The encryption protects informa-
tion (i.e., F I D1 and OTA2

H1
) that an adversary can use to compromise

flow-packet unlinkability. The message (msg1) also includes the certificate
(COTA1

H1
) whose corresponding OTA (OTA1

H1
) is used as the source address

by AR1 (Line 4). This certificate will be used to generate symmetric keys
between H1 and H2 for data encryption. Finally, H1 constructs a message
(m1) for AR1 (Line 3) that includes the packet type (INIT1) and OTA1

H2
,

which is used as the destination address by AR1.
AR1 identifies that the incoming packet is used for connection establish-

ment based on INIT1 in m1. AR1 constructs a packet (m2) using OTA1
H1

and OTA1
H2

as the source and the destination addresses, respectively, and
msg1 as the payload (Line 4); and, AR1 sends the generated packet through
the core network towards H2. Then, AR2 processes the incoming packet
(m2) similar to how it would process an incoming data packet, and finally
forwards the packet to H2 (Lines 5-6).

H2 verifies the signature of AS1 on COTA1
H1

and proceeds by generat-
ing the symmetric key ktmp (Line 7) to decrypt message msg1. Then, H2

computes a pre-shared secret (PS) using the private key K−
OTA2

H2

that is

associated with OTA2
H2

(Line 8) and derives a new symmetric key that is
shared with H1 (Line 9). The new symmetric key (kF) (instead of ktmp)
is used to guarantee data privacy; and we use this approach to provide
perfect-forward secrecy (more details in Section 3.5.2).

Furthermore, another symmetric key (kF−AS) is derived from the pre-
shared secret (Line 10). Unlike kF , kF−AS is also shared with the ASes of
H1 and H2, and is used to encrypt replyOTAs that a host provides to its
peer. We use different keys for exchanging replyOTAs and for data privacy
so that replyOTAs are only known to the end-hosts and their ASes but data
communication between two end-hosts remains private even from their
ASes.

68 3 Communication Based on Per-Packet One-Time Addresses

H1 (HI D1) AR1 in AS1 AR2 in AS2 H2 (HI D2)

- Uses F I D1 for communica-
tion
- Rcvd COTA1

H1

and OTA2
H1

that includes F I D1.
COTA1

H1

= {OTA1
H1

,K+
OTA1

H1

}K−
AS1

- Obtained COTA1
H2

- Listens on F I D′2 for incom-
ing packets and uses F I D2

for communication
- Rcvd COTA1

H2

that includes

F I D′2, and COTA2
H2

,OTA3
H2

that include F I D2

1. ktmp = DH(K+
OTA1

H2

,K−
OTA1

H1

)

2. msg1 = 〈COTA1
H1

,

Ektmp
(INIT1,FID1,OTA2

H1
)〉

3. m1 = 〈INIT1,OTA1
H2

,msg1〉

m1

4. m2 =

〈OTA1
H1
→ OTA1

H2
|msg1〉

m2

5.HID2,FID′
2
= E−1

kAS2

(OTA1
H2
)

6. m3 = 〈FID′
2
,msg1〉

m3

7. ktmp = DH(K+
OTA1

H1

,K−
OTA1

H2

)

8. PS= DH(K+
OTA1

H1

,K−
OTA2

H2

)

9. kF = PRFPS(“FID”)
10. kF−AS = PRFPS(“AS”)
11. msg2 = 〈COTA2

H2

,

EkF
(INIT2,FID2,OTA3

H2
)〉

12. m4 =

〈INIT2,OTA2
H1

,msg2〉

Continued on the Next Page

3.3 Protocol Design 69

H1 (HI D1) AR1 in AS1 AR2 in AS2 H2 (HI D2)

m4

13. m5 =

〈OTA2
H2
→ OTA2

H1
|msg2〉

m5

14. HID1,FID1 = E−1
kAS1

(OTA2
H1
)

15. m6 = 〈FID1,msg2〉

m6

16. PS= DH(K+
OTA2

H2

,K−
OTA1

H1

)

17. kF = PRFPS(“FID”)
18. kF−AS = PRFPS(“AS”)

Figure 3.3: Connection establishment between two hosts.

H2 constructs a special connection-establishment message (Line 11),
which is similarly to msg1. H2 encrypts the information tuple—the packet
type (INIT2), the F I D2, and the reply address (OTA3

H2
)—using kF , and

includes the ciphertext into msg2. In addition, H2 also appends the certifi-
cate for the source OTA (COTA2

H2
) to msg2. Then, H2 constructs a message

for AR2, which includes msg2, packet type (INIT2), and OTA2
H1

(Line 12).

AR2 identifies that the incoming packet is used for connection estab-
lishment based on INIT2 in m4. Then, AR2 constructs a packet similar to
how AR1 created m2 and sends the generated packet through the core net-
work towards H1 (Line 13). AR1 intercepts the packet and forwards it as
specified by Lines 14-15 in Figure 3.3.

Finally, H1 generates the symmetric keys kF and kF−AS using the public
key in COTA2

H2
(Lines 16-18). Then, it obtains OTA3

H2
by decrypting msg2

using kF .

70 3 Communication Based on Per-Packet One-Time Addresses

Address Pool Creation. During connection establishment, each packet
carries two OTAs of the source; one that serves as a source address and
one that serves as a reply address. Now, we describe a protocol that en-
ables a host to inform its peer of valid OTAs that can be used as destination
addresses in subsequent packets. This protocol is necessary since in prac-
tice there is not a one-to-one correspondence between exchanged packets;
a host may send a burst of packets and therefore it needs a sufficient num-
ber of OTAs of its peer.

Figure 3.4 shows the procedure that enables a host (H1) to request
replyOTAs from its peer (H2). H1 creates a request by specifying a spe-
cial packet type (OTA_REQ) and the number N of OTAs to obtain from H2

(Lines 1-2). Then, H1 is forwarded to H2 in the same way as data packets.
H2 creates a reply packet (OTA_REP), which will be processed by AR2

(Line 7). The packet informs AR2 about the number of replyOTAs to be
generated and the encryption key (kF−AS) that will be used to encrypt the
replyOTAs. AR2 generates N replyOTAs (Line 9), encrypts them (Line 10),
and sends the packet to H1.

The communication overhead between two hosts can be reduced by
merging connection establishment and replyOTA generation. Specifically,
when H2 accepts a connection, it can instruct AR2 to generate and attach
multiple replyOTAs instead of one. With this approach H1 does not have
to request OTAs right after connection establishment.

3.3.5 Additional Functionalities

We describe two procedures that we have omitted so far.

Communication Recovery. End-to-end communication, as described so
far, may result in a deadlock under certain circumstances. For example, a
host may deplete its address pool of replyOTAs and the replyOTA requests
may get dropped. Therefore, a recovery procedure is necessary.

The communication-recovery procedure is similar to connection estab-
lishment with one important difference: the host that initiates the recovery
(e.g., H1) must inform its peer (H2) of which flow to resume, but since FIDs
are chosen independently, H1 must send F I D2 as the FID to be resumed.
Note that we explicitly included this information in connection establish-
ment (Lines 2 and 11 in Figure 3.3) so that both hosts know each other’s
FIDs.

3.3 Protocol Design 71

H1 (HI D1) AR1 in AS1 AR2 in AS2 H2 (HI D2)

1. msg= EkF
(OTA_REQ,N)

2. m1 = 〈OTA_REQ,FID1,
OTA

j

H2
,msg〉

m1

3. OTAi
H1
= EkAS1

(HID1,FID1)

4.m2 = 〈OTAi
H1
→ OTA

j

H2
|msg〉

m2

5. HID2,FID2 = E−1
kAS2

(OTA
j

H2
)

6. m3 = 〈FID2,msg〉

m3

7. m4 = 〈OTA_REP,FID2,
OTAk

H1
,N,kF−AS〉

m4

8. OTAl
H2
= EkAS2

(HID2,FID2)

9. OTA
(N)

H2
= EkAS2

(HID2,FID2)

(N times)
10. m5 = 〈EkF−AS

(OTA_REP,

N,OTA
(N)

H2
)〉

11. m6 = 〈OTAl
H2
→ OTAk

H1
|m5〉

m6

12. HID1,FID1 = E−1
kAS1

(OTAk
H1
)

13. m7 = 〈FID1,m5〉

m7

Figure 3.4: Procedure for ReplyOTA request and reply.

72 3 Communication Based on Per-Packet One-Time Addresses

Nonce

(8 B)

Pseudorandom

Bytes (8 B)

HID

(3B)

Type

(1B)

FID

(4B)

CipherText

(8 B)

MAC

(8 B)

Nonce

(8 B)

AES
A’k

CBC-MAC
A’’k

Figure 3.5: OTA specification.

Certificate Issuance. The majority of OTAs are generated on the fly dur-
ing end-to-end communication. However, a few OTAs must be generated
proactively as the associated certificates are used for authentication and
key negotiation during connection establishment.

The procedure to generate OTA certificates is as follows. The host gen-
erates a public/private key pair (K+, K−) and submits K+ and an FID to its
AR. The AR issues a certificate that contains the OTA, which is generated
based on the HID and FID, and the K+. Note that K− is never disclosed to
the host’s AS, which helps protecting data privacy even from the provider
AS.

3.4 Implementation
We describe the implementation of our main components.

One-Time Address. We use the construction for Ephemeral IDs (Section 2.5.1.1)
to construct One-Time Addresses (Figure 3.5) but with two differences.
1) An ExpTime in an EphID is replaced with a FID. 4 B is sufficient to
uniquely identify all concurrent flows that a host would maintain at any
given time. 2) An OTA uses 8 B each for the Nonce and the MAC fields
(compared to 4 B for each field in an EphID). We use a longer nonce since
we need to generate a significantly larger number of OTAs than EphIDs.
In addition, we use a longer MAC to reduce the probability of collision
(i.e., two different inputs resulting in a same MAC) that increases with the
number of OTAs. In total, an OTA is 24 bytes.

Packet Header. Figure 3.6 shows the packet header for OTA. The header
is similar to that for APNA (see Figure 2.7); however, in OTA, the meta-
information (i.e., the Nonce, the E2E MAC and the NextHdr fields) for

3.4 Implementation 73

Source AID (4 B) Destination AID (4 B)

0 1 2 3 4 5 6 7

Source OTA (24 B)

Destination OTA (24 B)

PktLen (2 B)
Next

Hdr (1B)

E2N MAC (16 B)

8
For Inter-domain

Routing

Next

Hdr (1B)

Nonce (8 B)

Nonce (8 B)
E2E MAC (16 B)

Figure 3.6: OTA header.

the network-layer end-to-end encryption is part of the packet header. This
is because the encryption is essential to achieve flow-packet unlinkability,
since the payloads of packets would most likely contain flow identifying
information, such as a TCP header. In total, the packet header is 100 bytes.

In the packet header, there is the E2N MAC field, and thus far, we have
not described the purpose of this field. This field is used to guarantee
source accountability by attributing packets to their sending hosts, and we
describe how this field is used in the following paragraphs.

Access Router. Access Routers are the main component of our architec-
ture. They are responsible for generating and decrypting OTAs and issuing
certificates.

ARs perform symmetric-key cryptographic operations to translate from
HIDs and FIDs to OTAs and vice versa. We use hardware support (Intel AES-
NI) in order to optimize these operations and guarantee a high forwarding
performance.

Furthermore, ARs perform public-key cryptographic operations in or-
der to issue certificates for OTAs (Section 3.3.5). For the public-key oper-
ations, we use the ed25519 signature scheme [40] and the ed25519 SU-
PERCOP REF10 implementation [14] for its high performance, short keys
(32 bytes) and signatures (64 bytes).

Thus far, we have ignored source accountability, one of the two ma-
jor properties of APNA. Recall from Chapter 2 that APNA defines shared
symmetric keys between hosts and their ISPs, and these keys are used to

74 3 Communication Based on Per-Packet One-Time Addresses

attribute packets to the corresponding senders (see Section 2.3.4.2). More
specifically, a sender creates a MAC over the content of the packet using a
symmetric key that he shares with his AS, and a border router of the AS
verifies the MAC before forwarding the packet to the next hop AS.

In OTA, we use the access routers in the ASes, instead of the border
routers, to attribute packets to their senders since we already leverage
the access routers. This approach also provides the following advantages:
1) ASes do not waste their network resource by forwarding invalid pack-
ets since they would be dropped closer to the offending sources, 2) an
access router only needs to maintain a fewer number of shared symmetric
keys since an access router serves a fewer number of hosts than a border
router, and 3) this approach reduces packet processing overhead on border
routers, which need to process packets at a high rate.

End Host. A host generates a Diffie-Hellman public/private key pair (K+, K−)
that is used to negotiate a symmetric key for data encryption during con-
nection establishment (Section 3.3.4). In addition, K+ becomes part of
the certificate that is issued by the host’s AS. We use curve25519 [39] to
generate DH value pairs and use elliptic curve Diffie-Hellman (ECDH) for
symmetric key negotiation.

3.5 Evaluation
We present our performance evaluation and describe the security proper-
ties of OTA-based communication.

3.5.1 Performance

We mainly focus on the performance of the AR, since it is the entity that
performs all the critical functionalities that are necessary; CRs perform
only a subset of this functionality. Specifically, our evaluation answers the
following questions:

• Q1: How fast can ARs generate OTAs (with certificates)?

• Q2: How fast can ARs forward data packets?

• Q3: How many connection establishments per second can ARs sup-
port?

Methodology. For our evaluation, we need the following information
about today’s Internet: the size of access networks (in number of hosts)

3.5 Evaluation 75

and common traffic patterns in an access network, i.e., the packet rate at
which hosts send/receive packets and the flow-generation rate. Due to
the wide range in which these parameters can be set, we use the following
conservative estimates:

• Size of Access Networks. In a study for CDN deployment in ISPs [88],
the authors identified 1,478 distinct users over a span of 42 days;
thus, we assume a typical access network with 1,500 hosts.

• Packet Generation Rate. We use the pricing plan of AT&T to esti-
mate the packet rate that a user generates. For heavy Internet users,
AT&T allows up to 1 TB of data every month.2 Then, we estimate
the packet-generation rate of the hosts by assuming that the hosts
uniformly spend their 1 TB data allowance over a period of 30 days.3

• Flow Generation Rate. We use the CAIDA Anonymized Internet
Traces Dataset [7] to estimate the flow generation rate. More specif-
ically, we analyze a 1-hour packet trace (Equinix-Chicago monitor
from 1 pm to 2 pm on 17/12/2015) and we identify a peak flow
rate of 13,645 flows-per-second. Note that this number is an over-
estimate for our purpose for two reasons: first, the flow generation
rate should be considerably lower than the flow rate; and second,
the flow generation rate at an access network with 1,500 hosts will
be much lower than the rate of a backbone link of a Tier-1 ISP.

We use the following settings for the evaluation:

• As described in Section 3.4, AR performs source authentication to
attribute packets to their senders. To this end, AR maintains shared
keys for each of the hosts in the access network; in total 1,500 sym-
metric keys are stored. We create a table that stores the host address
(HID) as the key and the corresponding shared key as the value.

• We use a commodity desktop machine equipped with an Intel i5-
3470 processor and 16 GB of DDR3 RAM to evaluate Q1.

2https://goo.gl/cxgwi3
3This is not an accurate estimate since data consumption of a host would not be uniform

over 30 days; it would vary depending on the time of the day and on the day of the week.
However, we could not obtain any more accurate data.

https://goo.gl/cxgwi3

76 3 Communication Based on Per-Packet One-Time Addresses

118 B 262 B 1510 B iMIX0
2
4
6
8

10
12
14
16
18

Th
ro
ug

hp
ut
 (M

pp
s)

230.0%

386.6%

704.8%

470.6%

Access Router
Performance
Required Capacity

Figure 3.7: Data packet processing rate by an Access Router.

• We use the following setting to evaluate Q2 and Q3. We evaluate the
forwarding performance on a commodity server with a 40 Gbps NIC
and an Intel XEON E5 CPU. To generate traffic, we use Spirent-SPT-
N4U-220 [17] connected back-to-back with the server. The server
receives the traffic, processes it, and sends it back to the generator.

Q1: OTA and Certificate Generation. We evaluate the efficiency of OTA
(Figure 3.5) and certificate generation. We generate 107 OTAs and their
certificates and report the average generation time. On average, it takes
62 ns to generate an OTA; 63 ns to decrypt an OTA; 50.3µs to generate
an OTA and an associated certificate. The result shows that OTAs can be
generated very efficiently. Although certificate generation is slower, they
are only needed for communication establishment and can be generated
in advance.

Q2: Data Packet Forwarding. In Section 3.3.3, we described data packet
forwarding at ARs. Also recall that for outgoing packets to the core net-
work, the AR needs to additionally attribute packets to their sending hosts.
That is, for an outgoing packet, the AR: 1) retrieves the symmetric key that
is shared with the sending host and authenticates the packet (i.e., ensure
E2N MAC in Figure 3.6 is correct), 2) generates an OTA using the host’s
HID and FID in the message (m1 in Figure 3.2). For an incoming packet
from the core network, the AR decrypts the destination OTA in the packet
to obtain the HID and FID information.

Figure 3.7 shows the packet processing performance for the AR. We
report our results for multiple packet sizes and for a representative mix

3.5 Evaluation 77

of Internet traffic (IMIX [129] with 394 B of average size). In our archi-
tecture, the smallest packet size is 118 B that consists of 14 B Ethernet
header, 4 B Ethernet frame check sequence, and 100 B OTA header. The
x-axis shows the packet size and the y-axis shows the processing perfor-
mance in Million-packets-per-second (Mpps). For each packet size, there
are two overlapping bars. The wider bar (in blue) represents aggregate
packet-generation rate for 1,500 hosts assuming that all packets have the
size indicated on the x-axis. The narrower bar (in green) shows the packet
processing rate by the AR. The result shows that for all packet sizes, the
AR forwards packets at more than twice the required rate. Moreover, for
the IMIX traffic, the AR forwards packets at 7.6 Mpps, which is 4.7 times
higher than the aggregate packet transmission rate by the 1500 hosts.

CRs need to be able to forward packets at much higher rate than ARs
since CRs process packets from multiple ARs. Fortunately, CRs perform
fewer operations on packets than ARs—they only need to decrypt destina-
tion OTAs to identify destination HIDs, enabling CRs to forward packets
at higher rate. To evaluate the packet performance of a CRs, we assume
that there are 220 end-hosts in an AS. That is, the CR contains a routing
table with 220, where each entry consists of an HID and an outgoing port
number as the key and the corresponding value, respectively.

Figure 3.8 shows the packet processing performance for the CR. We run
the evaluation for the packet sizes that we used to analyze the performance
of the AR. In this figure, the wider bar (in purple) represents the baseline
performance without any additional processing; and the narrower bar (in
green) shows the packet processing rate by the CR. For packet sizes larger
than 262 B, we nearly achieve the baseline performance.

Q3: Connection Establishment Processing. To evaluate the processing
rate of connection establishment packets, we need the size of a connection
establishment packet (m2 in Figure 3.3). The payload of a connection
establishment packet consists of two parts—a OTA certificate and msg1

(Figure 3.3). An OTA certificate, which consists of a OTA (28 B), a public
key (32 B), and a signature (64 B), is 124 B; and msg1, which consists of
a packet type (1 B), a FID (4 B), and a reply OTA (24 B), is 29 B. Hence,
the payload of a connection establishment packet is 153 B, and the packet,
including the OTA header, is 253 B.

78 3 Communication Based on Per-Packet One-Time Addresses

118 B 262 B 518 B iMIX0
5

10
15
20
25
30
35
40

Th
ro
ug

hp
ut
 (M

pp
s) 90.3%

99.8%

99.9%
99.8%

30
.9

 G
bp

s
37.1
Gbps 38.5

Gbps
38.0
Gbps

Baseline
Core Router
Performance

Figure 3.8: Data packet processing rate by an Core Router.

We use the AR’s forwarding performance for data packets to evaluate
AR’s performance for processing connection establishment packets. This
approach is possible because ARs perform a fewer number of operations
to process connection establishment packets compared to data packets.
Specifically, an AR performs source authentication for both types of pack-
ets (i.e., authenticates msg1 in Figure 3.3 and msg in Figure 3.2); however,
the AR does not generate an OTA when processing a connection establish-
ment packet.

Figure 3.7 indicates that an AR can process connection establishment
packets at an acceptable rate. The figure shows that an AR can process
262 B data packets, which is similar to the size of the connection establish-
ment packets, at a rate of 9.39 Mpps. This rate is about 690 times higher
than the peak flow rate (13,645 flows-per-second) that we observed in the
CAIDA dataset.

3.5.2 Security

Compromising Data Privacy. In order to compromise data privacy, an
adversary must obtain a shared key between two communicating hosts;
we consider two attack scenarios.

First, we consider a MitM attack, in which the adversary impersonates
a host to its peer. This attack is possible only if the adversary compromises
both ASes, since the two hosts perform mutual authentication using each
other’s certificates that are issued by the corresponding ASes. Our threat
model does not consider the compromise of two ASes, hence the attack is
not possible in our setting.

3.6 Caveat 79

Second, we consider an adversary that has captured the long-term
key(s) of the host(s). Our architecture provides perfect forward secrecy
(PFS), so that the adversary cannot decrypt the previous sessions, although
it can decrypt the ongoing sessions. PFS is achieved since OTAs and their
certificates are used once and disposed afterwards; thus the symmetric
encryption key is not reused in subsequent communication sessions.

Compromising Flow-Packet Unlinkability. Since OTAs cannot be linked,
packets cannot be linked to compromise flow-packet unlinkability. How-
ever, an adversary that eavesdrops on traffic in the access network com-
promises flow-packet unlinkability within the access network since packet
headers carry HIDs. This results from the fact that OTAs are put in the
packets by ARs and not the hosts themselves. An alternate approach is that
hosts prefetch all OTAs that they will use in subsequent connections. How-
ever, this approach introduces a prohibitive bandwidth overhead, since for
all outgoing packets, the host must have proactively sent another packet(s)
to obtain OTA(s). We decided to place OTA generation on the communica-
tion path, sacrificing privacy for bandwidth overhead. We consider this a
rational price to pay since the size of an access network is relatively small.

There is one exceptional case where an OTA may be used more than
once: OTAs of public servers that register their addresses with a DNS server.
This is a practical constraint since DNS cannot be updated with new OTAs
for every connection of a server. However, only the destination OTA of the
connection establishment is reused, which does not allow an adversary to
link subsequent packets to flows.

3.6 Caveat
Eliminating flow information from packet headers directly affects traffic en-
gineering, which consequently may have adverse effects especially for TCP
performance; TCP performance is highly dependent on packet reordering.
Therefore, many network devices are designed to minimize packet reorder-
ing by forwarding based on flow information in the network header (e.g.,
per-flow ECMP).

We do not argue that all communication sessions should be based on
OTAs. Instead, we argue that the network should provide the building
blocks to achieve flow-packet unlinkability, so that applications with strict
privacy requirements can use it.

Chapter 4

The Case for In-Network Replay

Suppression

Detecting and suppressing replayed packets in the network has been gener-
ally considered unnecessary. For example, the end-to-end argument in net-
work design states that since an end application will detect and suppress
replayed packets if deemed necessary, replay suppression is unnecessary at
the network layer [158]. In this chapter, we show that, despite this seem-
ingly persuasive argument, in-network replay detection and suppression is
an indispensable network functionality for our architecture, APNA, Then
we describe a highly efficient mechanism that can be used on commodity
routers.1

We begin the chapter with the following two observations:

Router Compromises. The common assumption that routers are trust-
worthy no longer holds, as attackers are becoming increasingly interested
and successful in compromising network infrastructure. Poor security prac-
tices [12, 15, 16] enable attackers to obtain access to routers. Even worse,
the adoption of emerging technologies such as Software-defined Network-
ing (SDN) enables attackers to compromise the network directly [6, 84].

Insufficiency of in-network source authentication in APNA. Recall from
Chapter 2 that APNA uses cryptographic proofs for source authentication.
More specifically, a host uses a symmetric key that he shares with his ISP
to compute a MAC over a packet that he sends, and the border router of
the ISP verifies the MAC to attribute the packet to the host.

This approach to source authentication is insufficient to detect replayed
packets. First, since only the source ISP performs source authentication,
replayed packets cannot be detected by any other entity besides the source
ISP. Moreover, replay detection within the source ISP is not trivial; the MAC
in a replayed packet would verify successfully, since replayed packets are
identical copies of the original packet.

1The suppression mechanism was mainly designed by Christos Pappas, the co-author of
the paper [110]. Hence, I do not claim credit on that part of the work (Sections 4.2-4.6);
however, those sections are reproduced without any modification for completeness.

82 4 The Case for In-Network Replay Suppression

To detect replayed packets, one may argue that a unique counter value
or a nonce could be added to each packet. However, neither approach is
suitable for APNA. A nonce-based approach increases packet processing
overhead at the border routers, which can only dedicate a few CPU cycles
to process packets. A counter-based approach has privacy implications for
communications based on one-time addresses (Chapter 3): packets that
belong to a same flow are more likely to have contiguous counter values,
and this information can be used to compromise flow-packet unlinkability.

To illustrate the severity of packet replays by compromised routers,
we describe three adverse consequences. First, source authentication—
ironic as it may sound—can help an attacker to frame an innocent source.
For example, a compromised router can deliberately replay packets to
cause abnormally high packet rates and trigger intrusion detection sys-
tems. Here, the adversary takes advantage of typical intrusion classifica-
tion rules to falsely accuse a source of misbehavior; e.g., to make it appear
malicious. Such attacks are particularly insidious, since the source has
no readily available recourse; e.g., traffic repudiation mechanisms require
global inter-ISP cooperation [139], which is difficult to orchestrate across
different jurisdictions.

Second, replaying packets can be used to deliberately waste network re-
sources and corrupt accounting mechanisms. For instance, a system that al-
locates network resources (e.g., bandwidth) to authenticated sources [33]
can be easily overwhelmed by replaying authentic packets. Furthermore,
to increase billable traffic on one of its underutilized paths, a malicious
network (e.g., Tier-1 ISP) could compromise a router in an upstream net-
work, replay authenticated traffic there, and then charge its customers for
the artificially generated extra traffic.

Third, we show that the effects of potential attacks are not local, i.e.,
they do not affect only the implicated source(s). We present a new attack
– the router-reflection attack – that enables an adversary to attack a geo-
graphic region of the Internet. The adversary uses a compromised router
and leverages services that do not perform end-to-end replay detection
(e.g., DNS or NTP): the attacker finds the routing bottlenecks of the target
region [96] and replays requests whose responses will target these bottle-
neck links on the return path. Note that the attacker can easily find such
bottleneck links as they are both pervasive and hard to remove in the cur-

4.1 Router-Reflection Attack 83

rent Internet; and that these links are sufficiently provisioned only for a
normal mode of operation, but not for targeted flooding [97, 167]. We
dedicate Section 4.1 to the design and analysis of the attack.

In our quest to devise a practical in-network replay-suppression mech-
anism, we found that simple adaptations of well known end-to-end mech-
anisms cannot be used at the network layer: processing, storage and com-
munication overheads, and time synchronization requirements raise nu-
merous challenges.

Our in-network replay detection and suppression design is based on a
combination of per-interval sequence numbers with small rotating Bloom fil-

ters that store observed packets for the currently active sequence-number
window. Our design requires only minimal coordination between domains
(the sequence-number-window update interval) and does not rely on global
time synchronization. Furthermore, we optimize the protocol parameters
to ensure very low overhead with respect to processing, storage, and com-
munication latency. In fact, our software prototype demonstrates that in-
network replay suppression is practical to perform even on commodity
routers.

In summary, this chapter makes the following contribution:

• It illustrates unexpected attack capabilities enabled by in-network
replays and evaluate their use in a new link-flooding attack.

4.1 Router-Reflection Attack

In this section, we describe the router-reflection attack, a new attack in
which an adversary degrades, or blocks, legitimate traffic from flowing
into a chosen geographic region of the Internet. The adversary controls a
compromised router and replays packets in order to flood targeted links
that carry the most routes into the region. The attack has similar goals
as that of the Crossfire attack [97], but the strategy and the adversary’s
capabilities are different: it does not rely on large botnets; it focuses on re-
sponses from public servers, rather than requests to public servers; and it is
feasible even with provably-legitimate (i.e., source-authenticated) traffic,
rather than spoofed traffic.

84 4 The Case for In-Network Replay Suppression

4.1.1 Overview

Consider a set of hosts V , which are distributed over the Internet, and a
set of hosts T inside a confined region of the Internet – the target area –
against which the adversary launches the attack. A target area can include
the hosts of a city, an organization, or even a small country. We refer to
the traffic direction from V to T as the inbound direction and to its reverse
as the outbound direction. The set of layer-3 links that carry a majority
of routes from V to T are the routing bottlenecks of the target area. A
routing bottleneck is different from a bandwidth bottleneck [86] in that
a bandwidth bottleneck is determined by the traffic load, whereas a rout-
ing bottleneck is determined by the number of flows (source-destination
pairs) that it carries. Typically, routing bottlenecks are adequately provi-
sioned and the traffic flows do not experience degraded performance in
the absence of flooding attacks. Henceforth, the term bottleneck refers to
routing bottlenecks.

The goal of the adversary is to turn the routing bottlenecks of the target
area into bandwidth bottlenecks and degrade the performance of as many
flows as possible. To this end, the adversary compromises a router near
the target area and replays observed traffic. Specifically, the adversary
replays legitimate outbound requests from hosts in T to selected services
of hosts in V that do not perform end-to-end replay detection (e.g., most
UDP-based services). The corresponding responses from hosts in V hit
the routing bottlenecks of the target area in the inbound direction and
consume the bandwidth of these links (e.g., router R1 in Figure 4.1).

In its simplified version, the attack does not rely on traffic responses:
a router can replay inbound traffic and hit routing bottlenecks that are
located downstream (e.g., router R2 in Figure 4.1). Hence, a router can
replay a larger portion of the observed flows – not only UDP-based services.

Our attack builds on intuition gained by recent work [96]: routing bot-
tlenecks are target-area-specific, pervasive, and long-lived. Furthermore,
the attack has three distinguishing characteristics.

1. It exploits the fact that services that do not perform replay detec-
tion are ubiquitous. There is an abundance of UDP-based services
used for common tasks (e.g., DNS, SSDP, NTP) that will generate
responses for replayed requests.

4.1 Router-Reflection Attack 85

Hosts in set V

Hosts in set T

Routing

Bottlenecks
R1

R2

Figure 4.1: Router-Reflection Attack: compromised routers R1 and R2 can
target routing bottlenecks by replaying legitimate traffic.

2. It does not inject “new” traffic nor does it modify the observed traffic.
Thus, the attack does not require large botnets to create traffic, and
it is feasible even with source-authentication systems [25, 103, 117]
in place. Note the difference from common reflection attacks that
spoof the source address, directing the response traffic to a victim.

3. It exploits the fact that Internet paths tend to be asymmetric, espe-
cially when they traverse core backbone links [47, 83]. This means
that the responses generated by the replayed requests will likely fol-
low a different inbound path back to the target area. Thus, a com-
promised router can launch such an attack without attacking itself
in the inbound direction.

We emphasize that we assume a source-authentication scheme is in
place. That is, a router can verify the authenticity of a packet (e.g., at
the AS level) and drop modified and injected traffic. In the strict sense,
source authentication should detect replayed packets as well, since the
actual source of a replayed packet is the entity that injects the replayed
packet. However, none of the source-authentication schemes handle in-
network replay detection explicitly; this raises the new class of attacks
that we describe in this section.

86 4 The Case for In-Network Replay Suppression

4.1.2 Execution

To launch a router-reflection attack against a target area, the adversary
proceeds in four stages: first, she selects the set of hosts T and V ; then, she
computes the routing bottlenecks for the target area; next, she identifies
candidate routers for compromise; and finally she uses a compromised
router to replay packets of specific flows.

4.1.2.1 Stage 1: Selection of Host-Sets T and V

The adversary begins by selecting a set of public servers in a target area
(set T). Furthermore, she selects a set of nodes that are geographically
distributed across the globe and will act as vantage points for the target
area (set V). Note that the hosts in V do not participate in the attack and
are not under the adversary’s control; they are used only to map the target
area. The set V can be constructed using Looking Glass (LG) servers that
are globally distributed. An LG server is an Internet node that is accessed
remotely (usually through a web interface) and runs a limited number of
commands (e.g., traceroute and ping). For instance, CAIDA provides a list
with approximately 1500 LG servers located in 77 different countries and
268 different ASes [1].

4.1.2.2 Stage 2: Routing-Bottlenecks Computation

In order to compute the bottleneck links, the adversary constructs a link-
map that is centered at the target area and then computes the flow density
for every link in the map. We briefly present this procedure, as it has been
proposed in previous work [97].

Link-Map. To construct the link-map, the adversary performs traceroutes
from all vantage points (set V) to all public servers in the target area (set
T), which yields |V | · |T | distinct traces. A trace consists of a sequence of
IP addresses that belong to the interfaces of the routers on the path. The
IP addresses of two adjacent routers’ interfaces define a link. Thus, using
all obtained traces, we get a link-map centered at the target area.

The computed link-map includes unstable routes that must be elimi-
nated. In order to increase reliability and resource utilization, routers are
often configured to load-balance their traffic over multiple paths; e.g., us-
ing per-flow or even per-packet policies [2, 3]. Thus, for the same source-
destination pair, some links appear always in the traces – persistent links

4.1 Router-Reflection Attack 87

– and some do not – transient links. The adversary eliminates transient
links from the link-map, as they do not qualify for candidate routing bot-
tlenecks: it is unclear whether and under which conditions replayed traffic
can indeed reach a transient link.2

Flow-Density. Given the link-map and the traces, the adversary computes
the flow density for each persistent link, i.e., the number of flows that
traverse the link. A high flow density for a link means that it carries a
large number of the generated traces and is an indicative metric of the
overall number of flows as well.

Routing bottlenecks are determined by sorting the links in a descending
order of flow density and then selecting the b highest ranked links. Higher
values of b mean that more links (and thus more flows) can be considered.
However, attacking only a few links is sufficient to affect a large fraction
of the inbound traffic and achieve the adversary’s goal.

4.1.2.3 Stage 3: Attack-Router Selection

In the third stage of the attack, the adversary discovers candidate routers
for compromise. The adversary will then try to compromise routers that
can target as many bottlenecks as possible.

Routers for outbound replay. The adversary discovers routers that can
replay outbound traffic whose inbound responses will traverse one or more
bottlenecks.

To execute this step, the adversary performs traceroutes from nodes in
the target area to all hosts in V . The goal of the step is to discover as many
interfaces (and thus candidate routers) as possible; thus, interfaces that
perform load balancing are not eliminated. Furthermore, the adversary
must perform alias resolution for the discovered interfaces, since the goal
is to identify routers – not links as in the inbound direction. Note that the
adversary does not control nodes in the target area, but there is a number
of options to perform this step. For example, she can use an LG server that
is located in the target area; or she can issue reverse traceroutes [98] to
hosts in V ; or use existing tools to discover the topology of an ISP [165].

Routers for inbound replay. For the simpler version of the attack, the ad-
versary uses the traceroutes from Stage 1. Using the traces from V to T , the

2The traceroute dataset for our experiments (See Section 4.1.3) contains 2.3 million links,
44.6% of which are persistent.

88 4 The Case for In-Network Replay Suppression

adversary locates the interfaces (and with alias resolution the correspond-
ing routers) that can replay packets and target bottlenecks downstream.

Our evaluation (Section 4.1.3) follows the first three stages of the at-
tack and demonstrates that candidate routers are in the order of hundreds
or thousands.

4.1.2.4 Stage 4: Packet Replay

In the final stage, the adversary has compromised one or more of the can-
didate routers and launches the attack. The adversary follows a similar
procedure as in Stage 3, but this time using the actual observed traffic.
For outbound traffic, the adversary determines which flows will result in
responses that will traverse bottleneck links and ensures that she is not on
the inbound path. To gain insight about the reverse path, she can use sim-
ilar methods as described in Stage 3 (e.g., LG servers and reverse tracer-
oute). For inbound traffic, the adversary must determine which of the
flows can be replayed in order to target a bottleneck link that is located
downstream. The adversary can simply traceroute to the destination of
the flows and compare the traces with the bottlenecks computed in Stage
1. In Section 4.1.4, we discuss more practical considerations for launching
the attack in both directions.

4.1.3 Experimental Results

In this section, we show that the router-reflection attack is practical; that
is, we show that for a chosen target area there is an abundance of candi-
date routers that can be compromised to attack routing bottlenecks. Our
chosen target areas {Area1, Area2, Area3, Area4} are a permutation of the
alphabetically ordered list {Japan, Rome, Seoul, Singapore}. We empha-
size that the feasibility and severity of the attack is not target-area specific
since routing bottlenecks are an elemental property of today’s Internet due
to route-cost minimization [96]; thus, our findings are not limited to the
above-mentioned areas.

In our experimental setup, we follow Stages 1-3 as described in Sec-
tion 4.1.2. For Stages 1-2, we use approximately 200 Planetlab nodes as
our vantage points, which are distributed in 34 different countries and 97
different ASes. We choose 1000 public servers in the target area using a

4.1 Router-Reflection Attack 89

20 25 30 35 40

Number of Bottleneck Links

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l.
 L
o
c.
 o
f
B
o
tt
le
n
e
ck
 L
in
ks

Area #1 Area #2 Area #3 Area #4

Figure 4.2: Location of bottleneck links.

public search engine with geolocation properties3. Furthermore, we vary
the number b of links that we consider as bottleneck links from 20 to 40.
For Stage 3, we choose a small number of measurement points in the tar-
get area that will be used to perform traceroutes to the vantage points; we
obtain the measurement points from RIPE Atlas [5]. Finally, we perform
traceroutes from all Planetlab nodes to all nodes in the target area, and
from all measurement points to all Planetlab nodes. This gives us both the
list of routing bottlenecks and the list of candidate routers.

Routing Bottlenecks. The first interesting result is the location of the
routing bottlenecks in terms of hop distance from the vantage points and
the target area. We measure the average hop distance from the source
and compare it to the average path length. For many of our traces, we do
not obtain responses from the last hops; usually this is due to firewalls in
the hosts’ local networks. In such cases, we assume that the destination
resides after the last responding hop, resulting in a shorter average path
length. In other words, we obtain an upper bound for the relative location
of the bottlenecks with respect to the average path length.

Figure 4.2 shows the average relative location and standard deviation
of the bottleneck links for each target area. The result shows that the

3We used SHODAN (https://www.shodan.io/) as our search engine. When target areas
are more confined regions (e.g., a city), the location of the public servers must be cross-
verified with other geolocation services.

90 4 The Case for In-Network Replay Suppression

0.0

0.2

0.4

0.6

0.8

1.0
Inbound Replay

20 25 30 35 40

Number of Bottleneck Links

0.0

0.2

0.4

0.6

0.8

1.0
Outbound Replay

R
e
la
ti
v
e
 L
o
ca
ti
o
n
 o
f
R
o
u
te
rs

Area #1 Area #2 Area #3 Area #4

Figure 4.3: Location of routers that can target at least one bottleneck.

routing bottlenecks are located approximately in the middle of the routes
and confirms the results of previous work [96]. Furthermore, the location
of the links does not fluctuate significantly as the number of bottleneck
links increases.

Attack Router Identification. We discover routers that can replay pack-
ets in the outbound and inbound direction, and hence, are candidates for
compromise. We show the average location of candidate routers and the
number of routers that can target at least one bottleneck link.

Figure 4.3 shows the average location of the candidate routers that
can replay packets; the upper and lower box plots show the location of the
routers for inbound and outbound replay, respectively. For inbound replay
attacks, the candidate routers are located before the bottleneck links; this
is expected, since bottleneck links must be located downstream with re-
spect to the candidate routers. For outbound replay attacks, the candidate
routers are located approximately in the middle of the routes; this hap-
pens because route diversity increases close to the core, and thus, routers
can launch attacks without attacking themselves in the inbound direction.
Again, we see no considerable change as b changes.

4.1 Router-Reflection Attack 91

Figure 4.4 shows the number of candidate routers that can target at
least one routing bottleneck; the upper and lower portions of each bar rep-
resent the number of candidate routers that can be used for outbound and
inbound replay attacks, respectively. We observe two interesting findings.
First, there is an abundant number of candidate routers to compromise,
ranging from hundreds to thousands. Second, increasing the value of b

does not significantly increase the number of candidate routers. This is
because the additional links that are considered are adjacent to the ini-
tial routing bottlenecks, and thus, only a few more candidate routers are
discovered.

4.1.4 Practical Considerations

Mitigating Measurement Inaccuracies. We had to handle two common
sources of inaccuracies related to traceroutes.

First, traceroute may miss nodes, links, or even report false links [30].
We do not use specialized traceroute tools (e.g., Paris traceroute [30]),
since load-balanced links cannot become routing bottlenecks. Instead, we
obtain multiple traces for every flow (10 probe packets per trace) to elim-
inate inaccuracies due to load balancers.

Second, alias-resolution tools are mostly based on implementation spe-
cific details of routers and may introduce false negatives and false pos-
itives. False negatives fail to cluster interfaces that belong to the same
router, which may reduce the number of candidates for attack routers.
However, this is not an issue since we can still find plenty of candidate
routers. False positives associate interfaces of different routers to the same
router, which can lead to false router identification as good targets. To re-
duce/eliminate false positives, we use the Monotonic ID-Based Alias Res-
olution (MIDAR) [100] tool from CAIDA for two reasons. First, the mono-
tonic bound tests of MIDAR yield a very low false positive rate. Second,
its efficiency in resolving aliases in large lists of interface IP addresses; to
resolve aliases in a list of N IP addresses it probes O(N) pairs instead of
testing the O(N2) candidate pairs.

Compromising Routers. In this paper, we focus on one severe conse-
quence of router compromises rather than software security of routers;
the latter is a research topic on its own right.

92 4 The Case for In-Network Replay Suppression

Area #1 Area #2 Area #3 Area #4

20 25 30 35 40

Number of Bottleneck Links

0

500

1000

1500

2000

2500

3000

N
u
m
b
e
r
o
f
R
o
u
te
rs

Inbound

Outbound

Figure 4.4: Number of routers that can target at least one bottleneck.

Our work, however, is motivated by the observation that compromised
routers are already a major concern for ISPs. It is known that state-level ad-
versaries are massively targeting routers—they are easy to compromise as
they are rarely updated and lack security software to detect breaches [177].
Cisco has issued a document to warn operators of attacks against their
routers and to inform them about commonly used attack vectors [50]. Se-
curity companies consider these attacks only the tip of the iceberg and
highlight the difficulty of detecting such compromises, allowing attackers
to maintain access for long time periods [109].

In addition, the emergence of SDN in ISP networks provides endless
possibilities for infrastructure compromises, since SDN security is not yet
mature. Researchers have warned that attackers can compromise net-
works directly [6, 84]: First, controller vulnerabilities allow attackers to
compromise controllers and take control over the entire underlying infras-
tructure [147]. Second, SDN switches have proven insecure as well, allow-
ing attackers to install persistent malware [6].

Amplification Effect. Our attack leverages UDP services since they do not
perform replay suppression and they commonly have responses that are
much larger than the requests that caused them; i.e., we exploit the UDP
amplification effect. Recent attacks have exploited extreme amplification
factors (e.g., NTP monlist commands can have a factor up to 4700) of mis-

4.1 Router-Reflection Attack 93

configured services, however, moderate amplification factors are common
in legitimate requests as well. For example, DNSSEC requests can have an
amplification factor of 30; the GetBulk operation in SNMPv2 has an am-
plification factor of 6.3; and the BitTorrent hash searches have an average
factor of 3.8. Routers that replay packets in the inbound direction have
to rely on their available capacity to cause congestion. Note that although
bottleneck links are adequately provisioned for normal network conditions,
the additional load caused by small-to-moderate amplification at a router’s
full capacity would significantly degrade the available capacity.

Early Congestion. In case of early congestion, a link that is located up-
stream of the bottleneck link gets congested. Early congestion does not
render the attack impossible, but confines its effect. A router that replays
outbound traffic has no visibility in the inbound direction and thus cannot
react to early congestion. A router that replays inbound traffic, however,
has the bottleneck links located downstream. Thus, the router can perform
traceroutes to the target area and determine early congestion based on the
responses: in case of early congestion the router would not receive most of
the ICMP replies. The router can then react by decreasing the replay rate
of the corresponding flows; at the same time, it can increase the replay
rate of flows that exit from the same interface, but hit another bottleneck.

Attack Detectability. A high replay rate of specific flows can trigger
firewall alarms whenever network operators employ rate-limiting controls;
e.g., Response Rate Limiting in DNS name servers. Although, in principle,
this may limit an adversary’s high-intensity replays for outbound, in prac-
tice this is easily overcome: an attack router can replay different flows that
hit the same routing bottlenecks in the inbound direction.

Replaying packets in the inbound direction (see simplified attack) is
less prone to rate-limiting. Intrusion detection systems and protection
mechanisms are typically deployed close to the hosts and are not perva-
sive in the network, offering protection to resources of end systems, but
not network resources. Routing bottlenecks are located in the middle of
the routes and thus at a safe distance from the actual targets of the attack.
This yields such defense mechanisms ineffective against inbound packet
replay.

94 4 The Case for In-Network Replay Suppression

4.2 Challenges for In-Network Replay Suppres-

sion
End-to-end replay-suppression mechanisms cannot be used at the network
layer due to fundamental operational differences:

1. The packet throughput of routers is orders of magnitude higher than
the packet throughput of the fastest services. Consequently, a replay-
detection overhead that is tolerable for a server may be intolerable
for a router.

2. Routers are equipped with a few tens of MBs of fast memory (SRAM)
per data-path chip. Routers use fast memory for per-packet opera-
tions in order to minimize latency and sustain a high throughput.
However, hardware manufacturers do not integrate more than a few
MBs of memory per chip, as the yield becomes too low to sustain
the manufacturing process. On the contrary, end servers can meet
their performance requirements by using larger and slower memory
(DRAM) combined with the fast memory of CPU caches.

3. Novel mechanisms at the network layer often require coordination
and introduce complex interactions between network entities. For
example, a mechanism may require time synchronization among
routers of different domains.

4.2.1 In-Network Mechanisms

To detect and suppress replayed packets in the network, a router must
inspect each packet it forwards; thus, the detection mechanism must be ef-
ficient and lightweight so that it does not impair forwarding performance.
We consider three main challenges for universally deploying a novel mech-
anism at the network layer:

1. Computation Overhead. In order to sustain a high throughput, a
router has a strict time budget to serve a packet. The two major
components that carve out this budget are latencies due to mem-
ory operations and due to CPU-intensive operations. For example,
if the memory footprint for replay detection is too large to fit into

4.2 Challenges for In-Network Replay Suppression 95

the fast memory of the router (e.g., on-chip caches), forwarding per-
formance will be degraded due to cache misses. Likewise, if CPU-
intensive operations, such as frequent public-key signature verifica-
tions become necessary, the forwarding performance will suffer.

2. Communication Overhead. The communication overhead can come
in the form of latency overhead and bandwidth overhead. For exam-
ple, if a router needs to ask another entity (e.g., the source host
who created the packet or a remote router) to check the authenticity
of the packet, the communication latency will increase substantially.
Furthermore, the additional messages will increase the bandwidth
overhead, especially if they are sent frequently.

3. Time Synchronization. In one extreme, a replay detection mecha-
nism does not require any of the entities (e.g., routers, ASes, hosts)
to be synchronized; and on the other extreme, it may require every
entity in the Internet to be synchronized. A middle-ground solution
may require only parts of the networks to be synchronized (e.g., en-
tities within each autonomous system).

4.2.2 Inadequacy of E2E Replay Detection

Early work on replay detection identified four basic primitives, and combi-
nations thereof, that are found in all end-to-end protocols for secure com-
munication [120]. We present these primitives and study their applicabil-
ity for in-network replay detection.

Storing Packet Digests. A router stores a digest for every packet that it
forwards. When the router receives a new packet, it checks whether it has
seen the packet before. This has significant advantages: it has a relatively
low processing overhead (i.e., a single hash operation), no communica-
tion overhead, and no time-synchronization requirement. However, it has
a large memory footprint, which makes it impractical for routers: for a
fully saturated 10-Gbps link, a router needs to store 109 bits of data for
each passing second. Even an efficient storage data structure, such as a
Bloom filter is impractical: a router would need 142 MB to store packets
received in one minute, assuming a target false positive rate of 10−5 and
the largest packet size of 1500-byte, i.e., the lowest packet rate. No router
can store 142 MB in its on-chip cache. Even if the router stores packets for

96 4 The Case for In-Network Replay Suppression

a minute, adversaries can still replay packets after one minute. Thus, in-
definitely storing observed traffic without a mechanism to discard packets
is not viable.

Sliding Time Windows. A router maintains a time window and accepts
packets whose timestamps fall within the window. This requires time syn-
chronization since the source needs to use a timestamp that falls within the
time window of the router. To prevent replays, the router needs to store the
packets that it has forwarded in a buffer until the packets become invalid
by falling out of the sliding time window. This approach has minimal com-
munication overhead (the timestamp in the packet) since the router does
not exchange additional messages with the source. However, minimizing
the size of the buffer comes at the cost of strict time synchronization so
that legitimate packets are not dropped. Since precise Internet-wide time
synchronization is impractical, we consider this approach also impractical.

Per-Packet Sequence Numbers. A source and an intermediate router
maintain a sequence number for the source’s last observed packet: the
source inserts a sequence number in each packet, and the router accepts
packets that have a higher sequence number than the router has previously
seen from the source. This approach does not require any time synchro-
nization, does not incur any latency overhead, and does not introduce
prohibitive computation overhead. However, packet reordering can cause
dropping of legitimate packets, when packets with higher sequence num-
bers arrive before packets with lower sequence numbers. Furthermore,
this mechanism requires per-source state at routers; thus, the storage over-
head depends on the granularity at which sources are identified. For exam-
ple, if sources are identified at the granularity of a host, then this approach
requires per-host state at routers, which is impractical.

Challenge-Response. For each packet, a router asks the source host to
send a proof of transmission that verifies that the packet is not a replay:
the router inserts a nonce and expects from the source a cryptographic
signature over the nonce; alternately, the source can produce a message
authentication code (MAC) using a key that is shared with the router. The
latter approach has a relatively small computation overhead and does not
require time synchronization. However, it has the largest communication
overhead of all mechanisms since a separate challenge is needed for every
packet that traverses every router. Hence, it is impractical.

4.3 In-Network Replay Suppression 97

Second Chance. This hybrid approach [120] combines three of the four
primitives discussed above: it uses a variable-sized sliding time window
and uses a buffer to store past packets for the duration of the window. To
eliminate the requirement for time synchronization between a source and
a router, it uses a challenge-response mechanism when needed: when the
packet’s timestamp falls outside the router’s time window, the router asks
the source to resend the packet using a timestamp the router provides,
thereby giving the source a second chance. This approach is impractical
at the router level because packets typically go through multiple routers
that perform replay detection, and as a result, a packet may experience
multiple rounds of second chances; thus incurring a large communication
overhead that makes the approach impractical.

4.3 In-Network Replay Suppression

We present our solution for in-network replay suppression, starting with
our assumption. Then, we provide a high-level overview of the solution,
followed by the protocol details. Finally, we formulate an optimization
problem to determine all the parameters.

Assumption: We assume that a source-authentication scheme is deployed,
i.e., every packet in the network is attributed to its source. We empha-
size that replay attacks are meaningful only if source authentication is
deployed; otherwise, an adversary controlling a router can directly in-
ject/spoof traffic and attack any target. Therefore, source authentication
is a fundamental requirement of such security schemes; it is not a specific
limitation of our mechanism. As we show in Section 4.1, source authenti-
cation does not prevent replay attacks, however it is necessary to prevent
malicious routers from tampering with traffic.

The source-authentication literature is abundant with proposals that
can be used. For instance, to authenticate packets, AIP [25] combines
self-certifying IDs and an out-of-band verification protocol between an in-
termediate router and a source. Packet Passport [115, 117] uses multiple
message authentication codes (MACs) to provide AS-AS authentication;
each MAC is computed with the shared-key between the source AS and the
transit AS on the path. Shared keys are generated through Diffie-Hellman
key exchanges, using the public and private keys of ASes; the public keys

98 4 The Case for In-Network Replay Suppression

are obtained from RPKI [29]. Passport is a lightweight protocol, which is
practical at the router level and can be used by our mechanism.

4.3.1 Overview

We build our replay-suppression mechanism based on two primitives: per-

interval sequence numbers and storing packet digests in a Bloom Filter (BF).
A valid sequence number is the first control check to ensure that a packet
is legitimate (Section 4.3.1.1). If the packet is accepted, it is then checked
against a locally stored list of previously observed packets that also have
valid sequence numbers (Section 4.3.1.2). In other words: packets that
are stored and replayed significantly after their observation time will be
caught due to a sequence-number mismatch; packets that are replayed
shortly after their observation will be caught by the BF; and packets that
are replayed with a modified sequence number will be caught by source au-
thentication. Through this combination, we build a mechanism that does
not require global time synchronization and does not introduce communi-
cation overhead due to additional messages. Furthermore, our mechanism
does not require adoption at every router, but can be deployed only at bor-
der routers of ASes; we discuss the security implications of the deployment
locations in Section 4.5.1.

4.3.1.1 Per-Interval Sequence Numbers

Recall from Section 4.2 that the use of per-packet sequence numbers (se-
qNos) has two implications for a replay-suppression mechanism: the stor-
age overhead depends on the granularity at which sources are identified,
and that legitimate packets may be dropped if a packet with a higher seqNo
arrives earlier than a packet with a lower seqNo.

In our approach, every source AS uses a seqNo, and every other AS
(more precisely, their border router) remembers the seqNo of the source
AS; in other words, routers keep per-AS state. More precisely, the source
AS embeds a seqNo in every outbound packet, and transit routers only
accept packets with seqNos that fall within a seqNo window. Furthermore,
the source AS does not increment its seqNo per packet, but at fixed time
intervals; in essence, ASes achieve loose synchronization without relying
on global time synchronization. Our approach raises two important issues:
the update frequency of the seqNos and the dissemination mechanism for
new seqNos.

4.3 In-Network Replay Suppression 99

Update Frequency. The source AS periodically increments its seqNo in
order to invalidate previously sent packets with smaller seqNos. Note that
to achieve loose synchronization, the seqNo-update frequency is the only
parameter that requires global agreement among ASes: ASes update their
seqNos at a constant interval, but the seqNo values and the actual events
of updating them are not synchronized. This approach makes it easier to
handle packet re-ordering. A router maintains a seqNo window and only
the packets with seqNos within the window are accepted. The use of per-
packet seqNos makes it hard to determine an appropriate length for the
window so that legitimate packets are not dropped; the length depends
on parameters that change dynamically over time, such as traffic patterns
(e.g., packet bursts) and load balancing at intermediate routers. With our
approach we mask away this complexity, since we only need to consider
the maximum variance in one-way latency (more details in Section 4.3.3).

Update Dissemination. Transit routers must be informed and keep up-
to-date information for the valid seqNos of every AS, so that the observed
packets can be checked. To this end, we use the following two mecha-
nisms:

The first one is an in-band mechanism: the source AS increments its
seqNo, which is carried in outbound packets, and thereby informs routers
in other ASes. Upon receiving a packet, router R updates the locally stored
seqNo SNR

S
for the source AS, if the packet is authentic and it carries a

higher seqNo SN
p

S than the one stored. The benefit of this approach is
that it does not require any additional messages to disseminate updated
seqNos.

The second one is a local mechanism: a router increments the locally
stored seqNo for the source AS by itself, if a new seqNo is not seen for
a prolonged period of time; we refer to the time interval after which the
seqNo for the source is incremented as T T LS . This self-initiated update
is necessary to limit the storage overhead at routers, since a router stores
all packets with valid seqNos to prevent replays (Section 4.3.1.2); if the
seqNo for a source is not updated, the router cannot delete the stored
packets from the source. Thus, T T LS will be a function of the seqNo-
update interval, so that the router’s seqNo for the source closely follows
the source’s seqNo in every case.

100 4 The Case for In-Network Replay Suppression

Table 4.1: Summary of parameters and notation.

Parameters determined by the environment

r Incoming packet rate at the routers.
σ Maximum latency variation between packets.

Parameters determined by the optimization problem (§4.3.3)

T Sequence-number-update interval.
fp False-positive rate.
M Length of the sequence-number window.
L Bloom filter switching interval.
∆ Additional time to delay sequence-number updates.
N Number of bloom filters.
m Size of bloom filter.
k Number of hash functions or bloom filter indices.

Symbols for Source AS S

SNS Sequence number used by S.

Symbols for Router R

SNR
S

Sequence number that router R maintains for S

T T LS TTL until R increments SNR
S

.
BFi i-th bloom filter, where 0≤ i < N .
BFw Bloom filter where incoming packets are inserted.

Other Symbols

p An arbitrary packet.
SN

p

S Sequence number of S that is encoded in packet p.

4.3.1.2 Storing Packet Digests

A router stores digests for previously observed packets to guarantee that
packets with valid seqNos are not replayed. This is a consequence of using
per-interval seqNos, since a seqNo does not uniquely identify a packet.

We create a data structure that consists of multiple BFs that are periodi-
cally rotated. In this data structure, a packet is inserted only into one of the
filters, which we denote as the writeable filter; however, when searching
if the packet has been previously observed, all filters are searched. Fur-
thermore, the filters are periodically rotated in a round-robin fashion to
prevent flooding of a single filter with too many insertions.

4.3 In-Network Replay Suppression 101

Algorithm 1 Processing of packets p at router R.

authenticate(p) Checks if p is authentic
get_src_info(p) Retrieves SNR

S
, T T LS for S

bf_lookup(p,BF) Lookup p in bloom filter BF

bf_insert(p,BF) Insert p into bloom filter BF

1: if !authenticate(p) then

2: return
3: end if

4: {SNR
S

, T T LS} ← get_src_info(p)

5: if SN
p

S < SNR
S
−M then

6: return
7: else

8: if SN
p

S > SNR
S

then

9: SNR
S
← SN

p

S

10: T T LS ← T +∆

11: else

12: for 0≤ i < N − 1 do

13: if bf_lookup(p, BFi) then

14: return
15: end if

16: end for

17: end if

18: bf_insert(p, BFw)

19: Forward p

20: end if

We emphasize that a packet is inserted to a BF independent of the se-
qNo in the packet; the packet is added only to the currently active filter,
the writeable filter. However, the observed packet is checked for replay
by checking all BFs for membership, including the writeable one; a posi-
tive response from any of the filters indicates a replay. In order to delete
packets, the filter that becomes writeable is reinitialized to zero. Note
that packets in the zeroed filter have sequence numbers that are no longer
valid and will be discarded if replayed. This approach naturally raises two
inter-related issues: how to determine the number N of filters in the data
structure and the frequency of rotation L.

102 4 The Case for In-Network Replay Suppression

Recall that a router periodically rotates the BFs, but the rotation is
independent of the seqNo updates by the ASes. In order to ensure replay
detection, a router must remember a packet at least until the packet seqNo
is invalidated. That is, the BF coverage period must be at least as long as
that of the seqNo-window, so that valid seqNos cannot be replayed. Hence,
the time window that the BFs must cover, which is N · L, must exceed the
amount of time that is needed for the packet to become invalid. At the
same time, BFs must be small to reduce storage requirements and fit in
fast memory. In Section 4.3.3, we take N and L into account to compute
the optimal parameters for our replay-suppression protocol.

4.3.2 Protocol Operations

We present the tasks that are performed by the egress border routers of the
source AS S and by the ingress border routers R of the intermediate and
destination ASes. Table 4.1 summarizes the parameters and the notation
we use.

Source AS: S inserts its seqNo SNS in every outbound packet. In addition,
it increments its seqNo SNS after each interval T.

Ingress Router: For each incoming packet from a neighboring AS, R checks
if the packet falls within the seqNo window for S and if the packet is present
in any of the BFs. Algorithm 1 describes the procedure that R executes for
incoming packets.

Initially, the router checks the authenticity of the packet (Lines 1-2) and
checks if the seqNo in the packet (SN

p

S) falls within the seqNo window
(Lines 5-6). If the packet is not authentic or has an invalid seqNo, the
packet is dropped and the procedure terminates. Then, for valid packets,
the router checks if the packet has been previously recorded in any of the
N BFs (Lines 12-16). If the packet has not been seen previously, it is added
to the writeable filter (Line 18) and then it is forwarded (Line 19). Note
that when querying/adding a packet to a BF, the router computes a keyed
pseudo-random-function (PRF) over the content of the packet, excluding
the mutable packet fields. The output of the PRF is used to determine the
bits in the BFs that must be checked/set; the key for the PRF is known only
to the AS. The use of a keyed PRF is necessary to prevent an adversary from
launching a chosen insertion attack against the BFs: if the adversary can

4.3 In-Network Replay Suppression 103

control which bits in the writeable filter are set, it can set all bits in the BFs
and cause all packets to be recognized as replays.

Furthermore, if the seqNo in the packet is higher than the one locally
stored for S, R updates its seqNo and reinitializes T T LS to T +∆ (Lines
8-10), which is the count-down timer used to self-update the seqNo of
the source. ∆ is an additional short delay that is used to ensure that the
router does not increment the source’s seqNo faster than the source does.
If a router were to increment the source’s seqNo faster, then it could be that
after a long time period packets from the source AS would be dropped.

In addition, R performs one more task (not described in Algorithm 1).
It periodically decrements T T LS for each AS; if T T LS becomes zero, the
seqNo of the corresponding AS (SNR

S
) is incremented and T T LS is reset

to T +∆. This implements the count-down timer that is used for the self-
updates of the sources’ seqNos.

4.3.3 Optimization Problem

In this section, we formulate an optimization problem that involves the
inter-related parameters of our mechanism. An appropriate configuration
of the parameters and especially of the BFs is crucial to guarantee a high
forwarding performance for the routers. We describe performance as a
function of all the involved parameters: f (m, k, N , L, M). Then, we derive
constraints between the parameters, which gives us the following optimiza-
tion problem:

minimize f (m, k, N , L, M)

subject to M >
σ

T
+ 1, (4.1)

N >
1.1(T +σ)

L
+ 1, (4.2)

m>
−kr L

ln (1− (1− (1− fp)
1
N)

1
k)

, (4.3)

m, k, N , L, M ∈ Z+ (4.4)

Sequence-number update interval (T). T represents the time period for
which a seqNo is used, before it is incremented. We consider values on the

104 4 The Case for In-Network Replay Suppression

order of a few milliseconds (e.g., 10ms), and we show that it leads to an
efficient implementation.

Additional delay window (∆). ∆ is a delay period that is used to slow
down the update rate of router’s R view for the seqNo of AS S (SNR

S
). It

ensures that R does not increment its seqNo faster than S, i.e., does not
increment at an interval shorter than T .

The main reason for an early update is the clock drift between S and
R. We define ∆ with respect to T , since the amount of clock drift is pro-
portional to the time period under consideration; we are interested in es-
timating the seqNo-update inaccuracy for SNS and SNR

S
by S and R respec-

tively. We conservatively assume that the clock drift is lower than 0.05 · T ;
Marouani et al., report that a clock variation of 0.5 ppm, i.e., a drift of
0.5 µs per second, is a conservative estimate [123].

Furthermore, to account for the worst case, we assume that R has the
fastest clock, i.e., R thinks T has passed when in reality 0.95 ·T has passed,
and S has the slowest clock, i.e., S thinks T has passed when in reality
1.05 · T has passed. Thus, we set ∆ = 0.1 · T .

Sequence-number window length (M). Equation 4.1 expresses the length
of the seqNo window that a router maintains, as a function of the period
that a single seqNo is used (T) and of the maximum latency variance (σ)
between two packets.

The inequality is derived as follows: let t i denote the time at which S

starts using seqNo i. Since seqNos are updated every T , the elapsed time
between the start of two seqNos is t i − t j = (i − j) · T , for i > j. Then,
consider a router that accepts packets in the window [i, i + M − 1]. To
ensure that a legitimate packet is not dropped due to packet reordering,
the last packet with a seqNo of i should arrive at R before the first packet
with a seqNo of i+M (Figure 4.5). In the worst case, the last packet with
seqNo i is sent at t i+1 − ε1 and received at t i+1 − ε1 +σ, where ε1 is an
arbitrarily small positive constant. The first packet with seqNo i+M arrives
at R no earlier than t i+M + ε2, where ε2 is an arbitrarily small positive
constant. Mathematically, the relation between the packet-arrival times
can be described as t i+1−ε1+σ < t i+M+ε2. By rearranging the inequality
and using the fact t i+M − t i+1 = (M − 1) · T , we obtain Equation 4.1.

Bloom-filter parameters (m, k, N , L). Equation 4.2 expresses the number
N of required BFs as a function of the BF rotation interval L. Recall that

4.3 In-Network Replay Suppression 105

S

R

ti ti+1 ti+M-1 ti+M

< ti+M + ε2ti+1-ε1+σti+1-ε1

Sequence-number window: M

Maximum latency variation: σ

time +

Figure 4.5: The last arriving packet with seqNo i must arrive before the
first arriving packet with seqNo i +M .

R has to store a packet at least until the seqNo of the packet is no longer
valid, which is a time period of length M ·(T+∆).4 Therefore the complete
rotation of the circular BFs, which lasts for N · L, should take longer than
M · (T + ∆), and this yields that N · L > M · (T + ∆). We obtain that
N > M ·(T +∆)/L+1 filters are required; the additional filter is necessary
to store the incoming packets at the current time interval. We combine the
formed inequality with Equation 4.1 and by setting ∆= 0.1 · T we obtain
Equation 4.2.

Equation 4.3 describes the size m of each BF as a function of the BF
rotation interval L, the number N of BFs, the number k of necessary hash
functions, and the BF’s target false-positive rate (fp). Since an incoming
packet is checked against all BFs, the overall target false-positive rate is
1−(1−fp)N . To determine the value for fp, we consider the average number
of packets that a router receives in an interval L (which is r · L, where r

is the incoming packet rate). Using the BF equations, we get fp = (1 −
ek·x ·L/m)k and by combining it with the equation for the size of a BF, we
obtain Equation 4.3. The inequality indicates that any larger value for m

yields a lower false-positive than fp.

The formulated optimization problem is an integer programming prob-
lem, which is know to be NP-hard [138]. Note that also the rotation in-
terval L is an integer: a time period in a computing system is expressed
as a multiple of some minimum supported time granularity (e.g., 1 ns);
in practice, we will use values at the order of 1 ms (Section 4.4). In our

4In the worst case, a router does not receive seqNo updates from the source and self-
increments the seqNo every T +∆.

106 4 The Case for In-Network Replay Suppression

context, we obtain multiple solutions to the problem by searching a con-
strained parameter space; for example, we constrain the size of the BF to
be less than 20 MB, since ideally it should fit into a processor’s cache. Our
grid search is performed as follows: 10 ms ≤ L ≤ 200 ms, 2 ≤ N ≤ 20,
2≤ k ≤ 30, 1 MB≤ m≤ 20 MB.

Furthermore, the objective of the optimization problem changes de-
pending on the implementation platform (e.g., software vs. hardware-
based implementation). In Section 4.4.1, we adapt the optimization prob-
lem to a software router and show how a selection of carefully chosen
parameters leads to an efficient implementation.

4.4 Software Prototype
To demonstrate the practicality of our approach, we implement the pro-
posed replay-suppression mechanism on a software router. Our evaluation
focuses on the overhead of replay suppression and not other functionali-
ties (e.g., source authentication or longest prefix matching). Thus, we do
not consider a specific underlying network architecture, but we make the
following generic assumptions:

• Every packet injected into the network by a host has a unique network-
layer identifier. For example, the IP-ID field in IPv4 is implemented
by most operating systems as a packet counter [165]. We use this
identifier together with the immutable content of a packet to uniquely
identify the packet and minimize the probability of a collision.

• A router can obtain the AS number (ASN) of the source-host for
every packet. For example, certain network architectures express
addresses as a (ASN : hostID) tuple [25, 117]; or an IP forwarding
information base (FIB) can be extended to include this information
for every source-address prefix.

4.4.1 Implementation

The main focus of our implementation is to optimize memory-access pat-
terns. Since our solution is a memory-intensive application,5 forwarding
performance depends mostly on cache efficiency, i.e., it depends on the

5For each packet, k · N bits are accessed in the BFs; k bits for each one of the N BFs.

4.4 Software Prototype 107

Parameter Value Parameter Value

T 10 ms m 8 MB
r 14.88 Mpps k 11
σ 100 ms N 2
M 11 L 121 ms

Table 4.2: Software-router implementation.

memory footprint of the application and on the memory access patterns.
Small data structures are more likely to fit in the cache and, thus, reduce
the importance of the access pattern. However, in a software implementa-
tion the cache is shared with other processes and a small memory footprint
does not guarantee optimal performance. Thus, we focus on minimizing
cache misses.

To minimize cache misses, we use a blocked BF [70] instead of a stan-
dard BF. A blocked BF consists of multiple standard BFs (called blocks),
each of which fits into the typical 64-byte cache line. For each element
that is checked/inserted, the first hash value determines the block to be
used and additional hash values determine which bits to check/set in the
block. Thus, a blocked BF incurs only one cache miss for every operation
in the worst case. This optimization comes at the cost of a larger memory
footprint compared to a standard BF with the same false-positive rate.

The next step to minimize cache misses is to minimize the number of
blocked BFs. Recall from the protocol description (Section 4.3.2) that for
every observed packet, we add it to the writeable BF and check for its
presence in all other filters. Since blocked BFs may have one cache miss
per checked/inserted element, we want to minimize the number of filters.

We solve the optimization problem (Section 4.3.3) with the objective
of minimizing the number of BFs. To account for the worst case, we as-
sume a packet rate of 14.88 Mpps, which is the theoretically maximum
packet rate for a 10 GbE Network Interface Card. Also, we set a conser-
vative value for the maximum latency variation σ to 100 ms, based on
a recent latency-measurement study [60]. We target for an overall false-
positive rate that is less than 5·10−6, and we obtain multiple solutions that
use N = 2 BFs (which is also the lowest possible value according to Equa-
tion 4.2). Specifically, we obtain solutions that have different filter sizes
(m), different seqNo window lengths (M), and that rotate BFs at different

108 4 The Case for In-Network Replay Suppression

time intervals (L). From these solutions we choose the one that has the
smallest memory footprint (lowest m value), under the constraint that the
filter size is a power of 2. This constraint provides a significant processing
speedup, as heavily used computations are transformed to bitwise opera-
tions (e.g., modulo operations become bit-shifts). Table 4.2 summarizes
all the parameters of our solution.

Furthermore, to check/insert elements in the BF, we need to obtain the
pointers to the corresponding bits in the filter. To implement the keyed PRF
(Section 4.3.2), we compute an AES based CBC-MAC over a fixed length

of the first bytes of a packet, as a CBC-MAC is insecure for variable-length
messages [34]. Also, from our analysis of CAIDA traces [7], we found
that the first 48 bytes of a packet’s content are sufficient to mitigate digest
collisions; the same result has been reported by previous work [58]. We
split the 16-byte output of the MAC into appropriately sized chunks so that
the first chunk points to the 512-bit block and the remaining chunks point
to the bits in the block.

The last required functionality is the FIB. The FIB holds for every AS S

the seqNo SNR
S

and the count-down timer T T LS; we decrement the TTL
value every 1 ms.

Optimizations. We leverage the Data Plane Development Kit (DPDK) [13]
and Intel AES-NI [76] to build our prototype, and we perform the following
optimizations to the BF. To insert an element, we leverage 128-bit registers
and an SSE OR instruction: we prepare the inserting element by setting
the respective bits obtained from the MAC computation. Then, we set the
required bits in the 512-bit block with four 128-bit SSE OR operations. To
check for membership of an element, we use early exit, i.e., as soon as we
discover an unset bit we know the element is not a duplicate. This results
in better performance since false positives are low and it is very likely to
discover unset bits early.

4.4.2 Evaluation

We evaluate the switching performance of our software router on a com-
modity server equipped with an Intel Xeon E5-2680 CPU (20 MB L3 cache),
32 GB DDR3 RAM, and a 10GbE Network Interface Card (NIC). We ded-
icate only two cores of the CPU to perform all required processing: one

4.4 Software Prototype 109

iMIX

Line Rate

7
.7

 G
b

p
s

5
.7

 G
b

p
s

8
.6

 G
b

p
s

8
.6

 G
b

p
s

9.5

Gbps

9.5

Gbps

Figure 4.6: Forwarding performance for packet sizes of 64 and 128 bytes
and for IMIX.

core handles all the packet processing, and the other core updates the TTL
values and seqNos in the FIB.

We utilize Spirent SPR-N4U-220 as our packet generator to generate
load on the router; the router processes the generated traffic and sends
it back to the generator. We generate a FIB with 55k ASNs, and use ran-
dom destination addresses to avoid spatiotemporal locality for FIB cache
accesses.

First, we test the forwarding performance of one port for two packet
sizes (64 and 128 bytes) and a representative mixture of Internet packet
sizes (IMIX) [129]. Minimum-sized packets, 64 bytes, translate to the high-
est possible packet rate and are the worst case for the software router; we
refer to the highest packet rate for each test case as the line-rate perfor-
mance. The baseline for the experiments is the forwarding performance
without any packet processing. Figure 4.6 shows the forwarding perfor-
mance we obtain. The results show a 25% decrease for minimum-sized
packets; and that for longer packet sizes, i.e., lower packet rates, optimal
performance is achieved.

Next, we measure the latency overhead of our implementation (Fig-
ure 4.7). We observe a two-fold increase in average latency only for minimum-
sized packets. The average latency and latency range is almost identical
for the other two test cases.

We observe a performance degradation, both for throughput and la-
tency, for minimum-sized packets. This performance degradation is at-
tributed to the penalty of the cache misses and the overhead of the MAC

110 4 The Case for In-Network Replay Suppression

Figure 4.7: Average, minimum, and maximum packet latencies for packet
sizes of 64 and 128 bytes and for IMIX.

computation when the router is subjected to the maximum load. We em-
phasize that a 10 GbE link, fully utilized with 64-byte packets is far from
any realistic workload. IMIX is a representative of common Internet traffic
and has an average packet size of 417 bytes; our implementation saturates
line-rate for IMIX and 128-byte packets.

4.5 Security Considerations

4.5.1 Deployment Location and Topology

We discuss certain security issues that depend on the location of routers
that deploy replay suppression and on the network topology.

In Section 4.3, we mentioned that routers which deploy replay sup-
pression are located at the borders of ASes. This deployment model raises
certain security issues, which are mitigated if more routers inside an AS
deploy the protocol.

Packet replays create an attack surface, which includes the path seg-
ments between the malicious router and the first deploying router that will
drop the replayed packets. If deploying routers are located only at AS bor-
ders, then the attack surface is limited to a single AS. If more routers inside
an AS deploy the protocol, then the attack surface is further reduced. For
example, ASes could deploy more such routers near routing bottlenecks.

Furthermore, a malicious router can strategically replay packets even
against a deploying routers: since replay suppression is done by routers

4.5 Security Considerations 111

individually, without coordination among them, a packet that is sent to one
deploying router can be successfully replayed (once) to another deploying
router. However, the effect of such an attack is limited: the malicious
router can replay a packet at most once to a router that performs replay
suppression; additional replays after the first one will be suppressed.

4.5.2 Attacks on Bloom Filters

BF implementations are a common target for attackers [74]. We consider
two types of attacks that could be launched against our protocol.

1. Chosen-insertion Attack. In a chosen-insertion attack, the adver-
sary crafts packets that fill up the bits in the BF so that the false-
positive rate becomes very high. Our protocol is resilient against the
attack because we use a keyed PRF to compute the bit locations in
the filter. Since the key is not known to the adversary and the out-
put of the PRF is uniformly random, the adversary cannot set specific
bits in the filter.

2. Query-only Attack. In the query-only attack, the adversary attempts
to launch a DoS attack against the BF by querying items that take
an abnormally long time to check. In our protocol, we focus on
cache efficiency, so that either the BFs fit entirely in the cache or
that checking for an item requires at most one cache miss.

4.5.3 Sequence-number Wrap-around

The use of per-interval seqNos makes wrap-arounds infrequent,6 but wrap-
arounds, i.e., restarting from zero, will eventually happen. In the event of
a wrap-around, previously invalidated packets can be replayed because
the seqNos become valid again. Furthermore, an adversary can replay pre-
viously seen packets that have higher seqNos than the one currently used
by a source AS, so that the router would fast-forward the seqNo window
for the source AS. As a result, the router would drop all legitimate packets
that are sent by the source AS.

6For a 4-byte seqNo that is incremented every 10 ms, it takes about 497 days to wrap-
around.

112 4 The Case for In-Network Replay Suppression

This problem is inherently solved by the underlying source authentica-
tion mechanism. In source-authentication schemes, source ASes periodi-
cally update their keys, so if the source AS updates the key before its seqNo
wraps around, then the old packets will be invalid due to an authentication
failure.

4.6 Discussion

Hardware Implementation. In our software-router implementation, we
used blocked BFs because the cache is shared with other processes.

In a hardware implementation, however, the optimization objective
changes since a NIC can have a dedicated cache for the purpose of replay
suppression. Standard bloom filters are a better option, because they are
more space efficient than blocked bloom filters (for a given false-positive
rate) and thus, can potentially fit into a dedicated cache. Table 4.3 summa-
rizes the parameters of the optimization problem for a hardware-based im-
plementation; the aggregate footprint of the application is less than 12 MB,
with a false-positive rate of 9.85 · 10−7.

Compliance to Sequence-number-update Interval. Recall that the only
parameter that requires global agreement is the interval T at which ASes
update their sequence numbers. We stress that ASes have no incentive to
deviate from T . If AS S updates SNS too fast, S may experience packet
dropping due to packet reordering: packets with higher sequence num-
bers may arrive faster than packets with lower sequence numbers; this
risk increases as T becomes smaller. If S updates SNS too slowly, S may ex-
perience packet dropping due to low seqNos: a router R may self-update
its seqNo for S and the seqNos in the packets may fall out of the seqNo
window.

Failure Recovery. Intermediate routers maintain seqNos and previously
forwarded packets for all ASes. In an event of a failure (e.g., loss of power),
a router may lose this information and thus, is unable to identify replayed
packets after reboot. This is only a temporary situation: upon receiving a
packet from a source AS, the router synchronizes its seqNo for the source,
allowing it to filter any packets that fall out of the seqNo window, but not
replayed packets with valid seqNos; however, after at most M · (T +∆)

since the seqNo update, the router has fully recovered from the failure
and can suppress all replayed packets.

4.6 Discussion 113

Parameter Value Parameter Value

T 10 ms m 4 MB
r 14.88 Mpps k 11
σ 100 ms N 3
M 11 L 61 ms

Table 4.3: Hardware-based implementation.

Routers of the source AS may fail as well. In this case, the router ob-
tains the seqNo that the AS is using and the time for the next seqNo update
by asking neighboring routers within the same AS.

A source AS (or a router) may fail as well. In case of a router failure in
the source AS, the router asks a neighboring router within the same AS to
determine the current seqNo as well as the time for next seqNo update. In
case of a catastrophic failure of the entire AS, there are three choices. The
source AS could use a sufficiently high seqNo so that routers in other ASes
can synchronize to the new seqNo of the source AS. Or, the source AS can
ask its neighboring ASes (or their neighboring routers while re-establishing
BGP sessions) for the seqNo that it was using prior to failure. Alternately,
as a last resort, a transit AS can erase state for the source AS, if it does not
observe traffic from the source AS for a sufficiently large period of time;
then, the transit AS uses the seqNo of the source AS when it observes again
traffic from the source AS.

Chapter 5

Deployment Strategies

Deploying a future Internet architecture (FIA) that changes the core of the
Internet is an onerous task. To make matters worse, there is no systematic
formula or guideline to successfully deploy such architecture; only heuris-
tics and recommendations exist based on previous experiences.

A well-known approach to deploy a new architecture is by construct-
ing an overlay network of the architecture over today’s Internet. That is,
today’s Internet is used as virtual links to interconnect components of the
new architecture that are geographically separated. Then over time, as the
demand for the new network technology becomes ubiquitous and press-
ing, the new architecture gradually assumes the role of today’s Internet.
The most successful example of this deployment path is today’s Internet
which was initially deployed as an overlay over the public telephone net-
work [52]. Moreover, the IPv6 deployment is following this deployment
path: in its early stage, IPv6 networks were deployed as overlay networks
over today’s Internet. As the demand for IPv6 increases (primarily due to
the imminent depletion of IPv4 addresses), the IPv6 network is gradually
expanding to become the network architecture for today’s Internet [164].

However, there is no conclusive evidence that the overlay approach is
the most appropriate approach for FIA deployment. Moreover, given the
diversity of FIA proposals, it is unlikely that the overlay approach would
be the best approach for all FIA proposals. Hence, in this chapter, we ex-
plore an alternate approach for FIA deployment in addition to the overlay
approach.

For the alternate approach, we start by examining the goal of the FIA
research. The ultimate goal of the FIA research is to design and deploy “a
network that serves all the needs of society” [136]; however, there are dif-
ferent views on how FIA research efforts work towards this goal [72, 152].
In one view, the goal of the FIA research is to design an architecture that
will replace or coexist with today’s Internet; and, this goal is reflected on
the overlay deployment approach. In another view, the goal is to gain a
systematic understanding of the network to establish a networking disci-

116 5 Deployment Strategies

pline. Yet from a different angle, the goal is to identify new ideas that
were previously not thought of and realize those ideas on today’s Internet.

We take on the last view on the goal of the FIA research and propose
a deployment approach that can be summarized by the following phrase—
think revolutionary but act evolutionary. In this approach, the FIA research
serves as a platform to think revolutionary without confining oneself to the
restrictions and the limitations of today’s Internet to identify new ideas.
Then, these ideas are transformed and incrementally adopted on today’s
Internet. In this approach, a deployment is successful if the ideas of a FIA
are realized on today’s Internet. We name this alternate approach as the
integrated approach to emphasize that the main ideas of the deploying FIA
are integrated on today’s Internet instead of creating an overlay network
for the FIA.

We apply the integrated approach to our architecture, APNA. To this
end, we take one idea of APNA—user-defined privacy—and explore how
that idea can be realized on today’s Internet using practical and readily
deployable technologies.

To this end, we take a user-centric approach to privacy, and our first
step is to account for users’ diverse privacy requirements. Following a
definition of privacy by Westin [172]—what is revealed to whom—we in-
troduce the term of privacy domains. A privacy domain is defined by the
entities (e.g., ISPs) and the privacy-sensitive information (e.g., source ad-
dress) that is revealed to these entities for a user’s communication session.
Privacy domains help us in bridging the gap between users’ high-level pri-
vacy requirements and the more actionable technical requirements.

Our second step is to identify simple and common networking prac-
tices that can be used to realize privacy domains. We identify three such
practices—encryption, address translation, and tunneling—that can be com-
bined or used in isolation to construct privacy domains.

Then, based on these common networking practices, we propose three
privacy services that can be offered by ISPs: i) An address-hiding service
that enables customers to use a different IP address for every traffic flow.
ii) An ISP-wide tunneling service so that tunneled traffic between source
and destination ISPs is encrypted. iii) An ISP-level VPN service that remote
hosts of other ISPs can use.

5.1 Overlay Approach 117

We argue that ISPs are in an ideal market position to offer such privacy
services. They already have high-capacity infrastructure in place, which
they can use to offer services at a large scale. Furthermore, they have the
required know-how and experience in deploying and operating large sys-
tems. Our initial evaluation results indicate that the services can be offered
at a low overhead, even on today’s commodity hardware. In addition, our
proposed services have a low deployment barrier, offering incentives for
first movers.

In this chapter, we make contributions in three directions:

• We introduce a concept—privacy domains—to express users’ privacy
requirements at a high-level, irrespective of the underlying imple-
mentation.

• We describe common networking practices and techniques that can
serve as building blocks to implement privacy domains.

• We present simple privacy services (with a preliminary feasibility
analysis) that can be offered by ISPs.

We explore privacy from a new perspective: leveraging existing tech-
nologies to enable ISP-based privacy services, which can fill the large trade-
off space between privacy and performance.

5.1 Overlay Approach
In this section, we describe the overlay approach to deploy APNA.

5.1.1 APNA Overlay Network

Our ideas are not restricted to a certain Internet architecture, thus APNA
could be used on today’s Internet. To this end, IPv4 addresses of the hosts
are mapped to HIDs using a mapping table, and IPv4 addresses of APNA
routers in ASes serve as AIDs. Furthermore, we leverage the GRE proto-
col [64] to interconnect two APNA entities (e.g., border routers) over the
IPv4 network. This enables encapsulation of the APNA header after the
GRE tunnel header as shown in Figure 5.1; a protocol number assigned by
IANA and used for the Protocol Type field in the GRE header would indicate
that the encapsulated protocol is APNA.

118 5 Deployment Strategies

IPv4 Header

GRE Header

APNA

Header

Upper-Layer (UL) Header

Payload

Protocol=GRE

Source EphID

Destination EphID

E2N MAC

NextHdr=UL Pkt Len

Upper-Layer (UL) Header

Protocol Type=APNA

Figure 5.1: IP+APNA packet structure.

For intra-domain forwarding in the source AS, the source host puts its
IP address and the IP address of an APNA router in the source AS as the
source and destination addresses in the IPv4 header (that comes before the
GRE header), respectively. For intra-domain forwarding in the destination
AS, an APNA router 1) decrypts the destination EphID in the APNA header
to get the HID of the destination host; and, 2) translates the HID to the
corresponding IPv4 address; and 3) replaces the destination IPv4 address
of the IPv4 header with the translated IPv4 address.

This intra-domain forwarding has a privacy implication. Within the
source and destination ASes, the addresses of the hosts are visible; hence, it
is not possible to provide any privacy guarantee against an adversary who
observes packets within the ASes. However, once an AS fully deploys APNA
(i.e., all routers forward packets based on EphIDs), this privacy leakage can
be mitigated.

For inter-domain forwarding in the source AS, an APNA router replaces
the addresses in the IPv4 header of the APNA packet with its IPv4 address
and the destination AID (i.e., IPv4 address of an APNA router at the desti-
nation AS) as the new source and destination addresses, respectively. For
all transit ASes, the packet is forwarded based on the destination address
in the IPv4 header.

5.1.2 APNA Gateway

Making modifications to the host network stack is an onerous task that
hampers deployment of new architectures. Hence, we propose using APNA

5.1 Overlay Approach 119

gateways to bridge between the Internet and APNA without having to
change the host network stack. An APNA gateway has two roles: 1) as
an APNA host, it runs the protocols described in Section 2.3; and 2) as a
packet translator, it converts between native IPv4 and APNA packets. As-
suming that the gateway uses different source EphIDs for different IPv4
flows, the challenge in translating between IPv4 and APNA packets is de-
termining the mapping between IPv4 flow information (identified by the
standard 5-tuple) in IPv4 packets and APNA flow information (identified
by source and destination AID:EphID pair) in APNA packets.

When forwarding an outgoing IPv4 packet from a host to an APNA
router, the gateway converts the IPv4 packet to a APNA packet (Figure 5.1).
To this end, the gateway must determine source and destination AID:EphID
tuples for the APNA header, and source and destination IPv4 addresses for
the IPv4 encapsulation header. Determining the addresses for the encapsu-
lation header is simple—the addresses of the gateway and the APNA router
are used as the source and destination IP addresses, respectively. In addi-
tion, the source AID:EphID information in the APNA header can be easily
determined: for each new IPv4 flow, the gateway uses a different EphID.
However, determining the destination AID:EphID is not trivial. In fact, the
gateway cannot determine the destination AID:EphID solely based on the
information in the IPv4 packet from the host.

Instead, the gateway has to rely on mechanisms that the host uses to
determine the address of its peer host. For instance, if a client uses DNS
to resolve the IPv4 address of the server, we can extend the DNS record to
also contain the AID:EphID of the server and include the AID:EphID in the
DNS reply message. Then, from the DNS reply message, the gateway asso-
ciates server’s IPv4 address to the corresponding AID:EphID. Note that this
learning approach can only work if a host use a well-known mechanisms
(e.g., DNS) to determine his destinations’ addresses. Otherwise, the host
needs to statically configure the mapping between a peer’s IPv4 address
and AID:EphID information into the gateway.

In the above client-server communication example, one may argue that
the host privacy of the server is lost since its IPv4 address is registered in
DNS. To overcome such privacy loss, the IPv4 address can be removed
from the DNS record. When the client’s gateway sees the DNS reply, it
generates and appends a random IPv4 address into the DNS reply. Then,

120 5 Deployment Strategies

based on the destination IPv4 address in the client’s packets to the server,
the gateway determines the AID:EphID of the server.

When forwarding an incoming APNA packet from an APNA router to a
host, the gateway needs to convert it to an IPv4 packet by choosing appro-
priate source and destination IPv4 addresses. If the gateway already has
the mapping between the APNA flow tuple and the IPv4 flow tuple (i.e.,
the receiving host has sent an outgoing packet with the IPv4 flow tuple),
the gateway uses the IPv4 flow tuple to create the IPv4 packet. However,
if the gateway does not have the mapping, the gateway needs to carefully
choose the source and destination IPv4 addresses for the IPv4 packet. We
first describe how we determine the source addresses, then the destination
addresses.

When choosing the source address, the gateway needs to ensure that
the host can distinguish between different flows. That is, every APNA flow
tuple must be mapped to a unique IPv4 flow tuple. To this end, we define a
virtual end-point which consists of an IPv4 address (e.g., randomly drawn
from a private address space), and the source port number in the transport
header in the APNA packet. The gateway assigns unique virtual end-point
for each APNA flow, and the IPv4 address of the virtual end-point is used
as the source IPv4 address in the IPv4 packet.

To determine the destination IPv4 address, the gateway uses the des-
tination EphID information in the APNA header. However, the mapping
between EphID and IPv4 address exists only if the destination has sent
an outgoing packet or the destination host has registered the mapping be-
tween its EphID and IPv4 address. For example, a server administrator
registers a (receive-only EphID, IP address)-tuple to his gateway after reg-
istering his domain information in DNS.

5.2 Integrated Approach
In this section, we apply the integrated approach to deploy APNA.

5.2.1 Privacy Domains

We observe that users have diverse privacy requirements, yet few options
or tools to use. Our starting point is to introduce the concept of privacy
domains, which enable us to argue about disclosed information at a higher
layer of abstraction without considering a specific privacy architecture nor

5.2 Integrated Approach 121

a specific adversary model; existing work focuses on architecture-specific
analysis that consider specific threat models [55, 160].

For example, a common privacy requirement is to prevent entities that
observe traffic from creating a history of user activity (e.g., list of hosts
the user communicated with). This high-level requirement is translated
to the requirement that no entity can observe the source and destination
addresses of a communication session at the same time. To facilitate the
translation, we define privacy domains.

A privacy domain is a virtual domain that consists of entities to which a
user shares a subset of her privacy-sensitive information. Thus, a privacy
domain is defined by a set of a user’s privacy-sensitive information and the
entities that have access to this information.

• Entities: We consider entities in a privacy domain from a sender’s
view-point, i.e., entities that assist in transferring packets from the
sender to the destination. Such entities include the ISP of the sender,
the transit ISPs on the path to the destination, the destination ISP,
and the destination host.

• Privacy-sensitive Information. We consider information that is re-
vealed about the sender through sent packets. Specifically, we con-
sider the source and destination host addresses, the source and desti-
nation ISPs, the transport-layer headers, and the plaintext payloads.

Although the notion of privacy domains has not been used so far, there
are various implicit privacy domains for Internet communication. They
are created when a user leverages privacy-enhancing technologies. We
describe the privacy domains for two commonly used technologies:

• TLS protocol: When a client connects to a server over TLS, two
privacy domains are created. Domain A consists of the server with
whom the client shares all its privacy-sensitive information. Domain
B consists of all other entities that observe traffic, i.e., all ISPs on
the path. The client shares all privacy-sensitive information with
Domain B, except for the payload since it is encrypted.

• Tor: If the client connects to the server using Tor [56], three privacy
domains are created, assuming that the client uses a typical three-
hop Tor Circuit with an entry, a transit, and an exit relays. Domain

122 5 Deployment Strategies

A consists of the Tor entry relay, the entry relay’s ISP, the client’s ISP,
and all transit ISPs between the two ISPs. The client shares only her
address with domain A. Domain B consists of the Tor exit relay and
its ISP, the destination host and its ISP, and all transit ISPs between
the two ISPs. The client shares with domain B the address of the des-
tination host, the transport-layer header and the payload. Note that
the combination of source and destination addresses is not present
in any of the two domains. This property enables a user to hide her
history of user activity from all entities—at least in theory. Lastly,
Domain C consists of the Tor relays (i.e., entry, transit, and exit) re-
lays, their ISPs, and the transit ISPs between the relays. The client
does not share any privacy-sensitive information in this domain.

By defining privacy domains, our goal is to clarify and articulate in-
formation disclosure, not to evaluate the privacy guarantees of a certain
mechanism. For example, when a user uses Tor, the combination of source
and destination addresses is not present in any of the Domains (i.e., Do-
mains A, B, and C); however, there are sophisticated attacks to infer the
combination [162, 168, 169, 171, 179]. Existing approaches can be used
to evaluate the privacy guarantees offered by certain mechanisms [126].

5.2.2 Overview

We start with basic building blocks that can help in constructing privacy
domains. Then, we present three privacy services that are based on these
blocks and can be offered by ISPs.

5.2.2.1 Building Blocks

Encryption masks privacy-sensitive information from unwanted parties.
In its most common use case—the TLS protocol—encryption masks the
payload so that only the destination can see it in plaintext. Alternately,
encryption can also mask the transport-layer headers, thus hiding the ap-
plication being used, as happens in IPsec transport mode.

As a generic concept, encryption creates two privacy domains: one
domain that is defined by the entities that have the decryption keys and
therefore have access to all privacy-sensitive information; and the other
domain that consists of all remaining entities that have access only to the
unencrypted information in the packets.

5.2 Integrated Approach 123

Address Translation is used so that multiple users can share the scarce
IPv4 address space. A side-effect of address translation is that an observer
located after the translation point cannot identify the original source host
of a packet.

Address translation creates two privacy domains: one domain that con-
sists of the entities that know the original source address of the sender (and
all other privacy-sensitive information), and one domain that consists of
the entities that see all information except for the original source address.

Source addresses in the packets are translated to another addresses
so that an unwanted party cannot identify the original source addresses.
This basic building block is useful for hosts whose addresses can be (easily)
related to their identities.

Address Translation creates one privacy domains consisting of entities
that know the original source address of the sender.

Tunneling bridges two networks by creating a virtual point-to-point link;
it is typically used to provision a service that the underlying network can-
not support (e.g., supporting IPv6 over the IPv4 network). Tunneling by
itself does not define new privacy domains, but can be used for this pur-
pose. More specifically, it enables the sender to specify a waypoint that
the traffic should follow towards the destination. Then, with the help of
the waypoint and in combination with the previously mentioned building
blocks new privacy domains can be defined (See the ISP-wide Secure Tun-
neling Service and the ISP-level VPN Service in Section 5.2.2.2).

5.2.2.2 ISP-based Privacy Services

We describe privacy services that ISPs can offer; the services are based on
the building blocks described, and thus compatible with today’s network-
ing practices.

ISP-level Address Hiding Service (AHS). We start with an address-hiding
service (AHS) that is based on source-address translation and can be offered
by ISPs to its hosts. When subscribers’ packets exit the ISP boundary, the
source addresses are replaced with other addresses in the ISP’s address
pool. Specifically, the source address is replaced with a different address
for every outgoing flow. When subscribers’ packets enter the ISP’s bound-
ary, the reverse translation takes place so that the packets are forwarded
to the intended recipients. Hosts remain agnostic of AHS in that they pur-

124 5 Deployment Strategies

chase the service but they do not need to upgrade the OS nor run special-
ized applications.

We are not the first to propose address shuffling by ISPs. In 2009,
Raghavan et al. [149] proposed the use of a tweakable block cipher to
enable ISPs to shuffle their IP addresses; we build on the same motivation,
but construct mechanisms that provide a higher degree of flexibility to ISPs
(Section 5.2.3.1).

Privacy Domains. The AHS creates two privacy domains for a subscrib-
ing host. One domain consists of the host’s ISP, and the host shares all its
information with this domain. The other domain consists of all other enti-
ties; the host shares all information except for the source address, which
is instead shared at the granularity of an AS.1

Use Cases. This service is useful for users who want to hide their online
activity, i.e., which hosts they contact; the online activity is still disclosed
to the user’s ISP.

ISP-wide Secure Tunneling Service (STS). We propose ISPs to offer a se-
cure tunneling service (STS) by setting up encrypted tunnels with other
ISPs; source and destination ASes are the tunnel end points. The traffic is
encrypted by the source AS when it enters the tunnel and then decrypted
by the destination AS when it exits the tunnel. Similar to AHS, hosts re-
main agnostic of the tunneling service and do not need to upgrade or run
additional software.

Privacy Domains. This service is composed of two basic building blocks:
tunneling and encryption. Tunneling specifies two waypoints on the path
to the destination, and the waypoints encrypt/decrypt the traffic, hiding it
from other entities on the path.

STS creates two privacy domains for a subscribing host. One privacy
domain consists of the source ISP, the destination ISP, and the destination
host; the subscriber shares all its information with this domain. The other
privacy domain consists of all transit ISPs, and the subscriber shares its
address and the address of the destination host at the AS granularity.

Use Cases. ISP-wide tunnels provide an additional security measure for
traffic that is already encrypted. Services that exchange sensitive informa-
tion typically perform encryption with TLS at the application layer, though

1We use the term ”ISP” when referring to services, and the term ”AS” mostly for protocol-
level details.

5.2 Integrated Approach 125

this is not always sufficient. Protocol and implementation vulnerabilities
of popular TLS libraries have enabled decryptions at a large scale (e.g., the
Heartbleed attack [11] and compression attacks [8, 9, 10]). Moreover, the
lack of forward secrecy in some TLS deployments can lead to compromised
plaintexts, if a long-term key is compromised—about 30% of 200K popular
TLS-enabled websites still do not fully support forward secrecy [24].

In addition, ISP-wide tunnels can provide a layer of security for un-
encrypted webpages. Today’s trend moves towards pervasive encryption,
and although TLS is gaining traction, we are far from universally encrypted
traffic—less than 20% of the top 10k websites and less than 0.1% of all
websites have TLS enabled by default [23].

ISP-wide tunnels can also harden today’s privacy protocols. Tor is known
to be vulnerable against traffic correlation attacks when an adversary can
observe traffic at the entry and exit points of the Tor network [94]. Even
worse, an adversary can launch BGP prefix hijacking attacks to position
itself on the path of inbound and outbound traffic [168].

STS alleviates the consequences of today’s insecure inter-domain rout-
ing. More precisely, adversaries often launch BGP prefix hijacking attacks
to attract traffic [19, 20, 21, 22]. They can then analyze traffic patterns
(who talks with whom), modify and inspect unencrypted traffic, or store
encrypted traffic with the prospect of breaking it in the future. Using ISP-
wide tunnels does not prevent BGP hijacks, but limits the capabilities of
attackers through strong network-layer encryption for all traffic in the tun-
nel.

ISP-level VPN Service (IVS) We propose ISPs to offer VPN services to hosts
of other ISPs, similar to the VPN services that already exist on the market.
The motivation for this proposal is that despite the increased interest in
VPN services, the market is littered with low quality services. Reasonable
performance is offered only by premium services that cost around $10
per month—a considerable fraction of an Internet connection’s monthly
cost.2 Furthermore, most such services suffer from critical vulnerabilities
(e.g., IPv6 traffic leakage and DNS hijacking) that disclose the identity and
traffic payloads of users [142].

We argue that ISPs are in a better market position to offer VPN services
at a fraction of what VPN services cost today. ISPs have high-capacity in-

2http://to.pbs.org/1z5AGNQ

http://to.pbs.org/1z5AGNQ

126 5 Deployment Strategies

frastructure and experience in deploying and operating services at a large
scale. Furthermore, ISPs already manage large blocks of IP addresses,
which are necessary to mask customer identities through address trans-
lation; it is commonly the case that today’s VPN services point customers
to connect to servers at a different location due to their IP address scarcity
at some locations. Thus, we believe ISPs can leverage their experience and
economies of scale to gain an extra source of revenue.

We propose that ISPs offer VPN services to which hosts of other ISPs
can connect. This service is based on all three basic building blocks: com-
bining encryption and tunneling to create an encrypted tunnel between a
subscriber and an ISP that offers the VPN service, and address translation

to replace the source address in a subscriber’s packet with an address of
VS offering ISP.

Privacy Domains. This service combines all three building blocks: tun-
neling, encryption, and address translation. Tunneling is used to spec-
ify the VPN provider as a waypoint for the traffic towards the destination
host, and encryption hides the traffic from entities on the path to the VPN
provider. Then, address translation replaces the subscriber’s source ad-
dress with another address in the provider’s address pool.

Three privacy domains are created for a subscribing host. One domain
consists of the ISP offering VPN service, and the subscriber shares all its in-
formation with this domain. Another domain contains the source ISP and
all transit ISPs leading to the VPN provider, and the subscriber shares only
its source address with this domain. The last domain contains all transit
ISPs between the VPN provider and the destination ISP, the destination ISP,
and the destination host; the subscriber shares all information except for
its source address.

Use Cases. Users may use VPN services for different purposes: i) to
bypass geolocation restrictions, ii) to circumvent governmental censorship,
and iii) to hide their activity from their ISPs by encrypting traffic and hiding
the destination.

5.2.3 Feasibility Study

Our goal is to provide deployable privacy services for today’s Internet, and
therefore we build on well-established practices. Although this ensures
interoperability with today’s protocols, there are open problems when deal-
ing with thousands of inter-connected networks and large ISP deployments.

5.2 Integrated Approach 127

We address such challenges and provide preliminary evaluation to assess
the feasibility of our proposal.

5.2.3.1 ISP-level Address Hiding

We propose ISPs to shuffle IP addresses of hosts subscribed to the AHS.
When the ISP receives an outgoing packet, a translation gateway creates a
mapping from the packet’s source IP and port number to a new IP address
and port number. This new IP address belongs to one of the ISP’s address
blocks; the ISP can use the bits in the IP’s host portion together with the
bits of the source port in order to multiplex different flows behind a few
IP addresses. When the ISP receives an incoming packet, the gateway
performs the reverse translation so as not to break bidirectional commu-
nication. This process may remind of a carrier-grade NAT [92, 175], yet
there are multiple challenges that we address in the following.

Coordination of Translation Gateways. An ISP will operate multiple trans-
lation gateways and they must all perform identical translations. First,
translation must be performed on the original data path to minimize la-
tency overhead; rerouting traffic to a centralized location would cause a
latency inflation. Therefore, an ISP will operate multiple gateways, but un-
der the constraint of identical translations. This is to prevent collisions so
that two different inputs do not generate the same output. Also, the trans-
lation of an outgoing packet and the reverse translation for the incoming
packet may be performed by different gateways due to asymmetric rout-
ing.

One naive approach to achieve identical translations is to exchange
mapping tables between gateways. However, this solution is not viable
since such mappings must be distributed for every new flow and to all
gateways. We leverage cryptography to perform the translation without
keeping per-flow state [149]: translation gateways encrypt the source ad-
dress and port tuple and generate a new tuple, under the constraint that
the network prefix belongs to the ISP. All gateways share the same key so
that all (reverse) translations are identical; the state stored at every gate-
way is just the encryption key. This approach satisfies all the constraints
mentioned.

Privacy vs. Traffic Engineering. The privacy benefits of the AHS service
come from the fact that ISPs have large IP blocks, which provide a sat-
isfying anonymity set when permuting hosts’ addresses. However, ISPs

128 5 Deployment Strategies

Link 1 Link 2

Prefix A Prefix B

/A
 /B

Figure 5.2: Example with an ISP owning two IP blocks and using two inter-
domain links.

deaggregate these address blocks in their BGP announcements in their ef-
fort to perform fine-granular traffic engineering. Although this practice
still allows address shuffling, it reduces the anonymity set to the size of an
advertised block.

We illustrate with an example in Figure 5.2. The ISP owns two prefixes
and is connected to the rest of the Internet through two inter-domain links.
The addresses of Prefix A are assigned to the marked hosts on the left side,
and Prefix A is announced over Link 1. Similarly, Prefix B, assigned to the
hosts on the right side, is announced over Link 2. This represents a simpli-
fied, but common scenario of prefix deaggregation and traffic engineering.

Assume the ISP starts offering the AHS service and has two translation
gateways collocated with the two border routers. From a privacy perspec-
tive, the ISP ideally should shuffle addresses from both prefixes in order
to maximize the anonymity set. This means that e.g., hosts on the right
side may receive an address from Prefix A (even if the traffic is going out
from Prefix B). However, the corresponding incoming packet would enter
the ISP from Link 1 and follow a sub-optimal route to the intended host
(dashed arrow). Thus, shuffling larger block sizes constraints the granu-
larity at which traffic engineering can be performed.

We cannot eliminate this conflict, but we must provide flexibility to
ISPs in picking the desired tradeoff. Therefore, we design a translation
mechanism that enables shuffling for prefix blocks of arbitrary size. This
task raises a challenge, since most cryptographic primitives operate on in-
put of fixed length, e.g., 128-bit block for AES and 32-/64-/128-bit blocks
for RC5. Furthermore, we need a cryptographic primitive which is secure

5.2 Integrated Approach 129

in that it prevents an adversary to infer the original address by observing
the translated address.

Our translation scheme is based on FF3 encryption, which is an in-
stance of format-preserving encryption [36]. Equation 5.1 shows the per-
formed translation, with k being a secret key known only to the ISP. This
scheme generates a new source address and port tuple for every new flow.
When the corresponding incoming packet arrives, the translation gateway
performs the decryption, and then XORs the result with the source address
and port of the incoming packet.

(saddr′, sport′) = FF3k((saddr, sport)⊕ (daddr,dport)) (5.1)

We utilize FF3 because it provides the required flexibility: it encrypts
a plaintext of some format and length into a ciphertext of identical for-
mat and length, allowing us to shuffle variable-length address blocks. Fur-
thermore, FF3 provides the security guarantees of conventional block ci-
phers [61] and is approved by NIST. Lastly, FF3 encryption is efficient; it
is based on AES as the underlying block cipher, which is implemented in
hardware even on commodity CPUs.

Processing Overhead. We quantify the processing overhead of our flex-
ible address-translation scheme. We have implemented the stateless AHS
service on the Data Plane Development Kit (DPDK) [13], running on a
commodity server equipped with a 10 Gbps NIC and an Intel XEON E5
CPU. We evaluate three cases of shuffling a varying number of addresses:
i) 216 addresses in one /16 prefix, ii) 224 addresses in one /8 prefix, and
iii) 226 addresses of the 4401 disjoint prefixes of an ISP (AS 4130). Fur-
thermore, we evaluate forwarding performance for multiple packet sizes
and for a representative mix of Internet traffic (IMIX [129] with 362 bytes
avg. size); the baseline for our measurements is the performance of typical
IP forwarding without additional processing.

Figure 5.3 shows the forwarding performance. For 64-byte packets,
performance degrades by about 25% for shuffling an /8 and a /16 prefix.
However, the decline is higher for the 226 addresses because the blocks
are disjoint and must be linearized. For larger packet sizes almost all cases
perform optimally. The evaluation shows the efficiency of a single trans-
lation gateway—it can handle at line-rate a fully-saturated 10 Gbps link
with typical Internet traffic patterns.

130 5 Deployment Strategies

64 B 128 B 256 B iMIX
0

2

4

6

8

10

12

14

16

18

T
h
ro
u
g
h
p
u
t
(M
p
p
s)

73%

100%

100%

100%

73%

100%

100%

100%

54% 95%

100%

100%

Baseline

216 addr. in one /16 prefix

224 addr. in one /8 prefix

226 addr. in 4401 disjoint prefixes

Figure 5.3: Forwarding performance of a translation gateway.

5.2.3.2 ISP-wide Secure Tunnels

We propose that ISPs set up pairwise encrypted tunnels using existing pro-
tocols, such as IPsec in tunnel mode [102] and the Resource Public-Key
Infrastructure (RPKI) [46]. IPsec in tunnel mode creates a virtual private
network between two remote networks: each network deploys an IPsec
gateway and the exchanged traffic is tunneled as ciphertext between the
gateways. The RPKI consists of publicly accessible repositories of resource
certificates, which prove that an AS is the holder of a resource (e.g., a
certain IP prefix).

Although we leverage existing technologies, there are multiple chal-
lenges with respect to scalability, performance, and security. First, since
there are thousands of ASes, it is hard to manually configure pairwise tun-
nels at a large scale. Then, how can we automate tunnel establishment so
that key negotiations are performed dynamically?

Second, given the volume of traffic that ISPs forward, it is a consider-
able overhead to encrypt/decrypt even a fraction of an ISP’s traffic. Fur-
thermore, using a single IPsec gateway to serve all traffic of all established
tunnels with other ISPs is not possible. Therefore, we describe an intra-
domain architecture that is capable of supporting ISP-wide tunnels.

Dynamic Tunnel Configuration ISPs interested in deploying pairwise tun-
nels could initially coordinate and exchange required information manu-
ally. However, this approach does not scale as more and more ISPs start
offering the service. To support automated tunnel configuration, two steps

5.2 Integrated Approach 131

are needed: i) discover deploying peers, and ii) establish a security associ-
ation with the peer.

Peer Discovery. The first step is to enable ASes to advertise support for
the ISP-wide tunnels to other ASes. To this end, we leverage resource
certificates and RPKI to disseminate the additional information needed for
ISP-wide tunnels.

A resource certificate verifies that an AS owns a certain prefix and is
therefore authorized to make a BGP announcement for that prefix [87].
Typically, a resource certificate contains the AS number, the public key of
the AS, and a list of prefixes that the AS owns; the certificate is signed
by the private key of a regional or a local Internet registry. We augment
such certificates with additional information for the tunnel establishment;
such information includes cryptographic material for key exchanges, se-
curity parameters, and addresses of the IPsec gateways. Presence of this
information indicates that the ISP supports the tunneling service.

The process of peer discovery is then performed as part of route-origin
authorization [111]: when ASes receive BGP announcements from their
peers, they consult RPKI and verify that the advertised prefix is legitimate
through the corresponding resource certificate. At this stage an AS can
further learn if the advertised AS supports tunnels.

Key Exchange. The second step for automated tunnel configuration is
to establish a security association (SA). A SA is a structure that contains
all necessary parameters for the corresponding tunnel: the tunnel end-
point addresses, the encryption and authentication algorithms, and the
symmetric key used for encryption/decryption.

In order to set up a SA, IKEv2 [99] can be used. The protocol can
perform mutual authentication between two IPsec gateways based on x509
certificates; it also negotiates the security parameters for a SA. To facilitate
authentication and key exchange, we leverage again RPKI and the resource
certificates: the published x509 resource certificate contains a public value
that is used to perform an authenticated Diffie-Hellman key exchange and
derive the symmetric key.

Intra-domain Architecture In addition to mechanisms for setting up tun-
nels, an ISP will need mechanisms inside its network to support encryp-
tion/decryption of tunneled traffic. We benchmark the operation of a sin-

132 5 Deployment Strategies

64 B 128 B 256 B 512 B 1024 B 1456 B iMIX
0

2

4

6

8

10

12

14

T
h
ro

u
g
h
p
u
t
(M

p
p
s)

67%

67%

67%

67%
67% 67%

67%

Baseline

IPsec Outbound Traffic

Figure 5.4: Forwarding performance of an IPsec gateway.

gle IPsec gateway, and we describe how to support multiple gateways with
a low management overhead.

Gateway Evaluation. A deploying ISP may have to tunnel a considerable
portion of traffic if many of its customers opt for the service. To put the
processing overhead into context, we benchmark the performance of a
gateway assuming it has a tunnel with every AS.

We use DPDK and run an IPsec gateway on the same commodity server.
Then, we analyze a BGP routing information base3 to generate realistic
SAs. More precisely, we generate 56,223 SAs—one for every AS—and we
construct over 200k routing policies so that each packet is forwarded over
the correct tunnel based on the destination address. For encryption and
authentication we use the AES block cipher in GCM mode with 128-bit
keys [125].

Figure 5.4 shows the forwarding performance of the gateway for the
outbound direction and for multiple packet sizes, including the IMIX (in-
bound direction has the identical performance); the performance baseline
is forwarding without any additional processing. The results show that
performance is at approximately 67% of the baseline for all cases. This con-
stant performance decline is observed because as we increase the packet
length the packet rate decreases for a fully utilized link. At the same time,
the length of the plaintext to be encrypted increases so that these two
factors cancel each other out. The experiment shows the worst case in

3http://data.ris.ripe.net/rrc06/2017.04/

http://data.ris.ripe.net/rrc06/2017.04/

5.2 Integrated Approach 133

that we have established the maximum number of tunnels. However, the
result also indicates that ISPs may have to expand their infrastructure if
many users opt for the service.

Supporting Multiple Gateways. An ISP will need multiple gateways to
support the traffic demands. However, this raises a challenge if the gate-
ways of the two ISPs have to maintain a mesh of tunnels between them.

We introduce the concept of a logical IPsec gateway which is decoupled
from the underlying physical IPsec gateways. That is, an ISP advertises a
single tunnel end point and only one IPsec tunnel is established per re-
mote ISP. Then, the state of the tunnel is shared between all physical IPsec
gateways so that they can perform identical operations.

We make the following design choices to realize a logical IPsec gate-
way. First, we define a designated IPsec gateway4 that represents all phys-
ical IPsec gateways in an ISP and is identified by an IP address within the
ISP’s prefix blocks; the same address that is published in the resource cer-
tificate. The designated gateway establishes the ISP-wide tunnels with the
designated gateways of other ISPs, and then it disseminates all necessary
state to the physical IPsec gateways of the ISP. Second, we leverage IP any-
cast so that a single IP address is used for all physical IPsec gateways. This
enables ISPs to support a tunnel end point from multiple locations and at
the same time perform load-balancing among these locations by adjusting
their intra-domain routing protocols.

5.2.3.3 ISP-level VPN

We propose that ISPs leverage their infrastructure to offer VPN services to
customers of other ISPs.

As mentioned in Section 5.2.2.2, a VPN service consists of two main
functionalities: 1) an encrypted tunnel that transfers packets between a
VPN customer and a VPN gateway, and 2) address translation that replaces
the customer’s IP address with an IP owned by the VPN provider.

We have already addressed the challenges of the two functionalities,
albeit in a different context. In Section 5.2.3.2, we have described how
to set up ISP-wide tunnels using IPsec; the same approach can be used
for the tunnel between a VPN customer and the gateway. There are vari-
ous implementations of VPN tunnels (e.g., VPN over IPsec and VPN over

4Similar to designated routers in OSPF [130] and the IS-IS [89] protocols.

134 5 Deployment Strategies

SSL), but they are conceptually the same. Furthermore, authentication,
key exchange and tunnel configuration is typically performed through an
application that is provided by the VPN provider and is installed on the
customer’s device.

In Section 5.2.3.1, we have shown how to perform ISP-level address
translation. A VPN provider can use the same approach to multiplex mul-
tiple customers behind the source-port number and the host portion of its
IP address block.

5.2.4 Composition of Privacy Services

In Section 5.2.2, we described how three building blocks can offer mean-
ingful privacy services. Here we explain how composition of the proposed
services can create additional privacy services.

AHS+STS Composition. Consider a host that subscribes to the address-
hiding service and the secure tunneling service of its ISP. This combination
provides additional privacy benefits that are not offered by these services
in isolation by enabling: i) to hide also the host’s address from the desti-
nation ISP and host (not offered by secure tunneling), and ii) to hide the
transport-layer header and payload from all transit ISPs (not offered by
address hiding).

Privacy Domains. Three privacy domains are formed. Domain A con-
sists of the source ISP, and the host shares all its information. Domain B

consists of the destination host and ISP, and the host shares all its infor-
mation except for the source address, which is instead revealed at the AS
granularity. Domain C consists of all transit ISPs, and the host shares the
source and destination addresses at the AS granularity.

IVS+STS Composition. Another meaningful service composition is the
following: a host buys the VPN service from a remote ISP and also the se-
cure tunneling service from that ISP. Again this combination offers privacy
benefits that cannot be achieved by a single service: i) the transport-layer
header and payload are hidden from the host’s ISP (not offered by secure
tunneling), and ii) the host hides its payload from all transit ISPs between
the VPN provider and the destination ISP and host (not offered by the VPN
service).

Privacy Domains. Specifically, it creates the following four privacy do-
mains. Domain A consists of the source ISP, and the transit ISPs to the

5.2 Integrated Approach 135

remote VPN ISP, and the host shares only his address with this domain.
Domain B consists of the remote VPN ISP, and the host shares all informa-
tion. Domain C consists of the transit ISPs between the remote VPN ISP
and the destination ISP; with this domain, the host shares only the des-
tination address at the AS granularity. Finally, Domain D consists of the
destination host and ISP; with this domain, the host shares the payload,
the transport header, and the destination address.

A sequence of IVS Composition. A Tor-esque privacy service can be cre-
ated by using a sequence of IVSes, where each IVS acts as a Tor relay.
Specifically, a host creates an onion by encrypting his message in layers
and forwards through a series of IVSes, each of which peels off an encryp-
tion layer and forwards to the next IVS.

Privacy Domains. This privacy service creates the same privacy domains
that are described for Tor in Section 5.2.1.

Challenges. We envision that an IVS is a paid service that requires ex-
plicit subscription; hence, a client needs to authenticate to all IVSes that
it uses. This authentication leads to a privacy implication: all IVS-offering
ISPs that are part of the Tor-esque privacy service can identify the sender
based on client’s authentication credentials.

One possible approach to solve this problem is based on anonymous
credentials. In this approach, ISPs could form an alliance and allow a host
who subscribes to any member ISP to use the privacy services offered by
all member ISPs. The alliance provides hosts with anonymous credentials
that prove that the host is authorized to use the privacy services without
revealing any further information about the host. Then, hosts use their
anonymous credentials to authenticate to the IVSes.

5.2.5 Deployment Incentives for ISPs

We believe that our proposed services are in line with market incentives
of today’s Internet. A major deployment hurdle for many proposals is the
lack of incremental deployability so that the proposals are valuable if all,
or almost all, ISPs adopt; there are no benefits for first-movers, leading
to a chicken and egg problem. This is not the case for two of our three
proposed services: the address-hiding service and the VPN service can be
offered to end users without requiring global adoption of new protocols.
The secure-tunneling service has a higher deployment barrier in that it

136 5 Deployment Strategies

requires coordination. However, setting up a tunnel requires coordination
only between two ISPs—not universal coordination—and we believe there
are strong incentives for adoption: on one hand, large content providers
are concerned about large-scale surveillance that degrades their customers’
privacy. On the other hand, residential ISPs can offer value-added services
to their customers by setting up such tunnels with large content providers.

Chapter 6

Related Work

In this chapter, we review the related work in the following relevant areas:

• Section 6.1: Balancing Source Accountability and Privacy

• Section 6.2: Source Accountability

• Section 6.3: Communication Privacy

• Section 6.4: Incremental Deployment for FIAs

6.1 Balancing Source Accountability and Privacy
Accountable and Private Internet Protocol (APIP) [134] proposes an archi-
tecture that balances accountability and privacy at the network layer. In
APIP, the source address in the network header is replaced with the ad-
dress of an accountability delegate, which is the trusted third-party entity
that vouches for the source’s packets. The return address can then be speci-
fied at a higher layer—invisible from the network—protecting the source’s
privacy. Senders are expected to brief each packet to their accountability
delegate such that on-path devices can request a “vouching proof” from
the corresponding delegate.

APIP has a few limitations. First, APIP’s notion of privacy is limited
to sender-flow unlinkability. It does not provide other unlinkability prop-
erties, such as flow-packet unlinkability, since flow identifiers are present
in the packets. Moreover, APIP leaves data privacy and the associated
challenges (e.g., key distribution, management, and establishment) unad-
dressed. Second, the design of APIP precludes every packet from being
accounted for in the network: it is possible for a malicious host to omit
reporting packets to its accountability delegate when the flow information
of those packets has been “whitelisted”. Specifically, verifiers do not ver-
ify flows that have been “whitelisted,” and a sender does not brief packets
unless it is asked by its accountability delegate under the recursive verifica-
tion method (Section 5 in APIP [134]). Third, masking the return address
complicates getting messages from the network back to the source—the
messages must be redirected through the accountability delegate of the
source; the complexity of this functionality remains unaddressed.

140 6 Related Work

Persona [122] is another proposal that simultaneously provides privacy
and accountability at the network layer. To guarantee the privacy of the
hosts, each router on the forwarding path to the destination translates the
source address in the packet to one of its own. The translation provides
two privacy benefits. The source addresses in packets do not identify the
sending host; and, as a packet traverses further away from the sender, the
anonymity set for the sender increases. For source accountability, Persona
reveals the identity of a sender when the sender misbehaves. Specifically,
the procedure for identifying the misbehaving sender is defined as follows.
Starting from the router that is immediately connected to the destination,
the routers sequentially reveal their translation of the source addresses.

Persona has a few limitations. First, it breaks communication on the
Internet since it breaks the notion of flow and prevents the destination
from demultiplexing connections. Moreover, hosts in Persona may suffer
from severe packet re-ordering since each packet could take a different
router-level path to the destination. Second, Persona assumes that source
address spoofing is not possible without specifying how the architecture
attributes packets to their senders.

6.2 Source Accountability

6.2.1 Source Authentication

Ingress Filtering. Ingress Filtering provides a weak form of source au-
thentication by dropping packets with spoofed source addresses. On a
high-level, ingress filtering asks the following question to determine if an
address has been spoofed: "Can a packet with its source address arrive at
this interface of this router?" If the answer is no, then the source address
is considered to be spoofed and the packet is dropped.

The question is answered by creating an access list, and there are var-
ious ways to create the access list. In one approach, a network operator
manually creates an ingress access list that contains all acceptable IP pre-
fixes. Alternatively, the access list can be created dynamically. uRPF [31]
generates the access list based on Forwarding Information Base (FIB) at
a router; SAVE [112] based on source addresses in packets that a router
forwards; HCF [93] based on TTL values in forwarded packets; DFP [140]

6.2 Source Accountability 141

based on AS-level routes from source ASes to destination ASes; IDFP [57]
based on BGP update messages.

Ingress filtering protects source addresses only at a domain granular-
ity and cannot prevent spoofing by an adversary that resides in the same
domain as its victim.

Interactive Challenge-Response Authentication. A router could ask a
more direct question than the one raised for ingress filtering:“Did you (the
source host) send this packet?" One approach that is based on this question
is an interactive challenge-response authentication protocol. In this proto-
col, a router that receives a packet presents a question to which the source
host must correctly answer. Specifically, for each received packet, a router
generates a cryptographic nonce (e.g., a MAC over a nonce and the hash
of the packet using its secret key) as a challenge. Then, the source gener-
ates a response that uses the challenge as the input and is attributable to
the source by the router. For example, a response could be a MAC over the
cryptographic nonce using a symmetric key that the source shares with the
router; alternatively, it could be a digital signature over the challenge us-
ing the source’s private key. Regardless of the implementation, we call this
approach interactive since a challenge is dynamically created only when a
router receives a packet from a host.

AIP [25] uses an interactive challenge-response protocol with responses
based on digital signatures. Specifically, a router constructs a cryptographic
nonce by computing a MAC over a source’s packet using a symmetric key
that is only known to the router. Then, the source host responds by sign-
ing the nonce using the private key of which the corresponding public key
(more precisely its hash) is the source address in the packet. APIP [134]
uses a similar construct but with two differences: 1) the challenge is raised
to the accountability delegate of the source host, instead to the host him-
self; 2) the delegate—not the source host—generates a response with its
private key.

An interactive Challenge-response protocol has one disadvantage; it
requires additional latency due to the challenge-response protocol. To
overcome this disadvantage, both AIP and APIP additionally use whitelist-
based caches to amortize the latency penalty. That is, once a flow is authen-
ticated, packets of the flow are no longer verified for some time. However,
this approach sacrifices security over performance, since it precludes ev-

142 6 Related Work

ery packet from being accounted for in the network and creates an attack
window.

Non-interactive Challenge-Response Authentication. Making the challenge-
response protocol non-interactive eliminates the additional latency due
to the communication overhead for the challenge-response protocol. To
make the protocol non-interactive, the challenge is predetermined, and a
source host includes the response into his packet.

Many works, including APNA (Chapter 2), use this approach, and they
all use a similar challenge-response construct. A predetermined challenge
is based on the invariant fields of the packets (e.g., source, destination
addresses, payload), and a response is a MAC over the challenge using a
symmetric key that is shared between a source and a verifier. In APIP [134],
the construct is used between source host and his accountability delegate
so that the delegate can vouch for host’s packets. In Packet Passport [115],
the construct is used between the source, transit and destination ASes.
The source AS constructs a sequence of response (i.e., MACs) one for each
AS, and the transit and the destination ASes verify the corresponding re-
sponses. OPT [103] generalizes this model and allows each router on the
communication path to authenticate hosts’ packets. To this end, OPT pro-
poses Dynamically Recreatable Keys (DRKeys) that obviate per-host or per-
session state at each router that arises due to the shared keys needed for
source authentication.

AaaS [38] also uses a similar challenge-response construct but defines
three types of verifiers that perform source authentication for different
purposes. The source AS authenticates a packet to the source host to pre-
vent source address spoofing within the AS; the transit and the destination
ASes authenticate the packet to the source AS to prevent address spoofing
across ASes; and, the accountability agent of the source host authenticates
the packet to the host to provide accountability services.

AaaS defines a new entity—that is not the ISP of the source—to provide
accountability service. The authors separate the role of an accountability
agent from ISPs based on an assumption that ISPs are reluctant to act as
accountability for their customers due to conflicts of interest. For example,
ISPs are not willing to take actions against its paying customers even if they
misbehave. However, we do not agree with this assumption. Researchers
have argued that ISPs should assume an active role in keeping the Inter-

6.2 Source Accountability 143

net clean [113, 137, 156]; and, recently, ISPs have started assuming that
role [53, 118, 121]. Furthermore, ISPs have been disconnected from the
Internet due to their misbehaving hosts [68, 104, 105].

6.2.2 Blocking Unwanted Traffic

In Chapter 2, we describe the shutoff functionality that allows the receivers
to suppress unwanted communication at the senders’ ISPs. In this section,
we review related works that take two different approaches to allow re-
ceivers to block unwanted traffic: a whilelist approach via network capa-
bilities and a blacklist approach via network filters.

Using Network Capabilities. A Network capability is an authorization
token that approves an entity to perform a certain action. For example,
a server provides network capabilities to the clients to allow the clients
to send packets to the server. This application of network capabilities has
been proposed to limit DoS attacks against the receivers [26, 174, 176]. In
these works, the network constructs a capability that the receiver provides
to the sender. Then, the sender inserts the provided capability into his
packet to the receiver; and, the network forwards the packet only if the
packet contains a valid network capability.

Using network capabilities efficiently reduces unwanted traffic (e.g.,
DoS traffic), since the senders must get the consents of their receivers be-
fore sending any packet. However, this approach comes with two disad-
vantages. First, it introduces the initial latency for acquiring the receivers’
consents. Second, it introduces a new attack window: denial of capability
attacks [28]. That is, the adversary floods the destinations with capability
requests.

Using Network Filters. Another approach is based on a blacklist. That is,
senders are allowed to send packets to the receivers without requiring the
receivers’ consents. Then, a receiver that receives unwanted traffic from
a sender installs a filter near the sender to suppress such traffic. More
precisely, a destination sends a filter request (i.e., a shutoff request) for an
unwanted flow, and the source validates the request (e.g., if the destination
is authorized to make such a request) and blacklists that flow to suppress
packets of that flow from leaving the source.

There are two locations at the source at which filters can be installed.
In host-based approaches [25, 161], the filters are installed at the send-

144 6 Related Work

ing hosts, e.g., using smart NICs. While this approach does not allow un-
wanted traffic to even enter the source network, this approach is problem-
atic for compromised hosts as they could disable the filtering functionality.
On the other hand, the network-based approaches [28, 116, 134], which
install filters at a network infrastructure (e.g., at access or border routers),
do not have such a problem. However, since routers need to maintain
the filters, routers are susceptible to state exhaustion attacks that install a
large number of filters.

In APNA, we use the network-based filtering approach and mitigates
the state exhaustion attack by the following two design decisions. First,
an EphID—not a specific flow—is blocked when there is a shutoff request.
Blocking an EphID can create a collateral damage to a source host if he uses
the EphID for multiple communications (e.g., using as a per-application
EphID). The fear of collateral damage provides an incentive for the hosts
to be good citizens to minimize filtering requests against them. Second,
since EphIDs are bound to HIDs, the network can revoke the HID of an
offending host—instead of blocking his individual EphIDs—if there are
too many shutoff requests against the host.

6.3 Communication Privacy
Communication on the Internet leaks information about the communicat-
ing users, and these information can be used to build a history of users’
communication activities. For example, the addresses in the network head-
ers allow one to identify with whom users are communicating. Moreover,
a similar observation can be made from the content of the communication
by observing the packet payloads. In this section, we review related works
on protecting the network header and the packet payloads.

6.3.1 Protecting the Content of Communication

Farrell and Tschofenig [66] argue that pervasive monitoring—defined as
the widespread and often covert surveillance through intrusive gathering
of communication information—is a widespread attack on privacy. In re-
sponse, Kent [101] proposes pervasive encryption as a countermeasure
against pervasive monitoring. In a related effort, the Let’s Encrypt1 orga-
nization encourages the use of encrypted web traffic by issuing free TLS

1https://letsencrypt.org

6.3 Communication Privacy 145

certificates for web servers. Moreover, MinimaLT [144] proposes an archi-
tecture that supports pervasive data encryption and achieves PFS without
sacrificing connection latency for communications.

On a related note, researchers have proposed opportunistic encryption
(OE) [42, 43, 59, 65, 135, 153] to make it difficult for adversaries, such as
governments, to perform pervasive monitoring. OE does not prevent active
adversaries that perform man-in-the-middle attack from eavesdropping on
communications, since OE does not require authentication between com-
municating entities. However, OE does make pervasive monitoring more
difficult and expensive, since an adversary must perform a man-in-the-
middle attack for each communication that he wants to eavesdrop.

In line with the trend for data privacy, our proposal proposes (authenti-
cated) encryption as a fundamental design tenet of the network layer and
additionally proposes a concrete solution for key distribution, establish-
ment, and management. However, our position on network-layer encryp-
tion is different from the proponents of pervasive encryption. In our view,
the architecture should allow users to decide if the network-layer encryp-
tion is necessary for their communication instead of mandating encryption
for all communication.

6.3.2 Protecting Privacy Leak from the Network Headers

In this section, we review three approaches to prevent or limit an adversary
from establishing a history of users’ activities from the networks headers
in the packets.

6.3.2.1 Removing Source Addresses.

Removing source addresses from the network header prevents an adver-
sary from identifying the senders. However, this approach creates a chal-
lenge for bidirectional communication as the receiver does not know the
address to which to send a reply.

Researchers have proposed various methods to allow bi-directional com-
munication without source addresses in the packets. In NDN [90], packets
leave a trail of “breadcrumbs” on the routers that they traverse, and the
reply packets follow back the breadcrumbs to the senders. In LAP [85] and
Dovetail [159], the network header contains a path from the source to the
destination instead of their respective addresses. Then, the destination re-
verses the path to send a packet to the source. In APIP [134], the address

146 6 Related Work

of the sender is included in the packet payload so that only the destination
can identify the address.

6.3.2.2 Using Multiple Source Addresses

Alternatively, different source addresses could be used for different com-
munications to limit the amount of information that can be linked by a
single address. AHP [149] proposes an ISP-wide NAT that chooses a dif-
ferent source address for each outgoing flow. RFC 4941 [133] specifies
a privacy extension for IPv6 that allows a host to generate multiple IPv6
addresses by choosing multiple unique values for the interface identifier
(i.e., the lower eight bytes of the IPv6 address). Han et al. [79] proposes a
pseudonym-based architecture where ISPs provide multiple pseudonyms
to their hosts; a pseudonym is an IPv6 address with a cryptographically
generated interface identifier.

Sakurai et al. [157] proposes communication based on one-time re-
ceiver addresses, which are IPv6 addresses with cryptographically gener-
ated interface identifiers. The interface identifiers are generated using a
hash-chain with a symmetric key that is shared between a sender and a
receiver; this construction allows the sender and the receiver to coordi-
nate the one-time addresses. Although this work is closely related to OTA
(Chapter 3), they fall short of achieving flow-packet unlinkability since
only the destination address is changed for each transmitted packet.

6.3.2.3 Using Detours

Taking a detour through relays prevent an adversary from identifying the
sender and the receiver at the same time (i.e., it provides sender-destination
unlinkability). Anonymity systems are based on the idea of detours, and
we broadly classify anonymity systems based on the amount of routing
inflation that the systems create.

low-stretch anonymity systems. The simplest systems take one detour
through a single anonymizing relay. Virtual Private Network (VPN) ser-
vices (e.g., expressvpn.com) and anonymous proxies (e.g., anonymizer.com)
are examples of such systems. In these systems, a host encrypts and sends
a packet to the relay. Then, the relay decrypts the packet and sends the
packet to the host’s intended destination using the address of the relay as
the source address. These systems are lightweight and incur low-latency

6.3 Communication Privacy 147

since only a single detour is made; however, they require users to trust the
relay since it can identify the sender and destination at the same time.

high-stretch anonymity systems.

Onion Routing. If a user cannot trust a single relay, he can forward his
packets through a series of relays. That is, the user encrypts his message
in layers and forwards through a series of relays, each of which decrypts,
strips off a layer and forwards to the next relay. This technique of using
a series of relays is called onion routing [151]. In onion routing, a relay
only knows the previous and the next relay; hence, none of the relays can
identify the sender and destination at the same time.

The most popular instantiation of onion routing is Tor [56], which aims
at providing low-latency communication. However, its design to provide
low-latency communication also makes it vulnerable against traffic analy-
sis attacks [162, 168, 169, 171, 179].

Furthermore, Tor inevitably suffers from high path inflation since it is
implemented as an application-layer overlay. That is, an end-to-end path
through the Tor network can be much longer than the end-to-end path
through the Internet. Some proposals have addressed this limitation by
deploying the anonymity systems in the network. That is, routers in ASes
act as relays, and sending packets through the relays is equivalent to send-
ing them through the Internet without the privacy protection. Examples of
such anonymity systems include HORNET [49], LAP [85], Dovetail [159]
and Tor instead of IP [114].

Mix Networks (MixNets). To increase resilience against traffic analysis,
a relay can additionally batch and permute the order of packets to hide
the correspondence between inputs and outputs to a relay. Such a relay is
called a mix, and it has been first described by Chaum in his seminal pa-
per [48]. Since then, many mixed networks have been proposed for differ-
ent applications. For example, mixmaster [128], babel [77], and mixmin-
ion [54] have been proposed for the anonymous remailer services, and
ISDN-mixes [146], Real-time Mixes [91] and Web Mixes [41] for telecom-
munication networks and web-browsing on today’s Internet. Recently, Aqua [108]
and Herd [107] have been proposed for anonymous peer-to-peer and VoIP
applications, respectively. The two works exploit the distinct traffic pat-
terns for their respective applications, to design a high-bandwidth (Aqua

148 6 Related Work

for p2p applications) and low-latency (Herd for VoIP applications) mix net-
works.

6.4 Incremental Deployment for FIAs
Over the past 15 years, there have been numerous FIA proposals that take
on various limitations of today’s Internet; and most of them also describe
how their architectures can be deployed in today’s Internet. Although the
exact details on how the architectures can be deployed differ from one
work to another, they are all based on the same approach—deploy as an
overlay over today’s Internet.

In this section, we highlight deployment studies for two specific FIAs—
NDN [90] and XIA [78]—instead of creating a long-list for all FIA proposals
that have discussed deployment. We focus on those two architectures for
two reasons. They are two of the prominent FIA projects that were spon-
sored by the NSF FIA project;2 more importantly, the two FIAs show how
the design of an architecture affects its deployability.

NDN Deployment. Deploying NDN on today’s Internet is challenging.
First, NDN’s routing and forwarding are incompatible with today’s IPv4
network. Second, the benefits of NDN (e.g., efficient content delivery with
low latency) are problematic in early stages of deployment. This is because
the benefits of NDN are known to materialize only when the network can
cache contents pervasively, but pervasive caching is difficult in early stages
of deployment since only a few NDN routers would be deployed.

Researchers have adapted NDN to be more amenable for deployment,
and one example is idICN [67]. The authors of idICN start by analyzing the
benefit of pervasive caching. To this end, the authors compare the benefit
of pervasive caching and caching only at the edge networks (e.g., stub
ASes) and concludes that edge-only caching is nearly as good as pervasive
caching. Then, based on their conclusion, the authors describe idICN that
implements NDN functionalities (e.g., content caching, name resolution,
content verification) only at the edges of the network (e.g., stub ASes and
end-hosts). This approach is easier to deploy than the original architecture
because the network edges are easier to change than the core, and the
deploying entities benefit from deployment. Specifically, adopting end-

2www.nets-fia.net

6.4 Incremental Deployment for FIAs 149

users retrieve contents with lower latency due to content caching, and
deploying ISPs generate revenue from end-users who use idICN.

Another work is hICN [4] that focuses on adapting NDN to be compati-
ble with IPv6 networks. To this end, hICN maps the names of the contents
to IPv6 addresses, and defines NDN packets (e.g., interest and data pack-
ets) as IPv6 packets. This design allows IPv6 routers and NDN routers
to coexist so that NDN routers can be gradually introduced into an IPv6
network. In a hICN network, the IPv6 routers in the network treat all pack-
ets (including the NDN packets) as IPv6 packets and simply forwards them
based on their IPv6 headers while the NDN routers recognize NDN packets
and process them accordingly.

XIA Deployment. Unlike ICN, XIA can be incrementally deployed with-
out modifying the architecture because its design allows various types of
communication (e.g., host-based, content-based communications) to coex-
ist in the network. To this end, XIA introduces two architectural elements.
First, XIA defines principal types that users use to specify their communica-
tion intent (e.g., content retrieval), and that specify forwarding semantics
for the network. Second, XIA addresses support fallback addressing. Fall-
back addressing is routing information that a router can use if it cannot
understand the destination information in the packet, e.g., because the
destination information includes a new principal type.

For deployment over today’s Internet, XIA defines a new principal type,
4ID that encodes IPv4 addresses [75]. When a host in one XIA island wants
to communicate with another host in another island that is separated by
today’s Internet, the source host specifies the 4ID of the ingress XIA router
as a fallback address. Then, the egress XIA router in the source island
tunnels host’s packet to the destination island by using the IPv4 address
that is encoded into the fallback address.

Deployment for Generic Architecture. Mukerjee et al. [131] does not
study incremental deployability of a specific architecture, but the authors
study the design issues that arise when incrementally deploying an archi-
tecture: bridging two islands of a new network across an old network. In
such a case, communication between two hosts in two different islands
must go through an egress point at the border between the source island
and the old network, and an ingress point at the border between the old
network to the destination island. The authors analyze the design space in

150 6 Related Work

selecting these two points with respect to performance (e.g., latency) and
flexibility (e.g., recovery from a failure of ingress or egress points).

Chapter 7

Conclusion and Future Work

Both source accountability and privacy are important properties for the
Internet. However, the conflicting nature of the two properties makes it
difficult to simultaneously support both properties. To date, the research
community has predominantly investigated approaches that favor either
privacy or accountability, offering one at the expense of the other. To our
knowledge, APIP [134], is the only major proposal that has aimed to find
a balance between the two properties at the network layer; however, APIP
presents a high-level design and leaves details unspecified.

This dissertation investigates the design and deployment of the Ac-
countable and Private Network Architecture (APNA) that provides source
accountability guarantees and is privacy-preserving.

Chapter 2 specifies the base architecture of APNA, which can be sum-
marized by the following two design decisions. First, we enlist ISPs as the
trusted third-party entity to balance accountability and privacy. As an ac-
countability agent, an ISP establishes a strong notion of host identity of
its host and a strong link between the identity of the source and the sent
packet. As a privacy-broker, an ISP issues privacy-preserving addresses
(i.e., EphIDs) that hosts use as source addresses. Furthermore, an ISP acts
as a certificate issuer, issuing certificates that certify the binding between
public keys of its hosts and EphIDs. The certificates are used to securely
establish shared symmetric keys that are used to hide communication be-
tween hosts, even against their ISPs.

Second, using EphIDs as network addresses allows us to design an effi-
cient data-plane that provides both source accountability guarantees and
privacy-preserving communication. This is due to how EphIDs are con-
structed and used; ISPs create EphIDs by encrypting the identities of their
hosts using secret keys that are only known to them, and ISPs issue multi-
ple EphIDs to their hosts. This EphID construction allows only the issuing
ISPs to identify the identities of the hosts from EphIDs, and the ISPs make
the association without maintaining per-EphID state; the stateless binding
allows us to design efficient source authentication and routing mechanisms
that do not require per-EphID state. Furthermore, since a host can obtain

154 7 Conclusion and Future Work

multiple EphIDs, the host can control the amount of traffic that can be
linked to a common sender by using different EphIDs for different commu-
nication, hence enhancing communication privacy.

Chapter 3 pushes the idea of using EphIDs at different granularities to
the extreme—use a single EphID to either receive or send a single packet.
That is, EphIDs are used as per-packet One-Time Addresses (OTAs). Com-
munication based on OTAs (if designed correctly) achieves an interest-
ing property—flow-packet unlinkability: by observing packets of any num-
ber of flows, the packets are no more and no less related to any flow
after the observation than they were before the observation. Communi-
cation that achieves flow-packet unlinkability dispels many sophisticated
attacks [162, 168, 169, 171, 179] that use flow information within pack-
ets. We extend APNA to support communication that satisfies flow-packet
unlinkability.

Chapter 4 addresses APNA’s vulnerability against replay attacks. To
emphasize the severity of replay attacks, we identify a new attack—the
router-reflection attack—that attacks a remote geographic region of the In-
ternet by simply replaying packets from compromised routers. The router-
reflection attack shows that a replay suppression functionality is necessary
within the network to protect itself, and the functionality should not be
entirely delegated to end-hosts. In addition, it challenges whether the
end-to-end argument applies to duplicate packet suppression. Then, we
describe a lightweight in-network replay suppression mechanism.

Chapter 5 investigates two deployment strategies for APNA. Specifi-
cally, we describe how an overlay network of APNA could be created over
today’s Internet. In addition, we propose a new integrated approach to
FIA deployment, which can be summarized by the following phrase: think

revolutionary, act evolutionary. This approach considers the FIA design
process as a platform to identify new ideas, and integrates such ideas on
today’s Internet using well-established technologies. We apply this deploy-
ment approach to APNA by realizing the notion of user-defined privacy on
today’s Internet. To this end, we propose a new concept, privacy domain,
which allows users to express their privacy requirements; then, we iden-
tify ISP-level privacy services that can be used to construct users’ privacy
domains.

7.1 Future Work 155

7.1 Future Work

The following are future works that we have identified.

Formal Verification for APNA. APNA relies on cryptographic primitives to
provide source accountability guarantees and support privacy-preserving
communication. To avoid introducing security vulnerabilities, we only use
cryptographic primitives that are secure and design each protocol while an-
ticipating possible attacks against the protocols. Furthermore, we specify
an adversary model and qualitatively analyze the security of our architec-
ture against the adversary model. However, we still cannot conclusively
say that our architecture is free from security vulnerabilities; formal pro-
tocol verification would provide that answer.

Support for Privacy-preserving Transport Protocols. In our work, we
do not consider side-channel attacks (e.g., timing anlysis) that can violate
privacy guarantees. We have not considered side-channel attacks since
we believe that the architecture should provide only the basic building
blocks to achieve host privacy at the network layer and stronger privacy
guarantees (e.g., resiliency against timing analysis) should be provided by
protocols at a higher layer (e.g., transport protocol).

It would be interesting future work to design privacy-preserving trans-
port protocols that can combat side-channel attacks, and we identify two
interesting issues when combining such transport protocols with today’s
transport protocols (e.g., UDP, TCP, SCTP [166]). First, we need to consider
how privacy-preserving transport protocols can be integrated with today’s
transport protocols. For example, should the privacy-preserving transport
protocols be designed modularly and then allow users to combine them
with today’s transport protocols? Alternatively, should the privacy-preserving
transport protocols directly implement the functionalities of today’s trans-
port protocols?

In addition, we need to study the performance implication when a
privacy-preserving transport protocol is combined with today’s transport
protocol (especially for TCP or SCTP). This is necessary since a proto-
col that alters packet transmission times (e.g., one that uniformizes inter-
packet times) may have a significant impact on TCP performance.

156 7 Conclusion and Future Work

Support for Privacy-preserving Low-latency Inter-domain Mobility/Multi-

homing. APNA, as described in the dissertation, cannot support mobility1

across ISPs because EphIDs are valid only within an ISP. When a host moves
from one domain to another, the host receives new EphIDs from his new
domain, and all EphIDs from the previous domain become invalid. To sup-
port mobility, the host needs to inform his peer about new EphIDs; but,
APNA does not specify such a mechanism.

One approach to support mobility is to follow the approach of QUIC [148].
In QUIC, a client and a server specify a connection UUID that remains con-
stant during the lifetime of a connection. When the client moves from one
domain to another, the client informs its new IP address to the server by us-
ing the connection UUID. A similar method can be used in APNA to support
mobile hosts. When a mobile host moves from one ISP to another, he can
update the peer about the new EphID using the connection UUID. How-
ever, this approach has a privacy implication. Since a connection UUID
must be visible in the packets, an observer can track the movement of a
host using the connection UUID.

One could offer the following as the solution to this privacy implication.
The two hosts first establish a new secure connection (using the procedure
in Section 2.3.4.1), with the mobile one using a new EphID. Then, the mo-
bile host sends a message to the other host to indicate that the new connec-
tion is a continuation of the previous connection. This approach eliminates
the privacy implication since the connection UUID would be encrypted us-
ing the shared symmetric key for the new secure connection. However, this
approach incurs two additional RTTs: one RTT is needed to establish a new
connection, and another RTT is needed to associate the new connection
to the previous connection. Designing a privacy-preserving low-latency
inter-domain mobility mechanism is not a trivial problem.

Privacy-as-a-Service. Another future work is to develop a platform (shown
in Figure 7.1) to realize the notion of user-defined privacy on today’s Inter-
net. The goal of the platform is to create privacy circuits based on users’
communication requirements, which would be expressed in terms of pri-
vacy and performance requirements.

1We discuss only in the context of mobility; the argument also applies to multi-homing
since conceptually they are equivalent.

7.1 Future Work 157

User API

Element-speci!c API

ISP-o"ered Privacy

Service Infrastructure

User

Machine

Privacy Domain

Computation

Engine

Privacy Circuit

Orchestration

Engine

Privacy

Service DB

User Communication Requirement
 - Privacy Requirement

 - Performance Requirement

Northbound

Service

Orchestration

Southbound

Privacy Service

Infrastructure

Elements

Figure 7.1: A platform for Privacy-as-a-Service.

The platform uses the privacy services (See Section 5.2.2.2) offered by
the network to create the privacy circuits based on users’ communication
requirements. To this end, the two engines in the platform (i.e., the privacy
domain computation engine and the privacy circuit orchestration engine)
jointly compute the privacy circuits. Specifically, the privacy domain com-
putation engine translates the user’s high-level privacy requirements to
more actionable technical requirements by constructing privacy domains
that describe what privacy-sensitive information (e.g., source address) are
revealed to which entities (e.g., ISPs). The privacy circuit orchestration en-
gine creates a set of actionable instructions to create a privacy circuit that
realizes the computed privacy domains. Then these instructions are deliv-
ered to the ISPs’ privacy service infrastructures and the host’s computer to
configure the computed privacy circuits.

We identify the following specific future works towards developing the
Privacy-as-a-Service platform:

• Privacy Services. In this dissertation, we have identified four privacy
primitives: multiple IPv6 addresses through the IPv6 privacy exten-
sion [133], and the three ISP-offered services described in Chapter 5,
i.e., ISP-level Address Hiding Service, ISP-wide Secure Tunneling Ser-
vice, and ISP-level VPN Service. It is an interesting future work to iden-
tify other privacy primitives.

158 7 Conclusion and Future Work

• Algorithms for the two engines. Efficient algorithms must be devel-
oped for the privacy domain computation engine and the privacy circuit
orchestration engine.

• Privacy Abstraction. A study is needed to find an appropriate abstrac-
tion to express users’ privacy requirements. For example, we need to
investigate if a user would be capable of or interested in making privacy
statements such as “I want to avoid exposing my IP address against AS
X". Alternatively, it may be appropriate to provide a simple API that pro-
vides a few pre-configured options (e.g., privacy-critical, performance-
critical and balanced).

• User Communication Requirements. We believe that users would be
interested in expressing their communication requirements from per-
formance (e.g., latency, bandwidth) and privacy perspective; however,
a further study is needed to determine the criteria that users would use
to describe their communication requirements.

• Privacy Circuit Management. A user can create multiple privacy cir-
cuits since users would have different requirements for different com-
munications. Hence, the platform must allow a user to choose an ap-
propriate circuit for his particular communication. A study is needed to
determine how this interaction should be made. One possible approach
is using a similar approach to the permission control in mobile devices.
When an application is installed or executed, the platform asks the user
to select a privacy circuit for the application.

• Business Model. We expect users to subscribe and pay to use the pri-
vacy services of the ISPs. If a subscription is made on a per-ISP basis,
a user needs to individually subscribe to multiple ISPs when creating a
privacy circuit that uses privacy services of many ISPs (e.g., a Tor-esque
privacy circuit using multiple ISP-level VPN services). In such a case, a
per-ISP subscription may not scale if users need to use privacy services
of many ISPs. Hence, a different business model may be necessary. For
example, ISPs could form an alliance and allow a user who subscribes
to any of the ISPs in the alliance to use the privacy services offered by
all member ISPs.

Bibliography

[1] CAIDA: Looking Glass API. http://goo.gl/AKQcd9.

[2] Configuring Per-Packet Load Balancing. http://goo.gl/ZO4LiS.

[3] How Does Load Balancing Work? http://goo.gl/SVbYM9.

[4] Mobile Video Delivery with Hybrid ICN: IP-integrated ICN solution
for 5G. https://goo.gl/KLd8YT.

[5] RIPE Atlas. http://atlas.ripe.net.

[6] SDN Security Challenges in SDN Environments.
http://bit.ly/2av8huG.

[7] The CAIDA UCSD Anonymized Internet Traces 2015-050615.
http://goo.gl/WmItAH.

[8] CRIME Attack Uses Compression Ratio of TLS Requests as Side
Channel to Hijack Secure Sessions. http://bit.ly/2rn7QbT, 2012.

[9] A Perfect CRIME? Only TIME Will Tell. http://ubm.io/2rn5qtU,
2013.

[10] The BREACH Attack. http://www.breachattack.com/, 2013.

[11] The Heartbleed Bug. heartbleed.com, 2014.

[12] Cisco Routers Compromised by Malicious Code Injection.
http://goo.gl/oWBtF6, Sep 2015.

[13] Data Plane Development Kit. http://dpdk.org, Sep 2015. Retrieved
on 1/2016.

[14] eBACS: ENCRYPT Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to/supercop.html, 2015. Retreived on 4/2016.

[15] Juniper ScreenOS Authentication Backdoor.
https://goo.gl/umV2gD, Dec 2015.

http://goo.gl/AKQcd9
http://goo.gl/ZO4LiS
http://goo.gl/SVbYM9
https://goo.gl/KLd8YT
http://atlas.ripe.net
http://bit.ly/2av8huG
http://goo.gl/WmItAH
http://bit.ly/2rn7QbT
http://ubm.io/2rn5qtU
http://www.breachattack.com/
heartbleed.com
http://goo.gl/oWBtF6
http://dpdk.org
http://bench.cr.yp.to/supercop.html
https://goo.gl/umV2gD

162 BIBLIOGRAPHY

[16] Snowden: The NSA planted backdoors in Cisco products.
http://goo.gl/xwdFW2, May 2015.

[17] Spirent SPT-N4U-220 Chassis. http://goo.gl/X4gbeI, Sep 2015. Re-
trieved on 4/2016.

[18] The Copyright Alert System. http://goo.gl/UsilIf, Jan 2015. Re-
trieved on 12/2015.

[19] BackConnect’s Suspicious BGP Hijacks. http://bit.ly/2rnhBa8,
2016.

[20] Large Hijack Affects Reachability of High Traffic Destinations.
http://bit.ly/2qMW6Rm, 2016.

[21] Iran’s Porn Censorship Broke Browsers as Far Away as Hong Kong.
http://bit.ly/2s4E90s, 2017.

[22] Russian-controlled Telecom Hijacks Financial Services’ Internet
Traffic. http://bit.ly/2pp44fp, 2017.

[23] SSL by Default Usage Statistics. http://bit.ly/2rnj1S7, 2017.

[24] SSL Pulse. https://www.trustworthyinternet.org/ssl-pulse/, 2017.

[25] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In Proceedings

of the ACM Conference on SIGCOMM, 2008.

[26] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet
Denial-of-Service with Capabilities. In Proceedings of the ACM Work-

shop on Hot Topics in Networks (HotNets), 2003.

[27] Andre. What Everybody Ought to Know About HideMyAss.
https://goo.gl/GYKLjH, Feb 2016.

[28] K. Argyraki and D. R. Cheriton. Active Internet Traffic Filtering:
Real-Time Response to Denial-of-Service Attacks. In Proceedings of

the USENIX Annual Technical Conference (ATC), 2005.

[29] ARIN. Resource Public Key Infrastructure. http://bit.ly/1EJCQoT,
Jan 2015. Retrieved on 2/2016.

http://goo.gl/xwdFW2
http://goo.gl/X4gbeI
http://goo.gl/UsilIf
http://bit.ly/2rnhBa8
http://bit.ly/2qMW6Rm
http://bit.ly/2s4E90s
http://bit.ly/2pp44fp
http://bit.ly/2rnj1S7
https://www.trustworthyinternet.org/ssl-pulse/
https://goo.gl/GYKLjH
http://bit.ly/1EJCQoT

BIBLIOGRAPHY 163

[30] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira. Avoiding Traceroute Anomalies
with Paris Traceroute. In Proceedings of the ACM Conference on In-

ternet Measurement (IMC), 2006.

[31] F. Baker and P. Savola. Ingress Filtering for Multihomed Networks.
RFC 3704 (Best Current Practice), Mar. 2004.

[32] J. Bamford. The NSA Is Building the Country’s Biggest Spy Center
(Watch What You Say). https://goo.gl/2XC2Sc, Mar 2012.

[33] C. Basescu, R. M. Reischuk, P. Szalachowski, A. Perrig, Y. Zhang,
H.-C. Hsiao, K. A., and U. J. SIBRA:Scalable Internet Bandwidth
Reservation Architecture. In Proceedings of the Symposium on Net-

work and Distributed System Security (NDSS), 2016.

[34] M. Bellare, J. Kilian, and P. Rogaway. The Security of the Cipher
Block Chaining Message Authentication Code. Journal of Computer

and System Science, 61(3), 2001.

[35] M. Bellare and C. Namprempre. Authenticated Encryption: Re-
lations among Notions and Analysis of the Generic Composition
Paradigm. In Advances in Cryptology—ASIACRYPT, volume 1976.
Springer, 2000.

[36] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-
Preserving Encryption. In Proceedings of the Workshop on Selected

Areas in Cryptography, 2009.

[37] S. M. Bellovin, D. D. Clark, A. Perrig, and D. Song. A Clean-Slate
Design for the Next-Generation Secure Internet. Technical Report
GDD-05-05, NSF Workshop Report, 2005.

[38] A. Bender, N. Spring, D. Levin, and B. Bhattacharjee. Accountability
as a Service. In Proceedings of the USENIX Workshop on Steps to

Reducing Unwanted Traffic on the Internet (SRUTI), 2007.

[39] D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In
Public Key Cryptography (PKC). Springer, 2006.

https://goo.gl/2XC2Sc

164 BIBLIOGRAPHY

[40] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-
speed high-security signatures. Journal of Cryptographic Engineer-

ing, 2(2), 2012.

[41] O. Berthold, H. Federrath, and S. Kopsell. Web MIXes: A system for
anonymous and unobservable Internet access. In Proceedings of the

LNCS Workshop on Design Issues in Anonymity and Unobservability,
2001.

[42] A. Bittau, D. B. Giffin, M. Handley, D. Mazières, Q. Slack, and E. W.
Smith. Cryptographic protection of TCP Streams (tcpcrypt). draft-
ietf-tcpinc-tcpcrypt-06, 2017.

[43] A. Bittau, M. Hamburg, M. Handley, D. Mazières, and D. Boneh.
The Case for Ubiquitous Transport-level Encryption. In Proceedings

of the USENIX Security Symposium, 2010.

[44] M. S. Blumenthal and D. D. Clark. Rethinking the Design of the
Internet: The End-to-End Arguments vs. the Brave New World. In-

ternet Technology, ACM Transactions on, 2001.

[45] N. Brownlee and K. Claffy. Understanding Internet Traffic Streams:
Dragonflies and Tortoises. Communication Magazine, IEEE, 40(10),
2002.

[46] R. Bush and R. Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol. RFC 6810 (Proposed Standard), Jan.
2013.

[47] CAIDA. Observing Routing Asymmetry in Internet Traffic.
https://goo.gl/uE4V3B.

[48] D. L. Chaum. Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms. Communications of the ACM, 24(2), 1981.

[49] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig. HOR-
NET: High-speed Onion Routing at the Network Layer. In Proceed-

ings of the ACM Conference on Computer & Communications Security

(CCS), 2015.

https://goo.gl/uE4V3B

BIBLIOGRAPHY 165

[50] Cisco. Cisco IOS Software Integrity Assurance.
http://bit.ly/2ab76RE.

[51] D. D. Clark. Designs for an Internet. 2017.

[52] D. D. Clark, B. Lehr, S. Bauer, P. Faratin, R. Sami, and J. Wroclawski.
Overlay Networks and the Future of the Internet. Communications

& Strategies, (63), 2006.

[53] Communications Alliance Ltd. Internet Service Providers Voluntary
Code of Practice: For Industry Self-Regulation in the Area of Cyber
Security. Technical report, Communications Alliance Ltd, 2014.

[54] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design
of Type III Anonymous Remailer Protocol. In Proceedings of the IEEE

Symposium on Security and Privacy (S&P), 2003.

[55] C. Díaz, S. Seys, J. Claessens, and B. Preneel. Towards Measuring
Anonymity. In Proceedings of the Workshop on Designing Privacy

Enhancing Technologies (PETS), 2003.

[56] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-
generation Onion Router. In Proceedings of the USENIX Security

Symposium, 2004.

[57] Z. Duan, X. Yuan, and J. Chandrashekar. Constructing Inter-Domain
Packet Filters to Control IP Spoofing Based on BGP Updates. In
Proceedings of IEEE INFOCOMM, 2006.

[58] N. G. Duffield and M. Grossglauser. Trajectory Sampling for Direct
Traffic Observation. Networking, IEEE/ACM Transactions on, 9(3),
2001.

[59] V. Dukhovni. Opportunistic Security: Some Protection Most of the
Time. RFC 7435 (Informational), Dec. 2014.

[60] R. Durairajan, S. K. Mani, J. Sommer, and P. Barford. Time’s Forgot-
ten: Using NTP to Understand Internet Latency. In Proceedings of

the ACM Workshop on Hot Topics in Networks (HotNets), 2015.

http://bit.ly/2ab76RE

166 BIBLIOGRAPHY

[61] M. Dworkin. Recommendation for Block Cipher Modes of Opera-
tion: Methods for Format-Preserving Encryption. NIST Special Pub-

lication, 800, 2016.

[62] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo,
I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2012.

[63] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn. Diameter Base Pro-
tocol. RFC 6733 (Proposed Standard), Oct. 2012. Updated by RFC
7075.

[64] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic Rout-
ing Encapsulation (GRE). RFC 2784 (Proposed Standard), Mar.
2000. Updated by RFC 2890.

[65] A. Farrel and S. Farrell. Opportunistic Security in MPLS Networks.
draft-ietf-mpls-opportunistic-encrypt-03, 2017.

[66] S. Farrell and H. Tschofenig. Pervasive Monitoring Is an Attack. RFC
7258 (Best Current Practice), May 2014.

[67] S. K. Fayazbaksh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. M. Maggs, K. NG, V. Sekar, and S. Shenker. Less Pain, Most of
the Gain: Incrementally Deployable ICN. In Proceedings of the ACM

Conference on SIGCOMM, 2013.

[68] Federal Trade Commission. FTC Shuts Down Notorious Rogue In-
ternet Service Provider. https://goo.gl/5jYFdV, June 2009.

[69] A. Feldmann. Internet Clean-Slate Design: What and Why? Com-

puter Communication Review, ACM SIGCOMM, 2007.

[70] P. Felix, P. Sanders, and J. Singler. Cache-, Hash- and Space-efficient
Bloom Filters. Journal of Experimental Algorithmics (JEA), 14(4),
2009.

[71] E. Fink. Stalker: A creepy look at you, online.
http://goo.gl/DWCiKI, Jun 2014.

https://goo.gl/5jYFdV
http://goo.gl/DWCiKI

BIBLIOGRAPHY 167

[72] D. Fisher. A Look Behind the Future Internet Architectures Efforts.
Computer Communication Review, ACM SIGCOMM, 44(3), 2014.

[73] S. Frankel, R. Glenn, and S. Kelly. The AES-CBC Cipher Algorithm
and Its Use with IPsec. RFC 3602 (Proposed Standard), Sept. 2003.

[74] T. Gerbet, A. Kumar, and C. Lauradoux. The Power of Evil Choices
in Bloom Filters. Technical Report hal-01082158, INRIA Grenoble,
2014.

[75] R. Grandl, D. Han, S.-B. Lee, H. Lim, M. Machado, M. K. Muker-
jee, and D. Naylor. Supporting Network Evolution and Incremental
Deployment with XIA. Computer Communication Review, ACM SIG-

COMM, 42(4), 2012.

[76] S. Gueron. Intel Advanced Encryption Standard (AES) New Instruc-
tion Set. https://goo.gl/of08Dg, Mar 2010.

[77] C. Gulcu and G. Tsudik. Mixing E-mail with Babel. In Proceedings of

the Symposium on Network and Distributed System Security (NDSS),
1996.

[78] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukun-
dan, W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and
P. Steenkiste. XIA: Efficient Support for Evolvable Internetworking.
In Proceedings of the USENIX Conference on Networked Systems De-

sign and Implementation (NSDI), 2012.

[79] S. Han, V. Liu, Q. Pu, S. Peter, T. Anderson, A. Krishnamurthy, and
D. Wetherall. Expressive Privacy Control with Pseudonyms. In Pro-

ceedings of the ACM Conference on SIGCOMM, 2013.

[80] M. Handley. Why the Internet Just Works. BT Technology Journal,
24(3), 2006.

[81] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing Encap-
sulation (GRE). RFC 1701 (Informational), Oct. 1994.

[82] J. Hayes and G. Danezis. k-fingerprinting: A Robust Scalable Web-
site Fingerprinting Technique. In Proceedings of the USENIX Security

Symposium, 2016.

https://goo.gl/of08Dg

168 BIBLIOGRAPHY

[83] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker. On Rout-
ing Asymmetry in the Internet. In Proceedings of the IEEE Global

Communications Conference (GLOBECOM), 2005.

[84] R. M. Hinden. Why Take Over the Hosts When You Can Take Over
the Network. http://bit.ly/2apRAxZ, Feb 2014.

[85] H.-C. Hsiao, T. H.-J. Kim, S. B. Lee, X. Zhang, S. Yoo, V. D. Gligor,
and A. Perrig. STRIDE:Sanctuary Trail—Refuge from Internet DDoS
Entrapment. In Proceedings of the ACM Asia Conference on Computer

and Communications Security (AsiaCCS), 2013.

[86] N. Hu, L. E. Li, M. Z. Mao, P. Steenkiste, and J. Wang. Locating
Internet Bottlenecks: Algorithms, Measurements, and Implications.
In Proceedings of the ACM Conference on SIGCOMM, 2004.

[87] G. Huston, G. Michaelson, and R. Loomans. A Profile for X.509 PKIX
Resource Certificates. RFC 6487 (Proposed Standard), Feb. 2012.
Updated by RFC 7318.

[88] C. Imbrenda, L. Muscariello, and D. Rossi. Analyzing Cacheable
Traffic in ISP Access Networks for Micro CDN Applications via
Content-Centric Networking. In Proceedings of the ACM Conference

on Information-Centric Networking (ICN), 2014.

[89] ISO. Intermediate System to Intermediate System intra-domain
routing information exchange protocol for use in conjunction with
th protocol for providing the connectionless-mode network service
(ISO 8473). International Standard, 10589, 2002.

[90] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking Named Content. In Proceedings of

the ACM Conference on Emerging Networking EXperiments and Tech-

nologies (CoNEXT), 2009.

[91] A. Jerichow, J. Muller, A. Pfitzmann, B. Pfitzmann, and M. Waid-
ner. Real-Time Mixes: A Bandwidth-Efficient Anonymity Protocl.
Selected Areas in Communications, IEEE Journal on, 1998.

http://bit.ly/2apRAxZ

BIBLIOGRAPHY 169

[92] S. Jiang, D. Guo, and B. Carpenter. An Incremental Carrier-Grade
NAT (CGN) for IPv6 Transition. RFC 6264 (Informational), June
2011.

[93] C. Jin, H. Wang, and K. G. Shin. Hop-count Filtering: An Effective
Defense Against Spoofed DDoS Traffic. In Proceedings of the ACM

Conference on Computer & Communications Security (CCS), 2003.

[94] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson. Users
Get Routed: Traffic Correlation on Tor by Realistic Adversaries. In
Proceedings of the ACM Conference on Computer & Communications

Security (CCS), 2013.

[95] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. Toward
an Efficient Website Fingerprinting Defense. In Proceedings of the

European Symposium on Research in Computer Security (ESORICS),
2016.

[96] M. S. Kang and V. D. Gligor. Routing Bottlenecks in the Internet—
Causes, Exploits, and Countermeasures. In Proceedings of the ACM

Conference on Computer & Communications Security (CCS), 2014.

[97] M. S. Kang, S. B. Lee, and V. D. Gligor. The Crossfire Attack. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2013.

[98] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry,
P. v. Wesep, T. Anderson, and A. Krishnamurthy. Reverse Traceroute.
In Proceedings of the USENIX Conference on Networked Systems De-

sign and Implementation (NSDI), 2010.

[99] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Inter-
net Key Exchange Protocol Version 2 (IKEv2). RFC 7296 (Internet
Standard), Oct. 2014. Updated by RFCs 7427, 7670.

[100] K. Ken, H. Young, M. Luckie, and K. Claffy. Internet-scale IPv4 Alias
Resolution with MIDAR. Networking, IEEE/ACM Transactions on,
21(2), 2013.

170 BIBLIOGRAPHY

[101] S. Kent. Pervasive Encryption as a Countermeasure to Pervasive
Monitoring. draft-kent-pervasive-encryption-00, 2014.

[102] S. Kent and K. Seo. Security Architecture for the Internet Protocol.
RFC 4301 (Proposed Standard), Dec. 2005. Updated by RFCs 6040,
7619.

[103] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig.
Lightweight Source Authentication and Path Validation. In Proceed-

ings of the ACM Conference on SIGCOMM, 2014.

[104] J. Kirk. ISP Cut off From Internet After Security Concerns.
https://goo.gl/QUbFwP, 2008.

[105] J. Kirk and R. McMillan. After weeklong fight, rogue ISP Troyak
struggles for life. https://goo.gl/2Ccheu, 2010.

[106] B. Krishnamurthy and C. E. Wills. Privacy Diffusion on the Web: A
Longitudinal Perspective. In Proceedings of the ACM Conference on

World Wide Web (WWW), 2009.

[107] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merrit.
Herd: A Scalable, Traffic Analysis Resistant Anonymity Network for
VoIP Systems. In Proceedings of the ACM Conference on SIGCOMM,
2015.

[108] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and
P. Francis. Towards Efficient Traffic-analysis Resistant Anonymity
Networks. In Proceedings of the ACM Conference on SIGCOMM,
2013.

[109] T. Lee and B. Hau. The New Route to Persistence: Compromised
Routers in the Wild. http://bit.ly/1ObMm7u, Sep 2015.

[110] T. Lee, C. Pappas, A. Perrig, V. D. Gligor, and Y.-C. Hu. The Case for
In-Network Replay Suppression. In Proceedings of the ACM Asia Con-

ference on Computer and Communications Security (AsiaCCS), 2017.

[111] M. Lepinski, S. Kent, and D. Kong. A Profile for Route Origin Autho-
rizations (ROAs). RFC 6482 (Proposed Standard), Feb. 2012.

https://goo.gl/QUbFwP
https://goo.gl/2Ccheu
http://bit.ly/1ObMm7u

BIBLIOGRAPHY 171

[112] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. SAVE: source
address validity enforcement protocol. In Proceedings of IEEE INFO-

COMM, 2002.

[113] D. G. Lichtman and E. Posner. Holding Internet Service Providers
Accountable. University of Chicago Coase-Sandor Working Paper Se-

ries in Law and Economics, 2004.

[114] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson. Tor Instead of
IP. In Proceedings of the ACM Workshop on Hot Topics in Networks

(HotNets), 2011.

[115] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and Adopt-
able Source Authentication. In Proceedings of the USENIX Conference

on Networked Systems Design and Implementation (NSDI), 2008.

[116] X. Liu, X. Yang, and Y. Lu. To Filter or to Authorize: Network-Layer
DoS Defense Against Multimillion-node Botnets. In Proceedings of

the ACM Conference on SIGCOMM, 2008.

[117] X. Liu, X. Yang, D. Wetherall, and T. Anderson. Efficient and Se-
cure Source Authentication with Packet Passports. In Proceedings of

the USENIX Workshop on Steps to Reducing Unwanted Traffic on the

Internet (SRUTI), 2006.

[118] J. Livingood, N. Mody, and M. O’Reirdan. Recommendations for the
Remediation of Bots in ISP Networks. RFC 6561 (Informational),
Mar. 2012.

[119] T. A. Longstaff, J. T. Ellis, S. V. Hernan, H. F. Lipson, R. D. McMil-
lan, L. H. Pesante, and D. Simmel. Security of the Internet. The

Froehlich/Kent Encyclopedia of Telecommunications, 15:231–255,
1997.

[120] S.-W. Luan and V. D. Gligor. On Replay Detection in Distributed
Systems. In Proceedings of the IEEE International Conference on Dis-

tributed Computing Systems (ICDCS), 1990.

[121] m3aawg. ABCs for ISPs. https://www.m3aawg.org/abcs-for-ISP-code,
2017.

https://www.m3aawg.org/abcs-for-ISP-code

172 BIBLIOGRAPHY

[122] Y. Mallios, S. Modi, A. Agarwala, and C. Johns. Persona: Network
layer anonymity and accountability for next generation internet.
IFIP Advances in Information and Communication Technology, 297,
2009.

[123] H. Marouani and M. R. Dagenais. Comparing High Resolution
Timestamps in Computer Clusters. In Proceedings of the IEEE Cana-

dian Conference on Electrical and Computer Engineering, 2005.

[124] D. McGrew and J. Viega. The Use of Galois Message Authentication
Code (GMAC) in IPsec ESP and AH. RFC 4543 (Proposed Standard),
May 2006.

[125] D. A. McGrew and J. Viega. The Galois/Counter Mode of Operation
(GCM). http://goo.gl/9sl9kK, 2004.

[126] S. W. L. Meiser. Quantitative Anonymity Guarantees for Tor. PhD
thesis, Saarland University, 2016.

[127] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 2001.

[128] U. Moeller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster
Protocol Version 2. draft-sassaman-mixmaster-03.txt, 2005.

[129] A. Morton. IMIX Genome: Specification of Variable Packet Sizes for
Additional Testing. RFC 6985 (Informational), July 2013.

[130] J. Moy. OSPF Version 2. RFC 2328 (Internet Standard), Apr. 1998.
Updated by RFCs 5709, 6549, 6845, 6860, 7474, 8042.

[131] M. K. Mukerjee, D. Han, S. Seshan, and P. Steenkiste. Understand-
ing Tradeoffs in Incremental Deployment of New Network Architec-
tures. In Proceedings of the ACM Conference on Emerging Networking

EXperiments and Technologies (CoNEXT), 2013.

[132] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra. Verifying and enforcing network paths with ICING. In
Proceedings of the ACM Conference on Emerging Networking EXperi-

ments and Technologies (CoNEXT), 2011.

http://goo.gl/9sl9kK

BIBLIOGRAPHY 173

[133] T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for State-
less Address Autoconfiguration in IPv6. RFC 4941 (Draft Standard),
Sept. 2007.

[134] D. Naylor, M. K. Mukerjee, and P. Steenkiste. Balancing Accountabil-
ity and Privacy in the Network. In Proceedings of the ACM Conference

on SIGCOMM, 2014.

[135] M. Nottingham and M. Thomson. Opportunistic Security for
HTTP/2. RFC 8164 (Experimental), May 2017.

[136] NSF. NSF Future Internet Architecture Project. www.nets-fia.net.

[137] OECD. THE ROLE OF INTERNET INTERMEDIARIES IN ADVANC-
ING PUBLIC POLICY OBJECTIVES. Technical Report JT03304378,
Organisation for Economic Co-operation and Development (OECD),
2011.

[138] C. H. Papadimitriou. On the Complexity of Integer Programming.
Journal of the ACM (JACM), 28(4), 1981.

[139] C. Pappas, R. M. Reischuk, and A. Perrig. FAIR:Forwarding Account-
ability for Internet Reputability. In Proceedings of the IEEE Confer-

ence on Network Protocols (ICNP), 2015.

[140] K. Park and H. Lee. On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law Inter-
nets. In Proceedings of the ACM Conference on SIGCOMM, 2001.

[141] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat. SCION:

A Secure Internet Architecture. Springer International Publishing,
2017.

[142] V. C. Perta, M. V. Barbera, G. Tyson, H. Haddadi, and A. Mei. A
Glance through the VPN Looking Glass: IPv6 Leakage and DNS Hi-
jacking in Commercial VPN Clients. In Proceedings on Privacy En-

hancing Technologies (PoPETs), 2015.

[143] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for
Introducing Disruptive Technology into the Internet. Computer Com-

munication Review, ACM SIGCOMM, 33(1), 2003.

www.nets-fia.net

174 BIBLIOGRAPHY

[144] M. W. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and T. Lange.
MinimaLT: Minimal-latency Networking Through Better Security. In
Proceedings of the ACM Conference on Computer & Communications

Security (CCS), 2013.

[145] A. Pfitzmann and M. Hansen. Anonymity, Unobservability,
and Pseudonymity: A Consolidated Proposal for Terminology.
http://goo.gl/n4tciX, Jul 2000.

[146] A. Pfitzmann, B. Pfitzmann, and M. Waidner. ISDN-mixes: Untrace-
able communication with very small bandwidth overhead. In Pro-

ceedings of the GI/ITG Conference on Communication in Distributed

Systems, 1991.

[147] P. Porras. Towards a More Secure SDN Control Layer - SRI Interna-
tional’s View. http://bit.ly/2ax0ERr, Oct 2013.

[148] QUIC. QUIC, a multiplexed stream transport over UDP.
www.chromium.org/quic.

[149] B. Raghavan, T. Kohno, A. C. Snoeren, and W. David. Enlisting ISPs
to improve online privacy: IP Address Mixing by Default. In Pro-

ceedings of the Privacy Enhancing Technologies Symposium (PETS),
2009.

[150] B. Raghavan and A. C. Snoeren. A System for Authenticated Policy-
Compliant Routing. In Proceedings of the ACM Conference on SIG-

COMM, 2004.

[151] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous
Connections and Onion Routing. Selected Areas in Communications,

IEEE Journal on, 16(4), 1998.

[152] J. Rexford and C. Dovrolis. Future Internet Architecture: Clean-
Slate Versus Evolutionary Research. Communications of the ACM,
2010.

[153] M. Richardson and D. Redelmeier. Opportunistic Encryption using
the Internet Key Exchange (IKE). RFC 4322 (Informational), Dec.
2005.

http://goo.gl/n4tciX
http://bit.ly/2ax0ERr
www.chromium.org/quic

BIBLIOGRAPHY 175

[154] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authenti-
cation Dial In User Service (RADIUS). RFC 2865 (Draft Standard),
June 2000. Updated by RFCs 2868, 3575, 5080, 6929, 8044.

[155] F. Roesner, T. Kohno, and D. Wetherall. Detecting and Defending
Against Third-Party Tracking on the Web. In Proceedings of the

USENIX Conference on Networked Systems Design and Implementa-

tion (NSDI), 2012.

[156] B. Rowe, D. Wood, D. Reeves, and F. Braun. The Role of Internet
Service Providers in Cyber Security. http://goo.gl/d1Ky3a, 2011.

[157] A. Sakurai, T. Minohara, R. Sato, and K. Mizutani. One-Time Re-
ceiver Address in IPv6 for Protecting Unlinkability. In Proceedings

of the Asian Computing Science Conference (ASIAN), 2007.

[158] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments
in System Design. Computer Systems, ACM Transactions on, 2(4),
1984.

[159] J. Sankey and M. Wright. Dovetail: Stronger Anonymity in Next-
Generation Internet Routing. In Proceedings of the Privacy Enhancing

Technologies Symposium (PETS), 2014.

[160] A. Serjantov and G. Danezis. Towards an Information Theoretic
Metric for Anonymity. In Proceedings of the Workshop on Designing

Privacy Enhancing Technologies (PETS), 2003.

[161] M. Shaw. Leveraging Good Intentions to Reduce Unwanted Net-
work Traffic. In Proceedings of the USENIX Workshop on Steps to

Reducing Unwanted Traffic on the Internet (SRUTI), 2006.

[162] V. Shmatikov and M.-H. Wang. Timing Analysis in Low-latency Mix
Networks: Attacks and Defenses. In Proceedings of the European

Symposium on Research in Computer Security (ESORICS), 2006.

[163] W. Simpson. IP in IP Tunneling. RFC 1853 (Informational), Oct.
1995.

[164] I. Society. State of IPv6 Deployment 2017. Technical report, Internet
Society, 2017.

http://goo.gl/d1Ky3a

176 BIBLIOGRAPHY

[165] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In Proceedings of the ACM Conference on SIGCOMM,
2002.

[166] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Pro-
posed Standard), Sept. 2007. Updated by RFCs 6096, 6335, 7053.

[167] A. Studer and A. Perrig. The Coremelt Attack. In Proceedings of the

European Symposium on Research in Computer Security (ESORICS),
2009.

[168] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal. RAPTOR: Routing Attacks on Privacy in Tor. In Proceedings

of the USENIX Security Symposium, 2015.

[169] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an
Analysis of Onion Routing Security. In Proceedings of the Workshop

on Designing Privacy Enhancing Technologies (PETS), 2001.

[170] J. Viega and D. McGrew. The Use of Galois/Counter Mode (GCM) in
IPsec Encapsulating Security Payload (ESP). RFC 4106 (Proposed
Standard), June 2005.

[171] X. Wang, S. Chen, and S. Jajodia. Tracking Anonymous Peer-to-Peer
VoIP Calls on the Internet. In Proceedings of the ACM Conference on

Computer & Communications Security (CCS), 2005.

[172] A. F. Westin. Privacy and Freedom. Scribner, 1967.

[173] M. Wuergler. Secrets in Your Pocket. https://goo.gl/J16Ykx.

[174] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow
Filter to Mitigate DDoS Flooding Attacks. In Proceedings of the IEEE

Symposium on Security and Privacy (S&P), 2004.

[175] I. Yamagata, Y. Shirasaki, A. Nakagawa,
J. Yamaguchi, and H. Ashida. NAT444.
https://tools.ietf.org/id/draft-shirasaki-nat444-06.txt, 2012.

[176] X. Yang, D. Wetherall, and T. Anderson. A Dos-limiting Network
Architecture. In Proceedings of the ACM Conference on SIGCOMM,
2005.

https://goo.gl/J16Ykx
https://tools.ietf.org/id/draft-shirasaki-nat444-06.txt

BIBLIOGRAPHY 177

[177] K. Zetter. NSA Laughs at PCs, Prefers Hacking Routers and Switches.
http://bit.ly/2awxsN8.

[178] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen. SCION: Scalability, Control, and Isolation on Next-
Generation Networks. In Proceedings of the IEEE Symposium on Se-

curity and Privacy (S&P), 2011.

[179] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On Flow Correla-
tion Attacks and Countermeasures in Mix Networks. In Proceedings

of the Workshop on Designing Privacy Enhancing Technologies (PETS),
2004.

http://bit.ly/2awxsN8

Curriculum Vitae: Tae-Ho Lee

Education

2013–2017 Ph.D., Computer Science

ETH Zurich, Switzerland
2007–2009 M.S., Electrical Engineering

Stanford University, USA
2004–2007 B.S., Electrical and Computer Engineering

University of Texas at Austin, USA

Experience

2013–2017 Research Assistant

Institute of Information Security, ETH Zurich, Switzerland
2009–2013 Research Staff

Electronics and Telecommunications Research Institute, S.Korea
2008–2008 Research Assistant

Computer Graphics Lab, Stanford University, USA
2007–2007 Research Assistant

Transceiver Technology Lab, Seoul National University, S.Korea
2005–2005 Intern

KT Corporation, S.Korea

Teaching Experience

2015–2017 Current Topics in Information Security
2016–2017 Network Security
2014–2017 Operating Systems and Networks
2006–2007 Digital Logic Design

Publications
[1] Taeho Lee, Christos Pappas, Adrian Perrig, “Bootstrapping Privacy in

Today’s Internet,” under submission, 2017.

[2] Taeho Lee∗, Christos Pappas∗, Pawel Szalachowski∗, Adrian Perrig, “To-
wards Sustainable Evolution for the TLS Public-Key Infrastructure,”
under submission, 2017.

180 7 Curriculum Vitae

[3] Taeho Lee∗,Christos Pappas∗, Adrian Perrig, Virgil Gligor, Yih-Chun
Hu, “The Case for In-Network Reply Suppression,” In Proceedings of

the ACM Asia Conference on Computer and Communications Security

(AsiaCCS), 2017.

[4] Taeho Lee, Christos Pappas, David Barrera, Pawel Szalachowski, Adrian
Perrig, “Source Accountability with Domain-brokered Privacy,” In Pro-

ceedings of the ACM Conference on Emerging Networking Experiments

and Technologies (CoNEXT), 2016.

[5] Taeho Lee, Christos Pappas, Pawel Szalachowski, Adrian Perrig, “Com-
munication Based on Per-Packet One-Time Addresses,” In Proceedings

of the IEEE Conference on Network Protocols (ICNP), 2016.

[6] Takayuki Sasaki, Christos Pappas, Taeho Lee, Torsten Hoefler, Adrian
Perrig, “SDNsec: Forwarding Accountability for the SDN Data Plane,”
In Proceedings of the IEEE International Conference on Computer Com-

munication and Networks (ICCCN), 2016.

[7] Pawel Szalachowski, Laurent Chuat, Taeho Lee, Adrian Perrig, “RITM:
Revocation in the Middle,” In Proceedings of the IEEE International Con-

ference on Distributed Computing Systems (ICDCS), 2016.

[8] Yi-Hsuan Kung, Taeho Lee, Po-Ning Tseng, Hsu-Chun Hsiao, Tiffany
Hyun-Jin Kim, Soo Bum Lee, Yue-Hsun Lin, Adrian Perrig, “A Prac-
tical System for Guaranteed Access in the Presence of DDoS Attacks
and Flash Crowds,” In Proceedings of the IEEE Conference on Network

Protocols (ICNP), 2015.

[9] Taeho Lee∗, Christos Pappas∗, Cristina Basescu, Jun Han, Torsten Hoe-
fler, Adrian Perrig, “Source-Based Path Selection: The Data Plane Per-
spective,” In Proceedings of the ACM Conference on Future Internet Tech-

nologies (CFI), 2015.

[10] Taesang Choi, Taeho Lee, Nodir Kodirov, Jaegi Lee, Doyeon Kim, Joon-
Myung Kang, Sungsu Kim, John Strassner, James Won-Ki Hong, “Hi-
Mang: Highly Manageable Network and Service Architecture for New
Generation,” Journal of Communications and Networks, Vol. 13, pp.552-
566, 2012.

[11] Woojik Chun, Taeho Lee, Taesang Choi, “YANAIL: Yet Another defini-
tion on Name, Addresses, Identifiers, and Locators,” In Proceedings of

the ACM Conference on Future Internet Technologies (CFI), 2011.

181

[12] Sungkee Noh, Euisin Lee, Seungmin Oh, Taeho Lee, Sang-Ha Kim,
“Effective retransmission scheme for supporting Communication Re-
liability in Sensor Networks,” In Proceedings of the IEEE Symposium on

Personal Indoor and Mobile Radio Communications (PIMRC), 2010.

	Introduction
	A Vision for a Better Internet
	Approach
	Overview
	Summary of Contributions
	Related Publications

	Source Accountability with Domain-brokered Privacy
	Problem Definition
	APNA Overview
	APNA Protocol Details
	User-Defined Privacy
	Implementation & Evaluation
	Security Analysis
	Practical Considerations
	Integration with SCION
	Discussion

	Communication Based on Per-Packet One-Time Addresses
	Problem Setup
	Overview
	Protocol Design
	Implementation
	Evaluation
	Caveat

	The Case for In-Network Replay Suppression
	Router-Reflection Attack
	Challenges for In-Network Replay Suppression
	In-Network Replay Suppression
	Software Prototype
	Security Considerations
	Discussion

	Deployment Strategies
	Overlay Approach
	Integrated Approach

	Related Work
	Balancing Source Accountability and Privacy
	Source Accountability
	Communication Privacy
	Incremental Deployment for FIAs

	Conclusion and Future Work
	Future Work

	Bibliography
	Curriculum Vitae

